Science.gov

Sample records for rice husk ash-synthesized

  1. Kinetic and equilibrium studies of the removal of ammonium ions from aqueous solution by rice husk ash-synthesized zeolite Y and powdered and granulated forms of mordenite.

    PubMed

    Yusof, Alias Mohd; Keat, Lee Kian; Ibrahim, Zaharah; Majid, Zaiton Abdul; Nizam, Nik Ahmad

    2010-02-15

    The removal of ammonium from aqueous solutions using zeolite NaY prepared from a local agricultural waste, rice husk ash waste was investigated and a naturally occurring zeolite mordenite in powdered and granulated forms was used as comparison. Zeolite NaY and mordenite were well characterized by powder X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis and the total cation exchange capacity (CEC). CEC of the zeolites were measured as 3.15, 1.46 and 1.34 meq g(-1) for zeolite Y, powdered mordenite and granular mordenite, respectively. Adsorption kinetics and equilibrium data for the removal of NH(4)(+) ions were examined by fitting the experimental data to various models. Kinetic studies showed that the adsorption followed a pseudo-second-order reaction. The equilibrium pattern fits well with the Langmuir isotherm compared to the other isotherms. The monolayer adsorption capacity for zeolite Y (42.37 mg/g) was found to be higher than that powdered mordenite (15.13 mg/g) and granular mordenite (14.56 mg/g). Thus, it can be concluded that the low cost and economical rice husk ash-synthesized zeolite NaY could be a better sorbent for ammonium removal due to its rapid adsorption rate and higher adsorption capacity compared to natural mordenite. PMID:19879040

  2. Characterization of Rice Husk for Cyclone Gasifier

    NASA Astrophysics Data System (ADS)

    Mohamad Yusof, I.; Farid, N. A.; Zainal, Z. A.; Azman, M.

    The characterization of rice husk from local rice mills has been studied and evaluated to determine its potential utilization as a biomass fuel for a cyclone gasifier. The raw rice husk was pre-treated throughout a grinding process into smaller sizes of particles which is within a range of 0.4 to 1 mm and the sample of ground rice husk was analyzed for its fuel characteristics. The result of proximate analysis shows that the ground rice husk with size distribution within 0.4 to 1 mm contains 13.4% of fixed carbon, 62.95% of volatile matter and 18.5% of ash on dry basis. The moisture content of the sample was measured and determined as 10.4% (wet basis) and the calorific value was found to be approximately 14.8 MJ kg-1 with bulk density of 91.46 kg m-3. The result of ultimate analysis validates both ash and moisture content which are found to be 18.15 and 10.4%, respectively. Other elemental compositions determined by the ultimate analysis are carbon (37.9%), hydrogen (5.2%), nitrogen (0.14%), sulfur (0.61%) and oxygen (27.7% by difference). The study has identified that the fuel characteristics of the ground rice husk is comparable with other types of biomass and thus, making it another potential source of fuel for the cyclone gasification system.

  3. Recycling rice husks for high-capacity lithium battery anodes.

    PubMed

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-07-23

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 10(8) tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  4. Recycling rice husks for high-capacity lithium battery anodes

    PubMed Central

    Jung, Dae Soo; Ryou, Myung-Hyun; Sung, Yong Joo; Park, Seung Bin; Choi, Jang Wook

    2013-01-01

    The rice husk is the outer covering of a rice kernel and protects the inner ingredients from external attack by insects and bacteria. To perform this function while ventilating air and moisture, rice plants have developed unique nanoporous silica layers in their husks through years of natural evolution. Despite the massive amount of annual production near 108 tons worldwide, so far rice husks have been recycled only for low-value agricultural items. In an effort to recycle rice husks for high-value applications, we convert the silica to silicon and use it for high-capacity lithium battery anodes. Taking advantage of the interconnected nanoporous structure naturally existing in rice husks, the converted silicon exhibits excellent electrochemical performance as a lithium battery anode, suggesting that rice husks can be a massive resource for use in high-capacity lithium battery negative electrodes. PMID:23836636

  5. [Adsorption mechanism of furfural onto modified rice husk charcoals].

    PubMed

    Deng, Yong; Wang, Xianhua; Li, Yunchao; Shao, Jing'ai; Yang, Haiping; Chen, Hanping

    2015-10-01

    To evaluate the absorptive characteristics of furfural onto biomass charcoals derived from rice husk pyrolysis, we studied the information of the structure and surface chemistry properties of the rice husk charcoals modified by thermal treatment under nitrogen and carbon dioxide flow and adsorption mechanism of furfural. The modified samples are labeled as RH-N2 and RH-CO2. Fresh rice husk charcoal sample (RH-450) and modified samples were characterized by elemental analysis, nitrogen adsorption-desorption isotherms, Fourier-transform infrared spectroscopy and Boehm titration. The results show that fresh rice husk charcoal obtained at 450 degrees C had a large number of organic groups on its surface and poor pore structure. After the modification under nitrogen and carbon dioxide flow, oxygenic organics in rice husk charcoals decompose further, leading to the reduction of acidic functional groups on charcoals surface, and the increase of the pyrone structures of the basic groups. Meanwhile, pore structure was improved significantly and the surface area was increased, especially for the micropores. This resulted in the increase of π-π dispersion between the surfaces of rice husk charcoals and furfural molecular. With making comprehensive consideration of π-π dispersion and pore structure, the best removal efficiency of furfural was obtained by rice husk charcoal modified under carbon dioxide flow. PMID:26964338

  6. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.

    PubMed

    Seyfferth, Angelia L; Morris, Andrew H; Gill, Rattandeep; Kearns, Kelli A; Mann, Jessica N; Paukett, Michelle; Leskanic, Corey

    2016-05-18

    Arsenic decreases rice yield, and inorganic grain As threatens human health; thus, strategies to decrease rice As are critically needed. Increased plant-available silica (Si) can decrease rice As, yet the source of Si matters. Rice husk, an underutilized and Si-rich byproduct of rice production that contains less labile C and an order of magnitude less As than rice straw, may be an economically viable Si resource to decrease rice As, yet the impact of rice husk incorporation on As in the rice-soil nexus has not been reported. This proof-of-concept study shows that rice husk incorporation to soil (1% w/w) decreases inorganic grain As by 25-50% without negatively affecting grain Cd, yield, or dissolved CH4 levels. Rice husk is a critical yet perhaps overlooked resource to improve soil quality through enhanced nutrient availability and attenuate human health risks through consumption of As-laden grain. PMID:27109244

  7. CFD Analysis of Bubbling Fluidized Bed Using Rice Husk

    NASA Astrophysics Data System (ADS)

    Singh, Ravi Inder; Mohapatra, S. K.; Gangacharyulu, D.

    Rice is Cultivated in all the main regions of world. The worldwide annual rice production could be 666million tons (www.monstersandcritics.com,2008) for year 2008. The annual production of rice husk is 133.2 million tons considering rice husk being 20% of total paddy production. The average annual energy potential is 1.998 *1012 MJ of rice husk considering 15MJ/kg of rice husk. India has vast resource of rice husk; a renewable source of fuel, which if used effectively would reduce the rate of depletion of fossil energy resources. As a result a new thrust on research and development in boilers bases on rice husk is given to commercialize the concept. CFD is the analysis of systems involving fluid flow, heat transfer and associated phenomena such as chemical reactions by means of computer-based simulation. High quality Computational Fluid dynamics (CFD) is an effective engineering tool for Power Engineering Industry. It can determine detailed flow distributions, temperatures, and pollutant concentrations with excellent accuracy, and without excessive effort by the software user. In the other words it is the science of predicting fluid flow, heat and mass transfer, chemical reactions and related phenomena; and an innovate strategy to conform to regulations and yet stay ahead in today's competitive power market. This paper is divided into two parts; in first part review of CFD applied to the various types of boilers based on biomass fuels/alternative fuels is presented. In second part CFD analysis of fluidized bed boilers based on rice husk considering the rice husk based furnace has been discussed. The eulerian multiphase model has used for fluidized bed. Fluidized bed has been modeled using Fluent 6.2 commercial code. The effect of numerical influence of bed superheater tubes has also been discussed.

  8. Adsorption of paraquat using methacrylic acid-modified rice husk.

    PubMed

    Hsu, Shih-Tong; Pan, Ting-Chung

    2007-12-01

    This work investigates the adsorption of paraquat from aqueous medium using a methacrylic acid (MAA)-modified rice husk. The carboxyl groups were chemically bound to the surface of the rice husk by graft copolymerization using Fenton's reagent as a redox initiator. The graft copolymerization was examined to determine the H(2)O(2) concentration and the amount of MAA monomer used. FT-IR spectra confirmed the presence of carbonyl groups on the structural units of the rice husk derivative. The MAA-modified rice husks were hydrolyzed to sodium salt and used to adsorb paraquat. The adsorption was rapid in the first few minutes and quickly reached equilibrium. Equilibrium adsorption data are more consistent with the Langmuir isotherm equation than with the Freundlich equation. The maximum adsorption capacity of modified rice husks was 317.7mg/g-adsorbent. This value clearly exceeds the 60mg/g of Fuller's earth and the 90mg/g of activated carbon, which are the most commonly used binding agents for paraquat. PMID:17303413

  9. Pyrolysis kinetics of acid-leached rice husk

    SciTech Connect

    Liou, T.H.; Chang, F.W.; Lo, J.J.

    1997-03-01

    A highly pure mixture of carbon and silica was obtained on pyrolysis rice husk leached with acid at high temperature in a nonoxidizing atmosphere. The product was suitable for use as a starting material in the manufacture of silicon nitride powder. The effect of treatment including the kind and concentration of acid and the pyrolysis temperature on the constituents of the specimen was presented. Kinetic tests on pyrolysis of rice husk in a nitrogen atmosphere were carried out with a thermal gravimetric analysis (TGA) technique at heating rates 2, 3, and 5 K/min. The results indicated that thermal degradation of rice husk consisted of two distinct pyrolysis stages. The corresponding kinetic parameters including the activation energy were determined. A reasonable pyrolysis mechanism was proposed, which agreed satisfactorily with the experimental results.

  10. Study of silica templates in the rice husk and the carbon-silica nanocomposites produced from rice husk

    NASA Astrophysics Data System (ADS)

    Larichev, Yu. V.; Yeletsky, P. M.; Yakovlev, V. A.

    2015-12-01

    Carbon-silica nanocomposites obtained by rice husk carbonization in a fluidized-bed reactor using a deep oxidation copper-chromium catalyst were studied. Dispersion characteristics of the silica phase in these systems were determined by small-angle X-ray scattering (SAXS) using the full contrast technique. SiO2 was found in the initial rice husk as compact nanoparticles having a wide size distribution. This distribution consists of a narrow fraction with particle sizes from 1 to 7 nm and a wider fraction with particle sizes from 8 to 22 nm. Oxidative heat treatment of rice husk in a fluidized bed in the presence of the catalyst decreased the fraction of small SiO2 particles and increased the fraction of large ones. It was demonstrated that the particle size of silica in the carbon matrix can be determined selectively for deliberate design of porous carbon materials with desired properties.

  11. Removal of arsenic from drinking water using rice husk

    NASA Astrophysics Data System (ADS)

    Asif, Zunaira; Chen, Zhi

    2015-09-01

    Rice husk adsorption column method has proved to be a promising solution for arsenic (As) removal over the other conventional methods. The present work investigates the potential of raw rice husk as an adsorbent for the removal of arsenic [As(V)] from drinking water. Effects of various operating parameters such as diameter of column, bed height, flow rate, initial arsenic feed concentration and particle size were investigated using continuous fixed bed column to check the removal efficiency of arsenic. This method shows maximum removal of As, i.e., 90.7 % under the following conditions: rice husk amount 42.5 g; 7 mL/min flow rate in 5 cm diameter column at the bed height of 28 cm for 15 ppb inlet feed concentration. Removal efficiency was increased from 83.4 to 90.7 % by reducing the particle size from 1.18 mm to 710 µm for 15 ppb concentration. Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior. The effect of different operating parameters on the column adsorption was determined using breakthrough curves. In the present study, three kinetic models Adam-Bohart, Thomas and Yoon-Nelson were applied to find out the saturated concentration, fixed bed adsorption capacity and time required for 50 % adsorbate breakthrough, respectively. At the end, solidification was done for disposal of rice husk.

  12. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    PubMed

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  13. Magnesiothermic reduction of rice husk ash for electromagnetic wave adsorption

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Ting; Yan, Kang-kang; Zhang, Yuan hu; Jin, Shi-di; Ye, Ying; Chen, Xue-Gang

    2015-11-01

    The increase in electromagnetic pollution due to the extensive exploitation of electromagnetic (EM) waves in modern technology creates correspondingly urgent need for developing effective EM wave absorbers. In this study, we carried out the magnesiothermic reduced the rice husk ash under different temperatures (400-800 °C) and investigated the electromagnetic wave adsorption of the products. The EM absorbing for all samples are mainly depend on the dielectric loss, which is ascribed to the carbon and silicon carbide content. RA samples (raw rice husk ashed in air and was magesiothermic reduced in different temperatures) exhibit poor dielectric properties, whereas RN samples (raw rice husk ashed in nitrogen and was magesiothermic reduced in different temperatures) with higher content of carbon and silicon carbide display considerable higher dielectric loss values and broader bandwidth for RL<-5 dB and -10 dB. For RN samples, the maximum bandwidth for -5 dB and -10 dB decrease with carbon contents, while the optimum thickness decrease with increasing SiC content. The optimum thickness of RN400-800 for EM absorption is 1.5-2.0 mm, with maximum RL of between -28.9 and -68.4 dB, bandwidth of 6.7-13 GHz for RL<-5 dB and 3.2-6.2 GHz for RL<-10 dB. The magnesiothermic reduction will enhance the potential application of rice husk ash in EM wave absorption and the samples benefited from low bulk density and low thickness. With the advantages of light-weight, high EM wave absorption, low cost, RN400-800 could be promising candidates for light-weight EM wave absorption materials over many conventional EM wave absorbers.

  14. Characteristics of rice husk gasification in an entrained flow reactor.

    PubMed

    Zhao, Yijun; Sun, Shaozeng; Tian, Hongming; Qian, Juan; Su, Fengming; Ling, Feng

    2009-12-01

    Experiments were performed in an entrained flow reactor to better understand the characteristics of biomass gasification. Rice husk was used in this study. Effects of the gasification temperature (700, 800, 900 and 1000 degrees C) and the equivalence ratio in the range of 0.22-0.34 on the biomass gasification and the axial gas distribution in the reactor were studied. The results showed that reactions of CnHm were less important in the gasification process except cracking reactions which occurred at higher temperature. In the oxidization zone, reactions between char and oxygen had a more prevailing role. The optimal gasification temperature of the rice husk could be above 900 degrees C, and the optimal value of ER was 0.25. The gasification process was finished in 1.42 s when the gasification temperature was above 800 degrees C. A first order kinetic model was developed for describing rice husk air gasification characteristics and the relevant kinetic parameters were determined. PMID:19589673

  15. Experimental research on rice husk combustion in CFB boiler and the design of a 35 t/h rice husk-fired CFB boiler

    SciTech Connect

    Chen Guanyi; Fang Mengxiang; Luo Zhongyang; Li Xuantian; Shi Zhenglun; Cen Kefa; Ni Mingjiang

    1997-12-31

    The fluidization and transportation properties of rice husk have been studied on a cold model bed of inner diameter 120 mm. The ignition and combustion characteristics of rice husk mixed with coal have also been studied in a 1 MW experimental circulating fluidized bed (CFB) system. The conclusions, drawn on the basis of these experiments, are found to be very useful for the design of a 35 tons per hour CFB boiler firing this biomass fuel.

  16. A new method of utilizing rice husk: consecutively preparing D-xylose, organosolv lignin, ethanol and amorphous superfine silica.

    PubMed

    Zhang, Hongxi; Ding, Xuefeng; Chen, Xue; Ma, Yuejia; Wang, Zichen; Zhao, Xu

    2015-06-30

    Rice husk is an abundant agricultural by-product with the annual output of 120 and 40 million tons in the world and China, respectively. The common disposal method of rice husk in China has caused the pollution. This manuscript deals with a new method of comprehensively utilizing rice husk, by which hazardous materials are avoided to release. 100.3, 219.4, 50.1 and 170.5 g of D-xylose, organosolv lignin, ethanol and superfine silica are consecutively prepared from 1000 g of rice husk. This new method is helpful to resolving the problem of pollution and waste aroused by rice husk. PMID:25768989

  17. Nanostructured silicon nitride from wheat and rice husks

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Wollmershauser, J. A.; Feng, C. R.

    2016-04-01

    Nanoparticles, submicron-diameter tubes, and rods of Si3N4 were synthesized from the thermal treatment of wheat and rice husks at temperatures at and above 1300 °C in a nitrogen atmosphere. The whole pattern Rietveld analysis of the observed diffraction data from treatments at 1300 °C showed the formation of only hexagonal α-phase of Si3N4 with an R-factor of 1%, whereas samples treated at 1400 °C and above showed both α- and β-phases with an R-factor of 2%. Transmission electron microscopy showed the presence of tubes, rods, and nanoparticles of Si3N4. In a two-step process, where pure SiC was produced first from rice or wheat husk in an argon atmosphere and subsequently treated in a nitrogen atmosphere at 1450 °C, a nanostructured composite material having α- and β-phases of Si3N4 combined with cubic phase of SiC was formed. The thermodynamics of the formation of silicon nitride is discussed in terms of the solid state reaction between organic matter (silica content), which is inherently present in the wheat and rice husks, with the nitrogen from the furnace atmosphere. Nanostructures of silicon nitride formed by a single direct reaction or their composites with SiC formed in a two-step process of agricultural byproducts provide an uncomplicated sustainable synthesis route for silicon nitride used in mechanical, biotechnology, and electro-optic nanotechnology applications.

  18. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2015-09-01

    This study aimed to obtain the maximum possible gas yield and the high quality syngas production from microwave pyrolysis of rice husk with rice husk char and rice husk char-supported metallic (Ni, Fe and Cu) catalysts. The rice husk char-supported metallic catalysts had developed pore structure and catalytic activity for gas productions and tar conversion. The temperature-rising characteristic, product yields, properties of gas products and tar conversion mechanisms were investigated. It was found that three rice husk char-supported metallic catalysts improved the microwave absorption capability and increased heating rate and final temperature. Rice husk char-supported Ni catalyst presented most effective effects on gas production, e.g. the gas yield is 53.9%, and the volume concentration of desired syngas is 69.96%. Rice husk char-supported Ni and Fe catalysts played pivotal roles in tar conversion that less heavy compounds can be detected along with the reduction of organic compound number. PMID:25974618

  19. Utilization of Rice Husk as Pb Adsorbent in Blood Cockles

    NASA Astrophysics Data System (ADS)

    Rohaeti, Eti; Permata Sari, Wenny; Batubara, Irmanida

    2016-01-01

    Water pollution by lead affects blood cockles, a potential source of food. The aim of this research is to compare rice husk (RH) and rice husk carbon (RHC) in reducing the concentration of lead in blood cockles. RH and RHC were activated with NaOH 1 M, and then the optimal conditions and maximum capacity were determined. This research showed that RH and RHC had maximum adsorbancy capacities of 28.7326 mg/g and 51.5464 mg/g at optimal condition. The optimal adsorption condition for RH in 100 ml Pb solution is 0.32 gram, pH 5, for 4 hours. The optimal adsorption condition for RHC in 100 ml Pb solution is 0.20 gram, pH 5, for 2 hours. Lead content in blood cockles from the north waters of Jakarta (1.9658 mg/kg) is beyond the threshold limit. Lead adsorption by RH and RHC could reduce lead content in blood cockles by about 40% and 31%, respectively.

  20. Production of micro- and nanosilica from soil inhabiting Folsomia candida fed with treated rice husk.

    PubMed

    Moreno-Murguía, Barbara; Soto-Mercado, Jorge R; Morales-Malacara, Juan B; Castaño, Victor M

    2015-08-01

    Rice husk was employed as a source for producing silica micro- and nanoparticles through its digestion by soil fauna. Although many physicochemical methods for producing nanostructures have been studied, the biological processes remain mostly unexplored. Alkaline hydrogen peroxide with continuous control of reaction pH allowed removal of lignin bonds while preserving most of the cell wall and the silica present in the rice husk. The accessibility of lignocellulose was achieved without removing appreciable amounts of lignin, so this agricultural byproduct can be employed as feeding material for microarthropods Folsomia candida (Collembola). When these microarthropods are placed on a substrate of treated rice husk, more than 85% of degraded material is obtained, as compared to the untreated rice husk substrate, while the silica particles obtained show a slight decrease in average size. PMID:26224351

  1. Sorption kinetics of Zn (II) ion by thermally treated rice husk

    NASA Astrophysics Data System (ADS)

    Ong, K. K.; Tarmizi, A. F. A.; Wan Yunus W. M., Z.; Safidin, K. M.; Fitrianto, A.; Hussin, A. G. A.; Azmi, F. M.

    2015-05-01

    Agricultural wastes such as orange peels, tea leave waste, rice husk and corn cobs have been widely studied as sorbents for heavy metal ion removal from various wastewaters. In order to understand their sorption mechanism, the adsorption kinetics is studied. This report describes the kinetics study of a thermally treated rice husk to adsorb Zn (II) ion from an aqueous solution. The adsorbent was obtained by heating the rice husk in a furnace at 500°C for two hours. Increase the contact period improved percentage of the removal of Zn (II) ion until an equilibrium was reached. The data obtained showed that the adsorption of Zn (II) ion by thermally treated rice husk obeyed pseudo-second order kinetics model, which is in agreement with chemisorption as the rate limiting mechanism.

  2. Evaluation of rice husk ash as filler in tread compounds

    SciTech Connect

    Fernandes, M. R. S.; Furtado, C. R. G. E-mail: ana.furtado.sousa@gmail.com; Sousa, A. M. F. de E-mail: ana.furtado.sousa@gmail.com

    2014-05-15

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety)

  3. Evaluation of rice husk ash as filler in tread compounds

    NASA Astrophysics Data System (ADS)

    Fernandes, M. R. S.; Furtado, C. R. G.; de Sousa, A. M. F.

    2014-05-01

    Rice which is one of the largest agriculture crops produces around 22% of rice rusk during its milling process. This material is mainly used as fuel for energy generation, which results in an ash, which disposal represents an environmental issue. The rice husk ash (RHA) contains over than 70% of silica in an amorphous form and a lot of applications is being developed for it all over the world. The use of silica as a filler in the tire industry is growing since it contributes significantly to the reduction of fuel consumption of the automobiles, allowing at the same time better traction (safety). This paper presents an evaluation of the use of RHA as filler in rubber tread compounds prepared in lab scale and compares its performance with compounds prepared with commercial silica and carbon black, the fillers normally used in tire industry. Mechanical and rheological properties are evaluated, with emphasis for tan delta as an indicator of tread performance related with rolling resistance (fuel consumption) and wet grip/traction (safety).

  4. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives.

    PubMed

    Ciannamea, Emiliano M; Stefani, Pablo M; Ruseckaite, Roxana A

    2010-01-01

    The main goal of this work was to evaluate the technical feasibility of using rice husk (RH) as wood substitute in the production of environmentally sound medium-density particleboards using adhesives from soybean protein concentrate (SPC). Chemical modification of rice husk with sodium hydroxide and sodium hydroxide followed by hydrogen peroxide (bleaching) were undertaken to evaluate the effect of such treatments on the composition and topology of rice husk and the performance of produced panels. Both treatments were efficient in partially eliminating hemicelluloses, lignin and silica from RH, as evidenced by thermo-gravimetric analysis (TGA). Scanning electron microscopy observations suggested that alkaline treatment resulted in a more damaged RH substrate than bleaching. The dependence of mechanical properties (modulus of rupture, modulus of elasticity, and internal bond) and the physical properties (water absorption and thickness swelling) on chemical treatments performed on both, rice husk and SPC was studied. Bleached-rice husk particleboards bonded with alkaline-treated soybean protein concentrate displayed the best set of final properties. Particleboards with this formulation met the minimum requirements of internal bond, modulus of elasticity and modulus of rupture recommended by the US Standard ANSI/A208.1 specifications for M1, MS and M2-grade medium-density particleboards, but failed to achieve the thickness swelling value recommended for general use panels. This limitation of soybean protein concentrate-bonded rice husk particleboards was counterbalanced by the advantage of being formaldehyde-free which makes them a suitable alternative for indoor applications. PMID:19766482

  5. Facile catalytic combustion of rice husk and burning temperature dependence of the ashes.

    PubMed

    Xiong, Liangming; Sekiya, Edson H; Wada, Shigetaka; Saito, Kazuya

    2009-11-01

    In this work, it was discovered and demonstrated that the combustion of rice husk is a catalytic process by the thermoanalytical technique. The catalyst involves the oxides of such transition metals as Mn, Fe, and Cu, which are mainly formed in the initial stage of rice husk combustion and remain in the rice husk ash as an impurity. Mn(2+) ions of various concentrations were reloaded into the HCl-washed husk for cocombustion. As a result, the complete combustion temperature of the husk was decreased exponentially depending on the Mn(2+) concentration. By the facile Mn loading technique using a 0.5 M solution, the combustion temperature can be decreased by approximately 100 degrees C, and the resulting ashes themselves can be a good catalyst in the complete combustion of many other organic compounds. The physicochemical properties and amorphous structure of the ashes from both the raw and HCl-washed husks were found to be strongly dependent on the burning temperature. A decreased complete rice husk combustion temperature can be beneficial in preparing porous amorphous silica with high surface area, high densification, and small Si-O-Si band angles. PMID:20356121

  6. Simultaneous pretreatment and sacchariffication of rice husk by Phanerochete chrysosporium for improved production of reducing sugars.

    PubMed

    Potumarthi, Ravichandra; Baadhe, Rama Raju; Nayak, Priyanka; Jetty, Annapurna

    2013-01-01

    Phanerochete chrysosporium, the white-rot fungus, (a best source for lignolytic enzymes system) was used in the biological pretreatment of rice husk for reducing sugars production. Usually reducing sugar production through biochemical process involves two steps: solid state fermentation (SSF) of fungal pretreatment for delignification, subsequently pretreated biomass subjected to enzymatic hydrolysis. During the fungal pretreatment of rice husk for reducing sugar production along with cellulase and xylanse, the activities of lignin degradation-related enzymes such as lignin peroxidases (LiP), GLOX (glyoxidase), and aryl alcohol oxidases (AAO), were observed. The fungal pretreated rice husk produced highest (895.9 mg/ml/2g of rise husk) reducing sugars on 18th day of fungal treatment. This method may be good alternative to avoid operational costs associated with washing and the removal of inhibitors during the conventional pretreatment methods. PMID:23196230

  7. Durability of conventional concretes containing black rice husk ash.

    PubMed

    Chatveera, B; Lertwattanaruk, P

    2011-01-01

    In this study, black rice husk ash (BRHA) from a rice mill in Thailand was ground and used as a partial cement replacement. The durability of conventional concretes with high water-binder ratios was investigated including drying shrinkage, autogenous shrinkage, depth of carbonation, and weight loss of concretes exposed to hydrochloric (HCl) and sulfuric (H(2)SO(4)) acid attacks. Two different replacement percentages of cement by BRHA, 20% and 40%, and three different water-binder ratios (0.6, 0.7 and 0.8) were used. The ratios of paste volume to void content of the compacted aggregate (γ) were 1.2, 1.4, and 1.6. As a result, when increasing the percentage replacement of BRHA, the drying shrinkage and depth of carbonation reaction of concretes increased. However, the BRHA provides a positive effect on the autogenous shrinkage and weight loss of concretes exposed to hydrochloric and sulfuric acid attacks. In addition, the resistance to acid attack was directly varied with the (SiO(2) + Al(2)O(3) + Fe(2)O(3))/CaO ratio. Results show that ground BRHA can be applied as a pozzolanic material and also improve the durability of concrete. PMID:20863608

  8. Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses

    PubMed Central

    2012-01-01

    Background In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure. Results From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling. Conclusions The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments. PMID:22958710

  9. Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars

    NASA Astrophysics Data System (ADS)

    Sun, Xing; Liu, Qin; Gu, Jie; Chen, Xiang; Zhu, Keya

    2016-01-01

    Rice is a well-known silicon accumulator. During its periods of growth, a great number of phytoliths are formed by taking up silica via the plant roots. Concurrently, carbon in those phytoliths is sequestrated by a mechanism of long-term biogeochemical processes within the plant. Phytolith occluded C (PhytOC) is very stable and can be retained in soil for longer than a millennium. In this study, we evaluated the carbon biosequestration within the phytoliths produced in rice seed husks of 35 rice cultivars, with the goal of finding rice cultivars with relatively higher phytolith carbon sequestration efficiencies. The results showed that the phytolith contents ranged from 71.6 mg•g‒1 to 150.1 mg•g‒1, and the PhytOC contents ranged from 6.4 mg•g‒1 to 38.4 mg•g‒1, suggesting that there was no direct correlation between the PhytOC content and the content of rice seed husk phytoliths (R = 0.092, p>0.05). Of all rice cultivars, six showed a higher carbon sequestration efficiency in phytolith seed husks. Additionally, the carbon biosequestration within the rice seed husk phytoliths was approximately 0.45‒3.46 kg-e-CO2•ha‒1•yr‒1. These rates indicate that rice cultivars are a potential source of carbon biosequestration which could contribute to the global carbon cycle and climate change.

  10. Development of carbon dioxide adsorbent from rice husk char

    NASA Astrophysics Data System (ADS)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  11. Evaluation and statistical optimization of methane oxidation using rice husk amended dumpsite soil as biocover.

    PubMed

    Bajar, Somvir; Singh, Anita; Kaushik, C P; Kaushik, Anubha

    2016-07-01

    A laboratory scale study was conducted to investigate the effect of rice husk amended biocover to mitigate the CH4 emission from landfills. Various physico-chemical and environmental variables like proportion of amended biocover material (rice husk), temperature, moisture content, CH4 concentration, CO2 concentration, O2 concentration and incubation time were considered in the study which affect the CH4 bio-oxidation. For the present study, sequential statistical approach with Placket Burman Design (PBD) was used to identify significant variables, having influential role on CH4 bio-oxidation, from all variables. Further, interactive effect of four selected variables including rice husk proportion, temperature, CH4 concentration and incubation time was studied with Box-Behnken Design (BBD) adopting Response Surface Methodology (RSM) to optimize the conditions for CH4 oxidation. In this study, the maximum CH4 oxidation potential of 76.83μgCH4g(-1)dwh(-1) was observed under optimum conditions with rice husk amendment of 6% (w/w), 5h incubation time at 40°C temperature with 40% (v/v) initial CH4 concentration. The results for CH4 oxidation potential also advocated the suitability of rice husk amendment in biocover system to curb emitted CH4 from landfills/open dumpsite over conventional clay or sand cover on supplying CH4 and O2 to microbes on maintaining proper aeration. PMID:26452424

  12. Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Ismail, N. A. A.; Rizamarhaiza, M.; W. M. Hasif. A. A., K.; Taib, H.

    2016-07-01

    Rice husk was thermally decomposed to yield powder composed of silica (SiO2). Temperatures of 700°C and 1000°C were chosen as the decomposition temperatures. X-Ray Diffraction (XRD), X-Ray Florescence (XRF), Fourier Transform Infrared (FTIR), and Field Emission Scanning Electron Microscope (FESEM) analyses were conducted on a synthetic silica powder (SS-SiO2) and the rice husk ash as for the comparative characterisation study. XRD analyses clearly indicated that the decomposed rice husk yielded silica of different nature which are Crystalline Rice Husk Silica (C-RHSiO2) and Amorphous Rice Husk Silica (A-RHSiO2). Moreover, it was found that SS-SiO2 was of Quartz phase, C-RHSiO2 was of Trydimite and Cristobalite. Through XRF detection, the highest SiO2 purity was detected in SS-SiO2 followed by C-RHSiO2 and A-RHSiO2 with purity percentages of 99.60%, 82.30% and 86.30% respectively. FTIR results clearly indicated silica (SiO2) bonding 1056, 1064, 1047, 777, 790 and 798 cm-1) increased as the crystallinity silica increased. The Cristobalite phase was detected in C-RH SiO2 at the wavelength of 620 cm-1. Morphological features as observed by FESEM analyses confirmed that, SS-SiO2 and C-RH SiO2 showed prominent coarse granular morphology.

  13. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  14. Characterization of hydrochars produced by hydrothermal carbonization of rice husk

    NASA Astrophysics Data System (ADS)

    Kalderis, D.; Kotti, M. S.; Méndez, A.; Gascó, G.

    2014-03-01

    Biochar is the carbon-rich product obtained when biomass, such as wood, manure or leaves, is heated in a closed container with little or no available air. In more technical terms, biochar is produced by so-called thermal decomposition of organic material under limited supply of oxygen (O2), and at relatively low temperatures (<700 °C). Hydrochar differentiates from biochar because it is produced in an aqueous environment, at lower temperatures and longer retention times. This work describes the production of hydrochar from rice husks using a simple, safe and environmentally-friendly experimental set-up, previously used for degradation of various wastewaters. Hydrochars were obtained at 200°C and 300°C and at residence times ranging from 2 to 16 h. All samples were then characterized in terms of yield, surface area, pH, conductivity and elemental analysis and two of them were selected for further testing with respect to heating values and heavy metal content.

  15. Characterization of hydrochars produced by hydrothermal carbonization of rice husk

    NASA Astrophysics Data System (ADS)

    Kalderis, D.; Kotti, M. S.; Méndez, A.; Gascó, G.

    2014-06-01

    Biochar is the carbon-rich product obtained when biomass, such as wood, manure or leaves, is heated in a closed container with little or no available air. In more technical terms, biochar is produced by so-called thermal decomposition of organic material under limited supply of oxygen (O2), and at relatively low temperatures (< 700 °C). Hydrochar differentiates from biochar because it is produced in an aqueous environment, at lower temperatures and longer retention times. This work describes the production of hydrochar from rice husks using a simple, safe and environmentally friendly experimental set-up, previously used for degradation of various wastewaters. Hydrochars were obtained at 200 °C and 300 °C and at residence times ranging from 2 to 16 h. All samples were then characterized in terms of yield, surface area, pH, conductivity and elemental analysis, and two of them were selected for further testing with respect to heating values and heavy metal content. The surface area was low for all hydrochars, indicating that porous structure was not developed during treatment. The hydrochar obtained at 300 °C and 6 h residence times showed a predicted higher heating value of 17.8 MJ kg-1, a fixed carbon content of 46.5% and a fixed carbon recovery of 113%, indicating a promising behaviour as a fuel.

  16. Thermal enrichment and speciation of copper in rice husk ashes.

    PubMed

    Wei, Yu-Ling; Hu, Ming-Jan; Peng, Yen-Hsun

    2010-12-15

    Copper(II) was considerably enriched in the residual ash via thermal treatment of copper-sorbed rice husk at 700-1100°C for 2h, and the copper speciation was quantitatively determined with X-ray absorption spectroscopy. After the thermal process, the resulting ash only represents by weight 18.7-26.4% of the pre-heated samples. Copper content in the ashes is >7% which is far above the required minimum copper content in copper ores for the copper smelting sector, 0.5%. Crystalline SiO(2) is observed only in the ash generated at 1100°C, with more copper in this ash being available for leaching in acidic solution. It is suggested that this is due to the considerable dissimilarity in crystalline structure between copper compounds and crystalline SiO(2). No chemical reaction between copper and SiO(2) is observed in any ash. In fact, we suggest that the SiO(2) crystalline phase repels copper during the thermal process; this would make it easy to extract copper from the ashes. For copper speciation in the ashes, CuO merely represents 0-12% of the total copper, while Cu(2)O and Cu(0) represent 34-42% and 46-63%, respectively. The lower copper oxidation state would be beneficial for the copper smelting process due to less usage of coke. PMID:20869164

  17. Characterization of materials formed by rice husk for construction

    NASA Astrophysics Data System (ADS)

    Portillo-Rodríguez, A. M.

    2013-11-01

    This review article delves into the use of agro-industrial wastes, which in construction field provides alternatives for environmental problems with the use of them. This fact enables development and lower costs for new options in the brick, cluster, mortar and concrete industry, what represents benefits for environment, housing and generally everything related to construction, looking for sustainability. For that reason a literature review is made to support the theme focusing on the use of rice husk in its natural, ground or ash state for manufacturing elements with clay masonry, precast and optimization of concrete and mortars. The technique used is based on scientific articles and researches found in reliable databases that were analyzed and integrated into a synthesized structure, which summarized the objectives, analysis processes, the physical and mechanical properties and finally the results. The conclusions are focused on potentiality of elements production in the construction development based on the high effectiveness like thermal insulation, low density and various benefits offered by high silica content pozzolanic properties, etc.

  18. Catalytic pyrolysis of waste rice husk over mesoporous materials

    PubMed Central

    2012-01-01

    Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics. PMID:22221540

  19. Catalytic pyrolysis of waste rice husk over mesoporous materials

    NASA Astrophysics Data System (ADS)

    Jeon, Mi-Jin; Kim, Seung-Soo; Jeon, Jong-Ki; Park, Sung Hoon; Kim, Ji Man; Sohn, Jung Min; Lee, See-Hoon; Park, Young-Kwon

    2012-01-01

    Catalytic fast pyrolysis of waste rice husk was carried out using pyrolysis-gas chromatography/mass spectrometry [Py-GC/MS]. Meso-MFI zeolite [Meso-MFI] was used as the catalyst. In addition, a 0.5-wt.% platinum [Pt] was ion-exchanged into Meso-MFI to examine the effect of Pt addition. Using a catalytic upgrading method, the activities of the catalysts were evaluated in terms of product composition and deoxygenation. The structure and acid site characteristics of the catalysts were analyzed by Brunauer-Emmett-Teller surface area measurement and NH3 temperature-programmed desorption analysis. Catalytic upgrading reduced the amount of oxygenates in the product vapor due to the cracking reaction of the catalysts. Levoglucosan, a polymeric oxygenate species, was completely decomposed without being detected. While the amount of heavy phenols was reduced by catalytic upgrading, the amount of light phenols was increased because of the catalytic cracking of heavy phenols into light phenols and aromatics. The amount of aromatics increased remarkably as a result of catalytic upgrading, which is attributed to the strong Brönsted acid sites and the shape selectivity of the Meso-MFI catalyst. The addition of Pt made the Meso-MFI catalyst even more active in deoxygenation and in the production of aromatics.

  20. Effect of Magnesium and Calcium on Purity of Rice Husk Ash based silicon

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo Taofeek

    2014-03-01

    This paper describes the effect of reducing agents on purity of rice husk based silicon. The rice husk samples were subjected to thermal treatment at 900°C to extract the silica. The silica extracted was subsequently analyzed for the initial impurities and treated with magnesium and calcium powder. The silicon obtained when magnesium was used to reduce the silica resulted in higher purity than that of the Calcium. It follows therefore that magnesium is thermodynamically favourable to reduce SiO2 than Calcium. However the two products gave silicon purities in the range of 94.93% to 96.03%. The result shows that the range of purity meets the requirement as starting raw material for the semiconductor grade silicon. Keywords: Purity, Rice husk ash, Silicon, Magnesium, Calcium. I wish to acknowledge the support of the Management of Osun State Polytechnic Iree for providing me a conducive environment for this publication.

  1. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  2. Use of rice husk litter at different depths for broiler chicks during summer.

    PubMed

    Haque, M I; Chowdhury, S D

    1994-12-01

    1. Four groups of 36 one-day-old broiler chicks were reared for 8 weeks during summer on rice husk litter spread to depths of 20, 30, 40 or 50 mm. 2. The depth of the litter did not significantly affect live weight gain, food consumption, food conversion ratio, liveability or production number. 3. It was concluded that rice husks can be used as litter at depths of between 20 and 50 mm during summer to raise broilers without affecting performance. PMID:7719744

  3. White Photoluminescence from Carbon-Incorporated Silica Fabricated from Rice Husk

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yukari; Kawasaki, Shinji; Ishi, Yosuke; Sato, Koji; Matsumura, Akihiro

    2012-01-01

    White photoluminescence (PL) from thermally treated rice husk is demonstrated. The strongest PL is obtained after oxidation at 400 °C following carbonization at 600 °C. The PL intensity was strong enough to be detected by the naked eye in daylight under the irradiation of 370 nm light from a light-emitting-diode (LED)-type flashlight. Thermal treatment changes rice husk to silicon oxycarbide but the amorphous structure and cell-wall architecture of the plants are maintained. The origin of PL is speculated to be related to some centers or defects in strained silicon oxycarbide.

  4. The dependence of grain size of silicon from rice husk ash on metallothermic reaction time

    NASA Astrophysics Data System (ADS)

    Malino, Mariana B.; Jimmy, Lapanporo, Boni P.

    2016-03-01

    This paper presents the influence of metallothermic reaction time on the grain size of silicon from rice husk ash. The silicon was produced by the metallothermic reaction of silica which is isolated from rice husk ash and aluminum at 620°C for reaction time varies at 3 hours, 4 hours, 5 hours and 6 hours and continued with purification of the products using acid hydrolysis method. The results of the crystallite size determination, obtained from profile analysis of XRD peaks, were indicated a tendency that the size increases as the reaction time increase, however, presumably the samples did not experience the grain growth significantly due to impurity contents.

  5. Development of Indonesia corncob and rice husk biobriquette as alternative energy source

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Wulandari, Asry Peni; Hidayat, Darmawan; Wibawa, Bambang Mukti; Aditya Permana, P.

    2016-02-01

    Facing the increasing of fuel price and lacking of world oil resource, research for biobriquette as alternative energy for fossil fuel is conducted. Indonesia has considerable amount of biomass and it is still remain unused that can be used as biobriquette. As the initial research, Garut, Ciamis, and Sumedang district, West Java are selected which have rice husk and corncob commodities. In these disrticts, rice husk and corncob potency are respectively 4,460.73 tons and 3,222.85 tons and potentially result 57,572.86 GJ from husk and 60,911.86 GJ from corncob. To optimize mechanical properties and calorie value of biobriquette, research for calorie content and combination of rice husk and corncob are being conducted with various adhesive content and mixture. The best result of shatter index, durability, and calorie test on the corncob biobriquette is from biobriquette with 6% adhesive with calorie content as 5,516.85 kkal/kg. While the best calorie content for husk biobriquette is 6% adhesive with calorie content as 2,650.20 kkal/kg. The best calorie content for mixed biobriquette is biobriquette with 75% corncob and 25% rice husk with calorie content as 5,331.95 kkal/kg. Economy analysis show for corncob and husk biobriquette production cost per kg are respectively Rp 2,585.00 and Rp 2.625.00 with price of Rp 5,000.00 and Rp 3,000.00 obtained nett profit respectively Rp 2,173.00 and Rp 338.00.

  6. [Adsorption characteristics of the antibiotic sulfanilamide onto rice husk ash].

    PubMed

    Ji, Ying-Xue; Wang, Feng-He; Zhang, Fan; Zhang, Yan-Hong; Wang, Guo-Xiang; Gu, Zhong-Zhu

    2013-10-01

    Under different conditions of initial rice husk ash (RHA) dosage, oscillating temperature, oscillating frequency and solution pH, the adsorption characteristics of sulfanilamide on RHA with the change of time and its adsorption kinetics were investigated. RHA was characterized by SEM and FTIR before and after sulfanilamide adsorption. The results indicated that the adsorption characteristics of sulfanilamide on RHA was influenced by RHA dosage, oscillating temperature, oscillating frequency and solution pH. Within the RHA dosing range (0. 1-2.0 g.L-1) in this experiment, the optimal temperature for the adsorption was 25C , and with the increase of RHA dosage, the removal efficiency of sulfanilamide increased, the time required to reach adsorption equilibrium was shortened and the adsorptive quantity of sulfanilamide by per unit mass of RHA decreased. A high oscillating frequency was used to ensure the adsorption effect when the RHA concentration was high. Strong acidic and strong alkaline conditions were conducive to the adsorption of sulfanilamide. The analysis of adsorption dynamics showed that for the adsorption process with high RHA dosage ( >or= 1.0 g.L-1), the pseudo-second-order model fitted the adsorption behavior well, and the process was controlled by physical and chemical adsorption. Intraparticle diffusion model showed that the adsorption process was controlled by both membrane diffusion and internal diffusion, and the influence of the former became more obvious with the increase of the adsorbent concentration. Both the SEM and FTIR spectra proved the effective adsorption of sulfanilamide by RHA. PMID:24364310

  7. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    PubMed

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production. PMID:27536531

  8. Genetic analysis of grain shape and weight after cutting rice husk.

    PubMed

    Fu, J R; Zhu, L X; Sun, X T; Zhou, D H; Ouyang, L J; Bian, J M; He, H H; Xu, J

    2015-01-01

    Grain shape and weight are the most important components of rice yield and are controlled by quantitative trait loci (QTLs). In this study, a double-haploid population, derived from the cross of japonica CJ06 and indica TN1, was used to analyze QTLs for grain shape and weight under two conditions: normal growth with unbroken husk and removing partial husk after flowering. Correlation analysis revealed that these traits, except grain weight, had a connection between the two conditions. Twenty-nine QTLs for grain shape and weight were detected on chromosomes 1 to 3; 6; 8 to 10; and 12, with the likelihood of odds value ranging from 2.38 to 5.36, including 10 different intervals. Some intervals were specifically detected after removing partial husk. The results contribute to the understanding of the genetic basis of grain filling and growth regulation, and provide us some assistance for improving grain plumpness in rice breeding. PMID:26782419

  9. Consecutively Preparing D-Xylose, Organosolv Lignin, and Amorphous Ultrafine Silica from Rice Husk

    PubMed Central

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m2/g. PMID:25140120

  10. Pantoea ananatis as a cause of corneal infiltrate after rice husk injury.

    PubMed

    Manoharan, Geetha; Lalitha, Prajna; Jeganathan, Lakshmi Priya; Dsilva, Sean Socrates; Prajna, N Venkatesh

    2012-06-01

    We report a case of an agricultural worker presenting with corneal infiltrate following ocular injury with a rice husk. On examination, a superficial corneal foreign body was removed and sent for culture, which grew Pantoea ananatis. This is, to our knowledge, the first clinical case report of Pantoea ananatis causing corneal infiltrate. PMID:22461671

  11. High-vacuum synthesis of SiC from rice husk: a novel method

    NASA Astrophysics Data System (ADS)

    Sarangi, M.; Mallick, B.; Mishra, S. C.; Tiwari, T. N.; Nayak, P.

    2013-08-01

    A new technique for the production of SiC from rice husk is reported in this paper. The high-purity β-SiC is synthesized in a short time of 5 min. The samples are characterized by x-ray diffraction and scanning electron microscopy analysis. The results are compared with the previously reported result that was obtained by conventional process.

  12. Characterization of high purity Silicon derived from Rice husk through improved Leaching process

    NASA Astrophysics Data System (ADS)

    Yusuf, Gbadebo; Awodugba, Ayodeji; Raimi, Adepoju; Babatola, Babatunde

    2014-03-01

    Rice husk is an abundant source of silicon and silicon compounds. High purity Silicon are required in high technology products such as semiconductors and solar cell. In this work, the possibility of obtaining pure silicon compounds through leaching process was investigated. Mesoporous silica nanoparticles with amorphous morphology have been synthesized from rice husk which was further subjected to improved leaching process to obtain pure silicon. XRD analysis shows the crystal structure of the as-received RHA with major reflections or peaks of crystalline quartz from ICSD powder diffraction occur at Bragg 2 θ angles of 20.856°, 26.636° and 36.541°. The purity of silicon obtained in terms of silica content was improved by leaching in 10 wt% hydrochloric acid. Advance future works on characterizing the electrical properties of the refined Rice Husk will eventually add value to the Rice Husk Silicon product and make it more attractive not only to the Photovoltaic industry but also other industries that require high purity silicon at reasonable cost. We wish to thank the Managements of Osun state Polytechnic-Iree and Ladoke Akintola University of Technology-Ogbomoso for creating enabling environment for this research work.

  13. Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method.

    PubMed

    Le, Van Hai; Thuc, Chi Nhan Ha; Thuc, Huy Ha

    2013-01-01

    Silica powder at nanoscale was obtained by heat treatment of Vietnamese rice husk following the sol-gel method. The rice husk ash (RHA) is synthesized using rice husk which was thermally treated at optimal condition at 600°C for 4 h. The silica from RHA was extracted using sodium hydroxide solution to produce a sodium silicate solution and then precipitated by adding H2SO4 at pH = 4 in the mixture of water/butanol with cationic presence. In order to identify the optimal condition for producing the homogenous silica nanoparticles, the effects of surfactant surface coverage, aging temperature, and aging time were investigated. By analysis of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, the silica product obtained was amorphous and the uniformity of the nanosized sample was observed at an average size of 3 nm, and the BET result showed that the highest specific surface of the sample was about 340 m2/g. The results obtained in the mentioned method prove that the rice husk from agricultural wastes can be used for the production of silica nanoparticles. PMID:23388152

  14. Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method

    PubMed Central

    2013-01-01

    Silica powder at nanoscale was obtained by heat treatment of Vietnamese rice husk following the sol–gel method. The rice husk ash (RHA) is synthesized using rice husk which was thermally treated at optimal condition at 600°C for 4 h. The silica from RHA was extracted using sodium hydroxide solution to produce a sodium silicate solution and then precipitated by adding H2SO4 at pH = 4 in the mixture of water/butanol with cationic presence. In order to identify the optimal condition for producing the homogenous silica nanoparticles, the effects of surfactant surface coverage, aging temperature, and aging time were investigated. By analysis of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, the silica product obtained was amorphous and the uniformity of the nanosized sample was observed at an average size of 3 nm, and the BET result showed that the highest specific surface of the sample was about 340 m2/g. The results obtained in the mentioned method prove that the rice husk from agricultural wastes can be used for the production of silica nanoparticles. PMID:23388152

  15. Consecutively preparing d-xylose, organosolv lignin, and amorphous ultrafine silica from rice husk.

    PubMed

    Zhang, Hongxi; Ding, Xuefeng; Wang, Zichen; Zhao, Xu

    2014-01-01

    Rice husk is an abundant agricultural by-product reaching the output of 80 million tons annually in the world. The most common treatment method of rice husk is burning or burying, which caused serious air pollution and resource waste. In order to solve this problem, a new method is proposed to comprehensively utilize the rice husk in this paper. Firstly, the D-xylose was prepared from the semicellulose via dilute acid hydrolysis. Secondly, the lignin was separated via organic solvent pulping from the residue. Finally, the amorphous ultrafine silica was prepared via pyrolysis of the residue produced in the second process. In this way, the three main contents of rice husk (semicellulose, lignin, and silica) are consecutively converted to three fine chemicals, without solid waste produced. The yields of D-xylose and organosolv lignin reach 58.2% and 58.5%, respectively. The purity and specific surface of amorphous ultrafine silica reach 99.92% and 225.20 m(2)/g. PMID:25140120

  16. Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method

    NASA Astrophysics Data System (ADS)

    Le, Van Hai; Thuc, Chi Nhan Ha; Thuc, Huy Ha

    2013-02-01

    Silica powder at nanoscale was obtained by heat treatment of Vietnamese rice husk following the sol-gel method. The rice husk ash (RHA) is synthesized using rice husk which was thermally treated at optimal condition at 600°C for 4 h. The silica from RHA was extracted using sodium hydroxide solution to produce a sodium silicate solution and then precipitated by adding H2SO4 at pH = 4 in the mixture of water/butanol with cationic presence. In order to identify the optimal condition for producing the homogenous silica nanoparticles, the effects of surfactant surface coverage, aging temperature, and aging time were investigated. By analysis of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, the silica product obtained was amorphous and the uniformity of the nanosized sample was observed at an average size of 3 nm, and the BET result showed that the highest specific surface of the sample was about 340 m2/g. The results obtained in the mentioned method prove that the rice husk from agricultural wastes can be used for the production of silica nanoparticles.

  17. Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste.

    PubMed

    Foo, K Y; Hameed, B H

    2009-11-30

    Concern about environmental protection has aroused over the years from a global viewpoint. To date, the ever-increasing importance of biomass as the energy and material resources has lately been accounted by the rising prices for the crude petroleum oil. Rice husk ash, the most appropriate representative of the high ash biomass waste, is currently obtaining sufficient attraction, owning to its wide usefulness and potentiality in environmental conservation. Confirming the assertion, this paper presents a state of the art review of the rice milling industry, its background studies, fundamental properties and industrial applications. Moreover, the key advance on the preparation of novel adsorbents, its major challenges together with the future expectation has been highlighted and discussed. Conclusively, the expanding of rice husk ash in the field of adsorption science represents a viable and powerful tool, leading to the superior improvement of pollution control and environmental preservation. PMID:19836724

  18. Mechanical characterization of filler sandcretes with rice husk ash additions. Study applied to Senegal

    SciTech Connect

    Cisse, I.K.; Laquerbe, M.

    2000-01-01

    To capitalize on the local materials of Senegal (agricultural and industrial wastes, residual fines from crushing process, sands from dunes, etc.), rise husk ash and residues of industrial and agricultural wastes have been used as additions in sandcretes. The mechanical resistance of sandcrete blocks obtained when unground ash (and notably the ground ash) is added reveals that there is an increase in performance over the classic mortar blocks. In addition, the use of unground rice husk ash enables production of a lightweight sandcrete with insulating properties, at a reduced cost. The ash pozzolanic reactivity explains the high strengths obtained.

  19. Rice husk as an adsorbent: A new analytical approach to determine aflatoxins in milk.

    PubMed

    Scaglioni, Priscila Tessmer; Badiale-Furlong, Eliana

    2016-05-15

    Aflatoxins determinations are usually expensive and employ environmentally unfriendly procedures, thus, the search for new materials and technologies, that are both ecologically safe, inexpensive and able to fulfill its role with little pre-processing is growing. One interesting approach is employing by-products as adsorbents during the extraction step of aflatoxins especially in products such as milk and dairy that are so important in basic dietary. Thus, a method to use rice husk, an agroindustry residue that is a promising material to adsorb aflatoxins to enable further analysis steps, is proposed by applying a Plackett-Burman design followed by 2(2) central composite rotational design. Rice husks were prepared by washing the husk with a solvents sequence. The washed particles were analysed by scanning electron microscopy, characterized by an elemental analyser and analysed for the presence of pesticides and mycotoxins. The rice husks contained 41% carbon, 4.3% hydrogen and 0.2% nitrogen, without mycotoxins and pesticides. The adsorptions were conducted using 0.5 g of rice husk, with 42 mesh, and 10 mL of milk contaminated with several know levels of aflatoxins M1 and B1. The solution was filtrated trough the adsorbent layer using a pressure of 10 in. Hg. The adsorbed mycotoxins were removed with 6 mL of methanol:chloroform (80:20). This condition achieved recovery of around 100% for both mycotoxins, with the average quantity of mycotoxin adsorbed equal 0.0150 µg g(-1) of afla B1 and 0.0174 µg g(-1) of afla M1. PMID:26992538

  20. Adsorptive removal of Zn(II) ion from aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Ibrahim, Muhammad H. C.; Shaharun, Maizatul S.; Chong, F. K.

    2012-09-01

    The study of rice husk-based activated carbon as a potential low-cost adsorbent for the removal of Zn(II) ion from aqueous solution was investigated. Rice husk, an agricultural waste, is a good alternative source for cheap precursor of activated carbon due to its abundance and constant availability. In this work, rice husk-based activated carbon was prepared via chemical treatment using NaOH as an activation agent prior the carbonization process. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon carbonized at 650°C, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). Other analyses were also conducted on these samples using fourier transmitter infrared spectroscopy (FTIR), CHN elemental analyzer and X-ray diffraction (XRD) for characterization study. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were found to be 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Zn(II) ion from aqueous solution were carried out as a function of varied contact time at room temperature. The concentration of Zn(II) ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Zn(II) ion from aqueous solution.

  1. Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan

    2016-01-01

    The effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk were investigated through TGA and Py-GC/MS in this study. Two iso-conversional methods, i.e. Starink and FWO methods were applied for determination of the activation energy of original and pretreated rice husk samples at three different heating rates. It was found that activation energy of water washed rice husk was lower than that of original rice husk. Whereas, the activation energy increased with the increase of torrefaction temperature. The result of Py-GC/MS analysis indicated that both water washing and torrefaction pretreatments decreased the contents of acids, ketones, aldehydes and furans, while significantly increased the contents of sugars, especially levoglucosan. The relative content of released levoglucosan from pyrolysis of rice husk sample with combined water washing and 280°C torrefaction pretreatment is almost 9 times of that from original rice husk, which is about 3%. PMID:26343572

  2. Characterization of H3PO4-Treated Rice Husk Adsorbent and Adsorption of Copper(II) from Aqueous Solution

    PubMed Central

    Zheng, Ru; Zhao, Jiaying; Ma, Fang; Zhang, Yingchao; Meng, Qingjuan

    2014-01-01

    Rice husk, a surplus agricultural byproduct, was applied to the sorption of copper from aqueous solutions. Chemical modifications by treating rice husk with H3PO4 increased the sorption ability of rice husk for Cu(II). This work investigated the sorption characteristics for Cu(II) and examined the optimum conditions of the sorption processes. The elemental compositions of native rice husk and H3PO4-treated rice husk were determined by X-ray fluorescence (XRF) analysis. The scanning electron microscopic (SEM) analysis was carried out for structural and morphological characteristics of H3PO4-treated rice husk. The surface functional groups (i.e., carbonyl, carboxyl, and hydroxyl) of adsorbent were examined by Fourier Transform Infrared Technique (FT-IR) and contributed to the adsorption for Cu(II). Adsorption isotherm experiments were carried out at room temperature and the data obtained from batch studies fitted well with the Langmuir and Freundlich models with R2 of 0.999 and 0.9303, respectively. The maximum sorption amount was 17.0358 mg/g at a dosage of 2 g/L after 180 min. The results showed that optimum pH was attained at pH 4.0. The equilibrium data was well represented by the pseudo-second-order kinetics. The percentage removal for Cu(II) approached equilibrium at 180 min with 88.9% removal. PMID:24678507

  3. Use of bean husk as an easily digestible fiber source for activating the fibrolytic rumen bacterium Fibrobacter succinogenes and rice straw digestion.

    PubMed

    Fuma, Ryosuke; Oyaizu, Shinya; Nukui, Yoko; Ngwe, Tin; Shinkai, Takumi; Koike, Satoshi; Kobayashi, Yasuo

    2012-10-01

    A series of in sacco and in vitro studies were carried out to evaluate bean husks for activation of fibrolytic rumen bacteria and rice straw digestion. First, lablab bean husk, chickpea husk and rice straw were suspended in the rumen of sheep to analyze the bacterial consortium developed on each fiber source. Known members of fiber-associating bacteria were found on both lablab bean husk and rice straw, but some of these bacteria were lacking on chickpea husk. Second, a pure culture study was carried out using six strains of Fibrobacter succinogenes. Both husks stimulated the growth of all tested strains, including a strain that did not grow on rice straw. The strain OS128 that showed the highest growth on rice straw displayed even higher growth on lablab bean husk without a time lag. Finally, two-step incubations were carried out to determine whether prior incubation of rumen fluid with husks stimulates subsequent rice straw digestion. Higher digestibility of rice straw was recorded in the second-round incubation following the first incubation with bean husks. These results suggest that the tested bean husks improve the digestion of rice straw by activating fibrolytic F. succinogenes and other associated bacteria. PMID:23035709

  4. Removal of fluoride from drinking water using aluminum hydroxide coated rice husk ash.

    PubMed

    Ganvir, Vivek; Das, Kalyan

    2011-01-30

    Fluoride content in groundwater that is greater than the WHO limit of 1.5mg/L, causes dental and skeletal fluorosis. In India, several states are affected with excess fluoride in groundwater. The problem is aggravated due to the lack of appropriate and user friendly defluoridation technology. Several fluoride removal techniques are reported in the literature amongst which the Nalgonda technique and use of activated alumina have been studied extensively. However a simple, efficient and cost effective technology is not available for widespread use in many affected regions. In this paper, we present a novel cost effective defluoridation method that is based on surface modification of rice husk ash (RHA) by coating aluminum hydroxide. RHA is obtained by burning rice/paddy husk which is an abundantly available and is an inexpensive raw material. The results showed excellent fluoride removal efficiency and the adsorption capacity was found to be between 9 and 10mg/g. PMID:21074319

  5. Formation of Nanodimensional 3C-SiC Structures from Rice Husks

    NASA Astrophysics Data System (ADS)

    Gorzkowski, E. P.; Qadri, S. B.; Rath, B. B.; Goswami, R.; Caldwell, J. D.

    2013-05-01

    We have demonstrated that large quantities of β-SiC nanostructures can be obtained from rice husk agricultural waste by using controlled conditions in a thermogravimetric setup. This simple and inexpensive method of producing these structures on a large scale is critical for applications in nanoelectronics, nanosensors, and biotechnology. The temperature and atmosphere are two critical elements in forming either α-cristobalite (SiO2) or β-SiC. Using different characterization methods (x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy), we have shown that pyrolysis of rice husks in argon atmosphere at 1375°C results in simultaneous formation of carbon nanotubes, β-SiC nanowires/nanorods, and β-SiC powder.

  6. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    NASA Astrophysics Data System (ADS)

    Khan, Taimur; Chaudhuri, Malay

    2013-06-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants Kf and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  7. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2015-10-01

    Tests with vine pruning and rice husks were carried out in a demonstrative downdraft gasifier (350 kW), to prove the reactor operability, quantify the plant efficiency, and thus extend the range of potential energy feedstocks. Pressure drops, syngas flow rate and composition were monitored to study the material and energy balances, and performance indexes. Interesting results were obtained for vine pruning (syngas heating value 5.7 MJ/m(3), equivalent ratio 0.26, cold gas efficiency 65%, power efficiency 21%), while poorer values were obtained for rice husks (syngas heating value 2.5-3.8 MJ/m(3), equivalent ratio 0.4, cold gas efficiency 31-42%, power efficiency 10-13%). The work contains also a comparison with previous results (wood pellets, corn cobs, Miscanthus) for defining an operating diagram, based on material density and particle size and shape, and the critical zones (reactor obstruction, bridging, no bed buildup, combustion regime). PMID:26183923

  8. Effect of leaching with 5-6 N H2SO4 on thermal kinetics of rice husk during pure silica recovery.

    PubMed

    Ali, Muhammad; Ul Haq, Ehsan; Abdul Karim, Muhammad R; Ahmed, Sajjad; Ibrahim, Ather; Ahmad, Waheed; Baig, Waqas M

    2016-01-01

    Rice husk is a potential source for renewable energy and silica. To extract the maximum amount of silica, usually the rice husk is treated with strong acids that burn the organic part leaving behind a black residue. In this research, sulfuric acid is used as an oxidizing agent. Efforts are focused to find out more about the behavior of acid-treated rice husk by using thermal exposure, and results are compared with results for raw rice husk which is thermally exposed but not acid treated. Reaction ratio of rice husk combustion and energy of activation were calculated using the thermogravimetric data. Acid treatment was found influential in initiating degradation earlier compared to raw husk and an overall increase in value of activation energy was observed when heating rate was increased. PMID:26843969

  9. Effect of leaching with 5–6 N H2SO4 on thermal kinetics of rice husk during pure silica recovery

    PubMed Central

    Ali, Muhammad; Ul Haq, Ehsan; Abdul Karim, Muhammad R.; Ahmed, Sajjad; Ibrahim, Ather; Ahmad, Waheed; Baig, Waqas M.

    2015-01-01

    Rice husk is a potential source for renewable energy and silica. To extract the maximum amount of silica, usually the rice husk is treated with strong acids that burn the organic part leaving behind a black residue. In this research, sulfuric acid is used as an oxidizing agent. Efforts are focused to find out more about the behavior of acid-treated rice husk by using thermal exposure, and results are compared with results for raw rice husk which is thermally exposed but not acid treated. Reaction ratio of rice husk combustion and energy of activation were calculated using the thermogravimetric data. Acid treatment was found influential in initiating degradation earlier compared to raw husk and an overall increase in value of activation energy was observed when heating rate was increased. PMID:26843969

  10. The study of ionizing radiation effects on polypropylene and rice husk ash composite

    NASA Astrophysics Data System (ADS)

    Alfaro, E. F.; Dias, D. B.; Silva, L. G. A.

    2013-03-01

    The aim of this work was to study the ionizing radiation effects on polypropylene/20% of rice husk ash composites. The composites were irradiated by electron beam at different doses and the mechanical and thermal properties were evaluated using tensile strength, Izod impact, hardness, softening temperature, differential scanning calorimetry (DSC) and thermogravimetry (TG). The results showed that the properties decreased by increasing irradiation dose due to chain scission.

  11. Physical characteristics of chitosan-silica composite of rice husk ash

    NASA Astrophysics Data System (ADS)

    Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.

    2016-02-01

    Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.

  12. Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks.

    PubMed

    Vithanage, Meththika; Mayakaduwa, S S; Herath, Indika; Ok, Yong Sik; Mohan, Dinesh

    2016-05-01

    This study reports the thermodynamic application and non-linear kinetic models in order to postulate the mechanisms and compare the carbofuran adsorption behavior onto rice husk and tea waste derived biochars. Locally available rice husk and infused tea waste biochars were produced at 700 °C. Biochars were characterized by using proximate, ultimate and surface characterization methods. Batch experiments were conducted at 25, 35, and 45 °C for a series of carbofuran solutions ranging from 5 to 100 mg L(-1) with a biochar dose of 1 g L(-1) at pH 5.0 with acetate buffer. Molar O/C ratios indicated that rice husk biochar (RHBC700) is more hydrophilic than tea waste biochar (TWBC700). Negative ΔG (Gibbs free energy change) values indicated the feasibility of carbofuran adsorption on biochar. Increasing ΔG values with the rise in temperature indicated high favorability at higher temperatures for both RHBC and TWBC. Enthalpy values suggested the involvement of physisorption type interactions. Kinetic data modeling exhibited contribution of both physisorption, via pore diffusion, π*-π electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces and chemisorption via chemical bonding with phenolic, and amine groups. Equilibrium adsorption capacities of RHBC and TWBC determined by pseudo second order kinetic model were 25.2 and 10.2 mg g(-1), respectively. PMID:26607239

  13. Performance of rice husk ash produced using a new technology as a mineral admixture in concrete

    SciTech Connect

    Nehdi, M.; Duquette, J.; El Damatty, A

    2003-08-01

    This article investigates the use of a new technique for the controlled combustion of Egyptian rice husk to mitigate the environmental concerns associated with its uncontrolled burning and provide a supplementary cementing material for the local construction industry. The reactor used provides efficient combustion of rice husk in a short residency time via the suspension of processed particles by jets of a process air stream that is forced though stationary angled blades at high velocity. Investigations on the rice husk ash (RHA) thus produced included oxide analysis, X-ray diffraction, carbon content, grindability, water demand, pozzolanic activity index, surface area, and particle size distribution measurements. In addition, concrete mixtures incorporating various proportions of silica fume (SF) and Egyptian RHA (EG-RHA) produced at different combustion temperatures were made and compared. The workability, superplasticizer and air-entraining admixture requirements, and compressive strength at various ages of these concrete mixtures were evaluated, and their resistance to rapid chloride penetrability and deicing salt surface scaling were examined. Test results indicate that contrary to RHA produced using existing technology, the superplasticizer and air-entraining agent requirements did not increase drastically when the RHA developed in this study was used. Compressive strengths achieved by concrete mixtures incorporating the new RHA exceeded those of concretes containing similar proportions of SF. The resistance to surface scaling of RHA concrete was better than that of concrete containing similar proportions of SF. While the chloride penetrability was substantially decreased by RHA, it remained slightly higher than that achieved by SF concrete.

  14. Crystallization process of a biomaterial, the lithium disilicate, obtained from rice husk silica

    NASA Astrophysics Data System (ADS)

    Santos, F. A.; Fernandes, M. H. F. V.; Davim, E.; Pinatti, D. G.; Lazar, D. R. R.; Santos, C.

    2013-12-01

    In this work, the crystallization process of lithium disilicate glass-ceramic was investigated with SiO2 from rice husk silica replacing the high-purity SiO2 starting powder form commercial source. Glasses were developed at the stoichiometric composition of 66%.molSiO2:33%.molLiO2 using commercial SiO2 and the one obtained by thermochemical treatment of rice husk. To compare the SiO2 sources, the influence of the one from rice husk on crystallization process was measured using different granulometry, analyzing microstructure and the kinetic behavior. Investigations were carried out by means of differential thermal analysis (DTA), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Amorphous glasses were obtained after melting at 1550°C. The position of lithium disilicate glass-ceramic crystallization peaks (Tp) are between 550 to 660°C to different granulometry (<63mm, 63mm < × < 250mm and 1mm < × < 2mm) and DTA heat rates (5; 10; 15; and 20°C/min) in both glasses, and the relevant formed crystalline phase after DTA analysis (verified for XRD) was Li2Si2O5. SEM images showed the increase of glass substitution for crystalline phase to both glass-ceramics from different silica sources.

  15. Fungus-mediated biotransformation of amorphous silica in rice husk to nanocrystalline silica.

    PubMed

    Bansal, Vipul; Ahmad, Absar; Sastry, Murali

    2006-11-01

    Rice husk is a cheap agro-based waste material, which harbors a substantial amount of silica in the form of amorphous hydrated silica grains. However, there have been no attempts at harnessing the enormous amount of amorphous silica present in rice husk and its room-temperature biotransformation into crystalline silica nanoparticles. In this study, we address this issue and describe how naturally deposited amorphous biosilica in rice husk can be bioleached and simultaneously biotransformed into high value crystalline silica nanoparticles. We show here that the fungus Fusarium oxysporum rapidly biotransforms the naturally occurring amorphous plant biosilica into crystalline silica and leach out silica extracellularly at room temperature in the form of 2-6 nm quasi-spherical, highly crystalline silica nanoparticles capped by stabilizing proteins; that the nanoparticles are released into solution is an advantage of this process with significant application and commercial potential. Calcination of the silica nanoparticles leads to loss of occluded protein and to an apparently porous structure often of cubic morphology. The room-temperature synthesis of oxide nanomaterials using microorganisms starting from potential cheap agro-industrial waste materials is an exciting possibility and could lead to an energy-conserving and economically viable green approach toward the large-scale synthesis of oxide nanomaterials. PMID:17061888

  16. Raw and Treated Rice Husks as Sorbents for Mercury Removal from Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Befani, Maria R.; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Quintero, César E.

    2014-05-01

    Environmental pollution with heavy metals is a growing problem and the need for adequate and inexpensive techniques for removal is urgent. Sorption is an effective method for removing heavy metals from aqueous solutions. During rice milling, large quantities of rice husk waste are generated. This product is used in part as fuel in drying grain plants, which generates a second byproduct: rice husk ash. By this way, two types of relatively low-cost materials are obtained, which seem to be promising sorbents for the removal of heavy metals from aqueous systems. The aim of this study was to evaluate the ability of two groups of materials obtained from rice residues to remove mercury from aqueous solutions. The first group consisted of different size fractions of rice husk (RH): RH1 (>1.18 mm), RH2 (0.15 to 1.18 mm) and RH3 (<0.15 mm). The second group consisted of rice husk pyrolyzed at different temperatures and sizes to obtain the following biochars: RHA3 (>1.18 mm; 850ºC), RHA4 (0.15 to 1.18 mm; 850ºC), RHA300 (raw; 300ºC). The ash from rice husk pyrolyzed at 800ºC in oven of the grain drying plant (RHA800) was also evaluated. The surface area and pore volume were determined using nitrogen adsorption/desorption at liquid nitrogen temperature. The surface morphology of the materials was characterized by Scanning Electron Microscopy. The BET surface area varied between a minimum of 0.76 m2/g (RH2) and a maximum of 330 m2/g (RHA4). The range of the average pore diameter was between 46 Å (RHA4) to 266 Å (RH2). The pore size distribution analysis showed that the materials were mainly low porous or mesoporous except RHA4 that was microporous (53% of the pore volume for RHA4 is due to micropores). The effect of the initial solution pH on the mercury uptake was studied in the range of 2 to 6, using a contact time of 24 h and an initial concentration (Co) of 50 mg Hg(II)/L. The greatest mercury uptake occurred for pH values between 4 and 5. Four materials were selected

  17. Novel uses of rice-husk-ash (a natural silica-carbon matrix) in low-cost water purification applications

    NASA Astrophysics Data System (ADS)

    Malhotra, Chetan; Patil, Rajshree; Kausley, Shankar; Ahmad, Dilshad

    2013-06-01

    Rice-husk-ash is used as the base material for developing novel compositions to deal with the challenge of purifying drinking water in low-income households in India. For example, rice-husk-ash cast in a matrix of cement and pebbles can be formed into a filtration bed which can trap up to 95% of turbidity and bacteria present in water. This innovation was proliferated in villages across India as a do-it-yourself rural water filter. Another innovation involves embedding silver nanoparticles within the rice husk ash matrix to create a bactericidal filtration bed which has now been commercialized in India as a low-cost for-profit household water purifier. Other innovations include the impregnation of rice-husk-ash with iron hydroxide for the removal of arsenic from water and the impregnation of rice-husk ash with aluminum hydroxide for the removal of fluoride ions from water which together have the potential to benefit over 100 million people across India who are suffering from the health effects of drinking groundwater contaminated with arsenic and fluoride.

  18. Processing of Fireproof and High Temperature Durable Particleboard from Rice Husk

    NASA Astrophysics Data System (ADS)

    Gürü, Metin; Karabulut, Ahmet F.; Aydın, Mustafa Yasir; Bilici, İbrahim

    2015-10-01

    The aim of this study is the recovery of rice husk waste by researching usability in industry as an alternative to wood. In this study urea formaldehyde resin was used mainly as binding agent for wood-panel used in industry. For the preparation of composite material, ground powder rice husks were mixed with urea formaldehyde resin used in different proportions (65/50, 75/50, 80/50, 85/50, 95/50 by mass of filler/binder). Each particleboard produced in 393.15 K and 9.8 MPa pressure was tested by means of three point bending strength, shore hardness and limited oxygen index (LOI) tests. Particleboard made with 75/50 paddy husk/urea formaldehyde composition material formed of 11.40 MPa specimens showed the highest strength. Limited oxygen index value increased by increasing the filler material usage. The highest LOI value was recorded as 40%. Besides, fire point of particleboards which have the best three point bending strength has been analyzed at environmental atmosphere and 493.15 K has been measured as fire point. The results of the tests showed that this material maybe used instead of wooden plate. The usage of agricultural wastes like these in processing of particleboard will give economically benefits and slow down waste products.

  19. Influence of ultrasonic pretreatment on the yield of bio-oil prepared by thermo-chemical conversion of rice husk in hot-compressed water.

    PubMed

    Shi, Wen; Jia, Jingfu; Gao, Yahui; Zhao, Yaping

    2013-10-01

    The aim of the current study is to investigate the feasibility of thermo-chemical conversion of rice husk in hot-compressed water via ultrasonic pretreatment to increase the bio-oil yield. The results show that ultrasonic pretreatment remarkably changes the structures of the rice husk, such as enhancing swelling and surface area, eroding lignin structure, and resulting in more exposure of the cellulose and hemicellulose. The highest bio-oil yield of 42.8% was obtained from the thermo-chemical conversion at 300 °C and 0 min of the residence time for the 1 h pretreated rice husk. GC-MS analysis indicates that the relative contents of phenols, 5-Hydroxymethylfurfural, and lactic acid are higher in bio-oils obtained from the pretreated rice husks than that from the raw rice husk. PMID:23948273

  20. Facile, room-temperature pre-treatment of rice husks with tetrabutylphosphonium hydroxide: Enhanced enzymatic and acid hydrolysis yields.

    PubMed

    Lau, B B Y; Luis, E T; Hossain, M M; Hart, W E S; Cencia-Lay, B; Black, J J; To, T Q; Aldous, L

    2015-12-01

    Aqueous solutions of tetrabutylphosphonium hydroxide have been evaluated as pretreatment media for rice husks, prior to sulphuric acid hydrolysis or cellulase enzymatic hydrolysis. Varying the water:tetrabutylphosphonium hydroxide ratio varied the rate of delignification, as well as silica, lignin and cellulose solubility. Pre-treatment with 60wt% hydroxide dissolved the rice husk and the regenerated material was thus heavily disrupted. Sulphuric acid hydrolysis of 60wt%-treated samples yielded the highest amount of glucose per gram of rice husk. Solutions with good lignin and silica solubility but only moderate to negligible cellulose solubility (10-40wt% hydroxide) were equally effective as pre-treatment media for both acid and enzymatic hydrolysis. However, pre-treatment with 60wt% hydroxide solutions was incompatible with downstream enzymatic hydrolysis. This was due to significant incorporation of phosphonium species in the regenerated biomass, which significantly inhibited the activity of the cellulase enzymes. PMID:26342336

  1. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.

    PubMed

    Alvarez, Jon; Lopez, Gartzen; Amutio, Maider; Bilbao, Javier; Olazar, Martin

    2014-10-01

    The overall valorization of rice husk char obtained by flash pyrolysis in a conical spouted bed reactor (CSBR) has been studied in a two-step process. Thus, silica has been recovered in a first step and the remaining carbon material has been subjected to steam activation. The char samples used in this study have been obtained by continuous flash pyrolysis in a conical spouted bed reactor at 500°C. Extraction with Na2CO3 allows recovering 88% of the silica contained in the rice husk char. Activation of the silica-free rice husk char has been carried out in a fixed bed reactor at 800°C using steam as activating agent. The porous structure of the activated carbons produced includes a combination of micropores and mesopores, with a BET surface area of up to 1365m(2)g(-1) at the end of 15min. PMID:25127010

  2. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy.

    PubMed

    Wang, Zhaofeng; Yu, Jingfang; Zhang, Xin; Li, Na; Liu, Bin; Li, Yanyan; Wang, Yuhua; Wang, Weixing; Li, Yezhou; Zhang, Lichun; Dissanayake, Shanka; Suib, Steven L; Sun, Luyi

    2016-01-20

    In this work, rice husk biomass was utilized as an abundant source to controllably prepare high-quality graphene quantum dots (GQDs) with a yield of ca. 15 wt %. The size, morphology, and structure of the rice-husk-derived GQDs were determined by high-resolution transmission electron microscopy, atomic force microscopy, and Raman spectroscopy. The as-fabricated GQDs can be stably dispersed in water, exhibiting bright and tunable photoluminescence. A cell viability test further confirmed that the GQDs possess excellent biocompatibility, and they can be easily adopted for cell imaging via a facile translocation into the cytoplasm. It is worth noting that mesoporous silica nanoparticles were also synthesized as a byproduct during the fabrication of GQDs. As such, our strategy achieves a comprehensive utilization of rice husks, exhibiting tremendous benefits on both the economy and environment. PMID:26710249

  3. A preliminary study for removal of heavy metals from acidic synthetic wastewater by using pressmud-rice husk mixtures

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Ee, C. J.; Baharudin, N. S.

    2016-06-01

    The study was carried out to evaluate the effect of combining pressmud and rice husk in the removal efficiencies of heavy metals in acidic synthetic wastewater. The ratios of pressmud to rice husk were varied at different percentages of weight ratio (0%, 20%, 40%, 60% 80% and 100%) and removal of heavy metals concentrations was observed. The result showed that the removal efficiency was increased with the addition of pressmud by up to almost 100%. Pressmud alone was able to remove 95% to 100% of heavy metals while rice husk alone managed to remove only 10% to 20% of heavy metals. The study also demonstrated that pressmud behaved as a natural acid neutralizer. Hence, the initial pH of the synthetically prepared acidic wastewater which was below 2 also was increased to pH ranging from 6 to 8.

  4. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. PMID:25638405

  5. Comparison between rice husk ash grown in different regions for stabilizing fly ash from a solid waste incinerator.

    PubMed

    Benassi, L; Bosio, A; Dalipi, R; Borgese, L; Rodella, N; Pasquali, M; Depero, L E; Bergese, P; Bontempi, E

    2015-08-15

    The Stabilization of heavy metals from municipal solid waste incineration (MSWI) fly ash by rice husk ash (RHA) is under intense study as an effective strategy to recover and reuse industrial and agricultural waste together. We compare the metal entrapment performances of RHA from different Asian rice sources – namely from Japonica rice grown in Italy and Indica rice grown in India – Physicochemical and morphological characterization of the final stabilized material show that the same thermal treatment may result in marked structural differences in the silica contained in the two RHA. Remarkably, one of them displays a crystalline silica content, although obtained by a thermal treatment below 800 °C. We also find that the presence of an alkali metal ion (potassium) in the rice husk plays a crucial role in the attainment of the final silica phase. These physicochemical differences are mirrored by different stabilization yields by the two RHA. PMID:26063517

  6. High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization.

    PubMed

    Kalita, E; Nath, B K; Deb, P; Agan, F; Islam, Md R; Saikia, K

    2015-05-20

    Cellulose nanofibers (CNFs) with high crystallinity and purity were isolated from two endemic rice husk varieties using a hydrothermal approach followed by acid-alkali treatments and mechanical disruption. The CNFs isolated had a mean diameter of ∼ 35 nm. The TGA and DTG profiles showed good thermostability of the CNFs. The CNFs also showed a prominent photoluminescence peak at 404 nm with high quantum yield (∼ 58%). This is the first report on the native fluorescence property of nanocellulose in absence of any conjugated fluorescence molecule/dye. The CNFs further demonstrated appreciable hemocompatibility in the hemolysis test, exhibiting its potential for biomedical applications. PMID:25817673

  7. Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent

    PubMed Central

    Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang

    2016-01-01

    Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10–50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass. PMID:26888152

  8. Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent.

    PubMed

    Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang

    2016-01-01

    Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10-50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass. PMID:26888152

  9. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Shuib, Anis Suhaila; Shaharun, Maizatul S.; Borhan, Azry

    2014-10-01

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m2/g and 0.17 cm2/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  10. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  11. Effects of water washing and torrefaction pretreatments on rice husk pyrolysis by microwave heating.

    PubMed

    Zhang, Shuping; Dong, Qing; Zhang, Li; Xiong, Yuanquan; Liu, Xinzhi; Zhu, Shuguang

    2015-10-01

    The influences of water washing, torrefaction and combined water washing-torrefaction pretreatments on microwave pyrolysis of rice husk samples were investigated. The results indicated that the process of combined water washing-torrefaction pretreatment could effectively remove a large portion of inorganics and improve the fuel characteristics to a certain extent. The gas products were rich in combustible compositions and the syngas quality was improved by pretreatment process. The liquid products contained less moisture content, acids and furans, while more concentrated phenols and sugars from microwave pyrolysis of rice husk after pretreatments, especially after the combined water washing-torrefaction pretreatment. Biochar, produced in high yield, has the alkaline pH (pH 8.2-10.0) and high surface area (S(BET) 157.81-267.84 m(2)/g), they have the potential to be used as soil amendments. It is noteworthy that water washing increased the pore surface area of biochar, but torrefaction reduced the pore surface area. PMID:26159301

  12. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  13. Biocompatibility assessment of rice husk-derived biogenic silica nanoparticles for biomedical applications.

    PubMed

    Alshatwi, Ali A; Athinarayanan, Jegan; Periasamy, Vaiyapuri Subbarayan

    2015-02-01

    Synthetic forms of silica have low biocompatibility, whereas biogenic forms have myriad beneficial effects in current toxicological applications. Among the various sources of biogenic silica, rice husk is considered a valuable agricultural biomass material and a cost-effective resource that can provide biogenic silica for biomedical applications. In the present study, highly pure biogenic silica nanoparticles (bSNPs) were successfully harvested from rice husks using acid digestion under pressurized conditions at 120°C followed by a calcination process. The obtained bSNPs were subjected to phase identification analysis using X-ray diffraction, which revealed the amorphous nature of the bSNPs. The morphologies of the bSNPs were observed using transmission electron microscopy (TEM), which revealed spherical particles 10 to 30 nm in diameter. Furthermore, the biocompatibility of the bSNPs with human lung fibroblast cells (hLFCs) was investigated using a viability assay and assessing cellular morphological changes, intracellular ROS generation, mitochondrial transmembrane potential and oxidative stress-related gene expression. Our results revealed that the bSNPs did not have any significant incompatibility in these in vitro cell-based approaches. These preliminary findings suggest that bSNPs are biocompatible, could be the best alternative to synthetic forms of silica and are applicable to food additive and biomedical applications. PMID:25492167

  14. Morphology of the cross section of silica layer in rice husk.

    PubMed

    Byun, Sung Chun; Jung, In Ok; Kim, Moon Yong; So, Soo Jeong; Yoon, Chan; Kim, Chul; Lei, Guo; Han, Chong Soo

    2011-02-01

    The physical adsorption of nitrogen and gas flow experiments on the silica layer in rice husk indicated that an existence of nano meter sized through holes. In this study, the external shape of the holes on the cross section of the layer was investigated with a scanning electron microscope equipped with an energy dispersive spectrometer, an atomic force microscope and scanning tunneling microscope. In the energy dispersive mapping image, 2-5 micron thick silica layer under outer cellulose layer, silica nano particles in the middle cellulose layer and sub micron silica layer in inner cellulose layer were observed. The cross section of the layer showed 20 nm building units with approximately 100 nm convexities. The atomic force microscopic image also showed the approximately 100 nm convexities as well as a roughness of approximately 20 nm. When osmium was coated on the silica layer, the wells with 2 approximately 5 nm horizontal and approximately 2 nm vertical lengths were observed on the plate surface in scanning tunneling microscopic image. From the results, it was suggested that the holes in the rice husk silica layer are almost straight and not zigzag spaces originated from the simple packing of nano particles. PMID:21456176

  15. Separation of polysaccharides from rice husk and wheat bran using solvent system consisting of BMIMOAc and DMI.

    PubMed

    Hou, Qidong; Li, Weizun; Ju, Meiting; Liu, Le; Chen, Yu; Yang, Qian; Wang, Jingyu

    2015-11-20

    A solvent system consisting of 1,3-dimethyl-2-imidazolidinone (DMI), and ionic liquid 1-butyl-3-methylimidazolium acetate (BMIMOAc) was used to separate polysaccharides from rice husk and wheat bran. The effects of the DMI/BMIMOAc ratios, temperature, and time on the dissolution of rice husk and wheat bran were investigated, and the influence of anti-solvents on the regeneration of polysaccharides-rich material was evaluated. We found that the solvent system is more powerful to dissolve rice husk and wheat bran than pure BMIMOAc, and that polysaccharides-rich material can be effectively separated from the biomass solution. The polysaccharides content of regenerated material from wheat bran can reach as high as 94.4% when ethanol was used as anti-solvents. Under optimized conditions, the extraction rate of polysaccharides for wheat bran can reach as high as 71.8% at merely 50°C. The recycled solvent system exhibited constant ability to separate polysaccharides from rice husk and wheat bran. PMID:26344309

  16. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.

    PubMed

    Gao, Xiaoyan; Zhang, Yaning; Li, Bingxi; Zhao, Yijun; Jiang, Baocheng

    2016-10-01

    Rice husk is abundantly available and environmentally friendly, and char-CO2 gasification is of great importance for the biomass gasification process. The intrinsic reaction rates of carbon dioxide gasification with rice husk chars derived from different pyrolysis temperatures were investigated in this study by conducting thermogravimetric analysis (TGA) measurements. The effects of gasification temperature and reactant partial pressure on the char-CO2 gasification were investigated and the random pore model (RPM) was used to determine the intrinsic kinetic parameters based on the experimental data. The results obtained from this study show that the activation energy, reaction order and pre-exponential factor varied in the ranges of 226.65-232.28kJ/mol, 0.288-0.346 and 2.38×10(5)-2.82×10(5)1/sPa(n) for the rice husk chars pyrolyzed at 700-900°C, respectively. All the determination coefficients between the RPM predictions and experimental results were higher than 0.906, indicating the RPM is reliable for determining and evaluating the intrinsic reactivities of rice husk chars. PMID:27459684

  17. Review of the rice production cycle: by-products and the main applications focusing on rice husk combustion and ash recycling.

    PubMed

    Moraes, Carlos A M; Fernandes, Iara J; Calheiro, Daiane; Kieling, Amanda G; Brehm, Feliciane A; Rigon, Magali R; Berwanger Filho, Jorge A; Schneider, Ivo A H; Osorio, Eduardo

    2014-11-01

    One of the consequences of industrial food production activities is the generation of high volumes of waste, whose disposal can be problematic, since it occupies large spaces, and when poorly managed can pose environmental and health risks for the population. The rice industry is an important activity and generates large quantities of waste. The main solid wastes generated in the rice production cycle include straw, husk, ash, bran and broken rice. As such, the aim of this article is to present a review of this cycle, the waste generated and the identification of opportunities to use them. Owing to impacts that can be minimised with the application of rice husk ash as a by-product, this work is focused on the recycling of the main wastes. In order to achieve that, we performed theoretical research about the rice production cycle and its wastes. The findings point to the existence of an environmentally suitable use for all wastes from the rice production cycle. As rice, bran and broken rice have their main use in the food industry, the other wastes are highly studied in order to find solutions instead of landfilling. Straw can be used for burning or animal feeding. The husk can be used for poultry farming, composting or burning. In the case of burning, it has been used as biomass to power reactors to generate thermal or electrical energy. This process generates rice husk ash, which shows potential to be used as a by-product in many different applications, but not yet consolidated. PMID:25361542

  18. Evaluation of Mechanical Properties and Morphological Studies of Rice Husk (Treated/Untreated)-CaCO3 Reinforced Epoxy Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Verma, Deepak; Joshi, Garvit; Gupta, Ayush

    2015-10-01

    Natural fiber reinforced composites are a very popular area of research because of the easy availability and biodegradability of these fibers. The manufacturing of natural fiber composite is done by reinforcing fibers in the particulate form, fiber form or in woven mat form. Natural fiber composites also utilize industrial wastes as a secondary reinforcements like fly ash, sludge etc. By keeping all these point of views in the present investigation the effect of rice husk flour (chemically treated/untreated) and micro sized calcium carbonate with epoxy resin have been evaluated. The diameter of rice husk flour was maintained at 600 µm through mechanical sieving machine. The husk flour was chemically treated with NaOH (5 % w/v). Mechanical properties like hardness, flexural impact and compression strength were evaluated and found to be superior in modified or chemically treated flour as compared to unmodified or untreated flour reinforced composites. Scanning electron microscopy (SEM) study was also undertaken for the developed composites. SEM study shows the distribution of the rice husk flour and calcium carbonate over the matrix.

  19. Utilization of rice husk silica as adsorbent for BTEX passive air sampler under high humidity condition.

    PubMed

    Areerob, Thanita; Grisdanurak, Nurak; Chiarakorn, Siriluk

    2016-03-01

    Selective adsorbent of benzene, toluene, ethylbenzene, and xylenes (BTEX) was developed based on mesoporous silica materials, RH-MCM-41. It was synthesized from rice husk silica and modified by silane reagents. The silane reagents used in this study were trimethylchlorosilane (TMS), triisopropylchlorosilane (TIPS), and phenyldimethylchlorosilane (PDMS). Physiochemical properties of synthesized materials were characterized by small-angle X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), and surface area analysis. Materials packed in passive air sampler were tested for BTEX uptake capacity. The tests were carried out under an influence of relative humidity (25 to 99 %). Overall, RH-MCM-41 modified by TMS outperformed compared to those modified by other silane agents. The comparative BTEX adsorption on this material and commercial graphitized carbon black was reported. PMID:26573315

  20. Effect of silica forms in rice husk ash on the properties of concrete

    NASA Astrophysics Data System (ADS)

    Bui, Le Anh-Tuan; Chen, Chun-Tsun; Hwang, Chao-Lung; Wu, Wei-Sheng

    2012-03-01

    The strength and durability properties of concrete with or without three types of rice husk ash (RHA), namely, amorphous, partial crystalline, and crystalline RHA, were investigates. The three types of RHA were added into concrete at a 20% replacement level. Consequently, the pozzolanic reactivity of amorphous RHA was higher than that of partial crystalline and crystalline RHA. Concrete added with amorphous RHA showed excellent characteristics in its mechanical and durability properties. The results showed that the higher the amount of crystalline silica in RHA, the lower the concrete resistivity value became. When compared with each other, concretes with 20% of the cement replaced with these types of RHA achieved similar ultrasonic pulse velocity values, but all were lower than that of the control concrete. The incorporation of these kinds of RHA significantly reduced chloride penetration. The results not only encourage the use of amorphous materials, they also support the application of crystalline or partial crystalline RHA as mineral and pozzolanic admixtures for cement.

  1. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.

    PubMed

    Maiti, S; Dey, S; Purakayastha, S; Ghosh, B

    2006-11-01

    The fixed bed pyrolysis of rice husk was studied under conventional conditions with the aim of determining the characteristics of the charcoal formed for its applicability as a solid fuel. Thermoanalytic methods were used to determine the kinetic parameters of its combustion. Palletisation using different binders and techniques to improve the time of sustained combustion of the char pallets were investigated. The optimum temperature for carbonization to obtain a char having moderately high heating value was found as 400 degrees C. For the active char combustion zone, the order of reaction was nearly 1, the activation energy 73.403 kJ/mol and the pre-exponential factor 4.97 x 10(4)min(-1). Addition of starch as a binder and 10% ferrous sulphate heptahydrate or sodium hypophosphite as an additive enhanced the ignitibility of the char pallets. PMID:16298126

  2. Adsorption of sulfur compound utilizing rice husk ash modified with niobium

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Rodrigo M.; Pessoa Júnior, Wanison A. G.; Braga, Valdeilson S.; Barros, Ivoneide de C. L.

    2015-11-01

    Adsorbents based in rice husk ash (RHA) modified with niobium pentoxide were prepared for impregnation methods and applied in sulfur removal in liquid fuels. The solids were characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen physisorption and thermal analysis; they show that there was no qualitative change in the amorphous structure of the RHA; however, the method of impregnation could modify the particle size and topology of RHA particles. The larger sulfur removal (>50%) was achieved using RHA with 5 wt.% Nb2O5 at a dosage of 10 g L-1, after 4 h of contact with the model fuel. The kinetic study of adsorption of thiophene showed that the models of pseudo-second order and intra-particle diffusion best fit the experimental data. The adsorption experiments with the thiophenic derivatives compounds show a large selectivity of the adsorbent.

  3. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk.

    PubMed

    Li, Ming; Zheng, Yan; Chen, Yixin; Zhu, Xifeng

    2014-02-01

    A solid acid catalyst was prepared by sulfonating pyrolyzed rice husk with concentrated sulfuric acid, and the physical and chemical properties of the catalyst were characterized in detail. The catalyst was then used to simultaneously catalyze esterification and transesterification to produce biodiesel from waste cooking oil (WCO). In the presence of the as-prepared catalyst, the free fatty acid (FFA) conversion reached 98.17% after 3h, and the fatty acid methyl ester (FAME) yield reached 87.57% after 15 h. By contrast, the typical solid acid catalyst Amberlyst-15 obtained only 95.25% and 45.17% FFA conversion and FAME yield, respectively. Thus, the prepared catalyst had a high catalytic activity for simultaneous esterification and transesterification. In addition, the catalyst had excellent stability, thereby having potential use as a heterogeneous catalyst for biodiesel production from WCO with a high FFA content. PMID:24405650

  4. Quantification of bioregeneration of activated carbon and activated rice husk loaded with phenolic compounds.

    PubMed

    Ng, S L; Seng, C E; Lim, P E

    2009-06-01

    The bioregeneration efficiencies of powdered activated carbon (PAC) and pyrolyzed rice husk loaded with phenol and p-nitrophenol were quantified by oxygen uptake measurements using the respirometry technique in two approaches: (i) simultaneous adsorption and biodegradation and (ii) sequential adsorption and biodegradation. It was found that the applicability of the simultaneous adsorption and biodegradation approach was constrained by the requirement of adsorption preceding biodegradation in order to determine the initial adsorbent loading accurately. The sequential adsorption and biodegradation approach provides a good estimate of the upper limit of the bioregeneration efficiency for the loaded adsorbent in the simultaneous adsorption and biodegradation processes. The results showed that the mean bioregeneration efficiencies for PAC loaded with phenol and p-nitrophenol, respectively, obtained using the two approaches were in good agreement. PMID:19307013

  5. Removal of dyes from aqueous solutions using activated carbon prepared from rice husk residue.

    PubMed

    Li, Yaxin; Zhang, Xian; Yang, Ruiguang; Li, Guiying; Hu, Changwei

    2016-01-01

    The treatment of dye wastewater by activated carbon (AC) prepared from rice husk residue wastes was studied. Batch adsorption studies were conducted to investigate the effects of contact time, initial concentration (50-450 mg/L), pH (3-11) and temperature (30-70 °C) on the removal of methylene blue (MB), neutral red, and methyl orange. Kinetic investigation revealed that the adsorption of dyes followed pseudo-second-order kinetics. The results suggested that AC was effective to remove dyes, especially MB, from aqueous solutions. Desorption studies found that chemisorption by the adsorbent might be the major mode of dye removal. Fourier transform infrared results suggested that dye molecules were likely to combine with the O-H and P=OOH groups of AC. PMID:26942535

  6. Effects of volatile-char interactions on char during pyrolysis of rice husk at mild temperatures.

    PubMed

    Liu, Peng; Zhao, Yijun; Guo, Yangzhou; Feng, Dongdong; Wu, Jiangquan; Wang, Pengxiang; Sun, Shaozeng

    2016-11-01

    In order to understand the sensitivity of volatile-char interactions to mild temperatures (600-800°C), in-situ rice husk char was prepared from fast pyrolysis (>10(3)Ks(-1)) on a fixed-bed reactor. Retention of K in char, changes in char structure and char reactivity were determined. The results showed that volatile-char interactions did not cause obvious effect on the char yield but showed an inhibitory effect on char reactivity. The inhibition began only above 650°C and intensified with temperature rise, but kept almost unchanged at 700-800°C. Char structure and retention of K have a combined effect on char reactivity. The decreased reactivity was caused by additional volatilization of K from char matrix and transformation of relatively smaller aromatic ring systems to large ring systems (>6 benzene rings) above 650°C. PMID:27544921

  7. Synthesis and characterization of geopolymer from bottom ash and rice husk ash

    NASA Astrophysics Data System (ADS)

    Anggarini, Ufafa; Sukmana, Ndaru C.

    2016-02-01

    All Geopolymer (GP) has been synthesized from bottom ash and rice husk ash. This research aims to determine the effect of Si/Al ratio on geopolymer synthesis. Geopolymer was synthesized with various Si/Al ratio of 2, 3 and 4. The characterization result using XRD and SEM indicated that by using a different ratio of Si/A, it will produce geopolymer with varied structure and morphology. Diffractogram result shows that polymerization has been done for all samples (GP2, GP3, Gp4) with the presence of hump peak at 2θ = 27-35°. In GP4, no peak at 2θ = 18° indicating sodalite phase forming. Besides that, the morphology of geopolymer with a varied ratio of Si/Al shows that higher ratio will produce geopolymer with higher particle size. The highest compressive strength of geopolymer was obtained at a ratio of Si/Al = 4, with a maximum load of 12866 kgf.

  8. Changes in phenolic acids and antioxidant activity in Thai rice husk at five growth stages during grain development.

    PubMed

    Butsat, Sunan; Weerapreeyakul, Natthida; Siriamornpun, Sirithon

    2009-06-10

    Soluble and bound phenolic acids were isolated from Thai rice husk samples at five growth stages during grain development, and their antioxidant activities were evaluated. The results showed that ferulic acid was the major soluble phenolic acid in husk at all stages, and its concentration decreased steadily during grain development. The ratio of ferulic to p-coumaric acid was approximately 2:1 at all stages. The most abundant bound phenolic acid in all extracts was p-coumaric acid, followed by ferulic acid along with traces of syringic, vanilic, and p-hydroxybenzoic acids. Most of the antioxidant activities of soluble and bound phenolic acids in husk extracts were found at flowering stage, and there were high correlations of antioxidant activity to levels of soluble ferulic, gallic, and p-coumaric acids. PMID:19432451

  9. Effect of silicate-based corrosion inhibitor from rice husk ash on aluminum alloy in 0.5M HCl

    NASA Astrophysics Data System (ADS)

    Othman, N. K.; Mohamad, N.; Zulkafli, R.; Jalar, A.

    2013-05-01

    Silicate-based corrosion inhibitor prepared by treating silica powder extracted from rice husk ash with concentrated alkaline. The electrochemical behavior of the Al 6061 immersed in 0.5 M hydrochloric acid (HCl) has been studied using the measurements of weight loss, potentiodynamic polarization and optical or scanning electron microscopy (SEM). It was found that, the optimum concentration of silicate-based corrosion inhibitor was prominent at 5 ppm. The small addition of silicate-based corrosion inhibitor was exhibited the decreasing of the weight loss of Al 6061 in acidic medium. SEM micrograph proved that the morphology of untreated Al 6061 with silicate-base corrosion inhibitor contributes more corrosion attack on sample compared to that treated Al 6061. The purpose of this research is to understand the effect of silicate-based corrosion inhibitor concentration yielded from rice husk ash on aluminum alloy.

  10. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    NASA Astrophysics Data System (ADS)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  11. Effect of rice husk gasification residue application on herbicide behavior in micro paddy lysimeter.

    PubMed

    Ok, Junghun; Pisith, Sok; Watanabe, Hirozumi; Thuyet, Dang Quoc; Boulange, Julien; Takagi, Kazuhiro

    2015-06-01

    Effects of rice husk gasification residues (RHGR) application on the fate of herbicides, butachlor and pyrazosulfuron-ethyl, in paddy water were investigated using micro paddy lysimeters (MPLs). The dissipation of both herbicides in paddy water was faster in the RHGR treated MPL than in the control MPL. The average concentrations of butachlor and pyrazosulfuron-ethyl in paddy water in the lysimeter treated with RHGR during 21 days were significantly reduced by 51% and 48%, respectively, as compared to those in the lysimeter without RHGR application. The half-lives (DT50) of butachlor in paddy water for control and treatment were 3.1 and 2.3 days respectively, and these values of pyrazosulfuron-ethyl were 3.0 and 2.2 days, respectively. Based on this study, RHGR application in rice paddy environment is an alternative method to reduce the concentration of herbicide in paddy field water and consequently to reduce potential pollution to aquatic environment. PMID:25763539

  12. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents. PMID:22629620

  13. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    NASA Astrophysics Data System (ADS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO 2/Al 2O 3, H 2O/Na 2O and Na 2O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ˜3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.

  14. Investigation on hardness and impact resistance of automotive brake pad composed with rice husk dust

    NASA Astrophysics Data System (ADS)

    Bahari, Shahril Anuar; Isa, Khairul Hafizee; Kassim, Masitah Abu; Mohamed, Zulkifli; Othman, Eliasidi Abu

    2012-06-01

    In this study, hardness and impact resistance properties of automotive brake pad composed with rice husk dust (RHD) were documented. RHD was mixed with other metallic and synthetic ingredients of automotive brake pad. To obtain RHD, rice husk was ground and dried to 1 - 3% moisture content. The RHD was screened to obtain different dust sizes (80 and 100-mesh) before it was mixed with other materials at different percentages of composition (10 and 30%). The mixture was then pressed to produce brake pad. Rockwell hardness testing machine was used in hardness determination, while Izod impact testing machine was used in impact resistance determination. Hardness resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was significantly higher than 100-mesh. Hardness resistance of automotive brake pad mixed with 30% composition and 100-mesh size of RHD was slightly higher than 80 mesh. However, based on analysis, the difference was not significant. According to the result, hardness resistance of automotive brake pad mixed with 30% composition of RHD was higher than 10%. RHD has filled up the space and enhanced the micro structural behaviour of automotive brake pad. Impact resistance of automotive brake pad mixed with 10% composition and 80-mesh size of RHD was insignificantly higher than 100-mesh. Impact resistance of automotive brake pad mixed with 30% composition and 80-mesh size of RHD was significantly higher than 100 mesh. Large RHD size has increased the capability to resist high-rated impact loading. The impact energy was distributed over wider area for larger particle size. This factor has increased the impact resistance of automotive brake pad from large dust size. Impact resistance of automotive brake pad mixed with 80-mesh size and 30% composition of RHD was higher than 10%. In contrast, impact resistance of automotive brake pad mixed with 100-mesh size and 10% composition of RHD was higher than 30%. However, the difference was not

  15. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    NASA Astrophysics Data System (ADS)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  16. Strength and Durability Performance of Alkali-Activated Rice Husk Ash Geopolymer Mortar

    PubMed Central

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2 and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063

  17. Removal of oil droplets from water using carbonized rice husk: enhancement by surface modification using polyethylenimine.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Chen, Shen-Yi

    2015-06-01

    Carbonized rice husk (CRH) is a promising material to separate oil from water owing to its abundance, low-cost, and environmentally benign characteristics. However, CRH's performance is somewhat limited by its similar surface charge to that of oil, leading to repulsive interactions. To improve the separation efficiency of CRH, CRH was modified via impregnation with a cationic biocompatible polymer, polyethlyenimine (PEI) to form PEI-CRH. The modified sample exhibits a remarkably higher (10-50 times) oil/water (O/W) separation efficiency than that of the unmodified one. Small PEI-CRH particles (about 64 μm) are found to adsorb oil droplets faster and larger quantities than bigger particles (about 113 and 288 μm). PEI-CRH exhibits higher separation efficiency at high temperatures owing to the destabilization of the emulsion. It is also found that the oil adsorption mechanism involves a chemical interaction between PEI-CRH and oil droplets. The addition of NaCl considerably improves the separation efficiency, while the addition of a cationic surfactant has the opposite effect. In acidic emulsions, PEI-CRH adsorbs more oil than in neutral or basic conditions owing to favorable attractive forces between oil droplets and the surface of PEI-CRH. PEI-CRH can be easily regenerated by washing with ethanol. These promising features of PEI-CRH indicate that PEI-CRH could be an efficient and low-cost adsorbent for the O/W separation applications. PMID:25529491

  18. Investigation into the morphology, composition, structure and dry tribological behavior of rice husk ceramic particles

    NASA Astrophysics Data System (ADS)

    Hu, Enzhu; Hu, Kunhong; Xu, Zeyin; Hu, Xianguo; Dearn, Karl David; Xu, Yong; Xu, Yufu; Xu, Le

    2016-03-01

    To expand the application of rice husk (RH) resource, this study developed carbon-based RH ceramic (RHC) particles using a common high-temperature carbonization method. The morphology, composition, and structure of the RHC particles were characterized with a series of modern analysis technologies and were then compared with those of the initial RH powder and carbonized RH (CRH) particles. The dry tribological behavior of RHC particle adobes (RHAs) was also investigated. Results showed the sheet-shaped morphology of the RHC particles. The graphitization degree of the RHC particles was lower than that of the CRH particles possibly because the phenolic resin (PR) filled the micro-pores of the RH particles, thereby prompting the formation of amorphous carbon in the RHC particles as a result of high-temperature carbonization. The appearance of a hydroxy function group (sbnd OH) on the surface of the RHC particles was ascribed to the decomposition of PR at 900 °C. The friction coefficients and mass loss rates of the RHAs almost increased with the rise in load and velocity. In addition, the friction coefficients of the RHAs decreased at high load (5 N) and velocity (0.261 m/s) conditions. Such outcome indicated that the variation of contact area between steel ball and RHA at high load and velocity conditions resulted in the abrasive wear or catastrophic wear.

  19. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    PubMed

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. PMID:26803742

  20. Carbon/silica composite fabricated from rice husk by means of binderless hot-pressing.

    PubMed

    Kumagai, Seiji; Sasaki, Junya

    2009-07-01

    A carbon/silica composite designed for use under compressive loads was fabricated from rice husk (RH), an agricultural waste material. RH was pulverized by using a planetary ball mill, then carbonized and molded into the precursor by means of hot-pressing without using any binders. A compression of 100 MPa was intermittently applied to the RH powder heated from room temperature to 150 degrees C, and then to 280 degrees C. The precursor, the bulk density of which was 1.37 g/cm(3), was sintered for further densification at up to 1400 degrees C without compression, in nitrogen gas. The smaller particle size of the pulverized RH was beneficial for densifying the carbon/silica composite and increasing its compressive strength. Sintering at 800 degrees C for 1h in nitrogen gas provided the maximum bulk density of 1.52 g/cm(3) and the maximum Vickers hardness at the surface of 343 HV. The maximum compressive strength was measured to be 55.7 MPa using a sintering temperature of 1200 degrees C. PMID:19268582

  1. Biosorption of model pollutants in liquid phase on raw and modified rice husks

    NASA Astrophysics Data System (ADS)

    Toniazzo, L.; Fierro, V.; Braghiroli, F.; Amaral, G.; Celzard, A.

    2013-03-01

    We studied the application of rice husk (RH) as a biosorbent and we demonstrated that it can be employed for the treatment of dyeing wastewater streams. RH was obtained from Nile Delta (Egypt) and it was used as received, or after a chemical treatment using HNO3 or NaOH, or after conversion into activated carbon (RH-AC) using H3PO4 as activating agent. A commercial activated carbon GAC 830 provided by NORIT was also tested for comparison purposes. These materials were evaluated by adsorption of methylene blue (MB) with an initial concentration of 20 ppm in an aqueous solution at 30°C. The results showed that alkali-treated and RH-AC were the best sorbents. They got a nearly complete MB removal from water and they had better performance than GAC 830. Therefore, the use of RH for pollutant removal makes this method an environment-friendly option and an economically feasible alternative to treat industrial effluents.

  2. Removal of elemental mercury by iodine-modified rice husk ash sorbents.

    PubMed

    Zhao, Pengfei; Guo, Xin; Zheng, Chuguang

    2010-01-01

    Iodine-modified calcium-based rice husk ash sorbents (I2/CaO/RHA) were synthesized and characterized by X-ray diffraction, X-ray fluorescence, and N2 isotherm adsorption/desorption. Adsorption experiments of vapor-phase elemental mercury (Hg0) were performed in a laboratory-scale fixed-bed reactor. I2/CaO/RHA performances on Hg0 adsorption were compared with those of modified Ca-based fly ash sorbents (I2/CaO/FA) and modified fly ash sorbents (I2/FA). Effects of oxidant loading, supports, pore size distribution, iodine impregnation modes, and temperature were investigated as well to understand the mechanism in capturing Hg0. The modified sorbents exhibited reasonable efficiency for Hg0 removal under simulated flue gas. The surface area, pore size distribution, and iodine impregnation modes of the sorbents did not produce a strong effect on Hg0 capture efficiency, while fair correlation was observed between Hg0 uptake capacity and iodine concentration. Therefore, the content of I2 impregnated on the sorbents was identified as the most important factor influencing the capacity of these sorbents for Hg0 uptake. Increasing temperature in the range of 80-140 degrees C caused a rise in Hg0 removal. A reaction mechanism that may explain the experimental results was presumed based on the characterizations and adsorption study. PMID:21235196

  3. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar.

    PubMed

    Kim, Yun Yong; Lee, Byung-Jae; Saraswathy, Velu; Kwon, Seung-Jun

    2014-01-01

    This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm(2) and 45 N/mm(2), respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4 environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete. PMID:25506063

  4. Chemical and Nanomechanical Analysis of Rice Husk Modified by ATRP-Grafted Oligomer

    PubMed Central

    Morsi, Samir M.; Pakzad, Anahita; Amin, Amal; Yassar, Reza S.; Heiden, Patricia A.

    2013-01-01

    Rice husk (RH), an abundant agricultural residue, was reacted with 2-bromoisobutyryl bromide, to convert it to a heterogeneous polyfunctional macroinitiator for Atom Transfer Radical Polymerization (ATRP). The number of active sites placed on the RH surface was small, but they were ATRP active. Non-polar methyl methacrylate (MMA) and polar acrylonitrile (AN) were polymerized from the RH, and a sequential monomer addition was used to prepare an amphiphilic PMMA-b-PAN copolymer on RH surface. FTIR qualitatively confirmed the grafting. Gravimetric and XPS analysis of the different RH surface compositions indicated thin layers of oligomeric PMMA, PAN, and PMMA-b-PAN. The modified surfaces were mapped by nanomechanical AFM to measure surface roughness, and adhesion and moduli using the Derjaguin-Muller-Toropov model. RH grafted with MMA possessed a roughness value of 7.92, and a hard and weakly adhering surface (13.1 GPa and 16.7 nN respectively) while RH grafted with AN yielded a roughness value of 29 with hardness and adhesion values of 4.0 GPa and 23.5 nN. The PMMA-b-PAN modification afforded a surface with a roughness value of 51.5 nm, with hardness and adhesion values of 3.0 GPa and .75.3 nN. PMID:21565356

  5. Impact Resistance Behaviour of Light Weight Rice Husk Concrete with Bamboo Reinforcement

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Beddu, Salmia; Syamsir, Agusril; Sigar Ating, Joshua; Liyana Mohd Kamal, Nur; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of lightweight rice husk concrete (LWRHC) with varied bamboo reinforcement content for the concrete slab of 300mm × 300mm size reinforced with varied slab thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.65 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter and slab thickness. 5% RH content exhibit better first and ultimate crack resistance up to 1.80 times and up to 1.72 times respectively against 10% RH content.

  6. Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods

    NASA Astrophysics Data System (ADS)

    Tot Pham, Thi; Thanh Thuy Mai, Thi; Quy Bui, Minh; Mai, Thi Xuan; Yen Tran, Hai; Binh Phan, Thi

    2014-03-01

    Composites based on polyaniline (PANi) and rice husk (RH) were prepared by two methods: the first one was chemical method by combining RH contained in acid medium and aniline using ammonium persulfate as an oxidation agent and the second one was that of soaking RH into PANi solution. The presence of PANi combined with RH to form nanocomposite was clearly demonstrated by infrared (IR) spectra as well as by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Lead(II) and cadmium(II) ion concentrations in solution before and after adsorption process on those composites were analysed by atomic adsorption spectroscopy. Of the above preparation methods, the soaking one provided a composite onto which the maximum adsorption capacity was higher for lead(II) ion (200 mg g-1), but lower for cadmium(II) ion (106.383 mg g-1) in comparison with the chemical one. However, their adsorption process occurring on both composites also fitted well into the Langmuir isotherm model.

  7. Microwave-induced transformation of rice husks to SiC

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Imam, M. A.; Fliflet, A. W.; Rath, B. B.; Goswami, R.; Caldwell, J. D.

    2012-04-01

    Samples of rice husks were transformed to β (3C)-SiC by microwave processing in controlled conditions of temperature and vacuum. This simple and fast way of producing powdered samples of silicon carbide is technologically important if this material is to be used for electronics, sensors, biotechnology, and other applications. Using x-ray diffraction it was found that the microwave processed sample at 1900 °C consists of β (3C)-SiC phase. Raman scattering measurements confirmed the formation of β (3C)-SiC phase. Transmission electron microscopy revealed the presence of stacking faults along the [111] direction. The presence of 6H/4H stacking faults in 3C phase is explained in terms of their total energies. The presence of these stacking faults with a ˜1 eV band offset between the host 3C and hexagonal stacking faults implies that these stacking faults provide a conduction barrier, and the interfaces between the stacking faults and host lattice act as a heterojunction that may provide potential utility for various optoelectronic applications.

  8. Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material)

    NASA Astrophysics Data System (ADS)

    Rafiee, Ezzat; Shahebrahimi, Shabnam; Feyzi, Mostafa; Shaterzadeh, Mahdi

    2012-10-01

    Rice husk (RH), an inexpensive waste material, was used to produce nanosilica. Acid treatment of RH followed by thermal combustion under controlled conditions gave 22.50% ash of which 90.469% was silica. Various chemical treatments in varied conditions for controlled combustion were investigated in order to produce highly purified nanosilica. The structural properties (such as X-ray diffraction, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, and transmission electron microscopy) of the silica were studied. The method was optimized, and the chemical composition of the product was determined by X-ray fluorescence and carbon, hydrogen, and nitrogen analysis. Lime reactivity of the ashes was determined. At optimized conditions, a nanosized, highly purified silica (98.8 mass percentage) was produced with a high surface area, high reactivity, and 99.9% amorphous in form. Strength and number of acidic sites were measured by potentiometric titration. This nanosilica showed strong and a large number of acidic sites in comparison with commercial silica, making it as a good support for catalysts. This economic technology, as applied to waste material, also provides many benefits to the local agro-industry.

  9. Adsorption of Methyl Blue on Mesoporous Materials Using Rice Husk Ash as Silica Source.

    PubMed

    Nguyen, Nhat Thien; Chen, Shiao-shing; Nguyen, Nguyen Cong; Nguyen, Hau Thi; Tsai, Hsiao Hsin; Chang, Chang Tang

    2016-04-01

    It is recognized that recycling and reuse of waste can result in significant savings in materials and energy. In this research, the adsorption of methyl blue (MB) using waste rice husk ash (Rha) and mesoporous silica materials made from Rha (R-MCM) were analyzed. Mesoporous silica materials were synthesized using cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant and Rha as the silica source. The prepared samples were characterized by Brunnaur-Emmet-Teller (BET) adsorption isotherm analyzer and transmission electron microscope (TEM) analysis. The results showed the surface area of R-MCM materials was 1347 m2g-1 and the pore volume was 0.906 cm3g-1. TEM analysis showed that the mesoporous materials generally exhibited ordered hexagonal arrays of mesopores with a uniform pore size. The effects on adsorption performance under different initial dye concentrations, different pH values and different dosages of adsorbent were also studied. Both Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The results show that the maximum removal efficiency of MB more than 99%. PMID:27451772

  10. Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator.

    PubMed

    Duan, Feng; Chyang, Chiensong; Chin, Yucheng; Tso, Jim

    2013-02-01

    Rice husk with high volatile content was burned in a pilot scale vortexing fluidized bed incinerator. The fluidized bed incinerator was constructed of 6 mm stainless steel with 0.45 m in diameter and 5 m in height. The emission characteristics of CO, NO, and SO2 were studied. The effects of operating parameters, such as primary air flow rate, secondary air flow rate, and excess air ratio on the pollutant emissions were also investigated. The results show that a large proportion of combustion occurs at the bed surface and the freeboard zone. The SO2 concentration in the flue gas decreases with increasing excess air ratio, while the NOx concentration shows reverse trend. The flow rate of secondary air has a significant impact on the CO emission. For a fixed primary air flowrate, CO emission decreases with the secondary air flowrate. For a fixed excess air ratio, CO emission decreases with the ratio of secondary to primary air flow. The minimum CO emission of 72 ppm is attained at the operating condition of 40% excess air ratio and 0.6 partition air ratio. The NOx and SO2 concentrations in the flue gas at this condition are 159 and 36 ppm, which conform to the EPA regulation of Taiwan. PMID:23596954

  11. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars.

    PubMed

    Yi, Shengze; Gao, Bin; Sun, Yuanyuan; Wu, Jichun; Shi, Xiaoqing; Wu, Benjun; Hu, Xin

    2016-05-01

    The potential for rice husk (RH) and wood chip (WC) biochars to remove levofloxacin (LEV) from aqueous solution was evaluated. The physical and chemical properties of the biochars were characterized using various tools and techniques. Furthermore, batch sorption experiments were conducted to determine the sorption ability of the biochars to LEV. The pseudo-second order kinetic model described the sorption kinetic data better than the pseudo-first order kinetic model and the Elovich equation because the process involved both surface adsorption and pore diffusion. For the isotherms, the Langmuir equation fitted the data better than the Freundlich equation. The maximum Langmuir sorption capacities of the biochars to LEV ranged from 1.49 to 7.72 mg g(-1). Thermodynamic parameters obtained from the experiments showed that the adsorption of LEV onto the WC biochar was spontaneous and exothermic, while its adsorption onto the RH biochar was spontaneous and endothermic under tested conditions. A mixture of 0.025 M phosphate buffer (80%, pH 3.0) and acetonitrile (20%) effectively desorbed the LEV from the biochars with a recovery rate up to 80%. Findings from this work indicate that biochars can be used as an alternative adsorbent to effectively remove emerging contaminants including LEV from aqueous solutions. PMID:26796588

  12. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  13. Fabrication of Activated Rice Husk Charcoal by Slip Casting as a Hybrid Material for Water Filter Aid

    NASA Astrophysics Data System (ADS)

    Tuaprakone, T.; Wongphaet, N.; Wasanapiarnpong, T.

    2011-04-01

    Activated charcoal has been widely used as an odor absorbent in household and water purification industry. Filtration equipment for drinking water generally consists of four parts, which are microporous membrane (porous alumina ceramic or diatomite, or porous polymer), odor absorbent (activated carbon), hard water treatment (ion exchange resin), and UV irradiation. Ceramic filter aid is usually prepared by slip casting of alumina or diatomite. The membrane offers high flux, high porosity and maximum pore size does not exceed 0.3 μm. This study investigated the fabrication of hybrid activated charcoal tube for water filtration and odor absorption by slip casting. The suitable rice husk charcoal and water ratio was 48 to 52 wt% by weight with 1.5wt% (by dry basis) of CMC binder. The green rice husk charcoal bodies were dried and fired between 700-900 °C in reduction atmosphere. The resulting prepared slip in high speed porcelain pot for 60 min and sintered at 700 °C for 1 h showed the highest specific surface area as 174.95 m2/g. The characterizations of microstructure and pore size distribution as a function of particle size were investigated.

  14. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry.

    PubMed

    Kizito, Simon; Wu, Shubiao; Kipkemoi Kirui, W; Lei, Ming; Lu, Qimin; Bah, Hamidou; Dong, Renjie

    2015-02-01

    Due to its high adsorption capacity, the use of biochar to capture excess nutrients from wastewater has become a central focus in environmental remediation studies. In this study, its potential use in adsorption and removal of ammonium in piggery manure anaerobic digestate slurry was investigated. The adsorbed amount of NH4(+)-N (mg·g(-1)) and removal percentage as a function of adsorbent mass in solution, adsorbent particle size, NH4(+)-N concentration in the effluent, contact time, pH and temperature were quantified in batch equilibrium and kinetics experiments. The maximum NH4(+)-N adsorption from slurry at 1400 mgN·L(-1) was 44.64 ± 0.602 mg·g(-1) and 39.8 ± 0.54 mg·g(-1) for wood and rice husk biochar, respectively. For both biochars, adsorption increased with increase in contact time, temperature, pH and NH4(+)-N concentration but it decreased with increase in biochar particle size. Furthermore, the sorption process was endothermic and followed Langmuir (R(2)=0.995 and 0.998) and Pseudo-second order kinetic models (R(2)=0.998 and 0.999). Based on the removal amounts, we concluded that rice husk and wood biochar have potential to adsorb NH4(+)-N from piggery manure anaerobic digestate slurry, and thus can be used as nutrient filters prior to discharge into water streams. PMID:25310885

  15. Reinforcement of natural rubber hybrid composites based on marble sludge/Silica and marble sludge/rice husk derived silica

    PubMed Central

    Ahmed, Khalil; Nizami, Shaikh Sirajuddin; Riza, Nudrat Zahid

    2013-01-01

    A research has been carried out to develop natural rubber (NR) hybrid composites reinforced with marble sludge (MS)/Silica and MS/rice husk derived silica (RHS). The primary aim of this development is to scrutinize the cure characteristics, mechanical and swelling properties of such hybrid composite. The use of both industrial and agricultural waste such as marble sludge and rice husk derived silica has the primary advantage of being eco-friendly, low cost and easily available as compared to other expensive fillers. The results from this study showed that the performance of NR hybrid composites with MS/Silica and MS/RHS as fillers is extremely better in mechanical and swelling properties as compared with the case where MS used as single filler. The study suggests that the use of recently developed silica and marble sludge as industrial and agricultural waste is accomplished to provide a probable cost effective, industrially prospective, and attractive replacement to the in general purpose used fillers like china clay, calcium carbonate, and talc. PMID:25685484

  16. Synthesis of Mesoporous Carbons from Rice Husk for Supercapacitors with High Energy Density in Ionic Liquid Electrolytes.

    PubMed

    He, Xiaojun; Zhang, Hebao; Xie, Kang; Xia, Youyi; Zhao, Zhigang; Wang, Xiaoting

    2016-03-01

    High-performance mesoporous carbons (MCs) for supercapacitors were made from rice husk by one-step microwave-assisted ZnCl2 activation. The microstructures of MCs as-made were characterized by field emission scanning electron microscopy and transmission electron microscopy. The pore structure parameters of MCs were obtained by N2 adsorption technique. The electrochemical properties of MC electrodes were studied by constant current charge-discharge, cyclic voltammetry and electrochemical impedance spectroscopy in different electrolytes. The results showed that the specific surface area of MC4 made at the ZnCl2/rice husk mass of 4:1 reached 1737 m2 g(-1). The specific capacitance and energy density of the electrodes fabricated from the mixture of MC4 and microporous carbon increased with the mass percentage of MC4, reaching 157 F g(-1) and 84 Wh kg(-1) at 0.05 A g(-1), and showed good cycle stability in 1-butyl-3-methylimidazolium hexafluorophosphate electrolyte. Compared to the often-used aqueous and organic electrolytes, MC4 capacitor exhibited extremely high energy density in ionic liquid electrolyte, remaining at 28 Wh kg(-1) at 1684 W kg(-1). This work paves a new way to produce cost-effective MCs from biomass for supercapacitors with extremely high energy density in ionic liquid electrolytes. PMID:27455718

  17. Determination of Relationship between Dielectric Properties, Compressive Strength, and Age of Concrete with Rice Husk Ash Using Planar Coaxial Probe

    NASA Astrophysics Data System (ADS)

    Piladaeng, Nawarat; Angkawisittpan, Niwat; Homwuttiwong, Sahalaph

    2016-02-01

    This paper deals with an investigation of the dielectric properties of concretes that includes rice husk ash using a planar coaxial probe. The planar coaxial probe has a planar structure with a microstrip and coaxial features. The measurement was performed over the frequency range of 0.5-3.5 GHz, and concrete specimens with different percentages of rice husk ash were tested. The results indicated that the dielectric constant of the concretes was inversely proportional to the frequency, while the conductivity was proportional to the frequency. The dielectric constant decreased with the increasing age of the concrete at the frequency of 1 GHz. The conductivity of the concrete decreased with the increasing age of the concrete at the frequency of 3.2 GHz. In addition, the dielectric constant and the conductivity decreased when the compressive strength increased. It was also shown that the obtained dielectric properties of the concrete could be used to investigate the relationship between the compressive strength and age of the concrete. Moreover, there is an opportunity to apply the proposed probe to determine the dielectric properties of other materials.

  18. Synthesis of nanosized ZSM-5 zeolite using extracted silica from rice husk without adding any alumina source

    NASA Astrophysics Data System (ADS)

    Sari, Zahra Ghasemi Laleh Vajheh; Younesi, Habibollah; Kazemian, Hossein

    2015-08-01

    The synthesis of analcime and nanosized ZSM-5 zeolites was carried out by a hydrothermal method with silica extracted from rice husk, available as an inexpensive local biowaste, and without the use of an extra alumina source. Amorphous silica (with 88 wt% of SiO2) was extracted from rice husk ash by a suitable alkali solution. The effects of crystallization temperature, time and SiO2/Al2O3 ratio of the initial system on the properties of final products were investigated. For the characterization of the synthesized product, X-ray diffraction, scanning electron microscope, energy dispersive X-ray techniques, Fourier transform infrared and Brunauer-Emmett-Teller method were applied. Crystallinity percentages of analcime and nanosized ZSM-5 were 95.86 and 89.56, respectively, with specific surface area of 353.5 m2 g-1 for ZSM-5. The experimental results revealed that the synthesis of analcime and nanosized ZSM-5 zeolites was more practical with using silica extracted from inexpensive raw materials, while the whole crystallization process was accomplished without adding any alumina source during.

  19. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    NASA Astrophysics Data System (ADS)

    Ortiz, A. V.; Teixeira, J. G.; Gomes, M. G.; Oliveira, R. R.; Díaz, F. R. V.; Moura, E. A. B.

    2014-08-01

    This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol-gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.

  20. Efficiency of a cleanup technology to remove mercury from natural waters by means of rice husk biowaste: ecotoxicological and chemical approach.

    PubMed

    Rocha, Luciana S; Lopes, I; Lopes, Cláudia B; Henriques, Bruno; Soares, Amadeu M V M; Duarte, Armando C; Pereira, Eduarda

    2014-01-01

    In the present work, the efficiency of rice husk to remove Hg(II) from river waters spiked with realistic environmental concentrations of this metal (μg L(-1) range) was evaluated. The residual levels of Hg(II) obtained after the remediation process were compared with the guideline values for effluents discharges and water for human consumption, and the ecotoxicological effects using organisms of different trophic levels were assessed. The rice husk sorbent proved to be useful in decreasing Hg(II) contamination in river waters, by reducing the levels of Hg(II) to values of ca. 8.0 and 34 μg L(-1), for an Hg(II) initial concentration of 50 and 500 μg L(-1), respectively. The remediation process with rice husk biowaste was extremely efficient in river waters spiked with lower levels of Hg(II), being able to eliminate the toxicity to the exposed organisms algae Pseudokirchneriella subcapitata and rotifer Brachionus calyciflorus and ensure the total survival of Daphnia magna species. For concentrations of Hg(II) tenfold higher (500 μg L(-1)), the remediation process was not adequate in the detoxification process, still, the rice husk material was able to reduce considerably the toxicity to the bacteria Vibrio fischeri, algae P. subcapitata and rotifer B. calyciflorus, whose responses where fully inhibited during its exposure to the non-remediated river water. The use of a battery of bioassays with organisms from different trophic levels and whose sensitivity revealed to be different and dependent on the levels of Hg(II) contamination proved to be much more accurate in predicting the ecotoxicological hazard assessment of the detoxification process by means of rice husk biowaste. PMID:24671395

  1. Agricultural waste as household fuel: techno-economic assessment of a new rice-husk cookstove for developing countries.

    PubMed

    Vitali, Francesco; Parmigiani, Simone; Vaccari, Mentore; Collivignarelli, Carlo

    2013-12-01

    In many rural contexts of the developing world, agricultural residues and the organic fraction of waste are often burned in open-air to clear the lands or just to dispose them. This is a common practice which generates uncontrolled emissions, while wasting a potential energy resource. This is the case of rice husk in the Logone Valley (Chad/Cameroon). In such a context household energy supply is a further critical issue. Modern liquid fuel use is limited and traditional solid fuels (mainly wood) are used for daily cooking in rudimentary devices like 3-stone fires, resulting in low efficiency fuel use, huge health impacts, increasing exploitation stress for the local natural resources. Rice husk may be an alternative fuel to wood for household energy supply. In order to recover such a biomass, the authors are testing a proper stove with an original design. Its lay-out (featuring a metal-net basket to contain the fuel and a chimney to force a natural air draft) allows a mix of combustion/gasification of the biomass occurring in a completely burning fire, appropriate for cooking tasks. According to results obtained with rigorous test protocols (Water Boiling Test), different lay-outs have been designed to improve the performance of the stove. Technical and economic issues have been addressed in the development of such a model; building materials have been chosen in order to guarantee a cost as low as possible, using locally available items. The feasibility of the introduction of the stove in the studied context was assessed through an economic model that keeps into account not only the technology and fuel costs, but also the energy performance. According to the model, the threshold for the trade-off of the stove is the use of rice husk to cover 10-15% of the household energy needs both with traditional fireplaces or with improved efficiency cookstoves. The use of the technology proposed in combination with improved woodstove would provide householders with an

  2. Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters using Different Optimization Tools

    NASA Astrophysics Data System (ADS)

    Khonde, Ruta Dhanram; Chaurasia, Ashish Subhash

    2015-04-01

    The present study provides the kinetic model to describe the pyrolysis of sawdust, rice-husk and sugarcane bagasse as biomass. The kinetic scheme used for modelling of primary pyrolysis consisting of the two parallel reactions giving gaseous volatiles and solid char. Estimation of kinetic parameters for pyrolysis process has been carried out for temperature range of 773-1,173 K. As there are serious issues regarding non-convergence of some of the methods or solutions converging to local-optima, the proposed kinetic model is optimized to predict the best values of kinetic parameters for the system using three approaches—Two-dimensional surface fitting non-linear regression technique, MS-Excel Solver Tool and COMSOL software. The model predictions are in agreement with experimental data over a wide range of pyrolysis conditions. The estimated value of kinetic parameters are compared with earlier researchers and found to be matching well.

  3. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.

    PubMed

    Beheshti, Sayyed Mohsen; Ghassemi, Hojat; Shahsavan-Markadeh, Rasoul; Fremaux, Sylvain

    2015-01-01

    Gasification is a thermochemical process in which solid or liquid fuels are transformed into synthesis gas through partial oxidation. In this paper, a kinetic model of rice husk gasification has been developed, which is interesting for the applications of the syngas produced. It is a zero-dimensional, steady-state model based on global reaction kinetic, empirical correlation of pyrolysis and is capable of predicting hydrogen yield in the presence of sorbent CaO. The model can also be used as a useful tool to investigate the influence of process parameters including steam/biomass ratio, CaO/fuel ratio (CaO/Fuel), and gasification temperature on hydrogen efficiency, CO2 capture ratio (CCR), and average carbonation conversion (Save). Similar to hydrogen formation, CCR also increases with increasing CaO/Fuel, but an opposite trend is exhibited in Save. Model predictions were compared with available data from the literature, which showed fairly good agreement. PMID:25403373

  4. Low temperature conversion of rice husks, eucalyptus sawdust and peach stones for the production of carbon-like adsorbent.

    PubMed

    Martins, Ayrton F; Cardoso, André de L; Stahl, João A; Diniz, Juraci

    2007-03-01

    In this study, the feasibility of preparing effective adsorbents from unmitigated agroforestry wastes was investigated. Three different kinds of carbon-like materials were produced by low temperature pyrolysis (LTC, <500 degrees C) of the raw materials rice husks, eucalyptus sawdust and peach stones. The carbon-like materials were characterized by instrumental methods (SEM,X-RDS,BET,MAS-RMN,FTIR), physico-chemical adsorption (iodine-, methylene blue- and phenazone-number; acetic acid adsorption isotherm; textile dyes- and carbohydrate adsorption), and heat value determination. The produced materials, which showed appreciable adsorption capacity, can be considered as precursors for the production of active coal or even be used directly as well. PMID:16790341

  5. Kinetics of sequential reaction of hydrolysis and sugar degradation of rice husk in ethanol production: effect of catalyst concentration.

    PubMed

    Megawati; Sediawan, Wahyudi B; Sulistyo, Hary; Hidayat, Muslikhin

    2011-01-01

    This study focuses on kinetics of rice husk hydrolysis using sulfuric acid catalyst to produce sugars. The experiments were conducted at various catalyst concentrations. It turned out that during hydrolysis, degradation of sugars was encountered. The kinetics was expressed with both homogeneous and heterogeneous models. At catalyst concentration of higher than 0.44 N, heterogeneous model works better than homogeneous model, while at the lower, both models work well. In the heterogeneous model, it is observed that the mass transfer of sulfuric acid in the particles and the hydrolysis reaction control the rate of hydrolysis. The mass transfer can be described by Fick's law with the effective diffusivity of 1.4×10(-11) cm2/s, while the hydrolysis and sugar degradation rate constants follow Arrhenius equations. In addition, it was experimentally observed that the sugars produced can be converted to ethanol by fermentation using yeast. PMID:20952187

  6. Synthesis and characterisation of composite based biohydroxyapatite bovine bone mandible waste (BHAp) doped with 10 wt % amorphous SiO2 from rice husk by solid state reaction

    NASA Astrophysics Data System (ADS)

    Asmi, Dwi; Sulaiman, Ahmad; Oktavia, Irene Lucky; Badaruddin, Muhammad; Zulfia, Anne

    2016-04-01

    Effect of 10 wt% amorphous SiO2 from rice husk addition on the microstructures of biohydroxyapatite (BHAp) obtained from bovine bone was synthesized by solid state reaction. In this study, biohydroxyapatite powder was obtained from bovine bone mandible waste heat treated at 800 °C for 5 h and amorphous SiO2 powder was extracted from citric acid leaching of rice husk followed by combustion at 700°C for 5 h. The composite powder then mixed and sintered at 1200 °C for 3 h. X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy and Scanning electron microscopy (SEM) techniques are utilized to characterize the phase relations, functional group present and morphology of the sample. The study has revealed that the processing procedures played an important role in microstructural development of BHAp-10 wt% SiO2 composite. The XRD study of the raw material revealed that the primary phase material in the heat treated of bovine bone mandible waste is hydroxyapatite and in the combustion of rice husk is amorphous SiO2. However, in the composite the hydroxyapatite, β-tricalcium phosphate, and calcium phosphate silicate were observed. The FTIR result show that the hydroxyl stretching band in the composite decrease compared with those of hydroxyapatite spectra and the evolution of morphology was occurred in the composite.

  7. Kinetic and equilibrium studies on the removal of Cd2+ ions from water using polyacrylamide grafted rice (Oryza sativa) husk and (Tectona grandis) saw dust.

    PubMed

    Sharma, Neeta; Kaur, Kulwinder; Kaur, Sumanjit

    2009-04-30

    The increase in the use of heavy metals has resulted in an increased flux of metallic substances into the aquatic environment which poses a danger to human health. The present work relates to the removal of cadmium ions by treatment with polyacrylamide grafted rice (Oryza sativa) husk/saguan (Tectona grandis) saw dust. The drinking water guideline value recommended by WHO for cadmium is 0.005 ppm.The adsorbent has been prepared by treatment of rice husk/saw dust with acrylamide. Removal has been studied at various pH values for different times of contact and adsorbate concentrations and is found to be pH-dependent, maximum removal occurs at pH 9 and at a contact time of 180 min for both the adsorbents. The results were found to be consistent with both the Langmuir and Freundlich isotherm models. The value of n (rate constant) determined at pH 9 has been found to be 1 (within experimental limits). This is further substantiated by applying the Lagergren model. The intra-particle diffusion constants were determined by the Morris-Weber model. Continuous flow column studies have also been undertaken and the breakthrough characteristics were determined. Desorption has been affected with 0.5M HCl. The results suggest that both polyacrylamide grafted rice husk/saw dust can be used as efficient and cost effective adsorbents for cadmium ion removal. PMID:18783881

  8. Chemical and microbiological characteristics of rice husk bedding having distinct depths and used for growing-finishing swine.

    PubMed

    Corrêa, E K; Bianchi, I; Perondi, A; de los Santos, J R G; Corrêa, M N; Castilhos, D D; Gil-Turnes, C; Lucia, T

    2009-11-01

    This study compared the effects of different bedding depths on the chemical and microbiological characteristics of the bedding material used to raise pigs during growing and finishing. The experiment was conducted in two pens housing 5 pigs from 60 to 145 days of age, with rice husk beddings 0.50 or 0.25 m deep. Four lots of pigs (replicates) were raised over time in each bedding depth: each bedding was used by two consecutive lots. Bedding samples were collected quarterly to determine the most probable number (MPN) of thermophilic and mesophilic bacteria, fungi and actinomycetes. Contents of N, P, K, C, organic, mineral and dry matter, C:N ratio and pH were also determined. The MPN of thermophilic bacteria was higher for the 0.50 m than for the 0.25 m bedding (p<0.05). The compost of 0.25 m deep bedding had a higher N, P and K content than that from the 0.50 m bedding (p<0.05). Thus, the use of the 0.25 m deep bedding would be recommended due to its greater agronomical value in comparison with the deeper bedding. PMID:19541479

  9. Biosorption of Fe(II) and Mn(II) Ions from Aqueous Solution by Rice Husk Ash

    PubMed Central

    Zhao, Jiaying; Jiang, Zhao; Shan, Dexin; Lu, Yan

    2014-01-01

    Rice husk ash (RHA), an agricultural waste, was used as biosorbent for the removal of Iron(II) and Manganese(II) ions from aqueous solutions. The structural and morphological characteristics of RHA and its elemental compositions before and after adsorption of Fe(II) and Mn(II) were determined by scanning electron microscopic (SEM) and X-ray fluorescence (XRF) analyses. Batch experiments were carried out to determine the influence of initial pH, contact time, adsorbent dosage, and initial concentration on the removal of Fe(II) and Mn(II) ions. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the metal ions by RHA. The correlation coefficient (R2) of Langmuir and Freundlich isotherm models equals 0.995 and 0.901 for Fe(II), 0.9862 and 0.8924 for Mn(II), respectively, so the Langmuir model fitted the equilibrium data better than the Freundlich isotherm model. The mean free energy values evaluated from the D-R model indicated that the biosorption of Fe(II) and Mn(II) onto RHA was physical in nature. Experimental data also showed that the biosorption processes of both metal ions complied with the pseudo-second-order kinetics. PMID:24982918

  10. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation.

    PubMed

    Chen, Huichao; Zhao, Changsui; Ren, Qiangqiang

    2012-01-01

    The calcination/carbonation cycle using calcium-based sorbents appears to be a viable method for carbon dioxide (CO₂) capture from combustion gases. Recent attempts to improve the CO₂/SO₂ uptake of a calcium-based sorbent modified by using rice husk ash (RHA) in the hydration process have succeeded in enhancing its effectiveness. The optimal mole ratio of RHA to calcined limestone (M(Si/Ca)) was adjusted to 0.2. The cyclic CO₂ capture characteristics and the SO₂ uptake activity of the modified sorbent were evaluated in a calcination/pressurized carbonation reactor system. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) spectrum of the sorbent were also taken to supplement the study. The results showed that the carbonation conversion was greatly increased for the sorbent with M(Si/Ca) ratio of 0.2. For this sorbent formulation the optimal operating conditions were 700-750 °C and 0.5-0.7 MPa. CO₂ absorption was not proportional to CO₂ concentration in the carbonation atmosphere, but was directly related to reaction time. The CO₂ uptake decreased in the presence of SO₂. SO₂ uptake increased, and the total calcium utilization was maintained over multiple cycles. Analysis has shown that the silicate component is evenly or well distributed, and this serves as a framework to prevent sintering, thus preserving the available microstructure for reaction. The sorbent also displayed high activity to SO₂ absorption and could be used to capture CO₂ and SO₂ simultaneously. PMID:22054590

  11. Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes

    PubMed Central

    Liu, Nian; Huo, Kaifu; McDowell, Matthew T.; Zhao, Jie; Cui, Yi

    2013-01-01

    The recovery of useful materials from earth-abundant substances is of strategic importance for industrial processes. Despite the fact that Si is the second most abundant element in the Earth's crust, processes to form Si nanomaterials is usually complex, costly and energy-intensive. Here we show that pure Si nanoparticles (SiNPs) can be derived directly from rice husks (RHs), an abundant agricultural byproduct produced at a rate of 1.2 × 108 tons/year, with a conversion yield as high as 5% by mass. And owing to their small size (10–40 nm) and porous nature, these recovered SiNPs exhibits high performance as Li-ion battery anodes, with high reversible capacity (2,790 mA h g−1, seven times greater than graphite anodes) and long cycle life (86% capacity retention over 300 cycles). Using RHs as the raw material source, overall energy-efficient, green, and large scale synthesis of low-cost and functional Si nanomaterials is possible. PMID:23715238

  12. Thermodynamic and kinetic studies of biosorption of iron and manganese from aqueous medium using rice husk ash

    NASA Astrophysics Data System (ADS)

    Adekola, F. A.; Hodonou, D. S. S.; Adegoke, H. I.

    2014-11-01

    The adsorption behavior of rice husk ash with respect to manganese and iron has been studied by batch methods to consider its application for water and waste water treatment. The optimum conditions of adsorption were determined by investigating the effect of initial metal ion concentration, contact time, adsorbent dose, pH value of aqueous solution and temperature. Adsorption equilibrium time was observed at 120 min. The adsorption efficiencies were found to be pH dependent. The equilibrium adsorption experimental data were found to fit the Langmuir, Freundlich and Temkin isotherms for iron, but fitted only Langmuir isotherm for manganese. The pseudo-second order kinetic model was found to describe the manganese and iron kinetics more effectively. The thermodynamic experiment revealed that the adsorption processes involving both metals were exothermic. The adsorbent was finally applied to typical raw water with initial manganese and iron concentrations of 3.38 mg/l for Fe and 6.28 mg/l, respectively, and the removal efficiency was 100 % for Mn and 70 % for Fe. The metal ions were desorbed from the adsorbent using 0.01 M HCl, it was found to quantitatively remove 67 and 86 % of Mn and Fe, respectively, within 2 h. The results revealed that manganese and iron are considerably adsorbed on the adsorbent and could be an economic method for the removal of these metals from aqueous solutions.

  13. Synthesis of carbon encapsulated SiO2 nanoparticles from rice husk and its application in solar to steam conversion

    NASA Astrophysics Data System (ADS)

    Mufti, Nandang; Lestari, Nurhayati A.; Suciani, Erlin; Fuad, Abdulloh; Diantoro, Markus

    2016-03-01

    Steam is important in many technological applications including sterilization of medical devices, cleaning, and power generating. In general, steam can be produced by boiling water at high temperature. In new technology, solar can convert water directly into steam even at low temperature by using nanoparticles. In this research we study solar to steam conversion of carbon encapsulated SiO2 nanoparticles (SiO2@C) synthesized from rice husk. SiO2 nanoparticles were synthesized using alkali extraction and sol-gel methods. While synthesis of carbon encapsulated SiO2 nanoparticles was done by sonochemical method with glucose as source of carbon. The samples have been characterized by XRF, SEM-EDX, and XRD. The effectivity of solar steam conversion performed by measuring time dependent of temperature and pressure. XRF and XRD results shown that SiO2 nanoparticles have purity of 97.2% inn amorphous phase. Carbon encapsulated SiO2 nanoparticles (SiO2@C) have successfully synthesized indicating by NaOH base test. The morphology of SiO2@C is agglomerated with average particle size around 20 nm. The measurement of solar to steam conversion showed that increasing carbon concentration of SiO2@C rises steam production with indicated by increasing temperature and pressure of steam.

  14. Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin.

    PubMed

    Lu, Yao; Wei, Xian-Yong; Cao, Jing-Pei; Li, Peng; Liu, Fang-Jing; Zhao, Yun-Peng; Fan, Xing; Zhao, Wei; Rong, Liang-Ce; Wei, Yan-Bin; Wang, Shou-Ze; Zhou, Jun; Zong, Zhi-Min

    2012-07-01

    Detailed compositional analysis of a bio-oil (BO) from pyrolysis of rice husk was carried out. The BO was extracted sequentially with n-hexane, CCl(4), CS(2), benzene and CH(2)Cl(2). In total, 167 organic species were identified with GC/MS in the extracts and classified into alkanes, alcohols, hydroxybenzenes, alkoxybenzenes, dioxolanes, aldehydes, ketones, carboxylic acids, esters, nitrogen-containing organic compounds and other species. The benzene ring-containing species (BRCCs) were attributed to the degradation of lignin while most of the rests were derived from the degradation of cellulose and hemicellulose. Along with guaiacyl and p-hydroxyphenyl units as the main components, a new type of linkage was suggested, i.e., C(ar)-CH(2)-C(ar) in 4,4'-methylenebis(2,6-dimethoxyphenol). Based on the species identified, a possible macromolecular structure of the lignin and the mechanism for its pyrolysis are proposed. The BO was also extracted with petroleum ether in ca. 17.8% of the extract yield and about 82.1% of the extracted components are BRCCs. PMID:22609664

  15. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: optimization study.

    PubMed

    Lau, Lee Chung; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-11-15

    In order to reduce the negative impact of coal utilization for energy generation, the pollutants present in the flue gas of coal combustion such as sulfur dioxide (SO(2)) and nitrogen oxide (NO) must be effectively removed before releasing to the atmosphere. Thus in this study, sorbent prepared from rice husk ash that is impregnated with copper is tested for simultaneous removal of SO(2) and NO from simulated flue gas. The effect of various sorbent preparation parameters; copper loading, RHA/CaO ratio, hydration period and NaOH concentration on the sorbent desulfurization/denitrification capacity was studied using Design-Expert Version 6.0.6 software. Specifically, Central Composite Design (CCD) coupled with Response Surface Method (RSM) was used. Significant individual parameters that affect the sorbent capacity are copper loading and NaOH concentration. Apart from that, interaction between the following parameters was also found to have significant effect; copper loading, RHA/CaO ratio and NaOH concentration. The optimum sorbent preparation condition for this study was found to be 3.06% CuO loading, RHA/CaO ratio of 1.41, 8.05 h of hydration period and NaOH concentration of 0.80 M. Sorbent characterization using SEM, XRD and surface area analysis were used to describe the effect of sorbent preparation parameters on the desulfurization/denitrification activity. PMID:20724075

  16. The Application of a Representative Volume Element (RVE) Model for the Prediction of Rice Husk Particulate-Filled Polymer Composite Properties

    NASA Astrophysics Data System (ADS)

    Pochanard, Pandhita

    Polymer composite is one of the most widely used materials with application in multiple industries. However, its versatility and subsequent rise in consumption have prompted an increase in research on alternative materials to address the associated environmental concerns. The forefront of this investigation is on the potential use of biocomposite materials as a more sustainable replacement to the traditional polymer composite. Consequently, the ability to apply a theoretical model capable of replicating the microstructures of particulate-filled composite would make a very powerful analytical tool for material design. To address these requirements, this thesis applies a representative volume element (RVE) model for the investigation on the potential use of rice husk particulate-filled polymer composite as alternative material in non-critical application. In this work, rice husk powder (RHP) was used with epoxy for the fabrication of biocomposite samples with 0%, 10% and 30% RHP volume percentage. It was observed that a 10% increase in RHP did not affect the composite elastic property, but led to 15% and 20% decrease in yield stress and tensile strength, respectively. Further increase in RHP to 30% volume percentage also led to 8%, 21% and 28% reduction in Young's modulus, yield stress and tensile strength, respectively. Additionally, the material's responses to uniaxial loading predicted by the RVE model were found to be in reasonable agreement with the analytical and experimental results. No coupling agent was used in this study. The results of this present study suggested that rice husk powder could be used to reduce the composite raw material costs by replacing the more expensive polymer content with agricultural waste products without significant compromise to the composite's mechanical properties.

  17. Analysis of SO{sub 2} sorption capacity of rice husk ash (RHA)/CaO/NaOH sorbents using response surface methodology (RSM): untreated and pretreated RHA

    SciTech Connect

    Irvan Dahlan; Keat Teong Lee; Azlina Harun Kamaruddin; Abdul Rahman Mohamed

    2008-03-01

    The SO{sub 2} sorption capacity (SSC) of sorbents prepared from rice husk ash (RHA) with NaOH as additive was studied in a fixed-bed reactor. Rice husk ash is produced by burning rice husks at about 300{sup o}C and was chosen as a source of siliceous material, abundantly available in Malaysia. The sorbents were prepared using a water hydration method by slurrying RHA, CaO, and NaOH. Response surface methodology (RSM) based on four-variable central composite face centered design (CCFCD) was employed in the synthesis of the sorbents. The correlation between the sorbent SSC (as response) with four independent sorbent preparation variables, i.e. hydration period, RHA/CaO ratio, NaOH amount, and drying temperature, were presented as empirical mathematical models. Among all the variables studied, the amount of NaOH used was found to be the most significant variable affecting the SSC of the sorbents prepared. The SSC for sorbent prepared with the addition of NaOH was found to be significantly higher than sorbents prepared without NaOH. This is probably because NaOH is a deliquescent material, and its existence increases the amount of water collected on the surface of the sorbent, a condition required for sorbent-SO{sub 2} reaction to occur at low temperature. The effect of further treatment of RHA at 600{sup o}C was also investigated. Although pretreated RHA sorbents demonstrated higher SSC as compared to untreated RHA sorbents, nevertheless, at optimum conditions, sorbents prepared from untreated RHA was found to be more favorable due to practical and economic concerns. 33 refs., 3 figs., 1 tab.

  18. Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes.

    PubMed

    Chakrabarti, Shumon; Dicke, Christiane; Kalderis, Dimitrios; Kern, Jürgen

    2015-08-01

    Currently, char substrates gain a lot of interest since soils amended with such substrates are being discussed to increase in fertility and productivity, water retention, and mitigation of greenhouse gases. Char substrates can be produced by carbonization of organic matter. Among different process conditions, temperature is the main factor controlling the occurrence of organic and inorganic contaminants such as phenols and furfurals, which may affect target and non-target organisms. The hydrochar produced at 200 °C contained both furfural and phenol with concentrations of 282 and 324 mg kg(-1) in contrast to the 300 °C hydrochar, which contained only phenol with a concentration of 666 mg kg(-1). By washing with acetone and water, these concentrations were significantly reduced. In this study, the potential toxic effects of hydrochars on the free-living nematode Caenorhabditis elegans were investigated via gene transcription studies using the following four matrices: (i) raw rice husk, (ii) unwashed rice char, (iii) acetone/water washed rice char, and (iv) the wash water of the two rice chars produced at 200 and 300 °C via hydrothermal carbonization (HTC). Furthermore, genetically modified strains, where the green fluorescent protein (GFP) gene sequence is linked to a reporter gene central in specific anti-stress regulations, were also exposed to these matrices. Transgenic worms exposed to hydrochars showed very weak, if any, fluorescence, and expression of the associated RNAs related to stress response and biotransformation genes was surprisingly downregulated. Similar patterns were also found for the raw rice husk. It is hypothesized that an unidentified chemical trigger exists in the rice husk, which is not destroyed during the HTC process. Therefore, the use of GFP transgenic nematode strains cannot be recommended as a general rapid monitoring tool for farmers treating their fields with artificial char. However, it is hypothesized that the observed reduced

  19. Effects of rice husk diluted dietary switching on the phenotypic change of gastrointestinal tract in adult ganders.

    PubMed

    Lu, J; Shi, S R; Wang, Z Y; Yang, H M; Zou, J M

    2011-06-01

    1. An experiment was conducted to test the directionality, scaling and reversibility of phenotypic responses of the gastrointestinal tract (GIT) of adult ganders to rice husk (RH) diluted dietary switching. 2. A total of 96 140-d-old ganders were acclimatised to a basal diet for 2 weeks. The birds were randomly assigned to 4 treatments. On d 1, diets in the experimental groups were switched from the basal diet to diets which contained 200, 400 or 600 g/kg RH by mass, with no RH in the basal diet. After 21 d, the diet of all the experimental birds was switched back to the basal diet until d 42. 3. Increasing RH content significantly increased feed intake, and a decreased trend appeared after diet-switching. The weights of geese fed on the 600 g/kg RH diet for 21 d reduced, and were significantly less than those of the other three groups, while body weights (BW) of the geese in all groups increased after diet-switching back to the basal diet. At d 21, significantly heavier relative weights of proventriculus, gizzard and all gut components, except duodenum, were observed in birds fed on a 600 g/kg RH diet, and significantly heavier relative weights of gizzard were observed in birds given a 400 g/kg RH diet. Thickness of the two gastric walls, gizzard length and all gut components lengths increased significantly in birds given a 600 g/kg RH diet compared with the other three groups. At d 42, no significant differences were noted in the relative weights or lengths of GIT, except for the caeca, which were significantly heavier in birds fed on 600 g/kg RH diet. 4. The results of the experiment were in accordance with the predictions of the hypothesis that there is matching between loads and capacities. The observed phenotypic responses were directional and scaled to the demands. PMID:21732880

  20. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  1. Low-cost nanoparticles sorbent from modified rice husk and a copolymer for efficient removal of Pb(II) and crystal violet from water.

    PubMed

    Masoumi, Arameh; Hemmati, Khadijeh; Ghaemy, Mousa

    2016-03-01

    In this work, preparation of adsorbent nanoparticles based on treated low-value agricultural by-product rice husk (TARH), and poly(methylmethacrylate-co-maleic anhydride), poly(MMA-co-MA), is reported for the removal of Pb(II) ion and Crystal violet dye from water. The prepared adsorbent was characterized by FT-IR, SEM, AFM, DLS, BET and Zeta potential. The metal ion adsorption capability was determined for rice husk (RH), TARH, crosslinked poly(MMA-co-MA) (CNR), and CNR@TARH nanoparticles. Different factors affecting the adsorption of Pb(II) such as pH, contact time, initial metal ion concentration and also temperature were studied to investigate adsorption isotherms, kinetics and thermodynamics. For the four tested adsorption isotherm models, the equilibrium sorption data for CNR@TARH nanoparticles obeyed the Langmuir isotherm equation with maximum sorption capacity of 93.45 mg g(-1). The kinetic adsorption data fitted best the Lagergren pseudo-second order model. Regeneration of adsorbent was easily performed by adsorption/desorption experiments followed for 4 cycles. Finally, the ability of the nanoparticles to remove Crystal violet dye from aqueous solution was also investigated by varying the initial dye concentration, pH and immersion time and the adsorption mechanism followed the second-order kinetic model. PMID:26735725

  2. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.

    PubMed

    Haider, Muhammad Rizwan; Zeshan; Yousaf, Sohail; Malik, Riffat Naseem; Visvanathan, Chettiyappan

    2015-08-01

    Aim of this study was to find out suitable mixing ratio of food waste and rice husk for their co-digestion in order to overcome VFA accumulation in digestion of food waste alone. Four mixing ratios of food waste and rice husk with C/N ratios of 20, 25, 30 and 35 were subjected to a lab scale anaerobic batch experiment under mesophilic conditions. Highest specific biogas yield of 584L/kgVS was obtained from feedstock with C/N ratio of 20. Biogas yield decreased with decrease in food waste proportion. Further, fresh cow dung was used as inoculum to investigate optimum S/I ratio with the selected feedstock. In experiment 2, feedstock with C/N ratio 20 was subjected to anaerobic digestion at five S/I ratios of 0.25, 0.5, 1.0, 1.5 and 2.0. Specific biogas yield of 557L/kgVS was obtained at S/I ratio of 0.25. However, VFA accumulation occurred at higher S/I ratios due to higher organic loadings. PMID:25818922

  3. Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system.

    PubMed

    Chowdhury, Shamik; Saha, Papita Das

    2013-02-01

    In this study, rice husk was modified with NaOH and used as adsorbent for dynamic adsorption of methylene blue (MB) from aqueous solutions. Continuous removal of MB from aqueous solutions was studied in a laboratory scale fixed-bed column packed with NaOH-modified rice husk (NMRH). Effect of different flow rates and bed heights on the column breakthrough performance was investigated. In order to determine the most suitable model for describing the adsorption kinetics of MB in the fixed-bed column system, the bed depth service time (BDST) model as well as the Thomas model was fitted to the experimental data. An artificial neural network (ANN)-based model was also developed for describing the dynamic dye adsorption process. An extensive error analysis was carried out between experimental data and data predicted by the models by using the following error functions: correlation coefficient (R(2)), average relative error, sum of the absolute error and Chi-square statistic test (χ(2)). Results show that with increasing bed height and decreasing flow rate, the breakthrough time was delayed. All the error functions yielded minimum values for the ANN model than the traditional models (BDST and Thomas), suggesting that the ANN model is the most suitable model to describe the fixed-bed adsorption of MB by NMRH. It is also more rational and reliable to interpret dynamic dye adsorption data through a process of ANN architecture. PMID:22562342

  4. The integrated production of microbial lipids and bio-SiO2 from rice husks by an organic electrolytes pretreatment technology.

    PubMed

    Yu, Xue; Tian, Jing; Xie, Haibo; Shen, Hongwei; Wang, Qian

    2014-02-01

    In this study, a full dissolution behavior of rice husks (RHs) in ionic liquids-based organic electrolytes was achieved, and physicochemical effect of the dissolution pretreatment on the structures of RHs was elucidated. The physicochemical changes led to an enhanced subsequent enzymatic saccharification of RHs, and a total reducing sugars (TRSs) yield of 0.70gg(-1), and a glucose yield of 0.43gg(-1) were obtained. The hydrolysates could be used as carbon sources for the cultivation of Rhodosporidium toruloides Y4 for the production of microbial lipids with a satisfactory productivity of cell biomass (13.3gL(-1)) and lipid content (32.5%) after 100h cultivation. Further pyrolysis of the residuals after the enzymatic hydrolysis at 600°C for 3h resulted in new uniform, spherical silica powder materials with particle size around 150nm, and surface area of 179.3m(2)g(-1). PMID:24398252

  5. Utilization of tin and titanium incorporated rice husk silica nanocomposite as photocatalyst and adsorbent for the removal of methylene blue in aqueous medium

    NASA Astrophysics Data System (ADS)

    Adam, Farook; Appaturi, Jimmy Nelson; Khanam, Zakia; Thankappan, Radhika; Nawi, Mohd. Asri Mohd

    2013-01-01

    A series of tin and titanium incorporated rice husk silica have been synthesized via sol-gel method using cetyltrimethylammonium bromide as the structure directing agent. The samples were labeled as RHA-Silica, RHA-10Sn, RHA-10Ti, and RHA-10Sn10Ti. The BET specific surface areas of these catalysts were found to be 315, 607, 439 and 255 (m2 g-1) with type IV isotherms, respectively. The catalysts were found to be X-ray amorphous and the particle size was found to be in the nano range. Calcination of RHA-10Sn at 500 °C gave silica-tin nanotubes. RHA-10Sn10Ti showed the highest activity in the photocatalytic degradation of methylene blue (MB). The adsorption of MB on these catalysts was found to fit the pseudo-second order kinetic model. The adsorption rate was found to be strongly dependent on the pH of the solution.

  6. Physico-chemical and microbiological analyses of fermented corn cob, rice bran and cowpea husk for use in composite rabbit feed.

    PubMed

    Oduguwa, Oluseyi O; Edema, Mojisola O; Ayeni, Ayodeji O

    2008-04-01

    An experiment was conducted to evaluate the effect of fermentation on the proximate composition of corn cob, rice bran and cowpea husk for use in composite rabbit feed formulations. The test ingredients were moistened with tap water and allowed to ferment naturally at room temperature. During fermentation, samples of the fermenting materials were extracted at zero, 24 and 48 h for physico-chemical and microbiological analyses using standard procedures. The microorganisms associated with the fermenting materials were identified as Rhizopus oligosporus, Aspergillus oryzae, Aspergillus niger, Rhodotorula, Geotrichum candidum, Candida albicans, and Saccharomyces cerevisiae. Two (R. oligosporus and S. cerevisiae) out of microorganisms present were used as starter cultures to ferment the test ingredients and the fermented products were then analyzed. From the results obtained S. cerevisiae enhanced the protein and fat contents while R. oligosporus was able to degrade the fiber significantly. PMID:17502134

  7. Separation of phthalate esters from bio-oil derived from rice husk by a basification-acidification process and column chromatography.

    PubMed

    Zeng, Fanxin; Liu, Wujun; Jiang, Hong; Yu, Han-Qing; Zeng, Raymond J; Guo, Qingxiang

    2011-01-01

    Solid precipitate containing phthalate esters was obtained from rice-husk-derived oil through a basification-acidification process. After separation by column chromatography, the solid precipitate was divided into two mono-component fractions, two bi-component fractions and a tetra-component fraction. The major compounds of the five fractions were all consisted of phthalate esters. Especially, phthalate esters accounted for a proportion higher than 80% in both Fractions I and II. The generation and precipitation mechanisms of phthalate esters were proposed. Phthalate esters were considered to be derived from a series of complicated chemical reactions of small molecules in the biomass pyrolysis process, and precipitated from bio-oil by catalytic hydrolysis and esterification. PMID:20884201

  8. Dye removal of activated carbons prepared from NaOH-pretreated rice husks by low-temperature solution-processed carbonization and H3PO4 activation.

    PubMed

    Chen, Yun; Zhai, Shang-Ru; Liu, Na; Song, Yu; An, Qing-Da; Song, Xiao-Wei

    2013-09-01

    A coupling of low-temperature sulfuric acid-assisted carbonization and H3PO4 activation was employed to convert NaOH-pretreated rice husks into activated carbons with extremely high surface area (2028 m(2) g(-1)) and integrated characteristics. The influences of the activation temperature and impregnation ratio on the surface area, pore volume of activated carbons were thoroughly investigated. The morphology and surface chemistry of activated carbons were characterized using N2 sorption, FTIR, XPS, SEM, TEM, etc. The adsorption capacity of resulting carbons obtained under optimum preparation conditions was systematically evaluated using methylene blue under various simulated conditions. The adsorption process can be well described by both Langmuir isotherm model and the pseudo-second order kinetics models; and the maximum monolayer capacity of methylene blue was ca. 578 mg g(-1). PMID:23892148

  9. Rice husk based porous carbon loaded with silver nanoparticles by a simple and cost-effective approach and their antibacterial activity.

    PubMed

    Cui, Jianghu; Yang, Yunhua; Hu, Yonghui; Li, Fangbai

    2015-10-01

    In this paper, we chose rice husk as raw material and synthesized successfully porous carbon loaded with silver nanoparticles (RH-Ag) composites by simple and cost-effective method. The as-prepared RH-Ag composites have a BET-specific surface area of 1996 m(2) g(-1) and result in strong capacity of bacteria adsorption. The result of antibacterial study indicated that the RH-Ag system displayed antibacterial activity that was two times better than pure Ag NPs. Our study demonstrates that the antibacterial activity of RH-Ag composites may be attributed to their strong adsorption ability with bacteria and result in the disorganization of the bacterial membrane ultrastructure. In addition, RH-Ag system was found to be durative slow-releasing of silver ions and biocompatible for human skin keratinocytes cells. In terms of these advantages, the RH-Ag composites have potential application in antibacterial infections and therapy. PMID:26057944

  10. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2009-07-30

    In this work, the removal of SO(2) and NO from simulated flue gas from combustion process was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO-based sorbent. Various metal precursors were used in order to select the best metal impregnated over RHA/CaO sorbents. The results showed that RHA/CaO sorbents impregnated with CeO(2) had the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NO. Infrared spectroscopic results indicated the formation of both sulfate (SO(4)(2-)) and nitrate (NO(3)(-)) species due to the catalytic role played by CeO(2). Apart from that, the catalytic activity of the RHA/CaO/CeO(2) sorbent was found to be closely related to its physical properties (specific surface area, total pore volume and average pore diameter). PMID:19147280

  11. Effect of sintering temperature on mechanical behaviour and bioactivity of sol-gel synthesized bioglass-ceramics using rice husk ash as a silica source

    NASA Astrophysics Data System (ADS)

    Nayak, J. P.; Bera, J.

    2010-11-01

    Bioglass-ceramics with SiO2-Na2O-CaO composition was prepared by sol-gel method using rice husk ash as a silica source. Material was sintered at different temperatures ranging from 900 to 1050 °C for 2 h. Phase-formation behaviour, densification characteristics, and mechanical strength of glass-ceramics were investigated. The material sintered at 1000 °C showed a good mechanical strength. Mechanical properties were correlated with microstructural features. Both in vitro bioactivity and biodegradability of sintered material were investigated by incubating in simulated body fluid and Tris buffer solution, respectively. Scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction were used to investigate the surface deposition during body fluid incubation. Both bioactivity and degradability decreased with increase in sintering temperature.

  12. Biogenic Hierarchical TiO2/SiO2 Derived from Rice Husk and Enhanced Photocatalytic Properties for Dye Degradation

    PubMed Central

    Yang, Dalong; Fan, Tongxiang; Zhou, Han; Ding, Jian; Zhang, Di

    2011-01-01

    Background Rice husk, an agricultural bioresource, is utilized as a non-metallic bio-precursor to synthesize biogenic hierarchical TiO2/SiO2 (BH-TiO2/SiO2) and the products are applied to dye degradation. Methodology/Principal Findings The as-prepared BH-TiO2/SiO2 samples are characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), nitrogen-adsorption measurement, UV-vis spectroscopy and electronic paramagnetic resonance (EPR). The results show that BH-TiO2/SiO2 possesses both anatase and rutile phases with amorphous SiO2 as background, which contains mesopore structure, and nitrogen derived from original rice husk is self-doped into the lattice. Besides, the light-harvesting within the visible-light range of BH-TiO2/SiO2 has been enhanced. Moreover, the catalytic activity of BH-TiO2/SiO2 has been proven by EPR, and both the photocatalytic activity and stability of BH-TiO2/SiO2 are improved as well, which has been illustrated by cycled degradation of methylene blue dye under irradiation. Conclusions/Significance This work provides a good way to combine natural hierarchical porous structure with synthetic material chemistry based on available biomass in the vast natural environment for the sustainable development of human society, and extends potentials of biomass in applications such as photocatalysts, sunlight splitting water and so forth. PMID:21931853

  13. Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica.

    PubMed

    Leenakul, Wilaiwan; Tunkasiri, Tawee; Tongsiri, Natee; Pengpat, Kamonpan; Ruangsuriya, Jetsada

    2016-04-01

    45S5 bioactive glass is a highly bioactive substance that has the ability to promote stem cell differentiation into osteoblasts--the cells that create bone matrix. The aim of this work is to analyze physical and mechanical properties of 45S5 bioactive glass fabricated by using rice husk ash as its silica source. The 45S5 bioactive glass was prepared by melting the batch at 1300 °C for 3h. The samples were sintered at different temperatures ranging from 900 to 1050 °C with a fixed dwell-time of 2h. The phase transitions, density, porosity and microhardness values were investigated and reported. DTA analysis was used to examine the crystallization temperatures of the glasses prepared. We found that the sintering temperature had a significant effect on the mechanical and physical properties of the bioactive glass. The XRD showed that when the sintering temperature was above 650 °C, crystallization occurred and bioactive glass-ceramics with Na2Ca2Si3O9, Na2Ca4(PO4)2SiO4 and Ca3Si2O7 were formed. The optimum sintering temperature resulting in maximum mechanical values was around 1050 °C, with a high density of 2.27 g/cm(3), 16.96% porosity and the vicker microhardness value of 364HV. Additionally, in vitro assay was used to examine biological activities in stimulated body fluid (SBF). After incubation in SBF for 7 days, all of the samples showed formations of apatite layers indicating that the 45S5 bioactive glasses using rice husk as a raw material were also bioactive. PMID:26838899

  14. Magnetic Phase Development of Iron Oxide-SiO{sub 2} Aerogel and Xerogel Prepared using Rice Husk Ash as Precursor

    SciTech Connect

    Maamur, K. N.; Jais, U. S.; Yahya, S. Y. S.

    2010-03-11

    This study is aimed to produce iron incorporated silica aerogel and xerogel from rice husk ash. Two sol--gel chemistry routes have been used to synthesize both samples. Iron in the form of hydrated iron nitrate with compositions in the range of 3-17 wt%(Fe{sub 2}O{sub 3}/Fe{sub 2}O{sub 3}+SiO{sub 2}) were used as iron source. For aerogel samples, iron was added at the solution level whereas for xerogel samples, iron was added after the gelation. The synthesis of iron doped aerogel was done by supercritical drying at temperature about 250 deg. C and pressure of about 5.9 MPa (850 psi) while xerogel was formed by drying the aquagel in an oven at 110 deg. C for 24 hours. The iron doped aerogel and xerogel composites were further heated to various temperatures to obtain the magnetic phase. Results show that the only sample that signifies the presence of maghemite (gamma-Fe{sub 2}O{sub 3}) is the aerogel sample doped with 7.3 wt% iron at temperature 1100 deg. C while other samples show the presence of magnetite.

  15. Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber-cement composites.

    PubMed

    Hamzeh, Yahya; Ziabari, Kamran Pourhooshyar; Torkaman, Javad; Ashori, Alireza; Jafari, Mohammad

    2013-03-15

    This work assesses the effects of white rice husk ash (WRHA) as pozzolanic material, virgin kraft pulp (VKP), old corrugated container (OCC) and fibers derived from fiberboard (FFB) as reinforcing agents on some properties of blended cement composites. In the sample preparation, composites were manufactured using fiber-to-cement ratio of 25:75 by weight and 5% CaCl(2) as accelerator. Type II Portland cement was replaced by WRHA at 0%, 25% and 50% by weight of binder. A water-to-binder ratio of 0.55 was used for all blended cement paste mixes. For parametric study, compressive strength, water absorption and density of the composite samples were evaluated. Results showed that WRHA can be applied as a pozzolanic material to cement and also improved resistance to water absorption. However, increasing the replacement level of WRHA tends to reduce the compressive strength due to the low binding ability. The optimum replacement level of WRHA in mortar was 25% by weight of binder; this replacement percentage resulted in better compressive strengths and water absorption. OCC fiber is shown to be superior to VKF and FFB fibers in increasing the compressive strength, due to its superior strength properties. As expected, the increase of the WRHA content induced the reduction of bulk density of the cement composites. Statistical analysis showed that the interaction of above-mentioned variable parameters was significant on the mechanical and physical properties at 1% confidence level. PMID:23391756

  16. Characterization of platinum-iron catalysts supported on MCM-41 synthesized with rice husk silica and their performance for phenol hydroxylation

    NASA Astrophysics Data System (ADS)

    Chumee, Jitlada; Grisdanurak, Nurak; Neramittagapong, Arthit; Wittayakun, Jatuporn

    2009-01-01

    Mesoporous material RH-MCM-41 was synthesized with rice husk silica by a hydrothermal method. It was used as a support for bimetallic platinum-iron catalysts Pt-Fe/RH-MCM-41 for phenol hydroxylation. The catalysts were prepared by co-impregnation with Pt and Fe at amounts of 0.5 and 5.0 wt.%, respectively. The RH-MCM-41 structure in the catalysts was studied with x-ray diffraction, and their surface areas were determined by nitrogen adsorption. The oxidation number of Fe supported on RH-MCM-41 was + 3, as determined by x-ray absorption near edge structure (XANES) analysis. Transmission electron microscopy (TEM) images of all the catalysts displayed well-ordered structures, and metal nanoparticles were observed in some catalysts. All the catalysts were active for phenol hydroxylation using H2O2 as the oxidant at phenol : H2O2 mole ratios of 2 : 1, 2 : 2, 2 : 3 and 2 : 4. The first three ratios produced only catechol and hydroquinone, whereas the 2 : 4 ratio also produced benzoquinone. The 2 : 3 ratio gave the highest phenol conversion of 47% at 70 °C. The catalyst prepared by co-impregnation with Pt and Fe was more active than that prepared using a physical mixture of Pt/RH-MCM-41 and Fe/RH-MCM-41.

  17. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.

    PubMed

    Qian, Yangyang; Zhang, Jie; Wang, Jie

    2014-12-01

    The pyrolysis of rice husk was conducted in a fixed-bed reactor with a sweeping nitrogen gas to investigate the effects of pressure on the pyrolytic behaviors. The release rates of main gases during the pyrolysis, the distributions of four products (char, bio-oil, water and gas), the elemental compositions of char, bio-oil and gas, and the typical compounds in bio-oil were determined. It was found that the elevation of pressure from 0.1MPa to 5.0MPa facilitated the dehydration and decarboxylation of bio-oil, and the bio-oils obtained under the elevated pressures had significantly less oxygen and higher calorific value than those obtained under atmospheric pressure. The former bio-oils embraced more acetic acid, phenols and guaiacols. The elevation of pressure increased the formation of CH4 partially via the gas-phase reactions. An attempt is made in this study to clarify "the pure pressure effect" and "the combined effect with residence time". PMID:25463787

  18. Response surface optimization of a dynamic dye adsorption process: a case study of crystal violet adsorption onto NaOH-modified rice husk.

    PubMed

    Chowdhury, Shamik; Chakraborty, Sagnik; Saha, Papita Das

    2013-03-01

    The adsorption of crystal violet from aqueous solution by NaOH-modified rice husk was investigated in a laboratory-scale fixed-bed column. A two-level three factor (2(3)) full factorial central composite design with the help of Design Expert Version 7.1.6 (Stat Ease, USA) was used for optimisation of the dynamic dye adsorption process and evaluation of interaction effects of different operating parameters: initial dye concentration (100-200 mg L(-1)), flow rate (10-30 mL min(-1)) and bed height (5-25 cm). A correlation coefficient (R (2)) value of 0.999, model F value of 1,936.59 and its low p value (<0.0001) along with lower value of coefficient of variation (1.38 %) indicated the fitness of the response surface quadratic model developed during the present study. Numerical optimisation applying desirability function was used to identify the optimum conditions for a targeted breakthrough time of 12 h. The optimum conditions were found to be initial solution pH=8.00, initial dye concentration=100 mg L(-1), flow rate=22.88 mL min(-1) and bed height=18.75 cm. A confirmatory experiment was performed to evaluate the accuracy of the optimised procedure. Under the optimised conditions, breakthrough appeared after 12.2 h and the column efficiency was determined as 99 %. The Thomas model showed excellent fit to the dynamic dye adsorption data obtained from the confirmatory experiment. Thereby, it was concluded that the current investigation gives valuable insights for designing and establishing a continuous wastewater treatment plant. PMID:22648351

  19. Rice husk ash/calcium oxide/ceria sorbent for simultaneous removal of sulfur dioxide and nitric oxide from flue gas at low temperature

    SciTech Connect

    Dahlan, I.; Lee, K.T.; Kamaruddin, A.H.; Mohamed, A.R.

    2009-06-15

    The reduction of sulfur dioxide (SO{sub 2}) and nitric oxide (NO) emissions has become an isssue of great importance to government regulatory agencies and general public due to their negative effect towards the environment and human health. In this work, the simultaneous removal of sulfur dioxide (SO{sub 2}) and nitric oxide (NO) from simulated flue gas was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO/CeO{sub 2} sorbent. Attention was focused on the major reactor operation parameters affecting sorption capacity of RHA/CaO/CeO{sub 2} sorbent, which include feed concentration of SO{sub 2} and NO, relative humidity (RH), operating temperature and space velocity (GHSV). This is because such information is unavailable for RHA-based sorbent and the effects of these parameters reported in the literature are also not reliable. Enhancement effect of NO on removal of SO{sub 2} was observed and the presence of SO{sub 2} was essential to the removal of NO. However, at a high level of SO{sub 2}/NO concentration, competition in the sorption of NO and SO{sub 2} on the sorbent active sites might have occurred. RH was found to significantly enhance the SO{sub 2} sorption of the RHA/CaO/CeO{sub 2} sorbent. By contrast, NO sorption capacity decreases when RH was further introduced, as it was not easy to sorb NO in the presence of water. Apart from that, the results also shows that there was a threshold value for the RH to ensure higher SO{sub 2} and NO removal and this value was observed at 50% RH. Higher operating temperatures were favored for SO{sub 2} and NO removal. Nevertheless, beyond 150 degrees C the SO{sub 2} removal was found to decrease. On the other hand, a lower space velocity resulted in a higher SO{sub 2} and NO removal.

  20. Energy from rice residues

    SciTech Connect

    Mahin, D.B.

    1990-03-01

    Developing countries produce millions of tons of rice husks and straw as a byproduct of harvesting rice. Although some of these rice residues are used for fuel or other purposes, most are burned for disposal or just dumped. However, since the mid- 1980's, industrial plants for rice residue utilization have been installed in several countries and are planned in a number of others. The report provides information on systems to produce energy from rice residues that are commercially available in the United States, Europe, and various developing countries, with an emphasis on those currently used or sold on an international level. Specifically reviewed are the use of rice husks to produce: (1) industrial process heat either directly from furnaces or by generating low pressure steam in boilers; (2) mechanical and electrical power for rice milling via steam engine systems, steam turbine/generator systems, and gasifier/engine systems; and (3) electric power for the grid. The outlook for producing energy from rice straw is also assessed. In addition, the prospects for the use of energy from husks or straw in the processing of rice bran are reviewed.

  1. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.).

    PubMed

    Hua, Wei; Zhang, Xiao-Qi; Zhu, Jinghuan; Shang, Yi; Wang, Junmei; Jia, Qiaojun; Zhang, Qisen; Yang, Jianming; Li, Chengdao

    2016-01-01

    Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence. PMID:27028408

  2. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Hua, Wei; Zhang, Xiao-Qi; Zhu, Jinghuan; Shang, Yi; Wang, Junmei; Jia, Qiaojun; Zhang, Qisen; Yang, Jianming; Li, Chengdao

    2016-01-01

    Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence. PMID:27028408

  3. Bean husks as a supplemental fiber for ruminants: potential use for activation of fibrolytic rumen bacteria to improve main forage digestion.

    PubMed

    Ngwe, Tin; Nukui, Yoko; Oyaizu, Shinya; Takamoto, Genki; Koike, Satoshi; Ueda, Koichiro; Nakatsuji, Hiroki; Kondo, Seiji; Kobayashi, Yasuo

    2012-01-01

    This study evaluated the suitability of easily digested fiber sources as a supplemental fiber to improve overall fiber digestion in ruminants. First, the degradation of five fibrous feedstuffs and the stimulatory effects on rumen bacteria were examined in situ. Chickpea and lablab bean husks were selected for their potential use due to their large degradable fraction (>94%), which had a stimulatory effect on fibrolytic rumen bacteria such as Fibrobacter succinogenes. Second, a possible improvement in the digestibility of rice straw diet by husk supplementation was monitored in vivo. Four dietary treatments comprising RS (rice straw and concentrate), CHM (RS supplemented with Myanmar chickpea husk), CHE (RS with Egyptian chickpea husk) and LH (RS with lablab bean husk) were allocated to four wethers. The digestibility of acid detergent fiber was 3.1-5.5% greater in CHM and LH than RS. Total volatile fatty acid concentration was higher in LH than other treatments. Acetate proportion was higher in LH than RS. Ruminal abundance of F. succinogenes was 1.3-1.5 times greater in CHM and LH than RS. These results suggest that bean husk supplementation, especially lablab bean husk, might improve the nutritive value of rice straw diet by stimulating fibrolytic bacteria. PMID:22250738

  4. Effects of modifiers on the hydrophobicity of SiO2 films from nano-husk ash

    NASA Astrophysics Data System (ADS)

    Xu, Kejing; Sun, Qingwen; Guo, Yanqing; Dong, Shuhua

    2013-07-01

    Nano-husk ashes were prepared by burning rice-husk with self-propagating method. The super-hydrophobic SiO2 films from nano-husk ash were prepared by sol-gel method using hydroxy silicone oil (HSO), hexamethyldisilazane (HMS), or methyl triethoxysilane (MTS) as modifiers. The effects of modifiers on the hydrophobic property of SiO2 films were studied, and the performances were characterized by the XRD, UV-vis, BET, EDS, SEM, IR, and Contact Angle Analyzer. The results showed that the contact angle of SiO2 films was more than 160° when volume ratio of the modifiers to silicon-sodium solution (SSS) was 0.15. The mechanism of modifiers on SiO2 surfaces is a graft copolymerization. The hydrophobic groups in the modifiers replace the hydroxy groups on SiO2 surfaces and make SiO2 surfaces present super-hydrophobicity.

  5. Composition of liquid rice hull smoke and anti-inflamatory effects in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antioxidative, antiallergic, and antiinflammatory activities of a new liquid rice hull (husk) smoke extract prepared by pyrolysis of rice hulls followed by liquefaction of the resulting smoke were assessed in vitro and in vivo. At pH 5, the liquid smoke extract inhibited 1-diphenyl-2-picrylhydrazyl ...

  6. Methodology for assessing rice varieties for resistance to the lesser grain borer, Rhyzopertha dominica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Single varieties of long-, medium-, and short-grain rough rice, (Oryza sativa L.), were analyzed for differences in percentage of broken hulls (splits and cracks in the husk), progeny production by Rhyzopertha dominica (F.), kernel hardness, amylose content of de-hulled brown rice, and neonate prefe...

  7. Status in physical properties of coloured rice varieties before and after inducing retro-gradation.

    PubMed

    Itagi, HameedaBanu N; Singh, Vasudeva

    2015-12-01

    Three varieties of paddy in brown, red (non-waxy) and black (waxy) forms were de-husked and milled before and after inducing retro-gradation and their physical properties were studied. Normalized grain weight, porosity of parboiled paddy (PP) and its de-husked rice (DR), were high compared to their respective native. True and bulk density were lowest for black variety, its DR, its raw and parboiled forms compared to other varieties of paddy. Angle of repose increased from raw paddy to PP whereas it decreased from raw DR to parboiled DR. Under similar conditions of milling of DR, raw and parboiled milled rice of black variety was the darkest. Raw husk showed higher EMC compared to husk of parboiled. Hardness followed the pattern: Raw: Paddy (~230-280 N) > DR (~120-260 N) > Milled rice (~110 N); for parboiled: DR (~270-480 N) > PP (~260-425 N) > Parboiled milled rice (~250-340 N). Cooking time was high for DR of parboiled ones and least for waxy raw milled rice. Results of this study will be helpful in understanding the quality of pigmented rice cultivars, design and fabrication of some of the equipments in rice processing industry. PMID:26604348

  8. Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite.

    PubMed

    Latifah, Omar; Ahmed, Osumanu Haruna; Susilawati, Kassim; Majid, Nik Muhamad

    2015-04-01

    The availability of paddy husk from rice processing plants remains high owing to increase in the worldwide rice consumption. Increasing demand for chicken products leads to poultry wastes production. Co-composting of the aforementioned wastes could solve the indiscriminate disposal of these wastes. Thus, co-composting of paddy husk and chicken slurry with clinoptilolite zeolite and urea as additive was carried out. Clinoptilolite zeolite was used to enhance ammonium and nitrate retention in the compost. Temperature of the compost was monitored three times daily for 55 days. Cation exchange capacity, organic matter, ash, humic acids, pH, total C, N, C/N ratio; total P, exchangeable Ca, Mg, K, NH4+, NO3-, and heavy metals contents were determined using standard procedures. pH, total N, humic acids, ash, NH4+, NO3-, P, Ca, Mg, and K contents increased but the salinity, heavy metals contents, and microbial population were low after the co-composting process. Zea mays L. (test crop) seed germination rate in distilled water and the compost were not significantly different. Growth of Spinach oleracea (test crop) on a peat-based growing medium and the compost was also not significantly different. These findings were possible because the clinoptilolite zeolite used in co-composting reduced accumulation of heavy metals that may have damage effects on the test crops. Mature compost with good agronomic properties can be produced by co-composting chicken slurry and paddy husk using clinoptilolite zeolite and urea as additives. PMID:25819928

  9. Cocoa husks in diets of Italian heavy pigs.

    PubMed

    Magistrelli, D; Malagutti, L; Galassi, G; Rosi, F

    2012-12-01

    The aim of the present study was to evaluate the effect of cocoa husks feeding on liver composition of the Italian heavy pig. Cocoa husks are by-products derived from chocolate production and have a high content of proteins, lipids, and NDF. Cocoa husks are also rich in antioxidants, polyphenols in particular. Eight finishing pigs were divided into 2 groups: control group fed a traditional diet, based on cereals, and treatment group fed a diet obtained by substitution of 10% of the control diet with coarsely ground cocoa husks. The trial was conducted during the hot season and lasted 6 wk, at the end of which all the pigs were slaughtered. Cocoa husks diet reduced dry matter intake (P < 0.01) and energy intake (P < 0.01) but neither body weight nor backfat thickness was affected by cocoa husks diet. Treatment did not influence carcass weight and hot dressing percentage but reduced liver weight (P < 0.05), liver dry matter percentage (P < 0.01), DNA (P = 0.01), and glycogen content (P = 0.01). By contrast, cocoa husks increased liver ether extract (P = 0.05) without affecting cholesterol content. Liver weight loss, reduction of protein synthesis, and a shift toward glycogen use instead of fat oxidation are considered metabolic strategies to reduce heat production under hot conditions. It is possible, therefore, that cocoa husks feeding promoted the process of acclimation because pigs needed less feeding to reach similar body and carcass weight as control pigs. PMID:23365339

  10. Equine poisoning by coffee husk (Coffea arabica L.)

    PubMed Central

    2012-01-01

    Background In Brazil, coffee (Coffea arabica) husks are reused in several ways due to their abundance, including as stall bedding. However, field veterinarians have reported that horses become intoxicated after ingesting the coffee husks that are used as bedding. The objective of this study was to evaluate whether coffee husk consumption causes intoxication in horses. Results Six horses fed coast cross hay ad libitum were given access to coffee husks and excitability, restlessness, involuntary muscle tremors, chewing movements and constant tremors of the lips and tongue, excessive sweating and increased respiration and heart rates were the most evident clinical signs. Caffeine levels were measured in the plasma and urine of these horses on two occasions: immediately before the coffee husks were made available to the animals (T0) and at the time of the clinical presentation of intoxication, 56 h after the animals started to consume the husks (T56). The concentrations of caffeine in the plasma (p < 0.001) and urine (p < 0.001) of these animals were significantly greater at T56 than at T0. Conclusions It was concluded that consumption of coffee husks was toxic to horses due to the high levels of caffeine present in their composition. Therefore, coffee husks pose a risk when used as bedding or as feed for horses. PMID:22239973

  11. Synthesis of sodium lauryl sulphate (SLS)-modified activated carbon from risk husk for waste lead (Pb) removal

    NASA Astrophysics Data System (ADS)

    Al-Latief, D. N.; Arnelli, Astuti, Y.

    2015-12-01

    Surfactant-modified active carbon (SMAC) has been successfully synthesized from waste rice husk using a series of treatments i.e. carbonization, activation with H3PO4 and surface modification using sodium lauryl sulfate (SLS). The synthesized SMAC was characterized using SEM-EDX and FTIR. The adsorption results show that the SMAC synthesized using H3PO4 treatment for 8 hours followed with SLS treatment for 5 hours had efficiency and capacity of the waste lead removal of 99.965% and 0.499825 mg.g-1, respectively.

  12. Anaerobic degradation of coconut husk leachate using UASB-reactor.

    PubMed

    Neena, C; Ambily, P S; Jisha, M S

    2007-07-01

    Reffing of coconut husk, the majorprocess in quality coir fibre extraction, causes serious pollution with brackish water lagoons of Kerala. An attempt is made to treat the coconut husk leachate by using a laboratory scale UASB-reactor The experiment was conducted with loading of leachate from 1 kg of fresh coconut husk. The anaerobic treatment was done continuously The parameters like VFA, pH, COD and polyphenols were analysed regularly during the evaluation of the reactor performance. The polyphenol, VFA and COD were diminished gradually with time. The pH of the reactor during the study was found to be in the range of 6-8. The biogas production was increased with loading and about 82% of the total COD/kg husk could be converted to biogas. The maximum polyphenol loading in the reactor was reached to about 298.51 mg/l of husk. PMID:18380084

  13. Incorporation of hazelnut shell and husk in MDF production.

    PubMed

    Cöpür, Yalçin; Güler, Cengiz; Taşçioğlu, Cihat; Tozluoğlu, Ayhan

    2008-10-01

    Hazelnut shell and husk (Coryllus arellana L.) is an abundant agricultural residue in Turkey and investigating the possibilities of utilizing husk and shell in panel production might help to overcome the raw material shortage that the panel industry is facing. The aim of this work was to investigate the possibilities of utilizing hazelnut shell and husk in medium density fiberboard (MDF) production. To produce general purpose fiberboards, fiber-husk and fiber-shell mixtures at various percentages were examined in this study. The results indicated that panels could be produced utilizing hazelnut husk up to 20% addition without falling below the properties required in the standards. Shell addition was restricted up to 10%, because higher addition levels diminished the elastic modulus and internal bond strength below the acceptable level. PMID:18291641

  14. Functional Analysis of Corn Husk Photosynthesis[W][OA

    PubMed Central

    Pengelly, Jasper J.L.; Kwasny, Scott; Bala, Soumi; Evans, John R.; Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Furbank, Robert T.; von Caemmerer, Susanne

    2011-01-01

    The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C3 photosynthetic pathway, in contrast to its leaves, which use the C4 photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO2 compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO2 assimilation rate in the husk was less than that in the leaves and did not saturate at high CO2, indicating CO2 diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO2 compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C4-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C4 photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained. PMID:21511990

  15. Physicochemical Characterization of various Vietnamese Biomass Residue-derived Biochars (wood, bamboo and risk husk)

    NASA Astrophysics Data System (ADS)

    Nguyen, Hien

    2016-04-01

    This study compares the physico-chemical characteristics of various biocchars produced from biomass residues in Vietnam such as fired wood, rice husk, and bamboo. Wood biochar (WBC), rice husk biochar (RHBC), and bamboo biochar (BBC) were produced under limited oxygen conditions using equipment available locally in Vietnam, known as a Top-Lift Updraft Drum (TLUD). The three biochars are alkaline with pH around 10, but were found to have quite significantly different physico-chemical characteristics. Surface areas (measured by BET) were found to be very significantly higher for WBC and BBC with 479.34 m2/g and 434.53 m2/g, respectively, compared to RHBC (3.29 m2/g). The SEM images correspond with the BET surface area, showing a smooth surface for RHBC, a hollow surface for BBC, and a rough surface for WBC. Total carbon (TC) of WBC and BBC are above 80%, while RHBC has only 47.95% TC. Despite having different TC, the content of hydrogen among the biochars is similar, ranging from 2.07% to 2.34%, and the ratio of H/C also follows the same trend. Thus, although the biochars are produced by the same method, the various feedstocks lead to different physico-chemical properties. Ongoing work is linking these physico-chemical properties to fertiliser efficiencies in terms of nitrate and ammonia adsorption and retention capacities, in order to design optimal biochar properties for use in fertilisation. Key words: physico-chemical characteristic, biochar, surface area, SEM, total carbon, feedstock

  16. Mitigation of arsenic accumulation in rice with water management and silicon fertilization.

    PubMed

    Li, R Y; Stroud, J L; Ma, J F; McGrath, S P; Zhao, F J

    2009-05-15

    Rice represents a major route of As exposure in populations that depend on a rice diet. Practical measures are needed to mitigate the problem of excessive As accumulation in paddy rice. Two potential mitigation methods, management of the water regime and Si fertilization, were investigated under greenhouse conditions. Growing rice aerobically during the entire rice growth duration resulted in the leastAs accumulation. Maintaining aerobic conditions during either vegetative or reproductive stage of rice growth also decreased As accumulation in rice straw and grain significantly compared with rice grown under flooded conditions. The effect of water management regimes was consistent with the observed effect of flooding-induced arsenite mobilization in the soil solution. Aerobic treatments increased the percentage of inorganic As in grain, but the concentrations of inorganic As remained lower than in the flooded rice. Silicon fertilization decreased the total As concentration in straw and grain by 78 and 16%, respectively, even though Si addition increased As concentration in the soil solution. Silicon also significantly influenced As speciation in rice grain and husk by enhancing methylation. Silicon decreased the inorganic As concentration in grain by 59% while increasing the concentration of dimethylarsinic acid (DMA) by 33%. There were also significant differences between two rice genotypes in grain As speciation. This study demonstrated that water management Si fertilization, and selection of rice cultivars are effective measures that can be used to reduce As accumulation in rice. PMID:19544887

  17. Biotechnological potential of coffee pulp and coffee husk for bioprocesses.

    PubMed

    Pandey; Soccol; Nigam; Brand; Mohan; Roussos

    2000-10-01

    Advances in industrial biotechnology offer potential opportunities for economic utilization of agro-industrial residues such as coffee pulp and coffee husk. Coffee pulp or husk is a fibrous mucilagenous material (sub-product) obtained during the processing of coffee cherries by wet or dry process, respectively. Coffee pulp/husk contains some amount of caffeine and tannins, which makes it toxic in nature, resulting the disposal problem. However, it is rich in organic nature, which makes it an ideal substrate for microbial processes for the production of value-added products. Several solutions and alternative uses of the coffee pulp and husk have been attempted. These include as fertilizers, livestock feed, compost, etc. However, these applications utilize only a fraction of available quantity and are not technically very efficient. Attempts have been made to detoxify it for improved application as feed, and to produce several products such as enzymes, organic acids, flavour and aroma compounds, and mushrooms, etc. from coffee pulp/husk. Solid state fermentation has been mostly employed for bioconversion processes. Factorial design experiments offer useful information for the process optimization. This paper reviews the developments on processes and products developed for the value-addition of coffee pulp/husk through the biotechnological means. PMID:10959086

  18. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China.

    PubMed

    Lu, Ying; Dong, Fei; Deacon, Claire; Chen, Huo-Jun; Raab, Andrea; Meharg, Andrew A

    2010-05-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain. PMID:20045585

  19. Sugarcane rice residue biochars and their applications

    NASA Astrophysics Data System (ADS)

    Wang, J. J.

    2014-12-01

    Sugarcane production in U.S. involves either pre-harvest burning or after-harvest burning of the residue. Approximately 70-90% of the dry matter of harvested sugarcane trash is lost through open field burning. This practice has caused considerable concerns over air quality and soil sustainability. We propose an alternative conservation approach to convert the sugarcane residue to biochar and used as soil amendment to conserve carbon and potentially improve soil fertility. In this study, fundamental properties of biochars made from sugarcane residue along with rice residues were tested for agronomic and environmental benefits. Sugarcane and rice harvest residues and milling processing byproducts bagasse and rice husk were converted to biochars at different pyrolysis temperatures and characterized. In general, sugarcane leave biochar contained more P, K, Ca and Mg than sugarcane bagasse biochar. Rice straw biochar had more S, K Ca but less P than rice husk biochar. Both biochars had higher available fraction of total P than that of total K. Sugarcane leave biochar converted at 450oC was dominated with various lignin derived phenols as well as non-specific aromatic compounds whereas bagasse biochar was with both lignin derived phenol and poly aromatic hydrocarbon (PAH). Rice straw char was dominated with non-specific aromatic compounds. At 750oC, charred material was dominated with aromatic ethers while losing the aromatic C=C structures. These molecular and surface property differences likely contributed to the difference in water holding capacities observed with these biochars. On the other hand, rice straw biochars produced at different pyrolysis temperatures had no significant effect on rice germination. Soils treated with sugarcane leave/trash biochar significantly enhanced sugarcane growth especially the root length. Treating soil with either sugarcane leave or bagasse char also enhanced soil adsorption capacity of atrazine; a common herbicide used in sugarcane

  20. An arsenic-contaminated field trial to assess the uptake and translocation of arsenic by genotypes of rice.

    PubMed

    Lei, Ming; Tie, Baiqing; Zeng, Min; Qing, Pufeng; Song, Zhengguo; Williams, Paul N; Huang, Yizong

    2013-06-01

    Compared to other cereals, rice has particular strong As accumulation. Therefore, it is very important to understand As uptake and translocation among different genotypes. A field study in Chenzhou city, Hunan province of China, was employed to evaluate the effect of arsenic-contaminated soil on uptake and distribution in 34 genotypes of rice (including unpolished rice, husk, shoot, and root). The soil As concentrations ranged from 52.49 to 83.86 mg kg(-1), with mean As concentration 64.44 mg kg(-1). The mean As concentrations in rice plant tissues were different among the 34 rice genotypes. The highest As concentrations were accumulated in rice root (196.27-385.98 mg kg(-1) dry weight), while the lowest was in unpolished rice (0.31-0.52 mg kg(-1) dry weight). The distribution of As in rice tissue and paddy soil are as follows root ≫ soil > shoot > husk > unpolished rice. The ranges of concentrations of inorganic As in all of unpolished rice were from 0.26 to 0.52 mg kg(-1) dry weight. In particular, the percentage of inorganic As in the total As was more than 67 %, indicating that the inorganic As was the predominant species in unpolished rice. The daily dietary intakes of inorganic As in unpolished rice ranged from 0.10 to 0.21 mg for an adult, and from 0.075 to 0.15 mg for a child. Comparison with tolerable daily intakes established by FAO/WHO, inorganic As in most of unpolished rice samples exceeded the recommended intake values. The 34 genotypes of rice were classified into four clusters using a criteria value of rescaled distance between 5 and 10. Among the 34 genotypes, the genotypes II you 416 (II416) with the lowest enrichment of As and the lowest daily dietary intakes of inorganic As could be selected as the main cultivar in As-contaminated field. PMID:23149722

  1. [Husk of Venezuelan cocoa as raw material of infusions].

    PubMed

    Sangronis, Elba; José Soto, María; Valero, Yolmar; Buscema, Ignacio

    2014-06-01

    In the cocoa bean industry, some by-products go underutilized. Some of these components could provide other innovative products, and such is the case with the husk of the cocoa bean. Previous studies have attributed the husk with a high antioxidant capacity, which added to its relative low cost, makes it an attractive ingredient for the production of infusions. However, prior to promoting it as such, its quality needs to be guaranteed. This study evaluated the chemical composition of the husk of cocoa, its microbiologic quality and other parameters in order to be considered raw material in the preparation of infusions. The cocoa was cultivated in two different states in Venezuela. Moisture, protein, fat, ash, carbohydrates, microbiologic quality and ochratoxin A as well antioxidant properties, content of foreign matter, insoluble ash in HCL and aqueous extract were evaluated in the husk of cocoa seeds. Applied methods were in compliance with national and international norms. Significant differences were determined between the samples through the ANOVA application. A low level in moisture content, but high in ash, along with a microbiologic quality that met the norm, and an absence of ochratoxin A were observed in the totality of the analyzed samples. Low levels of foreign matter, the high value of its aqueous extract and high phenolic compounds content with antioxidant activity allow for the recommendation of the husk of cocoa as raw material for the preparation of infusions. PMID:25799689

  2. The active fraction of psyllium seed husk.

    PubMed

    Marlett, Judith A; Fischer, Milton H

    2003-02-01

    A series of experiments and evaluations of fractions isolated from psyllium seed husk (PSH) were used to test the overall hypothesis that a gel-forming component of PSH is not fermented and that it is this component that is responsible for the laxative and cholesterol-lowering properties of PSH. A gel is isolated from human stools collected during a controlled diet study when PSH is consumed but not when the control diet only is consumed. Evaluations of three fractions isolated from PSH suggest that gel-forming fraction B, which is about 55% of PSH, is poorly fermented and is the component that increases stool moisture and faecal bile acid excretion, the latter leading to lower blood cholesterol levels. Fraction C, representing < 15% of PSH, is viscous, but is rapidly fermented. Fraction A is alkali-insoluble material that is not fermented. In concentrations comparable with their presence in PSH, fractions A and C do not alter moisture and bile acid output. The active fraction of PSH is a highly-branched arabinoxylan consisting of a xylose backbone and arabinose- and xylose-containing side chains. In contrast to arabinoxylans in cereal grains that are extensively fermented, PSH possesses a structural feature, as yet unidentified, that hinders its fermentation by typical colonic microflora. PMID:12749348

  3. Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation.

    PubMed

    Sarria-Alfonso, Viviana; Sánchez-Sierra, John; Aguirre-Morales, Mauricio; Gutiérrez-Rojas, Ivonne; Moreno-Sarmiento, Nubia; Poutou-Piñales, Raúl A

    2013-06-01

    The main objective of this study was to optimize a culture media for low scale biomass production of Pleurotus spp. Future applications of this optimization will be implemented for "in situ" rice straw degradation, increase soil nutrients availability, and lower residue and rice culture management costs. Soil samples were taken from different points in six important rice production cities in Colombia. For carbon and nitrogen source selection a factorial 4(2) design was carried out. The Plackett-Burman design permitted to detect carbon, nitrogen and inducer effects on fungus growth (response variable for all designs). This optimization was carried out by a Box-Behnken design. Finally a re-optimization assay for glucose concentration was performed by means of a One Factor design. Only 4/33 (12 %) isolates showed and important laccase or manganese peroxidase activity compared to Pleurotus ostreatus (HPB/P3). We obtained an increased biomass production in Pleurotus spp. (T1.1.) with glucose, followed by rice husk. Rice straw was considered an inducing agent for lignin degradation. Glucose was a significant component with positive effects, whereas Tween 80 and pH had negative effects. On the contrary, rice husk, yeast extract and CaCl2 were not significant components for increase the biomass production. Final media composition consisted of glucose 25 g L(-1), yeast extract 5 g L(-1), Tween 80 0.38 % (v/v), Rice husk 10 g L(-1), CaCl2 1 g L(-1), and pH 4.88 ± 0.2. The Box-Behnken polynomial prediction resulted to be lower than the experimental validation of the model (6.59 vs. 6.91 Log10 CFU ml(-1) respectively). PMID:24426109

  4. Dissipation and residue of pymetrozine in rice field ecosystem.

    PubMed

    Zhang, Yanfeng; Zhang, Li; Xu, Peng; Li, Jianzhong; Wang, Huili

    2015-03-01

    The dissipation and residue of pymetrozine in rice field ecosystem were studied based on a novel and reliable analytical method for pymetrozine in paddy water, soil, rice straw, brown rice, and rice husk. The pymetrozine residues were extracted with acetonitrile and cleaned up by Carb-NH2 SPE cartridge and determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). The dissipation of pymetrozine followed first-order kinetics and its half-lives ranged from 1.7 to 1.8 days in paddy water, 5.1 to 5.7 days in soil, and 2.3 to 2.6 days in rice straw, respectively. At harvest time, the highest final residues of pymetrozine varied in soil among three geographical fields and were below the limit of detection in rice tissues. The recommended dosage was considered to be safe for human beings and animals, and the results were helpful in setting maximum residue limit for pymetrozine in rice. PMID:25655126

  5. The presence of antiamoebic constituents in psyllium husk.

    PubMed

    Zaman, Viqar; Manzoor, Syed Munazza; Zaki, Mehreen; Aziz, Nauman; Gilani, Anwar-ul-Hassan

    2002-02-01

    The crude extract of psyllium husk (ispaghula) and its active constituent (petroleum fraction) caused varying degrees of growth inhibition in three different species of Entamoeba, i.e. Entamoeba histolytica, E. invadens and E. dispar. The inhibitory effect of the crude extract was in the dose range of 1-10 mg/mL, whereas a similar inhibitory effect was obtained with the petroleum fraction at a much lower dose (0.1-1.0 mg/mL), indicating that the active chemical(s) is/are concentrated in the petroleum fraction. These data support the traditional use of psyllium husk in amoebic dysentery. PMID:11807972

  6. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia.

    PubMed

    Seyfferth, Angelia L; McCurdy, Sarah; Schaefer, Michael V; Fendorf, Scott

    2014-05-01

    Despite the global importance of As in rice, research has primarily focused on Bangladesh, India, China, and the United States with limited attention given to other countries. Owing to both indigenous As within the soil and the possible increases arising from the onset of irrigation with groundwater, an assessment of As in rice within Cambodia is needed, which offers a "base-case" comparison against sediments of similar origin that comprise rice paddy soils where As-contaminated water is used for irrigation (e.g., Bangladesh). Here, we evaluated the As content of rice from five provinces (Kandal, Prey Veng, Battambang, Banteay Meanchey, and Kampong Thom) in the rice-growing regions of Cambodia and coupled that data to soil-chemical factors based on extractions of paddy soil collected and processed under anoxic conditions. At total soil As concentrations ranging 0.8 to 18 μg g(-1), total grain As concentrations averaged 0.2 μg g(-1) and ranged from 0.1 to 0.37 with Banteay Meanchey rice having significantly higher values than Prey Veng rice. Overall, soil-extractable concentrations of As, Fe, P, and Si and total As were poor predictors of grain As concentrations. While biogeochemical factors leading to reduction of As(V)-bearing Fe(III) oxides are likely most important for predicting plant-available As, husk and straw As concentrations were the most significant predictors of grain-As levels among our measured parameters. PMID:24712677

  7. Rice Nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the symptoms of deficiency and toxicity of the major and minor mineral nutrients in rice, as well as a current synopsis of nutrient transporters and their regulation. The availability of sequences from the recently completed rice genome has furthered the knowledge of how plants...

  8. Evaluation of gamma-irradiation in cocoa husk.

    PubMed

    Bonvehí, J S; Isal, D G

    2000-06-01

    gamma-Irradiation was investigated as a technique to improve the hygienic quality of cocoa husk. Cocoa husk is a byproduct of cocoa bean processing industry. It contains approximately 57.5% (w/w) dietary fiber (nonstarch polysaccharides plus lignin), 15% (w/w) crude protein, 10.7% (w/w) mineral elements, 2.32% (w/w) cocoa butter, and 2.8% (w/w) carbohydrates (free sugars plus starch). The effect of irradiation on the growth rates of microorganisms are reported. Total counts, enterobacteriaceae, coliforms, Staphylococcus aureus, Streptococcus "D" of Lancefield, and yeast and mold counts before and after irradiation at 5, 8, and 10 kGy were determined. Cocoa husk was irradiated in open containers. An irradiation dose of 5 kGy was already sufficient to decrease the microbial counts to a very low level. No alteration in dietary fiber was measured in the irradiated product and no significant differences were detected between irradiated and nonirradiated cocoa husk. PMID:10888573

  9. Enzymatic hydrolysis of cocoa pod husks. [Trichoderma reesei

    SciTech Connect

    Simpson, B.K.; Oldham, J.H.; Martin, A.M

    1984-07-01

    Laboratory results are presented of the bioconversion of cellulose from cocoa pod husks, utilizing cellulase from three mutants of Trichoderma reesei. Total reducing sugars in filtered hydrolysates were estimated by the dinitrosalicylic acid method. The sugars present were identified by paper chromatography as glucose and xylose.

  10. Degradation kinetics of the insecticide spinetoram in a rice field ecosystem.

    PubMed

    Zhao, Li; Chen, Guo; Zhao, Jian; Zhang, Yan; Zhu, Yong; Yang, Ting; Wu, Yin-Liang

    2015-01-01

    The fate of spinetoram was studied in a rice field ecosystem, and an efficient method for the determination of spinetoram (XDE-175-J and XDE-175-L) in soil, rice straw, paddy water, husk and brown rice was developed. Spinetoram residues were extracted from samples with a salting out extraction procedure. The extracts were diluted with 0.10% formic acid in water and analysed with liquid chromatography tandem mass spectrometry (LC-MS/MS) on a Waters Acquity BEH C18 column. The calibration curve was linear in the range 0.125-100 μg L(-1) and r>0.999. The average recovery was 82.9-89.0% from soil, 78.5-92.1% from rice straw, 93.6-100.3% from paddy water, 79.1-87.9% from brown rice and 72.7-82.9% from husk. The relative standard deviation (RSD) was less than 10%. These results are all within the accepted range for pesticide residue determination. The field test results showed that spinetoram degradation in paddy water, soil and rice straw coincided with C=0.0132e(-1.9685t), C=0.0308e(-0.1018t) and C=0.8530e(-0.6223t), respectively. The half-lives of spinetoram in paddy water, soil and rice straw were 0.35, 6.8 and 1.1 d, respectively. The final residue level was lower than the maximum residue limit (MRL) of 0.05 mg kg(-1) for spinetoram in rice with a harvest interval of 7d. A dosage of 450 mL ha(-1) was recommended, which can be considered safe for human beings and animals. The results of this study will contribute to establishing the scientific basis of the dosage of spinetoram for agricultural fields. PMID:25460760

  11. Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils.

    PubMed

    Wu, Fuyong; Hu, Junli; Wu, Shengchun; Wong, Ming Hung

    2015-06-01

    A pot trial was conducted to investigate the effects of three arbuscular mycorrhizal (AM) fungi species, including Glomus geosporum BGC HUN02C, G. versiforme BGC GD01B, and G. mosseae BGC GD01A, on grain yield and arsenic (As) uptake of upland rice (Zhonghan 221) in As-spiked soils. Moderate levels of AM colonization (24.1-63.1 %) were recorded in the roots of upland rice, and up to 70 mg kg(-1) As in soils did not seem to inhibit mycorrhizal colonization. Positive mycorrhizal growth effects in grain, husk, straw, and root of the upland rice, especially under high level (70 mg kg(-1)) of As in soils, were apparent. Although the effects varied among species of AM fungi, inoculation of AM fungi apparently enhanced grain yield of upland rice without increasing grain As concentrations in As-spiked soils, indicating that AM fungi could alleviate adverse effects on the upland rice caused by As in soils. The present results also show that mycorrhizal inoculation significantly (p < 0.05) decreased As concentrations in husk, straw, and root in soils added with 70 mg kg(-1) As. The present results suggest that AM fungi are able to mitigate the adverse effects with enhancing rice production when growing in As-contaminated soils. PMID:23292227

  12. The long-term safety and tolerability of ispaghula husk.

    PubMed

    Oliver, S D

    2000-06-01

    The safety and tolerability of ispaghula husk, which can now be used as an adjunct to diet for the treatment of mild-to-moderate hypercholesterolaemia, was assessed in 93 healthy subjects over a 52-week period. The study looked at the nutritional, biochemical, and haematological effects of ispaghula. Over the study period there were small but statistically significant changes in some measurements of minerals and vitamin levels, and in some haematological and biochemical parameters. However, none of these were of clinical significance, with the possible exception of changes in vitamin B12 levels. A daily dose of 10.5 g ispaghula was well tolerated and the majority of adverse events recorded were minor, of short duration and either unrelated or possibly related to the study treatment. The results suggest that ispaghula husk can be used with confidence for the long-term treatment of mild-to-moderate hypercholesterolaemia. PMID:10944885

  13. Coffee husk waste for fermentation production of mosquitocidal bacteria.

    PubMed

    Poopathi, Subbiah; Abidha, S

    2011-12-01

    Coffee husk waste (CHW) discarded as bio-organic waste, from coffee industries, is rich in carbohydrates. The current study emphasizes the management of solid waste from agro-industrial residues for the production of biopesticides (Bacillus sphaericus, and B. thuringiensis subsp. israelensis), to control disease transmitting mosquito vectors. An experimental culture medium was prepared by extracting the filtrates from coffee husk. A conventional culture medium (NYSM) also was prepared. The studies revealed that the quantity of mosquitocidal toxins produced from CHW is at par with NYSM. The bacteria produced in these media, were bioassayed against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti) and it was found that the toxic effect was statistically comparable. Cost-effective analysis have revealed that, production of biopesticides from CHW is highly economical. Therefore, the utilization of CHW provides dual benefits of effective utilization of environmental waste and efficient production of mosquitocidal toxins. PMID:22299340

  14. Evaluating pretreatment techniques for converting hazelnut husks to bioethanol.

    PubMed

    Çöpür, Yalçın; Tozluoglu, Ayhan; Özkan, Melek

    2013-02-01

    This study examined the suitability of husk waste for bioethanol production and compared pretreatment techniques with regard to their efficiencies. Results showed that 4% NaBH4 (90 min) delignified the highest amount of lignin (49.1%) from the structure. The highest xylan solubility (77.9%) was observed when samples were treated with 4% NaOH for 90 min. Pretreatment with NaOH and NaBH4, compared to H2O2 and H2SO4, resulted in selective delignification. The highest glucan to glucose conversion (74.4%) and the highest ethanol yield (52.6 g/kg husks) were observed for samples treated with 2% NaOH for 90 min. PMID:23246759

  15. Mucoadhesivity Characterization of Isabgol Husk Mucilage Microspheres Crosslinked by Glutaraldehyde.

    PubMed

    Sharma, Vipin Kumar; Sharma, Prince Prashant; Mazumder, Bhasker; Bhatnagar, Aseem; Singh, Thakuri

    2015-01-01

    The microspheres of Isabgol husk were prepared by emulsification-crosslinking technique and the gastrointestinal transition behavior of the formulation was studied by gamma scintigraphy. The impact of different process variables such as amount of glutaraldehyde, concentration of Isabgol husk and temperature was studied on surface morphology and mucoadhesion. In vitro mucoadhesive testing of formulations was performed by determination of zeta potential, mucus glycoprotein assay and mucus adsorption isotherms. The effect of feeding on retention of microspheres in the gastrointestinal track (GIT) was studied in albino rabbits by gamma scintigraphy study. The results indicated the formation of microspheres as observed by scanning electron microscopy. The smooth and round surfaces of microspheres were obtained on increasing Isabgol husk and glutaraldehyde amount. The positive zeta potential of all formulations indicated the electrostatic interaction as a mechanism of mucoadhesion between the mucus of GIT membranes and the microspheres surfaces. The influence of electrostatic interaction on mucoadhesion of microspheres was again ascertained when the mucin equilibrium adsorption on preparations indicated well fitness in Langmuir and Freundlich adsorption isotherms. During gamma scintigraphy, the stability of (99m)Tc-sodium pertechnetate was found 98.82% at pH 6.8 and 96.78% at pH 7.2, respectively. It indicated the minimal leaching of bound radionuclide from microspheres during gastrointestinal transition as observed in gamma scintigraphic images of the rabbits. The microspheres retained in GIT even after 24 hrs of oral administration. The results indicated the applicability of Isabgol husk mucilage in the development of mucoadhesive microspheres. PMID:25675337

  16. Kinetics and isotherms of Neutral Red adsorption on peanut husk.

    PubMed

    Han, Runping; Han, Pan; Cai, Zhaohui; Zhao, Zhenhui; Tang, Mingsheng

    2008-01-01

    Adsorption of Neutral Red (NR) onto peanut husk in aqueous solutions was investigated at 295 K. Experiments were carried out as function of pH, adsorbent dosage, contact time, and initial concentration. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, and Toth isotherm models. The results indicated that the Toth and Langmuir models provided the best correlation of the experimental data. The adsorption capacity of peanut husk for the removal of NR was determined with the Langmuir and found to be 37.5 mg/g at 295 K. The adsorption kinetic data were modeled using the pseudo-first order, pseudo-second order, and intra-particle diffusion kinetic equations. It was seen that the pseudo-first order and pseudo-second order kinetic equations could describe the adsorption kinetics. The intraparticle diffusion model was also used to express the adsorption process at the two-step stage. It was implied that peanut husk may be suitable as adsorbent material for adsorption of NR from aqueous solutions. PMID:19143308

  17. Frictional and heat resistance characteristics of coconut husk particle filled automotive brake pad

    NASA Astrophysics Data System (ADS)

    Bahari, Shahril Anuar; Chik, Mohd Syahrizul; Kassim, Masitah Abu; Som Said, Che Mohamad; Misnon, Mohd Iqbal; Mohamed, Zulkifli; Othman, Eliasidi Abu

    2012-06-01

    The objective of this study was to determine the friction and heat resistance characteristics of automotive brake pad composed with different sizes and percentages of coconut husk particle. The materials used were phenolic resin (phenol formaldehyde) as binder, copper, graphite and brass as friction producer/modifiers, magnesium oxide as abrasive material, steel and barium sulfate as reinforcement while coconut husk particle as filler. To obtain particle, the coconut husk was ground and dried to 3% moisture content. Then the coconut husk particle was screened using 80 mesh (to obtain coarse dust) and 100 mesh (to obtain fine dust). Different percentages of particle, such as 10 and 30% were used in the mixture of brake pad materials. Then the mixture was hot-pressed to produce brake pad. Chase machine was used to determine the friction coefficient in friction resistance testing, while thermogravimetric analyzer (TGA) machine was used to determine the heat decomposition values in heat resistance testing. Results showed that brake pad with 100 mesh and 10% composition of coconut husk particle showed the highest friction coefficient. For heat resistance, brake pad with 100 mesh and 30% composition of coconut husk dust showed the highest decomposition temperature, due to the high percentage of coconut husk particle in the composition, thus increased the thermal stability. As a comparison, brake pad composed with coconut husk particle showed better heat resistance results than commercial brake pad.

  18. Selenium in soil inhibits mercury uptake and translocation in rice (Oryza sativa L.).

    PubMed

    Zhang, Hua; Feng, Xinbin; Zhu, Jianming; Sapkota, Atindra; Meng, Bo; Yao, Heng; Qin, Haibo; Larssen, Thorjørn

    2012-09-18

    A great number of studies have confirmed that mercury-selenium (Hg-Se) antagonism is a widespread phenomenon in microorganisms, fish, poultry, humans, and other mammals. However, by comparison, little attention has been paid to plants. To investigate the influence of Se on the uptake and translocation of methylHg/inorganic Hg (MeHg/IHg) in the rice-soil system, we determined the levels of Se, IHg, and MeHg in different parts of rice plants (including the root, stem, leaf, husk, and grain (brown rice)) and corresponding soils of root zones collected from a Hg mined area, where Hg and Se co-occur due to historic Hg mining and retorting activities. The results showed that, in general, the Se levels were inversely related to the levels of both IHg and MeHg in the grains. In addition, a consistent reduction in translocation of both IHg and MeHg in the aerial shoots (i.e., the stem, leaf, husk, and grain) with increasing Se levels in the soils was observed. Furthermore, the Se levels were positively correlated with the IHg levels in the soils and the roots. These results suggest that Se may play an important role in limiting the bioaccessibility, absorption, and translocation/bioaccumulation of both IHg and MeHg in the aerial rice plant, which may be related to the formation of an Hg-Se insoluble complex in the rhizospheres and/or roots. PMID:22916794

  19. Logistics cost analysis of rice residues for second generation bioenergy production in Ghana.

    PubMed

    Ramamurthi, Pooja Vijay; Fernandes, Maria Cristina; Nielsen, Per Sieverts; Nunes, Clemente Pedro

    2014-12-01

    This study explores the techno-economic potential of rice residues as a bioenergy resource to meet Ghana's energy demands. Major rice growing regions of Ghana have 70-90% of residues available for bioenergy production. To ensure cost-effective biomass logistics, a thorough cost analysis was made for two bioenergy routes. Logistics costs for a 5 MWe straw combustion plant were 39.01, 47.52 and 47.89 USD/t for Northern, Ashanti and Volta regions respectively. Logistics cost for a 0.25 MWe husk gasification plant (with roundtrip distance 10 km) was 2.64 USD/t in all regions. Capital cost (66-72%) contributes significantly to total logistics costs of straw, however for husk logistics, staff (40%) and operation and maintenance costs (46%) dominate. Baling is the major processing logistic cost for straw, contributing to 46-48% of total costs. Scale of straw unit does not have a large impact on logistic costs. Transport distance of husks has considerable impact on logistic costs. PMID:25444887

  20. Grain Unloading of Arsenic Species in Rice

    SciTech Connect

    Carey, Anne-Marie; Scheckel, Kirk G.; Lombi, Enzo; Newville, Matt; Choi, Yongseong; Norton, Gareth J.; Charnock, John M.; Feldmann, Joerg; Price, Adam H.; Meharg, Andrew A.

    2010-01-11

    Rice (Oryza sativa) is the staple food for over half the world's population yet may represent a significant dietary source of inorganic arsenic (As), a nonthreshold, class 1 human carcinogen. Rice grain As is dominated by the inorganic species, and the organic species dimethylarsinic acid (DMA). To investigate how As species are unloaded into grain rice, panicles were excised during grain filling and hydroponically pulsed with arsenite, arsenate, glutathione-complexed As, or DMA. Total As concentrations in flag leaf, grain, and husk, were quantified by inductively coupled plasma mass spectroscopy and As speciation in the fresh grain was determined by x-ray absorption near-edge spectroscopy. The roles of phloem and xylem transport were investigated by applying a {+-} stem-girdling treatment to a second set of panicles, limiting phloem transport to the grain in panicles pulsed with arsenite or DMA. The results demonstrate that DMA is translocated to the rice grain with over an order magnitude greater efficiency than inorganic species and is more mobile than arsenite in both the phloem and the xylem. Phloem transport accounted for 90% of arsenite, and 55% of DMA, transport to the grain. Synchrotron x-ray fluorescence mapping and fluorescence microtomography revealed marked differences in the pattern of As unloading into the grain between DMA and arsenite-challenged grain. Arsenite was retained in the ovular vascular trace and DMA dispersed throughout the external grain parts and into the endosperm. This study also demonstrates that DMA speciation is altered in planta, potentially through complexation with thiols.

  1. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China.

    PubMed

    Williams, Paul N; Lei, Ming; Sun, Guoxin; Huang, Qing; Lu, Ying; Deacon, Claire; Meharg, Andrew A; Zhu, Yong-Guan

    2009-02-01

    Paddy rice has been likened to nictiana sp in its ability to scavenge cadmium (Cd) from soil, whereas arsenic (As) accumulation is commonly an order of magnitude higher than in other cereal crops. In areas such as those found in parts of Hunan province in south central China, base-metal mining activities and rice farming coexist. Therefore there is a considerable likelihood that lead (Pb), in addition to Cd and As, will accumulate in rice grown in parts of this region above levels suitable for human consumption. To test this hypothesis, a widespread provincial survey of rice from mine spoilt paddies (n = 100), in addition to a follow-up market grain survey (n = 122) conducted in mine impacted areas was undertaken to determine the safety of local rice supply networks. Furthermore, a specific Cd, As, and Pb biogeochemical survey of paddy soil and rice was conducted within southern China, targeting sites impacted by mining of varying intensities to calibrate rice metal(loid) transfer models and transfer factors that can be used to predict tissue loading. Results revealed a number of highly significant correlations between shoot, husk, bran, and endosperm rice tissue fractions and that rice from mining areas was enriched in Cd, As, and Pb. Sixty-five, 50, and 34% of all the mine-impacted field rice was predicted to fail national food standards for Cd, As, and Pb, respectively. Although, not as elevated as the grains from the mine-impacted field survey, it was demonstrated that metal(loid) tainted rice was entering food supply chains intended for direct human consumption. PMID:19244995

  2. Water management affects arsenic and cadmium accumulation in different rice cultivars.

    PubMed

    Hu, Pengjie; Huang, Jiexue; Ouyang, Younan; Wu, Longhua; Song, Jing; Wang, Songfeng; Li, Zhu; Han, Cunliang; Zhou, Liqiang; Huang, Yujuan; Luo, Yongming; Christie, Peter

    2013-12-01

    Paddy rice (Oryza sativa L.) is a staple food and one of the major sources of dietary arsenic (As) and cadmium (Cd) in Asia. A field experiment was conducted to investigate the effects of four water management regimes (aerobic, intermittent irrigation, conventional irrigation and flooding) on As and Cd accumulation in seven major rice cultivars grown in Zhejiang province, east China. With increasing irrigation from aerobic to flooded conditions, the soil HCl-extractable As concentrations increased significantly and the HCl-extractable Cd concentrations decreased significantly. These trends were consistent with the As and Cd concentrations in the straw, husk and brown rice. Water management both before and after the full tillering stage affected As and Cd accumulation in the grains. The intermittent and conventional treatments produced higher grain yields than the aerobic and flooded treatments. Cd concentrations in brown rice varied 13.1-40.8 times and As varied 1.75-8.80 times among the four water management regimes. Cd and As accumulation in brown rice varied among the rice cultivars, with Guodao 6 (GD6) was a low Cd but high-As-accumulating cultivar while Indonesia (IR) and Yongyou 9 (YY9) were low As but high-Cd-accumulating cultivars. Brown rice Cd and As concentrations in the 7 cultivars were significantly negatively correlated. The results indicate that As and Cd accumulated in rice grains with opposite trends that were influenced by both water management and rice cultivar. Production of 'safe' rice with respect to As and Cd might be possible by balancing water management and rice cultivar according to the severity of soil pollution. PMID:23719663

  3. Primary structure of arabinoxylans of ispaghula husk and wheat bran.

    PubMed

    Edwards, Sandra; Chaplin, Martin F; Blackwood, Anne D; Dettmar, Peter W

    2003-02-01

    The primary structures of ispaghula husk and wheat bran were investigated in order to determine how and why these fibres are among the most beneficial dietary fibres. To this end, the polysaccharide preparations have been subjected to enzymic hydrolysis and methylation analysis.The results have shown ispaghula husk and wheat bran to be very-highly-branched arabinoxylans consisting of linear f-D-(1-4)-linked xylopyranose (Xylp) backbones to which a-L-arabinofuranose (AraJ3 units are attached as side residues via a-(l13) and a-(1-02) linkages.Other substituents identified as present in wheat bran include P-D-glucuronic acid attached via the C(O)-2 position, and arabinose oligomers, consisting of two or more arabinofuranosyl residues linked via 1-2, 1-3, and 1-4 linkages. Ispaghula-husk arabinoxylan is more complex having additional side residues which include a-D-glucuronopyranose (GalAp)-(1-42)-linked-a-L-rhamnopyranose-(1-04)-0-D-Xylp, a-D-GalAp-(l-o3)-linked-a-L-Araf-(l-4)-[3-D-Xylp, and a-L-Araf-(l-43)-linked-P-D-Xylp-(1l -4)--D-Xylp. The beneficial effects of increased faecal bulk and water-holding capacity are undoubtedly related to the structures of the arabinoxylans, with differences in their efficacy to treat various functional bowel disorders due to their specific structural features. PMID:12756970

  4. Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains.

    PubMed

    Duan, Guilan; Kamiya, Takehiro; Ishikawa, Satoru; Arao, Tomohito; Fujiwara, Toru

    2012-01-01

    Arsenic (As) accumulation in rice grain poses a serious health risk to populations with high rice consumption. Extrusion of arsenite [As(III)] by ScAcr3p is the major arsenic detoxification mechanism in Saccharomyces cerevisiae. However, ScAcr3p homolog is absent in higher plants, including rice. In this study, ScACR3 was introduced into rice and expressed under the control of the Cauliflower mosaic virus (CaMV) 35S promoter. In the transgenic lines, As concentrations in shoots and roots were about 30% lower than in the wild type, while the As translocation factors were similar between transgenic lines and the wild type. The roots of transgenic plants exhibited significantly higher As efflux activities than those of the wild type. Within 24 h exposure to 10 μM arsenate [As(V)], roots of ScACR3-expressing plants extruded 80% of absorbed As(V) to the external solution as As(III), while roots of the wild type extruded 50% of absorbed As(V). Additionally, by exposing the As-containing rice plants to an As-lacking solution for 24 h, about 30% of the total As derived from pre-treatment was extruded to the external solution by ScACR3-expressing plants, while about 15% of As was extruded by wild-type plants. Importantly, ScACR3 expression significantly reduced As accumulation in rice straws and grains. When grown in flooded soil irrigated with As(III)-containing water, the As concentration in husk and brown rice of the transgenic lines was reduced by 30 and 20%, respectively, compared with the wild type. This study reports a potential strategy to reduce As accumulation in the food chain by expressing heterologous genes in crops. PMID:22107880

  5. Anaerobic treatment of coconut husk liquor for biogas production.

    PubMed

    Leitão, R C; Araújo, A M; Freitas-Neto, M A; Rosa, M F; Santaella, S T

    2009-01-01

    The market for coconut water causes environmental problems as it is one of the major agro-industrial solid wastes in some developing countries. With the aim of reusing the coconut husk, Embrapa developed a system for processing this raw material. During the dewatering stage Coconut Husk Liquor (CHL) is generated with chemical oxygen demand (COD) varying from 60 to 70 g/L due to high concentrations of sugars and tannins. The present study evaluated the feasibility of anaerobic treatment of CHL through Anaerobic Toxicity Assay and the operation of a lab-scale Upflow Anaerobic Sludge Blanket (UASB) reactor. Results showed that CHL can be treated through a UASB reactor operating with an OLR that reaches up to 10 kg/m3.d and that is maintained stable during the whole operation. With this operational condition, the removal efficiency was higher than 80% for COD and approximately 78% for total tannins, and biogas production was 20 m3 of biogas or 130 KWh per m3 of CHL. Seventy-five percent of the biogas composition was methane and toxicity tests demonstrated that CHL was not toxic to the methanogenic consortia. Conversely, increasing the concentration of CHL leads to increased methanogenic activity. PMID:19448321

  6. Antimicrobial activity of fermented Theobroma cacao pod husk extract.

    PubMed

    Santos, R X; Oliveira, D A; Sodré, G A; Gosmann, G; Brendel, M; Pungartnik, C

    2014-01-01

    Theobroma cacao L. contains more than 500 different chemical compounds some of which have been traditionally used for their antioxidant, anti-carcinogenic, immunomodulatory, vasodilatory, analgesic, and antimicrobial activities. Spontaneous aerobic fermentation of cacao husks yields a crude husk extract (CHE) with antimicrobial activity. CHE was fractioned by solvent partition with polar solvent extraction or by silica gel chromatography and a total of 12 sub-fractions were analyzed for chemical composition and bioactivity. CHE was effective against the yeast Saccharomyces cerevisiae and the basidiomycete Moniliophthora perniciosa. Antibacterial activity was determined using 6 strains: Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis (Gram-positive) and Pseudomonas aeruginosa, Klebsiella pneumoniae, and Salmonella choleraesuis (Gram-negative). At doses up to 10 mg/mL, CHE was not effective against the Gram-positive bacteria tested but against medically important P. aeruginosa and S. choleraesuis with a minimum inhibitory concentration (MIC) of 5.0 mg/mL. Sub-fractions varied widely in activity and strongest antibacterial activity was seen with CHE8 against S. choleraesuis (MIC of 1.0 mg/mL) and CHE9 against S. epidermidis (MIC of 2.5 mg/mL). All bioactive CHE fractions contained phenols, steroids, or terpenes, but no saponins. Fraction CHE9 contained flavonoids, phenolics, steroids, and terpenes, amino acids, and alkaloids, while CHE12 had the same compounds but lacked flavonoids. PMID:25299086

  7. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste.

    PubMed

    Mondal, Md Ibrahim H; Yeasmin, Mst Sarmina; Rahman, Md Saifur

    2015-08-01

    Alpha-cellulose extracted from corn husks was used as the raw material for the production of food-grade carboxymethyl cellulose (CMC). Preparation of CMC from husk cellulose was carried out by an etherification process, using sodium hydroxide and monochloroacetic acid (MCA), with ethanol as the supporting medium. Characterizations of CMC were carried out by analyzing the spectra of FTIR, XRD patterns and SEM photomicrographs. Degree of substitution (DS) was determined with respect to particle size using chemical methods. Solubility, molecular weight and DS of CMC increased with decreased cellulose particle sizes. Microbiological testing of the prepared CMC was done by the pour plate method. Concentrations of heavy metals such as arsenic, lead, cadmium and mercury in the purified CMC were measured by Atomic Absorption Spectroscopy technique and found to be within the WHO/FAO recommended value. A comparative study with CMC available in the international market was conducted. The purity of the prepared CMC was higher, at 99.99% well above the purity of 99.5% for standard CMC. High purity CMC showed a yield 2.4 g/g with DS 2.41, water holding capacity 5.11 g/g, oil holding capacity 1.59 g/g. The obtained product is well suited for pharmaceutical and food additives. PMID:25936282

  8. Contact urticaria from rice.

    PubMed

    Yamakawa, Y; Ohsuna, H; Aihara, M; Tsubaki, K; Ikezawa, Z

    2001-02-01

    A 30-year-old man with atopic dermatitis had had erythema and itching of the hands after washing rice in water, though he had always eaten cooked rice without problems. Handling test with water used to wash regular rice was performed on abraded hands, and produced urticarial erythema after several minutes. Applications of water used to wash allergen-reduced rice were negative for urticarial reaction. Prick test with water used to wash regular rice was +++. However prick test reaction with water used to wash allergen-reduced rice was +. Histamine-release test of regular rice-washing water was grade 3 and that of allergen-reduced rice grade 1. In immunoblotting analysis with regular rice washing water, there were no bands with this patient. These results suggest that the allergen responsible for contact urticaria in this patient might be water-soluble, heat-unstable, and not contained in allergen-reduced rice. PMID:11205411

  9. Comet assay to assess the genotoxicity of Persian walnut (Juglans regia L.) husks with statistical evaluation.

    PubMed

    Petriccione, Milena; Ciniglia, Claudia

    2012-07-01

    The aim of this study was to confirm the utility of the Comet assay as a genotoxicity screening test for evaluating the impact of walnut husk aqueous extract. Phytotoxicity assays using diluted and undiluted walnut husk aqueous extracts were performed on young roots of Raphanus sativus (radish), and the Comet assay was used to evaluate DNA integrity in isolated radish radicle nuclei. The results reveal a dose-dependent accumulation of DNA damage in radish radicles treated with walnut husks water extract and that the Kolmogorov-Smirnov test combined with Johnson SB distribution was the best approach for describing Comet assay data. PMID:22526990

  10. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  11. Comparison of raw and modified activated carbon and rice industry wastes for methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Befani, Maria; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Quintero, César E.

    2015-04-01

    In Argentina the average paddy rice production was 1.3x106 tn/year in the last decade. Entre Ríos province (E.R.) accounts for 60% of national milling, resulting in a significant accumulation of waste in the local environment; husk and ashes are used as fuel in drying grain plants. The use of rice wastes, as low-cost sorbents for the removal of synthetic dyes and other contaminants may be a sustainable option. The aim of this work is the investigation of the removal capacity of methylene blue (MB) from aqueous solutions using: (a) rice husk from a rice mill located in E.R. of size between 0.15 to 1.18 mm (RH2), (b) ash from rice husk burned at 800°C in oven for the grain drying unit of the rice mill (RHA800), and (c) biochar obtained from pyrolysis of RH2 material at 850°C (RHA4). Commercial activated carbon (AC), which is a porous material of high sorption capacity, was also used to compare its sorption capacity with the rice husk products. Furthermore, the incorporation of iron in the AC was studied using two different AC/Fe weight-by-weight ratios (AC-Fe and AC-0.5 Fe). The solution pH effect was studied in a range from 2 to 6.9. The maximal MB removal was achieved at pH of 6.8 to 6.9 for all materials studied, and at pH of 6.4 for AC. Kinetic experiments were conducted for a period of 48 h at pH 7 and C0 = 50 mg MB/L. Equilibrium was reached after 24 h and the adsorption capacity was 156, 104, 90, 79, 26, and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. The pseudo-second-order model expressed better the sorption kinetics of MB for all adsorbent materials. The AC-based materials presented better performance. The experimental data were fitted with the Freundlich and Langmuir isotherm models. The Langmuir model fits the data better in all cases. The maximum adsorption capacity was 238, 125, 92, 91, 46 and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. Agricultural wastes can be considered low-cost sorbents, but

  12. Effectiveness of Rice Agricultural Waste, Microbes and Wetland Plants in the Removal of Reactive Black-5 Azo Dye in Microcosm Constructed Wetlands.

    PubMed

    Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D

    2015-01-01

    Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes. PMID:25849115

  13. Ultrasonic and thermal pretreatments to enhance the anaerobic bioconversion of olive husks.

    PubMed

    Gianico, A; Braguglia, C M; Mescia, D; Mininni, G

    2013-11-01

    Olive husks, typical solid by-products from the olive oil industry, were selected to carry out anaerobic digestion tests. Before digestion, olive husks were subjected to ultrasonic or thermal pretreatments in order to release the organic matter into solution. Both sonication and thermal pretreatment allowed to solubilize the particulate matter with 22% and 72% increase in soluble organics of olive husks, respectively. Nevertheless, such pretreatments caused the release of unwanted molecules in solution, with the related risks of inhibition of the methanogenic process. Biochemical Methane Potential (BMP) tests on olive husks mixed with olive-mill wastewater and dairy wastewater, either pretreated or not, showed that ultrasound pretreatment resulted in 15% increase in volatile solids reduction and a 13% increase in biogas production, while after thermal pretreatment no benefits were observed. PMID:24035286

  14. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  15. Nanotubes, nanobelts, nanowires, and nanorods of silicon carbide from the wheat husks

    SciTech Connect

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Feng, J.; Qadri, S. N.; Caldwell, J. D.

    2015-09-14

    Nanotubes, nanowires, nanobelts, and nanorods of SiC were synthesized from the thermal treatment of wheat husks at temperatures in excess of 1450 °C. From the analysis based on x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, it has been found that the processed samples of wheat husk consisted of 2H and 3C polytypes of SiC exhibiting the nanostructure shapes. These nanostructures of silicon carbide formed from wheat husks are of technological importance for designing advance composites, applications in biotechnology, and electro-optics. The thermodynamics of the formation of SiC is discussed in terms of the rapid solid state reaction between hydrocarbons and silica on the molecular scale, which is inherently present in the wheat husks.

  16. Nanotubes, nanobelts, nanowires, and nanorods of silicon carbide from the wheat husks

    NASA Astrophysics Data System (ADS)

    Qadri, S. B.; Rath, B. B.; Gorzkowski, E. P.; Feng, J.; Qadri, S. N.; Caldwell, J. D.

    2015-09-01

    Nanotubes, nanowires, nanobelts, and nanorods of SiC were synthesized from the thermal treatment of wheat husks at temperatures in excess of 1450 °C. From the analysis based on x-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy, it has been found that the processed samples of wheat husk consisted of 2H and 3C polytypes of SiC exhibiting the nanostructure shapes. These nanostructures of silicon carbide formed from wheat husks are of technological importance for designing advance composites, applications in biotechnology, and electro-optics. The thermodynamics of the formation of SiC is discussed in terms of the rapid solid state reaction between hydrocarbons and silica on the molecular scale, which is inherently present in the wheat husks.

  17. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre.

    PubMed

    C S, Julie Chandra; George, Neena; Narayanankutty, Sunil K

    2016-05-20

    The isolation of cellulose nanofibres from arecanut husk was achieved by a chemo-mechanical method thereby opening up a means for utilizing a waste product more effectively. The chemical processes involved alkali treatment, acid hydrolysis, and bleaching. The mechanical fibrillation was performed via grinding and homogenization. The chemical constituents at different stages of treatment of fibres were analyzed according to the ASTM standards. Morphological characterization was done using the scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The isolated nanofibers had an average diameter of below 10 nanometres and a very high aspect ratio in the range 120-150. Fourier transform infrared spectroscopy (FT-IR) showed the effective removal of the non cellulosic components. The crystallinity was increased with successive treatments as shown by the X-ray diffraction analysis (XRD). The TGA studies revealed a good thermal stability for the isolated nanofibres. PMID:26917386

  18. Effects of Cocoa Husk Feeding on the Composition of Swine Intestinal Microbiota.

    PubMed

    Magistrelli, Damiano; Zanchi, Raffaella; Malagutti, Luca; Galassi, Gianluca; Canzi, Enrica; Rosi, Fabia

    2016-03-16

    A two-diet/two-period change over experiment was performed to investigate the effects of cocoa husks, as a source of dietary fiber and polyphenols, on pig intestinal microbial composition. Six pigs were fed a conventional cereal-based diet or a diet obtained by substitution of 7.5% of the conventional diet with cocoa husks for 3 weeks. Experimental diets were isoproteic and isoenergetic. At the end of each 3 week testing period, samples of fresh feces were collected and analyzed for microbial composition by fluorescence in situ hybridization. Cocoa husks did not affect feed intake, weight gain, and feed efficiency. Analysis of fecal microbial populations, grouped by phyla, showed a decrease of Firmicutes and an increase of Bacteroidetes in cocoa husk-fed pigs. Particularly, cocoa husks reduced fecal populations of the Lactobacillus-Enterococcus group and Clostridium histolyticum and increased the Bacteroides-Prevotella group and Faecalibacterium prausnitzii, suggesting a potential for cocoa husks in the improvement of intestinal microbial balance. PMID:26877143

  19. Evaluation of the radioactive Cs concentration in brown rice based on the K nutritional status of shoots.

    PubMed

    Sekimoto, Hitoshi; Yamada, Takashi; Hotsuki, Tomoe; Fujiwara, Toru; Mimura, Tetsuro; Matsuzaki, Akio

    2014-01-01

    The radioactive cesium ((134,137)Cs) concentration in brown rice is correlated with that in the straw/husk. The distribution of (134,137)Cs, resembles that of potassium (K), a homologous element of Cs, in the rice plant body. The relative isotopic abundance of (40)K is 0.0117 %; thus, 1 g K contains 30.4 Bq ⁴⁰K, and the mass of 4,000 Bq (40)K is 0.0154 g, indicating that the K concentration can be calculated from (40)K concentration. We examined if the radioactive Cs concentration in brown rice can be estimated from (40)K concentrations in straw, and especially might be predicted from the (40)K:(134,137)Cs ratio in straw. We determined the concentrations of (40)K and radioactive Cs in straw and brown rice, and found a strong correlated-equation (y = 72.922 x(-0.759); r = 0.907) between the radioactive Cs concentration in brown rice and the ⁴⁰K:(134,137)Cs ratio in straw. The estimated-radioactive Cs concentration in brown rice can be as much as double, depending on the K nutritional status changing the ⁴⁰K:(134,137)Cs ratio in straw. We herein propose a nutritional diagnosis that radioactive Cs concentrations in brown rice can be predicted from the ⁴⁰K:(134,137)Cs ratio in shoots. PMID:24338061

  20. Rice Production and Marketing.

    ERIC Educational Resources Information Center

    Briers, Gary; Lee, Jasper S.

    This guide contains lesson plans for use in secondary programs of agricultural education in geographical areas in which rice is produced. Six units and 13 problem areas are organized into teaching plans that cover the broad nature of rice production. The six units are: (1) determining the importance and history of rice production; (2) determining…

  1. Sustainable reuse of rice residues as feedstocks in vermicomposting for organic fertilizer production.

    PubMed

    Shak, Katrina Pui Yee; Wu, Ta Yeong; Lim, Su Lin; Lee, Chieh Ai

    2014-01-01

    Over the past decade, rice (Oryza sativa or Oryza glaberrima) cultivation has increased in many rice-growing countries due to the increasing export demand and population growth and led to a copious amount of rice residues, consisting mainly of rice straw (RS) and rice husk (RH), being generated during and after harvesting. In this study, Eudrilus eugeniae was used to decompose rice residues alone and rice residues amended with cow dung (CD) for bio-transformation of wastes into organic fertilizer. Generally, the final vermicomposts showed increases in macronutrients, namely, calcium (11.4-34.2%), magnesium (1.3-40.8%), phosphorus (1.2-57.3%), and potassium (1.1-345.6%) and a decrease in C/N ratio (26.8-80.0%) as well as increases in heavy metal content for iron (17-108%), copper (14-120%), and manganese (6-60%) after 60 days of vermicomposting. RS as a feedstock was observed to support healthier growth and reproduction of earthworms as compared to RH, with maximum adult worm biomass of 0.66 g/worm (RS) at 60 days, 31 cocoons (1RS:2CD), and 23 hatchlings (1RS:1CD). Vermicomposting of RS yielded better results than RH among all of the treatments investigated. RS that was mixed with two parts of CD (1RS:2CD) showed the best combination of nutrient results as well as the growth of E. eugeniae. In conclusion, vermicomposting could be used as a green technology to bio-convert rice residues into nutrient-rich organic fertilizers if the residues are mixed with CD in the appropriate ratio. PMID:23900949

  2. COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues.

    PubMed

    Guarienti, Michela; Cardozo, Sdenka Moscoso; Borgese, Laura; Lira, Gloria Rodrigo; Depero, Laura E; Bontempi, Elza; Presta, Marco

    2016-07-01

    Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material. PMID:27149148

  3. Arsenic Concentrations in Rice and Associated Health Risks Along the Upper Mekong Delta, Cambodia

    NASA Astrophysics Data System (ADS)

    Barragan, L.; Seyfferth, A.; Fendorf, S.

    2011-12-01

    The consumption of arsenic contaminated food, such as rice, can be a significant portion of daily arsenic exposure, even for populations already exposed through drinking water. While arsenic contamination of rice grains has been documented in parts of Southern Asia, (e.g. Bangladesh), little research has been conducted on arsenic contamination of Cambodian-grown rice. We collected rice plant samples at various locations within the upper Mekong River Delta near Phnom Penh, Cambodia, and we analyzed total arsenic concentrations in plant digests of grains, husk, and straw. In addition, we used CaCl2-, DTPA-, and oxalate-extractable arsenic to define plant-available soil pools. We found variability of arsenic concentration in the plants, with grain arsenic ranging from 0.046 to 0.214 μg g-1; other researchers have shown that concentrations higher than 0.1 μg g-1 could be a concern for human health. Although more extensive sampling is needed to assess the risk of arsenic exposure from rice consumption on a country-wide basis, our work clearly illustrates the risk within regions of the Mekong Delta.

  4. Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment.

    PubMed

    Al-Hamadani, Yasir A J; Yusoff, Mohd Suffian; Umar, Muhammad; Bashir, Mohammed J K; Adlan, Mohd Nordin

    2011-06-15

    Landfill leachate is a heavily polluted and a likely hazardous liquid that is produced as a result of water infiltration through solid wastes generated industrially and domestically. This study investigates the potential of using psyllium husk as coagulant and coagulant aid for the treatment of landfill leachate. Psyllium husk has been tested as primary coagulant and as coagulant aid with poly-aluminum chloride (PACl) and aluminum sulfate (alum). As primary coagulant, the optimum dosage and pH for PACl were 7.2 and 7.5 g/L, respectively, with removal efficiencies of 55, 80 and 95% for COD, color and TSS, respectively. For alum, the optimum conditions were 11 g/L alum dosage and pH 6.5 with removal efficiencies of 58, 79 and 78% for COD, color and TSS, respectively. The maximum removal efficiencies of COD, color and TSS were 64, 90 and 96%, respectively, when psyllium husk was used as coagulant aid with PACl. Based on the results, psyllium husk was found to be more effective as coagulant aid with PACl in the removal of COD, color and TSS as compared to alum. Zeta potential test was carried out for leachate, PACl, alum and psyllium husk before and after running the jar test to enhance the results of the jar test experiments. PMID:21507572

  5. Antibiofilm activity of coconut (Cocos nucifera Linn.) husk fibre extract

    PubMed Central

    Viju, N.; Satheesh, S.; Vincent, S.G.P.

    2012-01-01

    In this study, antibiofilm activity of coconut husk extract (CHE) was tested by various assays in the laboratory. The effects of CHE on extracellular polymeric substance (EPS) production, hydrophobicity and adhesion ability of Pseudomonas sp., Alteromonas sp. and Gallionella sp. and the antimicrobial activity of the extract against these bacteria were assessed. CHE was found to possess antibacterial activity against all the bacterial strains and affected the EPS production. The CHE affected the growth of the biofilm-forming bacteria in a culture medium. The hydrophobicity of the bacterial cells was also changed due to the CHE treatment. The active compound of the CHE was characterised by thin-layer chromatography (TLC), high performance liquid chromatography (HPLC) and fourier transform infrared (FT-IR) analysis. HPLC spectrum showed a single peak and the FT-IR spectrum indicated the presence of an OH-group-containing compound in the extract. In conclusion the CHE could be used as a source for the isolation of antifouling compounds. PMID:23961225

  6. Two new isoxazolines from the husks of Xanthoceras sorbifolia Bunge.

    PubMed

    Ge, Hui-Qi; Wan, Guo-Sheng; Wang, Da; Wu, Ji-Ming; Sun, Bo-Hang; Wu, Li-Jun; Gao, Hui-Yuan

    2016-08-01

    Two new isoxazoline compounds, 1-oxa-2-azaspiro[4.5]dec-2-ene-8β-ol (1) and 1-oxa-2-azaspiro[4.5]dec-2-ene-8α-ol (2), were isolated from the husks of fruits of Xanthoceras sorbifolia Bunge and their structures were determined by spectroscopic analyses, including X-ray crystallography, HRESI-MS, UV, IR, and 1D and 2D NMR (HSQC, HMBC, NOESY) methods. Neither compound showed significant inhibitory effects on butyrylcholinesterase (BuchE) and acetylcholinesterase (AChE), nor the selected tumor cells growth. Based on an online activity prediction program (PASS ONLINE), the structures with isoxazoline skeletons were found to show potential anti-asthmatic (AM) and anti-anaphylaxis (AP) activities; moreover, compounds 1 and 2 were predicted to possess high affinities for many enzymes involved in AM and AP according to the RCSB Protein Data Bank. High-affinity binding to phosphodiesterase IV (PDE-4), an important inflammatory modulator in asthma, was demonstrated experimentally, beside that, the predicted structures based on compounds 1 and 2 were analyzed for PDE-4 interactions using the molecular docking methodology of Discovery Studio 3.0 (DS 3.0). The predicted structure 2A-6 exhibited much higher affinity and stability of PDE-4 binding than the clinical PDE-4 inhibitor rolipram. PMID:27053149

  7. Extraction of light filth from rice flours, extruded rice products, and rice paper: collaborative study.

    PubMed

    Dent, R G

    1982-09-01

    Two new methods were developed for the extraction of rodent hairs and insect fragments from rice products: one for rice flour and one for extruded rice products and rice paper. A 100 g sample of rice flour was extracted with mineral oil-40% isopropanol, followed by a water phase as needed for additional cycles. For extruded rice products and rice paper, a 225 g sample of each was initially extracted as above, followed by a single extraction with mineral oil-20% isopropanol. Both methods used an acid hydrolysis pretreatment followed by wet sieving and a percolator extraction. Average rodent hair recoveries were 77.8% for rice flour and 82.2% for extruded rice products and rice paper. Average insect fragment recoveries were 89.6% for rice flour and 91.9% for extruded rice products and rice paper. Both methods were adopted official first action. PMID:7130079

  8. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Tian, S. H.; Sun, L.; Wu, L. H.; Zhou, J. X.; Chen, Z. Y.

    2008-12-01

    The silicon isotope fractionation between rice plant and nutrient solution was studied experimentally. Rice plants were grown to maturity with the hydroponic culture in a naturally lit glasshouse. The nutrient solution was sampled for 14 times during the whole rice growth period. The rice plants were collected at various growth stages and different parts of the plants were sampled separately. The silica contents of the samples were determined by the gravimetric method and the silicon isotope compositions were measured using the SiF 4 method. In the growth process, the silicon content in the nutrient solution decreased gradually from 16 mM at starting stage to 0.1-0.2 mM at harvest and the amount of silica in single rice plant increased gradually from 0.00013 g at start to 4.329 g at harvest. Within rice plant the SiO 2 fraction in roots reduced continuously from 0.23 at the seedling stage, through 0.12 at the tiller stage, 0.05 at the jointing stage, 0.023 at the heading stage, to 0.009 at the maturity stage. Accordingly, the fraction of SiO 2 in aerial parts increased from 0.77, through 0.88, 0.95, 0.977, to 0.991 for the same stages. The silicon content in roots decreased from the jointing stage, through the heading stage, to the maturity stage, parallel to the decrease of silicon content in the nutrient solution. At the maturity stage, the silicon content increased from roots, through stem and leaves, to husks, but decreased drastically from husks to grains. These observations show that transpiration and evaporation may play an important role in silica transportation and precipitation within rice plants. It was observed that the δ30Si of the nutrient solution increased gradually from -0.1‰ at start to 1.5‰ at harvest, and the δ30Si of silicon absorbed by bulk rice plant increased gradually from -1.72‰ at start to -0.08‰ at harvest, reflecting the effect of the kinetic silicon isotope fractionation during silicon absorption by rice plants from nutrient

  9. Estimation and Validation of Propanil Residues in Rice and Soil Samples by Gas Liquid Chromatography with Electron Capture Detector.

    PubMed

    Sandhu, Amanpal Kaur; Mandal, Kousik; Singh, Balwinder

    2015-09-01

    The purpose of this analysis was to develop an efficient analysis for the estimation of residues of propanil in rice grain, husk, straw and soil samples. A liquid-liquid partitioning method was used for the extraction of propanil residues from the rice grains and its contents. For this, representative 10 g samples of blended rice grain, husk, straw and soil were soaked in acetone for 24 h, and the contents then partitioned two times into 100 and 50 mL dichloromethane and one time with 100 mL hexane. The combined organic layers were collected and were concentrated to 10 mL acetone using a rotary vacuum evaporator at 40°C. The extract was then subjected to cleanup by dispersive solid phase extraction. The final extract was injected onto a GLC column, where the propanil residues were determined by electron capture detector. The percentage recoveries were ranged from 84.9 % to 98.3 % when samples were spiked at the levels of 0.05, 0.25 and 0.50 mg/kg. The limits of quantification and detection were 0.05 and 0.017 mg/kg, respectively. PMID:26232197

  10. Metabolism of a new herbicide, [(14)c]pyribenzoxim, in rice.

    PubMed

    Chang, Hee-Ra; Keum, Young Soo; Koo, Suk-Jin; Moon, Joon-Kwan; Kim, Kyun; Kim, Jeong-Han

    2011-03-01

    The in vivo metabolism of a new herbicide pyribenzoxim (benzophenone Ο-[2,6-bis(4,6-dimethoxypyrimidin-2-yloxy)benzoyl]oxime) in rice was carried out using container trials. Two radiolabeled forms of [carbonyl-(14)C]pyribenzoxim (P1) and [ring-(14)C(U)]pyribenzoxim (P2) were treated separately as formulations for foliar treatment by single applications of 50 g of active ingredient (ai)/ha at the 4-6 leaves stage. At 0, 7, 30, and 60 days after treatment (DAT), samples of panicle, foliage/rest of plant, and roots were taken for analysis. Upon harvest (120 DAT), rice plants were separated into grain, husk, straw, and root parts. Total radioactive residues (TRRs) at each sampling date were determined to show that the final radioactive residues at harvest were low in grain, husk, straw, and roots, accounting for <17 ppb. The concentration of final residues in the rice plant decreased rapidly, and less than 0.1% of initial TRRs remained at harvest. At 7 DAT, metabolite 1 [M1, 2,6-bis(4,6-dimethoxypyrimidin-2-yloxy)benzoic acid] and two unknown compounds (other-1 and other-2) were detected in foliage extract, accounting for 3.5% TRRs (21.0 ppb), 3.1% TRRs (19.0 ppb), and 9.0% TRRs (54.3 ppb), respectively, while 26.1% of M1 was observed in solvent wash. Any other metabolites were not detected in the plant, including expected metabolite M3 (benzophenone oxime). On the basis of the results obtained, a metabolic pathway of pyribenzoxim in a rice plant was proposed. PMID:21309510