Science.gov

Sample records for rift oblicuo aplicaciones

  1. Hawaii Rifts

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  2. Rift propagation

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  3. Continental Rifts

    NASA Astrophysics Data System (ADS)

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  4. Continental rift jumps

    NASA Astrophysics Data System (ADS)

    Wood, Charles A.

    1983-05-01

    Continental rift jumps, analogous to jumps of oceanic spreading ridges, are here proposed to be common. Good examples exist in Iceland and Afar (both transitional from ridge to rift jumps), West Africa (Benue Trough and Cameroon Volcanic Line), and Kenya. Indeed, the Kenya rift appears to have jumped c. 100 km eastward c. 10 m.y. ago and is currently jumping further to the east. Possible jumps exist in the Baikal rift, the Limagne-Bresse rift pair, and parallel to ancient continental margins (e.g., the Triassic basins of the eastern U.S. to Baltimore Canyon and Georges Bank). Continental rifts jump distances that are approximately equal to local lithosphere thickness, suggesting that jumped rifts are controlled by lithosphere fracturing, but there appears to be no reason for the fracturing except migration of hot spots.

  5. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  6. East African Rift

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria.

    The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  7. Rift Valley Fever (RVF)

    MedlinePlus

    ... Outbreak resources, VHF information for specific groups, virus ecology, references... RVF Distribution Map Rift Valley Fever Transmission ... Outbreaks Outbreak Summaries RVF Distribution Map Resources Virus Ecology File Formats Help: How do I view different ...

  8. Continental rifting: a planetary perspective

    SciTech Connect

    Muehlberger, W.R.

    1985-01-01

    The only inner planet that has abundant evidence of regional extension, and the consequent generation of rifts in the earth. The absence of plate motion on the other inner planets limits their rifts to localized bulges or subsidence areas. The rifting of oceanic lithosphere is seldom preserved in the geological record. Thus, such rifting must be inferred via plate tectonic interpretation: if there is rifting, then there must be subduction whose results are commonly well preserved. Modern continental rifts are found in many tectonic settings: continental breakup, extension transverse to collisional stresses, or wide regions of nearly uniform extension. Recognition of these settings in older rocks becomes more difficult the farther back in geologic time you travel. Rift basin fillings typically show rapid lateral and vertical facies and thickness changes, bimodal volcanism, and distinctive rift-drift sequences. Proterozoic rifts and aulacogens are well-documented in North America; ex. Keweenawan, western margin of Labrador fold belt, Belt-Uinta and the Wopmay-Athapuscow regions. Documented Archean rifts are rare. In Quebec, the truncated margin of the Minto craton bounded on the south by a 2.8 Ga greenstone belt implies an earlier rift event. The oldest proposed rift dated at 3.0 Ga contains the Pongola Supergroup in southeastern Africa. The presence of Archean dikes demonstrates a rigid crust and andesites as old as 3.5 Ga imply plate tectonics and thus, at least, oceanic rifting.

  9. Rift Valley Fever Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develo...

  10. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  11. Intracontinental rift comparisons: Baikal and Rio Grande Rift Systems

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.; Logatchev, N. A.; Zorin, Y. A.; Chapman, C. E.; Kovalenko, V.; Morgan, P.

    Both the Baikal rift in Siberia and the Rio Grande rift in New Mexico, Colorado and Texas are major intracontinental extensional structures of Cenozoic age that affect regions about 1500 km long and several hundred km wide (Figures 1, 2). In the summer of 1988 these rifts were visited by study groups of U.S. and Soviet geoscientists during cooperative field workshops sponsored by the Soviet Academy of Sciences, U.S. National Academy of Sciences, and U.S. Geological Survey.In the Rio Grande region, we spent 2 weeks examining rift features between El Paso, Tex., and Denver, Colo. Particular emphasis was on the sedimentary record of rift evolution, widespread volcanic activity from inception of rifting to the present, geophysical expression of rift features, and relations between rifting and the larger-scale evolution of the North American Cordillera. In the Baikal region, which presents formidable logistic problems for a workshop, we travelled by bus, truck, helicopter, and ship to examine young seismotectonic features, rift-related basalt, and bounding structures of the Siberian craton that influenced rift development (Figure 3).

  12. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  13. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  14. Evolutionary model of the oblique rift basins- Central African Rifts

    NASA Astrophysics Data System (ADS)

    Yang, Kenn-Ming; Cheng, I.-Wen; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during basin evolution of Central African Rifts (CAS). In this study, we simulated the formation of oblique-rifting basin with Particle Flow Code 3-Dimensions-(PFC 3D) and compared the simulation results with the tectonic settings of a series of basin in CAS. CAS started to develop in Early Cretaceous (130Ma) and lasted until the Late Cretaceous (85Ma-80Ma). The following collision between the African and Eurasian plates imposed compressional stress on CAS and folded the strata in the rift basins. Although the characteristics of rift basin formation remain controversial, palinspastic sections constructed in this study show that, in the Early Cretaceous, the rift basins are mainly characterized by normal faults and half-grabens. In the Late Cretaceous, the morphology of the rift basins was altered by large-scaled tectonic compression with the active Borogop Fault of regional scale. Also, en echelon trend of normal faults in the basins were measured and the angles between the trend with that of the rift axes of each basin were demonstrated, indicating that the development of CAS was affected by the regional extensional stress with a dextral component during the rifting process and, therefore, the rift basins were formed by oblique-rifting. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, which α are 45°, 60°, 75° and 90° respectively, to simulate basin formation under oblique-rifting process. The study results of simulation

  15. Granular mechanics and rifting

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Hayman, Nicholas W.; Lavier, Luc L.

    2013-04-01

    Numerical models have proved useful in the interpretation of seismic-scale images of rifted margins. In an effort to both test and further illuminate predictions of numerical models, workers have made some strides using map-scale field relations, microstructures, and strain analyses. Yet, fundamental predictions of modeling and tectonic restorations are not able to capture critical observations. For example, many models and interpretations call on continuous faults with restorable kinematic histories. In contrast, s-reflectors and other interpreted shear fabrics in the middle crust tend to be discontinuous and non-planar across a margin. Additionally, most rift-evolution models and interpretations call on end-member ductile flow laws over a range of mechanical and thermal conditions. In contrast, field observations have found that a range of "brittle" fault rocks (e.g., cataclasites and breccias) form in the deeper crust. Similarly, upper crustal materials in deep basins and fault zones can deform through both distributed and localized deformation. Altogether, there appears to be reason to bring a new perspective to aspects of the structural evolution of rifted margins. A granular mechanics approach to crustal deformation studies has several important strengths. Granular materials efficiently localize shear and exhibit a range of stick-slip behaviors, including quasi-viscous rheological responses. These behaviors emerge in discrete element models, analog-materials experiments, and natural and engineered systems regardless of the specific micromechanical flow law. Yet, strictly speaking, granular deformation occurs via failure of frictional contacts between elastic grains. Here, we explore how to relate granular-mechanics models to mesoscale (outcrop) structural evolution, in turn providing insight into basin- and margin- scale evolution. At this stage we are focusing on analog-materials experiments and micro-to-mesoscale observations linking theoretical predictions

  16. Rio Grande rift: An overview

    NASA Astrophysics Data System (ADS)

    Olsen, Kenneth H.; Scott Baldridge, W.; Callender, Jonathan F.

    1987-11-01

    The Rio Grande rift of the southwestern United States is one of the world's principal continental rift systems. It extends as a series of asymmetrical grabens from central Colorado, through New Mexico, to Presidio, Texas, and Chihuahua, Mexico—a distance of more than 1000 km. Although the Rio Grande rift is closely related in timing and structural style to the contiguous Basin and Range extensional province, the two can be distinguished by a variety of geological and geophysical signatures. Rifts (both oceanic and continental) can be defined as elongate depressions overlying places where the entire lithosphere has ruptured in extension. The lithosphere of the Rio Grande rift conforms to this definition, in that: (1) the crust is moderately thinned—Moho depths range from about 45 km under the flanks to about 33 km beneath the rift axis. (2) anomalously low P n velocities (7.6-7.8 km s -1) beneath the rift and a long wavelength gravity low suggest that the asthenosphere is in contact with the base of the crust. The P-velocity is abnormally low (6.4-6.5 km s -1) in the lower half of the crust beneath the rift, suggesting high crustal temperatures. However, associated seismic and volcanologic data indicate the sub-rift lower crust is not dominated by a massive composite mafic intrusion such as is sometimes inferred for the East African rifts. Seismic and magnetotelluric data suggest the presence of a thin (< 1 km) sill-like contemporary midcrustal magma body which may perhaps extend intermittently along much of the length of the rift. Seismic and structural studies indicate a dominant horizontal fabric in the upper and middle crust. The brittle-ductile transition is at depths -15 km except for the major volcanic fields, where it rises to 2-3 km. Structural development of the rift occurred mainly during two time intervals: the early phase beginning at -30 Ma. and lasting 10-12 m.y., and the late phase extending from -10 to 3 Ma. The early phase involved extensive

  17. Kinematics of Rift-Parallel Deformation Along the Rukwa Rift, Western Branch, and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Stamps, D.; Koehn, D.; Burke, K. C.; d'Oreye, N.; Saria, E.; Xu, R.

    2013-12-01

    The East African Rift System spans N-S ~5000 km and currently experiences E-W extension. Previous kinematic studies of the EARS delineated 3 relatively rigid sub-plates (Victoria, Rovuma, and Lwandle) between the Nubian and Somalian plates. GPS observations of these block interiors confirm the rigid plate model, but we also detect a systematic along-rift deformation pattern at GPS stations located within rift zones bounding the western Victoria block and continuing north between the Nubian and Somalian plates. Here we present a kinematic model of present-day rift-parallel deformation along the Western branch, Rukwa Rift, and Main Ethiopian Rift constrained by a new GPS solution, earthquake slip vectors, and mapped active fault structures. We test the roles of block rotation, elastic deformation, and anelastic deformation by varying block geometry, fault slip distribution parameters, estimating permanent strain rate, and scoring each model with GPS observations. We also explore how the present-day deformation patterns relate to longer-term paleostress indicators. Observations of slickensides and offsets in seismic reflection profiles in the northern Western branch (Albertine rift) indicate a change from ~NNE trending normal faulting to include strike-slip motion within the past 7 My that may be related to previously studied stress changes in the Turkana rift. Preliminary results from the kinematic modeling demonstrate simple elastic strain accumulation on major border faults cannot explain an observed systematic northward component in GPS velocities relative to the Victoria block and the Nubian plate.

  18. Introduction - Processes of continental rifting

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Baker, B. H.

    1983-01-01

    It is thought likely that thermal thinning and/or diapirism can cause the extensional stress required for rifting. The rifting, however, will not occur unless the regional tectonic regime permits the sides of the rift to diverge. Whereas passive plate extension could cause rifting in isolation, the extension and rifting are likely to be localized where the lithosphere is weakest over an existing thermal anomaly. In those cases where asthenospheric diapirism occurs, which is essentially a response to thinning of the lithosphere by thermal thinning or plate extension, the effects of diapirism may completely mask the initiating mechanism. It is believed that anomalous heat transfer into the lithosphere, diapirism, and magmatism must all figure in rifting, along with a deviatoric stress field that will permit extension in a developing rift. Even though the models are useful in permitting idealized processes to be quantified and tested, better knowledge of lithosphere properties is considered necessary, in particular knowledge of mantle viscosity and its temperature dependence.

  19. Cenozoic rifting in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. S.; Stock, J. M.; Clayton, R. W.; Davey, F. J.

    2007-12-01

    The West Antarctic Rift System (WARS) experienced two episodes of Cenozoic rifting. Seafloor spreading at the Adare spreading axis, north of the Ross Sea, from Middle Eocene to Late Oligocene time (43 - 26 Ma), was directly linked with motions within the WARS. For this time interval, marine magnetic anomalies within the Adare Basin and structural features within the Ross Sea constrain the motion between East and West Antarctica. During this episode, widespread intrusive activity took place in the continental part of the rift. Subsequent Late Oligocene until present-day (26 - 0 Ma) extension was characterized by a transition to volcanic activity. Yet, the details of extension during this episode have been poorly resolved. We present preliminary results of new seismic reflection and seafloor mapping data acquired on geophysical cruise 07-01 aboard the R/VIB Nathaniel Palmer in the northern part of the rift. Our results suggest that the style of deformation changed from spreading-related faulting into diffuse normal faulting (tilted blocks) that trend NE-SW with little resultant E-W extension. Recent volcanism is distributed throughout but tends to align with the NE-SW trend, into a localized zone. Formation of the Terror Rift, Ross Sea, within the same time frame suggests that the pole of rotation has changed its position, reflecting a change in the relative magnitudes of tensile stresses along the rift. Moreover, this change was accompanied with a sharp decrease of extension rates.

  20. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  1. The geometry of propagating rifts

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan

    1986-03-01

    The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.

  2. The East African rift system

    NASA Astrophysics Data System (ADS)

    Chorowicz, Jean

    2005-10-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  3. Structural style of the Turkana Rift, Kenya

    SciTech Connect

    Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

    1988-03-01

    Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

  4. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  5. Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey W.; McNeill, Lisa C.; Bull, Jonathan M.; Bell, Rebecca E.; Gawthorpe, Robert L.; Henstock, Timothy J.; Christodoulou, Dimitris; Ford, Mary; Taylor, Brian; Sakellariou, Dimitris; Ferentinos, George; Papatheodorou, George; Leeder, Mike R.; Collier, Richard E. LI.; Goodliffe, Andrew M.; Sachpazi, Maria; Kranis, Haralambos

    2016-05-01

    The Corinth Rift, central Greece, enables analysis of early rift development as it is young (<5 Ma) and highly active and its full history is recorded at high resolution by sedimentary systems. A complete compilation of marine geophysical data, complemented by onshore data, is used to develop a high-resolution chronostratigraphy and detailed fault history for the offshore Corinth Rift, integrating interpretations and reconciling previous discrepancies. Rift migration and localization of deformation have been significant within the rift since inception. Over the last circa 2 Myr the rift transitioned from a spatially complex rift to a uniform asymmetric rift, but this transition did not occur synchronously along strike. Isochore maps at circa 100 kyr intervals illustrate a change in fault polarity within the short interval circa 620-340 ka, characterized by progressive transfer of activity from major south dipping faults to north dipping faults and southward migration of discrete depocenters at ~30 m/kyr. Since circa 340 ka there has been localization and linkage of the dominant north dipping border fault system along the southern rift margin, demonstrated by lateral growth of discrete depocenters at ~40 m/kyr. A single central depocenter formed by circa 130 ka, indicating full fault linkage. These results indicate that rift localization is progressive (not instantaneous) and can be synchronous once a rift border fault system is established. This study illustrates that development processes within young rifts occur at 100 kyr timescales, including rapid changes in rift symmetry and growth and linkage of major rift faults.

  6. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  7. Magmatism in rifting and basin formation

    NASA Astrophysics Data System (ADS)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  8. Magmatism in a Cambrian Laurentian Plate Rift

    NASA Astrophysics Data System (ADS)

    Gilbert, M. C.

    2008-12-01

    Evidences of the Cambrian Southern Oklahoma Aulacogen extend over 1000km from about Dallas out to the Uncompahgre Plateau in SW Colorado. The signature of this originally extensional feature can be traced geophysically, and in some places at the present surface, petrologically and temporally, by the presence of mafic rock. It appears to have been the intracontinental third arm of a plume-generated? triple junction which helped to dismember the southern part of Laurentia on the final break-up of a Neoproterozoic supercontinent. Other parts of Laurentia rifted away and are now found in the Precordillera of Argentina. Rift magmatism appears to have been concentrated nearer the plate edge during the breakup. Perhaps as much as 40,000 km3 of mostly subaerial silicic volcanics and shallow-seated granites overlay and filled the top of the rift in the area of SW Oklahoma. The rift fill below the silicic rocks is large, layered mafic complexes and smaller, layered, hydrous gabbros, the whole set appearing as a shallow AMCG complex. Unusually, direct rift sediments are not obvious. Furthermore, silicic and mafic rocks have identical Nd signatures. Finally, about 20 Ma after rifting ceased and later into the Paleozoic during sea incursion, overlying sediments are thickened 4X compared to equivalent units 100's of kms to the rift sides. This rift appears distinct from most modern rifts. Conclusions are 1) This was a hot, narrow rift; 2) Basaltic magmatism , not sedimentation, filled the rift; 3) Magmatic intensity varied along the rift strike; 4) Silicic rocks were generated mostly directly from new mantle-derived basalt liquids through fractionation, not melting of older crustal rocks; 5) Laurentian lithosphere was weak allowing centering of the Early/Middle Paleozoic large "Oklahoma" basin (pre-Anadarko) over the rift.

  9. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  10. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time. PMID:27437571

  11. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo

    2009-09-01

    The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres. The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north-northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated. The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE-SW) and the Late

  12. Rio Grande rift: problems and perspectives

    SciTech Connect

    Baldridge, W.S.; Olsen, K.H.; Callender, J.F.

    1984-01-01

    Topics and ideas addressed include: (1) the regional extent of the Rio Grande rift; (2) the structure of the crust and upper mantle; (3) whether the evidence for an axile dike in the lower crust is compelling; (4) the nature of faulting and extension in the crust; and (5) the structural and magmatic development of the rift. 88 references, 5 figures.

  13. Rifting in iceland: new geodetic data.

    PubMed

    Decker, R W; Einarsson, P; Mohr, P A

    1971-08-01

    Small but measurable lengthening of several survey lines within the eastern rift zone of Iceland occurred between 1967 and 1970. The changes can be interpreted as a widening of the rift by 6 to 7 centimeters, possibly during the 1970 eruption of Hekla volcano. PMID:17738437

  14. Detection and Response for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a viral disease that impacts domestic livestock and humans in Africa and the Middle East, and poses a threat to military operations in these areas. We describe a Rift Valley fever Risk Monitoring website, and its ability to predict risk of disease temporally and spatially. We al...

  15. Along-rift Variations in Deformation and Magmatism in the Ethiopian and Afar Rift Systems

    NASA Astrophysics Data System (ADS)

    Keir, D.; Bastow, I. D.; Corti, G.; Mazzarini, F.; Rooney, T. O.

    2015-12-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Ethiopian and Afar Rift systems provide an excellent opportunity to address this since it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of distribution and style of volcanism and faulting along strike in the MER and Afar. We also incorporate synthesis of geophysical, geochemical, and petrological constraints on magma generation and emplacement in order to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rift. Along-rift changes in extension by magma intrusion and plate stretching, and the three-dimensional focusing of melt where the rift dramatically narrows each influence igneous intrusion, volcanism and subsidence history. In addition, rift obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  16. Pre-rift basement structure and syn-rift faulting at the eastern onshore Gulf of Corinth Rift

    NASA Astrophysics Data System (ADS)

    Kranis, Haralambos; Skourtsos, Emmanuel; Gawthorpe, Robert; Leeder, Mike; Stamatakis, Michael

    2015-04-01

    %B We present results of recent field-based research with a view to providing information about and constraints on the initiation and evolution of the Gulf of Corinth (GoC) Rift. The onshore geology and structure of the GoC rift has been studied intensively and extensively; however most research efforts have focused on the western and partly the central parts. The last few years, efforts are being made to extend the scope of research in less-studied areas, such as the eastern southern onshore part of the GoC rift, trying to address two major issues in rift initiation and evolution, namely syn-rift faulting and pre-rift basement structure. While fault spacing and length appears to be well-constrained for the western and central parts of the GoC Rift, further east -and especially in the uplifted onshore southern part- this is thought to increase dramatically, as there are practically no mapped faults. We argue, however, that this may be a false image, owing to (i) the difficulty in identifying fault structures within a thick, fairly monotonous syn-rift sequence; (ii) the lesser attention this part has drawn; and (ii) the fact that the published summary geological and tectonic maps of the GoC area are based on the dated geological maps that cover the eastern and northern onshore shoulders of the Rift. Moreover, new field data provide new information on pre-rift structure: while only the topmost thrust sheet of the Hellenide nappe stack (Pindos Unit) was thought to crop out at the eastern southern onshore part, we mapped the underlying, non-metamorphic carbonate Unit (Tripolis Unit), which crops out within the footwall of a key intra-basin block (Xylokastro block). A minor outcrop further east, may also belong to this Unit, providing basement control, in connection with recently published offshore fault data. The mapping of these outcrops, combined with a revised stratigraphical framework for the early syn-rift deposits, allows the identification and mapping of faults

  17. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  18. Investigation of rifting processes in the Rio Grande Rift using data from unusually large earthquake swarms

    SciTech Connect

    Sanford, A.; Balch, R.; House, L.; Hartse, H.

    1995-12-01

    San Acacia Swarm in the Rio Grande Rift. Because the Rio Grande rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to explore the active tectonic processes within continental rifts. We have been studying earthquake swarms recorded near Socorro in an effort to link seismicity directly to the rifting process. For FY94, our research has focused on the San Acacia swarm, which occurred 25 km north of Socorro, New Mexico, along the accommodation zone between the Albuquerque-Belen and Socorro basins of the central Rio Grande rift. The swarm commenced on 25 February 1983, had a magnitude 4.2 main shock on 2 March and ended on 17 March, 1983.

  19. 3D Dynamics of Oblique Rift Systems: Fault Evolution from Rift to Break-up

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2014-12-01

    Rift evolution and passive margin formation has been thoroughly investigated using conceptual and numerical models in two dimensions. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, the majority of rift systems that lead to continental break-up during the last 150 My involved moderate to high rift obliquity. Yet, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Even though the model setup is very simple (horizontally layered, no inherited faults), its evolution exhibits a variety of fault orientations that are solely caused by the interaction of far-field stresses with rift-intrinsic buoyancy and strength. Depending on rift obliquity, these orientations involve rift-parallel, extension-orthogonal, and intermediate normal fault directions as well as strike-slip faults. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Model results are in very good agreement with inferences from the well-studied Gulf of Aden and provide testable predictions for other rifts and passive margins worldwide.

  20. Rapid spatio-temporal variations in rift zone deformation, Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey; McNeill, Lisa; Bull, Jonathan; Henstock, Timothy; Bell, Rebecca; Gawthorpe, Robert; Christodoulou, Dimitris; Kranis, Haris; Ferentinos, George; Papatheodorou, George; Taylor, Brian; Ford, Mary; Sakellariou, Dimitris; Leeder, Mike; Collier, Richard; Goodliffe, Andrew; Sachpazi, Maria

    2015-04-01

    The Gulf of Corinth is a young and highly active rift (<5 Ma) in its initial stages of development. An abundance of marine geophysical data and onshore exposures makes it an ideal case study for investigating early rift and fault development. Using a high resolution chronstratigraphic and rift fault model we investigate along strike variations in the basin development within the rift over the past 1-2 Myr and establishing a history of fault activity on major basin controlling faults, at temporal resolutions of ca. 100 kyr or less. We focus on variations in depocentre development and the distribution of displacement and faulting along and across the rift axis; focussing on the partitioning of deformation between N-dipping and S-dipping faults. The rift basin geometry has a complex history and varies spatially along strike of the rift. We highlight a major change in rift structure ca. 600 ka, changing from a complex rift zone to a uniform asymmetric graben. Syn-rift isochore maps identify two stages that accommodate this change: 1. a switch in rift polarity from a dominant N-thickening depocentre to a dominant S-thickening depocentre between ca. 620-420 ka (a rapid change in rift structure and strain distribution). This change is accommodated by transfer of activity between major faults but also by formation of numerous non-basement cutting small faults. 2. Progressive localization of deformation onto major N-dipping faults on the rift's southern margin. This is characterised by depocentre growth and linkage and increased activity on major N-dipping faults since ~340 ka, with faults becoming kinematically and geometrically linked with almost equal slip rates along strike by ca. 130 ka. Ultimately our results show that the early evolution of a rift fault network can be complex but that a dominant fault set eventually forms even in the earliest stages of rifting. Furthermore a switch in rift polarity is a progressive process with deformation becoming distributed before

  1. Iowa portion of rift trend hosts wildcats

    SciTech Connect

    McCaslin, J.C.

    1984-05-07

    Definite signs point to an exploratory effort beginning at the far southwestern end of Iowa's Keweenawan rift - a new frontier for oil and gas hunters. This new round of wildcatting is located on the Midcontinent rift trend, a major geological feature extending to great depths under parts of Michigan, Wisconsin, Minnesota (the Keweenawan rift system), Iowa, Nebraska, Missouri, and Kansas. Recent reports hint that leasing is underway in Minnesota, with interest developing in Iowa, Missouri, and Nebraska sectors. Geophysical evidence has led to the delineation of a rift system active during the Proterozoic Y era. Geologists have traced this system by the Midcontinent gravity high and corresponding aeromagnetic signature from the surface exposure of the Keweenawan supergroup in the Lake Superior basin southwest in the subsurface through the northern Midcontinent states.

  2. Discussion of Continental Rifts and Their Structure

    NASA Astrophysics Data System (ADS)

    Gilbert, M. C.

    2011-12-01

    When continental crust rifts, two chief modifications of that crust occur: 1)stretching of older, existing crust; 2)addition of new rift mass--sediments and mantle mafic units. However, paleorifts, such as the Cambrian Southern Oklahoma Aulacogen differ from neorifts, such as the East African. Much of this difference may be reflected in the nature of the lower rift crust. Stretching of the upper crust is accomplished primarily through faulting while the lower crust flows. Concurrently addition of sediments occurs in downdropped faulted blocks in the upper crust, and of mafic magmas risen and emplaced as intrusive layered complexes through the rift and as extrusive flows. All this happens in a regime of higher temperatures and higher heat flow. Consequences of this can include either melting of the stretched existing crust, or direct fractionation of rising mafic magma or melting of already crystallized mafic complexes, forming new silicic magmas. Geochemistry of these different magmatic bodies elucidates which of these possible processes seems dominant. Most geophysical studies of rifts have two results: 1)higher gravity anomalies indicating addition of new mafic masses, usually interpreted to be concentrated in the upper rift crust; and 2)seismic characteristics indicating crustal mottling and layering of the upper rift crust. What is not clearly indicated is nature of the lower crust, and of the mantle-crust contact (M discontinuity). Comparison of paleorifts and neorifts, and later geological history of paleorifts, suggests interesting interpretations of lower rift crust,especially in paleorifts, and some of the difficulties in sorting out answers.

  3. The 1974 Ethiopian rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P.

    1977-01-01

    The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.

  4. Surface deformation in volcanic rift zones

    NASA Astrophysics Data System (ADS)

    Pollard, David D.; Delaney, Paul T.; Duffield, Wendell A.; Endo, Elliot T.; Okamura, Arnold T.

    1983-05-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation.

  5. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  6. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  7. Drilling to Resolve the Evolution of the Corinth Rift

    NASA Astrophysics Data System (ADS)

    McNeill, Lisa; Sakellariou, Dimitris; Nixon, Casey

    2014-05-01

    The initiation and evolution of continental rifting, ultimately leading to rifted margin and ocean basin formation, are major unanswered questions in solid Earth-plate tectonics. Many previous insights have come from mature rifted margins where activity has ceased or from computer models. The Gulf of Corinth Rift in central Greece presents an ideal laboratory for the study of young, highly active rifting that complements other rift zones (e.g., the East African and Gulf of California rifts). Exposure and preservation of syn-rift stratigraphy, high rates of extension, and an existing network of offshore seismic data offer a unique opportunity to constrain the rift history and basin development at exceptionally high resolution in the Gulf of Corinth.

  8. Dynamics of continental rift propagation: the end-member modes

    NASA Astrophysics Data System (ADS)

    Van Wijk, J. W.; Blackman, D. K.

    2005-01-01

    An important aspect of continental rifting is the progressive variation of deformation style along the rift axis during rift propagation. In regions of rift propagation, specifically transition zones from continental rifting to seafloor spreading, it has been observed that contrasting styles of deformation along the axis of rift propagation are bounded by shear zones. The focus of this numerical modeling study is to look at dynamic processes near the tip of a weak zone in continental lithosphere. More specifically, this study explores how modeled rift behavior depends on the value of rheological parameters of the crust. A three-dimensional finite element model is used to simulate lithosphere deformation in an extensional regime. The chosen approach emphasizes understanding the tectonic forces involved in rift propagation. Dependent on plate strength, two end-member modes are distinguished. The stalled rift phase is characterized by absence of rift propagation for a certain amount of time. Extension beyond the edge of the rift tip is no longer localized but occurs over a very wide zone, which requires a buildup of shear stresses near the rift tip and significant intra-plate deformation. This stage represents a situation in which a rift meets a locked zone. Localized deformation changes to distributed deformation in the locked zone, and the two different deformation styles are balanced by a shear zone oriented perpendicular to the trend. In the alternative rift propagation mode, rift propagation is a continuous process when the initial crust is weak. The extension style does not change significantly along the rift axis and lengthening of the rift zone is not accompanied by a buildup of shear stresses. Model predictions address aspects of previously unexplained rift evolution in the Laptev Sea, and its contrast with the tectonic evolution of, for example, the Gulf of Aden and Woodlark Basin.

  9. The offshore East African Rift System: Structural framework at the toe of a juvenile rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Estevão. Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2015-10-01

    The Cenozoic East African Rift System (EARS) extends from the Red Sea to Mozambique. Here we use seismic reflection and bathymetric data to investigate the tectonic evolution of the offshore branch of the EARS. The data indicate multiple and time transgressive neotectonic deformations along ~800 km of the continental margin of northern Mozambique. We observe a transition from a mature rift basin in the north to a juvenile fault zone in the south. The respective timing of deformation is derived from detailed seismic stratigraphy. In the north, a ~30 km wide and more than 150 km long, N-S striking symmetric graben initiated as half-graben in the late Miocene. Extension accelerated in the Pliocene, causing a continuous conjugate border fault and symmetric rift graben. Coevally, the rift started to propagate southward, which resulted in a present-day ~30 km wide half-graben, approximately 200 km farther south. Since the Pleistocene, the rift has continued to propagate another ~300 km, where the incipient rift is reflected by subrecent small-scale normal faulting. Estimates of the overall brittle extension of the matured rift range between 5 and 12 km, with an along-strike southward decrease of the extension rate. The offshore portion of the EARS evolves magma poor, similar to the onshore western branch. The structural evolution of the offshore EARS is suggested to be related to and controlled by differing inherited lithospheric fabrics. Preexisting fabrics may not only guide and focus extension but also control rift architecture.

  10. Seismic reflectivity and magmatic underplating beneath the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Thybo, H.; Maguire, P. K. H.; Birt, C.; Perchuć, E.

    2000-09-01

    The lower crust around the Kenya Rift is generally reflective in wide-angle seismic sections. Remarkably, high amplitude reflections of low frequency originate from underneath the rift, whereas weaker reflections of high frequency prevail from outside the rift. This indicates thicker layering and larger reflection coefficients in the lower crust beneath the rift than outside it. Petrologically, magmatic intrusions are compatible with the thick layering beneath the rift axis, and the associated large reflection coefficients are indicative of their cumulate layering and fractionation. Hence, the observed thinning of the crust below the rift may be substantially less than the real mechanical thinning due to the addition of intrusive or underplated material.

  11. Rift initiation with volatiles and magma

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia; Muirhead, James; Roecker, Steve; Tiberi, Christel; Muzuka, Alfred; Ferdinand, Rrichard; Mulibo, Gabrile; Kianji, Gladys

    2015-04-01

    Rift initiation in cratonic lithosphere remains an outstanding problem in continental tectonics, but strain and magmatism patterns in youthful sectors of the East African rift provide new insights. Few teleseisms occur in the Eastern rift arm of the East African rift system, except the southernmost sector in northern Tanzania where extension occurs in Archaean lithosphere. The change in seismic energy release occurs over a narrow along-axis zone, and between sectors with and without volcanoes in the central rift valley. Are these differences in strain behavior indicative of along-strike variations in a) rheology; b) strain transfer from border faults to magma intrusion zones; c) dike vs fault slip; and/or d) shallow vs deep magma chambers? We present time-space relations of seismicity recorded on a 38-station array spanning the Kenya-Tanzania border, focal mechanisms for the largest events during those time periods, and compare these to longer-term strain patterns. Lower crustal seismicity occurs along the rift length, including sectors on and off craton, and those with and without central rift valley volcanoes, and we see no clear along-strike variation in seismogenic layer thickness. One explanation for widespread lower crustal seismicity is high gas pressures and volatile migration from active metasomatism of upper mantle and magma degassing, consistent with very high volatile flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Seismicity patterns indicate strain (and fluid?) transfer from the Manyara border fault to Gelai shield volcano (faulting, diking) via Oldoinyo Lengai volcano. Our focal mechanisms and Global CMTs from an intense fault-dike episode (2007) show a local, temporally stable, rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with longer term patterns recorded in vent and eruptive

  12. InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.; Wright, Tim J.; Calais, Eric; Lewi, Elias; Fukahata, Yukitoshi

    2014-04-01

    Increased displacement rates have been observed following manylarge earthquakes and magmatic events. Although an order of magnitude smaller than the displacements associated with the main event, the post-seismic or post-rifting deformation may continue for years to decades after the initial earthquake or dyke intrusion. Due to the rare occurrence of subaerial rifting events, there are very few observations to constrain models of post-rifting deformation. In 2005 September, a 60-km-long dyke was intruded along the Dabbahu segment of the Nubia-Arabia Plate boundary (Afar, Ethiopia), marking the beginning of an ongoing rifting episode. Continued activity has been monitored using satellite radar interferometry and data from global positioning system instruments deployed around the rift in response to the initial intrusion. Using multiple satellite passes, we are able to separate the rift perpendicular and vertical displacement fields around the Dabbahu segment. Rift perpendicular and vertical rates of up to 180 and 240 mm yr-1, respectively. Here, we show that models of viscoelastic relaxation alone are insufficient to reproduce the observed deformation field and that a large portion of the observed signal is related to the movement of magma within the rift segment. Our models suggest upper mantle viscosities of 1018-19 Pa s overlain by an elastic crust of between 15 and 30 km. To fit the observations, inflation and deflation of magma chambers in the centre of the rift and to the south east of the rift axis is required at rates of ˜0.13 and -0.08 km3 yr-1.

  13. Off rift and on rift volcanism along the southern most extremity of the Reykjanes Ridge.

    NASA Astrophysics Data System (ADS)

    Hoskuldsson, Armann; Martinez, Fernando; Hey, Richard

    2014-05-01

    In August-September 2013 R/V Marcus G Langseth conducted a geophysical survey of the southern Reykjanes Ridge and flanks to the Bight transform fault including the first orthogonally spreading segment to the south. The objectives were to better understand how the Reykjanes Ridge replaced the earlier transform fault-dominated structure. The survey acquired full-coverage multibeam bathymetry of some 90,000 km2 and acoustic backscatter imagery and coincident gravity and magnetic profiles. The Rift axis of the RR is defined by a rift valley, striking 36° NE, and deepens from N to S towards the Bight transform fault. Volcanism along the rift axis is characterized by en-echelon volcanic ridges striking 14°NE and rising some 400-1000 m above the valley floor, single circular volcanic sea mounts 400-600 m high, lava flow sheets and craters. Fissures and faults are not very prominent with in the rift valley. However, at both sides bounding the rift valley, fissure, faults and uplifting of the crust is a dominant feature. Surprisingly numerous volcanic edifices are observed on the faulted crust drifting away from the plate boundary. Further these volcanic edifices do not all show any faulting and have cone shape forms, indicating more explosive activity than within the rift. The volcanic edifices range in size from 2-3 km at the base to some hundreds of meters. Backscatter analysis shows that in general the volcanic edifices have higher values than the surrounding basement. These vents are observed as far as 100 km from the rifting center. High backscatter along with little or no faulting indicates that these off rift volcanic vents are younger than the basement they are resting on, thus manifesting that volcanism is not solely confined to the active rift boundary in the area. The segment south of Bight transform fault is highly dotted by these off rift volcanic vents

  14. Tectono-Sedimentary Analysis of Rift Basins: Insights from the Corinth Rift, Greece

    NASA Astrophysics Data System (ADS)

    Gawthorpe, Robert; Ford, Mary

    2015-04-01

    Existing models for the tectono-sedimentary evolution of rift basins are strongly linked the growth and linkage of normal fault segments and localization of fault activity. Early stages of faulting (rift initiation phase) are characterized by distributed, short, low displacement fault segments, subdued fault-related topography and small depocentres within which sedimentation keeps pace with subsidence. Following linkage and displacement localization (rift climax phase), deformation if focused onto major, crustal-scale fault zones with kilometre-scale displacement. These major faults generate pronounced tilted fault-block topography, with subsidence rates that outpace sedimentation causing a pronounced change to deep-water deposition. Such models have been successful in helping to understand the gross structural and sedimentary evolution of rift basins, but recent work has suggested that pre-existing structures, normal fault interaction with pre-rift salt and antecedent drainage systems significantly alter this initiation-to-climax perspective of rift basin development. The E-W-striking, Pliocene-Pleistocene Corinth rift, central Greece, is an excellent natural laboratory for studying the tectono-sedimentary evolution of rift basins due to its young age, excellent onshore exposure of syn-rift structure and stratigraphy and extensive offshore seismic data. The rift cuts across the NW-SE-striking Hellenide mountain belt and has migrated northward and westward during its evolution. The Hellenide mountain belt significantly influences topography and drainage in the west of the rift. High topography and large antecedent drainage systems, focused along palaeovalleys, provided high sediment flux to NE-flowing alluvial systems that overfilled early-rift depocentres. Further east, away from the main antecedent drainage networks, contemporaneous deposits comprise deep-lacustrine turbidite channel and lobe complexes and basinal marls. Thus the stratigraphic expression within

  15. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  16. Earthquake clusters in Corinth Rift

    NASA Astrophysics Data System (ADS)

    Mesimeri, Maria; Papadimitriou, Eleftheria; Karakostas, Vasilios; Tsaklidis, George

    2013-04-01

    Clusters commonly occur as main shock-aftershock (MS-AS) sequences but also as earthquake swarms, which are empirically defined as an increase in seismicity rate above the background rate without a clear triggering main shock earthquake. Earthquake swarms occur in a variety of different environments and might have a diversity of origins, characterized by a high b-value in their magnitude distribution. The Corinth Rift, which was selected as our target area, appears to be the most recent extensional structure, with a likely rate of fault slip of about 1cm/yr and opening of 7mm/yr. High seismic activity accommodates the active deformation with frequent strong (M≥6.0) events and several seismic excitations without a main shock with clearly discriminative magnitude. Identification of earthquake clusters that occurred in this area in last years and investigation of their spatio-temporal distribution is attempted, with the application of known declustering algorithms, aiming to associate their occurrence with certain patterns in seismicity behavior. The earthquake catalog of the National Hellenic Seismological Network is used, and a certain number of clusters were extracted from the dataset, with the MS-AS sequences being distinguished from earthquake swarms. Spatio-temporal properties of each subset were analyzed in detail, after determining the respective completeness magnitude. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non-extensive statistical physics - Application to the geodynamic system of the Hellenic Arc, SEISMO FEAR HELLARC".

  17. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  18. Submarine thermal springs on the Galapagos Rift

    USGS Publications Warehouse

    Corliss, J.B.; Dymond, J.; Gordon, L.I.; Edmond, J.M.; Von Herzen, R. P.; Ballard, Richard D.; Green, K.; Williams, D.; Bainbridge, A.; Crane, K.; Van Andel, T. H.

    1979-01-01

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis

  19. Submarine thermal sprirngs on the galapagos rift.

    PubMed

    Corliss, J B; Dymond, J; Gordon, L I; Edmond, J M; von Herzen, R P; Ballard, R D; Green, K; Williams, D; Bainbridge, A; Crane, K; van Andel, T H

    1979-03-16

    The submarine hydrothermal activity on and near the Galápagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new oceanic lithosphere at the Galápagos Rift in the first million years may be vented from thermal springs, predominantly along the axial ridge within the rift valley. The vent areas are populated by animal communities. They appear to utilize chemosynthesis by sulfur-oxidizing bacteria to derive their entire energy supply from reactions between the seawater and the rocks at high temperatures, rather than photosynthesis. PMID:17776033

  20. Crustal extension in the Baikal rift zone

    USGS Publications Warehouse

    Zorin, Yu; Cordell, L.

    1991-01-01

    Analysis of the gravity field along four profiles crossing the Baikal rift zone permits an estimate of the amount of anomalous mass produced by 1. (1) graben-fill sediments, 2. (2) Moho uplift and intrusion of mantle sills and dikes, 3. (3) an asthenospheric bulge. Crustal extension is evaluated based on the idea of mass and volume balance of material introduced into and removed from the initial volume of the crust. Extension in the Baikal rift increases southwestward from 0.9 km in the Chara depression to 19.3 km in the South Baikal depression. These values generally agree with the position of the Euler pole determined from seismic data (fault plane solutions). Average rotation velocity for the lithospheric plates separated by the rift zone is estimated to be 5.93 ?? 10-4 rad/m.y. over about 30 m.y. ?? 1991.

  1. Variation in styles of rifting in the Gulf of California.

    PubMed

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism. PMID:17653189

  2. Thermomechanical models of the Rio Grande rift

    SciTech Connect

    Bridwell, R.J.; Anderson, C.A.

    1980-01-01

    Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

  3. The Offshore East African Rift System

    NASA Astrophysics Data System (ADS)

    Franke, D.; Klimke, J.; Jokat, W.; Stollhofen, H.; Mahanjane, S.

    2014-12-01

    Numerous studies have addressed various aspects of the East African Rift system but surprisingly few on the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. The most prominent article has been published almost 30 years ago by Mougenot et al. (1986) and is based on vintage seismic data. Several studies investigating earthquakes and plate motions from GPS measurements reveal recent deformation along the offshore branch of the East African Rift system. Slip vectors from earthquakes data in Mozambique's offshore basins show a consistent NE direction. Fault plane solutions reveal ~ E-W extensional failure with focal depth clustering around 19 km and 40 km, respectively. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The modern rift system obviously reactivates structures from the disintegration of eastern Gondwana. During the Jurassic/Cretaceous opening of the Somali and Mozambique Basins, Madagascar moved southwards along a major shear zone, to its present position. Since the Miocene, parts of the shear zone became reactivated and structurally overprinted by the East African rift system. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of recent extensional deformation. Bathymetry data shows that it deepens northwards, with approximately 700 m downthrown on the eastern shoulder. The graben can be subdivided into four subbasins by crosscutting structural lineaments with a NW-SE trend. Together with the N-S striking graben-bounding faults, this resembles a conjugate fault system. In seismic reflection data normal faulting is distinct not only at the earthquake epicenters. The faults cut through the sedimentary successions and typically reach the seafloor, indicating ongoing recent deformation. Reference: Mougenot, D., Recq, M., Virlogeux, P., and Lepvrier, C., 1986, Seaward extension of the East

  4. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  5. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  6. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect

    Winn, R.D. Jr.; Steinmetz, J.C. ); Kerekgyarto, W.L. )

    1993-11-01

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  7. The Midcontinent Rift and Grenville connection

    SciTech Connect

    Cambray, F.W.; Fujita, K. . Dept. of Geological Sciences)

    1994-04-01

    The Mid-Proterozoic, Midcontinent Rift System (MRS) is delineated by an inverted U shaped gravity and magnetic anomaly. It terminates in southeast Michigan but a less continuous series of anomalies and sediments, the Eastcontinent Rift occur on a north-south line through Ohio and Kentucky. The geometry allows for a north-south opening, the Lake Superior section being orthogonal to opening, the western arm transtensional and the north-south trending eastern arm a transform boundary offset by pull-apart basins. The opening and closing of the rift overlaps in time with the Grenville Orogeny. Grenville age rocks can also be found in the Llano uplift of Texas. The authors propose a model to explain the temporal and geographic association of the opening and closing of the MRS with the Grenville Orogeny that involves irregular suturing between two continental masses. Initiation of Grenville suturing, associated with south dipping subduction, in the northeast and in the Llano area of Texas would leave portion of unclosed ocean in between. Tensional stresses in the continental crust adjacent to the oceanic remnant could lead to its fragmentation and the formation of the MRS. The remaining oceanic lithosphere would eventually subduct, limiting the opening of the MRS. Continued convergence of the plates would induce compressional stresses thus accounting for the deformation of the MRS. An analogy is made with more recent opening of the Red Sea, Gulf of Aden Rift System in association with irregular collision along the Zagros-Bitlis Sutures.

  8. Molecular Rift: Virtual Reality for Drug Designers.

    PubMed

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub. PMID:26558887

  9. Diagnostic approaches for Rift Valley Fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  10. Magma-assisted rifting in Ethiopia.

    PubMed

    Kendall, J-M; Stuart, G W; Ebinger, C J; Bastow, I D; Keir, D

    2005-01-13

    The rifting of continents and evolution of ocean basins is a fundamental component of plate tectonics, yet the process of continental break-up remains controversial. Plate driving forces have been estimated to be as much as an order of magnitude smaller than those required to rupture thick continental lithosphere. However, Buck has proposed that lithospheric heating by mantle upwelling and related magma production could promote lithospheric rupture at much lower stresses. Such models of mechanical versus magma-assisted extension can be tested, because they predict different temporal and spatial patterns of crustal and upper-mantle structure. Changes in plate deformation produce strain-enhanced crystal alignment and increased melt production within the upper mantle, both of which can cause seismic anisotropy. The Northern Ethiopian Rift is an ideal place to test break-up models because it formed in cratonic lithosphere with minor far-field plate stresses. Here we present evidence of seismic anisotropy in the upper mantle of this rift zone using observations of shear-wave splitting. Our observations, together with recent geological data, indicate a strong component of melt-induced anisotropy with only minor crustal stretching, supporting the magma-assisted rifting model in this area of initially cold, thick continental lithosphere. PMID:15650736

  11. The 1973 Ethiopian-Rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    Remeasurement of the Adama, Lake Langana, and Arba Minch (Lake Margherita) geodimeter networks in 1973 has enabled Mohr's interpretation concerning possible surface ground deformation in the Ethiopian rift to be considerably developed. Extension appears to have occurred across the Mojjo-Adama horst at a rate of about 1 cm yr/1. The opposing rims of the Adama graben have not moved significantly relative to one another (between 1969 and 1973), but stations on the sliced graben floor show possible movement with a large rift-trend component. In the Wolenchiti quadrilateral, significant movement of station RABBIT is confirmed, but the radical change of vector (that of 1970-1971 to that of 1971-1973) casts doubt on a tectonic cause and seems to indicate that stations on steep hillslopes are liable to be unstable. South of the quadrilateral and east of the Adama graben, alternating rift-trend zones of extension and shortening appear to coexist. In the Lake Langana network, significant movements of the order of 0.5 cm yr/1 are directed perpendicular to the rift floor faulting.

  12. Prediction of a Rift Valley fever Outbreak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using satellite measurements to detect elevated sea surface temperatures (SSTs) and subsequent elevated normalized difference vegetation index (NDVI) data in Africa, we predicted an outbreak of Rift Valley fever (RVF) in humans and animals in the Horn of Africa during September 2006-May 2007. We det...

  13. Rift Valley fever: A neglected zoonotic disease?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a serious viral disease of animals and humans in Africa and the Middle East that is transmitted by mosquitoes. First isolated in Kenya during an outbreak in 1930, subsequent outbreaks have had a significant impact on animal and human health, as well as national economies. ...

  14. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  15. Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice

    2016-04-01

    Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled

  16. Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Park, Munjae; Jung, Haemyeong; Kil, Youngwoo

    2015-04-01

    Mantle-derived xenoliths associated with continental rifting can provide important information about the mantle structure and the physicochemical properties of deformation processes in the upper mantle. Metasomatized spinel peridotites from Adam's Diggings (AD) at a rift shoulder and Elephant Butte (EB) at a rift axis in the Rio Grande rift (RGR) were investigated to understand the deformation processes and seismic anisotropy occurring in the upper mantle. As determined through analysis of the lattice preferred orientation (LPO) of olivine by using a scanning electron microscope equipped with electron backscatter diffraction (SEM/EBSD), AD peridotites exhibited C-type LPO of olivine indicating a dominant slip system of (100)[001] at the rift shoulder, whereas EB peridotites exhibited A-type LPO indicating a dominant slip system of (010)[100] at the rift axis. Both geochemical data and microstructural observations indicate that the localized mantle enrichment processes, including melts with hydrous fluids, controlled multiple mantle metasomatisms and deformation of rocks under wet conditions (with olivine C-type LPO) at the rift shoulder (AD), whereas mantle depletion by decompression partial melting caused deformation of rocks under dry conditions (with olivine A-type LPO) at the rift axis (EB). These observations provide evidence for localized hydration and physicochemical heterogeneity of the upper mantle in the Rio Grande rift (RGR) zone. Seismic anisotropy observed beneath this zone can be attributed to the transtensional rupture, such as inhomogeneous stretching, and the petrofabrics of olivine beneath the study area.

  17. Structural inheritance, segmentation, and rift localization in the Gulf of Aden oblique rift

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Leroy, Sylvie; Autin, Julia; d'Acremont, Elia; Razin, Philippe; Husson, Laurent; Pik, Raphael; Watremez, Louise; Baurion, Celine; Beslier, Marie-Odile; Khanbari, Khaled; Ahmed, Abdulhakim

    2013-04-01

    The structural evolution of the Gulf of Aden passive margins was controlled by its oblique divergence kinematics, inherited structures, and the Afar hot spot. The rifting between Arabia and Somalia started at 35 Ma just before the hot spot paroxysm (at 30Ma) and lasted until 18Ma, when oceanic spreading started. Fieldwork suggests that rift parallel normal faults initiated in the (future) distal margins, after a first stage of distributed rifting, and witness the rift localization, as confirmed by 4-layer analogue models. These faults arise either from crust or lithosphere scale buoyancy forces that are strongly controlled by the mantle temperature under the influence of the Afar hot spot. This implies a transition from a distributed mode to a localized one, sharper, both in space and time, in the West (close to the hot spot) than in the East (far away from the hot spot). In this framework, first order transform F.Z. are here (re-) defined by the fact that they deform continental crust. In the Gulf of Aden, as well as in other continental margins, it appears that these F.Z. are often, if not always, located at continental transfer or "transform" fault zones. Our detailed field-study of an offshore transfer fault zone in the southeastern Gulf of Aden (Socotra Island) shows that these structures are long-lived since early rifting until post rift times. During the early rifting, they are inherited structures reactivated as oblique normal faults before accommodating strike-slip motion. During the Ocean-Continent Transition (OCT) formation ("post syn-rift" times), a significant uplift occurred in the transfer fault zone footwall as shown by stratigraphic and LT thermochronology data. Second order transform F.Z. are defined as deforming only the OCT, thus initiated at the moment of its formation. In the western Gulf of Aden, the hot spot provoked a rift localization strongly oblique to the divergence and, as a consequence, several second order transform F.Z. formed (as

  18. At the tip of a propagating rift - The offshore East African Rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2016-04-01

    Numerous studies have addressed various aspects of the East African Rift system (EARS) but surprisingly few the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of sub-recent extensional deformation. The seismic reflection data reveals that recent normal faulting often utilizes preexisting, deeply buried half-graben structures which likely are related to the formation of the Somali Basin. The ~30 km wide and ~150 km long symmetric graben is in a stage where the linkage of scattered normal faults already did happen, resulting in increased displacement and accommodation of most of the extension across the basin. However, deep earthquakes below the rift indicate a strong and still preserved lithospheric mantle. Extension is becoming diffuse where an onshore suture, subdividing the northern from the southern metamorphic basement onshore Mozambique, is closest to the offshore rift. It appears likely that this suture is the origin for the variation in rifting style, indicating that mantle fabric resulting from a Cambrian collision has been preserved as mechanical anisotropy of the lithospheric mantle. Further south the rift focuses in an about 30 km wide half-graben. An important finding is that the entire offshore branch of the EARS lacks significant volcanism. Along the offshore EARS there are only negligible indications for recent volcanism in the reflection seismic data such as sills and dikes. Apparently the "Comoros mantle plume" (French and Romanowicz, 2015) has a very minor influence on the progressive extensional deformation along the northern Mozambique continental margin, leading eventually to breakup sometimes in the future. Combining structural with earthquake data reveals that the magma

  19. Forensic investigation of rift-to-drift transitions and volcanic rifted margins birth

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Hertogen, J.

    2008-12-01

    Volcanic rifted margins (VRM) reflect excess magmatism generated during the rift-to-drift transition of a continental rift system evolving into a Mid-Ocean Ridge (MOR). As a result many VRM (e.g. NAIP and CAMP) are recognized as Large Igneous Provinces (LIP). The prominent structural characteristics of VRM are Continental Flood Basalts, High-Velocity Lower Crustal bodies (HVLC) and Seaward Dipping Reflector Sequences (SDRS). However, the causes of these anomalously high eruption rates and magma volumes are presently poorly understood. Controversial issue opinions are based on two competing hypotheses: 1) Mantle plume related mechanisms where the excess magmatism results from elevated mantle temperatures; and 2) Rift induced small scale convection processes causing temperature anomalies and enhancing the mantle rock flux through the melt window. Largely because of difficulties to sample oceanic basement at VRM -due to thick sediment covers- the composition of rift-to-drift transition magmas is generally poorly constrained. We reviewed the geodynamic histories and magma compositions from well known VRM (e.g. NE Australia, E USA, Madagascar) and compared these data with own geochemical data from different NE Atlantic tectono-magmatic VRM zones. These comparisons point to a consistent, general VRM formation model. This model has to explain the primary observation, that geological long periods of extension have been reported -in all investigated VRM areas- prior to the breakup. Extensional far field stress looks to be the main geodynamic cause for continental breakup. Small scale convection during the late phase of a continental rift system is probably the key process generating excess magmatism in LIP related to rift-to-drift transitions.

  20. Heat flow in the Keweenawan rift system

    NASA Astrophysics Data System (ADS)

    Perry, C.; Mareschal, J.; Jaupart, C. P.

    2012-12-01

    The emplacement of large volumes of mafic volcanic rocks during the Keweenawan rifting has modified the average crustal composition and affects the present steady state heat flux in the region. We have combined new heat flux measurements in the Superior Province of the Canadian Shield and previously published data to characterize the heat flux field around the Keweenawan rift system. For the Nipigon embayment, North of lake Superior in Ontario, mafic intrusions associated with the Keweenawan rifting have resulted in an increase in the volume of mafic rocks in the crust and caused a very small <3mW m-2 decrease in the mean heat flux. There is a very marked decrease in the heat flux (Δ Q ≈ 20mW m-2) beneath the western half of Lake Superior and to the west. The very low values of the surface heat flux (≈ 22mW m-2 correlate with the maximum Bouguer gravity anomaly. The heat flux at the base of the crust in the Canadian Shield has been determined from surface heat flux, heat production, and crustal stucture to be ≈ 15 mW m-2. In the Keweenawan rift, the surface heat flux is only a few mW m-2 higher than the mantle heat flux, which implies that the contribution of the entire crustal column to the surface heat flux is small and that the crust is exclusively made up of depleted mafic volcanic rocks. In the eastern part and northeast of Lake Superior, there is a marked increase in heat flux that correlates with a lower Bouguer anomaly. Local high heat flux anomalies due to intrusions by felsic rocks are superposed with a long wavelength trend of higher heat flow suggesting a more felsic crustal composition in the eastern part of the Keweenawan rift. Simple models suggest that such a thick dense volcanic pile as accumulated in the Keweenawan rift is almost invariably unstable and that very particular conditions were required for it to stabilize in the crust.

  1. Controls on (anomalous) topography in rifted margin settings

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.

    2015-04-01

    Contrasting end members of volcanic and non-volcanic passive margin formation show a large variability in basin shape and structure, subsidence history, and associated topographic evolution of the onshore rifted margins. The large range of structural style and associated topography of these systems imply a strong variability in the underlying thermo-mechanical conditions at the time of rifting. Rift - passive margin styles ranging from narrow to ultra wide are explained using forward numerical models with varying rheological structure, with strong crust lithosphere leading to narrow rift formation associated with highly elevated rift shoulders and conversely weak crust lithosphere resulting in highly stretched wide rifted conjugate margins and little flank morphology. In some cases rifted margins appear to indicate the formation of anomalous post rift topography. A number of mechanisms including small-scale convective removal of the lower lithosphere, lithosphere counter-flow, and dynamic topography, have been invoked to explain the anomalous topography. Forward numerical models are used to predict the magnitude and characteristic topography associated with each of these mechanisms and to evaluate their potential for explaining these apparent anomalous characteristics of rifts and rifted margins.

  2. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect

    Keller, G.R. )

    1996-01-01

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  3. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect

    Keller, G.R.

    1996-12-31

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  4. The Role of Rift Obliquity During Pangea Fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  5. Rainfall and epizootic Rift Valley fever*

    PubMed Central

    Davies, F. G.; Linthicum, K. J.; James, A. D.

    1985-01-01

    Epizootic Rift Valley fever (RVF) has occurred in Kenya four times over the last 30 years. Widespread, frequent, and persistent rainfall has been a feature of these epizootic periods. A composite statistic, based upon measurements of these rainfall characteristics, is positive during periods of epizootic Rift Valley fever. The heavy rainfall raises the level of the water table in certain areas, flooding the grassland depressions (dambos) that are the habitat of the immature forms of certain ground-pool-breeding mosquitos of the genus Aedes. RVF virus is probably transmitted transovarially in these species, very large numbers of which emerge under these damp conditions. This is when clinical signs of the disease are first seen. PMID:3879206

  6. The North Polar Spur and Aquila Rift

    NASA Astrophysics Data System (ADS)

    Sofue, Yoshiaki

    2015-03-01

    Soft X-ray intensity at 0.89 keV along the North Polar Spur (NPS) is shown to follow the extinction law due to the interstellar gas in the Aquila Rift by analysing the ROSAT archival data, which proves that the NPS is located behind the rift. The Aquila-Serpens molecular clouds, where the X-ray optical depth exceeds unity, are shown to have a mean LSR velocity of v = 7.33 ± 1.94 km s-1, corresponding to a kinematic distance of r = 0.642 ± 0.174 kpc. Assuming a shell structure, a lower limit of the distance to NPS is derived to be 1.01 ± 0.25 kpc, with the shell centre being located farther than 1.1 kpc. Based on the distance estimation, we argue that the NPS is a Galactic halo object.

  7. Mesozoic and early Tertiary rift tectonics in East Africa

    NASA Astrophysics Data System (ADS)

    Bosworth, William

    1992-08-01

    A complex history of crustal extension occurred in east and central Africa during the Mesozoic and early Tertiary. Beginning in the Late Jurassic, this resulted in a large system of rifts, the Central African rift system, that spanned from central Sudan to southern Kenya. Late Jurassic rifting is best documented in the White and Blue Nile rifts of the Sudan, and records east-west extension in half-graben that were connected by large-scale shear zones and pull-apart basins. Early Cretaceous rifting re-activated Jurassic basins and spread to the large South Sudan rifts and Anza rift in Kenya. By the Late Cretaceous, the extension direction shifted to the NE-SW, and the presently observed large-scale rift geometry was established. In the early Tertiary, some Mesozoic basins were again reactivated, while other regions underwent wrench faulting and basin inversion. The large number of basins preserved in the Central African rift system can be used to construct an evolutionary model of continental rift tectonics. Early phases of extension at low strains produced alternating half-graben/accommodation zone geometries similar to those observed in most young and active continental rifts. At higher strains, some border faults were abandoned so that through-going, simpler active fault systems could evolve. This is interpreted as representing a switch from complex, oppositely dipping detachment structures, with strike dimensions of 50-150 km, to regional detachment structures that continue for hundreds of kilometers parallel to the rift. This change in the type of detachment was accompanied by a shift in the position of the subsidence away from the breakaway to a position focused further within the regional upper plate. Non-rotational, high angle, normal faulting dominates in the development of these late basin geometries. Deciphering similar rift basin histories from passive continental margins may, in many cases, exceed the limits of available reflection seismic data. East

  8. The Midcontinent rift system in Kansas

    SciTech Connect

    Berendsen, P. . Kansas Geological Survey)

    1993-03-01

    A sequence of rift-related mafic volcanic rocks, volcanoclastic-, and clastic sedimentary rocks are recognized in cuttings and cores from about seventy wells in Kansas. The age (1,097.5 Ma) for gabbro in the Poersch [number sign]1 well in northern Kansas, as well as the general petrographic characteristics of the sedimentary rocks throughout the area favors a correlation with established Keweenawan stratigraphy in the Lake Superior region. Rift-related northeast-trending faults and older northwest-trending faults divide the area up into a number of orthogonal fault blocks or basins. Depending upon the tectonic history of the individual basin all or part of the Keweenawan section may be preserved. It is believed that large amounts of Keweenawan clastic sedimentary rock were eroded from the nemaha uplift east of the central graben of the rift and transported in an easterly direction. Prior to deposition of Paleozoic rocks the area was peneplaned. Correlation of various stratigraphic units over any distance is complicated by tectonic activity occurring at several times during the Precambrian and Paleozoic. Stratabound or stratiform deposits can occur both in the Precambrian as well as the overlying Paleozoic rocks. The possibility of massive sulfides to occur in the mafic intrusive rocks must not be excluded. In the core from the Poersch [number sign]1 well sulfides are recognized in gabbroic sills or dikes. Dark, fissile shale, similar to the Nonesuch Shale in the [number sign]1--4 Finn well averages 0.75% organic carbon. Thermal maturation within the rift probably ranges from within the oil window to over maturity.

  9. Proterozoic Midcontinent Rift System, an overview

    SciTech Connect

    Kerr, S.D.; Landon, S.M.

    1992-01-01

    The Middle and Late Proterozoic Midcontinent Rift System (MRS) extends across the middle US, from Lake Superior through Wisconsin, Minnesota, Iowa and Nebraska into Kansas on the southwest limb and across upper and lower Michigan on the southeast limb. Exploration for oil and gas generated over 7,000 miles of seismic, a leasehold of near seven million acres, but only three test wells. The initial extension of the MRS was marked by filling with layered basalt. Thickness documented by GLIMPCE suggests crustal separation was nearly achieved. The thick dense basalts and thinned pre-rift crust provide high amplitude gravity anomalies which characterize the rift trend. Extension slowed and eventually ceased, creating a sag phase during which clastic sediments were deposited, including sapropelic shale and siltstone, fluvial sandstones and siltstones, and fluvial/alluvial conglomerates. Tectonic inversion to compressional and transpressional forces occurred late in rift history, possibly during part of the period of clastic fill. The MRS trend is highly segmented, with varied tectonic styles, suggesting complex stress systems in its development. The Nonesuch Formation is marine or lacustrine siltstone and shale containing sufficient organic matter to be an effective source rock for oil and gas. Similar facies have been identified along the extent of the western limb, in the subsurface in Minnesota, Iowa and Kansas. TOC values are as high as 3% and maturity ranges from peak oil to advanced. Surface seeps, fluid inclusions, mud log shows and modeling indicate the potential for multiple episodes of generation. Potential reservoir rocks have been identified and seals are present as lacustrine and fluvial shales and possible evaporites. The MRS remains a relatively unexplored frontier hydrocarbon province with giant field potential in the heart of North America.

  10. Seismotectonics of Reelfoot rift basement structures

    SciTech Connect

    Dart, R.L.; Swolfs, H.S. )

    1993-03-01

    Contour maps of the Precambrian basement surface show major northwest-trending structural features within the boundaries of the northeast-oriented Reelfoot rift. These northwest-trending features, southeast of New Madrid, Missouri, consist of a trough flanked on the northeast by a 2-km-high ridge. These features correlate with similar features on an updated depth-to-magnetic basement map. The boundary between the trough and the ridge slopes gently to the southwest. The upward projection of this boundary into the overlying Paleozoic strata may be expressed on a structure-contour map of the Cambrian rocks. The vertical relief of this boundary on the younger datum is inferred to be about 1 km. This Precambrian trough-ridge structure may correlate with a southwest dipping, west-northwest-striking normal fault inferred by Schwalb (1982) to offset rocks of the Cambrian-Ordovician Knox Megagroup that subcrop at the Paleozoic surface. Schwalb (1982) inferred 1.22 km of vertical relief on this fault near the bootheel of Missouri. The nature and significance of this tectonic-structural boundary is unclear, but at the top of the Precambrian basement rocks, it coincides with the southwestern terminus of the New Madrid seismic zone (NMSZ) near the end of the Blytheville arch in northeastern Arkansas. Since the mid-1970's, when instrumental recording began, some of the earthquakes in the NMSZ having the largest magnitudes occurred in this area. The authors working hypothesis is that this trough-ridge structural boundary may concentrate stress and/or may be a barrier that defines the southwestern limit of the seismically active axial fault zone in the rift. Future study will concentrate on improving the understanding of the influence of rift-bounding faults on the lateral extent of this structure, as well as constructing a tectonic stress model of seismically active rift faults and this trough-ridge structure.

  11. Westward drift, rift asymmetry and continental uplift

    NASA Astrophysics Data System (ADS)

    Doglioni, C.; Carminati, E.; Bonatti, E.

    2003-04-01

    Although not predicted by classic plate tectonics theory, the topography of ocean ridges and rifts show a distinct asymmetry, when depth is plotted both vs. distance from the ridge and square root of the age of the oceanic crust. The eastern sides of the East Pacific Rise, of the mid Atlantic ridge, of the NW Indian ridge are in average more elevated than the conjugate flank to the west and eastern sides show slower subsidence rates. A similar asymmetry can be observed across the Red Sea and Baikal rifts. We suggest that depleted and lighter asthenosphere generated by partial melting below the ocean ridges shifts 'eastward' relative to the lithosphere, determining a density deficit below the eastern flank. The 'eastward' migration of the lighter Atlantic asthenosphere under the African continent, could eventually have contributed to the anomalous post-rift uplift of Africa and explain the anomalously higher topography of Africa with respect to other continents. This model suggests that the 'westward' drift of the lithosphere relative to the underlying mantle might be a global phenomenon and not just a mean delay.

  12. Anomalous deep earthquakes beneath the East African Rift: evidence for rift induced delamination of the lithosphere?

    NASA Astrophysics Data System (ADS)

    Lindenfeld, Michael; Rümpker, Georg; Schmeling, Harro; Wallner, Herbert

    2010-05-01

    The over 5000 m high Rwenzori Mountains are situated within the western branch of the East African Rift System, at the border between Uganda and the Democratic Republic of Congo. They represent a basement block within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During 2006/2007 a network of 27 seismological stations was operated in this area to investigate crustal and upper mantle structure in conjunction with local seismicity. The data analysis revealed unexpectedly high microseismic activity. On average more than 800 events per month could be located with magnitudes ranging from 0.5 to 5.1. Hypocentral depths go as deep as 30 km with a pronounced concentration of activity at a depth of about 15 km. This presentation focuses on a cluster of seven earthquakes that were located at anomalous depths between 53 and 60 km. According to our present knowledge these are the deepest events so far observed within the EARS and the African Plate. Their origin might be connected to magmatic intrusions. However, the existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material close to the surface, which is not capable of seismogenic deformation. We think that these events are closely related to the evolution of the Rwenzoris. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere that is captured between two approaching rift segments. By numerical modelling we show that the RID-process is also able to bring material that is cold and brittle enough to release seismic energy into greater depth. Therefore the RID-mechanism gives a consistent explanation for the detected deep events as well as for the uplift of a mountain block in a rift setting.

  13. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  14. Kīlauea's Upper East Rift Zone: A Rift Zone in Name Only

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Fiske, R. S.

    2014-12-01

    Kīlauea's upper east rift zone (UERZ) extends ~3 km southeastward from the summit caldera to the Koáe fault system, where it starts to bend into the main part of the ENE-trending rift zone. The UERZ lacks a distinct positive gravity anomaly (though coverage is poor) and any evidence of deformation associated with magma intrusion. All ground ruptures—and the Puhimau thermal area—trend ENE, crossing the UERZ at a high angle. Lua Manu, Puhimau, and Kóokóolau craters are the only surface evidence of the UERZ. Yet the UERZ is seismically active, and all magma entering the rest of the rift zone must pass through it. Rather than a rift zone in the traditional sense, with abundant dikes and ground ruptures along its trend, the UERZ cuts across the ENE structural grain and serves only as a connector to the rest of the rift zone, not a locus of dike formation along its length. The UERZ probably developed as a consequence of gradual SSE migration of the active part of the main east rift zone at the trailing edge of the south flank. During migration, a connection to the summit reservoir complex must be maintained; otherwise, the middle and lower east rift zone would starve and magma from Kīlauea's summit reservoir complex would have to go elsewhere. Over time, the UERZ lengthened and rotated clockwise to maintain the connection. Near the caldera, the UERZ may be widening westward as the summit reservoir complex migrates southward from the center of the caldera to its present position. A layered stress regime results in the upper 2-3 km mimicking the pervasive ENE structural grain of most of Kīlauea, whereas the underlying magmatic part of the UERZ responds to stresses related to SE magma transport. Magma intruding upward from the connector forms a dike that follows the ENE structural grain, as during the 1974 eruption. The active east rift zone has been migrating since ~100 ka, estimated by applying a 700-y extension rate across the Koa'e fault system to the ~6.5 km

  15. Structural and stratigraphic evolution of the Anza rift, Kenya

    NASA Astrophysics Data System (ADS)

    Bosworth, William; Morley, Chris K.

    1994-09-01

    The Anza rift is a large, multi-phase continental rift basin that links the Lamu embayment of southern Kenya with the South Sudan rifts. Extension and deposition of syn-rift sediments are known to have commenced by the Neocomian. Aptian-Albian strata have, thus far, not been encountered during limited drilling campaigns and, in at least one well, are replaced by a significant unconformity. Widespread rifting occurred during the Cenomanian to Maastrichtian, and continued into the Early Tertiary. Marine waters appear to have reached the central Anza rift in the Cenomanian, and a second marine incursion may have occurred during the Campanian. As no wells have yet reached basement in the basinal deeps, the possibility exists that the Anza rift may have initiated in the Late Jurassic, in conjunction with extension to the south in the Lamu embayment and to the north in the Blue Nile rift of Sudan. Structural and stratigraphic evolution in the Anza rift followed a pattern that has now been inferred in several rift settings. Early phases of extension were accommodated by moderately dipping faults that produced large stratal rotations. Sedimentary environments were dominantly fluvial, with associated small lakes and dune fields. Volcanic activity is documented for the early Neocomian, but its extent is unknown. This initial style of deformation and sedimentation may have continued through several of the earliest pulses of rifting. By the Late Cretaceous, a new system of steeply dipping faults was established, that produced a deep basin without significant rotation of strata in the north, and only minor rotation in the south. This basin geometry favored the establishment of large, deep lakes, which occasionally were connected to the sea. The older basins were partly cannibalized during the sedimentary in-filling of these successor basins. Early Senonian volcanism was encountered in one well, and reflection seismic evidence suggests that one or more thick, regionally

  16. Style of rifting and the stages of Pangea breakup

    NASA Astrophysics Data System (ADS)

    Frizon de Lamotte, Dominique; Fourdan, Brendan; Leleu, Sophie; Leparmentier, François; Clarens, Philippe

    2015-05-01

    Pangea results from the progressive amalgamation of continental blocks achieved at 320 Ma. Assuming that the ancient concept of "active" versus "passive" rifting remains pertinent as end-members of more complex processes, we show that the progressive Pangea breakup occurred through a succession of rifting episodes characterized by different tectonic evolutions. A first episode of passive continental rifting during the Upper Carboniferous and Permian led to the formation of the Neo-Tethys Ocean. Then at the beginning of Triassic times, two short episodes of active rifting associated to the Siberian and Emeishan large igneous provinces (LIPs) failed. The true disintegration of Pangea resulted from (1) a Triassic passive rifting leading to the emplacement of the central Atlantic magmatic province (200 Ma) LIP and the subsequent opening of the central Atlantic Ocean during the lowermost Jurassic and from (2) a Lower Jurassic active rifting triggered by the Karoo-Ferrar LIP (183 Ma), which led to the opening of the West Indian Ocean. The same sequence of passive then active rifting is observed during the Lower Cretaceous with, in between, the Parana-Etendeka LIP at 135 Ma. We show that the relationships between the style of rifts and their breakdown or with the type of resulting margins (as magma poor or magma dominated) are not straightforward. Finally, we discuss the respective role of mantle global warming promoted by continental agglomeration and mantle plumes in the weakening of the continental lithosphere and their roles as rifting triggers.

  17. Mesozoic Rifting in the German North Sea

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Jähne, F.; Arfai, J.

    2013-12-01

    The Central Graben is the southernmost expressions of the Mesozoic North Sea rift system that includes the Viking Graben, Moray Firth-Witch Ground grabens and the Horda-Egersund half graben. In the southern North Sea the Central Graben extends across the Dutch and the German exclusive economic zones. The structure of the Central Graben in German territorial waters was mapped in great detail in 2D and 3D seismic data and the stratigraphy has been constraint by borehole data. We provide a detailed review of the rifting activity in the German North Sea sector both in time and space and the link between rifting and salt movement. Major rifting activity started in the Central Graben during the Late Triassic and peaked during the Late Jurassic when extensive rift grabens formed, further influenced by halokinetic movements. First subsidence in the Central Graben area appears in the Early Triassic. This is documented by thickness variations in the sedimentary strata from the Triassic to the Jurassic. Remarkably thick sediments were deposited during the Late Triassic along the eastern border fault of the Central Graben and in the Late Jurassic sediments accumulated along graben-wide extensional faults and in rim-synclines of salt-structures. A basin inversion commenced in the Late Cretaceous resulting in an erosion of wide portions of Lower Cretaceous rocks or even complete removal in some parts. The area to the east of the Central Graben faced a completely different evolution. In this area major rifting activity initiated already in the Early to Middle Triassic. This is evident from huge packages of Middle Buntsandstein to Muschelkalk (Middle Triassic) sediments in the Horn Graben. Jurassic doming, forming the Mid-North Sea High, resulted in almost complete erosion of Lower and Middle Jurassic sediments in the central German North Sea. Sedimentation continued during the Early and Late Cretaceous. The Glückstadt Graben, which is a structure located farther east has a

  18. Gravity study of the Central African Rift system: A model of continental disruption 1. The Ngaoundere and Abu Gabra Rifts

    NASA Astrophysics Data System (ADS)

    Browne, S. E.; Fairhead, J. D.

    1983-05-01

    A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.

  19. How Is Lower Crust Modified As A Neo-Rift Becomes A Paleo-Rift and Part Of The Craton?

    NASA Astrophysics Data System (ADS)

    Gilbert, M. C.

    2004-12-01

    The Southern Oklahoma Aulacogen (SOA), at the southern end of Laurentia (present coordinates), if behaving as neo-rifts, such as the Rio Grande Rift, presumably possessed a rift structure in the Cambrian with a continental thickness of about 28km. Seismic data, though sparse, suggest a present thickness of the SOA is about 45km, indistinguishable from adjacent rifted Proterozoic crust. By what process do we add 15km to the original SOA crust: underplating, eclogite-gabbro transformation, or deformation? This question has bearing on how we understand and interpret all paleo-rifts now a part of continental cores. Geology of the southern Midcontinent of North America does not show evidence of significant thermal events in the Phanerozoic. This effectively rules out underplating and phase transformation as a cause of change in M-discontinuity depth. Present SOA outcrops are in the Wichita Mountains of southwestern Oklahoma, part of the easternmost Ancestral Rockies. These outcrops are in the Wichita-Amarillo crustal block uplifted about 7km in the Pennsylvanian. The Anadarko Basin to the north went down about 7km. Large Pennsylvanian thrust faults in the upper brittle crust are documented. Thus it appears that compressive deformation may be able to account for the change in crustal thickness from neo-rift type to paleo-rift and craton type. However, the accommodation made in the lower crust may be more dramatic than deformation in the upper crust because shortening, and thickening of the order of 2X, is probably required. Comparisons with other paleo-rifts in North America, such as the Middle Proterozoic Midcontinent Rift and the NeoProterozoic Reelfoot Rift, show that their crustal thicknesses now also match their previously rifted margins. Can the same sequence, as seems to be the case with the SOA, apply to other paleo-rifts?

  20. Rifting and breakup in the South China Sea

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Savva, Dimitri; Pubellier, Manuel; Steuer, Stephan; Mouly, Benoit; Auxietre, Jean-Luc; Meresse, Florian; Chamot-Rooke, Nicolas

    2014-05-01

    The magma-poor or intermediate magmatic South China Sea is a natural laboratory for studying rifting and breakup. The basin shows an irregular triangular shape with a SW pointing apex, which manifests a preceding propagating rift. The earliest phase of rifting started in the Early Paleocene when a Mesozoic convergent margin changed to extension. After about 30 Million years of rifting, breakup in the major eastern subbasin of the SCS occurred in the Early Oligocene but rifting continued and subsequent breakup of the southwest subbasin took place in the Late Oligocene. The wide Early Cenozoic South China Sea rift preserves the initial rift architecture at the distal margins. Seismic reflection data imaging conjugate crustal sections at the South China Sea margins result in a conceptual model for rift-evolution at conjugate magma-poor margins in time and space. Most distinct are regular undulations in the crust-mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks, with a wavelength of undulations in the crust-mantle boundary that approximately equals the thickness of the continental crust. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the continent-ocean transition (COT) we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. This may indicate the presence of exhumed mantle bordering the continental margins. Post-rift shallow-water platform carbonates indicate a delay in subsidence during rifting in the

  1. Structure and kinematics of the Taupo Rift, New Zealand

    NASA Astrophysics Data System (ADS)

    Seebeck, Hannu; Nicol, Andrew; Villamor, Pilar; Ristau, John; Pettinga, Jarg

    2014-06-01

    The structure and kinematics of the continental intra-arc Taupo Rift have been constrained by fault-trace mapping, a large catalogue of focal mechanisms (N = 202) and fault slip striations. The mean extension direction of ~137° is approximately orthogonal to the regional trend of the rift and arc front (α = 84° and 79°, respectively) and to the strike of the underlying subducting Pacific Plate. Bending and rollback of the subduction hinge strongly influence the location, orientation, and extension direction of intra-arc rifting in the North Island. In detail, orthogonal rifting (α = 85-90°) transitions northward to oblique rifting (α = 69-71°) across a paleovertical-axis rotation boundary where rift faults, extension directions, and basement fabric rotate by ~20-25°. Toward the south, extension is orthogonal to normal faults which are parallel to, and reactivate, steeply dipping basement fabric. Basement reactivation facilitates strain partitioning with a portion of margin-parallel motion in the overriding plate mainly accommodated east of the rift by strike-slip faults in the North Island Fault System (NIFS). Toward the north where the rift and NIFS intersect, ~4 mm/yr strike slip is transferred into the rift with net oblique extension accommodating a component of margin-parallel motion. The trend and kinematics of the Taupo Rift are comparable to late Miocene-Pliocene intra-arc rifting in the Taranaki Basin, indicating that the northeast strike of the subducting plate and the southeast extension direction have been uniform since at least 4 Ma.

  2. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    In North Africa occur Mediterranean and Red Sea metallogenic provinces. In each province distribute 47 iron- manganese- barite and lead-zinc deposits with tectonic-structural control. The author presents in this paper aspects of position of these deposits in the two provinces with Phanerozoic rifting . The Mediterranean Province belongs to two epochs, Hercynian and Alpine. The Hercynian Epoch manganese deposits in only Moroccoa- Algeria belong to Paleozoic tectonic zones and Proterozoic volcanics. The Alpine Epoch iron-manganese deposits are of post-orogenic exhalative-sedimentary origin. Manganese deposits in southern Morocco occur in Kabil-Rief quartz-chalcedony veins controlled by faults in andesitic sheets and in bedded pelitic tuffs, strata-form lenses and ore veins, in Precambrian schist and in Triassic and Cretaceous dolomites. Disseminated manganese with quartz and barite and effusive hydrothermal veins are hosted in Paleocene volcanics. Manganese deposits in Algeria are limited and unrecorded in Tunisia. Strata-form iron deposits in Atlas Heights are widespread in sub-rift zone among Jurassic sediments inter-bedding volcanic rocks. In Algeria, Group Beni-Saf iron deposits are localized along the Mediterranean coast in terrigenous and carbonate rocks of Jurassic, Cretaceous and Eocene age within faults and bedding planes. In Morocco strata-form hydrothermal lead-zinc deposits occur in contact zone of Tertiary andesite inter-bedding Cambrian shale, Lias dolomites and Eocene andesite. In both Algeria and Tunisia metasomatic Pb-Zn veins occur in Campanian - Maastrichtian carbonates, Triassic breccia, Jurassic limestone, Paleocene sandstones and limestone and Neogene conglomerates and sandstones. The Red Sea metallogenic province belongs to the Late Tertiary-Miocene times. In Wadi Araba hydrothermal iron-manganese deposits occur in Cretaceous sediments within 320°and 310 NW faults related to Tertiary basalt. Um-Bogma iron-manganese deposits are closely

  3. Understanding the Transition From Continental to Oceanic Rifting in the Northern Ethiopian Rift - the EAGLE Project

    NASA Astrophysics Data System (ADS)

    Stuart, G.

    2003-12-01

    A consortium of UK (Leeds, Leicester, Royal Holloway, Edinburgh,), US (Stanford, UTEP, Penn State,) and Ethiopian (Addis Ababa) universities are exploring the kinematics and dynamics of continental breakup through the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE), which aims to probe the crust and upper mantle structure between the Main Ethiopian (continental) and Afar (ocean spreading) rifts. EAGLE is a multi-disciplinary study centered around a set of passive and controlled-source seismic experiments, and incorporates additional magnetotelluric, gravity, GPS and petrological studies. The initial Phase I seismic experiment consisted of a deployment of 30 broadband seismometers for a period of 16 months (Oct. 2001 to Jan. 2003) over a 250 km x 250 km area of the rift valley and its uplifted flanks. P- and S-wave tompography from teleseismic traveltime residuals, SKS splitting analyses and receiver functions provide images of crust and deep earth structure. The Phase II seismic experiment consisted of a further 50 broadband instruments for a period of 4 months over a 200 km x 100 km area encompassing 4 magmatic segments in the Main Ethiopian Rift. These recordings have furthered our understanding of the location of active seismicity, fault plane mechanisms and segmentation of rift crustal structure. Phase III consisted of the deployment of a further 1100 seismic instruments during a controlled source seismic project involving 20 shots being fired into one 450 km cross-rift profile (Profile 1), one 450 km axial profile (Profile 2), and a dense 2D array of instruments in a 150 km diameter circle around the profiles1 intersection (Profile 3), all centered on the magmatically active Nazret region. The crust and upper mantle velocity models derived provide estimates of total crustal thinning across the rift, assess the role of basement in the location of major faults and magmatic segments, and determine whether significant underplating takes place. An 18

  4. Complex seismicity patterns in the Rwenzori region: insights to rifting processes at the Albertine Rift.

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rümpker, G.; Wölbern, I.; Batte, A. G.; Schumann, A.

    2012-04-01

    Numerous seismological studies in East Africa have focused on the northern and eastern branches of the East African Rift System (EARS). However, the seismic activity along the western branch is much more pronounced. Here, the Rwenzori Mountains are located within the Albertine rift valley, at the border between Uganda and D.R. Congo. During a seismic monitoring campaign between February 2006 and September 2007 we have recorded more than 800 earthquakes per month in the Rwenzori area. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, were the mountains are in contact with the rift shoulders. The hypocentral depth distribution peaks at 16 km depth and extends down to the Moho which was found at 20 - 32 km depths by teleseismic receiver functions. Local magnitudes range from -0.5 to 5.1 with a b-value of 1.1. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70% of the source mechanisms exhibit normal faulting. T-axis trends are highly uniform and oriented WNW-ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. The area of highest seismic activity NE of the Rwenzoris is characterized by the occurrence of several earthquake clusters in 5 -20 km depth. They have stable positions throughout time and form elongated pipes with 1-2 km diameter and vertical extensions of 3-5 km. From petrological considerations we presume that these earthquake swarms are triggered by fluids and gasses which originate from a magmatic source below the crust. The existence of a magmatic source within the lithosphere is supported by the detection of a shear-wave velocity reduction in 55-80 km depth from receiver-function analysis and the location of mantle earthquakes at about 60 km. We interpret these observations as indication for an

  5. Geophysical glimpses into the Ferrigno Rift at the northwestern tip of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Bingham, Robert; Ferraccioli, Fausto

    2014-05-01

    The West Antarctic Rift System (WARS) forms one of the largest continental rift systems on Earth. The WARS is of major significance as it forms the lithospheric cradle for the marine-based and potentially unstable West Antarctic Ice Sheet (WAIS). Seismic refraction, reflection, aeromagnetic, gravity and drilling in the Ross Sea have revealed most of what we know about its structure, tectonic and magmatic patterns and sedimentary basins. Aerogeophysical research and passive seismic networks have considerably extended our knowledge of the WARS and its influence on the overlying WAIS in the Siple Coast and Amundsen Sea Embayment (ASE) regions. The Bellingshausen Sea Embayment region has however remained largely unexplored, and hence the possible extent of the WARS in this sector has remained poorly constrained. Here we use a combination of reconnaissance ground-based and airborne radar observations, airborne gravity, satellite gravity and aeromagnetic data to investigate the WARS in the Bellingshausen Sea Embayment, in the area of the Ferrigno Ice Stream (Bingham et al., 2012, Nature). This region is of high significance, as it one of the main sectors of the WAIS that is currently exhibiting rapid ice loss, thought to be driven primarily by oceanic warming. Assessing geological controls on subice topography and ice dynamics is therefore of prime importance in this part of the WAIS. Ground-based and airborne radar image a subglacial basin beneath the Ferrigno Ice Stream that is up to 1.5 kilometres deep and that connects the ice-sheet interior to the Bellingshausen Sea margin. We interpret this basin as a narrow, glacially overdeepened rift basin that formed at the northwestern tip of the WARS. Satellite gravity data cannot resolve such a narrow rift basin but indicate that the crust beneath the region is likely thinned, lending support to the hypothesis that this area is indeed part of the WARS. Widely-spaced aeromagnetic data image a linear low along the inferred

  6. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  7. The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Ojakangas, R. W.; Morey, G. B.; Green, J. C.

    2001-06-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ∽1109-1087 Ma, the age span of most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance.

  8. Strain distribution in the East African Rift from GPS measurements

    NASA Astrophysics Data System (ADS)

    Stamps, S. D.; Saria, E.; Calais, E.; Delvaux, D.; Ebinger, C.; Combrinck, L.

    2008-12-01

    Rifting of continental lithosphere is a fundamental process that controls the growth and evolution of continents and the birth of ocean basins. Most rifting models assume that stretching results from far-field lithospheric stresses from plate motions, but there is evidence that asthenospheric processes play an active role in rifting, possibly through viscous coupling and/or the added buoyancy and thermal weakening from melt intrusions. The distribution of strain during rifting is a key observable to constrain such models but is however poorly known. The East African Rift (EAR) offers a unique opportunity to quantify strain distribution along and across an active continental rift and to compare a volcanic (Eastern branch) and a non-volcanic (Western branch) segment. In 2006, we established and first surveyed a network of 35 points across Tanzania and installed one continuous station in Dar Es Salaam (TANZ), followed in 2008 by a second occupation campaign. We present a preliminary velocity field for the central part of the EAR, spanning both the Western and Eastern rift branches. We compare our results with a recent kinematic model of the EAR (Stamps et al., GRL, 2008) and discuss its significance for understanding rifting processes.

  9. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  10. Fault Orientations at Obliquely Rifted Margins: Where? When? Why?

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    Present-day knowledge of rifted margin formation is largely based on 2D seismic lines, 2D conceptual models, and corroborated by 2D numerical experiments. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, worldwide more than 75% of all rifted margin segments have been formed under significant obliquity exceeding 20° (angle measured between extension direction and rift trend normal): During formation of the Atlantic Ocean, oblique rifting dominated at the sheared margins of South Africa and Patagonia, the Equatorial Atlantic margins, separation of Greenland and North America, and it played a major role in the protracted rift history of the North East Atlantic. Outside the Atlantic Ocean, oblique rifting occurred during the split between East and West Gondwana, the separation of India and Australia, India and Madagascar, Australia and Antarctica, as well as Arabia and Africa. It is presently observed in the Gulf of California, the Aegean and in the East African Rift. Despite its significance, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Results are thoroughly compared to previous analogue experiments, which yields many similarities but also distinct differences for late rift stages and for high obliquity. Even though the model

  11. Architecture and early evolution of the Oslo Rift

    NASA Astrophysics Data System (ADS)

    Sundvoll, B.; Larsen, B. T.

    1994-12-01

    A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation. Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305-310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300-305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.

  12. Mid-Continent rift system - a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1983-08-01

    Geophysical evidence in the Mid-Continent has led to delineation of a rift system active during the Proterozoic Y Era. The Mid-Continent rift system can be traced by the Mid-Continent gravity high and corresponding aeromagnetic anomaly signature from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. The aeromagnetic anomaly signature of the rift trend discloses where these sediments have been preserved. Thick accumulations of upper Proterozoic sediments are indicated by both upward continuation of the aeromagnetic profiles across the rift trend and gravity models which incorporate: 1) a deep mafic body to create the narrow gravity high, 2) anomalously thick crust to account for the more regional gravity low, and 3) sedimentary accumulations on the Precambrian surface to explain the small-scale notches which occur within the narrow gravity high. Reflection seismic data are virtually unknown in the rift area; however, data recently acquired by COCORP across the southern end of the feature in Kansas provide evidence of thick stratified sequences in the rift valley. Studies of the East African rift have revealed that the tropical rift valley is an exceptionally fertile environment for deposition and preservation of kerogenous material. The Sirte, Suez, Viking, Dnieper-Donetz, and Tsaidam basins are just a few of the rift basins currently classed as giant producers. The existence of a rift basin trend with thick accumulations of preserved sediments, demonstrably organic rich, introduces the northern Mid-Continent US as a new frontier for hydrocarbon exploration.

  13. Anatomy of lithosphere necking during orthogonal rifting

    NASA Astrophysics Data System (ADS)

    Nestola, Yago; Cavozzi, Cristian; Storti, Fabrizio

    2013-04-01

    The evolution of lithosphere necking is a fundamental parameter controlling the structural architecture and thermal-state of rifted margin. The necking shape depends on several parameters, including the extensional strain-rate and thermal layering of the lithosphere. Despite a large number of analogue and numerical modelling studies on lithosphere extension, a quantitative description of the evolution of necking through time is still lacking. We used analogue modelling to simulate in three-dimension the progression of lithosphere thinning and necking during orthogonal rifting. In our models we simulated a typical "cold and young" 4-layer lithosphere stratigraphy: brittle upper crust (loose quartz sand), ductile lower crust (silicon-barite mixture), brittle upper mantle (loose quartz sand), and ductile lower mantle (silicon-barite mixture). The experimental lithosphere rested on a glucose syrup asthenosphere. We monitored model evolution by periodic and coeval laser scanning of both the surface topography and the lithosphere base. After model completion, each of the four layers was removed and the top of the underlying layer was scanned. This technical approach allowed us to quantify the evolution in space and time of the thinning factors for both the whole lithosphere (βz) and the crust (γ). The area of incremental effective stretching (βy) parallel to the extensional direction was obtained from the βz maps.

  14. Spatial and temporal variations in fault activity during early development of rift polarity within the offshore Corinth rift, central Greece

    NASA Astrophysics Data System (ADS)

    Nixon, C. W.; Moyle, A.; McNeill, L. C.; Bell, R. E.; Bull, J. M.; Henstock, T.

    2014-12-01

    The Corinth rift, Greece, is a young, highly active rift. A combined dense network of marine geophysical data and onshore exposure makes Corinth a natural laboratory for investigating early rift and fault formation. Rifts commonly develop a primary polarity during their formation resulting from a dominant fault set. However, how this occurs and develops is less clear. Here we characterise this process by establishing how a dominant fault set develops within the Corinth rift. Using a high spatio-temporal resolution chronostratigraphic and rift fault model, we investigate the variations in the distribution of displacement and faulting along and across the rift axis; focussing on the partitioning of deformation between N- and S-dipping faults, at a temporal resolution of ca. 100 kyr or less. Along-strike cumulative fault displacement profiles indicate overall equal distribution of strain between major S- and N-dipping faults over the last ca. 1.5 Myr. In detail, two peaks in cumulative displacement coincide with the early development of two discrete depocentres before ca. 600 ka. Since this time, displacement has become focussed on N-dipping faults with S-dipping faults becoming less active. Syn-rift isochore maps illuminate this change: a switch in rift polarity from a dominant N-thickening depocentre to a dominant S-thickening depocentre between ca. 530-420 kyr (a rapid change in rift structure and strain distribution). This change is accommodated by transfer of activity between major faults but also by formation of numerous non-basement cutting small faults. As major S-dipping faults decrease in slip rate from ca. 600 ka, they become segmented into smaller faults with variable slip rates. In contrast, N-dipping faults on the rift's southern margin, with increased activity post ~0.5-0.4 Ma, become kinematically and geometrically linked with almost equal slip rates along strike by ca. 130 kyr, controlling the single major depocentre of the present day. Our results

  15. Geophysical studies of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.

    1991-12-01

    The West Antarctic rift system extends over a 3000 × 750 km, largely ice covered area from the Ross Sea to the base of the Antarctic Peninsula, comparable in area to the Basin and Range and the East African rift system. A spectacular rift shoulder scarp along which peaks reach 4-5 km maximum elevation marks one flank and extends from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. The rift shoulder has maximum present physiographic relief of 5 km in the Ross Embayment and 7 km in the Ellsworth Mountains-Byrd Subglacial Basin area. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been interpreted as rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. The rift system is characterized by bimodal alkaline volcanic rocks ranging from at least Oligocene to the present. These are exposed asymmetrically along the rift flanks and at the south end of the Antarctic Peninsula. The trend of the Jurassic tholeiites (Ferrar dolerites, Kirkpatric basalts) marking the Jurassic Transantarctic rift is coincident with exposures of the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed continuously (including the Dufek intrusion) along the lower- elevation (1-2 km) section of Transantarctic Mountains to the Weddell Sea. Widely spaced aeromagnetic profiles in West Antarctica indicate the absence of Cenozoic volcanic rocks in the ice covered part of the Whitmore-Ellsworth-Mountain block and suggest their widespread occurrence beneath the western part of the ice sheet overlying the Byrd Subglacial Basin. A German Federal Institute for Geosciences and Natural Resources (BGR)-U.S. Geological Survey (USGS) aeromagnetic

  16. The Albertine Rift, East Africa: Initial rifting, long-term landscape evolution and final surface uplift

    NASA Astrophysics Data System (ADS)

    Bauer, Friederike U.; Glasmacher, Ulrich A.; Ring, Uwe; Grobe, René W.; Starz, Matthias; Mambo, Vikandy S.

    2013-04-01

    The Albertine Rift and associated Rwenzori Mountains form a striking feature at the north-western portion of the East African Rift System. The Rwenzori Mtns are built up by a dissected Precambrian metamorphic basement block that has been uplifted to heights of more than 5 km. The fundamental subject addressed by this study is the temporal and spatial evolution of the Rwenzori Mtns and adjacent Albertine Rift (western Uganda and Eastern Congo) at different time scales. In order to unlock how and at what time the extreme surface uplift occurred, low-temperature thermochronology methods were applied and combined with thermokinematic modelling. By means of apatite fission-track, apatite and zircon (U-Th-Sm)/He dating, combined with 2D (HeFTy) and 3D (Pecube) thermokinematic modelling different phases of landscape evolution could be determined for the Albertine area, where movements of surface uplift can be traced from Palaeozoic to Neogene times. Since the Palaeozoic several cooling events affected the Albertine area and Rwenzori Mtns, as revealed from samples along the rift shoulders and across the mountain range. Results from low-temperature thermochronology and thermokinematic modelling demonstrate that the Rwenzoris were not exhumed as a coherent block but are composed of distinct decoupled blocks with diverging exhumation histories and block movements along inherited faults. Thus, the evolution of the Rwenzoris was not solely triggered by Neogene rifting; moreover, a Mesozoic topographic Albertine high is conceivable. Since the Miocene renewed rock and surface uplift of distinct blocks with forced movements at the western flank of the Rwenzoris occurred. Rock uplift, thereby, outweighed erosion, resulting in the recent high topography of the Rwenzoris and their asymmetric character. Detrital thermochronology data confirm a Neogene surface uplift and indicate transition of erosional forces in Plio-/Pleistocene times. Thermokinematic modelling, applied to samples

  17. The rift to drift evolution of the South China Sea

    NASA Astrophysics Data System (ADS)

    Ranero, Cesar R.; Cameselle, Alejandra; Franke, Dieter; Barckhausen, Udo

    2016-04-01

    Re-processing with modern algorithms of multichannel seismic reflection records from the South China Sea provide novel images on the crustal structure of the continental margin and its boundary zone with the oceanic crust (COB). The selected re-processed seismic lines strike perpendicular to the margins' trend and cross the entire basin, providing complementary images of conjugated rift segments of the NW, SW, and E sub-basins. Re-processed sections image the post-rift and syn-rift sediment, and fault-bounded basement blocks, often also intra-crustal fault reflections that together provide detailed information of the tectonic structural style during rifting. Further, the largest imaging improvement has been obtained in the delineation of -very often- clear fairly continuous reflections from the crust-mantle boundary across the continental margin into the oceanic crust. The images show how crustal thickness and structure change in parallel to changes in the tectonic style of the deformation during the evolution of the rift. The interpreted COB occurs in regions where the tectonic style displays the most noticeable changes from segments where extension is dominated by normal faulting to segments where faulting is comparatively minor and the crust shows fairly gentle lateral thickness variations; these latter segments are interpreted as oceanic crust. The identification of the continental and oceanic tectonic domains permits to study the along-strike evolution in rifting processes and rift segmentation. Also, the comparison of the tectonic structure of the conjugated flanks of the continental rift across the ocean basins is used to understand the last stages of rifting and the relative importance of tectonic extension and magmatism in final break up and spreading initiation. Although there is ample evidence of important volcanism in the images, with some spectacular large conical volcanoes formed over continental crust and numerous sill-like reflections in the

  18. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  19. Papers presented to the Conference on the Processes of Planetary Rifting

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The basic problems of processes of planetary rifting are addressed from the following viewpoints: (1) speculation as to the origin and development of rifts; (2) rifts on other planets; (3) tectonics; (4) geology; (5) chemistry of the lithosphere; (6) physics of the lithosphere; and (7) resources associated with rifting. The state of ignorance on the subject and its remedy is debated.

  20. Reassessment of the rifting process in the Western Corinth Rift from relocated seismicity

    NASA Astrophysics Data System (ADS)

    Lambotte, S.; Lyon-Caen, H.; Bernard, P.; Deschamps, A.; Patau, G.; Nercessian, A.; Pacchiani, F.; Bourouis, S.; Drilleau, M.; Adamova, P.

    2014-06-01

    The seismic activity in the western part of the Corinth Rift (Greece) over the period 2000-2007, monitored by a dense network of three-component stations, is analysed in terms of multiplets and high precision relocation using double difference techniques. This detailed analysis provides new insights into the geometry of faults at depth, the nature and the structure of the active zone at 6-8 km depth previously interpreted as a possible detachment, and more generally into the rifting process. The seismicity exhibits a complex structure, strongly varying along the rift axis. The detailed picture of the seismic zone below the rift indicates that its shallower part (at depths of 6-8 km) is 1-1.5 km thick with a complex microstructure, and that its deeper part (at depths of 9-12 km) gently dipping to the north (10-20°) is 0.1-0.3 km thick with a microstructure consistent with the general slope of the structure. Although the nature of this seismic zone remains an open question, the presence of seismicity beneath the main active area, the strong variability of the structure along the rift over short distances and the complex microstructure of the shallower part revealed by the multiplet analysis are arguments against the hypothesis of a mature detachment under the rift: this active zone more likely represents a layer of diffuse deformation. The geometry of the mapped active faults is not well defined at depth, as no seismicity is observed between 0 and 4 km, except for the Aigion Fault rooting in the seismic layer at 6 km depth with a dip of 60°. A distinct cloud of seismicity may be associated with the antithetic Kalithea Fault, on which the 1909 Fokis earthquake (Ms = 6.3) may have occurred. The link between the 1995 rupture (Ms = 6.2) and the faults known at the surface has been better constrained, as the relocated seismicity favours a rupture on an offshore, blind fault dipping at 30°, rather than on the deeper part of the East Helike Fault. Consequently, the 1995

  1. Magma-compensated crustal thinning in continental rift zones.

    PubMed

    Thybo, H; Nielsen, C A

    2009-02-12

    Continental rift zones are long, narrow tectonic depressions in the Earth's surface where the entire lithosphere has been modified in extension. Rifting can eventually lead to rupture of the continental lithosphere and creation of new oceanic lithosphere or, alternatively, lead to formation of wide sedimentary basins around failed rift zones. Conventional models of rift zones include three characteristic features: surface manifestation as an elongated topographic trough, Moho shallowing due to crustal thinning, and reduced seismic velocity in the uppermost mantle due to decompression melting or heating from the Earth's interior. Here we demonstrate that only the surface manifestation is observed at the Baikal rift zone, whereas the crustal and mantle characteristics can be ruled out by a new seismic profile across southern Lake Baikal in Siberia. Instead we observe a localized zone in the lower crust which has exceptionally high seismic velocity and is highly reflective. We suggest that the expected Moho uplift was compensated by magmatic intrusion into the lower crust, producing the observed high-velocity zone. This finding demonstrates a previously unknown role for magmatism in rifting processes with significant implications for estimation of stretching factors and modelling of sedimentary basins around failed rift structures. PMID:19212408

  2. A Blowing Snow Model for Ice Shelf Rifts

    NASA Astrophysics Data System (ADS)

    Leonard, K. C.; Tremblay, L.; Macayeal, D. R.

    2005-12-01

    Ice melange (a mixture of snow, marine ice, and ice talus) may play various roles in the rates of propagation of iceberg-calving rifts through Antarctic ice shelves. This modeling study examines the role of windblown snow in the formation and maintenance of ice melange in the "nascent rift" in the Ross Ice Shelf (78 08'S, 178 29'W). The rift axis is perpendicular to the regional wind direction, allowing us to employ a two-dimensional blowing snow model. The Piektuk-Tuvaq blowing snow model (Dery and Tremblay, 2004) adapted the Piektuk blowing snow model for use in sea ice environments by including parameterization for open-water leads within the sea ice. This version of the model was used to study the initial conditions of a freshly-opened rift, as the input of blowing snow into the seawater within the rift promotes marine ice formation by cooling and freshening the surface water. We adapted the Piektuk-Tuvaq model both for the local climatic conditions and to incorporate the geometry of the rift, which is 30m deep and 100m wide (far deeper than a lead). We present the evolution of the topography within the rift for two cases. The first is an ice melange composed exclusively of snow and marine ice, the second uses an initial topography including large chunks of ice talus.

  3. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  4. Composition of the crust beneath the Kenya rift

    USGS Publications Warehouse

    Mooney, W.D.; Christensen, N.I.

    1994-01-01

    We infer the composition of the crust beneath and on the flanks of the Kenya rift based on a comparison of the KRISP-90 crustal velocity structure with laboratory measurements of compressional-wave velocities of rock samples from Kenya. The rock samples studied, which are representative of the major lithologies exposed in Kenya, include volcanic tuffs and flows (primarily basalts and phonolites), and felsic to intermediate composition gneisses. This comparison indicates that the upper crust (5-12 km depth) consists primarily of quartzo-feldspathic gneisses and schists similar to rocks exposed on the flanks of the rift, whereas the middle crust (12-22 km depth) consists of more mafic, hornblende-rich metamorphic rocks, probably intruded by mafic rocks beneath the rift axis. The lower crust on the flanks of the rift may consist of mafic granulite facies rocks. Along the rift axis, the lower crust varies in thickness from 9 km in the southern rift to only 2-3 km in the north, and has a seismic velocity substantially higher than the samples investigated in this study. The lower crust of the rift probably consists of a crust/mantle mix of high-grade metamorphic rocks, mafic intrusives, and an igneous mafic residuum accreted to the base of the crust during differentiation of a melt derived from the upper mantle. ?? 1994.

  5. Structural evolution history of the Red Sea Rift

    NASA Astrophysics Data System (ADS)

    D'Almeida, G. A. F.

    2010-05-01

    The Red Sea Rift has been an object of comprehensive studies by several generations of geologists and geophysicists. Many publications and open-file reports provide insights into the geological history of this rift. Paleogene and Cretaceous rocks, which are considered to be prerift, are locally exposed at the margins of the Red Sea Rift. At the same time, some evidence indicates that at least some of these rocks are related to the early stage of the evolution of the Red Sea Rift. The available geological data suggest that the Red Sea region started its active evolution in the Cretaceous. As follows from lithostratigraphic data, the Cretaceous-Paleogene trough that predated the Oligocene-Quaternary rift covered this region completely or partially. The pre-Oligocene magmatism and geological evidence show that the Cretaceous-Paleogene trough was of the rift type. The Cretaceous-Eocene and Oligocene-Quaternary phases of rifting were separated by an epoch of uplifting and denudation documented by the erosion surface and unconformity.

  6. Tectonic Framework of the Kachchh Rift Basin

    NASA Astrophysics Data System (ADS)

    Talwani, P.; Gangopadhyay, A. K.

    2001-05-01

    Evaluation of available geological data has allowed us to determine the tectonic framework of the Kachchh rift basin (KRB), the host to the 1819 Kachchh (MW 7.8), 1956 Anjar ( M 6.0) and the recent January 26, 2001 Bhachau (MW 7.6) earthquakes. The ~ 500 km x 200 km east-west trending KRB was formed during the Mesozoic following the break-up of Gondwanaland. It is bounded to the north and south by the Nagar Parkar and Kathiawar faults which separate it from the Precambrian granitic rocks of the Indian craton. The eastern border is the Radanpur-Barmer arch (defined by an elongate belt of gravity highs) which separates it from the early Cretaceous Cambay rift basin. KRB extends ~ 150 km offshore to its western boundary, the continental shelf. Following India's collision with Eurasia, starting ~ 50 MY ago, there was a stress reversal, from an extensional to the (currently N-S) compressional regime. Various geological observations attest to continuous tectonic activity within the KRB. Mesozoic sediments were uplifted and folded and then intruded by Deccan trap basalt flows in late Cretaceous. Other evidence of continuous tectonic activity include seismically induced soft sediment deformation features in the Upper Jurassic Katrol formation on the Kachchh Mainland and in the Holocene sequences in the Great Rann. Pleistocene faulting in the fluvial sequence along the Mahi River (in the bordering Cambay rift) and minor uplift during late Quaternary at Nal Sarovar, prehistoric and historic seismicity associated with surface deformation further attest to ongoing tectonic activity. KRB has responded to N-S compressional stress regime by the formation of east-west trending folds associated with Allah Bund, Kachchh Mainland, Banni, Vigodi, Katrol Hills and Wagad faults. The Allah Bund, Katrol Hill and Kachchh Mainland faults were associated with the 1819, 1956 and 2001 earthquakes. Northeast trending Median High, Bhuj fault and Rajkot-Lathi lineament cut across the east

  7. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; VéTel, W.; Morley, C. K.

    2005-04-01

    Remote sensing data and revised seismic reflection profiles provide new insights about the origin of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern branch of the East African rift system. Contractional structures are dominated by weakly inverted sets of fault blocks within <3.7 Myr old synrift series. Most of reverse extensional faults involve components of oblique-slip, whereas associated hanging wall folds are characterized by large wavelength upright folding. The area of basin inversion is restricted to a 40 × 100 km elongated zone overlying a first-order N140°E trending fault zone in the basement, referred to as the N'Doto transverse fault zone (NTFZ). In the proposed kinematic model, inversion tectonics is assigned to permutation of principal stress axes (σ1/σ2) in addition to the clockwise rotation of extension (from nearly N90°E to N130°E) during Pliocene. The transition from pure extension (Miocene) to a wrench faulting regime (Pliocene) first results in the development of T-type fault networks within a dextrally reactivated shear zone (NTFZ). Inversion tectonics occurred later (<3.7 Ma) in response to a still rotated (˜20°) shortening axis (σ1) oriented N40°E that caused the oblique compression of earlier (NS to N20°E) extensional structures within the NTFZ. The origin of basin inversion and strain concentration in the Turkana rift is thus directly linked to a crustal weakness zone, transverse to the rift axis, and involving steep prerift anisotropies.

  8. Final Rifting and Continental Breakup in the South China Sea

    NASA Astrophysics Data System (ADS)

    Franke, D.; Savva, D.; Pubellier, M. F.; Steuer, S.; Mouly, B.; Auxietre, J. L.; Meresse, F.; Chamot-Rooke, N. R. A.

    2014-12-01

    The magma-poor or intermediate magmatic South China Sea basin shows a triangular shape with a SW pointing apex, which manifests a preceding propagating rift. The earliest phase of rifting started in the Early Paleocene when a Mesozoic convergent margin changed to extension. After about 30 Myrs of rifting, breakup in the major eastern subbasin of the SCS occurred in the Early Oligocene and subsequent breakup of the southwest subbasin took place in the Late Oligocene. Seismic reflection data imaging conjugate crustal sections result in a conceptual model for rift-evolution at conjugate margins in time and space. Distinct are regular undulations in the crust-mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the oceanic domain we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. Largely symmetric structures result from the initial rifting stage. At the future breakup position either of the rift basin bounding faults subsequently penetrates the entire crust, resulting in asymmetry at this location. However, asymmetric deformation which is controlled by large scale detachment faulting is confined to narrow areas and does not result in a margin-wide simple-shear model. Rather considerable along-margin variations are suggested resulting in alternating "upper and lower plate" margins.

  9. Ambient noise tomography of the western Corinth Rift, Greece

    NASA Astrophysics Data System (ADS)

    Giannopoulos, Dimitrios; Rivet, Diane; Sokos, Efthimios; Deschamps, Anne; Paraskevopoulos, Paraskevas; Lyon-Caen, Hélène; Pascal, Bernard; Tselentis, G.-Akis

    2016-04-01

    The Corinth Rift separates Peloponnesus to the south from main-land Greece to the north. It is one of the most active extensional intra-continental rifts in the world, with geodetically measured rates of extension varying from ~5 mm/yr at the eastern part to ~15 mm/yr at the western part. This work presents a first attempt to study the crustal velocity structure of the western Corinth Rift using ambient noise recordings. We used 3 yrs (01/2012-12/2014) of continuous waveform data recorded at 24 stations from the Corinth Rift Laboratory (CRL) and the Hellenic Unified Seismological Network (HUSN). All available vertical component time-series were cross-correlated to extract Rayleigh wave Green's functions. Group velocity dispersion curves between 0.5 and 7 s period were measured for each station pair by applying frequency-time analysis and then inverted to build group velocity maps of the study area. At the studied periods, the northern coast of the Corinth Rift is generally imaged as a region of elevated seismic velocities compared to the southern coast. More specifically, low velocities are observed in areas of Plio-Quaternary syn-rift sediments such as off-shore regions of the rift, the Mornos delta and a large part of the southern coast. Higher velocities are observed in pre-rift basement structures which are dominated mostly by carbonates. The preliminary results demonstrate good agreement with the major geological features of the area and agree relatively well with previous local earthquake tomography studies. This work will be the base for further investigations towards the study of the Corinth Rift structure using long time-series of ambient noise data.

  10. Recent rift-related volcanism in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ferguson, David J.; Barnie, Talfan D.; Pyle, David M.; Oppenheimer, Clive; Yirgu, Gezahegn; Lewi, Elias; Kidane, Tesfaye; Carn, Simon; Hamling, Ian

    2010-04-01

    Rift zones are the most common magmatic environment on Earth. However opportunities to observe active rifting are rare, and consequently the volcanological characteristics of rift systems are not well understood. An ongoing phase of magmatic rifting along a section of the Red Sea system in Afar, Ethiopia, presents an exceptional opportunity to constrain relationships between volcanism and crustal growth. Here, by integrating analyses of satellite images (i.e. MODIS, OMI, ASTER, and ALI) with field observations, we characterise two recent (August 2007 and June 2009) basaltic fissure eruptions in Afar and evaluate the role and significance of volcanism in the rifting process. Both events were brief (36-72 h) and erupted 4.4-18 × 10 6 m 3 of lava from a fissure system 4-6.5 km in length. Data from the spaceborne Ozone Monitoring Instrument (OMI) suggests total SO 2 emissions for each eruption of 26 ± 5 kt (2007) and 34 ± 7 kt (2009), consistent with complete degassing of the erupted magma volumes. Using geodetic models for the intrusive activity in Afar we estimate the partitioning of magma between intrusive and extrusive components, up to July 2009, to be ˜ 180:1. Comparing the first-order volcanic characteristics and the intrusive-extrusive volume balance for the Afar volcanism with data from the 1975-1984 Krafla rifting cycle (Iceland) suggests that the volcanic flux in Afar will rise significantly over the next few years as the stresses are increasingly relieved by dyking, and subsequent dykes are able to propagate more easily to the surface. As a consequence, basaltic fissure eruptions in this section of the Afar rift will become of increasing large magnitude as the rifting event matures over the next 5-10 yr. Using available models of magmatic rifting we forecast the likely size and location of future eruptions in Afar.

  11. Rifting of Continental Interiors: Some New Geophysical Data and Interpretations

    NASA Astrophysics Data System (ADS)

    Keller, G. R.

    2005-12-01

    Rifting is one of the major processes that affect the evolution of the continents. This process sometimes leads to continental breakup and the formation of new oceans, but more often does not. This is presumably due to extension not progressing sufficiently to form a new plate margin resulting in a structure, which remains isolated in an intra-plate environment. The Southern Oklahoma aulacogen is such a feature, and the continental portion of the East African rift system may be a modern example. As more detailed geophysical and geological studies of rifts have become available in recent years, a complex picture of rift structure and evolution has emerged. Global patterns that reveal the connections between lithospheric structure (deep and shallow), magmatism (amount and style), amount of extension, uplift, and older structures remain elusive. However, our geophysical studies of modern and paleo rifts in North America, East Africa, and Europe makes it possible to make some general observations: 1). Magmatism in rifts is modest without the presence of a (pre-existing?) thermal anomaly in the mantle. 2). Magmatic modification of the crust takes many forms which probably depend on the nature of older structures present and the state of the lithosphere when rifting is initiated (i.e. cold vs. hot; fertility), 3) There is no clear relation between amount of extension and the amount of magmatic modification of the crust. 4) Brittle deformation in the upper crustal is complex, often asymmetrical and older features often play important roles in focusing deformation. However on a lithospheric scale, rift structure is usually symmetrical. 5) A better understanding of rift processes is emerging as we achieve higher levels of integration of a wide variety of geoscience data.

  12. Precambrian rift: genesis of strata-bound ore deposits.

    PubMed

    Kanasewich, E R

    1968-09-01

    Study of deep seismic reflections has detected a Precambrian rift valley below flat-lying sediments in southern Alberta. The anomalous magnetic and gravity trends show that the rift is continuous across Alberta and British Columbia (through the Kimberley lead-zinc field) and possibly the Coeur d'Alene mining district of Idaho. There is evidence that these ore bodies were deposited in a Precambrian rift under conditions similar to those prevailing in the hot-brine areas of the modern Red Sea. PMID:17812797

  13. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  14. Diffuse Radiation from the Aquila Rift

    NASA Astrophysics Data System (ADS)

    Jyothy, S. N.; Murthy, Jayant; Karuppath, Narayanankutty; Sujatha, N. V.

    2015-12-01

    We present an analysis of the diffuse ultraviolet (UV) background in a low latitude region near the Aquila Rift based on observations made by the Galaxy Evolution Explorer (GALEX). The UV background is at a level of about 2000 ph cm-2 s-1 sr-1 Å-1 with no correlation with either the Galactic latitude or the 100 μm infrared (IR) emission. Rather, the UV emission falls off with distance from the bright B2 star HIP 88149, which is in the centre of the field. We have used a Monte Carlo model to derive an albedo of 0.6-0.7 in the UV with a phase function asymmetry factor (g) of 0.2-0.4. The value for the albedo is dependent on the dust distribution while g is determined by the extent of the halo.

  15. The role of inheritance in structuring hyperextended rift systems

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Lavier, Luc; Chenin, Pauline

    2015-04-01

    A long-standing question in Earth Sciences is related to the importance of inheritance in controlling tectonic processes. In contrast to physical processes that are generally applicable, assessing the role of inheritance suffers from two major problems: firstly, it is difficult to appraise without having insights into the history of a geological system; and secondly all inherited features are not reactivated during subsequent deformation phases. Therefore, the aim of our presentation is to give some conceptual framework about how inheritance may control the architecture and evolution of hyperextended rift systems. We use the term inheritance to refer to the difference between an "ideal" layer-cake type lithosphere and a "real" lithosphere containing heterogeneities and we define 3 types of inheritance, namely structural, compositional and thermal inheritance. Moreover, we assume that the evolution of hyperextended rift systems reflects the interplay between their inheritance (innate/"genetic code") and the physical processes at play (acquired/external factors). Thus, by observing the architecture and evolution of hyperextended rift systems and integrating the physical processes, one my get hints on what may have been the original inheritance of a system. Using this approach, we focus on 3 well-studied rift systems that are the Alpine Tethys, Pyrenean-Bay of Biscay and Iberia-Newfoundland rift systems. For the studied examples we can show that: 1) strain localization on a local scale and during early stages of rifting is controlled by inherited structures and weaknesses 2) the architecture of the necking zone seems to be influenced by the distribution and importance of ductile layers during decoupled deformation and is consequently controlled by the thermal structure and/or the inherited composition of the curst 3) the location of breakup in the 3 examples is not significantly controlled by the inherited structures 4) inherited mantle composition and rift

  16. POST-RIFT UPLIFT OF THE RIFTED MARGIN OF THE GULF OF ADEN

    NASA Astrophysics Data System (ADS)

    Bache, F.; Leroy, S.; Baurion, C.; Gorini, C.; Lucazeau, F.; Razin, P.; Robinet, J.; D'Acremont, E.; Autin, J.

    2009-12-01

    The Gulf of Aden is a young and narrow oceanic basin formed in Oligo-Miocene time between the rifted margins of the Arabian and Somalian plates. The distal margin and particularly the Ocean-Continent Transition (OCT) domain were previously studied considering a large set of data (Leroy et al., 2004; d'Acremont et al., 2005; d'Acremont et al., 2006; Autin, et al accepted). This study focus on the sedimentary cover identified on seismic reflection profiles collected during Encens-Sheba (2000) and Encens (2006) cruises. Sedimentary stratal pattern and seismic facies succession permit us to highlight a late tectonic event affecting the Dhofar margin. The understanding of facies and depositional sequences is a major challenge for the knowledge of the post-rift tectono-sedimentological evolution of the Gulf of Aden during the spreading. This study let us to distinguish three domains, which match to the structural segmentation inherited from the rifting episode of this margin. The sedimentary record is strongly controlled by a recent (quaternary to now) tectonic phase. Vertical movements lead to the formation of numerous instabilities on the continental slope and Mass-transport deposits (MTDs) on the lower slope and deep basin. The quaternary uplift rate increases eastward, toward the Socotra Hadbeen transform fault zone. The recurrence of the gravitational events shows that the margin history can be divided into active and passive periods since the beginning of the post-rifting evolution of North Aden (17-6 Ma). There is a main sedimentological switch in the studied zone around 7- 10 Ma. This major changes of sedimentation rate and facies types (slope-wash detritus, Mass-transport deposits MTDs, first occurrence of deep sea fans) is probably due to the uplift of the margin and climatic change (first occurrence of the Monsoon in this region). All the incision/erosion stages of continental slope (from slope instabilities set up to the formation of mature canyon) observed

  17. The effect of thermal weakening and buoyancy forces on rift localization: Field evidences from the Gulf of Aden oblique rifting

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Husson, L.; Autin, J.; Leroy, S.; d'Acremont, E.

    2013-11-01

    On the basis of field and geophysical data, analog and numerical models, we here discuss the role of buoyancy forces arising from thickness variations in the lithosphere during rifting. In the Gulf of Aden, an oceanized Tertiary oblique rift, several successive directions of extension and associated normal faults suggest that transient stress rotations occurred during rifting. Especially, rift-parallel faults (070°E) overprinted the early divergence-perpendicular normal faults (110°E). Moreover, some first-order differences are noticeable between the western part of the Gulf, which deformed under the Afar hot spot influence, and the eastern part. In the western Gulf of Aden, the ocean-continent transition (OCT) and the oceanic ridge have cut obliquely through the inherited and reactivated Mesozoic basins (100°E to 140°E). The OCT trend is parallel to the overall Gulf trend (070°E). In the eastern part, the oceanization occurred within few syn-rift 110°E-trending basins and the OCT trends mostly perpendicular to the divergence direction. Here, we propose that this contrast is strongly controlled by the Afar hot spot: during rifting times, the hot spot likely induced a hot thermal anomaly in the western asthenosphere. This may have triggered both thermal buoyancy forces and thermal weakening of the lithosphere that helped localizing the rift obliquely. In such localized rift, rift-perpendicular trending crustal buoyancy forces (i.e. around 160°E) have enhanced rift-parallel normal faults (070°E) during final rift localization into a narrow zone strongly oblique to the early syn-rift basins. As a consequence of the Afar hot spot, in the west, the ridge is long and straight; in the east, the ridge segments are rather long too (although less than in the west) as the ridge initiated parallel to the OCT; in between, the ridge is more segmented as both the hot spot influence gradually decreases eastward and the ridge initiated obliquely to the OCT.

  18. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  19. Lithospheric thinning beneath rifted regions of Southern California.

    PubMed

    Lekic, Vedran; French, Scott W; Fischer, Karen M

    2011-11-11

    The stretching and break-up of tectonic plates by rifting control the evolution of continents and oceans, but the processes by which lithosphere deforms and accommodates strain during rifting remain enigmatic. Using scattering of teleseismic shear waves beneath rifted zones and adjacent areas in Southern California, we resolve the lithosphere-asthenosphere boundary and lithospheric thickness variations to directly constrain this deformation. Substantial and laterally abrupt lithospheric thinning beneath rifted regions suggests efficient strain localization. In the Salton Trough, either the mantle lithosphere has experienced more thinning than the crust, or large volumes of new lithosphere have been created. Lack of a systematic offset between surface and deep lithospheric deformation rules out simple shear along throughgoing unidirectional shallow-dipping shear zones, but is consistent with symmetric extension of the lithosphere. PMID:21979933

  20. Serpentized mantle at rifted margins: The Goban Spur example

    NASA Astrophysics Data System (ADS)

    Bullock, A. D.; Minshull, T. A.

    2002-12-01

    The crustal structure of rifted continental margins can tell us about the processes that operated from continental extension to eventual break-up and sea floor spreading. Variations between margins may record different processes operating during extension or indicate changes in the external geological controls such as mantle plume influence. Extension between Europe and North America began in the mid Cretaceous, dated at the Goban Spur-Flemish Cap rift as late Hauterivian-early Barremian (126-128 Ma) from deep sea drilling (DSDP leg 80) results on the Goban Spur margin. Marine magnetic anomaly 34 can be identified clearly on both margins and indicates that sea floor spreading began no later than 83 Ma. Syn-rift volcanism is limited to a 20 km basaltic body, with considerable lateral extent, at the foot of the continental slope, emplaced at the end of continental rifting. \

  1. Relationship of coronae, regional plains and rift zones on Venus

    NASA Astrophysics Data System (ADS)

    Krassilnikov, A. S.; Kostama, V.-P.; Aittola, M.; Guseva, E. N.; Cherkashina, O. S.

    2012-08-01

    Coronae and rifts are the most prominent volcano-tectonic features on the surface of Venus. Coronae are large radial-concentric structures with diameters of 100 to over 1000 km. They have varied topographical shapes, radial and concentric fracturing and compressional tectonic structures are common for their annuli. Massive volcanism is also connected with some of the structures. Coronae are interpreted to be the result of updoming and fracturing on the surface due to interaction of mantle diapirs with the lithosphere and its subsequent gravitational relaxation. According to Stofan et al. (2001), two types of coronae are observed: type 1 - coronae that have annuli of concentric ridges and/or fractures (407 structures), and type 2 that have similar characteristics to type 1 but lack a complete annulus of ridges and fractures (107 structures). We analyzed 20% of this coronae population (we chose each fifth structure from the Stofan et al. (2001) catalog; 82 coronae of type 1 and 22 coronae of type 2, in total 104 coronae) for the (1) spatial distribution of rift structures and time relationship of rift zones activity with time of regional volcanic plains emplacement, and (2) tectonics, volcanism, age relative to regional plains and relationship with rifts. Two different age groups of rifts on Venus were mapped at the scale 1:50 000 000: old rifts that predate and young rifts that postdate regional plains. Most of young rifts inherit strikes of old rifts and old rifts are reworked by them. This may be evidence of rift-produced uplift zones that were probably mostly stable during both types of rifts formation. Evolution of distribution of rift systems with time (decreasing of distribution and localization of rift zones) imply thickening of the lithosphere with time. Coronae-producing mantle diapirism and uplift of mantle material in rift zones are not well correlated at least in time in most cases, because majority of coronae (77%) of both types has no genetic

  2. Sociocultural and Economic Dimensions of Rift Valley Fever

    PubMed Central

    Muga, Geoffrey Otieno; Onyango-Ouma, Washington; Sang, Rosemary; Affognon, Hippolyte

    2015-01-01

    Health researchers have advocated for a cross-disciplinary approach to the study and prevention of infectious zoonotic diseases, such as Rift Valley Fever. It is believed that this approach can help bring out the social determinants and effects of the zoonotic diseases for the design of appropriate interventions and public health policy. A comprehensive literature review using a systematic search strategy was undertaken to explore the sociocultural and economic factors that influence the transmission and spread of Rift Valley Fever. Although the findings reveal a paucity of social research on Rift Valley Fever, they suggest that livestock sacrificial rituals, food preparation and consumption practices, gender roles, and inadequate resource base for public institutions are the key factors that influence the transmission. It is concluded that there is need for cross-disciplinary studies to increase the understanding of Rift Valley Fever and facilitate appropriate and timely response and mitigation measures. PMID:25688166

  3. The geology and geophysics of the Oslo rift

    NASA Technical Reports Server (NTRS)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  4. An integrated geophysical study of the northern Kenya rift

    NASA Astrophysics Data System (ADS)

    Mariita, Nicolas O.; Keller, G. Randy

    2007-06-01

    The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the contact between the Archean Tanzania craton and the Proterozoic Mozambique orogenic belt. Recent geophysical investigations focused on the tectonic evolution of the East African rift and on exploration for geothermal energy in the southern portion of the Kenyan rift provide considerable information and insight on the structure and evolution of the lithosphere. In the north, a variety of other data exist. However, the lack of an integrated regional analysis of these data was the motivation for this study. Our study began with the collection and compilation of gravity data, and then we used the seismic refraction results from the Kenya Rift International Seismic Project (KRISP), published seismic reflection data, aeromagnetic data, and geologic and drilling data as constraints in the construction of integrated gravity models. These models and gravity anomaly maps provide insight on spatial variations in crustal thickness and upper mantle structure. In addition, they show the distribution of basins and help characterize the distribution of magmatism along the axis of the northern sector of the rift. Our main observations are the following: (1) the region of thinning and anomalous mantle widens northward in agreement with previous studies showing that the crust thins from about 35 km in the south to 20 km in the north; (2) as observed in the south, gravity highs observed along the axis are due to mafic

  5. Geochemical evidence of mantle reservoir evolution during progressive rifting

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Mohr, P.; Dosso, L.; Hall, C. M.

    2010-12-01

    The Afar region in East Africa, which represents the triple junction of three well-exposed Cenozoic rift systems, is a pivotal domain in the study of rift evolution. The western margin of Afar, defined by a wide transitional region from plateau to rift floor, developed in response to the rifting of the Red Sea commencing shortly after the eruption of the ~31-29 Ma Ethiopian-Yemen flood basalts. The Oligocene lava sequence which covers this rift margin was fed from intensive diking. The dikes and the block-faulting and monoclinal warping that followed provide an opportunity to probe the geochemical reservoirs preserved in the magmatic record and the development of the rifting processes. Argon geochronology reveals that dikes along the western Afar margin span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major and trace element, and isotopic results (Sr-Nd-Pb-Hf) from these dikes demonstrate temporal geochemical heterogeneity defined by variable contributions from the Afar plume, depleted mantle and African lithosphere, consistent with studies of Quaternary basalts from the Ethiopian Rift. On a broader scale our results show that as the western Afar margin matures, the initially significant contribution from the Afar plume wanes in favor of shallow asthenospheric and lithospheric reservoirs. The early dikes, which are coincident with the initial weakening of the lithosphere in a magma-assisted rifting model, geochemically resemble the widespread plume-derived flood basalts and shields that constitute the Ethiopian Plateau. Subsequent diking is characterized by a lesser role for the Afar plume and greater contributions from the African lithosphere and depleted mantle. During the terminal stage of dike emplacement, where focused magmatic intrusion accommodated extension, a more significant fraction is derived from the depleted mantle and less of a

  6. An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts

    NASA Astrophysics Data System (ADS)

    Schulte, Saskia M.; Mooney, Walter D.

    2005-06-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) >= 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M>= 6.0) earthquakes are considered. The largest events (M>= 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the presence

  7. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  8. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    USGS Publications Warehouse

    ten Brink, U.S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  9. Geochemistry of East African Rift basalts: An overview

    NASA Astrophysics Data System (ADS)

    Furman, Tanya

    2007-06-01

    Mafic lavas erupted along the East African Rift System from the Afar triangle in northern Ethiopia to the Rungwe province in southern Tanzania display a wide range of geochemical and isotopic compositions that reflect heterogeneity in both source and process. In areas with the lowest degree of crustal extension (the Western and Southern Kenya Rifts) primitive lavas record the greatest extent of lithospheric melting, manifest in elevated abundances of incompatible elements and highly radiogenic Sr-Nd-Pb isotopic compositions. Where prolonged extension has removed most or all of the mantle lithosphere (the Turkana and Northern Kenya Rifts), a larger role for sub-lithospheric processes is indicated. At intermediate degrees of extension (the Main Ethiopian Rift) both lithospheric and sub-lithospheric contributions are observed, and crustal assimilation occurs in some cases. Despite the wide compositional range of African Rift basalts, a restricted number of source domains contribute to magmatism throughout the area. These individual domains are: (1) the subcontinental mantle lithosphere; (2) a plume source with high-μ Sr-Nd-Pb-He isotopic affinities, present in all areas within and south of the Turkana Depression; and (3) a plume source with isotopic signatures analogous to those observed in some ocean islands, including high 3He/ 4He values, present throughout the Ethiopian Rift and the Afar region. The two plume sources may both be derived from the South African Superplume, which is likely to be a compositionally heterogeneous feature of the lower mantle.

  10. Buried Mesozoic rift basins of Moroccan Atlantic continental margin

    SciTech Connect

    Mohamed, N.; Jabour, H.; El Mostaine, M.

    1995-08-01

    The Atlantic continental margin is the largest frontier area for oil and gas exploration in Morocco. Most of the activity has been concentrated where Upper Jurassic carbonate rocks have been the drilling objectives, with only one significant but non commercial oil discovery. Recent exploration activities have focused on early Mesozoic Rift basins buried beneath the post-rift sediments of the Middle Atlantic coastal plain. Many of these basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness to be classified as efficient oil prone source rock. Location of inferred rift basins beneath the Atlantic coastal plain were determined by analysis of drilled-hole data in combination with gravity anomaly and aeromagnetic maps. These rift basins are characterized by several half graben filled by synrift sediments of Triassic age probably deposited in lacustrine environment. Coeval rift basins are known to be present in the U.S. Atlantic continental margin. Basin modeling suggested that many of the less deeply bored rift basins beneath the coastal plain are still within the oil window and present the most attractive exploration targets in the area.

  11. Exploring the contrasts between fast and slow rifting

    NASA Astrophysics Data System (ADS)

    Morgan, Jason P.; de Monserrat, Albert; White, Lloyd; Hall, Robert

    2016-04-01

    Researchers are now finding that extension sometimes occurs at rates much faster than the mean rates observed in the development of passive margins. Examples of rapid and ultra-rapid extension are found in several locations in Eastern Indonesia. This includes in northern and central Sulawesi as well as in eastern- and westernmost New Guinea. The periods of extension are associated with sedimentary basin growth as well as phases of crustal melting and rapid uplift. This is recorded through seismic imagery of basins offshore Sulawesi and New Guinea as well as through new field studies of the onshore geology in these regions. A growing body of new geochronological and biostratigraphic data provide some control on the rates of processes, indicating that rates of extension are typically at least twice as fast and potentially an order of magnitude faster than the fastest rates applied for more commonly studied rift settings (e.g. Atlantic opening, East African Rift, Australia-Antarctica opening). Here we explore a suite of experiments more appropriate for rifting episodes in Eastern Indonesia, and compare the evolution of these 'fast' (20-100 mm/year full rate) rifting models to experiments with the same crustal geometries rifting at ~5-20 mm/year. In particular, we explore to what depths hot lower crust and mantle can be exhumed by fast rifting, and whether we can produce the p-T-t paths implied by recent onshore geological studies.

  12. P Wave Velocity Structure Beneath the Baikal Rift Axis

    NASA Astrophysics Data System (ADS)

    Brazier, R. A.; Nyblade, A. A.; Boman, E. C.

    2001-12-01

    Over 100 p wave travel times from the 1500 km en echelon Baikal Rift system are used in this study.The events range 3 to 13 degrees from Talaya, Russia (TLY) along the axis of southwest northeast trending rift in East Siberia. A Herglotz Wiechert inversion of these events resolved a crust of 6.4 km/s and a gradient in the mantle starting at 35 km depth and 7.7 km/s down to 200 km depth and 8.2 km/s. This is compatible with Gao et al,1994 cross sectional structure which cuts the rift at about 400km from TLY. The Baikal Rift hosts the deepest lake and is the most seismically active rift in the world. It is one of the few continental rifts, it separates the Siberian craton and the Syan-Baikal mobile fold belt. Two events, the March 21 1999 magnitude 5.7 earthquake 638 km from TLY and the November 13th 1995 magnitude 5.9 earthquake 863 km from TLY were modeled for there PnL wave structure using the discrete wavenumber method and the Harvard CMT solutions with adjusted depths from p-pP times. The PnL signals match well. A genetic algorithm will used to perturb the velocity structure and compare to a selection of the events between 3 and 13 degrees many will require moment tensor solutions.

  13. Sedimentary deposits in response to rift geometry in Malawi, Africa

    SciTech Connect

    Bishop, M.G. )

    1991-03-01

    Sedimentary deposits of the Malawi continental rift basin are a direct result of topography and tectonics unique to rift structure. Recent models describe rifts as asymmetric half-graben connected in series by transfer of accommodation zones. Half-graben consist of roughly parallel, tilted fault blocks stepping up from the bounding fault zone where maximum subsidence occurs. The rift becomes a local baselevel and depocenter as regional drainage is shed away by the rift shoulders. Most of the sediments are derived locally due to internal drainage of connected basins, individual basins, and individual fault blocks. The patterns of sedimentation and facies associations depend on structural position at both fault block and half-graben scales. Drainage is directed and dammed by tilted fault blocks. Forward-tilted fault blocks form basinward-thickening sediment wedges filled with facies of axial fluvial systems, alluvial fault-scarp fans, and ponded swamp and lake deposits. These deposits are asymmetrically shifted toward the controlling fault and onlap the upthrown side of the block, ordinarily the site of erosion or nondeposition. Rivers entering the lake on back tilted fault blocks form large deltas resulting in basinward fining and thinning sediment wedges. Lacustrine, nearshore, shoreline, and lake shore plain deposits over multiple fault blocks record lake levels, water chemistry, and tectonic episodes. Tectonic movement periodically changes the basin depth, configuration, and baselevel. This movement results in widespread unconformities deposition and reworking of sediments within the rift.

  14. Structure of the southern Rio Grande rift from gravity interpretation

    NASA Astrophysics Data System (ADS)

    Daggett, P. H.; Keller, G. R.; Wen, C.-L.; Morgan, P.

    1986-05-01

    Regional Bouguer gravity anomalies in southern New Mexico have been analyzed by two-dimensional wave number filtering and poly-nomial trend surface analysis of the observed gravity field. A prominent, regional oval-shaped positive gravity anomaly was found to be associated with the southern Rio Grande rift. Computer modeling of three regional gravity profiles suggests that this anomaly is due to crustal thinning beneath the southern Rio Grande rift. These models indicate a 25 to 26-km minimum crustal thickness within the rift and suggest that the rift is underlain by a broad zone of anomalously low-density upper mantle. The southern terminus of the anomalous zone is approximately 50 km southwest of El Paso, Texas. A thinning of the rifted crust of 2-3 km relative to the adjacent Basin and Range province indicates an extension of about 9 percent during the formation of the modern southern Rio Grande rift. This extension estimate is consistent with estimates from other data sources. The crustal thinning and anomalous mantle is thought to result from magmatic activity related to surface volcanism and high heat flow in this area.

  15. Contribution of Transverse Structures, Magma, and Crustal Fluids to Continental Rift Evolution: The East African Rift in Southern Kenya

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Muirhead, J.; Dindi, E.; Fischer, T. P.; Lee, H.; Ebinger, C. J.

    2013-12-01

    The Magadi rift in southern Kenya formed at ~7 Ma within Proterozoic rocks of the Mozambique orogenic belt, parallel to its contact with the Archean Tanzania craton. The rift is bounded to the west by the ~1600-m-high Nguruman border fault. The rift center is intensely dissected by normal faults, most of which offset ~1.4-0.8 Ma lavas. Current E-W extensional velocities are ~2-4 mm/yr. Published crustal tomography models from the rift center show narrow high velocity zones in the upper crust, interpreted as cooled magma intrusions. Local, surface-wave, and SKS-splitting measurements show a rift-parallel anisotropy interpreted to be the result of aligned melt zones in the lithosphere. Our field observations suggest that recent fault activity is concentrated at the rift center, consistent with the location of the 1998 seismic swarm that was associated with an inferred diking event. Fault zones are pervasively mineralized by calcite, likely from CO2-rich fluids. A system of fault-fed springs provides the sole fluid input for Lake Magadi in the deepest part of the basin. Many of these springs emanate from the Kordjya fault, a 50-km-long, NW-SE striking, transverse structure connecting a portion of the border fault system (the NW-oriented Lengitoto fault) to the current locus of strain and magmatism at the rift center. Sampled springs are warm (44.4°C) and alkaline (pH=10). Dissolved gas data (mainly N2-Ar-He) suggests two-component mixing (mantle and air), possibly indicating that fluids are delivered into the fault zone from deep sources, consistent with a dominant role of magmatism to the focusing of strain at the rift center. The Kordjya fault has developed prominent fault scarps (~150 m high) despite being oblique to the dominant ~N-S fault fabric, and has utilized an en echelon alignment of N-S faults to accommodate its motion. These N-S faults show evidence of sinistral-oblique motion and imply a bookshelf style of faulting to accommodate dextral-oblique motion

  16. Magmatic expression of lithospheric thinning across continental rifts

    NASA Astrophysics Data System (ADS)

    Thompson, R. N.; Gibson, S. A.

    1994-05-01

    Studies of magmatism associated with continental rifting have traditionally focused only on volcanism within the downfaulted axial zone and along its immediate flanks. Teleseismic travel-time delay studies during the last decade have confirmed the results of earlier gravity surveys of rifted areas, showing that thinning at the base of the continental lithosphere occurs throughout a zone up to about 10 times wider than the physiographic expression of the rift. It is, therefore, logical to consider rifting-related magmatism on the same scale. Potential sources of mafic magmas in rift zones are the thinned subcontinental lithospheric mantle (SCLM), the convecting mantle beneath the continental plate and mixtures of the two. Detailed elemental and radiogenic isotope geochemical studies show that, during the initial extension of continental rifts, the associated mafic magmatism tends to be: (1) relatively sodic and from predominantly convecting mantle sources at the rift axis; (2) relatively potassic and from predominantly lithospheric mantle sources at the margins of the thinned-plate zone. This underlying geochemical pattern is obscured in many instances by such processes as crustal contamination and magma mixing within open-system reservoirs. The mafic ultrapotassic component that provides a distinctive input to SCLM-source magmas appears to be largely fusible at temperatures well below the dry solidus of SCLM; so that, in some cases, prolonged magmatism at a site causes removal of most or all of the potassic lithosphere-source melt (as mafic ultrapotassic magmas or as a contribution to mixed-source melts) without destruction of that lithosphere segment as a geophysically defined unit. Such a zone of refractory lithosphere permits subsequent, recognisable, convecting mantle source melts to penetrate it and reach the surface. These principles are illustrated by discussion of the Neogene-Quaternary magmatism of the Rio Grande, East African, Rhine and Baikal rifts, in

  17. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    NASA Astrophysics Data System (ADS)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (< 35 km), most of the southern part of the rift is underlain by thick crust (~40‒44 km). Different from the Moho, the MLD is shallower beneath the axis of the Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  18. Tectonic controls on rift basin morphology: Evolution of the northern Malawi (Nyasa) rift

    NASA Technical Reports Server (NTRS)

    Ebinger, C. J.; Deino, A. L.; Tesha, A. L.; Becker, T.; Ring, U.

    1993-01-01

    Radiometric (K-Ar and Ar-40/Ar-39) age determinations of volcanic and volcaniclastic rocks, combined with structural, gravity, and seismic reflection data, are used to constrain the age of sedimentary strata contained within the seismically and volcanically active northern Malawi (Nyasa) rift and to characterize changes in basin and flank morphologies with time. Faulting and volcanism within the Tukuyu-Karonga basin began at approximately 8.6 Ma, when sediments were deposited in abroad, initially asymmetric lake basin bounded on its northeastern side by a border fault system with minor topographic relief. Extensions, primarily by a slip along the border fault, and subsequent regional isostatic compensation led to the development of a 5-km-deep basin bounded by broad uplifted flanks. Along the low-relief basin margin opposite border fault, younger stratigraphic sequences commonly onlap older wedge-shaped sequences, although their internal geometry is often progradational. Intrabasinal faulting, flankuplift, and basaltic and felsic volcanism from centers at the northern end of the basin became more important at about 2.5 Ma when cross-rift transfer faults developed to link the Tukuyu-Karonga basin to the Rukwa basin. Local uplift and volcanic construction at the northern end of the basin led to a southeastward shift in the basin's depocenter. Sequence boundaries are commonly erosional along this low-relief (hanging wall) margin and conformable in the deep lake basin. The geometry of stratigraphic sequences and the distribution of the erosion indicate that horizontal and vertical crustal movements both across and along the length of the rift basin led to changes in levels of the lake, irrespective of paleoclimatic fluctuations.

  19. The onshore northeast Brazilian rift basins: An early Neocomian aborted rift system

    SciTech Connect

    Matos, R. )

    1990-05-01

    Early Cretaceous rift basins of northeastern Brazil illustrate key three-dimensional geometries of intracontinental rift systems, controlled mainly by the basement structures. These basins were formed and then abandoned during the early extension associated with the north-south-propagating separation of South America and Africa. During the early Neocomian, extensional deformation jumped from the easternmost basins (group 1: Sergipe Alagoas and Gabon basins; group 2: Reconcavo, Tucano, and Jatoba basins) to the west, forming a series of northeast-trending intracratonic basins (group 3: Araripe, Rio do Peixe, Iguatu, Malhada Vermelha, Lima Campos, and Potiguar basins). The intracratonic basins of groups 2 and 3 consist of asymmetric half-grabens separated by basement highs, transfer faults, and/or accommodation zones. These basins are typically a few tens of kilometers wide and trend northeast-southwest, roughly perpendicular to the main extension direction during the early Neocomian. Preexisting upper crustal weakness zones, like the dominantly northeast-southwest-trending shear zones of the Brazilian orogeny, controlled the development of intracrustal listric normal faults. Internal transverse structures such as transfer faults (Reconcavo basin and onshore Potiguar basin) and accommodation zones (onshore Potiguar basin and Araripe basin) were also controlled by the local basement structural framework. Transverse megafaults and lithostructural associations controlled the three main rift trends. The megashear zones of Pernanbuco (Brazil)-Ngaundere (Africa) apparently behaved like a huge accommodation zone, balancing extensional deformation along the Reconcavo-Jatoba/Sergipe Alagoas-Gabon trends with simultaneous extension along the Araripe-Potiguar trend. The Sergipe Alagoas-Gabon trend and the Potiguar basin represent the site of continued evolution into a marginal open basin following early Neocomian deformation.

  20. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post

  1. Rifting, Volcanism, and the Geochemical Character of the Mantle Beneath the West Antarctic Rift System (Invited)

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Aviado, K. B.; Rilling-Hall, S.; Bryce, J. G.; Cabato, J.

    2013-12-01

    The West Antarctic Rift System (WARS) is one of the largest extensional alkali volcanic provinces on Earth, but the mechanisms responsible for generating the massive amounts of its associated magmatism remain controversial. The failure of both passive and active decompression melting models to adequately explain the observed lava volumes has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. 40Ar/39Ar dating and geochemical analyses of the lavas, as well as volatile and trace-element determinations of olivine-hosted melt inclusions shed light on the relationship between rifting and volcanism, and also improve our understanding of the geochemical character of the mantle beneath the WARS. Results show that the magmatism post-dates the main phase of extension along the Terror Rift within the WARS, which supports a decompression-melting model without the benefit of a significant thermal anomaly. However, the observed large magma volumes seem to require a volatile-fluxed mantle, a notion supported by a long history of subduction (>500 Myr) along the paleo-Pacific margin of Gondwana. In fact, the legacy of that subduction may manifest itself in the high H2O concentrations of olivine-hosted melt inclusions (up to 3 wt% in preliminary results from ion probe measurements). The major oxide compositions of lavas in the WARS are best matched to experimental melts of garnet pyroxenite and carbonated peridotite sources. The Pb and Nd isotopic systems are decoupled from each other, suggesting removal of fluid-mobile elements from the mantle source possibly during the long history of subduction along this Gondwana margin. Extremely unradiogenic 187Os/188Os ranging to as low as 0.1081 × 0.0001 hints at the involvement of lithospheric components in generation of magmas in the WARS.

  2. Groundwater fluoride enrichment in an active rift setting: Central Kenya Rift case study.

    PubMed

    Olaka, Lydia A; Wilke, Franziska D H; Olago, Daniel O; Odada, Eric O; Mulch, Andreas; Musolff, Andreas

    2016-03-01

    Groundwater is used extensively in the Central Kenya Rift for domestic and agricultural demands. In these active rift settings groundwater can exhibit high fluoride levels. In order to address water security and reduce human exposure to high fluoride in drinking water, knowledge of the source and geochemical processes of enrichment are required. A study was therefore carried out within the Naivasha catchment (Kenya) to understand the genesis, enrichment and seasonal variations of fluoride in the groundwater. Rocks, rain, surface and groundwater sources were sampled for hydrogeochemical and isotopic investigations, the data was statistically and geospatially analyzed. Water sources have variable fluoride concentrations between 0.02-75 mg/L. 73% exceed the health limit (1.5mg/L) in both dry and wet seasons. F(-) concentrations in rivers are lower (0.2-9.2mg/L) than groundwater (0.09 to 43.6 mg/L) while saline lake waters have the highest concentrations (0.27-75 mg/L). The higher values are confined to elevations below 2000 masl. Oxygen (δ(18)O) and hydrogen (δD) isotopic values range from -6.2 to +5.8‰ and -31.3 to +33.3‰, respectively, they are also highly variable in the rift floor where they attain maximum values. Fluoride base levels in the precursor vitreous volcanic rocks are higher (between 3750-6000 ppm) in minerals such as cordierite and muscovite while secondary minerals like illite and kaolinite have lower remnant fluoride (<1000 ppm). Thus, geochemical F(-) enrichment in regional groundwater is mainly due to a) rock alteration, i.e. through long residence times and natural discharge and/or enhanced leakages of deep seated geothermal water reservoirs, b) secondary concentration fortification of natural reservoirs through evaporation, through reduced recharge and/or enhanced abstraction and c) through additional enrichment of fluoride after volcanic emissions. The findings are useful to help improve water management in Naivasha as well as similar

  3. The South China sea margins: Implications for rifting contrasts

    USGS Publications Warehouse

    Hayes, D.E.; Nissen, S.S.

    2005-01-01

    Implications regarding spatially complex continental rifting, crustal extension, and the subsequent evolution to seafloor spreading are re-examined for the northern and southern-rifted margins of the South China Sea. Previous seismic studies have shown dramatic differences in the present-day crustal thicknesses as the manifestations of the strain experienced during the rifting of the margin of south China. Although the total crustal extension is presumed to be the same along the margin and adjacent ocean basin, the amount of continental crustal extension that occurred is much less along the east and central segments of the margin than along the western segment. This difference was accommodated by the early formation of oceanic crust (creating the present-day South China Sea basin) adjacent to the eastern margin segment while continued extension of continental crust was sustained to the west. Using the observed cross-sectional areas of extended continental crust derived from deep penetration seismics, two end-member models of varying rift zone widths and varying initial crustal thicknesses are qualitatively examined for three transects. Each model implies a time difference in the initiation of seafloor spreading inferred for different segments along the margin. The two models examined predict that the oceanic crust of the South China Sea basin toward the west did not begin forming until sometime between 6-12 my after its initial formation (???32 Ma) toward the east. These results are compatible with crustal age interpretations of marine magnetic anomalies. Assuming rifting symmetry with conjugate margin segments now residing along the southern portions of the South China Sea basin implies that the total width of the zone of rifting in the west was greater than in the east by about a factor of two. We suggest the most likely causes of the rifting differences were east-west variations in the rheology of the pre-rift crust and associated east-west variations in the

  4. Recent geodynamics and evolution of the Moma rift, Northeast Asia.

    NASA Astrophysics Data System (ADS)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. S.; Mackey, K. G.

    2009-04-01

    The Cenozoic Moma rift system is a major tectonic feature in northeast Russia. It is composed of a series of basins (Selennyakh, Kyrin,Lower Moma,Upper Moma,etc.) filled with up to one km thick and bounded by the Chersky Range (up to 3100 m high) on the southwest and the Moma Range (up to 2400 m high) on the northeast. Northeast of the Moma Range is the Indigirka-Zyryanka foreland basin, composed of thick, up to 2.5 km, Eocene, Oligocene, and Miocene coal-bearing sequences, while on the southwestern side of the Chersky Range there are a number of piedmont basins (Tuostakh, Upper Adycha, Derbeke, etc.) containing up to several hundred meters of Miocene and Oligocene coal-bearing deposits. Despite considerable study over the past half-century, there is considerable debate over the origin, present-day tectonics, and evolution of the Moma rift system. The Cenozoic deposits of the basins generally become younger from northwest to southeast with the exception of the Seimchan-Buyunda basin. In the northeast, fan-shaped coal-bearing basins (e.g., Nenneli, Olzhoi, Selennyakh, Uyandina, Tommot, and others) are filled with Miocene to Pliocene deposits, while basins in the southeast (e.g., Taskan) are filled with Neogene sediments. The Seimchan-Buyunda basin, however, has sediments of Oligocene age. The Moma rift system is reflected a major step in the gravity field, presumably separating denser rocks of the Kolyma-Omolon superterrain from somewhat less dense rocks of the Verkhoyansk fold belt (margin of the North Asian Craton). Analysis of travel-times of Pn and Pg waves from local earthquakes indicates an area of thinned crust (30-35 km) southwest of the Moma rift system, extending as a "tongue" from the Lena River delta and the Laptev Sea to the upper part of the Kolyma River, as compared to 40-45 km in the surrounding areas. This region of thinned crust also coincides with a region of high heat flow values measured in boreholes of the Chersky Range (up to 88 mW/m2). Hot

  5. Investigation of rifting processes in the Rio Grande Rift using data from an unusually large earthquake swarm. Final report, October 1, 1992--September 30, 1993

    SciTech Connect

    Sanford, A.; Balch, R.; Hartse, H.; House, L.

    1995-03-01

    Because the Rio Grande Rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to elucidate the active tectonic processes within continental rifts. Beginning on 29 November 1989, a 15 square km region near Bernardo, NM, produced the strongest and longest lasting sequence of earthquakes in the rift in 54 years. Our research focuses on the Bernardo swarm which occurred 40 km north of Socorro, New Mexico in the axial region of the central Rio Grande rift. Important characteristics concerning hypocenters, fault mechanisms, and seismogenic zones are discussed.

  6. Rift-drift evolution of the outer Norwegian margin

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Carmen, Gaina; Tadashi, Yamasaki; Gwenn, Péron-Pinvidic; Odleiv, Olesen

    2010-05-01

    Most of the tectonic and dynamic concepts on the evolution of rifted margins have been developed from either intra-continental rift basins or proximal margin usually characterised by small amounts of crustal thinning. Some of these continental margins also display a high level of volcanic activity along the continent-ocean transition (COT). In such a context, the tectonic evolution of the proto-breakup rift system of the outer Norwegian margin is still problematic, due to sub-basalt imaging and a poor knowledge of the mechanisms involved before, during and slightly after the onset of breakup. Regional analysis and interpretation of multichannel seismic data, potential field data, integrated with refined plate reconstruction and finite-element modelling have provided the opportunity to propose an updated tectonic model for the evolution and segmentation of the Norwegian margin and the early Norwegian-Greenland Sea oceanic domain. Timing of deformation and structural styles observed along the conjugates reflect lateral variations of the rifted system which is influenced by complex inherited features, late magma-tectonic processes and local plate instabilities. We show that the deep structures associated with the volcanic rifted margin are still controversial and not necessarily so magmatic. We have also attempted to investigate the role of localised magmatic intrusion in rift and breakup dynamics and compared the results with our geophysical data, offshore Norway. The thickness, composition and temperature of the underplated and/or intruded bodies seem to be important factors that control lithospheric stretching, basin temperature, rift structure, margin asymmetry and COT formation. We also document the early spreading history of the mid-Norwegian by means of two news recent aeromagnetic surveys which highlight a complex spreading evolution correlated with the onset of microcontinent formation (Jan Mayen microcontinent) and an atypical (mid-Eocene?) magmatic event

  7. Rift basins of ocean-continent convergent margins

    SciTech Connect

    Forsythe, R.D.; Newcomb, K.R.

    1986-05-01

    Modern and ancient circum-Pacific convergent margins contain many examples of forearc basins where subsidence, occurring simultaneously with subduction of oceanic lithosphere, is controlled by rifting transverse to the margin. The elongate axes of these deep and narrow basins jut obliquely from the plate margin into the interior of the forearc. Similar to aulacogens, faulting and related subsidence appear greatest at their seaward limits and decreases inland. Examples from eastern Pacific forearcs suggest that localized rifting accommodates margin-parallel extension of forearc blocks that are kinetically linked to motions along major margin-parallel strike-slip fault systems. The most prominent examples of modern forearc rift basins are the Sanak and East Sanak basins of the western Alaska Peninsula subduction zone. In this region, the continental shelf is being rifted apart by a series of northwest- and northeast-trending faults. Basement-activated normal faults bounding the basins have listric geometries. Seismostratigraphic relationships within the basins indicate the protracted, synsedimentary, and active nature of faulting and basin subsidence. Along the Peru-Chile trench, two prominent rifted basins also occur: the Gulf of Guayaquil and the Gulf of Penas-Taitao basin of southern Chile. There, margin-parallel rifting controls subsidence in localized basins at the southern terminus to margin-parallel dextral fault systems. These and other examples suggest that strike-slip motion and transverse rifting of forearcs is a common phenomenon inadequately described by existing two-dimensional models of forearcs. Margin-parallel motions of forearc blocks can be related not only to oblique plate convergence, but also to the geometric and compositional nature of the overriding and subducted plates.

  8. Understanding Along-strike Variations in Extension and Magmatism in Active Rifts: Discontinuous Structure Along the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Keranen, K. M.; Klemperer, S. L.

    2006-12-01

    A compilation of recent geophysical and geological data reveals a discontinuity in the structure of the Main Ethiopian Rift (MER) at ~8.5°N. Recent wide-angle seismic data (from the 2003 EAGLE project) recorded along the axis of the MER show a rapid increase of crustal thickness from c. 26 km in the NE to c. 40 km in the SW at this latitude, and receiver functions recorded on the northwestern plateau show a change in crustal thickness from over 40 km in the NE to c. 33 km in the SW. The thin crust (c. 26 km) in the NE segment of the rift is markedly thinner than the adjacent rift shoulders (over 40 km), as expected for an active rift. In contrast, the thick rift crust to the SW (c. 40 km) is apparently *thicker* than the crust of the adjacent northern rift shoulder. We consider two hypotheses to explain these observations: 1. The crust within the rift valley in the SW has been thickened by magmatic processes, i.e. a high degree of magmatism (underplating) resulting from the modest extension of unusually hot mantle has led to rift-crust thickening rather than thinning; or 2. The thick crust along the active-source profile in the SW represents pre-rift crustal thickness, which the active MER has as yet barely modified. The former hypothesis is unlikely because crustal structure in the SW appears relatively unmodified by magmatic processes, e.g. there is no observed 7.x km/s layer at the base of the crust and only very slightly elevated velocities are present in the lower or upper crust. In the latter hypothesis, extension of the MER may have hardly affected the location of the wide-angle profile SW of 8.5°N; rather, this latitude represents a discontinuity between the northern MER and a distinct rift segment south of 8.5°N. Seismic tomography from EAGLE active-source and broadband data supports this hypothesis, showing crustal and mantle segmentation (between NE and SW) at this location. Along with surface geological data, these data indicate that the northern MER

  9. Crust and Mantle Structure of a Closed Rift System from the Superior Province Rifting Earthscope Experiment (SPREE) (Invited)

    NASA Astrophysics Data System (ADS)

    van der Lee, S.; Wolin, E.; Bollmann, T. A.; Tekverk, K.

    2013-12-01

    The existence of the 1.1 Ga Mid-continent Rift System (MRS) in the Great Lakes region of North America is well known on account of its prominent gravity and magnetic anomalies. These elongated anomalies are associated with dense igneous rocks, which surface in sparse outcrops and are imaged in a handful of active source profiles. Part of the MRS cuts across the Archean Superior Craton while other parts cut through at least three different Proterozoic terranes, though there are indications that offsets between rift segments, such as the Belle Plaine Fault, may follow pre-existing terrane boundaries. The total volume of igneous rock imaged in active source data is consistently estimated as at least one million km3, which is enough for a sea floor of the size of the current Gulf of California, or five times the size of Lake Baikal. However, cessation of rifting and closure of the rift uplifted the igneous rocks along the axes, causing lateral gravity gradients of 150 mgal over 50 km between the gravity high above the uplifted igneous rift axis and the low above the sediment deposits in the original rift flanks. Our seismic experiment (SPREE) covers an area around a one thousand km long segment of the MRS. A long, interrupted line of stations follows the rift axis, another line cuts across this high gravity gradient, yet another line cuts across the Belle Plaine rift axis offset, and a TA-like station group north of Lake Superior complements surrounding Transportable Array coverage. The Superior Province Rifting Earthscope Flexible Array (FA) Experiment (SPREE) has been running for two years with a data return of over 96%. Preliminary SPREE and other analyses show puzzling low velocities along the rift axis and complex Moho structure beneath thickened crust. Other crustal features include a large diversity of sediments, from soggy Quaternary mud through meta-sedimentary Proterozoic rocks. At the time of writing we are quantifying the effects of this complex geological

  10. Decadal variability of rift propagation on the Amery Ice Shelf

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Bassis, J. N.; Czerwinski, R. J.; Fricker, H. A.

    2012-12-01

    The Amery Ice Shelf, East Antarctica, features five prominent rifts within 30 km of its calving front. We produce a time series of changes in rift length for the period 2002-2012 using available MODIS and MISR data. We find that all five are actively propagating, but with a complex spatio-temporal pattern of variability in which some rifts propagate in tandem while others appear to tradeoff. Temporal variability in rift propagation is dominated by large episodic bursts. These bursts, analogous to the much smaller propagation events detected from field observations, are not synchronous across all five rifts nor do the timing of propagation events exhibit any correlation with observed proxies for environmental forcing (e.g., atmospheric temperatures, sea-ice extent). However, we find that several propagation events take place after the predicted arrival from tsunamis originating in the Indian Ocean. This is especially apparent following the December 2004 Sumatra earthquake and three other earthquakes in the Sumatra/W. Indonesia area. This connection is bolstered by the observation of similar effects at other ice shelves, e.g., a large iceberg calving after the sudden propagation of two front-initiated rifts at Larsen C after the December 2004 tsunami. In comparing rift propagation at Amery with 61 rifts on 10 other ice shelves, we find that with the exception of the occasional tsunami triggered propagation event, the extreme variability on the Amery Ice Shelf is highly atypical. We postulate that the pronounced activity on the Amery is due to the fact that it last had a large calving event in 1963/64, and is approaching its pre-calved position. This suggests that the AIS is poised for another major calving event and the highly dynamic propagation we observe is the precursor to such an event. That multiple rifts exist and propagate due to structural heterogeneity and shelf geometry also makes these observations relevant to the highly fractured shells of the icy moons

  11. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  12. Neogene Development of the Terror Rift, western Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; De Santis, L.; Wardell, N.; Henrys, S. A.; Geletti, R.; Wilson, T. J.; Luyendyk, B. P.

    2015-12-01

    Terror Rift is a >300 km-long, 50-70 km-wide, 14 km-deep sedimentary basin at the edge of the West Antarctic Rift System, adjacent to the Transantarctic Mountains. It is cut into the broader Victoria Land Basin (VLB). The VLB experienced 100 km of mid-Cenozoic extension associated with larger sea floor spreading farther north. The post-spreading (Neogene) development of Terror Rift is not well understood, in part because of past use of different stratigraphic age models. We use the new Rossmap seismic stratigraphy correlated to Cape Roberts and Andrill cores in the west and to DSDP cores in the distant East. This stratigraphy, and new fault interpretations, was developed using different resolutions of seismic reflection data included those available from the Seismic Data Library System. Depth conversion used a new 3D velocity model. A 29 Ma horizon is as deep as 8 km in the south, and a 19 Ma horizon is >5 km deep there and 4 km-deep 100 km farther north. There is a shallower northern part of Terror Rift misaligned with the southern basin across a 50 km right double bend. It is bounded by steep N-S faults down-dropping towards the basin axis. Between Cape Roberts and Ross Island, the Oligocene section is also progressively-tilted. This Oligocene section is not imaged within northern Terror Rift, but the simplest hypothesis is that some of the Terror Rift-bounding faults were active at least during Oligocene through Quaternary time. Many faults are normal separation, but some are locally vertical or even reverse-separation in the upper couple of km. However, much of the vertical relief of the strata is due to progressive tilting (horizontal axis rotation) and not by shallow faulting. Along the trend of the basin, the relief alternates between tilting and faulting, with a tilting margin facing a faulted margin across the Rift, forming asymmetric basins. Connecting faults across the basin form an accommodation zone similar to other oblique rifts. The Neogene basin is

  13. Kilauea east rift zone magmatism: An episode 54 perspective

    USGS Publications Warehouse

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  14. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    SciTech Connect

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  15. Hydrogeochemical and lake level changes in the Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Alemayehu, Tamiru; Ayenew, Tenalem; Kebede, Seifu

    2006-01-01

    The Ethiopian Rift is characterized by a chain of lakes varying in size, hydrological and hydrogeological settings. The rift lakes and feeder rivers are used for irrigation, soda extraction, commercial fish farming and recreation, and support a wide variety of endemic birds and wild animals. The level of some lakes shows dramatic changes in the last few decades. Lakes Abiyata and Beseka, both heavily impacted by human activities, show contrasting lake level trends: the level of Abiyata has dropped by about 5 m over three decades while Beseka has expanded from an area of 2.5-40 km 2 over the same span of time. Changes in lake levels are accompanied by dilution in ionic concentration of lake Beseka and increase in salinity of lake Abiyata. Although the principal hydrogeochemical process in the rift lakes is controlled by the input and output conditions and carbonate precipitation, anthropogenic factors such as water diversion for irrigation and soda ash extraction played important role. The recent changes appear to have grave environmental consequences on the fragile rift ecosystem, which demands an integrated basin-wide water management practice. This paper demonstrates the drastic changes of lake levels and associated changes in lake chemistry of the two studied lakes. It also gives the regional hydrogeochemical picture of the other rift lakes that do not show significant response due to climate change and human impact.

  16. East Antarctic rifting triggers uplift of the Gamburtsev Mountains.

    PubMed

    Ferraccioli, Fausto; Finn, Carol A; Jordan, Tom A; Bell, Robin E; Anderson, Lester M; Damaske, Detlef

    2011-11-17

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains' origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere. PMID:22094700

  17. Tectonics and sedimentology of post-rift anomalous vertical movements: the rifted margin of Morocco

    NASA Astrophysics Data System (ADS)

    Bertotti, Giovanni; Charton, Remi; Luber, Tim; Arantegui, Angel; Redfern, Jonathan

    2016-04-01

    Roughly 15 years ago it was discovered that substantial parts of the Morocco passive continental margin experienced km-scale, post-rift exhumation. It was predicted that the sands resulting from the associated erosion would be present in the offshore and potentially form hydrocarbon reservoirs. At the same time, anomalous post-rift vertical movements have been documented in various localities of the world and rifted continental margins are at present exciting objects of research. Following intense research efforts the knowledge of the kinematics of vertical movements and their implications for sedimentary systems is increasing. The low-T geochronology initially limited to the classical Meseta-Massif Ancien de Marrakech transect has been expanded reaching the Reguibate Massif to the S and covering, possibly more importantly, one transect in E-W direction along the Anti Atlas. Exhumation occurred along two dominant trends. In N-S direction a several hundred-kilometers long exhuming domain developed roughly parallel to the Atlantic margin. Changes in magnitude and timing of exhumation are observed along this elevated domain associated with E-W trending undulations. The timing of main stage of upward movement of E-W trending highs seems to be Late Jurassic-Early Cretaceous in the Meseta and High Atlas and somewhat older, Early to Middle Jurassic, in the Anti-Atlas and Reguibate. The discovery of E-W trending highs and lows has major implication for sediment distribution and dispersal. At the large scale, it means that the drainage basins were smaller than initially predicted. This seems to be compatible with the paucity of sands encountered by recent exploration wells drilled offshore Morocco. At the scale of several kilometers, W-E trending anticlines and synclines developed in a generally subsiding coastal environment. These folds often had an expression at the sea floor documented by ravinement surfaces and (Jurassic) reef build-ups on top of the anticlines

  18. The First Prediction of a Rift Valley Fever Outbreak

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Chretien, Jean-Paul; Small, Jennifer; Tucker, Compton J.; Formenty, Pierre; Richardson, Jason H.; Britch, Seth C.; Schnabel, David C.; Erickson, Ralph L.; Linthicum, Kenneth J.

    2009-01-01

    El Nino/Southern Oscillation (ENSO) related anomalies were analyzed using a combination of satellite measurements of elevated sea surface temperatures, and subsequent elevated rainfall and satellite derived normalized difference vegetation index data. A Rift Valley fever risk mapping model using these climate data predicted areas where outbreaks of Rift Valley fever in humans and animals were expected and occurred in the Horn of Africa from December 2006 to May 2007. The predictions were subsequently confirmed by entomological and epidemiological field investigations of virus activity in the areas identified as at risk. Accurate spatial and temporal predictions of disease activity, as it occurred first in southern Somalia and then through much of Kenya before affecting northern Tanzania, provided a 2 to 6 week period of warning for the Horn of Africa that facilitated disease outbreak response and mitigation activities. This is the first prospective prediction of a Rift Valley fever outbreak.

  19. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  20. Constraints on rift thermal processes from heat flow and uplift

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1983-01-01

    The implications of heat flow data available from five major Cenozoic continental rift systems for the processes of continental rifting are discussed, and simple thermal models of lithospheric thinning which predict uplift are used to further constrain the thermal processes in the lithosphere during rifting. Compilations of the heat flow data are summarized and the salient results of these compilations are briefly discussed. The uplift predictions of the slow and rapid thinning models, in which thinning is assumed to occur at a respectively slower and faster rate than heat can be conducted into the lithosphere, are presented. Comparison of uplift rates with model results indicates that the lithosphere is in a state between the two models. While uplift is predicted to continue after thinning has ceased due to thermal relaxation of the lithosphere, the rapid thinning model is always predicted to apply to surface heat flow, and an anomaly in this flow is not predicted to develop until after thinning has stopped.

  1. Shear zone reactivation during South Atlantic rifting in NW Namibia

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Passchier, C. W.; Salomon, E.

    2013-12-01

    Reactivation of inherited structures during rifting as well as an influence of inherited structures on the orientation of a developing rift has long been discussed (e.g. Piqué & Laville, 1996; Younes & McClay, 2002). Here, we present a qualitative and quantitative study of shear zone reactivation during the South Atlantic opening in NW Namibia. The study area comprises the Neo-Proterozoic rocks of the Kaoko Belt which was formed during the amalgamation of Gondwana. The Kaoko Belt encompasses the prominent ~500 km long ductile Purros shear zone and the Three Palms shear zone, both running sub-parallel to the present continental margin. The Kaoko Belt is partly overlain by the basalts of the Paraná-Etendeka Large Igneous Province, which with an age of ~133 Ma were emplaced just before or during the onset of the Atlantic rifting at this latitude. Combining the analysis of satellite imagery and digital elevation models with extensive field work, we identified numerous faults tracing the old shear zones along which the Etendeka basalts were down-faulted. The faults are often listric, yet we also found evidence for a regional scale basin formation. Our analysis allowed for constructing the geometry of three of these faults and we could thus estimate the vertical offsets to ~150 m, ~500 m, and ~1100 m, respectively. Our results contribute to the view that the basement inheritance plays a significant role on rifting processes and that the reactivation of shear zones can accumulate significant amounts of displacement. References: Pique, A. and E. Laville (1996). The Central Atlantic rifting: Reactivation of Paleozoic structures?. J. Geodynamics, 21, 235-255. Younes, I.A. and K. McClay (2002). Development of accommodation zones in the Gulf of Suez-Red Sea rift, Egypt. AAPG Bulletin, 86, 1003-1026.

  2. New Insights into the Transition From Magmatic to Tectonic Rifting

    NASA Astrophysics Data System (ADS)

    Bialas, R. W.; Buck, W. R.; Qin, R.

    2008-12-01

    Magma plays a major role in the development of many rifts and continental margins. This is particularly clear for some of the more recent continental rifts including the Afro-Arabian Rift System and the breakup of South America from Africa. We are interested in how magma, injected as dikes, may lead to weakening of the lithosphere so that rifting can proceed even if the supply of magma wanes. We use a hybrid numerical model to simulate the effect of dike injection on continental lithopsheric rifting. We have developed a numerical diking simulation where the key diking parameters controlling the input of magma are the magma chamber size, minimum diking interval, and maximum tectonic force. The model includes a 2D finite difference code (FLAC) for tracking long- term stress build-up and strain in a viscoelastic-plactic model lithosphere. A boundary element code is used to simulate the effect of short-duration dike intrusion events that are specified to occur periodically at the center of the model region. The stresses from the finite difference code are applied to the boundary element code to calculate how much a dike opens as a function of depth. If a dike is generated, basaltic-density magma is "injected" into the finite difference model based on the distribution of dike opening obtained from the boundary element code. Diking thermally weakens the lithosphere and changes the lithospheric density structure, both weakening the lithosphere and reduce the force difference needed to continue extension. Varying the diking interval and magma chamber size, changes the rates magma input and lithospheric weakening. The maximum tectonic force effects the rate of magma injection, total magmatic extension, and hence, the timing of the transition from magmatic to tectonic extension. With normal lithospheric thicknesses and thermal structure, this transition may require as little as 3-5 km of magmatic extension before the onset of tectonic rifting.

  3. Flexural analysis of uplifted rift flanks on Venus

    NASA Technical Reports Server (NTRS)

    Evans, Susan A.; Simons, Mark; Solomon, Sean C.

    1992-01-01

    Knowledge of the thermal structure of a planet is vital to a thorough understanding of its general scheme of tectonics. Since no direct measurements of heat flow or thermal gradient are available for Venus, most estimates have been derived from theoretical considerations or by analog with the Earth. The flexural response of the lithosphere to applied loads is sensitive to regional thermal structure. Under the assumption that the yield strength as a function of depth can be specified, the temperature gradient can be inferred from the effective elastic plate thickness. Previous estimates of the effective elastic plate thickness of Venus range from 11-18 km for the foredeep north of Uorsar Rupes to 30-60 km for the annular troughs around several coronae. Thermal gradients inferred for these regions are 14-23 K km(exp -1) and 4-9 K km(exp -1) respectively. In this study, we apply the same techniques to investigate the uplifted flanks of an extensional rift. Hypotheses for the origin of uplifted rift flanks on Earth include lateral transport of heat from the center of the rift, vertical transport of heat by small-scale convection, differential thinning of the lithosphere, dynamical uplift, and isostatic response to mechanical uploading of the lithosphere. The 1st hypothesis is considered the dominant contributor to terrestrial rift flanks lacking evidence for volcanic activity, particularly for rift structures that are no longer active. In this study, we model the uplifted flanks of a venusian rift as the flexural response to a vertical end load.

  4. Magnetotelluric pilot study in the Rio Grande Rift, southwest USA

    NASA Astrophysics Data System (ADS)

    Feucht, D. W.; Bedrosian, P. A.; Sheehan, A. F.

    2012-12-01

    A magnetotelluric (MT) pilot study consisting of approximately 25 stations distributed in and around the Rio Grande Rift of the southwest United States was carried out in the summer of 2012. Both broadband (100 Hz to 1000 s) and long-period (up to 10 000 s) MT data were collected across two profiles that run perpendicular to the rift axis near Denver, Colorado and Taos, New Mexico, respectively. Time-domain EM data was also collected at each site to account for galvanic distortion in the near-surface. The tectonic forces and rheologic properties behind the initiation and propagation of the rift are poorly understood. Surface mapping of volcanism, normal faulting and sedimentary basins reveals a narrow band of crustal deformation confined to a region in close proximity to the rift axis while geophysical results suggest that deformation is distributed across a much broader and deeper region of the lithosphere. In particular, seismic tomography shows low seismic wave speeds into the lower crust and upper mantle. The magnetotelluric technique is a well-proven passive electromagnetic method that allows for the detection of apparent resistivity at a wide range of depth scales. Complimenting the seismic results with MT data will provide important new information on the geologic and geophysical properties that control the rifting process in this low-strain rate environment. Properties to which the MT method is particular sensitive include temperature, fluid content, and mineral alteration. Preliminary results from this most recent survey are encouraging, showing good data quality up to 10 000 s. In an important precursor to full 2D modeling, the magnetotelluric phase tensor has been used to assess the dimensionality of the electrical resistivity structure at depth. This pilot study provides proof of concept for a much larger magnetotelluric experiment planned to take place in the Rio Grande Rift in 2013.

  5. Thermal perturbations beneath the incipient Okavango Rift Zone, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Leseane, Khumo; Atekwana, Estella A.; Mickus, Kevin L.; Abdelsalam, Mohamed G.; Shemang, Elisha M.; Atekwana, Eliot A.

    2015-02-01

    We used aeromagnetic and gravity data to investigate the thermal structure beneath the incipient Okavango Rift Zone (ORZ) in northwestern Botswana in order to understand its role in strain localization during rift initiation. We used three-dimensional (3-D) inversion of aeromagnetic data to estimate the Curie Point Depth (CPD) and heat flow under the rift and surrounding basement. We also used two-dimensional (2-D) power-density spectrum analysis of gravity data to estimate the Moho depth. Our results reveal shallow CPD values (8-15 km) and high heat flow (60-90 mW m-2) beneath a ~60 km wide NE-trending zone coincident with major rift-related border faults and the boundary between Proterozoic orogenic belts. This is accompanied by thin crust (<30 km) in the northeastern and southwestern parts of the ORZ. Within the Precambrian basement areas, the CPD values are deeper (16-30 km) and the heat flow estimates are lower (30-50 mW m-2), corresponding to thicker crust (~40-50 km). We interpret the thermal structure under the ORZ as due to upward migration of hot mantle fluids through the lithospheric column that utilized the presence of Precambrian lithospheric shear zones as conduits. These fluids weaken the crust, enhancing rift nucleation. Our interpretation is supported by 2-D forward modeling of gravity data suggesting the presence of a wedge of altered lithospheric mantle centered beneath the ORZ. If our interpretation is correct, it may result in a potential paradigm shift in which strain localization at continental rift initiation could be achieved through fluid-assisted lithospheric weakening without asthenospheric involvement.

  6. 77 FR 68783 - Prospective Grant of Exclusive License: Veterinary Vaccines for Rift Valley Fever Virus

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ...: Veterinary Vaccines for Rift Valley Fever Virus AGENCY: Centers for Disease Control and Prevention (CDC... Rift Valley Fever Virus Utilizing Reverse Genetics,'' US Provisional Application 61/ ] 042,987, filed 4/7/2008, entitled ``Recombinant Rift Valley Fever (RVF) Viruses and Method of Use,'' PCT...

  7. Continental rifting and the origin of Beta Regio, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.

    1981-01-01

    Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.

  8. Sensitivity of the East African rift lakes to climate variability

    NASA Astrophysics Data System (ADS)

    Olaka, L.; Trauth, M. H.

    2009-04-01

    Lakes in the East African Rift have provided excellent proxies to reconstruct past climate changes in the low latitudes. The lakes occupy volcano-tectonic depressions with highly variable climate and hydrological setting, that present a good opportunity to study the climatic and hydrogeological influences on the lake water budget. Previous studies have used lake floor sediments to establish the sensitivity of the East African rift lakes. This study focuses on geomorphology and climate to offer additional or alternative record of lake history that are key to quantifying sensitivity of these lakes as archives to external and internal climatic forcings. By using the published Holocene lake areas and levels, we analyze twelve lakes on the eastern arm of the East African rift; Ziway, Awassa, Turkana, Suguta, Baringo, Nakuru, Elmenteita, Naivasha, Natron, Manyara and compare with Lake Victoria, that occupies the plateau between the east and the western arms of the rift. Using the SRTM data, Hypsometric (area-altitude) analysis has been used to compare the lake basins between latitude 80 North and 30 South. The mean elevation for the lakes, is between 524 and 2262 meters above sea level, the lakes' hypsometric integrals (HI), a measure of landmass volume above the reference plane, vary from 0.31 to 0.76. The aridity index (Ai), defined as Precipitation/ Evapotranspiration, quantifies the water available to a lake, it encompasses land cover and climatic effects. It is lowest (arid) in the basin between the Ethiopian rift and the Kenyan rift and at the southern termination of the Kenyan Rift in the catchments of lake Turkana, Suguta, Baringo and Manyara with values of 0.55, 0.43, 0.43 and 0.5 respectively. And it is highest (wet) in the catchments of, Ziway, Awassa, Nakuru and Naivasha as 1.33,1.03 and 1.2 respectively, which occupy the highest points of the rift. Lake Victoria has an index of 1.42 the highest of these lakes and receives a high precipitation. We use a

  9. Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya

    SciTech Connect

    Tatsumi, Yoshiyuki Kyoto Univ. ); Kimura, Nobukazu ); Itaya, Tetsumaru ); Koyaguchi, Takehiro ); Suwa, Kanenori )

    1991-06-01

    K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

  10. Thermal budget of the lower east rift zone, Kilauea Volcano

    USGS Publications Warehouse

    Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.

    1993-01-01

    The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.

  11. Basalt volatile fluctuations during continental rifting: An example from the Rio Grande Rift, USA

    NASA Astrophysics Data System (ADS)

    Rowe, Michael C.; Lassiter, John C.; Goff, Kathleen

    2015-05-01

    Hydration and metasomatism of the lithospheric mantle potentially influences both the magmatic and tectonic evolution of southwestern North America. Prior studies have suggested that volatile enrichments to the mantle underlying western North America resulted from shallow subduction of the Farallon Plate during the Laramide (˜74-40 Ma). This study examines temporal and spatial variations in volatile elements (H2O, Cl, F, and S) determined from olivine and orthopyroxene-hosted melt inclusions along and across the Rio Grande Rift, the easternmost extent of Laramide shallow subduction. Maximum chlorine enrichments are observed in the southern rift with a Cl/Nb of ˜210 and reduce with time to MORB-OIB levels (˜5-17). Measured water abundances are <0.8 wt % in rehomogenized inclusions; however, calculated H2O, based on Cl/Nb systematics, primarily varies from 0.5 to 2 wt % H2O. Sulfur abundances (<0.61 wt %), and calculated sulfide saturation, indicate magmas with high Cl/Nb also contain oxidized sulfur. The abundance of fluorine in melt inclusions (up to 0.2 wt %) is not correlated to other volatile elements. Temporal variations in melt inclusion volatile abundances coupled with varying isotopic (Sr-Nd-Pb) whole-rock systematics suggest a transition from lithospheric to asthenospheric melt generation in the southern RGR and potential lithosphere-asthenosphere melt mixing in the central RGR. East to west decrease in volatile enrichment likely reflects a combination of varying mantle sources and early removal of metasomatized lithospheric mantle underlying regional extension. Results indicate, from multiple causes, subduction-related volatile enrichment to the lithospheric mantle is ephemeral, and strong enrichments in volatiles are not preserved in active magmatic-tectonic provenances.

  12. Deformation signals in the currently-rifting Afar (Ethiopia) Rift measured with InSAR

    NASA Astrophysics Data System (ADS)

    Pagli, C.; Wright, T. J.; Wang, H.; Hamling, I. J.; Kier, D.; Belachew, M.; Ebinger, C.

    2008-12-01

    A major rifting episode is currently occurring in the Dabbahu magmatic segment in the Afar region. The rifting episode began in September-October 2005, when continuous seismicity, a volcanic eruption and extensive diking occurred along the 60-km-long magmatic segment. Since then, nine additional dike intrusions occurred in the area and have been detected by radar interferometry (InSAR), with the most recent dike intrusion occurring between July 4-21, 2008 at the southern edge of the segment. We used radar images acquired by the European satellite, Envisat, in both descending and ascending orbits to form interferograms, spanning the time period from October 2005 to the present. The interferograms cover the main magmatic segments in the Afar region including Dabbahu, Hararo, Alayta and Erta Ale. The recorded interferograms were inverted using a least-squares method to obtain average deformation maps and a time series of incremental deformations. Preliminary results indicate that rapid deformation is currently confined to the Dabbahu region with no large deformation signals observed in the nearby magmatic segments. High rates of deformation are observed in the Dabbahu segment associated with shallow magma movements and possible visco-elastic relaxation. Outside the Dabbahu segment, the largest signal is a broad area subsiding at a steady rate of 10 cm/yr, located south east of the Dabbahu segment, and east of the Hararo segment. Our preliminary interpretation is that this represents deep flow of magma away from the Hararo segment and towards Dabbahu. The observed deformation patterns will also be compared to seismicity observed over the same time periods.

  13. Discussion on final rifting evolution and breakup : insights from the Mid Norwegian - North East Greenland rifted system

    NASA Astrophysics Data System (ADS)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per

    2016-04-01

    In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual

  14. What created the Proterozoic Ladoga rift (SE Baltic shield): Testing rifting versus supercontinent reconfiguration origin by geophysical data

    NASA Astrophysics Data System (ADS)

    Artemieva, I. M.; Shulgin, A.

    2014-12-01

    Mesoproterozoic mafic magmatism at the southern part of the Baltic Shield (the Lake Ladoga region) is conventionally ascribed to epicratonic rifting. The region hosts a series of mafic dykes and sills of Mesoproterozoic ages, including a ca. 1.53-1.46 Ga sheet-like gabbro-dolerite sills and the Salmi plateau-basalts from the Lake Ladoga region. Based on chiefly geochemical data, the region is conventionally interpreted as an intracratonic Ladoga rift (graben). We question the validity of this geodynamic interpretation by analyzing regional geophysical data (crustal structure, heat flow, Bouguer gravity anomalies, magnetic anomalies, and mantle Vs velocities). We provide a complete list of tectonic, magmatic, and geophysical characteristics typical of continental rifts in general and demonstrate that, except for magmatic and, perhaps, some gravity signature, the Lake Ladoga region lacks any other rift features. We also compare the geophysical data from the Lake Ladoga region with a similar in age Midcontinent rift (USA) and the Valday rift (NW Russia), and provide alternative explanations for the Mesoproterozoic geodynamic evolution of the southern Baltic Shield. We propose that Mesoproterozoic mafic intrusions in southern Fennoscandia may be associated with a complex deformation pattern during reconfiguration of (a part of) Nuna (Columbia) supercontinent, which led to magma intrusions as a series of mafic dykes along lithosphere weakness zones and ponding of small magma pockets within the cratonic lithosphere. Consequent magma cooling and its partial transition to eclogite facies could have led to the formation of a series of basement depressions, similar to the intracratonic basins of North America, while spatially heterogeneous thermo-chemical subsidence, with phase transitions locally speeded by the presence of (subduction-related) fluids, could have produced a series of faults bounding graben-like structures.

  15. Insights into extensional processes during magma assisted rifting: Evidence from aligned scoria cones

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Bastow, Ian D.; Keir, Derek

    2011-04-01

    Mechanical and magmatic processes exert first-order control on the architecture and evolution of rifts. As a continental rift develops towards a new oceanic spreading centre, extension that is initially accommodated in a broad zone of faulting and ductile stretching must transition towards a narrow zone of focused magmatic intrusion. The Main Ethiopian Rift (MER), part of the East African Rift System, is an ideal location to study this transition because it captures rifting processes during continental breakup. In this contribution we synthesise geochemical data from scoria cones in the Wonji Fault Belt (WFB) and Silti-Debre Zeyit Fault Zone (SDFZ) in the MER to provide new constraints on the development of mantle melting columns and magmatic plumbing systems since the onset of rifting. We utilize the extensive geophysical and geochemical databases, collected in the Ethiopian Rift, to show that geochemical evidence of heterogeneity in the depth of the mantle melting column which produced Quaternary rift basalts correlates with lithospheric structure. When combined with existing observations of asymmetry across the rift in terms of depth of melting column and magmatic plumbing systems, it is evident that the mechanical structure of the rift, defined during the initial stages of breakup, has played a dominant role in the initial development of magma assisted rifting in the MER. Surface structures and crustal-scale geophysical studies have suggested the WFB is analogous to a sea-floor spreading centre. However, the geochemical characteristics of rift basalts are consistent with mantle tomography that shows no evidence beneath the MER for passive magmatic upwelling beneath discrete rift segments as is observed in the ocean basins. Collectively, the Ethiopian data show that the distribution of mantle melts during the initiation of magma assisted rifting is fundamentally influenced by lithospheric structures formed during earlier syn-rift stretching.

  16. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data

    USGS Publications Warehouse

    Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, Kim D.

    1992-01-01

    Recent multichannel seismic reflection data from Lake Baikal, located in a large, active, continental rift in central Asia, image three major stratigraphic units totalling 3.5 to 7.5 km thick in four subbasins. A major change in rift deposition and faulting between the oldest and middle-rift units probably corresponds to the change from slow to fast rifting. A brief comparison of the basins of Lake Baikal with those of the East African rift system highlights differences in structural style that can be explained by differences in age and evolution of the surrounding basement rocks. -from Authors

  17. Extensional tectonics and collapse structures in the Suez Rift (Egypt)

    NASA Technical Reports Server (NTRS)

    Chenet, P. Y.; Colletta, B.; Desforges, G.; Ousset, E.; Zaghloul, E. A.

    1985-01-01

    The Suez Rift is a 300 km long and 50 to 80 km wide basin which cuts a granitic and metamorphic shield of Precambrian age, covered by sediments of Paleozoic to Paleogene age. The rift structure is dominated by tilted blocks bounded by NW-SE normal faults. The reconstruction of the paleostresses indicates a N 050 extension during the whole stage of rifting. Rifting began 24 My ago with dikes intrusions; main faulting and subsidence occurred during Early Miocene producing a 80 km wide basin (Clysmic Gulf). During Pliocene and Quaternary times, faulting is still active but subsidence is restricted to a narrower area (Present Gulf). On the Eastern margin of the gulf, two sets of fault trends are predominant: (1) N 140 to 150 E faults parallel to the gulf trend with pure dip-slip displacement; and (2) cross faults, oriented NOO to N 30 E that have a strike-slip component consistent with the N 050 E distensive stress regime. The mean dip cross fault is steeper (70 to 80 deg) than the dip of the faults parallel to the Gulf (30 to 70 deg). These two sets of fault define diamond shaped tilted block. The difference of mechanical behavior between the basement rocks and the overlying sedimentary cover caused structural disharmony and distinct fault geometries.

  18. Complete Genome Sequence of Rift Valley Fever Virus Strain Lunyo

    PubMed Central

    Horton, Daniel L.; Marston, Denise A.; Johnson, Nicholas; Ellis, Richard J.; Fooks, Anthony R.; Hewson, Roger

    2016-01-01

    Using next-generation sequencing technologies, the first complete genome sequence of Rift Valley fever virus strain Lunyo is reported here. Originally reported as an attenuated antigenic variant strain from Uganda, genomic sequence analysis shows that Lunyo clusters together with other Ugandan isolates. PMID:27081121

  19. Forecast and Outbreak of Rift valley fever in Sudan, 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Rift Valley fever (RVF) outbreaks occur during heavy rainfall in various sub-Saharan countries including Kenya, Somalia, and Tanzania and more recently in Saudi Arabia and Yemen. Given the wide geographic and ecological range of RVF virus, it is necessary to monitor large areas for condit...

  20. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  1. Rift Valley fever Entomology, Ecology, and Outbreak Risk Factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease of domestic ruminants and humans in Africa. The disease is most severe in cattle, sheep, and goats, and it causes high mortality in young animals and abortion in adults. Exotic aanimal breeds from areas where RVF is not endemic tend to be ...

  2. Rift Valley Fever Overview and Recent Developments at USDA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne viral disease with significant health and economic impacts to domestic animals and humans in much of sub-Saharan Africa. Human infections are believed to occur mainly from mosquito bites and from infectious aerosols. The available strategies for protection...

  3. Massive and prolonged deep carbon emissions associated with continental rifting

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  4. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  5. Predicting the Next Outbreak of Rift Valley Fever (RVF)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease of domestic ruminants in Africa. The disease is most severe in cattle, sheep, and goats, and it causes high mortality in young animals and abortion in adults. Exotic aanimal breeds from areas where RVF is not endemic tend to be more suscep...

  6. Potential for Rift Valley to be Introduced into North America

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne zoonotic disease of domestic ruminants in Africa. The disease is most severe in cattle, sheep, and goats, causing mortality in young animals and abortion in adults. Human infection causes significant morbidity and mortality. RVF occurs in sub-Saharan Afri...

  7. Development of a sheep challenge model for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever is a zoonotic disease responsible for severe outbreaks in ruminant livestock characterized by mass abortion and high mortality rates in younger animals. The lack of a fully licensed vaccine in the US has spurred increased demand for a protective vaccine. Thus, development of a reli...

  8. Development of a sheep challenge model for Rift Valley fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a zoonotic disease that causes severe epizootic disease in ruminants, characterized by mass abortion and high mortality rates in younger animals. The development of a reliable challenge model is an important prerequisite for evaluation of existing and novel vaccines. A stu...

  9. Comparing Two Profiles: The Amazing Size of the Rift Valleys.

    ERIC Educational Resources Information Center

    Housepian, Jean

    1983-01-01

    Describes an activity for grade 7-9 students previously introduced to topographic maps and profile lines. Two profiles of equal scale are used to help students appreciate the tremendous size of mid-ocean rift valleys. Procedures and examples of completed profiles are provided. (JN)

  10. Potential Effects of Rift Valley Fever in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) has been the cause of disease outbreaks throughout Africa and the Arabian Peninsula, and the infection often results in heavy economic costs through loss of livestock. If RVFV, which is common to select agent lists of the US Department of Health and Human Services and ...

  11. Seismicity of the Earth 1900-2013 East African Rift

    USGS Publications Warehouse

    Hayes, Gavin P.; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.

  12. Masirah Graben, Oman: A hidden Cretaceous rift basin

    SciTech Connect

    Beauchamp, W.H.; Ries, A.C.; Coward, M.P.

    1995-06-01

    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system that is downthrown to the southeast, forming the western edge of the Masirah graben. This graben is limited to the east by a large wedge of sea floor sediments and oceanic crust, that is stacked as imbricate thrusts. These sediments/ophiolites were obducted onto the southern margin of the Arabian plate during the collision of the Indian/Afghan plates at the end of the Cretaceous. Most of the Masirah graben is covered by an allochthonous sedimentary sequence, which is complexly folded and deformed above a detachment. This complexly deformed sequence contrasts sharply with what is believed to be a rift sequence below the ophiolites. The sedimentary sequence in the Masirah graben was stable until further rifting of the Arabian Sea/Gulf of Aden in the late Tertiary, resulting in reactivation of earlier rift-associated faults. Wells drilled in the Masirah graben in the south penetrated reservoir quality rocks in the Lower Cretaceous Natih and Shuaiba carbonates. Analyses of oil extracted from Infracambrian sedimentary rocks penetrated by these wells suggest an origin from a Mesozoic source rock.

  13. Rifting, landsliding and magmatic variability in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Troll, V. R.; Guillou, H.; Badiola, E. R.; Pérez-Torrado, F. J.; Wiesmaier, S.; Delcamp, A.; Gonzalez, A. R.

    2009-04-01

    Rifts, probably the most influential structures in the geology of the Canary Islands, may also be responsible for the development of central felsic volcanoes, which are consistently nested in the collapse basins of the massive lateral collapses found in the Canaries. Three main types of post-collapse volcanism have been observed, particularly in the western Canaries: 1. Collapses followed by relatively scant, non-differentiated volcanism inside the collapse depression (El Golfo, El Hierro; La Orotava and Güímar, Tenerife), 2. those with important, although short-lasting (tens of thousands of years), post-collapse activity including felsic (phonolitic, trachytic) central volcanism (Bejenado, La Palma; Vallehermoso, La Gomera), and 3. those with very important, long-lasting (>100 kyr) post-collapse activity, evolving from primitive to felsic magmatism, eventually resulting in very high stratovolcanoes (Teide, Tenerife). Three consecutive sector collapses (Micheque, Güímar and La Orotava) mass-wasted the flanks of in the NE rift of Tenerife after intense and concentrated eruptive activity, particularly from about 1.10 Ma to 0.96 Ma, with periods of growth up to 15-25 m/kyr. Volcanic activity completely filled the Micheque collapse, evolving from basaltic to differentiated trachytic eruptions. Conversely, nested volcanism was less abundant in the Güímar and La Orotava collapses. This requires two fundamentally different scenarios which may be a function of active versus passive flank collapse trigger mechanisms: 1. The collapse occurs as a result of one of these short but intense intrusive-eruptive periods and probably triggered by concurring extensional stresses at the rifts (rift push), or 2. the giant landslide is derived only from gravitational instability. In the first scenario, the collapse of the flank of the rift may disrupt an established fissural feeding system that rapidly fills the collapse basin. Due to its disruption and the progressive new

  14. The Porcupine Basin: from rifting to continental breakup

    NASA Astrophysics Data System (ADS)

    Reston, Timothy; Gaw, Viola; Klaeschen, Dirk; McDermott, Ken

    2015-04-01

    Southwest of Ireland, the Porcupine Basin is characterized by axial stretching factors that increase southward to values greater than six and typical of rifted margins. As such, the basin can be regarded as a natural laboratory to investigate the evolution and symmetry of rifting leading towards continental separation and breakup, and in particular the processes of mantle serpentinisation, and the onset of detachment faulting. We have processed through to prestack depth migration a series of E-W profiles crossing the basin at different axial stretching factors and linked by a N-S profile running close to the rift axis. Our results constrain the structure of the basin and have implications for the evolution of rifted margins. In the north at a latitude of 52.25N, no clear detachment is imaged, although faults do appear to cut down into the mantle, so that serpentinisation may have started. Further south (51.75N), a bright reflection (here named P) cuts down to the west from the base of the sedimentary section, is overlain by small fault blocks and appears to represent a detachment fault. P may in part follow the top of partially serpentinized mantle: this interpretation is consistent with gravity modelling, with numerical models of crustal embrittlement and mantle serpentinization during extension and with wide-angle data (see posters of Prada and of Watremez). Furthermore, P closely resembles the S reflection west of Iberia, where such serpentinites are well documented. P develops where the crust was thinned to less than 3 km during rifting, again similar to S. Although overall the basin remains symmetrical, the consistent westward structural dip of the detachment implies that, at high stretching factors, extension became asymmetric. Analysis of the depth sections suggests that the detachment may have been active as a rolling hinge rooting at low-angle beneath the Porcupine Bank, consistent with the presence of a footwall of serpentinites. This requires very weak

  15. Seismic structure of the uppermost mantle beneath the Kenya rift

    USGS Publications Warehouse

    Keller, Gordon R.; Mechie, J.; Braile, L.W.; Mooney, W.D.; Prodehl, C.

    1994-01-01

    A major goal of the Kenya Rift International Seismic Project (KRISP) 1990 experiment was the determination of deep lithospheric structure. In the refraction/wide-angle reflection part of the KRISP effort, the experiment was designed to obtain arrivals to distances in excess of 400 km. Phases from interfaces within the mantle were recorded from many shotpoints, and by design, the best data were obtained along the axial profile. Reflected arrivals from two thin (< 10 km), high-velocity layers were observed along this profile and a refracted arrival was observed from the upper high-velocity layer. These mantle phases were observed on record sections from four axial profile shotpoints so overlapping and reversed coverage was obtained. Both high-velocity layers are deepest beneath Lake Turkana and become more shallow southward as the apex of the Kenya dome is approached. The first layer has a velocity of 8.05-8.15 km/s, is at a depth of about 45 km beneath Lake Turkana, and is observed at depths of about 40 km to the south before it disappears near the base of the crust. The deeper layer has velocities ranging from 7.7 to 7.8 km/s in the south to about 8.3 km/s in the north, has a similar dip as the upper one, and is found at depths of 60-65 km. Mantle arrivals outside the rift valley appear to correlate with this layer. The large amounts of extrusive volcanics associated with the rift suggest compositional anomalies as an explanation for the observed velocity structure. However, the effects of the large heat anomaly associated with the rift indicate that composition alone cannot explain the high-velocity layers observed. These layers require some anisotropy probably due to the preferred orientation of olivine crystals. The seismic model is consistent with hot mantle material rising beneath the Kenya dome in the southern Kenya rift and north-dipping shearing along the rift axis near the base of the lithosphere beneath the northern Kenya rift. This implies lithosphere

  16. The role of inherited crustal structures and magmatism in the development of rift segments: Insights from the Kivu basin, western branch of the East African Rift

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; Delvaux, Damien; Ross, Kelly Ann; Poppe, Sam; Kervyn, Matthieu; d'Oreye, Nicolas; Kervyn, François

    2016-06-01

    The study of rift basin's morphology can provide good insights into geological features influencing the development of rift valleys and the distribution of volcanism. The Kivu rift segment represents the central section of the western branch of the East African Rift and displays morphological characteristics contrasting with other rift segments. Differences and contradictions between several structural maps of the Kivu rift make it difficult to interpret the local geodynamic setting. In the present work, we use topographic and bathymetric data to map active fault networks and study the geomorphology of the Kivu basin. This relief-based fault lineament mapping appears as a good complement for field mapping or mapping using seismic reflection profiles. Results suggest that rifting reactivated NE-SW oriented structures probably related to the Precambrian basement, creating transfer zones and influencing the location and distribution of volcanism. Both volcanic provinces, north and south of the Kivu basin, extend into Lake Kivu and are connected to each other with a series of eruptive vents along the western rift escarpment. The complex morphology of this rift basin, characterized by a double synthetic half-graben structure, might result from the combined action of normal faulting, magmatic underplating, volcanism and erosion processes.

  17. Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities

    NASA Astrophysics Data System (ADS)

    Achauer, Ulrich; Masson, Frédéric

    2002-11-01

    Tomographic images for four major continental rift zones, namely the southern Rhine Graben (SRG, Germany/France), the Gregory rift (Kenya) which is the central part of the East African rift system, the Rio Grande rift (RGR) in the United States and the Lake Baikal rift zone (LBR) in Russia have been revisited by calculating and comparing absolute velocity models. The four rifts exhibit strong structural differences in the uppermost mantle down to more than 300-km depth, suggesting major differences in their geodynamic evolution albeit their similarity in age and similar surface expression. The comparative analysis suggests that tomographic images of rift zones can be used to characterize continental rifts, once the corrections to obtain absolute velocities have been carried out. Our results suggest that while the Kenya and the Rio Grande rift may be considered active with large upwelling plumes being the main controlling factor in the evolution, the southern Rhine Graben and the Lake Baikal rift are more likely passive rifts, where complex regional stress fields and inherited structures play the governing role in the evolution.

  18. Large-scale variation in lithospheric structure along and across the Kenya rift

    USGS Publications Warehouse

    Prodehl, C.; Mechie, J.; Kaminski, W.; Fuchs, K.; Grosse, C.; Hoffmann, H.; Stangl, R.; Stellrecht, R.; Khan, M.A.; Maguire, Peter K.H.; Kirk, W.; Keller, Gordon R.; Githui, A.; Baker, M.; Mooney, W.; Criley, E.; Luetgert, J.; Jacob, B.; Thybo, H.; Demartin, M.; Scarascia, S.; Hirn, A.; Bowman, J.R.; Nyambok, I.; Gaciri, S.; Patel, J.; Dindi, E.; Griffiths, D.H.; King, R.F.; Mussett, A.E.; Braile, L.W.; Thompson, G.; Olsen, K.; Harder, S.; Vees, R.; Gajewski, D.; Schulte, A.; Obel, J.; Mwango, F.; Mukinya, J.; Riaroh, D.

    1991-01-01

    The Kenya rift is one of the classic examples of a continental rift zone: models for its evolution range from extension of the lithosphere by pure shear1, through extension by simple shear2, to diapiric upwelling of an asthenolith3. Following a pilot study in 19854, the present work involved the shooting of three seismic refraction and wide-angle reflection profiles along the axis, across the margins, and on the northeastern flank of the rift (Fig. 1). These lines were intended to reconcile the different crustal thickness estimates for the northern and southern parts of the rift4-6 and to reveal the structure across the rift, including that beneath the flanks. The data, presented here, reveal significant lateral variations in structure both along and across the rift. The crust thins along the rift axis from 35 km in the south to 20 km in the north; there are abrupt changes in Mono depth and uppermost-mantle seismic velocity across the rift margins, and crustal thickening across the boundary between the Archaean craton and PanAfrican orogenic belt immediately west of the rift. These results suggest that thickened crust may have controlled the rift's location, that there is a decrease in extension from north to south, and that the upper mantle immediately beneath the rift may contain reservoirs of magma generated at greater depth.

  19. Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa.

    PubMed

    Calais, Eric; d'Oreye, Nicolas; Albaric, Julie; Deschamps, Anne; Delvaux, Damien; Déverchère, Jacques; Ebinger, Cynthia; Ferdinand, Richard W; Kervyn, François; Macheyeki, Athanas S; Oyen, Anneleen; Perrot, Julie; Saria, Elifuraha; Smets, Benoît; Stamps, D Sarah; Wauthier, Christelle

    2008-12-11

    Continental rifts begin and develop through repeated episodes of faulting and magmatism, but strain partitioning between faulting and magmatism during discrete rifting episodes remains poorly documented. In highly evolved rifts, tensile stresses from far-field plate motions accumulate over decades before being released during relatively short time intervals by faulting and magmatic intrusions. These rifting crises are rarely observed in thick lithosphere during the initial stages of rifting. Here we show that most of the strain during the July-August 2007 seismic crisis in the weakly extended Natron rift, Tanzania, was released aseismically. Deformation was achieved by slow slip on a normal fault that promoted subsequent dyke intrusion by stress unclamping. This event provides compelling evidence for strain accommodation by magma intrusion, in addition to slip along normal faults, during the initial stages of continental rifting and before significant crustal thinning. PMID:19079058

  20. The Pongola structure of southeastern Africa - The world's oldest preserved rift?

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T. M.

    1985-01-01

    Rocks of the Pongola Supergroup form an elongate belt in the Archean Kaapvaal Craton of southern Africa. Because these rocks exhibit many features that are characteristic of rocks deposited in continental rifts, including rapid lateral variations in thickness and character of sediments, volcanic rocks that are bimodal in silica content, coarse, basement derived conglomerates and thick sequences of shallow water sedimentary facies associations, it is suggested that the Pongola Supergroup was deposited in such a rift. The age of these rocks (approximately 3.0 Ga) makes the Pongola structure the world's oldest well-preserved rift so far recognized, and comparison of the Pongola Rift with other rifts formed more recently in earth history reveals striking similarities, suggesting that the processes that formed this rift were not significantly different from those that form continental rifts today.

  1. Closing of the Midcontinent-Rift - a far-field effect on Grenvillian compression

    USGS Publications Warehouse

    Cannon, W.F.

    1994-01-01

    The Midcontinent rift formed in the Laurentian supercontinent between 1109 and 1094 Ma. Soon after rifting, stresses changed from extensional to compressional, and the central graben of the rift was partly inverted by thrusting on original extensional faults. Thrusting culminated at about 1060 Ma but may have begun as early as 1080 Ma. On the southwest-trending arm of the rift, the crust was shortened about 30km; on the southeast-trending arm, strike-slip motion was dominant. The rift developed adjacent to the tectonically active Grenville province, and its rapid evolution from an extensional to a compressional feature at c1080 Ma was coincident with renewal of northwest-directed thrusting in the Grenville, probably caused by continent-continent collision. A zone of weak lithosphere created by rifting became the locus for deformation within the otherwise strong continental lithosphere. Stresses transmitted from the Grenville province utilized this weak zone to close and invert the rift. -Author

  2. Water management problems in the Ethiopian rift: Challenges for development

    NASA Astrophysics Data System (ADS)

    Ayenew, Tenalem

    2007-06-01

    The Ethiopian rift is characterized by many perennial rivers and lakes occupying volcano-tectonic depressions with highly variable hydrogeological setting. The rift lakes and rivers were the focal points for relatively large-scale water resources development. They are used for irrigation, soda abstraction, commercial fish farming, recreation and support a wide variety of endemic birds and wild animals. Ethiopia's major mechanized irrigation farms and commercial fishery are confined within the rift. A few of the lakes have shrunk as a result of excessive abstraction of water; others expanded due to increased surface runoff and groundwater flux from percolated over-irrigated fields and active tectonism. Excessive land degradation and deforestation have also played a role. Human factors, in combination with the natural conditions of climate and geology have influenced the water quality. The chemistry of some of the lakes has been changed dramatically. This paper tries to present the challenges of surface water resources development with particular reference to environmental problems caused in the last few decades. The methods employed include field hydrological mapping supported by aerial photograph and satellite imagery interpretations, hydrometeorological and hydrochemical data analysis and catchment hydrological modeling. A converging evidence approach was adapted to reconstruct the temporal and spatial variations of lake levels and the hydrochemistry. The result revealed that the major changes in the rift valley are related mainly to recent improper utilization of water and land resources in the rivers draining the rift floor and the lakes' catchment, and to direct lake water abstraction, aggravated intermittently by natural factors (climate and tectonism). These changes appear to have grave environmental consequences, which demand urgent integrated basin-wide water management practice.

  3. The importance of rift history for volcanic margin formation.

    PubMed

    Armitage, John J; Collier, Jenny S; Minshull, Tim A

    2010-06-17

    Rifting and magmatism are fundamental geological processes that shape the surface of our planet. A relationship between the two is widely acknowledged but its precise nature has eluded geoscientists and remained controversial. Largely on the basis of detailed observations from the North Atlantic Ocean, mantle temperature was identified as the primary factor controlling magmatic production, with most authors seeking to explain observed variations in volcanic activity at rifted margins in terms of the mantle temperature at the time of break-up. However, as more detailed observations have been made at other rifted margins worldwide, the validity of this interpretation and the importance of other factors in controlling break-up style have been much debated. One such observation is from the northwest Indian Ocean, where, despite an unequivocal link between an onshore flood basalt province, continental break-up and a hot-spot track leading to an active ocean island volcano, the associated continental margins show little magmatism. Here we reconcile these observations by applying a numerical model that accounts explicitly for the effects of earlier episodes of extension. Our approach allows us to directly compare break-up magmatism generated at different locations and so isolate the key controlling factors. We show that the volume of rift-related magmatism generated, both in the northwest Indian Ocean and at the better-known North Atlantic margins, depends not only on the mantle temperature but, to a similar degree, on the rift history. The inherited extensional history can either suppress or enhance melt generation, which can explain previously enigmatic observations. PMID:20559385

  4. Thermal Evolution of Continental Rifting in Corsica (France)

    NASA Astrophysics Data System (ADS)

    Seymour, N. M.; Stockli, D. F.; Beltrando, M.; Smye, A.

    2014-12-01

    Present thermal evolution models for continental rifting are based on pure-shear extension (McKenzie 1978), in which crustal and mantle strain is co-located and all rocks cool throughout rifting. However, the multi-phase rift model of Lavier and Manatschal (2006) accommodates lithospheric extension via spatially offset crustal and mantle strains, producing depth-dependent thinning and exhumation of lithospheric mantle. Significant reheating of the upper plate is a natural consequence of this model. We seek to constrain the temperature-time history of the upper-plate Tethyan margin preserved in Corsica to discriminate between the two thermal models. A record of the conditions and timing of reheating is preserved in the age and trace element compositions of metamorphic zircon overgrowths. Zircon from the hanging wall and footwall of the Jurassic-age Belli Piani shear zone (Beltrando et al 2013) were depth-profiled for both U-Pb and trace element concentrations via LA-ICP-MS split streaming. Across both sides of the shear zone, U-Pb ages show a strong population of 275-300 Ma grains. However, a subset of footwall grains show 165-210 Ma overgrowths. These ages indicate that the margin reached temperature conditions sufficient for zircon saturation and subsequent zircon growth. These lower crustal findings are consistent with prior observations made within the sedimentary succession, which records rapid thermal uplift, karstification, and subsequent drowning of Triassic dolostones contemporaneous with the opening of the Alpine Tethys (Decarlis and Lualdis 2008). Ti-in-zircon thermometry yields temperatures of ~720°C in the hanging wall and ~830°C in the footwall. This is consistent with the appearance of overgrowths, and provides further support that the Belli Piani shear zone was active during Jurassic rifting. Collectively, these data point directly to a rift-coeval reheating event that affected the entire crustal pile and lend support to the multi-stage Lavier and

  5. East Antarctic rifting triggers uplift of the Gamburtsev Mountains

    USGS Publications Warehouse

    Ferraccioli, F.; Finn, Carol A.; Jordan, Tom A.; Bell, Robin E.; Anderson, Lester M.; Damaske, Detlef

    2011-01-01

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere.

  6. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  7. Crustal structure beneath the Kenya Rift from axial profile data

    USGS Publications Warehouse

    Mechie, J.; Keller, Gordon R.; Prodehl, C.; Gaciri, S.; Braile, L.W.; Mooney, W.D.; Gajewski, D.; Sandmeier, K.-J.

    1994-01-01

    Modelling of the KRISP 90 axial line data shows that major crustal thinning occurs along the axis of the Kenya Rift from Moho depths of 35 km in the south beneath the Kenya Dome in the vicinity of Lake Naivasha to 20 km in the north beneath Lake Turkana. Low Pn velocities of 7.5-7.7 km/s are found beneath the whole of the axial line. The results indicate that crustal extension increases to the north and that the low Pn velocities are probably caused by magma (partial melt) rising from below and being trapped in the uppermost kilometres of the mantle. Along the axial line, the rift infill consisting of volcanics and a minor amount of sediments varies in thickness from zero where Precambrian crystalline basement highs occur to 5-6 km beneath the lakes Turkana and Naivasha. Analysis of the Pg phase shows that the upper crystalline crust has velocities of 6.1-6.3 km/s. Bearing in mind the Cainozoic volcanism associated with the rift, these velocities most probably represent Precambrian basement intruded by small amounts of igneous material. The boundary between the upper and lower crusts occurs at about 10 km depth beneath the northern part of the rift and 15 km depth beneath the southern part of the rift. The upper part of the lower crust has velocities of 6.4-6.5 km/s. The basal crustal layer which varies in thickness from a maximum of 2 km in the north to around 9 km in the south has a velocity of about 6.8 km/s. ?? 1994.

  8. A recombinant Rift Valley fever virus glycoprotein subunit vaccine confers full protection against Rift Valley fever challenge in sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease outbreaks in Africa and the Arabian Peninsula. The virus has great potential for transboundary spread due to the presence of competent vectors in non-endemic areas. There is currently no fully licensed vaccine suita...

  9. Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring

    NASA Astrophysics Data System (ADS)

    Walker, C. C.; Bassis, J. N.; Fricker, H. A.; Czerwinski, R. J.

    2013-12-01

    Iceberg calving from ice shelves accounts for nearly half of the mass loss from the Antarctic Ice Sheet, yet our understanding of this process is limited. The precursor to iceberg calving is large through-cutting fractures, called "rifts," that can propagate for decades after they have initiated until they become iceberg detachment boundaries. To improve our knowledge of rift propagation, we monitored the lengths of 78 rifts in 13 Antarctic ice shelves using satellite imagery from the Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer between 2002 and 2012. This data set allowed us to monitor trends in rift propagation over the past decade and test if variation in trends is controlled by variable environmental forcings. We found that 43 of the 78 rifts were dormant, i.e., propagated less than 500 m over the observational interval. We found only seven rifts propagated continuously throughout the decade. An additional eight rifts propagated for at least 2 years prior to arresting and remaining dormant for the rest of the decade, and 13 rifts exhibited isolated sudden bursts of propagation after 2 or more years of dormancy. Twelve of the fifteen active rifts were initiated at the ice shelf fronts, suggesting that front-initiated rifts are more active than across-flow rifts. Although we did not find a link between the observed variability in rift propagation rate and changes in atmospheric temperature or sea ice concentration correlated with, we did find a statistically significant correlation between the arrival of tsunamis and propagation of front-initiated rifts in eight ice shelves. This suggests a connection between ice shelf rift propagation and mechanical ocean interaction that needs to be better understood.

  10. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    This study is based on a coupled basin infilling study and a landforms analysis of the Lake Albert Rift located at the northern part of the western branch of the East African Rift. The basin infilling study is based on both subsurface data and outcrops analysis. The objective was to (1) obtain an age model based on onshore mammals biozones, (2) to reconstruct the 3D architecture of the rift using sequence stratigraphy correlations and seismic data interpretation, (3) to characterize the deformation and its changes through times and (4) to quantify the accommodation for several time intervals. The infilling essentially consists of isopach fault-bounded units composed of lacustrine deposits wherein were characterized two major unconformities dated at 6.2 Ma (Uppermost Miocene) and 2.7 Ma (Pliocene-Pleistocene boundary), coeval with major subsidence and climatic changes. The landforms analysis is based on the characterization and relative dating (geometrical relationships with volcanism) of Ugandan landforms which consist of stepped planation surfaces (etchplains and peplians) and incised valleys. We here proposed a seven-steps reconstruction of the deformation-erosion-sedimentation relationships of the Lake Albert Basin and its catchments: - 55-45 Ma: formation of laterites corresponding to the African Surface during the very humid period of the Lower-Middle Eocene; - 45-22: stripping of the African Surface in response of the beginning of the East-African Dome uplift and formation of a pediplain which associated base level is the Atlantic Ocean; - 17-2.5 Ma: Initiation of the Lake Albert Basin around 17 Ma and creation of local base levels (Lake Albert, Edward and George) on which three pediplains tend to adapt; - 18 - 16 Ma to 6.2 Ma: "Flexural" stage (subsidence rate: 150-200 m/Ma; sedimentation rate 1.3 km3/Ma between 17 and 12 Ma and 0.6 km3/Ma from 12 to 6 Ma) - depocenters location (southern part of Lake Albert Basin) poorly controlled by fault; - 6.2 Ma to 2

  11. New insights into the rifting process in the western part of the Corinth Rift (Greece) from relocated seismicity

    NASA Astrophysics Data System (ADS)

    Lambotte, Sophie; Lyon-Caen, Hélène; Bernard, Pascal; Deschamps, Anne; Patau, Geneviève; Nercessian, Alexandre

    2013-04-01

    The Rift of Corinth, in Greece, is one of the most active rifts in Europe, with several instrumental and historical large earthquakes with magnitude larger than 5.5, numerous active swarms, a significant background seismicity and an extension rate of 11-16 mm/year. Focusing on the western part of the rift, the seismic activity is monitored since 2000 by a network of 12 three-component stations (CRLNET). Over the period 2000-2007, it was analyzed in terms of multiplets and precisely relocated using double difference techniques. This detailed analysis brings new insights into the geometry of faults at depth, the nature and the structure of the active zone at 6-8 km depth previously interpreted as a possible detachment, and more generally into the rifting process. The seismicity exhibits a complex structure, strongly varying along the rift axis. The detailed picture of the seismic zone observed below the rift indicates that its shallower part is 1-1.5 km thick with a complex micro-structure, and its deeper part, 0.1-0.3 km thick slightly dips to the north (10-20°), with a micro-structure consistent with its general slope. Although the nature of the seismic zone remains an open question, the presence of seismicity underneath the main active area, the strong variability of structure along the rift over short distances, and the complex micro-structure of the shallow part revealed by the multiplet analysis are as many elements against the hypothesis of a mature detachment under the rift: it more likely represents a layer of diffuse deformation. The geometry of the main active faults is not well defined at depth, as no seismicity is observed between 0 and 4 km, except for the Aigion fault rooting in the seismic layer at 6 km depth with a dip of 60°. A distinct cloud of seismicity may be associated with the antithetic Kalithea fault, on which the 1909 Foki earthquake (Ms=6.3) may have occurred. The link between the 1995 rupture (Ms=6.2) and the faults known at the surface

  12. Geochronological and geochemical assessment of Cenozoic volcanism from the Terror Rift region of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Rilling, Sarah E.

    The work presented in this dissertation explains results from three different methods to determine the relation between tectonism and rift-related volcanism in the Terror Rift region of the West Antarctic Rift System (WARS). Alkaline lavas from seven submarine features, Beaufort Island and Franklin Islands, and several locations near Mt Melbourne were dated by 40Ar/39Ar geochronology and analyzed for elemental and isotopic chemical signatures. Each chapter addresses a different aspect of the hypothesis that the presence of volatiles, primarily H2O or CO2, in the magma source has led to anomalously high volumes of magmatism after rift-related decompressional melting rather than requiring an active mantle plume source. Chapter 2 provides the temporal framework, illustrating that the sampled features range in age from 6.7 Ma to 89 ka, post-dating the main Miocene age phase of Terror Rift extension. Chapter 3 illustrates the traditional enriched elemental and isotopic chemical signatures to support the overall homogeneity of these lavas and previously analyzed areas of the WARS. This chapter also provides a new model for the generation of the Pb isotopic signatures consistent with a history of metasomatism in the magma source. Chapter 4 provides an entirely new chemical dataset for the WARS. The first platinum group element (PGE) abundances and extremely unradiogenic Os isotopic signatures of Cenozoic lavas from Antarctica provide the strongest evidence of melting contributions from a lithospheric mantle source. The combined results from these three studies consistently support the original hypothesis of this dissertation. New evidence suggests that WARS related lavas are not related to a mantle plume(s) as previously proposed. Instead, they are generated by passive, decompressional melting of a source, likely a combination of the asthenospheric and lithospheric mantle, which has undergone previous melting events and metasomatism.

  13. A refinement of the chronology of rift-related faulting in the Broadly Rifted Zone, southern Ethiopia, through apatite fission-track analysis

    NASA Astrophysics Data System (ADS)

    Balestrieri, Maria Laura; Bonini, Marco; Corti, Giacomo; Sani, Federico; Philippon, Melody

    2016-03-01

    To reconstruct the timing of rift inception in the Broadly Rifted Zone in southern Ethiopia, we applied the fission-track method to basement rocks collected along the scarp of the main normal faults bounding (i) the Amaro Horst in the southern Main Ethiopian Rift and (ii) the Beto Basin in the Gofa Province. At the Amaro Horst, a vertical traverse along the major eastern scarp yielded pre-rift ages ranging between 121.4 ± 15.3 Ma and 69.5 ± 7.2 Ma, similarly to two other samples, one from the western scarp and one at the southern termination of the horst (103.4 ± 24.5 Ma and 65.5 ± 4.2 Ma, respectively). More interestingly, a second traverse at the Amaro northeastern terminus released rift-related ages spanning between 12.3 ± 2.7 and 6.8 ± 0.7 Ma. In the Beto Basin, the ages determined along the base of the main (northwestern) fault scarp vary between 22.8 ± 3.3 Ma and 7.0 ± 0.7 Ma. We ascertain through thermal modeling that rift-related exhumation along the northwestern fault scarp of the Beto Basin started at 12 ± 2 Ma while in the eastern margin of the Amaro Horst faulting took place later than 10 Ma, possibly at about 8 Ma. These results suggest a reconsideration of previous models on timing of rift activation in the different sectors of the Ethiopian Rift. Extensional basin formation initiated more or less contemporaneously in the Gofa Province (~ 12 Ma) and Northern Main Ethiopian Rift (~ 10-12 Ma) at the time of a major reorganization of the Nubia-Somalia plate boundary (i.e., 11 ± 2 Ma). Afterwards, rift-related faulting involved the Southern MER (Amaro Horst) at ~ 8 Ma, and only later rifting seemingly affected the Central MER (after ~ 7 Ma).

  14. Magmatism During Rifting Controls the Polarity of Tilted Blocks

    NASA Astrophysics Data System (ADS)

    Chauvet, F.; Bourgeois, O.; Dauteuil, O.

    2009-12-01

    Magma-poor rifts, such as non-volcanic passive continental margins (e.g. Galicia) and slow-spreading oceanic ridges (e.g. Mid-Atlantic Ridge), are composed of faulted crustal blocks that dip generally away from the rift axis. By contrast, magma-rich rifts, such as volcanic passive margins (e.g. Norway, Namibia and the obducted paleo-volcanic margin of Oman) and hotspot-influenced slow-spreading oceanic ridges (e.g. Iceland), are composed of faulted crustal blocks that dip generally towards the rift axis. At volcanic passive margins, these tilted blocks are overlain by syn-tectonic volcano-sedimentary sequences that appear on seismic profiles as packages of seaward-dipping reflectors (SDRs). They are associated with swarms of magmatic dikes and sills. On the basis of a detailed structural study of Iceland (Bourgeois et al. 2005, Geodinamica Acta 18:59-80), we demonstrate that, in magma-rich rifts, lithospheric stretching is accomodated in a long-term deformation strip, n x 100 km wide, by the development of successive roll-over structures controlled by growth-faults and underlain by shallow magma chambers. As a given roll-over structure progressively develops and tilts in response to lithospheric stretching, it is continuously covered by lavas erupted from the associated magma chamber and reaching the surface through dike swarms dominantly located along the growth fault. After a lifetime of a few My, this roll-over structure dies at the expense of the activation of a new, laterally offset, one. Correspondingly, such roll-over structures form successively at different places within a diffuse plate boundary n x 100 km wide. After several roll-over structures have developed and died, the overall structure of the long-term deformation strip is composed of faulted crustal blocks that generally dip towards the rift axis and that are covered by volcano-sedimentary sequences. Physical laboratory experiments conducted with analogue materials demonstrate that this peculiar

  15. Colorado Basin Structure and Rifting, Argentine passive margin

    NASA Astrophysics Data System (ADS)

    Autin, Julia; Scheck-Wenderoth, Magdalena; Loegering, Markus; Anka, Zahie; Vallejo, Eduardo; Rodriguez, Jorge; Marchal, Denis; Reichert, Christian; di Primio, Rolando

    2010-05-01

    The Argentine margin presents a strong segmentation with considerable strike-slip movements along the fracture zones. We focus on the volcanic segment (between the Salado and Colorado transfer zones), which is characterized by seaward dipping reflectors (SDR) all along the ocean-continent transition [e.g. Franke et al., 2006; Gladczenko et al., 1997; Hinz et al., 1999]. The segment is structured by E-W trending basins, which differs from the South African margin basins and cannot be explained by classical models of rifting. Thus the study of the relationship between the basins and the Argentine margin itself will allow the understanding of their contemporary development. Moreover the comparison of the conjugate margins suggests a particular evolution of rifting and break-up. We firstly focus on the Colorado Basin, which is thought to be the conjugate of the well studied Orange Basin [Hirsch et al., 2009] at the South African margin [e.g. Franke et al., 2006]. This work presents results of a combined approach using seismic interpretation and structural, isostatic and thermal modelling highlighting the structure of the crust. The seismic interpretation shows two rift-related discordances: one intra syn-rift and the break-up unconformity. The overlying sediments of the sag phase are less deformed (no sedimentary wedges) and accumulated before the generation of oceanic crust. The axis of the Colorado Basin trends E-W in the western part, where the deepest pre-rift series are preserved. In contrast, the basin axis turns to a NW-SE direction in its eastern part, where mainly post-rift sediments accumulated. The most distal part reaches the margin slope and opens into the oceanic basin. The general basin direction is almost orthogonal to the present-day margin trend. The most frequent hypothesis explaining this geometry is that the Colorado Basin is an aborted rift resulting from a previous RRR triple junction [e.g. Franke et al., 2002]. The structural interpretation

  16. Rifting to spreading in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Leroy, S.; Razin, P.; Lucazeau, F.; D'Acremont, E.; Autin, J.; Watremez, L.; Robinet, J.; Baurion, C.

    2011-12-01

    The Gulf of Aden margins systems are volcanic to the West, where they are influenced by the Afar hotspot, and non-volcanic East of longitude 46°E. The combined use of magnetics, gravity, seismic reflection, field observations (tectonic and sedimentological) allowed us to obtain better constraints on the timing of continental rifting and seafloor spreading. From the Permo-Triassic to the Oligocene, the Arabian-African plate was subject to distributed extension, probably due, at least from the Cretaceous, to tensile stresses related to the subduction of the Tethysian slab in the north. In Late Eocene, 35 Ma ago, rifting started to localize along the future area of continental breakup. Initially guided by the inherited basins, continental rifting then occurred synchronously over the entire gulf before becoming localized on the northern and southern borders of the inherited grabens, in the direction of the Afar hot-spot. In the areas with non-volcanic margins (in the East), the faults marking the end of rifting trend parallel to the inherited grabens. Only the transfer faults cross-cut the inherited grabens, and some of these faults later developed into transform faults. The most important of these transform faults follow a Precambrian trend. Volcanic margins were formed in the West of the Gulf, up to the Guban graben in the south-east and as far as the southern boundary of the Bahlaf graben in the North-East. Seaward dipping reflectors (SDRs) can be observed on many oil-industry seismic profiles. The influence of the hotspot during rifting was concentrated on the western part of the gulf. Therefore, it seems that the western domain was uplifted and eroded at the onset of rifting, while the eastern domain was characterized by more continuous sedimentation. The phase of distributed deformation was followed by a phase of strain localization during the final rifting stage, just before formation of the Ocean-Continent Transition (OCT), in the most distal graben (DIM

  17. Albertine Rift, Uganda: Deformation-Sedimentation-Erosion relationships

    NASA Astrophysics Data System (ADS)

    Simon, Brendan; Guillocheau, François; Robin, Cécile; Dauteuil, Olivier; Nalpas, Thierry; Bourges, Philippe; Bez, Martine; Lays, Philippe

    2014-05-01

    The Albertine Rift is the northern part of the western branch of the East African Rift that runs over a distance of around 2000 km from Lake Albert in the north to Lake Malawi in the south. Lake Albert Basin is assumed to be a classical half-graben initiated around 12 Ma and oriented NNW-SSW, with a major northwesterly bounding fault - the Bunia fault - located along the western Congolese shoreline (Ebinger, 1989; Pickford & al., 1993). The aim of this study is to understand the relationships between deformation, erosion, and sedimentation of the rift through time by restoring (1) the timing and amplitude of vertical movements (subsidence, uplift), (2) the geometry and paleo-environmental evolution (including climate) of the sedimentary infilling and (3) the geomorphological evolution of the surrounding area and associated erosion budget. Seismic data and outcrops studies suggest a much more complex history than previously described. (1) The age model, mainly based on mammal fossils (Pickford et al., 1993; Van Damme and Pickford, 2003), is debated, but the early stage of the rift is probably Middle Miocene. (2) No half-graben geometry has been characterized: the infilling consists of juxtaposed tabular compartments with sharp thicknesses variations along bounding faults, in response of either low rate extensional or combined strike-slip/extensional movements. The following onshore-offshore evolution is proposed: - Middle Miocene (~ 13 Ma) to Late Miocene (?): rifting 1 - differential subsidence along N60° faults - major deepening from fluvio-deltaic to deep lacustrine environments (maximum flooding at 8 Ma) - uplift, erosion and reworking of weathered profiles - first generation of pediments. - Late Miocene (?) to Late Pliocene (~ 3 Ma): quiescence phase - homogenous subsidence - lacustrine clays interbedded with sandy flood-lobes - uplift, erosion and reworking of ferruginous laterite (iron duricrusts) - second generation of pediments. - Late Pliocene (~ 3Ma) to

  18. Radial Anisotropy beneath the Main Ethiopian Rift and Afar Depression

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Jin, G.; Shillington, D. J.

    2014-12-01

    The Main Ethiopian Rift (MER) and Afar uniquely capture the final stages of transition from continental rifting in the broader East African Rift System to incipient seafloor spreading above a mantle hotspot. Studies of the region increasingly point to magmatism as a controlling factor on continental extension. However, the character and depth extent of these melt products remain contentious. Radial anisotropy derived from surface waves provides a unique diagnostic constraint on the presence of oriented melt pockets versus broader oriented anisotropic fabrics. This study investigates the thermal and radially anisotropic structure beneath the broader MER and Afar to resolve the magmatic character of the region and ultimately to understand the role of magmatism in present day rift development. We utilize 104 stations from 4 collocated arrays in the MER/Afar region to constrain radial anisotropy within the upper mantle via the inversion of Love- and Rayleigh-wave observations between 25 and 100 s period. We employ a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information. The multi-channel phase observations are inverted for dynamic phase velocity across the array, which are then corrected for focusing and multipathing using the amplitude observations via Helmholtz tomography. We jointly invert Love- and Rayleigh-wave structural phase velocity measurements employing crustal constraints from co-located active source experiments to obtain estimates of Vsv and Vsh between 50 - 170 km depth. Preliminary results readily reveal the distinct shear velocity structure beneath the MER and Afar. Within the MER, shear velocity structure suggests pronounced low velocities accompanied by strong anisotropy between 80 - 140 km depth beneath the western Ethiopian plateau and rift valley. Within Afar, shear velocity structure is more varied with the slowest velocities found at shallow depths (less than 70 km depth), accompanied by weak

  19. The evolutional model of oblique-rifting basin : Insights from discrete element method

    NASA Astrophysics Data System (ADS)

    Cheng, I.-Wen; Yang, Kenn-Ming; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during the evolution of oblique-rifting basin. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, whichα are 45°, 60°, 75° and 90° respectively, to simulatebasin formation under oblique-rifting process. The study results of simulation models indicated that:1. the en echelon faults in the rifting basins are sub-orthogonal to the trend of major extensional stress; 2. the density of en echelon faults in rift basins decreasesgradually when α is close to 45°; 3. in these models, the α angles, which are 45°, 60°, 75° and 90°, correspond tothe angles of 0°, 15°-20°, 25°-30° and 50°-60° between the rift trend and en echelon faults trend. According tothe simulation results, the possible dircetions of major extensional stresses during the formation of oblique-rifting basin can be speculated.

  20. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P.

    2005-04-01

    The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6-4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.

  1. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  2. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  3. Contour mapping of relic structures in the Precambrian basement of the Reelfoot rift, North American midcontinent

    USGS Publications Warehouse

    Dart, R.L.; Swolfs, H.S.

    1998-01-01

    A new contour map of the basement of the Reelfoot rift constructed from drill hole and seismic reflection data shows the general surface configuration as well as several major and minor structural features. The major features are two asymmetric intrarift basins, bounded by three structural highs, and the rift margins. The basins are oriented normal to the northeast trend of the rift. Two of the highs appear to be ridges of undetermined width that extend across the rift. The third high is an isolated dome or platform located between the basins. The minor features are three linear structures of low relief oriented subparallel to the trend of the rift. Two of these, located within the rift basins, may divide the rift basins into paired subbasins. These mapped features may be the remnants of initial extensional rifting, half graben faulting, and basement subsidence. The rift basins are interpreted as having formed as opposing half graben, and the structural highs are interpreted as having formed as associated accommodation zones. Some of these features appear to be reactivated seismogenic structures within the modem midcontinent compressional stress regime. A detailed knowledge of the geometries of the Reelfoot rift's basement features, therefore, is essential when evaluating their seismic risk potential.

  4. Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Sharon, Tarah M.; Albrecht, Bruce A.; Jonsson, Haflidi H.; Minnis, Patrick; Khaiyer, Mandana M.; Van Reken, Timothy; Seinfeld, John; Flagan, Rick

    2008-01-01

    A cloud rift is characterized as a large-scale, persistent area of broken, low reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of Monterey Bay, California on 16 July 1999 was studied to compare the aerosol and cloud microphysical properties in the rift with those of the surrounding solid stratus deck. Variables measured from an instrumented aircraft included temperature, water vapor, and cloud liquid water. These measurements characterized the thermodynamic properties of the solid deck and rift areas. Microphysical measurements made included aerosol, cloud drop and drizzle drop concentrations and cloud condensation nuclei (CCN) concentrations. The microphysical characteristics in a solid stratus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Further, CCN concentrations were found to be about 3 times greater in the solid cloud area compared with those in the rift and aerosol concentrations showed a similar difference as well. Although drizzle was observed near cloud top in parts of the solid stratus cloud, the largest drizzle rates were associated with the broken clouds within the rift area. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud rift boundary is presented. This mesoscale circulation provides a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill.

  5. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

    NASA Astrophysics Data System (ADS)

    Delcamp, A.; Troll, V. R.; van Wyk de Vries, B.; Carracedo, J. C.; Petronis, M. S.; Pérez-Torrado, F. J.; Deegan, F. M.

    2012-07-01

    Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North-East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth

  6. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  7. Interaction between an incipient rift and a cratonic lithosphere : The North Tanzania Rift seen from some seismic tools

    NASA Astrophysics Data System (ADS)

    Gautier, Stéphanie; Plasman, Matthieu; Tiberi, Christel; Lopez, Marie; Peyrat, Sophie; Perrot, Julie; Albaric, Julie; Déverchère, Jacques; Deschamps, Anne; Ebinger, Cindy; Roecker, Steven; Mulibo, Gabriel; Wambura, Richard Ferdinand; Muzuka, Alfred; Msabi, Michael; Gama, Remigius

    2016-04-01

    The North Tanzania part of the East African Rift is the place of an incipient break up of the lithosphere. This continental rifting happens on the edge of the Tanzanian craton, and their interaction leads to major changes in the surface deformation. The evolution of the rift and its morphology is strongly linked to the inherited structures, particularly the Proterozoic belts and the craton itself. It is thus of prime interest to image the structure of the craton edges to fully understand its impact on the localisation of the current deformation at the surface. Since 2007 different multidisciplinary projects have taken place in this area to address this question. We present here a work based on a collaborative work between French, American and Tanzanian institutes that started in 2013. About 35 seismological stations were installed for 2 years in the Natron lake region, and 10 short period instruments were added for 9 months in the Manyara area to record local and telesismic events. We have analysed more than a hundred teleseismic events to compute the receiver function, and we finally obtain a Moho map of the region as well as azimuthal distribution of converted phases. The stations located on the edge of the rift and near the craton present a continuous evolution of their crustal pattern in the RF signal. Especially, we identify a clear phase at about 7s for those stations that corresponds to an interface separating a normal upper mantle from a very slow mantle at about 70 km depth. We first model those receiver functions to perfectly fit the signal, and more precisely the transverse component, which shows a strong and coherent pattern. Second, the local seismic network we have installed for 9 months in Manyara region advantageously completed the 2007 SEISMOTANZ network. In this part of the rift the seismicity is deep (20-30 km) and clustered without any magmatism record at the surface, opposite to Natron area. We could then relocalize the deep seismicity observed

  8. Interepidemic Rift Valley Fever Virus Seropositivity, Northeastern Kenya

    PubMed Central

    Muchiri, Eric M.; Ndzovu, Malik; Mwanje, Mariam T.; Muiruri, Samuel; Peters, Clarence J.; King, Charles H.

    2008-01-01

    Most outbreaks of Rift Valley fever (RVF) occur in remote locations after floods. To determine environmental risk factors and long-term sequelae of human RVF, we examined rates of previous Rift Valley fever virus (RVFV) exposure by age and location during an interepidemic period in 2006. In a randomized household cluster survey in 2 areas of Ijara District, Kenya, we examined 248 residents of 2 sublocations, Gumarey (village) and Sogan-Godud (town). Overall, the RVFV seropositivity rate was 13% according to immunoglobulin G ELISA; evidence of interepidemic RVFV transmission was detected. Increased seropositivity was found among older persons, those who were male, those who lived in the rural village (Gumarey), and those who had disposed of animal abortus. Rural Gumarey reported more mosquito and animal exposure than Sogan-Godud. Seropositive persons were more likely to have visual impairment and retinal lesions; other physical findings did not differ. PMID:18680647

  9. Potential for Autoimmune Pathogenesis of Rift Valley Fever Virus Retinitis

    PubMed Central

    Newman-Gerhardt, Shoshana; Muiruri, Samuel; Muchiri, Eric; Peters, Clarence J.; Morrill, John; Lucas, Alexander H.; King, Charles H.; Kazura, James; LaBeaud, Angelle Desiree

    2013-01-01

    Rift Valley Fever (RVF) is a significant threat to human health because it can progress to retinitis, encephalitis, and hemorrhagic fever. The timing of onset of Rift Valley Fever virus (RVFV) retinitis suggests an autoimmune origin. To determine whether RVFV retinitis is associated with increased levels of IgG against retinal tissue, we measured and compared levels of IgG against healthy human eye tissue by immunohistochemical analysis. We found that serum samples from RVFV-exposed Kenyans with retinitis (n = 8) were slightly more likely to have antibodies against retinal tissue than control populations, but the correlation was not statistically significant. Further investigation into the possible immune pathogenesis of RVFV retinitis could lead to improved therapies to prevent or treat this severe complication. PMID:23918215

  10. Crustal Structure of the Ethiopian Rift and Adjacent Plateaus: Results of new integrated interpretation

    NASA Astrophysics Data System (ADS)

    Tadesse, K.; Keller, G. R.

    2006-12-01

    The Ethiopian rift is the large part of the East African Rift system, which represents an incipient divergent plate boundary. This important structure provides excellent opportunities to study the transition from continental to oceanic. As a result, geophysical data are becoming increasingly available but some results are contradictory. We used a newly enhanced gravity database and seismic information to produce an integrated interpretation of the crustal structure beneath the Ethiopian rift and the adjacent plateaus. Wide regions have been covered to assess the regional structures including the Kenyan and Ethiopian rifts and the area covered by the Ethiopian flood basalt. Broad negative Bouguer gravity anomalies are delineated over the Ethiopian Plateaus and the Kenyan dome. Residual gravity anomalies, which parallel the major border faults clearly highlight the segregation between the plateaus and the rift valleys. Results of other filtering techniques have clearly revealed individual volcanic centers within the rift valleys. Positive gravity anomalies outside the rift valleys may be associated with older structures, shield volcanoes, or structures that are related to the initiation and propagation of rifting. A long axial profile from the central part of Kenya to the Afar triple junction has been modeled to investigate along-axis crustal variation of the East African rift system, with emphasis on the Ethiopian rift. This modeling has been constrained using seismic refraction data from the Ethiopian Afar Geoscientific Lithospheric Experiment (EAGLE) and Kenya Rift International Seismic Project (KRISP) results. We are able to see a thin crust (~26 km) in the Afar triangle with a gradual thickening (~40 km) southwards towards the Main Central Ethiopian rift (MER). The crust thickness decreases towards Turkana rift (~22 km), and increases again towards the central eastern rift section in Kenya. Our profile model across the MER has revealed that the eastern rift

  11. Intracontinental rifting and inversion: Missour basin and Atlas Mountains, Morocco

    SciTech Connect

    Beauchamp, W.; Barazangi, M.; Demnati, A.; Alji, M.E.

    1996-09-01

    The intracontinental High and Middle Atlas mountain belts in Morocco intersect to form the southern and western margins of the Missour basin, an intermontane basin formed as a result of the uplift and inversion of the Mesozoic Atlas paleorifts. These rifts were areas where the crust was greatly attenuated and more subject to deformation in response to nearby plate boundary tectonics. Data from observations based on seismic reflection profiles and wells over the Missour basin for hydrocarbon exploration and field mapping were used to understand the basin evolution, structural styles, and inversion timing of the nearby Atlas Mountains. Hercynian and Mesozoic normal faults were reactivated into high-angle reverse and thrust faults in the Mesozoic during the Jurassic, Early Cretaceous (early Alpine phase), and the Paleogene (late Alpine phase). The reactivation of synrift normal faults of the paleo-Atlas rifts inverted previous half grabens into anticlinal structures, with the axis of the half graben centered below the axis of the inverted anticline. The resulting inverted fold geometries are controlled by the geometries of the extensional planar or listric faults. The Atlas paleorift system is one of the largest rift systems in Africa. Little hydrocarbon exploration has occurred within the Atlas Mountains and the margins of the paleo-Atlas rift system. Inversion of synrift structures can lead to both the destruction and preservation of synrift traps and the creation of new hydrocarbon traps. The study of the effects of inversion in the Missour basin may lead to the discovery of footwall subthrust hydrocarbon traps in the Mesozoic sedimentary sequence of the Atlas Mountains.

  12. Rifted Continental Margins: The Case for Depth-Dependent Extension

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.; Beaumont, Christopher

    2015-04-01

    Even though many basic properties of non-volcanic rifted margins are predicted by uniform extension of the lithosphere, uniform extension fails to explain other important characteristics. Particularly significant discrepancies are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I), where large tracts of continental mantle lithosphere are exposed at the seafloor, and at; 2) ultra-wide central South Atlantic margins (Type II) where continental crust spans wide regions below which it appears that lower crust and mantle lithosphere were removed. Neither corresponds to uniform extension in which crust and mantle thin by the same factor. Instead, either the crust or mantle lithosphere has been preferentially removed during extension. We show that the Type I and II styles are respectively reproduced by dynamical numerical lithospheric stretching models (Models I-A/C and II-A/C) that undergo depth-dependent extension. In this notation A and C imply underplating of the rift zone during rifting by asthenosphere and lower cratonic lithosphere, respectively. We also present results for models with a weak upper crust and strong lower crust, Models III-A/C, to show that lower crust can also be removed from beneath the rift zone by horizontal advection with the mantle lithosphere. From the model results we infer that these Types I, II, and III margin styles are controlled by the strength of the mid/lower crust, which determines the amount of decoupling between upper and lower lithosphere during extension and the excision of crust or mantle. We also predict the styles of sedimentary basins that form on these margins as a test of the concepts presented.

  13. Seismic Evidence for an Active Southern Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Thompson, L. E.; Velasco, A. A.

    2010-12-01

    Competing models exist to explain what caused the Earth’s crust to spread apart 29 million years ago to create a region known today as the Rio Grande Rift (RGR). The RGR extends from central Colorado through New Mexico to northern Mexico, near El Paso. A growing body of evidence shows that geologic activity still occurs in the RGR, with a continuation of faulting, seismicity and a small widening rate. We map of the seismic velocity structure and crustal thickness using data from the Rio Grande Rift Seismic TRAnsect (RISTRA) experiment and the EarthScope Transportable Array (USArray) dataset. In addition to the data we collected from the RISTRA experiment and USArray dataset, we also acquired receiver functions from the EarthScope Automatic Receiver Survey (EARS) website (http://www.earthscope.org/data) and waveform data from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC). In particular, we requested seismograms from the IRIS DMC database where we acquired teleseismic events from Jan 2000 to Dec 2009. This includes 7,259 seismic events with a minimum magnitude of 5.5 and 106,389 continuous waveforms. This data was preprocessed (merged, rotated) using a program called Standing Order of Data (SOD). We computed receiver functions and receiver function stacks for all data in the Southern Rio Grande Rift (SRGR). We map the crustal thickness, seismic velocity, and mantle structure to better determine the nature of tectonic activity that is presently taking place and further investigate the regional extension of the Southern Rio Grande Rift (SRGR). Here we present results of the crustal and velocity structure using the kriging interpolation scheme and interpret our results in relation to southern RGR deformation and extension.

  14. Erosion of Terrestrial Rift Flank Topography: A Quantitative Study

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.

    1999-01-01

    Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.

  15. Mantle support of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Lin, S.; van Keken, P. E.; Brandenburg, J. P.; Furman, T.; Bryce, J.

    2007-12-01

    The African Superplume is a region of slow seismic wave velocities in the lower mantle under southern Africa. The uplift, volcanism and rifting that defines the much of eastern and southern Africa suggest a dynamic link between lower mantle dynamics and near-surface processes affecting the African plate. The dynamic link between the lower mantle and the surface, and the structure and dynamics of the upper mantle below the East African Rift System (EARS) remain unclear. As part of a comprehensive geochemical and numerical investigation of basaltic magmatism in the EARS we have modeled the interaction between putative upper mantle plumes and the rifting continental lithosphere. The modeling provides dynamically tested scenarios that explain the observed episodes of Cenozoic volcanism. Results from recent models that provided an explanation for the present day distribution of volcanism (Lin et al., EPSL, 237, 2005) suggest two plumes below Afar and Tanzania whose uplift is influenced by lithospheric topography. In new 3D modeling we provide improved quantification of the mantle involvement in generating EARS volcanism as constrained by the timing of uplift and regional volcanism. The time scales of episodicity of the volcanism observed at Turkana (related to the Tanzania-Kenya plume) since 45 Ma can be explained by deep- seated time-dependent plume activity. We suggest that this time-dependence is due to thermochemical interactions of dense recycled oceanic crust in the thermally hot regions in the African superplume region (Lin and Van Keken, Nature, 436, 2005).

  16. The Sagatu Ridge dike swarm, Ethiopian rift margin. [tectonic evolution

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.; Potter, E. C.

    1976-01-01

    A swarm of dikes forms the core of the Sagatu Ridge, a 70-km-long topographic feature elevated to more than 4000 m above sea level and 1500 m above the level of the Eastern (Somalian) plateau. The ridge trends NNE and lies about 50 km east of the northeasterly trending rift-valley margin. Intrusion of the dikes and buildup of the flood-lava pile, largely hawaiitic but with trachyte preponderant in the final stages, occurred during the late Pliocene-early Pleistocene and may have been contemporaneous with downwarping of the protorift trough to the west. The ensuing faulting that formed the present rift margin, however, bypassed the ridge. The peculiar situation and orientation of the Sagatu Ridge, and its temporary existence as a line of crustal extension and voluminous magmatism, are considered related to a powerful structural control by a major line of Precambrian crustal weakness, well exposed further south. Transverse rift structures of unknown type appear to have limited the development of the ridge to the north and south.

  17. Early Cretaceous rifts of Western and Central Africa: an overview

    NASA Astrophysics Data System (ADS)

    Guiraud, René; Maurin, Jean-Christophe

    1992-10-01

    The structure and evolution of Early Cretaceous rift basins in Western and Central Africa are described. Two stages of rift development and fracturing have been identified: (1) from Neocomian to Early Aptian roughly E-W and NW trending troughs (Upper Benue, N Cameroon, S Chad, Sudan etc.) opened in response to a submeridian extensional regime in Central Africa while in Western Africa the N-S trending transsaharian fault zone acted as a sinistral wrench; (2) from Middle Aptian to Late Albian large northwest trending troughs (E Niger, Sudan, Sirte, etc.) opened in response to a northeast extensional regime while the Central African fault zone (from Benue to Sudan) exhibited strike-slip movements, generating pull-apart basins. These rift and fracture systems delimit three large blocks within the African plate: a Western block, an Arabian-Nubian block and an Austral block. The Arabian-Nubian block tends to separate from the two other blocks, migrating towards the north during the first stage of basin development and then towards the NE during the second stage. The opening of the Atlantic Ocean was the dominant driving force for the Western and Austral blocks while the Arabian-Nubian block probably moved in response to the opening of the Indian Ocean and to the evolution of the Tethyan margin.

  18. Indirect detection of subsurface outflow from a rift valley lake

    NASA Astrophysics Data System (ADS)

    Darling, W. G.; Allen, D. J.; Armannsson, H.

    1990-02-01

    Naivasha, highest of the Kenya (Gregory) Rift Valley lakes, has no surface outlet. However, unlike other Rift lakes it has not become saline despite high potential evaporation rates, which indicates that there must be some subsurface drainage. The fate of this outflow has been the subject of speculation for many years, especially during the general decline in lake water level during the 1980's. Particularly to the south of the lake, there are few opportunities to obtain information from direct groundwater sampling. However, the stable isotopic composition of fumarole steam from late Quaternary volcanic centres in the area has been used to infer groundwater composition. Using a simple mixing model between Rift-flank groundwater and highly-evaporated lakewater, this has enabled subsurface water flow to be contoured by its lakewater content. By this method, outflow can still be detected some 30 km to the south of the lake. Stable isotope data also confirm that much of the steam used by the local Olkaria geothermal power station is derived from lakewater, though simple balance considerations show that steam use cannot alone be responsible for the fall in lake level observed during the 1980's.

  19. Thermal variations in the gregory rift of southern Kenya (?)

    NASA Astrophysics Data System (ADS)

    Crane, Kathleen

    1981-04-01

    A compilation of thermal and seismic data collected over the last sixty years allows one to infer that tectonic phenomena and heat emanation could be linked in an oscillatory mode up and down the Kenyan part of the East African Rift. The seismic period is approximately 20-30 years during which time the loci of maximum intensity earthquakes move in a rhythmic pattern from south to north and back to south. Temperatures measured from hot springs also fluctuate over this time span increasing or decreasing in different sections of the rift. Spatial variations were measured by infrared radiometers from low altitude aircraft or high-altitude satellites. These reveal that individual thermal springs ranging from 35°C to 80°C, warm up greater than 5 km2 of the lake bottom of Magadi (only a slightly active thermal region which, however, yields greater then 300 MW). The heated area is large enough to detect by satellite imagery, making it possible to monitor the heat budget and flux over time and relate it to tectonic activity in the rift.

  20. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. ERTS-1 imagery of the African rift system resolves the major Cenozoic faults, zones of warping, and the associated volcanism. It also clearly depicts the crustal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, linearity, etc., are revealed by the ERTS-1 imagery. This applies to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the arcuate faults of the Elgeyo escarpment in the Gregory rift, and hemi-basins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of the Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cenozoic faulting of the degree of obliquity to Precambrian structural trend. Some ground-mapped lithological boundaries are obscure on ERTS-1 imagery. The present approaches to mapping of Precambrian terrain in Africa may require radical revision with the input of satellite imagery.

  1. Benue trough and the mid-African rift system

    SciTech Connect

    Thomas, D.

    1996-01-29

    Large areas of the Anambra and Gongola basins have distinct petroleum exploration problems: a geologically persistent high geothermal gradient that promoted Cretaceous source rock maturation into the gas phase very early on; intrusive lead-zinc mineralization veins attributed to the Senonian igneous and folding event; and meteoric water-flushing along the periphery of the basins. From preliminary analysis, these basins have to be considered high risk for the discovery of commercial oil accumulations. On the other hand, the petroleum potential of the Bornu basins seems favorable. This Nigerian northernmost rift basin continues into the Kanem basin of western Chad, which has proven oil accumulations in Coniacian deltaic sands. Cretaceous paleofacies is considered to be relatively continuous throughout both basins. Paleo-geothermal history is also considered to be similar, although some igneous activity is recorded in the Bornu basin (Senonian?). There is a very real possibility of kerogen-rich non-marine basal Albo-Aptian basin fill lacustrine source rocks, as found in the Doba basin, could be present in the deepest sections of the Nigerian rift basins. Due to the depths involved, no well is expected to penetrate the incipient graben-fill stage sequences; however, possible oil migration from these tectono-stratigraphic units would certainly enhance the petroleum potential of cooler sections of the rift system. As opposed to interpreted thermogenic gas which seems to be prevalent in the Anambra basin.

  2. Seismological constraints on lithospheric structure beneath rifted margins

    NASA Astrophysics Data System (ADS)

    Fishwick, Stewart

    2014-05-01

    There is considerable variation in both topography and crustal architecture along passive margins worldwide. However, the variations in lithospheric mantle structure are less well studied. This is, perhaps, in part due to the technical challenge for offshore-onshore passive seismology and also the lower resolution obtained in most mantle studies, particularly when compared to detailed imaging of the crust available from reflection seismology. The available large scale observations of mantle structure (predominately from surface waves), and crustal structure (from receiver functions) for the continental region adjacent to the margins are reviewed. Results for Africa and Australia show clear correlations between the mantle structure and the present day topography of the margin, and this relationship is explored from a worldwide perspective. Seismic studies can also provide information on lithospheric thickness at the margin, which can be used as an additional constraint for the thermal modelling of basin structure. In this case the limitations include the depth resolution of the method, and the particular proxy used to extract a lithospheric thickness estimate from a seismic model. Perhaps most importantly, is to remember that these seismological observations tell us only the existing structure. The challenge remains how to decipher whether the present structures relate to inherited pre-rift architecture; to alteration of lithospheric mantle during rifting, or to much later post rift changes associated with separate tectonic events.

  3. Origins and implications of zigzag rift patterns on lava lakes

    NASA Astrophysics Data System (ADS)

    Karlstrom, Leif; Manga, Michael

    2006-06-01

    The distinctive rift patterns observed on newly formed lava lakes are very likely a product of interaction between heat transfer (cooling of lava) and deformation of the solid crust in response to applied stresses. One common pattern consists of symmetric "zigzag" rifts separating spreading plates. Zigzags can be characterized by two measurable parameters: an amplitude A, and an angle θ between segments that make up the zigzags. Similar patterns are observed in analog wax experiments in which molten wax acts as cooling and solidifying lava. We perform a series of these wax experiments to find the relationship between θ, A, and the cooling rate. We develop a model to explain the observed relationships: θ is determined by a balance of spreading and solidification speeds; the amplitude A is limited by the thickness of the solid wax crust. Theoretical predictions agree well with experimental data; this enables us to scale the model to basaltic lava lakes. If zigzag rifts are observed on the surface of lava lakes, and if physical properties of the lava crust can be measured or inferred by other means, measurements of θ and A make it possible to calculate crust-spreading velocity and crust thickness.

  4. A continental rift model for the La Grande greenstone belt

    NASA Technical Reports Server (NTRS)

    Skulski, T.; Hynes, A.; Liu, M.; Francis, D.; Rivard, B.; Stamatelopoulou-Seymour, K.

    1986-01-01

    Stratigraphic relationships and the geochemistry of volcanic rocks contrain the nature and timing of the tectonic and magmatic processes in the pre-deformational history of the La Grande greenstone belt in the Superior Province of north-central Quebec. The lowermost supracrustals in this belt are obscured by syntectonic granitoid intrusives. The supracrustal succession in the western part of the belt consists of a lower sequence of immature clastic sediments and mafic volcanoclastics, overlain by pillowed and massive basalts. Further east, along tectonic strike, a lower sequence of mafic volcanoclastics and immature clastic sediments is overlain by a thick sequence of pillowed and massive basalts, and resedimented coarse clastic sediments and banded iron formation. These are overlain by assive basaltic andesites, andesites and intermediate volcanoclastics intercalated with immature clastic sediments. In contrast, in the eastern part of the belt lenses of felsic volcanics and volcanoclastics occur at the base of the succession and pillowed and massive basalts are overlain by komatiites at the top. The La Grande greenstone belt can be explained as the product of continental rifting. The restricted occurence of komatiites, and eastwardly directed paleocurrents in clastic sediments in the central part of the belt are consistent with rifting commencing in the east and propagating westward with time. The increase in depth of emplacement and deposition with time of the lower three units in the central part of the belt reflects deposition in a subsiding basin. These supracrustal rocks are believed to represent the initial rift succession.

  5. Ouachita trough: Part of a Cambrian failed rift system

    NASA Astrophysics Data System (ADS)

    Lowe, Donald R.

    1985-11-01

    Pre-flysch (Cambrian-Mississippian) strata of the Ouachita Mountains of Arkansas and Oklahoma include two main sandstone lithofacies: (1) a craton-derived lithofacies made up largely of mature medium- to coarse-grained quartzose and carbonate detritus and, in some units, sediment eroded from exposed basement rocks and (2) an orogen-derived facies made up mainly of fine-grained quartzose sedimentary and metasedimentary debris and possibly, in lower units, a volcaniclastic component. Paleocurrent and distribution patterns indicate that detritus of facies I in the Benton uplift was derived from north and detritus of facies II throughout the Ouachitas was derived from south and east of the depositional basin. Overall sedimentological results suggest that the Ouachita trough was a relatively narrow, two-sided basin throughout most and probably all of its existence and never formed the southern margin of the North American craton. Regional comparisons suggest that it was one of several basins, including the Southern Oklahoma aulacogen, Reelfoot Rift, Illinois Basin, and Rome trough, that formed as a Cambrian failed rift system 150 to 250 m.y. after initial rifting along the Appalachian margin of the North American craton.

  6. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    NASA Astrophysics Data System (ADS)

    Passarelli, L.; Rivalta, E.; Shuler, A.

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process.

  7. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    PubMed Central

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  8. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes.

    PubMed

    Passarelli, L; Rivalta, E; Shuler, A

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  9. Kantis: A new Australopithecus site on the shoulders of the Rift Valley near Nairobi, Kenya.

    PubMed

    Mbua, Emma; Kusaka, Soichiro; Kunimatsu, Yutaka; Geraads, Denis; Sawada, Yoshihiro; Brown, Francis H; Sakai, Tetsuya; Boisserie, Jean-Renaud; Saneyoshi, Mototaka; Omuombo, Christine; Muteti, Samuel; Hirata, Takafumi; Hayashida, Akira; Iwano, Hideki; Danhara, Tohru; Bobe, René; Jicha, Brian; Nakatsukasa, Masato

    2016-05-01

    Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution. PMID:27178456

  10. Seismicity within a propagating ice shelf rift: The relationship between icequake locations and ice shelf structure

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-04-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the austral summers of 2004-2007. We apply a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show ice shelf rifting is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of 1 to 3 h. Even during periods of quiescence, we find significant deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (Mw > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with the propagating ice shelf rifts.

  11. Mantle viscosity beneath the Galapagos 95.5 deg W propagating rift

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Hey, R. N.

    1986-01-01

    Detailed geophysical surveys in the vicinity of the Galapagos 95.5 deg W propagating rift tip establish the opening history of the rift and its velocity of propagation. These data together with a theory for mantle upwelling into slowly widening lithospheric cracks constrain the viscosity of the asthenosphere beneath the propagating rift to be less than about 10 to the 17th to 10 to the 18th Pa s.

  12. Extension across the Laptev Sea continental rifts constrained by gravity modeling

    NASA Astrophysics Data System (ADS)

    Mazur, S.; Campbell, S.; Green, C.; Bouatmani, R.

    2015-03-01

    The Laptev Shelf is the area where the Gakkel Ridge, an active oceanic spreading axis, approaches a continental edge, causing a specific structural style dominated by extensive rift structures. From the latest Cretaceous to the Pliocene, extension exerted on the Laptev Shelf created there several deep subsided rifts and high-standing basement blocks. To understand syn-rift basin geometries and sediment supply relationships across the Laptev Shelf, accurate extension estimates are essential. Therefore, we used 2-D gravity modeling and 3-D gravity inversion to constrain the amount of crustal stretching across the North America-Eurasia plate boundary in the Laptev Shelf. The latest Cretaceous-Cenozoic extension in that area is partitioned among two rift zones, the Laptev Rift System and the New Siberian Rift. These rifts were both overprinted on the Eurasian margin that had been stretched by 190-250 km before the Late Cretaceous. While the Laptev Rift System, connected to the Gakkel Ridge, reveals increasing extension toward the shelf edge (190-380 km), the New Siberian Rift is characterized by approximately uniform stretching along strike (110-125 km). The architecture of the Laptev Rift System shows that the finite extension of about 500 km is sufficient to entirely eliminate crystalline continental crust. In the most stretched rift segment, continental mantle is exhumed at the base of the Late Mesozoic basement. The example of the Laptev Rift System shows that extension driven by divergent plate movement is a sufficient cause to produce almost complete continental breakup without an increased heat input from the asthenospheric mantle.

  13. Basin evolution, organization of faulting and the distribution of displacement within the Gulf of Corinth rift

    NASA Astrophysics Data System (ADS)

    Nixon, C. W.; McNeill, L. C.; Henstock, T.; Bull, J. M.; Bell, R. E.; Christodoulou, D.; Papatheodorou, G.; Taylor, B.; Ferentinos, G.; Sakellariou, D.; Lykousis, V.; Sachpazi, M.; Ford, M.; Goodliffe, A. M.; Leeder, M.; Gawthorpe, R. L.; Collier, R. E.; Clements, B.

    2013-12-01

    The Gulf of Corinth is a rare example of continental rifting in its initial stages of development, with an extremely dense network of marine geophysical data collected over the past two decades, making it an ideal case study for investigating early rift evolution. Through the integration of numerous seismic reflection surveys, totalling ~3930 km of seismic profiles and covering a range of frequencies (both high resolution seismic and multi-channel seismic, analogue and digital), we present: 1. a refined chronostratigraphic model for the syn-rift sediments that have been deposited in the developing offshore Corinth basin over the past ~1-2 Ma and 2. a detailed rift fault network with confirmed locations, lengths, fault interactions and development, and details of recent displacement. Our results show that chronostratigraphic models from the West Eratini basin are coherent with models from the central part of the rift. We divide the rift stratigraphy into two sequences: a late rift sequence comprising recent interbedded marine-lacustrine sediments deposited over the last ~600 kyr, and a thick early rift sequence with deposits up to ~1-2 Ma of contrasting seismic and sedimentological character. The late rift sequence is divided into six packages and can be correlated with 100 kyr glacio-eustatic cycles. We identify multiple unconformities, including a basin wide unconformity that separates the early and late rift sequences. The unconformities are attributed to differences in fault development and basin subsidence pattern along the rift. Combining the refined chronostratigraphic model with the detailed fault network allows us to: a) determine relative timings of fault activity and basin development; b) estimate absolute fault displacements both spatially and temporally at high resolution (e.g. for each interpreted 100 kyr package); c) calculate sediment flux into the basin during each stratigraphic time interval and spatial distribution of syn-rift sediment through

  14. Varying styles of magmatic strain accommodation across the East African Rift

    NASA Astrophysics Data System (ADS)

    Muirhead, James D.; Kattenhorn, Simon A.; Le Corvec, Nicolas

    2015-09-01

    Observations of active dike intrusions provide present day snapshots of the magmatic contribution to continental rifting. However, unravelling the contributions of upper crustal dikes over the timescale of continental rift evolution is a significant challenge. To address this issue, we analyzed the morphologies and alignments of >1500 volcanic cones to infer the distribution and trends of upper crustal dikes in various rift basins across the East African Rift (EAR). Cone lineament data reveal along-axis variations in the distribution and geometries of dike intrusions as a result of changing tectonomagmatic conditions. In younger (<10 Ma) basins of the North Tanzanian Divergence, dikes are largely restricted to zones of rift-oblique faulting between major rift segments, referred to here as transfer zones. Cone lineament trends are highly variable, resulting from the interplay between (1) the regional stress field, (2) local magma-induced stress fields, and (3) stress rotations related to mechanical interactions between rift segments. We find similar cone lineament trends in transfer zones in the western branch of the EAR, such as the Virunga Province, Democratic Republic of the Congo. The distributions and orientations of upper crustal dikes in the eastern branch of the EAR vary during continental rift evolution. In early-stage rifts (<10 Ma), upper crustal dikes play a limited role in accommodating extension, as they are confined to areas in and around transfer zones. In evolved rift basins (>10 Ma) in Ethiopia and the Kenya Rift, rift-parallel dikes accommodate upper crustal extension along the full length of the basin.

  15. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    USGS Publications Warehouse

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  16. Structural evolution of the Rio Grande rift: Synchronous exhumation of rift flanks from 20-10 Ma, embryonic core complexes, and fluid-enhanced Quaternary extension

    NASA Astrophysics Data System (ADS)

    Ricketts, Jason William

    The Rio Grande rift in Colorado and New Mexico is one of the well-exposed and well-studied continental rifts in the world. Interest in the rift is driven not only by pure scientific intrigue, but also by a desire and a necessity to quantify earthquake hazards in New Mexico as well as to assess various water related issues throughout the state. These motivating topics have thus far led to the publication of two Geological Society of America Special Publication volumes in 1994 and 2013. This dissertation aims at building on the wealth of previous knowledge about the rift, and is composed of three separate chapters that focus on the structural evolution of the Rio Grande rift at several different time and spatial scales. At the largest scale, apatite (U-Th)/He thermochronologic data suggest synchronous extension along the entire length of the Rio Grande rift in Colorado and New Mexico from 20-10 Ma, which is important for understanding and evaluating possible driving mechanisms which are responsible for the rift. Previous tectonic and magmatic events in western North America were highly influential in the formation of the Rio Grande rift, and the new thermochronologic data suggest that its formation may have been closely linked to foundering and removal of the underlying Farallon Plate. A fundamental result of rift development at these scales is a concentration of strain is some regions of the rift. In these regions of maximum extension, fault networks display a geometry involving both high- and low-angle fault networks. These geometries are similar to the early stages in the development of metamorphic core complexes, and thus these regions in the rift link incipient extensional environments to highly extended terranes. At shorter time scales, heterogeneous strain accumulation may be governed in part by fluids in fault zones. As an example, along the western edge of the Albuquerque basin, travertine deposits are cut by extensional veins that record anomalously high

  17. Rift to post-rift evolution of a ``passive'' continental margin: the Ponta Grossa Arch, SE Brazil

    NASA Astrophysics Data System (ADS)

    Franco-Magalhaes, A. O. B.; Hackspacher, P. C.; Glasmacher, U. A.; Saad, A. R.

    2010-10-01

    Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes and alkaline intrusions from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during Late Cretaceous and Paleogene times. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases related to the rift to post-rift evolution of SE Brazil. Furthermore, the spatial distribution of age data indicates the presence of two age groups: a NE age-group (NE of Curitiba), with ages around 20 Ma and a SW age-group (Curitiba and NW) with ages of around 50 Ma. The change of ages follows the NW-SE trending São Jerônimo-Curiúva fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin, this lineament ends up to the salt occurrence in the south and seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene from WNW to WNW/NNW. During the Oligocene and earlier, the sediments were transported mainly from southeastwards to the direction of the “Curitiba area” into the Santos basin. Within the Miocene, an additional transport direction from an area north of Curitiba developed.

  18. Deformation in a hyperslow oceanic rift: Insights from the tectonics of the São Miguel Island (Terceira Rift, Azores)

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.; Boulesteix, T.; Costa, A. C. G.; Catalão, J.

    2016-02-01

    The evolution of hyperslow oceanic rifts, like the Terceira Rift (TR) in the Azores, is still poorly understood. Here we examine the distribution of strain and magmatism in the portion of the TR making up the Nubia-Eurasia plate boundary. We use São Miguel Island because it stretches most of the TR width, which allows to investigate the TR's architecture and shedding light on TR's age and mode of deformation. From topography and structural analysis, and new measurements of 380 faults and dikes, we show that (1) São Miguel has two main structural directions, N150 and N110, mostly concentrated in the eastern part of the island as an onshore continuation of the faults observed offshore in the NE (N110 faults) and SW (N140) TR walls; (2) a new N50-N80 fault system is identified in São Miguel; (3) fault and dike geometries indicate that eastern São Miguel comprises the TR's northern boundary, and the lack of major faults in central and western São Miguel indicates that rifting is mostly concentrated at master faults bounding the TR. Based on TR's geometry, structural observations and plate kinematics, we estimate that the TR initiated between 1.4 and 2.7 Ma ago and that there is no appreciable seafloor spreading associated with rifting. Based on plate kinematics, on the new structural data, and on São Miguel's structural and volcanic trends, we propose that the eastern two thirds of São Miguel lie along a main TR-related transform fault striking N70-N80, which connects two widely separated N130-N150 TR-trending segments.

  19. The Corinth Rift Laboratory, Greece (CRL) : A Multidisciplinary Near Fault Observatory (NFO) on a Fast Rifting System

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Briole, P.; Lambotte, S.; Ford, M.; Scotti, O.; Beck, C.; Hubert-Ferrari, A.; Boiselet, A.; Godano, M.; Matrullo, E.; Meyer, N.; Albini, P.; Elias, P.; Nercessian, A.; Katsonopoulou, D.; Papadimitriou, P.; Voulgaris, N.; Kapetanidis, V.; Sokos, E.; Serpetsidaki, A.; el Arem, S.; Dublanchet, P.; Duverger, C.; Makropoulos, K.; Tselentis, A.

    2014-12-01

    The western rift of Corinth (Greece) is one of the most active tectonic structures of the euro-mediterranean area. Its NS opening rate is 1.5 cm/yr ( strain rate of 10-6/yr) results into a high microseismicity level and a few destructive, M>6 earthquakes per century, activating a system of mostly north dipping normal faults. Since 2001, monitoring arrays of the European Corinth Rift Laboratory (CRL, www.crlab.eu) allowed to better track the mechanical processes at work, with short period and broad band seismometers, cGPS, borehole strainmeters, EM stations, …). The recent (300 kyr) tectonic history has been revealed by onland (uplifted fan deltas and terraces) and offshore geological studies (mapping, shallow seismic, coring), showing a fast evolution of the normal fault system. The microseismicity, dominated by swarms lasting from days to months, mostly clusters in a layer 1 to 3 km thick, between 6 and 9 km in depth, dipping towards north, on which most faults are rooting. The diffusion of the microseismicity suggests its triggering by pore pressure transients, with no or barely detected strain. Despite a large proportion of multiplets, true repeaters seem seldom, suggesting a minor contribution of creep in their triggering, although transient or steady creep is clearly detected on the shallow part of some majors faults. The microseismic layer may thus be an immature, downward growing detachment, and the dominant rifting mechanism might be a mode I, anelastic strain beneath the rift axis , for which a mechanical model is under development. Paleoseismological (trenching, paleoshorelines, turbidites), archeological and historical studies completed the catalogues of instrumental seismicity, motivating attempts of time dependent hazard assessment. The Near Fault Observatory of CRL is thus a multidisciplinary research infrastructure aiming at a better understanding and modeling of multiscale, coupled seismic/aseismic processes on fault systems.

  20. Ambient noise tomography of the East African Rift in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Silveira, Graça; Ferreira, Ana M. G.; Chang, Sung-Joon; Custódio, Susana; Fonseca, João F. B. D.

    2016-03-01

    Seismic ambient noise tomography is applied to central and southern Mozambique, located in the tip of the East African Rift (EAR). The deployment of MOZART seismic network, with a total of 30 broad-band stations continuously recording for 26 months, allowed us to carry out the first tomographic study of the crust under this region, which until now remained largely unexplored at this scale. From cross-correlations extracted from coherent noise we obtained Rayleigh wave group velocity dispersion curves for the period range 5-40 s. These dispersion relations were inverted to produce group velocity maps, and 1-D shear wave velocity profiles at selected points. High group velocities are observed at all periods on the eastern edge of the Kaapvaal and Zimbabwe cratons, in agreement with the findings of previous studies. Further east, a pronounced slow anomaly is observed in central and southern Mozambique, where the rifting between southern Africa and Antarctica created a passive margin in the Mesozoic, and further rifting is currently happening as a result of the southward propagation of the EAR. In this study, we also addressed the question concerning the nature of the crust (continental versus oceanic) in the Mozambique Coastal Plains (MCP), still in debate. Our data do not support previous suggestions that the MCP are floored by oceanic crust since a shallow Moho could not be detected, and we discuss an alternative explanation for its ocean-like magnetic signature. Our velocity maps suggest that the crystalline basement of the Zimbabwe craton may extend further east well into Mozambique underneath the sediment cover, contrary to what is usually assumed, while further south the Kaapval craton passes into slow rifted crust at the Lebombo monocline as expected. The sharp passage from fast crust to slow crust on the northern part of the study area coincides with the seismically active NNE-SSW Urema rift, while further south the Mazenga graben adopts an N-S direction

  1. Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J. M.; Davey, F. J.; Clayton, R. W.

    2010-08-01

    Extension during the middle Cenozoic (43-26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deformational event took place close to the cessation of seafloor spreading in the Adare Basin (˜24 Ma). It reactivated a few normal faults and initiated the formation of the Adare Trough. A prominent pulse of rifting in the early Miocene (˜17 Ma) resulted in normal faulting that initiated tilted blocks. The overall trend of structures was NE-SW, linking the event with the activity outside the basin. It resulted in major uplift of the Adare Trough and marks the last extensional phase of the Adare Basin. Recent volcanic vents (Pliocene to present day) tend to align with the early Miocene structures and the on-land Hallett volcanic province. This latest phase of tectonic activity also involves near-vertical normal faulting (still active in places) with negligible horizontal consequences. The early Miocene extensional event found within the Adare Basin does not require a change in the relative motion between East and West Antarctica. However, the lack of subsequent rifting within the Adare Basin coupled with the formation of the Terror Rift and an on-land and subice extension within the WARS require a pronounced change in the kinematics of the rift. These observations indicate that extension increased southward, therefore suggesting that a major change in

  2. The Chukchi Borderland: a Sediment-starved Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Houseknecht, D.; Mosher, D. C.; Hart, P. E.; Jackson, H. R.; Lebedeva-Ivanova, N. N.; Shimeld, J.; Chian, D.

    2013-12-01

    The origin and geologic structure of the Chukchi Borderland region, approximately 650 by 400 km in size, has been the subject of speculation since the earliest ice island research groups discovered its existence more than 60 years ago. Multichannel seismic reflection and refraction data acquired between 2007 and 2011, together with legacy seismic data show fragments of high-standing basement (continental) horsts. The structure is draped with less than a kilometer of sediment. Between the high-standing blocks are deep grabens with locally tilted but mostly flat-lying deposits generally only 1-2 km thick. Northwind Escarpment, along the eastern boundary of the Borderland, is a 600-km-long fault adjacent to the deeply subsided and hyper-extended crust of the Canada Basin to the east. The long, linear, sub-parallel orientation of the major structures (including Northwind Escarpment) is consistent with transtensional deformation of the Borderland. The general paucity of thick sediments indicates a sediment-starved environment. Both the North Chukchi Basin on the west and an unnamed deeply buried valley east on the Beaufort margin provide sediment-routing conduits through which sediment by-passed the Borderland throughout much of the Cretaceous history of the growing Brooks Range to the south. Canada Basin deposits also show strata thicken towards the southwest, suggesting sediment influx via the deeply buried valley on the Beaufort margin. On the northeastern side of the Canada Basin, the region is underlain by horst and graben structures with orientations similar to the Chukchi Borderland, but the intervening valleys are filled with as much as two km of sediment and the entire feature is buried beneath another 2 km of post-rift sediment. The similarity of structural styles on both sides of the Canada Basin suggests that this style of transtensional rifting could have been widespread during the early extension of this part of the Arctic and perhaps the Chukchi

  3. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  4. Upper-mantle seismic structure in a region of incipient continental breakup: northern Ethiopian rift

    NASA Astrophysics Data System (ADS)

    Bastow, Ian D.; Stuart, Graham W.; Kendall, J.-Michael; Ebinger, Cynthia J.

    2005-08-01

    The northern Ethiopian rift forms the third arm of the Red Sea, Gulf of Aden triple junction, and marks the transition from continental rifting in the East African rift to incipient oceanic spreading in Afar. We determine the P- and S-wave velocity structure beneath the northern Ethiopian rift using independent tomographic inversion of P- and S-wave relative arrival-time residuals from teleseismic earthquakes recorded by the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE) passive experiment using the regularised non-linear least-squares inversion method of VanDecar. Our 79 broad-band instruments covered an area 250 × 350 km centred on the Boset magmatic segment ~70 km SE of Addis Ababa in the centre of the northern Ethiopian rift. The study area encompasses several rift segments showing increasing degrees of extension and magmatic intrusion moving from south to north into the Afar depression. Analysis of relative arrival-time residuals shows that the rift flanks are asymmetric with arrivals associated with the southeastern Somalian Plate faster (~0.65 s for the P waves; ~2 s for the S waves) than the northwestern Nubian Plate. Our tomographic inversions image a 75 km wide tabular low-velocity zone (δVP~-1.5 per cent, δVS~-4 per cent) beneath the less-evolved southern part of the rift in the uppermost 200-250 km of the mantle. At depths of >100 km, north of 8.5°N, this low-velocity anomaly broadens laterally and appears to be connected to deeper low-velocity structures under the Afar depression. An off-rift low-velocity structure extending perpendicular to the rift axis correlates with the eastern limit of the E-W trending reactivated Precambrian Ambo-Guder fault zone that is delineated by Quaternary eruptive centres. Along axis, the low-velocity upwelling beneath the rift is segmented, with low-velocity material in the uppermost 100 km often offset to the side of the rift with the highest rift flank topography. Our observations from this magmatic

  5. Rift flank segmentation, basin initiation and propagation: a neotectonic example from Lake Baikal

    USGS Publications Warehouse

    Agar, S.M.; Klitgord, Kim D.

    1995-01-01

    New surficial data (field, Landsat TM and topography) define morpho-tectonic domains and rift flank segmentation in the Ol'khon region of the Central Baikal rift. Deformation, drainage and depositional patterns indicate a change in the locus of active extension that may relate to a recent (rift with concomitant shifts in depocentres. Within the hanging wall of the new western border fault, distinct segments control the location of drainage paths and syn-rift deposits. Morphology, sediment thicknesses and fault scarp amplitude indicate that a segmented rift flank graben has propagated southwards along the rift flank and is still actively fragmenting. These surficial data are used to constrain a model for the time-dependent topographic variations during progressive subsidence along a rift flank, involving the transfer of footwall units to hanging-wall domains. Rapid changes in border fault footwall relief in this model are associated with change in the active border fault location with widespread mass-wasting. The model shows that time-dependent histories need to be integrated with flexural uplift models for active normal faults. The active, syn-rift depositional systems of the Ol'khon region provide a valuable analogue for the early evolution of continental margins and the structural controls on syn-rift hydrocarbon sources and reservoirs.

  6. Crustal Structure at a Young Continental Rift: A Receiver Function Study from Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Hodgson, I. D. S.; Illsley-Kemp, F.; Gallacher, R. J.; Keir, D.; Ebinger, C. J.; Drooff, C.; Khalfan, M.

    2015-12-01

    Lake Tanganyika, in western Tanzania, spans a large section of the Western rift yet there are very few constraints on bulk crustal and upper mantle structure. The Western rift system has no surface expression of magmatism, which is in stark contrast to the Eastern branch. This observation is difficult to reconcile with the approximately coeval initiation of rifting of the two branches. The variation in the nature of rifting provides a perfect setting to test current hypotheses for the initiation of continental breakup and early-stage development of continental rifts. The deployment of a seismic network of 13 broadband instruments on the south eastern shore of Lake Tanganyika, for 16 months, between 2014 and 2015 provides a unique opportunity to investigate extensional processes in thick continental lithosphere. We present here results from a P to S receiver function study that provides information on bulk crustal Vp/Vs ratio along the rift; a property that is sensitive to the presence of magmatic intrusions in the lower crust. Additionally this method allows us to map variations in crustal thickness both parallel and perpendicular to the rift axis. These results thus provide unprecedented insight into the large-scale mechanics of early-stage continental rifting along the non-volcanic Western rift.

  7. Seismic structure of the Central US crust and shallow upper mantle: Uniqueness of the Reelfoot Rift

    NASA Astrophysics Data System (ADS)

    Pollitz, Fred F.; Mooney, Walter D.

    2014-09-01

    Using seismic surface waves recorded with Earthscope's Transportable Array, we apply surface wave imaging to determine 3D seismic velocity in the crust and uppermost mantle. Our images span several Proterozoic and early Cambrian rift zones (Mid-Continent Rift, Rough Creek Graben-Rome trough, Birmingham trough, Southern Oklahoma Aulacogen, and Reelfoot Rift). While ancient rifts are generally associated with low crustal velocity because of the presence of thick sedimentary sequences, the Reelfoot Rift is unique in its association with low mantle seismic velocity. Its mantle low-velocity zone (LVZ) is exceptionally pronounced and extends down to at least 200 km depth. This LVZ is of variable width, being relatively narrow (∼50 km wide) within the northern Reelfoot Rift, which hosts the New Madrid Seismic Zone (NMSZ). We hypothesize that this mantle volume is weaker than its surroundings and that the Reelfoot Rift consequently has relatively low elastic plate thickness, which would tend to concentrate tectonic stress within this zone. No other intraplate ancient rift zone is known to be associated with such a deep mantle low-velocity anomaly, which suggests that the NMSZ is more susceptible to external stress perturbations than other ancient rift zones.

  8. High Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.; Wohnlich, S.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  9. Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  10. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where

  11. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C., Jr.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  12. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  13. Beta Regio rift system on Venus: Geologic interpretation of Magellan images

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Bobina, N. N.; Borozdin, V. K.; Burba, G. A.

    1993-01-01

    Magellan SAR images and altimetric data were used to produce a new geologic map of the Northern part of Beta Regio within the frames of C1-30N279 mapsheet. It was part of our contributions into C1-formate geologic mapping efforts. The original map is at 1:8,000,000 scale. The rift structures are typical for Beta Regio on Venus. There are many large uplifted tessera areas on Beta upland. They occupy areas of higher topography. These tessera are partly burried by younger volcanic cover of plain material. These observations show that Beta upland was formed mainly due to lithospheric tectonical uplifting, and only partly was constructed by volcanic activity. A number of rift valleis traverse Beta upland and spread to the surrounding lowlands. The largest rift crosses Beta N to S. Typical width of rifts is 40 to 160 km. Rift valleis in this region are structurally represented by crustal grabens and half-grabens. There are symmetrical and asymmetrical rifts. A lot of them have shoulder uplifts with the relative high up to 0.5-1 km and width 40 to 60 km. Preliminary analysis of the largest rift valley structural cross-sections leads to the conclusion that it originated due to a 5-10 percent crustal extension. The prominent shield volcano - Theia Mons - is located at the center of Beta rift system. It could be considered as the surface manifestation of the upper mantle hot spot. Most of the rift belts are located radially to Theia Mons. The set of these data leads to conclusion that Beta rift system has an 'active-passive' origin. It was formed due to the regional tectonic lithospheric extension. Rifting was accelerated by the upper mantle hot spot located under the center of passive extension (under Beta Regio).

  14. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  15. Rifted continental margins: geometric control on crustal architecture and melting

    NASA Astrophysics Data System (ADS)

    Lundin, Erik; Redfield, Tim; Peron-Pinvidic, Gwenn

    2014-05-01

    A new model is provided for the distribution of magma-poor and magma-rich rifted margins. The South Atlantic, Central Atlantic, North Atlantic - Arctic (Eurasia Basin), and Red Sea all are magma-rich at their distal ends and magma-poor at their proximal ends (with respect to their poles of rotation). The well-known architectural zonation across fully developed magma-poor margins (limited crustal stretching, hyperextension, exhumed mantle, oceanic crust) is also observed along the lengths of many margins at the super-regional scale. Zones of exhumed mantle, marking magma-poor margin, can be mapped for thousands of kilometers. Likewise can zones of seaward dipping reflectors (SDR) marking magma-rich margins. At this scale, the age of the oceanic crust becomes younger in the direction of the rotation pole, implying that the continents ruptured by rift tip propagation (and rotation pole propagation). Propagation is also manifested by the age of pre-break-up magmatism, break-up unconformity, and margin uplift. Hence, the classic cross-sectional depiction of margin evolution has a third dimension. The degree of melting follows the same pattern. At the distal end of e.g. the South Atlantic, SDR zones are wide and gradually thin toward the rotation pole. Eventually exhumed mantle takes over, marking the transition to the magma-poor margins, which remain to the proximal end of rifting. SDR zones also thin laterally from ca 10-15 km thickness at the continent-ocean boundary (COB) to ca 7 km thick oceanic crust beyond the SDRs. Outcrop data demonstrate that also exhumed mantle contains up to ca 12% melt, infiltrated in the peridotites. Thus, melting is largest at the distal ends near the COB, and decreases both laterally toward the evolving ocean and along strike toward the rift tip. Accepting that continents are rigid to a first order, the linear rate of extension at any given location along an evolving rift and ocean, is governed by the angular rate of opening, the distance

  16. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  17. Stress perturbation associated with the Amazonas and other ancient continental rifts

    USGS Publications Warehouse

    Zoback, M.L.; Richardson, R.M.

    1996-01-01

    The state of stress in the vicinity of old continental rifts is examined to investigate the possibility that crustal structure associated with ancient rifts (specifically a dense rift pillow in the lower crust) may modify substantially the regional stress field. Both shallow (2.0-2.6 km depth) breakout data and deep (20-45 km depth) crustal earthquake focal mechanisms indicate a N to NNE maximum horizontal compression in the vicinity of the Paleozoic Amazonas rift in central Brazil. This compressive stress direction is nearly perpendicular to the rift structure and represents a ???75?? rotation relative to a regional E-W compressive stress direction in the South American plate. Elastic two-dimensional finite element models of the density structure associated with the Amazonas rift (as inferred from independent gravity modeling) indicate that elastic support of this dense feature would generate horizontal rift-normal compressional stresses between 60 and 120 MPa, with values of 80-100 MPa probably most representative of the overall structure. The observed ???75?? stress rotation constrains the ratio of the regional horizontal stress difference to the rift-normal compressive stress to be between 0.25 and 1.0, suggesting that this rift-normal stress may be from 1 to 4 times larger than the regional horizontal stress difference. A general expression for the modification of the normalized local horizontal shear stress (relative to the regional horizontal shear stress) shows that the same ratio of the rift-normal compression relative to the regional horizontal stress difference, which controls the amount of stress rotation, also determines whether the superposed stress increases or decreases the local maximum horizontal shear stress. The potential for fault reactivation of ancient continental rifts in general is analyzed considering both the local stress rotation and modification of horizontal shear stress for both thrust and strike-slip stress regimes. In the Amazonas

  18. Stratigraphy, structure, and extent of the East Continent Rift Basin

    SciTech Connect

    Wickstrom, L.H. )

    1992-01-01

    The proven existence of pre-Mt. Simon sedimentary rocks named the Middle Run Formation in southwestern Ohio led to the establishment of the Cincinnati Arch Consortium, a joint industry-government partnership to investigate the areal extent, nature, and origin of this new unit. Utilizing available well, seismic, and potential-field data, the consortium has shown that the Middle Run was deposited in a Precambrian rift basin, named the East Continent Rift Basin (ECRB). These data indicate the ECRB assemblage consists of a large folded and faulted wedge of interlayered volcanic and sedimentary rocks, unconformably overlain by Cambrian strata. This wedge is estimated to be thickest (up to about 22,000 feet) on the western edge, where it is in fault contact with Grenville Province rocks. To the west, the ECRB may extend as far as central Illinois and postdates the Precambrian Granite-Rhyolite Province rocks. The contact between the ECRB and this older province appears to be in part an angular unconformity and in part block faulted. The northern limit of this basin was not encountered in the study area; this may indicate a connection with the Midcontinent Rift in Michigan. In central Kentucky, the boundary conditions are more complex. It appears that the ECRB is constricted between a large block of the Granite-Rhyolite Province to the west and the Grenville Front on the east. Large Cambrian extensional structures (Rough Creek Graben and Rome Trough) were overprinted on the Granite-Rhyolite and Grenville Provinces. The ECRB may have acted as a stable block between these Cambrian features. The relationships of the ECRB to overlying Paleozoic features may be profound. Indeed, the ECRB may prove to be the reason for the very existence of the Cincinnati and Kankakee Arches.

  19. North Sinai-Levant rift-transform continental margin

    SciTech Connect

    Ressetar, R.; Schamel, S.; Travis, C.J.

    1985-01-01

    The passive continental margin of northern Egypt and the Levant coast formed during the Early mesozoic as the relatively small Anatolia plate broke away from northern Africa. The oceanic basin of the eastern Mediterranean and the unusual right-angle bend in the North Sinai-Levant shelf margin are both products of plate separation along a rift-transform fracture system, the south arm of Tethys. The north-south trending Levant transform margin is considerably narrower than the east-west trending rift margin of northern Egypt. Both exhibit similar facies and depositional histories through the mid-Tertiary. Analysis of subsurface data and published reports of the regional stratigraphy point to a three-stage tectonic evolution of this passive margin. The Triassic through mid-Cretaceous was marked by crustal breakup followed by rapid rotational subsidence of the shelf margins about hinge lines located just south and east of the present shorelines. Reef carbonates localized on the shelf edge separated a deep marine basin to the north from a deltaic-shallow marine platform to the south and east. In the Late Cretaceous-Early Tertiary, inversion of earlier formed half-grabens produced broad anticlinal upwarps of the Syrian Arc on the shelf margin that locally influenced facies patterns. The episode of inversion corresponds with the onset of northward subduction of the Africa plate beneath southern Asia. Beginning in the Oligocene and continuing to the present, there has been renewed subsidence of the North Sinai shelf margin beneath thick, outward building clastic wedges. The source of this large volume of sediment is the updomed and erosionally stripped margins of the Suez-Red Sea Rift and the redirected Nile River.

  20. Geomechanical and Petrophysical Properties of Rift Basin Mudstones

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.; Collins, D.; Malkewicz, N.

    2015-12-01

    Mudstone caprocks are important components of reservoir systems in a variety of geologic and geoingeneering applications, but their properties and behavior under in situ conditions remain only partially understood. This study presents a detailed analysis of geomechanical and petrophysical properties of 20 lacustrine mudstones from the Mesozoic Newark Rift Basin, the largest of exposed rift basins in eastern North America, considered as a potential CO2 sequestration site. The samples were selected to represent variable lithology, organic content, redox state, structure (massive and thinly bedded), degree of matrix anisotropy, and burial depths. An extensive characterization program was funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL), and included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, and acoustic velocity measurements, as well as geomechanical testing of both matrix and fracture strength under a range of confining pressures. Core measurements were integrated with available logging data to allow for multiscale comparison and correlation. Most of the analyzed mudstones have the clay content of 50-70%, with abundant mica and detrital grains. The pore system is dominated by narrow micropores (mostly <5-100 microns wide), and nano-scale pore throats (0.005-0.05 microns). Full Mohr-Coulomb failure envelopes built for each mudstone type indicate a large variability in projected unconfined strength and the coefficient of internal friction. The dataset allows building empirical relations between compositional, structural and mechanical properties of these lacustrine mudstones, as well as physical parameters such as acoustic velocity (both laboratory and logging) and elastic moduli. These relations can be applied to other lacustrine mudstones in the East American rift basins, and provide important information for caprock stability modeling in these basins.

  1. Early Continental Rifting of the South China Sea

    NASA Astrophysics Data System (ADS)

    Lee, C.; Chiu, M.; Chan, C.

    2010-12-01

    Combined two years (2007 and 2008) of OBS and MCS studies in the northern slope of the South China Sea, we suggest that the early rifting, probably during 60 - 30 mabp, is an asymmetrical Atlantic-type continental rifting. The crust thin out from 35-40 km of possible continental crust to about 10-15 km of typical oceanic crust. Along the continent-ocean boundary, we observe an intrusion of the high P-wave velocity (about 7.5-8.0 km/sec). This is possible of mantle exhumation as comparable to other Atlantic-type continental margins. The OBS result is revealed by the gravity data. Along the upper layers of the continental crust as well as the oceanic crust, the MCS and multi-beam bathymetry data show that they are covered by numerous submarine seamounts. This probably relate to a volcanic origin of the Cenozoic sea-floor spreading during 30-15 mabp as mapped by previous magnetic anomalies in this region. The sea-floor spreading spread apart in the central, NW and SW sub-basins with several different episodes. Lack of the deep crustal data in the southern slope of the South China Sea, particularly around the Sprately area, the interpretation is speculative. However, several very large-size atolls (150 - 200 km in diameter), such as the Chen-Ho, Shun-Zu, Chung-Yeh and Chiu-Cheng fringing reefs, are sub-parallel located along the south margins. We interpret that these are the upper portions of the continental rifting. Combined the two tectonic stories in the northern and southern slope of the South China Sea, we believe that it is in consistent with the complicate nature of the South China Sea crust.

  2. Temperature anomalies under the Northeast Atlantic rifted volcanic margins

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.

    1997-01-01

    Subsidence analysis of ODP/DSDP drill sites located on oceanic crust on the Southeast Greenland, Edoras Bank, and Vøring Plateau margins, as well as on the Iceland-Faeroe Ridge, shows that the subsidence of these areas does not follow the agerelationship of normal oceanic crust. By correcting for the effect of thickened oceanic crust in raising the level to which subsidence will occur and analyzing the rate of thermal subsidence, it is possible to provide maximum temperature estimates for the underlying asthenosphere through time by identifying periods of anomalous depth to basement. Isostatic models predict crustal thicknesses of 27 km under the Iceland-Faeoe Ridge, around 20 km at Edoras Bank and Southeast Greenland, and 16-17 km at the Vøring Plateau. Asthenospheric temperatures at the time of continental break-up range from 50°C to 100°C above normal mantle, which are insufficient to account for the crustal thicknesses if melting is purely a passive adiabatic process. Asthenospheric upwelling must thus have been more rapid than spreading following break-up. At Edoras Bank the thermal anomaly dissipated within 5 Myr of rifting, similar to that inferred from the eastern US margin, where no plume is considered to have affected the rifting process. The need to invoke thermal input from the Iceland Plume in generating the thickened crust at Edoras Bank, and possibly elsewhere in the Northeast Atlantic, is called into question. However, a 14-20 Myr anomaly, peaking at 12 Myr post-rift, in Southeast Greenland suggests that, although the plume did provide heat to this margin, its strongest influence post-dated break-up.

  3. Signs of continental rifting in the southwestern Japanese Island Arc

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. A.; Eroshenko, D. V.

    2016-03-01

    The southwestern margin of the Japan Arc evolved in the geodynamic regime of continental rifting during the Miocene-Pleistocene. This has been verified by broad manifestations of metasomatosis of mantle peridotites that underlie the lithosphere of the Japan Islands and by episodes of deep magmatism (kimberlites and melilitites) in the region. The high enrichment of deep melts in incompatible rare and rare earth elements is partially preserved in melts of regional basalts from smaller depths. In contrast, spreading basalts of the Sea of Japan and subduction basalts from the Nankai trench at the boundary with the Philippine Plate are extremely depleted in rare elements.

  4. Lithology and temperature: How key mantle variables control rift volcanism

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Hoggard, M.; Matthews, S.; Maclennan, J.

    2015-12-01

    Continental rifting is often associated with extensive magmatic activity, emplacing millions of cubic kilometres of basalt and triggering environmental change. The lasting geological record of this volcanic catastrophism are the large igneous provinces found at the margins of many continents and abrupt extinctions in the fossil record, most strikingly that found at the Permo-Triassic boundary. Rather than being considered purely a passive plate tectonic phenomenon, these episodes are frequently explained by the involvement of mantle plumes, upwellings of mantle rock made buoyant by their high temperatures. However, there has been debate over the relative role of the mantle's temperature and composition in generating the large volumes of magma involved in rift and intra-plate volcanism, and even when the mantle is inferred to be hot, this has been variously attributed to mantle plumes or continental insulation effects. To help resolve these uncertainties we have combined geochemical, geophysical and modelling results in a two stage approach: Firstly, we have investigated how mantle composition and temperature contribute to melting beneath Iceland, the present day manifestation of the mantle plume implicated in the 54Ma break up of the North Atlantic. By considering both the igneous crustal production on Iceland and the chemistry of its basalts we have been able to place stringent constraints on the viable temperature and lithology of the Icelandic mantle. Although a >100°C excess temperature is required to generate Iceland's thick igneous crust, geochemistry also indicates that pyroxenite comprises 10% of its source. Therefore, the dynamics of rifting on Iceland are modulated both by thermal and compositional mantle anomalies. Secondly, we have performed a global assessment of the mantle's post break-up thermal history to determine the amplitude and longevity of continental insulation in driving excess volcanism. Using seismically constrained igneous crustal

  5. Seismic investigation of the southern Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Thompson, Lennox E.

    Competing models exist to explain what caused the Earth's crust to spread apart 29 million years ago to create a region known today as the Rio Grande Rift (RGR). The RGR extends from central Colorado through New Mexico to northern Mexico, near El Paso. The RGR has different geologic features that distinguish it from most other valleys (e.g., the RGR was not cut by a river nor does a river branch upstream). A growing body of evidence shows that geologic activity still occurs in the RGR, with a continuation of faulting, seismicity and widening at a small rate of about 0.3 mm/yr (Woodward , 1977). We map of the seismic velocity structure and crustal thickness using data from the Rio Grande Rift Seismic TRAnsect (RISTRA) experiment and the EarthScope Transportable Array (USArray) dataset. In addition to the data we collected from the RISTRA experiment and USArray dataset, we also acquired receiver functions from the EarthScope Automatic Receiver Survey (EARS) website (http://www.earthscope.org/data) and waveform data from the Incorporated Research Institutes for Seismology (IRIS) Data Management Center (DMC). We requested seismograms from the IRIS DMC database where we acquired teleseismic events from Jan 2000 to Dec 2009. This includes 7,259 seismic events with a minimum magnitude of 5.5 and 106,389 continuous waveforms. This data was preprocessed (merged, rotated) using a program called Standing Order of Data (SOD). The RISTRA experiment and the USArray were designed to image crust and mantle structures by computing receiver functions for all data in the Southern Rio Grande Rift (SRGR). We map the crustal thickness, seismic velocity, and mantle structure for the sole purpose to better determine the nature of tectonic activity that is presently taking place and further investigate the regional extension of the Southern Rio Grande Rift (SRGR). Here we present preliminary results of the crustal and velocity structure using the kriging interpolation scheme seem stable

  6. Seismic experiment reveals rifting of craton in Tanzania

    NASA Astrophysics Data System (ADS)

    Nyblade, Andrew A.; Langston, Charles A.; Last, Robert J.; Birt, Christopher; Owens, Thomas J.

    A research project in Tanzania, East Africa, is being conducted to examine seismic velocities within the crust and upper mantle in an area where cratonic lithosphere is experiencing extensional tectonism. The results will be used to evaluate models of cratonic structure. Waveforms from several hundred teleseismic earthquakes and over 10,000 regional and local earthquakes recorded in 1994 and 1995 by the Tanzania Broadband Seismic Experiment are not only yielding new insights into deep continental structure, but are also helping to determine the tectonic stability of cratons by identifying the locus of rifting within northeastern Tanzania.

  7. When Did Midcontinent Rift Volcanism End and Where Was Laurentia at that Time?

    NASA Astrophysics Data System (ADS)

    Fairchild, L. M.; Swanson-Hysell, N.; Ramezani, J.; Sprain, C. J.; Gaastra, K. M.; Bowring, S. A.

    2015-12-01

    Data from the North American Midcontinent Rift provide a robust record of Laurentia's (cratonic North America's) paleogeographic position from ca. 1110 to 1080 Ma. The resulting apparent polar wander path (APWP) reveals rapid motion of the continent towards the equator throughout the rift's lifetime. Constraints on the age of the youngest volcanics within the rift and on the paleolatitude of Laurentia at that time are important for quantifying the rate of this motion and its apparent deceleration in the late stage of rift development. Furthermore, precise calibration of the APWP enhances the robustness of paleogeographic reconstructions. The three rift successions with ca. 1090 to 1085 Ma late stage volcanics are the Lake Shore Traps of Michigan, the Michipicoten Island Formation of Ontario and the Schroeder-Lutsen basalts of Minnesota. In past studies, paleomagnetic data from the Schroeder-Lutsen basalts have been grouped with results from the North Shore Volcanic Group, which it unconformably overlies. In this study, we separate these data and add newly developed results from 40 additional flows. New data from the Michipicoten Island Formation allow for a well constrained pole that now includes data from more than 25 flows. High quality paleomagnetic data are published for the Lake Shore Traps, and we complement these with a newly developed high precision U-Pb zircon date as an update to current constraints. Taken altogether, these data strengthen our understanding of the rift's demise and the rate of Laurentia's motion as rift volcanism gave way to post-rift sedimentation.

  8. Seismic Migration Imaging of the Lithosphere beneath the Afar Rift System, East Africa

    NASA Astrophysics Data System (ADS)

    Lee, T. T. Y.; Chen, C. W.; Rychert, C.; Harmon, N.

    2015-12-01

    The Afar Rift system in east Africa is an ideal natural laboratory for investigating the incipient continental rifting, an essential component of plate tectonics. The Afar Rift is situated at the triple junction of three rifts, namely the southern Red Sea Rift, Gulf of Aden Rift and Main Ethiopian Rift (MER). The ongoing continental rifting at Afar transitions to seafloor spreading toward the southern Red Sea. The tectonic evolution of Afar is thought to be influenced by a mantle plume, but how the plume affects and interacts with the Afar lithosphere remains elusive. In this study, we use array seismic data to produce high-resolution migration images of the Afar lithosphere from scattered teleseismic wavefields to shed light on the lithospheric structure and associated tectonic processes. Our preliminary results indicate the presence of lithospheric seismic discontinuities with depth variation across the Afar region. Beneath the MER axis, we detect a pronounced discontinuity at 55 km depth, characterized by downward fast-to-slow velocity contrast, which appears to abruptly deepen to 75 km depth to the northern flank of MER. This discontinuity may be interpreted as the lithosphere-asthenosphere boundary. Beneath the Ethiopian Plateau, on the other hand, a dipping structure with velocity increase is identified at 70-90 km depth. Further synthesis of observations from seismic tomography, receiver functions, and seismic anisotropy in the Afar region will offer better understanding of tectonic significance of the lithospheric discontinuities.

  9. The origin and geologic evolution of the East Continent Rift Basin

    SciTech Connect

    Drahovzal, J.A. . Kentucky Geological Survey)

    1992-01-01

    The East Continent Rift Basin (ECRB) is a newly recognized, dominantly sedimentary-volcanic Proterozoic rift basin that apparently represents the southern extension of the Keweenawan Midcontinent Rift. The ECRB extends from central Michigan at least as far south as south-central Kentucky. The inferred age of the rift fill is approximately 1,000 Ma. Evidence supporting a rift origin for the ECRB includes: interbedding of continental flood basalts and felsic volcanics with siliciclastics; sedimentary fill consisting of distal, arid-climate alluvial fan sediments that lack metamorphic lithologies; close proximity and similar lithologic succession to the Keweenawan rift-fill rocks of the Michigan Basin; and inferred marginal block faulting of Granite-Rhyolite Province rocks near the western edge of the ECRB. ECRB evolution is interpreted as follows: (1) formation of Granite-Rhyolite Province rocks (1,500--1,340 Ma); (2) Keweenawan crustal extension and rifting with development of central mafic complexes, emplacement of volcanic rocks, and deposition of siliciclastic fill from eroded marginal Granite-Rhyolite Province tilted fault blocks (ca 1,000 Ma); (3) overthrusting of the Grenville allochthon and associated foreland thrusting and folding of the rift sequence rocks together with deposition of foreland basin sediments (975---890 Ma); (4) Late Proterozoic erosional removal of the foreland basin sediments and interpreted wrench faulting along the Grenville Front (post-975 to pre-570 Ma); and (5) tectonic inversion, with the ECRB area remaining relatively high during major cambrian subsidence in central Kentucky (590--510 Ma).

  10. Anatomy of a river drainage reversal in the Neogene Kivu Nile Rift

    NASA Astrophysics Data System (ADS)

    Holzförster, F.; Schmidt, U.

    2007-07-01

    The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu-Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300-350 ka to complete this major event for the sediment supply system of the Kivu-Nile Rift segment.

  11. Melting during late-stage rifting in Afar is hot and deep.

    PubMed

    Ferguson, D J; Maclennan, J; Bastow, I D; Pyle, D M; Jones, S M; Keir, D; Blundy, J D; Plank, T; Yirgu, G

    2013-07-01

    Investigations of a variety of continental rifts and margins worldwide have revealed that a considerable volume of melt can intrude into the crust during continental breakup, modifying its composition and thermal structure. However, it is unclear whether the cause of voluminous melt production at volcanic rifts is primarily increased mantle temperature or plate thinning. Also disputed is the extent to which plate stretching or thinning is uniform or varies with depth with the entire continental lithospheric mantle potentially being removed before plate rupture. Here we show that the extensive magmatism during rifting along the southern Red Sea rift in Afar, a unique region of sub-aerial transition from continental to oceanic rifting, is driven by deep melting of hotter-than-normal asthenosphere. Petrogenetic modelling shows that melts are predominantly generated at depths greater than 80 kilometres, implying the existence of a thick upper thermo-mechanical boundary layer in a rift system approaching the point of plate rupture. Numerical modelling of rift development shows that when breakup occurs at the slow extension rates observed in Afar, the survival of a thick plate is an inevitable consequence of conductive cooling of the lithosphere, even when the underlying asthenosphere is hot. Sustained magmatic activity during rifting in Afar thus requires persistently high mantle temperatures, which would allow melting at high pressure beneath the thick plate. If extensive plate thinning does occur during breakup it must do so abruptly at a late stage, immediately before the formation of the new ocean basin. PMID:23823795

  12. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  13. Trace element characteristics of lithospheric and asthenospheric mantle in the Rio Grande rift region

    SciTech Connect

    Perry, F.V.

    1994-06-01

    Trace element analyses of 10 mafic volcanic rocks from the Colorado Plateau transition zone, Colorado Plateau, Rio Grande rift, and Great Plains were obtained to characterize the trace element characteristics of asthenospheric and lithospheric mantle beneath these regions. Characterization of these mantle reservoirs using the trace element contents of basalts allows one to track the response of the lithosphere to continental rifting and extension.

  14. Rift valley fever in the US: Commerce networks, climate, and susceptible vector and host populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne hemorrhagic viral disease with substantial negative impacts on public and animal health in its endemic range of sub-Saharan Africa. Rift Valley fever virus (RVFV) could enter the United States and lead to widespread morbidity and mortality in humans, domes...

  15. The life cycle of continental rifting as a focus for U.S.-African scientific collaboration

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.

    2004-11-01

    The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.

  16. A network-based meta-population approach to model Rift Valley fever epidemics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) has been expanding its geographical distribution with important implications for both human and animal health. The emergence of Rift Valley fever (RVF) in the Middle East, and its continuing presence in many areas of Africa, has negatively impacted both medical and vet...

  17. Kinematic and thermal evolution of the Moroccan rifted continental margin: Doukkala-High Atlas transect

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Bertotti, G.; Hafid, M.; Cloetingh, S.

    2010-10-01

    The Atlantic passive margin of Morocco developed during Mesozoic times in association with the opening of the Central Atlantic and the Alpine Tethys. Extensional basins formed along the future continental margin and in the Atlas rift system. In Alpine times, this system was inverted to form the High and Middle Atlas fold-and-thrust belts. To provide a quantitative kinematic analysis of the evolution of the rifted margin, we present a crustal section crossing the Atlantic margin in the region of the Doukkala Basin, the Meseta and the Atlas system. We construct a post-rift upper crustal section compensating for Tertiary to present vertical movements and horizontal deformations, and we conduct numerical modeling to test quantitative relations between amounts and distribution of thinning and related vertical movements. Rifting along the transect began in the Late Triassic and ended with the appearance of oceanic crust at 175 Ma. Subsidence, possibly related to crustal thinning, continued in the Atlas rift in the Middle Jurassic. The numerical models confirm that the margin experienced a polyphase rifting history. The lithosphere along the transect preserved some strength throughout rifting with the Effective Elastic Thickness corresponding to an isotherm of 450°C. A mid-crustal level of necking of 15 km characterized the pre-rift lithosphere.

  18. Rifting and Post-Rift Reactivation of The Eastern Sardinian Margin (Western Tyrrhenian Back-Arc Basin) Evidenced by the Messinian Salinity Crisis Markers and Salt Tectonics

    NASA Astrophysics Data System (ADS)

    Gaullier, V.; Chanier, F.; Vendeville, B.; Lymer, G.; Lofi, J.; Sage, F.; Maillard, A.; Thinon, I.

    2014-12-01

    The Eastern Sardinian margin formed during the opening of the Tyrrhenian Sea, a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system from middle Miocene to Pliocene times. We carried out the "METYSS" project aiming at better understanding the Miocene-Pliocene relationships between crustal tectonics and salt tectonics in this key-area, where rifting is pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma) and Messinian salt décollement creates thin-skinned tectonics. Thereby, we use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantifying vertical and horizontal movements. Our mapping of the Messinian Erosion Surface and of Messinian Upper and Mobile Units shows that a rifted basin already existed by the Messinian times, revealing a major pre-MSC rifting episode across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and salt tectonics. Our data surprisingly showed that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and is attributed to post-rift reactivation. Some Pliocene vertical movements have been evidenced by discovering localized gravity gliding of the salt and its Late Messinian (UU) and Early Pliocene overburden. To the South, crustal-scale southward tilting triggered along-strike gravity gliding of salt and cover recorded by upslope extension and downslope shortening. To the North, East of the Baronie Ridge, there was some post-salt crustal activity along a narrow N-S basement trough, bounded

  19. Rift flank uplift and thermal evolution of an intracratonic rift basin (eastern Canada) determined by combined apatite and zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Hardie, Rebecca; Schneider, David; Metcalf, James; Flowers, Rebecca

    2015-04-01

    As a significant portion of the world's oil reserves are retrieved from rift systems, a better understanding of the timing of thermal evolution and burial history of these systems will increase the potential for the discovery of hydrocarbon-bearing rifts. The Ottawa Embayment of the St. Lawrence Platform of eastern Canada is a reactivated intracratonic rift basin related to the opening of the Iapetus Ocean at ca. 620-570 Ma, followed by the formation of the well-developed continental passive margin. Siliciclastic sediments derived from the adjacent uplifted Neoproterozoic Grenville basement provide the basin fill material. Apatite and zircon (U-Th)/He thermochronology allows for low-temperature analysis across the exposed crystalline rift flank into the synrift sedimentary sequence to resolve the unroofing, burial and subsidence history of the region. Samples were collected along a ~250 km NE-SW transect, oblique to the axis of the rift, from Mont-Tremblant, Québec (~900 m) to the central axis of the Paleozoic rift in the Southern Ontario Lowlands (~300 m). Targets included Neoproterozoic metamorphic rocks of the Grenville Province along the rift flank and basinal Cambro-Ordovician Potsdam Group. Samples from the rift flank yield zircon ages from ca. 650 Ma to ca. 560 Ma and apatite ages from ca. 290 Ma to ca. 190 Ma, with a weak positive correlation between age and grain size. Zircon ages demonstrate a strong negative correlation with radiation damage: as eU increases, age decreases. By incorporating (U-Th)/He ages with regional constraints in the thermal modelling program HeFTy, viable temperature time paths for the region can be determined. Through inverse and forward modeling, preliminary rift flank (U-Th)/He ages correspond to post-Grenville cooling with <4 km of post-Carboniferous burial. The data define slow and long episodes of syn- to post-rift cooling with rates between 0.4 and 0.1 °C/Ma. (U-Th)/He dating of samples along the full-length of the transect

  20. Rifting and Subsidence in the Gulf of Mexico: Implications for Syn-rift, Sag, and Salt Sections, and Subsequent Paleogeography

    NASA Astrophysics Data System (ADS)

    Pindell, J. L.; Graham, R.; Horn, B.

    2013-05-01

    Thick (up to 5 km), rapid (<3 Ma), salt deposition is problematic for basin modelling because such accommodation cannot be thermal, yet GoM salt deposits (Late Callovian-Early Oxfordian) appear to be post-rift (most salt overlies planar sub-salt unconformities on syn-rift section). One possible solution is that the pre-drift GoM was a deep (~2 km) air-filled rift depression where basement had already subsided tectonically, and thus could receive up to 5 km of salt, roughly the isostatic maximum on exhumed mantle, hyper-thinned continent, or new ocean crust. ION-GXT and other seismic data along W Florida and NW Yucatán show that (1) mother salt was only 1 km thick in these areas, (2) that these areas were depositionally connected to areas of thicker deposition, and (3) the top of all salt was at global sea level, and hence the sub-salt unconformity along Florida and Yucatán was only 1 km deep by end of salt deposition. These observations fit the air-filled chasm hypothesis; however, two further observations make that mechanism highly improbable: (1) basinward limits of sub-salt unconformities along Florida/Yucatán are deeper than top of adjacent ocean crust emplaced at ~2.7 km subsea (shown by backstripping), and (2) deepest abyssal sediments over ocean crust onlap the top of distal salt, demonstrating that the salt itself was rapidly drowned after deposition. Study of global ION datasets demonstrates the process of "rapid outer marginal collapse" at most margins, which we believe is achieved by low-angle detachment on deep, landward-dipping, Moho-equivalent surfaces such that outer rifted margins are hanging walls of crustal scale half-grabens over mantle. The tectonic accommodation space produced (up to 3 km, < 3 Ma) can be filled by ~5 km of sag/salt sequences with little apparent hanging wall rifting. When salt (or other) deposition lags behind, or ends during, outer marginal collapse, deep-water settings result. We suggest that this newly identified, "outer

  1. Gas Geochemistry of Volcanic and Geothermal Areas in the Kenya Rift: Implications for the Role of Fluids in Continental Rifting

    NASA Astrophysics Data System (ADS)

    Lee, H.; Fischer, T. P.; Ranka, L. S.; Onguso, B.; Kanda, I.; Opiyo-Akech, N.; Sharp, Z. D.; Hilton, D. R.; Kattenhorn, S. A.; Muirhead, J.

    2013-12-01

    The East African Rift (EAR) is an active continental rift and ideal to investigate the processes of rift initiation and the breaking apart of continental lithosphere. Mantle and crust-derived fluids may play a pivotal role in both magmatism and faulting in the EAR. For instance, large quantities of mantle-derived volatiles are emitted at Oldoinyo Lengai volcano [1, 2]. Throughout the EAR, CO2-dominated volatile fluxes are prevalent [3, 4] and often associated with faults (i.e. Rungwe area, Tanzania, [5, 6]). The purpose of this study is to examine the relationship between volcanism, faulting and the volatile compositions, focusing on the central and southern Kenyan and northern Tanzanian section of the EAR. We report our analysis results for samples obtained during a 2013 field season in Kenya. Gases were sampled at fumaroles and geothermal plants in caldera volcanoes (T=83.1-120.2°C) and springs (T=40-79.6°C and pH 8.5-10) located near volcanoes, intra-rift faults, and a transverse fault (the Kordjya fault, a key fluid source in the Magadi rift) by 4N-NaOH solution-filled and empty Giggenbach bottles. Headspace gases were analyzed by a Gas Chromatograph and a Quadrupole Mass Spectrometer at the University of New Mexico. Both N2/Ar and N2/He ratios of all gases (35.38-205.31 and 142.92-564,272, respectively) range between air saturated water (ASW, 40 and ≥150,000) and MORB (100-200 and 40-50). In addition, an N2-Ar-He ternary diagram supports that the gases are produced by two component (mantle and air) mixing. Gases in the empty bottles from volcanoes and springs have N2 (90.88-895.99 mmom/mol), CO2 (2.47-681.21 mmom/mol), CH4 (0-214.78 mmom/mol), O2 (4.47-131.12 mmom/mol), H2 (0-35.78 mmom/mol), Ar (0.15-10.65 mmom/mol), He (0-2.21 mmom/mol), and CO (0-0.08 mmom/mol). Although some of the samples show an atmospheric component, CO2 is a major component in most samples, indicating both volcanoes and springs are emitting CO2. Gases from volcanoes are enriched in

  2. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  3. Geophysical evidence of pre-sag rifting and post-rifting fault reactivation in the Parnaíba basin, Brazil

    NASA Astrophysics Data System (ADS)

    Lopes de Castro, David; Hilário Bezerra, Francisco; Adolfo Fuck, Reinhardt; Vidotti, Roberta Mary

    2016-04-01

    This study investigated the rifting mechanism that preceded the prolonged subsidence of the Paleozoic Parnaíba basin in Brazil and shed light on the tectonic evolution of this large cratonic basin in the South American platform. From the analysis of aeromagnetic, aerogravity, seismic reflection and borehole data, we concluded the following: (1) large pseudo-gravity and gravity lows mimic graben structures but are associated with linear supracrustal strips in the basement. (2) Seismic data indicate that 120-200 km wide and up to 300 km long rift zones occur in other parts of the basins. These rift zones mark the early stage of the 3.5 km thick sag basin. (3) The rifting phase occurred in the early Paleozoic and had a subsidence rate of 47 m Myr-1. (4) This rifting phase was followed by a long period of sag basin subsidence at a rate of 9.5 m Myr-1 between the Silurian and the late Cretaceous, during which rift faults propagated and influenced deposition. These data interpretations support the following succession of events: (1) after the Brasiliano orogeny (740-580 Ma), brittle reactivation of ductile basement shear zones led to normal and dextral oblique-slip faulting concentrated along the Transbrasiliano Lineament, a continental-scale shear zone that marks the boundary between basement crustal blocks. (2) The post-orogenic tectonic brittle reactivation of the ductile basement shear zones led to normal faulting associated with dextral oblique-slip crustal extension. In the west, pure-shear extension induced the formation of rift zones that crosscut metamorphic foliations and shear zones within the Parnaíba block. (3) The rift faults experienced multiple reactivation phases. (4) Similar processes may have occurred in coeval basins in the Laurentia and Central African blocks of Gondwana.

  4. Tag team tectonics: mantle upwelling and lithospheric heterogeneity ally to rift continents (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.

    2013-12-01

    The configuration of continents we know today is the result of several billion years of active Wilson Cycle tectonics. The rifting of continents and subsequent development of ocean basins is an integral part of long-term planetary-scale recycling processes. The products of this process can be seen globally, and the East African Rift System (EARS) provides a unique view of extensional processes that actively divide a continent. Taken together with the adjoining Red Sea and Gulf of Aden, the EARS has experienced over 40 Ma of volcanism and ~30 Ma of extension. While early (pre-rift) volcanism in the region is attributed to mantle plume activity, much of the subsequent volcanism occurs synchronously with continental rifting. Numerous studies indicate that extension and magmatism are correlated: extension leads to decompression melting while magmatism accommodates further extension (e.g. Stein et al., 1997; Buck 2004; Corti 2012). Evaluation of the entire EARS reveals significant geochemical patterns - both spatial and temporal - in the volcanic products. Compositional variations are tied directly to the melt source(s), which changes over time. These variations can be characterized broadly by region: the Ethiopian plateau and Turkana Depression, the Kenya Rift, and the Western Rift. In the Ethiopian plateau, early flood basalt volcanism is dominated by mantle plume contributions with variable input from lherzolitic mantle lithosphere. Subsequent alkaline shield volcanism flanking the juvenile Main Ethiopian Rift records the same plume component as well as contributions from a hydrous peridotitic lithosphere. The hydrous lithosphere does not contribute indefinitely. Instead, young (< 2 Ma) volcanism taps a combination of the mantle plume and anhydrous depleted lithospheric mantle. In contrast, volcanism in the Kenya Rift and the Western Rift are derived dominantly from metasomatized lithospheric mantle rather than mantle plume material. These rifts lie in the mobile

  5. Oblique rift opening revealed by reoccurring magma injection in central Iceland.

    PubMed

    Ruch, Joël; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jónsson, Sigurjón

    2016-01-01

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries. PMID:27492709

  6. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas

    NASA Astrophysics Data System (ADS)

    Ren, Jianye; Tamaki, Kensaku; Li, Sitian; Junxia, Zhang

    2002-02-01

    During the Late Mesozoic and Cenozoic, extension was widespread in Eastern China and adjacent areas. The first rifting stage spanned in the Late Jurassic-Early Cretaceous times and covered an area of more than 2 million km 2 of NE Asia from the Lake Baikal to the Sikhot-Alin in EW direction and from the Mongol-Okhotsk fold belt to North China in NS direction. This rifting was characterized by intracontinental rifts, volcanic eruptions and transform extension along large-scale strike-slip faults. Based on the magmatic activity, filling sequence of basins, tectonic framework and subsidence analysis of basins, the evolution of this area can be divided into three main developmental phases. The first phase, calc-alkaline volcanics erupted intensely along NNE-trending faults, forming Daxing'anling volcanic belt, NE China. The second phase, Basin and Range type fault basin system bearing coal and oil developed in NE Asia. During the third phase, which was marked by the change from synrifting to thermal subsidence, very thick postrift deposits developed in the Songliao basin (the largest oil basin in NE China). Following uplift and denudation, caused by compressional tectonism in the near end of Cretaceous, a Paleogene rifting stage produced widespread continental rift systems and continental margin basins in Eastern China. These rifted basins were usually filled with several kilometers of alluvial and lacustrine deposits and contain a large amount of fossil fuel resources. Integrated research in most of these rifting basins has shown that the basins are characterized by rapid subsidence, relative high paleo-geothermal history and thinned crust. It is now accepted that the formation of most of these basins was related to a lithospheric extensional regime or dextral transtensional regime. During Neogene time, early Tertiary basins in Eastern China entered a postrifting phase, forming regional downwarping. Basin fills formed in a thermal subsidence period onlapped the fault

  7. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    PubMed Central

    Ruch, Joël; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jónsson, Sigurjón

    2016-01-01

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries. PMID:27492709

  8. The role of rifting in the evolution of the continental margin of Eastern Asia: Geophysical evidence

    NASA Astrophysics Data System (ADS)

    Rodnikov, A. G.; Rodnikova, R. D.; Zorina, Yu. G.

    1992-08-01

    The role of rift processes is analysed in the structural evolution of the continental margins of Eastern Asia including the Indo-China Peninsula and North China plain. Paleoreconstructions were made for the Indo-China Peninsula to characterize individual stages of rifting covering the Late Cretaceous-Eocene, Oligocene-Middle Miocene and Late Pliocene-Early Quaternary epochs. The rifting of continental margins occurred synchronously with spreading processes in marginal seas, whereas the formation of rift structures in the North China plain was concurrent with the formation of a deep-water basin of the Philippine Sea. The development of asthenospheric diapire led to crustal extension and was responsible for the formation of rift structures in marginal seas and continental margins.

  9. Oblique rift opening revealed by reoccurring magma injection in central Iceland

    NASA Astrophysics Data System (ADS)

    Ruch, Joël; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jónsson, Sigurjón

    2016-08-01

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  10. Tracing mantle-reacted fluids in magma-poor rifted margins: The example of Alpine Tethyan rifted margins

    NASA Astrophysics Data System (ADS)

    Pinto, Victor Hugo G.; Manatschal, Gianreto; Karpoff, Anne Marie; Viana, Adriano

    2015-09-01

    The thinning of the crust and the exhumation of subcontinental mantle in magma-poor rifted margins is accompanied by a series of extensional detachment faults. We show that exhumation along these detachments is intimately related to migration of fluids leading to changes in mineralogy and chemistry of the mantle, crustal, and sedimentary rocks. Using field observation and analytical methods, we investigate the role of fluids in the fossil distal margins of the Alpine Tethys. Using Cr-Ni-V, Fe, and Mn as tracers, we show that fluids used detachment faults as pathways and interacted with the overlying crust and sediments. These observations allow us to discuss when, where, and how this interaction happened during the formation of the rifted margin. The results show that: (i) serpentinization of mantle rocks during their exhumation results in the depletion of elements and migration of mantle-reacted fluids that are channeled along active detachment system; (ii) in earlier-stages, these fluids affected the overlying syntectonic sediments by direct migration from the underlying detachments;(iii) in later-stages, these fluids arrived at the seafloor, were introduced into, or "polluted" the seawater and were absorbed by post tectonic sediments. We conclude that a significant amount of serpentinization occurred underneath the hyperextended continental crust, and that the mantle-reacted fluids might have modified the chemical composition of the sediments and seawater. We propose that the chemical signature of serpentinization related to mantle exhumation is recorded in the sediments and may serve as a proxy to date serpentinization and mantle exhumation at present-day magma-poor rifted margins.

  11. Construction and destruction of a volcanic island developed inside an oceanic rift: Graciosa Island, Terceira Rift, Azores

    NASA Astrophysics Data System (ADS)

    Sibrant, A. L. R.; Marques, F. O.; Hildenbrand, A.

    2014-09-01

    There is a great lack of knowledge regarding the evolution of islands inside active oceanic rifts, in particular the meaning of the different evolutionary steps. Therefore, we conducted an investigation in Graciosa Island, which lies at the northwestern end of the Terceira Rift in the Azores Triple Junction, with the objective of constraining the evolution of the island in terms of volcanic growth and mass wasting, in particular the meaning and age of the destruction events. From digital elevation model (DEM) analysis, stratigraphic and tectonic observations, K/Ar dating on key samples, and available bathymetry and gravity data, we propose that Graciosa comprises five main volcanic complexes separated by major unconformities related to large scale mass wasting: (1) The older volcanic edifice (Serra das Fontes Complex) grew until ca. 700 ka, and was affected by a major flank collapse towards the southwest, which removed the whole SW flank, the summit and a part of the NE flank. (2) The Baía do Filipe Complex developed between at least 472 ka and 433 ka in two different ways: in the SW (presently offshore) as a main volcano, and in the NE unconformably over the sub-aerial remnants of the Serra das Fontes Complex, as secondary volcanic edifices. (3) The Baía do Filipe Complex was affected by a major flank collapse towards the SW, again removing most of the edifice. (4) The remnants of the Baía do Filipe Complex were covered in unconformity by the Serra Dormida Complex between ca. 330 and 300 ka, which in turn was unconformably covered by the younger Basaltic Cover Complex between ca. 300 ka and 214 ka. These two units were affected by a third major sector collapse that removed the whole western flank, the summit and part of the eastern flank of the Serra Dormida and Basaltic Cover complexes. (5) Despite the relatively young age of Graciosa, the collapse scars are not well preserved, and not active anymore. (6) A central-type volcano has been growing since at least

  12. Backarc rifting, constructional volcanism and nascent disorganised spreading in the southern Havre Trough backarc rifts (SW Pacific)

    NASA Astrophysics Data System (ADS)

    Wysoczanski, R. J.; Todd, E.; Wright, I. C.; Leybourne, M. I.; Hergt, J. M.; Adam, C.; Mackay, K.

    2010-02-01

    High resolution multibeam (EM300 and SEABEAM) data of the Southern Havre Trough (SHT), combined with observations and sample collections from the submersible Shinkai6500 and deep-tow camera, are used to develop a model for the evolution and magmatism of this backarc system. The Havre Trough and the associated Kermadec Arc are the product of westward subduction at the Pacific-Australian plate boundary. Detailed studies focus on newly discovered features including a seamount (Saito Seamount) and a deep graben (Ngatoroirangi Rift, > 4000 m water depth floored with a constructional axial volcanic ridge > 5 km in length and in excess of 200 m high), both of which are characterised by pillow and lobate flows estimated at < 20,000 years old based on sediment cover, high reflectivity and thin Mn crusts on recovered glassy olivine basalts and basaltic andesites. Elongate volcanic ridges at 35°15'S and 34°30'S, and backarc seamounts (35°30'S, 178°30'E) occur at the eastern margin of the SHT. Similar seafloor morphology is observed in the central and western portions of the basin, suggesting that recent volcanism may be broadly distributed across the backarc. Mass balance modelling indicates a maximum crustal thickness of ~ 11 km to < 6 km, similar to estimates of crustal thickness in the Lau Basin to the north. Given such high crustal attenuation and extensive backarc mafic magmatism within deep SHT rifts, we propose that the SHT is in an incipient phase of distributed and "disorganised" oceanic crustal accretion in multiple, ephemeral, and short but deep (> 4000 m) spreading systems. These discontinuous spreading systems are characterised by failed rifts, rift segmentation, and propagation. Successive episodes of magmatic intrusion into thinned faulted arc basement results in defocused asymmetrical accretion. Cross-arc volcanic chains, isolated volcanoes and underlying basement plateaus are interpreted to represent a "cap" of recent extrusives. However, they may also be

  13. Rifting, heat flux, and water availability beneath the catchment of Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Hindmarsh, R. C.

    2012-04-01

    The West Antarctic Rift System (WARS) is a major rift system that developed in the Cretaceous and Cenozoic. It forms the lithsopheric cradle for the marine-based, and potentially unstable West Antarctic Ice Sheet (WAIS). Determining the geological boundary conditions beneath the WAIS and in particular geothermal heat flux may help model its response to external climatic forcing. However, in the Amundsen Sea Embayment sector of WAIS, where major glaciers such as Pine Island and Thwaites are rapidly changing today, fundamental properties such as geothermal heat flux to the base of the ice sheet have remained poorly constrained due to sparse geophysical data coverage and the lack of drilling sites. New crustal thickness estimates derived from airborne gravity data (Jordan et al., 2010, GSA Bul.), are interpreted to show a continuation of the WARS beneath Pine Island Glacier, and suggest two phases of continental rifting affected this region. Here we explore the impact of continental rifting on geothermal heat flux variations and basal water availability beneath Pine Island Glacier. Using 1D thermal models of rift evolution, we assess geothermal heat flux configurations resulting from either single or two-phase rifting and explore the dependency on the age of rifting and pre-rift setting. Additionally, 1D glaciological models were implemented to predict the changes in subglacial water distribution created by different rifting models. Our modelling reveals that geothermal heat-flux beneath the WAIS is critically sensitive to rift age and evolution and has the potential to significantly alter basal conditions if it continued to be active in the Neogene as some recent geological interpretations suggest.

  14. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  15. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, N.H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  16. Rift strength controls rapid plate accelerations: A global analysis of Pangea fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Williams, S.; Butterworth, N. P.; Müller, D.

    2015-12-01

    Motions of Earth's plates are thought to be driven by slab pull, basal drag, and ridge push. Here we propose that plate motions during supercontinental fragmentation are decisively controlled by the non-linear decay of a resistive force: rift strength. We use state-of-the-art global tectonic reconstructions and the new geotectonic analysis tool pyGPlates to analyze the transition from rifting to sea-floor spreading of well-studied post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea, Gulf of California). In all cases, continental extension starts with a slow phase (< 10 mm/yr, full extension velocity) followed by a rapid acceleration over periods of a few My that introduces a fast rift phase (> 10 mm/yr). The transition from slow to fast extension takes place long before crustal break-up. In fact, we find that approximately half of the present day rifted margin area was created during the slow, and the other half during the fast phase. We reproduce the transition from slow to fast rifting using numerical forward models with force boundary conditions, such that rift velocities are not imposed but instead evolve naturally in response to changing strength of the rift. These models show that the two-phase velocity behavior during rifting and the rapid speed-up are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies.It has been proposed that abrupt plate accelerations can be caused by plume-lithosphere interaction, subduction initiation, and slab detachment. However, none of these mechanisms explains our result that plate speed-up systematically precedes continental break-up. We therefore propose dynamic rift weakening as a new mechanism for rapid plate motion changes.

  17. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal

    NASA Astrophysics Data System (ADS)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar

    2015-04-01

    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of

  18. Oil exploration in nonmarine rift basins of interior Sudan

    SciTech Connect

    Schull, T.J.

    1984-04-01

    In early 1975 Chevron Overseas Petroleum Inc. commenced a major petroleum exploration effort in previously unexplored interior Sudan. With the complete cooperation of the Sudanese Government, Chevron has acquired a vast amount of geologic and geophysical data during the past 9 years. These data include extensive aeromagnetic and gravity surveys, 25,000 mi (40,200 km) of seismic data, and the results of 66 wells. This information has defined several large rift basins which are now recognized as a major part of the Central African rift system. The sedimentary basins of interior Sudan are characterized by thick Cretaceous and Tertiary nonmarine clastic sequences. Over 35,000 ft (10,600 m) of sediment have been deposited in the deepest trough, and extensive basinal areas are underlain by more than 20,000 ft (6100 m) of sediment. The depositional sequence includes thick lacustrine shales and claystones, flood plain claystones, and lacustrine, fluvial, and alluvial sandstones and conglomerates. Those lacustrine claystones which were deposited in an anoxic environment provide oil-prone source rocks. Reservoir sandstones have been found in a wide variety of nonmarine sandstone facies. The extensional tectonism which formed these basins began in the Early Cretaceous. Movement along major fault trends continued intermittently into the Miocene. This deformation resulted in a complex structural history which led to the formation of several deep fault-bounded troughs, major interbasin high trends, and complex basin flanks. This tectonism has created a wide variety of structures, many of which have become effective hydrocarbon traps.

  19. Using Lake Superior Parks to Present the Midcontinent Rift

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Blavascunas, E.

    2014-12-01

    Some of the Midwest's most spectacular scenery occurs near Lake Superior, in places like Pictured Rocks and Apostle Islands National Lakeshores, Isle Royale National Park, Interstate Park, and Porcupine Mountains State Park. These landscapes provide an enormous, but underutilized opportunity for park interpreters and educators to explain some of the most exciting concepts of modern geology. A crucial aspect of doing this is recognizing that many of the rocks and landforms in individual parks are pieces of a huge regional structure. This structure, called the Midcontinent Rift System (MCRS), is a 1.1 billion year old 3000 km (2000 mile) long scar along which the North American continent started to tear apart, just as Africa is splitting today along the East African Rift, but for some reason failed to form a new ocean. Drawing on our experience as researchers and teachers studying the MCRS (Steins) and as an interpreter at Isle Royale National Park (Blavascunas), we seek to give interpreters a brief introduction to MCRS to help them present information about what geologists know already and what they are learning from continuing research. Our goal is to help interpreters visualize how what they see at a specific site fits into an exciting regional picture spanning much of the Midwest.

  20. Correlation of geophysical datasets in rifted margin studies

    NASA Astrophysics Data System (ADS)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per; Ebbing, Jörg

    2015-04-01

    A robust interpretation protocol for defining offshore rifted margin architecture includes interpretation of seismic reflection data supplemented by refraction and/or potential field modeling. In combination, this workflow is believed to provide better constraints on sedimentary, basement and Moho geometries at depth and/or the presence of magmatic material. Interpretation of the new generation of long-offset seismic reflection data shows that conflicts may arise between structural observations made from high-resolution seismic reflection profiles and a simple translation of density and velocity values into specific rock-types. We illustrate variations over this topic using three type-examples from the Mid-Norwegian rifted system. We show, for instance, that dense sediments wrongly interpreted as crystalline basement, can lead to incorrect mapping of the top of basement and thus to a wrong distribution of crustal and sedimentary material in the margin. This would directly impact margin restoration exercises, modeled plate kinematics and basin analyses. Our examples show that, in the absence of a seismic reflection dataset with good local coverage and high resolution, interpretation of potential field and/or velocity models in terms of structures or lithologies should be handled with care in order to avoid misunderstanding of the margin's tectonic and stratigraphic evolution.

  1. Upwarp of anomalous asthenosphere beneath the Rio Grande rift

    USGS Publications Warehouse

    Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.

    1984-01-01

    Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.

  2. Carbonate diagenesis and rifting in the Gulf of Suez

    SciTech Connect

    Purser, B.H.; Orszag-Sperber, F.; Aissaoui, D.M. )

    1988-08-01

    Lower Miocene carbonates of the northwest Red Sea and Gulf of Suez have been deposited on a series of structural blocks where bathymetric relief, created by early rift tectonics, has strongly influenced both sedimentation and early diagenesis. Initial submarine cementation by fibrous calcite and aragonite strongly affects slope deposits, destroying most primary porosity. It was followed by several phases of regional dolomitization whose isotopic signatures suggest nonmarine influence. Undolomitized sediments are the exception. An intense dissolution is the principal agent determining petrophysical qualities of the series. Nonmarine sparitic cements are not important, indicating the dissolved carbonate has been flushed out of the system. Finally, large-scale sulfate replacement affects dolomites adjacent to the middle Miocene primary evaporites. These secondary sulfates are associated with a zone of calcitized dolomite (dedolomite). This diagenetic activity obviously reflects repeated changes in the composition of interstitial waters. Its exceptional intensity is explained by the contemporaneous basin relief; the presence of numerous subparallel blocks has resulted in the development of separate bodies of water relating to both meteoric influx and evaporation. Together with normal marine waters, these fluids of variable density have penetrated the intervening sedimentary platforms via the numerous slopes. It is clear that multiphased carbonate diagenesis is one of the many expressions of early rifting.

  3. Generation of Continental Rifts, Basins and Swells by Lithosphere Instabilities

    NASA Astrophysics Data System (ADS)

    Milelli, L.; Fourel, L.; Jaupart, C. P.

    2012-12-01

    Domal uplifts, volcanism, basin formation and rifting have often struck the same continent in different areas at the same time. Their characteristics and orientations are difficult to reconcile with mantle convection or tectonic forces and suggest a driving mechanism that is intrinsic to the continent. The rifts seem to develop preferentially at high angles to the edge of the continent whereas swells and basins seem confined to the interior. Another intriguing geometrical feature is that the rifts often branch out in complicated patterns at their landward end. In Western Africa, for example, magmatic activity currently occurs in a number of uplifted areas including the peculiar Cameroon Volcanic Line that stretches away from the continental margin over about 1000 km. Magmatic and volcanic activity has been sustained along this line for 70 My with no age progression. The mantle upwelling that feeds the volcanoes is not affected by absolute plate motions and hence is attached to the continent. The Cameroon Volcanic Line extends to the Biu swell to the North and the Jos plateau to the West defining a striking Y-shaped pattern. This structure segues into several volcanic domes including the Air, the Hoggar, the Darfur, the Tibesti and the Haruj domes towards the Mediterranean coast. Another example is provided by North America, where the late Proterozoic-early Ordovician saw the formation of four major basins, the Michigan, Illinois, Williston and Hudson Bay, as well as of major rifts in southern Oklahoma and the Mississipi Valley within a short time interval. At the same time, a series of uplifts developed, such as the Ozark and Nashville domes. Motivated by these observations, we have sought an explanation in the continental lithosphere itself. We describe a new type of convective instability at the base of the lithosphere that leads to a remarkable spatial pattern at the scale of an entire continent. We carried out fluid mechanics laboratory experiments on buoyant

  4. Extension on rifted continental margins: Observations vs. models.

    NASA Astrophysics Data System (ADS)

    Skogseid, Jakob

    2014-05-01

    Mapping the signature of extensional deformation on rifted margins is often hampered by thick sedimentary or volcanic successions, or because salt tectonics makes sub-salt seismic imaging challenging. Over the past 20 years the literature is witnessing that lack of mapable faults have resulted in a variety of numerical models based on the assumption that the upper crust takes little or no extensional thinning, while the observed reduction of crustal thickness is taken up in the middle and lower crust, as well as in the mantle. In this presentation two case studies are used to highlight the difference that 3D seismic data may have on our understanding. The small patches of 3D resolution data allow us to get a glance of the 'real' signature of extensional faulting, which by analogy can be extrapolate from one margin segment to the next. In the South Atlantic salt tectonics represents a major problem for sub-salt imaging. The conjugate margins of Brazil and Angola are, however, characterized by pronounced crustal thinning as documented by crustal scale 2D reflection and refraction data. Off Angola the 3D 'reality' demonstrates that upper crustal extension by faulting is comparable to the full crustal, as well as lithospheric thinning as derived from refraction data and basin subsidence analysis. The mapped faults are listric low angle faults that seem to detach at mid crustal levels. 2D seismic has in the past been interpreted to indicate that almost no extensional faulting can be mapped towards the base of the so-called 'sag basin'. The whole concept of the 'sag basin', often ascribed to as crustal thinning without upper crustal deformation, is in fact related to this 'lack of observation', and furthermore, have caused the making of different types of dynamic models attempting to account for this. In the NE Atlantic significant Paleocene extensional faulting is locally seen adjacent to the 50 to more than 200 km wide volcanic cover on each side of the breakup axis

  5. Geology and Petrology of the Southeast Mariana Forearc Rift

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. M.; Anthony, E. Y.; Bloomer, S. H.; Girard, G.; Ishizuka, O.; Kelley, K. A.; Manton, W. I.; Martinez, F.; Merle, S. G.; Ohara, Y.; Reagan, M. K.; Ren, M.; Stern, R. J.

    2011-12-01

    The southernmost Mariana convergent margin is tectonically and magmatically very active, with submarine arc volcanoes that are sub-parallel to the Malaguana-Gadao Ridge backarc spreading center at ~110km from the trench axis. This activity reflects widening of the S. Mariana Trough. Stretching formed 3 southeast-facing, broad rifts extending from the trench to an extinct arc volcano chain (~80km from the trench axis) that is mostly composed of outcrops and fragments of pillow lavas partially covered by sediments. The 3 rifts comprise the S.E. Mariana Forearc Rift (SEMFR) and are 50-56km long and 3600 to 8200m deep, with axial valleys that narrow near the extinct arc. We studied the SEMFR using one Shinkai 6500 dive in 2008 and two Shinkai 6500 dives and 7 deep-tows in 2010. Near the trench, the SEMFR flanks are very steep and dominated by talus slopes of lava, fine-grained gabbro, diabase and peridotite, sometimes covered by thin volcaniclastic sediments. Few outcrops of pillow lavas, lava flows and volcaniclastics are observed, strongly suggesting that SEMFR morphology is dominated by faulting and landsliding. Lava outcrops are smoother and better preserved towards the extinct arc, suggesting that magmatic activity dominates that part of the rift. 40Ar-39Ar ages of 3 SEMFR lavas are 3.0-3.7Ma, so post-magmatic rifting is younger than ~3Ma. SEMFR pillow lavas are vesicular and microporphyritic with crystallite-rich glassy rinds, indicating they erupted underwater at near-liquidus conditions. In contrast, the lava flows are more crystallized and less vesicular. SEMFR lavas exhibit similar ranges in mineral composition with 2 kinds of plagioclase (An>80% and An<80%), clinopyroxene (Mg#≥80% and Mg#<80%), olivine (Fo>90 and Fo<90), suggesting magma mixing. Gabbroic rocks are slightly altered and have olivine and clinopyroxene compositions similar to those of the lavas, but contain less anorthitic plagioclase with a wider range in composition (An20-70) than the lavas

  6. How oblique extension and structural inheritance control rift segment linkage: Insights from 4D analogue models

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2016-04-01

    INTRODUCTION During the early stages of rifting, rift segments may form along non-continuous and/or offset pre-existing weaknesses. It is important to understand how these initial rift segments interact and connect to form a continuous rift system. A previous study of ours (Zwaan et al., in prep) investigated the influence of dextral oblique extension and rift offset on rift interaction. Here we elaborate upon our previous work by using analogue models to assess the added effects of 1) sinistral oblique extension as observed along the East African Rift and 2) the geometry of linked and non-linked inherited structures. METHODS Our set-up involves a base of foam and plexiglass that forces distributed extension in the overlying model materials: a sand layer for the brittle upper crust and a viscous sand/silicone mixture for ductile lower crust. A mobile base plate allows lateral motion for oblique extension. We create inherited structures, along which rift segments develop, with right-stepping offset lines of silicone (seeds) on top of the basal viscous layer. These seeds can be connected by an additional weak seed that represents a secondary inherited structural grain (model series 1) or disconnected and laterally discontinuous (over/underlap, model series 2). Selected models are run in an X-ray computer topographer (CT) to reveal the 3D evolution of internal structures with time that can be quantified with particle image velocitmetry (PIV) techniques. RESULTS Models in both series show that rift segments initially form along the main seeds and then generally propagate approximately perpendicular to the extension direction: with orthogonal extension they propagate in a parallel fashion, dextral oblique extension causes them to grow towards each other and connect, while with sinistral oblique extension they grow away from each other. However, sinistral oblique extension can also promote rift linkage through an oblique- or strike-slip zone oriented almost parallel to

  7. ­­Are current models for normal fault array evolution applicable to natural rifts?

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    Conceptual models predicting the geometry and evolution of normal fault arrays are vital to assess rift physiography, syn-rift sediment dispersal and seismic hazard. Observations from data-rich rifts and numerical and physical models underpin widely used fault array models predicting: i) during rift initiation, arrays are defined by multiple, small, isolated faults; ii) as rifting progresses, strain localises onto fewer larger structures; and iii) with continued strain, faulting migrates toward the rift axis, resulting in rift narrowing. Some rifts display these characteristics whereas others do not. Here we present several case studies documenting fault migration patterns that do not fit this ideal. In this presentation we will begin by reviewing existing fault array models before presenting a series of case studies (including from the northern North Sea and the Gulf of Corinth), which document fault migration patterns that are not predicted by current fault evolution models. We show that strain migration onto a few, large faults is common in many rifts but that, rather than localising onto these structures until the cessation of rifting, strain may 'sweep' across the basin. Furthermore, crustal weaknesses developed in early tectonic events can cause faults during subsequent phases of extension to grow relatively quickly and accommodate the majority if not all of the rift-related strain; in these cases, strain migration does not and need not occur. Finally, in salt-influenced rifts, strain localisation may not occur at all; rather, strain may become progressively more diffuse due to tilting of the basement and intrastratal salt décollements, thus leading to superimposition of thin-skinned, gravity-driven and thick-skinned, plate-driven, basement-involved extension. We call for the community to unite to develop the next-generation of normal fault array models that include complexities such as the thermal and rheological properties of the lithosphere, specific

  8. ALVIN-SeaBeam studies of the Sumisu Rift, Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Taylor, B.; Brown, G.; Fryer, P.; Gill, J. B.; Hochstaedter, A. G.; Hotta, H.; Langmuir, C. H.; Leinen, M.; Nishimura, A.; Urabe, T.

    1990-10-01

    Bimodal volcanism, normal faulting, rapid sedimentation, and hydrothermal circulation characterize the rifting of the Izu-Bonin arc at 31°N. Analysis of the zigzag pattern, in plan view, of the normal faults that bound Sumisu Rift indicates that the extension direction (080° ± 10°) is orthogonal to the regional trend of the volcanic front. Normal faults divide the rift into an inner rift on the arc side, which is the locus for maximum subsidence and sedimentation, and an outer rift further west. Transfer zones that link opposing master faults and/or rift flank uplifts further subdivide the rift into three segments along strike. Volcanism is concentrated along the ENE-trending transfer zone which separates the northern and central rift segments. The differential motion across the zone is accommodated by interdigitating north-trending normal faults rather than by ENE-trending oblique-slip faults. Volcanism in the outer rift has built 50-700 m high edifices without summit craters whereas in the inner rift it has formed two multi-vent en echelon ridges (the largest is 600 m high and 16 km long). The volcanism is dominantly basaltic, with compositions reflecting mantle sources little influenced by arc components. An elongate rhyolite dome and low-temperature hydrothermal deposits occur at the en echelon step in the larger ridge, which is located at the intersection of the transfer zone with the inner rift. The chimneys, veins, and crusts are composed of silica, barite and iron oxide, and are of similar composition to the ferruginous chert that mantles the Kuroko deposits. A 1.2-km transect of seven ALVIN heat flow measurements at 30°48.5'N showed that the inner-rift-bounding faults may serve as water recharge zones, but that they are not necessarily areas of focussed hydrothermal outflow, which instead occurs through the thick basin sediments. The rift basin and arc margin sediments are probably dominated by permeable rhyolitic pumice and ash erupted from submarine

  9. Quantifying the Temporal and Spatial Response of Channel Steepness to Changes in Rift Basin Architecture

    NASA Astrophysics Data System (ADS)

    Robinson, Scott M.

    Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset

  10. Stable isotope variation in tooth enamel from Neogene hippopotamids: monitor of meso and global climate and rift dynamics on the Albertine Rift, Uganda

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas Christian; Brügmann, Gerhard B.; Mertz, Dieter F.; Kullmer, Ottmar; Schrenk, Friedemann; Jacob, Dorrit E.; Ssemmanda, Immaculate; Taubald, Heinrich

    2010-10-01

    The Neogene was a period of long-term global cooling and increasing climatic variability. Variations in African-Asian monsoon intensity over the last 7 Ma have been deduced from patterns of eolian dust export into the Indian Ocean and Mediterranean Sea as well as from lake level records in the East African Rift System (EARS). However, lake systems not only depend on rainfall patterns, but also on the size and physiography of river catchment areas. This study is based on stable isotope proxy data (18O/16O, 13C/12C) from tooth enamel of hippopotamids (Mammalia) and aims in unravelling long-term climate and watershed dynamics that control the evolution of palaeolake systems in the western branch of the EARS (Lake Albert, Uganda) during the Late Neogene (7.5 Ma to recent). Having no dietary preferences with respect to wooded (C3) versus grassland (C4) vegetation, these territorial, water-dependant mammals are particularly useful for palaeoclimate analyses. As inhabitants of lakes and rivers, hippopotamid tooth enamel isotope data document mesoclimates of topographic depressions, such as the rift valleys and, therefore, changes in relative valley depth instead of exclusively global climate changes. Consequently, we ascribe a synchronous maximum in 18O/16O and 13C/12C composition of hippopotamid enamel centred around 1.5-2.5 Ma to maximum aridity and/or maximum hydrological isolation of the rift floor from rift-external river catchment areas in response to the combined effects of rift shoulder uplift and subsidence of the rift valley floor. Structural rearrangements by ~2.5 Ma within the northern segment of the Albertine Rift are well constrained by reversals in river flow, cannibalisation of catchments, biogeographic turnover and uplift of the Rwenzori horst. However, a growing rain shadow is not obvious in 18O/16O signatures of the hippopotamid teeth of the Albertine Rift. According to our interpretation, this is the result of the overriding effect of evaporation on 18

  11. Do melt-rich shear zones lubricate rift flanks? 3-D spatial gradients in anisotropy beneath the East African Rift in Ethiopia

    NASA Astrophysics Data System (ADS)

    Holtzman, B. K.; Gaherty, J. B.; Kendall, J.; Stuart, G.

    2006-12-01

    Melt-enhanced weakening of the mantle may be essential for a continent to break apart and rift. A primary means of understanding this aspect of the dynamics of rifting (and other geodynamic settings) is the interpretation of seismic anisotropy in terms of melt distribution and/or mantle flow direction. In recent rock- deformation experiments, the relationships between flow direction and seismic fast direction are complicated by the presence of water (e.g. Katayama et al., 2004) and segregated melt (Holtzman et al. 2003). In the latter, deviatoric stress drives melt to organize into networks of melt-rich shear zones. Scaling from laboratory to upper mantle conditions predicts characteristic network spacings of <1 km, less than wavelengths of measured seismic waves; thus they should cause significant seismic anisotropy. Measurable gradients in anisotropy may be diagnostic indicators of gradients in melt segregation. Because melt-rich shear zones will weaken the mantle on a large scale, the presence of such anisotropy gradients would map to gradients in viscosity. To map melt distribution beneath the rift and test for the presence or absence of this process, we combine measurements of seismic velocities beneath the East African Rift in Ethiopia with modeling of elastic properties of aligned, segregated melt and olivine fabric. Analysis of SKS phases has shown that fast directions parallel magmatic centers in the rift and splitting magnitudes are largest near the rift flanks, consistent with the hypothesis above (e.g. Kendall et al., 2006). Preliminary analysis of Love-Rayleigh differential times across the rift are consistent with a vertical fast axis, suggesting the presence of a vertically aligned, rift parallel melt phase down to the solidus (Pilidou et al., 2005). We expand on these results by applying a cross-correlation procedure to precisely estimate relative amplitude and phase of surface waves traversing the rift. Data are derived from the EAGLE and Ethiopia

  12. Long-term cooling history of the Albertine Rift: new evidence from the western rift shoulder, D.R. Congo

    NASA Astrophysics Data System (ADS)

    Bauer, F. U.; Glasmacher, U. A.; Ring, U.; Grobe, R. W.; Mambo, V. S.; Starz, M.

    2015-02-01

    To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) "old" cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U-Th)/He ages and Jurassic to Cretaceous apatite (U-Th-Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.

  13. Mode of rifting in magmatic-rich setting: Tectono-magmatic evolution of the Central Afar rift system

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Leroy, Sylvie; Ayalew, Dereje

    2014-05-01

    Observation of deep structures related to break-up processes at volcanic passive margins (VPM) is often a troublesome exercise: thick pre- to syn-breakup seaward-dipping reflectors (SDR) usually mask the continent-ocean boundary and hide the syn-rift tectonic structures that accommodate crustal stretching and thinning. Some of the current challenges are about clarifying 1) if tectonic stretching fits the observed thinning and 2) what is the effect of continuous magma supply and re-thickening of the crust during extension from a rheological point of view? The Afar region in Ethiopia is an ideal natural laboratory to address those questions, as it is a highly magmatic rift that is probably close enough to breakup to present some characteristics of VPM. Moreover, the structures related to rifting since Oligocene are out-cropping, onshore and well preserved. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the Ethiopian Plateau, through the marginal graben down to the Manda-Hararo active rift axis. We mapped continent-ward normal fault array affecting highly tilted trapp series unconformably overlain by tilted Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. It is itself overlain by flat lying Pliocene series, including the Stratoid. Balanced cross-sections of those areas allow us to constrain a surface stretching factor of about 2.1-2.9. Those findings have the following implications: - High beta factor constrained from field observations is at odd with thinning factor of ~1.3 predicted by seismic and gravimetric studies. We propose that the continental crust in Central Afar has been re-thickened by the emplacement of underplated magma and SDR. - The deformation in Central Afar appears to be largely distributed through space and time. It has been accommodated in a 200-300 km wide strip being a diffuse incipient

  14. Volcanic evolution of an active magmatic rift segment on a 100 Kyr timescale: exposure dating of lavas from the Manda Hararo/Dabbahu segment of the Afar Rift

    NASA Astrophysics Data System (ADS)

    Medynski, S.; Williams, A.; Pik, R.; Burnard, P.; Vye, C.; France, L.; Ayalew, D.; Yirgu, G.

    2012-12-01

    In the Afar depression (Ethiopia), extension is already organised along rift segments which morphologically resemble oceanic rifts. Segmentation here results from interactions between dyke injection and volcanism, as observed during the well documented 2005 event on the Dabbahu rift segment. During this tectono-volcanic crisis, a megadyke was injected, followed by 12 subsequent dike intrusions, sometimes associated with fissure flow eruptions. Despite the accurate surveying of the magmatic and tectonic interplay during this event via remote sensing techniques, there is a lack of data on timescales of 1 to 100 kyr, the period over which the main morphology of a rift is acquired. The Dabbahu rift segment represents an ideal natural laboratory to study the evolution of rift morphology as a response to volcanic and tectonic influences. It is possible to constrain the timing of fault growth relative to the infilling of the rift axial depression by lava flows, and to assess the influence of the different magma bodies involved in lava production along the rift-segment. We use cosmogenic nuclides (3He) to determine the ages of young (<100 kyr) lava flows and to date the initiation and movement of fault scarps which cut the lavas. Combined with major & trace element compositions, field mapping and digital cartography (Landsat, ASTER and SPOT imagery), the rift geomorphology can be linked to the magmatic and tectonic history defined by surface exposure dating. The results show that over the last 100 ka the Northern part of the Dabbahu segment was supplied by two different magma reservoirs which can be identified based on their distinctive chemistries. The main reservoir is located beneath Dabbahu volcano, and has been supplied with magma for at least 72 ka. This magmatic centre supplies magma to most of the northern third of the rift segment. The second reservoir is located further south, on the axis, close to the current mid-segment magma chamber, which was responsible for

  15. New perspectives on the evolution of narrow, modest extension continental rifts: Embryonic core complexes and localized, rapid Quaternary extension in the Rio Grande rift, central New Mexico

    NASA Astrophysics Data System (ADS)

    Ricketts, J.; Karlstrom, K. E.; Kelley, S.

    2013-12-01

    Updated models for continental rift zones need to address the role and development of low-angle normal fault networks, episodicity of extension, and interaction of 'active and passive' driving mechanisms. In the Rio Grande rift, USA, low-angle normal faults are found throughout the entire length of the rift, but make up a small percentage of the total fault population. The low-angle Jeter and Knife Edge faults, for example, crop out along the SW and NE margins of the Albuquerque basin, respectively. Apatite fission track (AFT) age-elevation data and apatite (U-Th)/He (AHe) ages from these rift flank uplifts record cooling between ~21 - 16 Ma in the NE rift flank and ~20 - 10 Ma in the SW, which coincides with times of rapid extension and voluminous syntectonic sedimentation. The timing of exhumation is also similar to rift flanks farther north in active margins based on AFT data alone. In addition, synthetic faults in the hanging wall of each low-angle fault become progressively steeper and younger basinward, and footwall blocks are the highest elevation along the rift flanks. These observations are consistent with a model where initially high-angle faults are shallowed in regions of maximum extension. As they rotate, new intrabasinal faults emerge which also can be rotated if extension continues. These relationships are similarly described in mature core complexes, and if these processes continued in the Rio Grande rift, it could eventually result in mid-crustal ductily deformed rocks in the footwall placed against surficial deposits in the hanging wall across faults that have been isostatically rotated to shallow dips. Although existing data are consistent with highest strain rates during a pulse of extension along the entire length of the rift 20-10 Ma., GPS-constrained measurements suggest that the rift is still actively-extending at 1.23-1.39 nstr/yr (Berglund et al., 2012). Additional evidence for Quaternary extension comes from travertine deposits that are

  16. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic

  17. Curie Point Depth Estimates Beneath the Incipient Okavango Rift Zone, Northwest Botswana

    NASA Astrophysics Data System (ADS)

    Leseane, K.; Atekwana, E. A.; Mickus, K. L.; Mohamed, A.; Atekwana, E. A.

    2013-12-01

    We investigated the regional thermal structure of the crust beneath the Okavango Rift Zone (ORZ), surrounding cratons and orogenic mobile belts using the Curie Point Depth (CPD) estimates. Estimating the depth to the base of magnetic sources is important in understanding and constraining the thermal structure of the crust in zones of incipient continental rifting where no other data are available to image the crustal thermal structure. Our objective was to determine if there are any thermal perturbations within the lithosphere during rift initiation. The top and bottom of the magnetized crust were calculated using the two dimensional (2D) power-density spectra analysis and three dimensional (3D) inversions of the total field magnetic data of Botswana in overlapping square windows of 1degree x 1 degree. The calculated CPD estimates varied between ~8 km and ~24 km. The deepest CPD values (16-24 km) occur under the surrounding cratons and orogenic mobile belts whereas the shallowest CPD values were found within the ORZ. CPD values of 8 to 10 km occur in the northeastern part of ORZ; a site of more developed rift structures and where hot springs are known to occur. CPD values of 12 to 16 km were obtained in the southwestern part of the ORZ where rift structures are progressively less developed and where the rift terminates. The results suggests possible thermal anomaly beneath the incipient ORZ. Further geophysical studies as part of the PRIDE (Project for Rift Initiation Development and Evolution) project are needed to confirm this proposition.

  18. Rift-to-collision transition recorded by tectonothermal evolution of the northern Pyrenees

    NASA Astrophysics Data System (ADS)

    Vacherat, Arnaud; Mouthereau, Frédéric; Pik, Raphaël.; Bellahsen, Nicolas; Gautheron, Cécile; Bernet, Matthias; Daudet, Maxime; Balansa, Jocelyn; Tibari, Bouchaib; Pinna Jamme, Rosella; Radal, Julien

    2016-04-01

    The impact of rift-related processes on tectonic and thermal evolution of collisional orogens is poorly documented. Here, we study the northern Pyrenees, a region that has preserved a geological record of the transition from rifting to collision. Using modeling of new low-temperature thermochronological data, including fission track and (U-Th)/He on apatite and zircon, we propose a temporal reconstruction of the inversion of the European rifted margin. Our data confirm that rifting and related cooling started in the Late Paleozoic-Triassic. Throughout the Jurassic and Early Cretaceous the European margin recorded slow heating during postrift subdsidence. Modeling of thermochronological data allows distinguishing subsidence and denudation controlled by south dipping normal faults in granitic massifs that reflect a second episode of crustal thinning at 130-110 Ma. Following onset of convergence at 83 Ma, shortening accumulated into the weak and hot Albian-Cenomanian rift basins floored by both hyperextended continental crust and exhumed subcontinental mantle. The lack of cooling during this initial stage of convergence is explained by the persistence of a high geothermal gradient. The onset of exhumation-related cooling is recognized in the whole Pyrenean region at 50-35 Ma. This timing reveals that the main phase of mountain building started when hyperextended rift basins closed and collision between proximal domains of the rifted margin occurred.

  19. Which mantle below the active rift segments in Afar?

    NASA Astrophysics Data System (ADS)

    Pik, Raphael; Stab, Martin; Ancellin, Marie-Anne; Sarah, Medynski; Cloquet, Christophe; Vye-Brown, Charlotte; Ayalew, Dereje; Chazot, Gilles; Bellahsen, Nicolas; Leroy, Sylvie

    2014-05-01

    The evolution of mantle sources beneath the Ethiopian volcanic province has long been discussed and debated with a long-lived controversy in identifying mantle reservoirs and locating them in the mantle. One interpretation of the isotopic composition of erupted lavas considers that the Afar mantle plume composition is best expressed by recent lavas from Afar and Gulf of Aden (e.g. Erta Ale, Manda Inakir and the 45°E torus anomaly on the Gulf of Aden) implying that all other volcanics (including other active segments and the initial flood basalt province) result from mixing of this plume component with additional lithospheric and asthenospheric components. A completely opposite view considers that the initial Oligocene continental flood basalts best represent the isotopic composition of the Afar mantle plume, which is subsequently mixed in various proportions with continental lithospheric mantle for generating some of the specific signature of Miocene and Quaternary volcanics. The precise and correct identification of mantle components involved in the generation of magmas is of particular importance because this is the only way to document the participation of mantle during extension and its potential role in break-up processes. In this contribution we provide new isotopic data for central Afar and we revisit the whole data set of the Ethiopian volcanic province in order to: (i) precisely identify the distinct mantle components implicated and (ii) discuss their location and evolution not only considering geochemical mixings, but also taking into account additional characteristics of erupted magmatic suites (volumes, location and relationships with amount of extension and segmentation). This new interpretation of geochemical data allows reconsidering the evolution of mantle in the course of rift evolution. In terms of mantle sources, two populations of active segments are frontally opposed in the volcanic province: those that share exactly the same composition with

  20. The mode of rifting of the Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Milia, Alfonsa; Torrente, Maurizio M.

    2014-05-01

    The back-arc evolution of the Tyrrhenian Sea has mainly been attributed to the roll-back towards the south-east of the subducting Ionian plate that could have provided the bulk of the space required for this extension. The Tyrrhenian Sea is a triangular basin characterized by two large bathyal basins (Vavilov and Marsili basins) that are covered by some hundred meters of sediments, and a number of peri- Tyrrhenian basins filled by thousands of meters of clastic and/or volcaniclastic sediments. The stratigraphic record of these basins offers an opportunity to study the timing and kinematics of the basin-forming faults that are relevant for the creation of a model on the opening of the Tyrrhenian Sea. Basin analysis was performed using interpretation of seismic reflection profiles and well logs. The interpretation of these data was made using seismic and sequence stratigraphy and structural geology in a GIS-dedicated environment. The sequence stratigraphy interpretation of the deepest wells were performed using discontinuities and trends in wireline log pattern. Systems tracts and transgressive-regressive cycles were identified in well log succession and seismic profiles. The sequence stratigraphy approach allows the identification of 4th-order depositional sequences (100 ka). The geologic evolution, in terms of age of basin formation, style of deformation, timing of activity of the fault bounding basins, tectonic subsidence, post-rift infill and volcanic activity, was analyzed for several peri-Tyrrhenian basins. The study reconstructed the three-dimensional architecture of the peri-Tyrrhenian basins and illustrated the link between the bathyal basin and the Tyrrhenian margin. We document that during the evolution of the Tyrrhenian region several basins opened contemporaneously with different direction of extension and a progressive change in rifting direction occurred along the Campania Margin. The mode of rifting of the Tyrrhenian Sea was characterized by different

  1. A NEW (or old) RIFT IN EASTERN CALIFORNIA

    NASA Astrophysics Data System (ADS)

    Calzia, J.

    2009-12-01

    The Eastern California Shear Zone (ECSZ) includes a broad network of right-lateral faults in the Mojave Desert and southern Basin-Ranges of California. Seven large earthquakes, including the 1992 M7.4 Landers and 1999 M7.1 Hector Mine earthquakes, have occurred within this zone in the last 60 years. This severe seismic activity is complicated by two puzzling facts: 1) the hypocenter of the Landers and Hector Mine earthquakes occur at shallow crustal depths (10±4 km); and 2) the aftershock patterns associated with these earthquakes cross cut the structural grain of the ECSZ at an acute angle. GPS data indicate that crustal rocks within the Mojave Desert segment of the ECSZ are moving as much as 14 mm/year to the northwest relative to Station FUNE in Death Valley; crustal rocks within the Basin-Ranges segment are moving 12.5 mm/year northwestward. Dokka and Travis (1990) concluded that the ECZS accommodates 20-25 percent of relative plate motion along the North American-Pacific plate margin inboard of the San Andreas Fault Zone. Nur and others (1993) reported that the large earthquakes may occur along a new fault system that cuts across the older faults; they named this young fault the Landers-Mojave earthquake line. Neither model, however, considers Quaternary volcanic centers in eastern CA and NV just east of and locally within the ECSZ. Rocks within these volcanic centers, including (from north to south) Lathrop Wells, Cima, Pisgah, Amboy, and Obsidian Butte, are younger than but chemically and isotopically similar to Neogene volcanic rocks that bound the rift province of the northern Gulf of California. The seismic and GPS data, combined with petrologic data from nearby volcanic centers, suggests that the ECZS is the active margin of an incipient transtensional rift as the Gulf of California propagates northward. Given the volume of volcanic rocks and prehistoric seismic history in California, it is not certain if this rift is growing or dying; only time will

  2. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  3. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    NASA Astrophysics Data System (ADS)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  4. New Insight into Ice Shelf Rift Propagation from Geodetic and Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Bassis, J. N.; Fricker, H. A.; Coleman, R.; Minster, B.

    2005-12-01

    Rifts in Antarctic ice shelves are large through-cutting fractures that penetrate the entire ice thickness. These rifts can grow to be hundreds of kilometers long, eventually forming the boundary from which large tabular bergs detach. Despite the important role that iceberg calving plays in the mass balance of the Antarctic ice sheet (icebergs account for up to two thirds of the mass loss), very little is known about the forces involved in their initiation and subsequent propagation. During the 2002-2003 and 2004-2005 seasons we jointly deployed arrays of GPS and seismometers around the tip of an actively propagating rift on the Amery Ice Shelf, East Antarctica. Our observations show strong clustering of seismicity along the rift axis, extending far ahead of where the rift tip is visible on the surface. We also find episodic swarms of seismicity accompanied by rapid rift widening, which we interpret as bursts of rift propagation. The locations of events during the seismic swarm show that during each burst, the rift propagated approximately 100-200 meters. Previous studies have shown no direct triggering of bursts of propagation by tides or winds. Serendipitously, during the 2004-5 our instruments were deployed one week before the magnitude 9.3 Sumatra earthquake. Not only is the earthquake clearly visible in our seismic records, but we also see the arrival of T-waves (acoustic waves which propagate through the ocean) as well as the tsunami triggered by the earthquake. This presents us with a novel opportunity to study the influence of both the earthquake and the tsunami on rift propagation. We present preliminary results showing that neither the earthquake nor the T-waves had any effect on propagation. However, one of the bursts occurs several hours after the tsunami arrives at the ice shelf, suggesting a possible connection and raising questions about the potential influence of large storms and swell on propagation.

  5. Consequences of Rift Propagation for Spreading in Thick Oceanic Crust in Iceland

    NASA Astrophysics Data System (ADS)

    Karson, J. A.

    2015-12-01

    Iceland has long been considered a natural laboratory for processes related to seafloor spreading, including propagating rifts, migrating transforms and rotating microplates. The thick, hot, weak crust and subaerial processes of Iceland result in variations on the themes developed along more typical parts of the global MOR system. Compared to most other parts of the MOR, Icelandic rift zones and transform faults are wider and more complex. Rift zones are defined by overlapping arrays of volcanic/tectonic spreading segments as much as 50 km wide. The most active rift zones propagate N and S away from the Iceland hot spot causing migration of transform faults. A trail of crust deformed by bookshelf faulting forms in their wakes. Dead or dying transform strands are truncated along pseudofaults that define propagation rates close to the full spreading rate of ~20 mm/yr. Pseudofaults are blurred by spreading across wide rift zones and laterally extensive subaerial lava flows. Propagation, with decreasing spreading toward the propagator tips causes rotation of crustal blocks on both sides of the active rift zones. The blocks deform internally by the widespread reactivation of spreading-related faults and zones of weakness along dike margins. The sense of slip on these rift-parallel strike-slip faults is inconsistent with transform-fault deformation. These various deformation features as well as subaxial subsidence that accommodate the thickening of the volcanic upper crustal units are probably confined to the brittle, seismogenic, upper 10 km of the crust. At least beneath the active rift zones, the upper crust is probably decoupled from hot, mechanically weak middle and lower gabbroic crust resulting in a broad plate boundary zone between the diverging lithosphere plates. Similar processes may occur at other types of propagating spreading centers and magmatic rifts.

  6. Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.

    2011-11-01

    The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.

  7. Crustal structure of the northern mississippi embayment and a comparison with other continental rift zones

    USGS Publications Warehouse

    Mooney, W.D.; Andrews, M.C.; Ginzburg, A.; Peters, D.A.; Hamilton, R.M.

    1983-01-01

    Previous geological and geophysical investigations have suggested that the Mississippi Embayment is the site of a Late Precambrian continental rift that was reactivated in the Mesozoic. New information on the deep structure of the northern Mississippi Embayment, gained through an extensive seismic refraction survey, supports a rifting hypothesis. The data indicate that the crust of the Mississippi Embayment may be characterized by six primary layers that correspond geologically to unconsolidated Mesozoic and Tertiary sediments (1.8 km/s), Paleozoic carbonate and clastic sedimentary rocks (5.9 km/s), a low-velocity layer of Early Paleozoic sediments (4.9 km/s), crystalline upper crust (6.2 km/s), lower crust (6.6 km/s), modified lower crust (7.3 km/s), and mantle. Average crustal thickness is approximately 41 km. The presence and configuration of the low-velocity layer provide new evidence for rifting in the Mississippi Embayment. The layer lies within the northeast-trending upper-crustal graben reported by Kane et al. (1981), and probably represents marine shales deposited in the graben after rifting. The confirmation and delineation of a 7.3 km/s layer, identified in previous studies, implies that the lower crust has been altered by injection of mantle material. Our results indicate that this layer reaches a maximum thickness in the north-central Embayment and thins gradually to the southeast and northwest, and more rapidly to the southwest along the axis of the graben. The apparent doming of the 7.3 km/s layer in the north-central Embayment suggests that rifting may be the result of a triple junction located in the Reelfoot Basin area. The crustal structure of the Mississippi Embayment is compared to other continental rifts: the Rhinegraben, Limagnegraben, Rio Grande Rift, Gregory Rift, and the Salton Trough. This comparison suggests that alteration of the lower crust is a ubiquitous feature of continental rifts. ?? 1983.

  8. Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii.

    PubMed

    Amelung, Falk; Yun, Sang-Ho; Walter, Thomas R; Segall, Paul; Kim, Sang-Wan

    2007-05-18

    Mauna Loa volcano, Hawaii, deforms by a combination of shallow dike intrusions in the rift zones and earthquakes along the base of the volcano, but it is not known how the spreading is accommodated in the lower part of the volcanic edifice. We present evidence from interferometric synthetic aperture radar data for secular inflation of a dike-like magma body at intermediate depth in the southwest rift zone during 2002 to 2005. Magma accumulation occurred in a section of the rift zone that was unclamped by previous dikes and earthquakes, suggesting that stress transfer plays an important role in controlling subsurface magma accumulation. PMID:17510364

  9. New evidence for magmatic intrusion beneath the Rio Grande rift, New Mexico.

    USGS Publications Warehouse

    Towle, J.N.

    1980-01-01

    An analysis of the geomagnetic variation field across the Rio Grande rift has identified two concentrations of telluric current flow beneath the rift caused by channeling of telluric currents in electrically conductive structures in the crust and upper mantle. A shallow conductor nearly coincides with a very strong reflection in a high-resoltuion seismic-reflection profile across the central Rio Grande graben which has been attributed to a lens at mid-crustal depth. The deep (more than 30 km) conductor is 200 km wide and may indicate anomalously high temperatures and, by inference, a thinning of the lithosphere beneath the rift.-Authors

  10. The Risk of Nosocomial Transmission of Rift Valley Fever

    PubMed Central

    Al-Hamdan, Nasser A.; Panackal, Anil A.; Al Bassam, Tami H.; Alrabea, Abdullah; Al Hazmi, Mohammed; Al Mazroa, Yagoub; Al Jefri, Mohammed; Khan, Ali S.; Ksiazek, Thomas G.

    2015-01-01

    In 2000, we investigated the Rift Valley fever (RVF) outbreak on the Arabian Peninsula—the first outside Africa—and the risk of nosocomial transmission. In a cross-sectional design, during the peak of the epidemic at its epicenter, we found four (0.6%) of 703 healthcare workers (HCWs) IgM seropositive but all with only community-associated exposures. Standard precautions are sufficient for HCWs exposed to known RVF patients, in contrast to other viral hemorrhagic fevers (VHF) such as Ebola virus disease (EVD) in which the route of transmission differs. Suspected VHF in which the etiology is uncertain should be initially managed with the most cautious infection control measures. PMID:26694834

  11. Synchronous oceanic spreading and continental rifting in West Antarctica

    NASA Astrophysics Data System (ADS)

    Davey, F. J.; Granot, R.; Cande, S. C.; Stock, J. M.; Selvans, M.; Ferraccioli, F.

    2016-06-01

    Magnetic anomalies associated with new ocean crust formation in the Adare Basin off north-western Ross Sea (43-26 Ma) can be traced directly into the Northern Basin that underlies the adjacent morphological continental shelf, implying a continuity in the emplacement of oceanic crust. Steep gravity gradients along the margins of the Northern Basin, particularly in the east, suggest that little extension and thinning of continental crust occurred before it ruptured and the new oceanic crust formed, unlike most other continental rifts and the Victoria Land Basin further south. A preexisting weak crust and localization of strain by strike-slip faulting are proposed as the factors allowing the rapid rupture of continental crust.

  12. Localized crustal deformation in the Godavari failed rift, India

    NASA Astrophysics Data System (ADS)

    Mahesh, P.; Gahalaut, V. K.; Catherine, J. K.; Ambikapathy, A.; Kundu, Bhaskar; Bansal, Amit; Chadha, R. K.; Narsaiah, M.

    2012-06-01

    Six years of GPS measurements of crustal deformation in the Godavari failed rift (GFR) of stable India plate suggest very localized deformation. Elsewhere, all along the GFR the deformation is very low (<1.5 mm/yr). Localized deformation (up to 3.3±0.5 mm/yr) at least at two sites, implying compression on steep faults located on the southern margin of the GFR, is coincident with the region characterized by high level low-magnitude seismicity of past six years and implies strain accumulation for future moderate to strong magnitude earthquake in the region. The localized deformation is consistent with the view about deformation in such regions where seismicity migrates and deformation rate changes with time.

  13. Rupture Zones of Strong Earthquakes In The Corinth Rift

    NASA Astrophysics Data System (ADS)

    Papadopoulos, G. A.; Kouskouna, V.; Plessa, A.

    Ruptures zones of the strong (M 8805; 6) earthquakes that occurred in the Corinth rift in the last three hundred years have been determined on the basis of aftershock epi- central distributions , intensity distributions and observations regarding seismogenic ground failures and tsunamis. The space U time distribution of the rupture zones indi- cates that (1) for time intervals of about 50yrs the rupture zones do not overlap; over- alpping appear, however, in longer time intervals , (2) there is a trend of the seismic activity to decrease westwards , and (3) particular regions constitute potential seis- mic gaps , like the Kiato UXylocastro region in the south coast of the Corinth Gulf, where the large 1402 earthquake occurred, and the Livadia U Desfina region where the A.D.361 and 551 large earthquakes possibly took place.

  14. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    PubMed Central

    Caminade, Cyril; Ndione, Jacques A.; Diallo, Mawlouth; MacLeod, Dave A.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P.

    2014-01-01

    Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. PMID:24413703

  15. Rift Valley Fever during Rainy Seasons, Madagascar, 2008 and 2009

    PubMed Central

    Andriamandimby, Soa Fy; Randrianarivo-Solofoniaina, Armand Eugène; Jeanmaire, Elisabeth M.; Ravololomanana, Lisette; Razafimanantsoa, Lanto Tiana; Rakotojoelinandrasana, Tsanta; Razainirina, Josette; Hoffmann, Jonathan; Ravalohery, Jean-Pierre; Rafisandratantsoa, Jean-Théophile; Rollin, Pierre E.

    2010-01-01

    During 2 successive rainy seasons, January 2008 through May 2008 and November 2008 through March 2009, Rift Valley fever virus (RVFV) caused outbreaks in Madagascar. Human and animal infections were confirmed on the northern and southern coasts and in the central highlands. Analysis of partial sequences from RVFV strains showed that all were similar to the strains circulating in Kenya during 2006–2007. A national cross-sectional serologic survey among slaughterhouse workers at high risk showed that RVFV circulation during the 2008 outbreaks included all of the Malagasy regions and that the virus has circulated in at least 92 of Madagascar’s 111 districts. To better predict and respond to RVF outbreaks in Madagascar, further epidemiologic studies are needed, such as RVFV complete genome analysis, ruminant movement mapping, and surveillance implementation. PMID:20507747

  16. Modeling the Spatial Spread of Rift Valley Fever in Egypt

    PubMed Central

    Gao, Daozhou; Cosner, Chris; Cantrell, Robert Stephen; Beier, John C.; Ruan, Shigui

    2013-01-01

    Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East that harms both human health and livestock production. It is believed that RVF in Egypt has been repeatedly introduced by the importation of infected animals from Sudan. In this paper, we propose a three-patch model for the process by which animals enter Egypt from Sudan, are moved up the Nile, and then consumed at population centers. The basic reproduction number for each patch is introduced and then the threshold dynamics of the model are established. We simulate an interesting scenario showing a possible explanation of the observed phenomenon of the geographic spread of RVF in Egypt. PMID:23377629

  17. Ultrastructural pathology of human liver in Rift Valley fever.

    PubMed

    Shraim, Mubarak Al; Eid, Refaat; Radad, Khaled; Saeed, Noora

    2016-01-01

    Rift Valley fever (RVF) is a zoonotic disease that primarily affects ruminant animals and can also cause fatal disease in humans. In the current report, we present the ultrastructural changes in the liver of a man aged 60 years who died from RVF in the Aseer Central Hospital, Abha, Saudi Arabia. The main hepatic changes by transmission electron microscopy included the presence of 95-115 nm electron-dense particles consistent with RVF virions, nuclear condensation, vacuolar degeneration, lipid droplet accumulation and mitochondrial damage and dilation. There were also viral inclusion bodies with electron-dense aggregates, dilation of intercellular spaces, damage of sinusoidal microvilli with widening of space of Disse, dilation of bile canaliculi and increasing number of phagolysosomes. PMID:27485877

  18. Volcanic water flows could have flooded Ganymede's planetary rift system

    SciTech Connect

    Allison, M.L.; Clifford, S.M.

    1985-01-01

    Global expansion on Ganymede of only 1 or 2% created a planetary rift system which was resurfaced over a significant period of the planet's history creating bright, grooved terrain. The most reasonable model entails flooding of grabens by water or slush magmas which rose to the surface along normal faults in the rift system. Various models exist for the origin of the water magmas including isostatic rise of freezing ice I or diapirs of unstable ice III. A model considering the heat balance at the surface of an ice-covered water flow is constructed with the simplifying assumption that both laminar flow and a solid ice cover are achieved relatively soon after eruption. The ice cover will thicken until the underlying flowing water is entirely frozen. Energy into the system comes from solar radiation and the latent heat of freezing. Energy lost will be by evaporative and radiative cooling at the ice surface and by conduction into the substratum. Solving the heat balance allows a prediction for the volume of magma that can flood the surface. For example a flow 5 m thick will take tens of days to freeze, so that discharge rates equal to that of average terrestrial basalt flows could flood relatively large areas of the surface before freezing. Volcanic flooding is therefore a physically viable mechanism for the origin of bright terrain. During freezing the water/ice volume increases, lifting and fracturing the ice cover. These fractures may localize continued tectonic forces producing large displacements and creating the present grooved terrain.

  19. Young Stellar Object Candidates in the Aquila Rift Region

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-miao; Wang, Hong-chi; Stecklum, B.

    2010-10-01

    Using the 2m telescope of the Turingia State Observatory at Tauten-berg (TLS), imaging observations in 3 wavebands (H α, R and I) are performed in the 16 fields in the Aquila Rift region. The observed fields cover about 7 square degrees. Excluding the 3 fields with unqualified data, the photometrical analysis is made for the remaining 13 fields, from which point sources are identified, and finally 7 H α emission-line star candidates are identified by color-color diagrams. The 7 candidates are located in five fields. Three of them are located near the Galactic plane, while the galactic latitudes of the rest are greater than 4°. The 2 M ASS counterparts of the point sources are identified, and the properties of the 7 H α emission-line star candidates are further analyzed by using the two-color diagrams. It is found that the near-infrared radiation from these H α emission-line star candidates has no obvious infrared excess, one of them even falls on the main-sequence branch. This indicates that the H α-emissive young stellar objects (YSOs) are not always accompanied with the infrared excess, and that the results of the H α emission line observation and the infrared excess observation are mutually supplemented. If the 7 H α emission-line star candidates are regarded as YSO candidates, then the number of YSOs in the Aquila Rift region is quite small. The further confirmation of these candidates needs subsequent spectral observations.

  20. Molecular biology and genetic diversity of Rift Valley fever virus

    PubMed Central

    Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV), a member of the family Bunyaviridae, genus Phlebovirus, is the causative agent of Rift Valley fever (RVF), a mosquito-borne disease of ruminant animals and humans. The generation of a large sequence database has facilitated studies of the evolution and spread of the virus. Bayesian analyses indicate that currently circulating strains of RVFV are descended from an ancestral species that emerged from a natural reservoir in Africa when large-scale cattle and sheep farming were introduced during the 19th century. Viruses descended from multiple lineages persist in that region, through infection of reservoir animals and vertical transmission in mosquitoes, emerging in years of heavy rainfall to cause epizootics and epidemics. On a number of occasions, viruses from these lineages have been transported outside the enzootic region through the movement of infected animals or mosquitoes, triggering outbreaks in countries such as Egypt, Saudi Arabia, Mauritania and Madagascar, where RVF had not previously been seen. Such viruses could potentially become established in their new environments through infection of wild and domestic ruminants and other animals and vertical transmission in local mosquito species. Despite their extensive geographic dispersion, all strains of RVFV remain closely related at the nucleotide and amino acid level. The high degree of conservation of genes encoding the virion surface glycoproteins suggests that a single vaccine should protect against all currently circulating RVFV strains. Similarly, preservation of the sequence of the RNA-dependent RNA polymerase across viral lineages implies that antiviral drugs targeting the enzyme should be effective against all strains. Researchers should be encouraged to collect additional RVFV isolates and perform whole-genome sequencing and phylogenetic analysis, so as to enhance our understanding of the continuing evolution of this important virus. This review forms part of a series

  1. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  2. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    NASA Astrophysics Data System (ADS)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  3. Basin evolution and the distribution of strain within the Gulf of Corinth rift

    NASA Astrophysics Data System (ADS)

    Bell, Rebecca; McNeill, Lisa; Nixon, Casey; Henstock, Timothy; Bull, Jonathan; Christodoulou, Dimitris; Papatheodorou, George; Taylor, Brian; Ferentinos, George; Sakellariou, Dimitris; Lykousis, Vasilis; Sachpazi, Maria; Ford, Mary; Goodliffe, Andrew; Leeder, Mike; Gawthorpe, Robert; Collier, Richard; Clements, Benjamin

    2013-04-01

    The Gulf of Corinth is a classic young active continental rift initiating <5 Ma and with current extension rates up to 15 mm/yr. The modern rift (ca. 1-2 Myr old) has been studied extensively both onshore and offshore. In this paper we bring together the results of study of the offshore rift with existing onshore data to generate a model for how the modern rift has tectonically evolved, how strain is distributed across and along the rift, how slip on individual major faults controlling rift basin subsidence has changed over relatively short timescales (e.g. <0.5 Myr) and how extension in the upper crust through fault displacement compares with whole crustal extension over the history of the rift. The results indicate that the rift stratigraphy is divided into two units (pre- and post- ca. 0.5Ma). The two units indicate markedly different rift basin geometry during these two time periods. Two separated depocentres 20-50 km long were created controlled by N- and S-dipping faults before ca. 0.5 Ma, while since ca. 0.5 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca. 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry. Examination of extension at a larger spatial and temporal scale suggests that uniform pure shear extension without the need for a significant N-S dipping detachment fault is a viable extension mechanism for at least the western rift where constraints are greater. These results also indicate that the present day strain distribution indicated by GPS data cannot have persisted over the lifetime of the modern rift. We are now building on these studies by

  4. No thermal anomalies in the mantle transition zone beneath an incipient continental rift: evidence from the first receiver function study across the Okavango Rift Zone, Botswana

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, K. H.; Moidaki, M.; Reed, C. A.; Gao, S. S.

    2015-08-01

    Mechanisms leading to the initiation and early-stage development of continental rifts remain enigmatic, in spite of numerous studies. Among the various rifting models, which were developed mostly based on studies of mature rifts, far-field stresses originating from plate interactions (passive rifting) and nearby active mantle upwelling (active rifting) are commonly used to explain rift dynamics. Situated atop of the hypothesized African Superplume, the incipient Okavango Rift Zone (ORZ) of northern Botswana is ideal to investigate the role of mantle plumes in rift initiation and development, as well as the interaction between the upper and lower mantle. The ORZ developed within the Neoproterozoic Damara belt between the Congo Craton to the northwest and the Kalahari Craton to the southeast. Mantle structure and thermal status beneath the ORZ are poorly known, mostly due to a complete paucity of broad-band seismic stations in the area. As a component of an interdisciplinary project funded by the United States National Science Foundation, a broad-band seismic array was deployed over a 2-yr period between mid-2012 and mid-2014 along a profile 756 km in length. Using P-to-S receiver functions (RFs) recorded by the stations, the 410 and 660 km discontinuities bordering the mantle transition zone (MTZ) are imaged for the first time. When a standard Earth model is used for the stacking of RFs, the apparent depths of both discontinuities beneath the Kalahari Craton are about 15 km shallower than those beneath the Congo Craton. Using teleseismic P- and S-wave traveltime residuals obtained by this study and lithospheric thickness estimated by previous studies, we conclude that the apparent shallowing is the result of a 100-150 km difference in the thickness of the lithosphere between the two cratons. Relative to the adjacent tectonically stable areas, no significant anomalies in the depth of the MTZ discontinuities or in teleseismic P- and S-wave traveltime residuals are

  5. San Andres Rift, Nicaraguan Shelf: A 346-Km-Long, North-South Rift Zone Actively Extending the Interior of the "Stable" Caribbean Plate

    NASA Astrophysics Data System (ADS)

    Carvajal, L. C.; Mann, P.

    2015-12-01

    The San Andres rift (SAR) is an active, 015°-trending, bathymetric and structural rift basin that extends for 346 km across the Nicaraguan platform and varies in bathymetric width from 11-27 km and in water depth from 1,250 to 2,500 m. We used four 2D regional seismic lines tied to two offshore, industry wells located west of the SAR on the Nicaraguan platform to map normal faults, transfer faults, and possibly volcanic features with the rift. The Colombian islands of San Andres (26 km2) and Providencia (17 km2) are footwall uplifts along west-dipping, normal fault bounding the eastern margin of the rift. Mapping indicates the pre-rift section is Late Cretaceous to Oligocene in age and that the onset of rifting began in the early to middle Miocene as shown by wedging of the Miocene and younger sedimentary fill controlled by north-south-striking normal faults. Structural restorations at two locations across the rift shows that the basin opened mainly by dip-slip fault motions producing a total, east-west extension of 18 km in the north and 15 km in the south. Structural restoration shows the rift formed on a 37-km-wide, elongate basement high - possibly of late Cretaceous, volcanic origin and related to the Caribbean large igneous province. Previous workers have noted that the SAR is associated with province of Pliocene to Quaternary seamounts and volcanoes which range from non-alkaline to mildly alkaline, including volcanic rocks on Providencia described as andesites and rhyolites. The SAR forms one of the few recognizable belts of recorded seismicity within the Caribbean plate. The origin of the SAR is related to Miocene and younger left-lateral displacement along the Pedro Banks fault to the north and the southwestern Hess fault to the south. We propose that the amount of left-lateral displacement that created the rift is equivalent to the amount of extension that formed it: 18-20 km.

  6. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  7. Active Tectonics In The Rukwa Rift (sw Tanzania): A Study of The Potential For Large Earthquakes In A Continental Rift.

    NASA Astrophysics Data System (ADS)

    Kervyn, F.

    The Rukwa rift is a deep sedimentary basin that is considered as a tectonic trans- fer zone between the Tanganyika and the Malawi troughs. The tectonic evolution of the depression is controlled by the reactivation of proterozoic structures and started with the deposition of the permo-triasic Karoo sediments. In the southeast, the rift is divided into two facing half graben separated by a Precambrian horst, whereas its northwestern part has a more symmetrical graben structure. Although most of the vertical displacement is accommodated by the Lupa eastern boundary fault, onshore shallow seismic profiles have confirmed the co-occurrence of intrabasin synthetic- and strike-slip faults within the sub surface sediments. Both normal and dextral strike-slip movement are indeed observed in the basin in response to the E-W to WNW-SSE ex- tension. The region has a moderate seismic activity and the earthquakes magnitude is generally below M 6.5. However, a M 7.4 earthquake occurred in the Rukwa region in 1910 but its exact location remains uncertain. The current research aimed at the identi- fication of active faults within the recent deposits of the basin by the combination in a GIS of radar interferometric data with topographical and geological maps, geophysical data, and field observations. Radar interferometry (InSAR) was found to be especially suitable for DEM computation in low relief areas where available topographic data are limited in accuracy. Numerous topographic lineaments were observed on InSAR DEM, and follow two main directions, both oblique to the main NW-SE trend of the rift. On the one hand, the GIS analysis confirms that the observed lineaments corre- spond to real natural alignment such like the drainage for example, and are therefore not related to atmospheric artefacts. On the other hand, the field observations revealed that in most cases, the topographic lineaments are very subtle and difficult to identify. However, direct correlations with tectonic

  8. Geometry and growth of an inner rift fault pattern: the Kino Sogo Fault Belt, Turkana Rift (North Kenya)

    NASA Astrophysics Data System (ADS)

    Vétel, William; Le Gall, Bernard; Walsh, John J.

    A quantitative analysis is presented of the scaling properties of faults within the exceptionally well-exposed Kino Sogo Fault Belt (KSFB) from the eastern part of the 200-km-wide Turkana rift, Northern Kenya. The KSFB comprises a series of horsts and grabens within an arcuate 40-km-wide zone that dissects Miocene-Pliocene lavas overlying an earlier asymmetric fault block. The fault belt is ˜150 km long and is bounded to the north and south by transverse (N50°E and N140°E) fault zones. An unusual feature of the fault system is that it accommodates very low strains (<1%) and since it is no older than 3 Ma, it could be characterised by extension rates and strain rates that are as low as ˜0.1 mm/yr and 10 -16 s -1, respectively. Despite its immaturity, the fault system comprises segmented fault arrays with lengths of up to 40 km, with individual fault segments ranging up to ˜9 km in length. Fault length distributions subscribe to a negative exponential scaling law, as opposed to the power law scaling typical of other fault systems. The relatively long faults and segments are, however, characterised by maximum throws of no more than 100 m, providing displacement/length ratios that are significantly below those of other fault systems. The under-displaced nature of the fault system is attributed to early stage rapid fault propagation possibly arising from reactivation of earlier underlying basement fabrics/faults or magmatic-related fractures. Combined with the structural control exercised by pre-existing transverse structures, the KSFB demonstrates the strong influence of older structures on rift fault system growth and the relatively rapid development of under-displaced fault geometries at low strains.

  9. Rift to Post-rift evolution of a "passive" continental margin: The Ponta Grossa Arch, SE Brazil

    NASA Astrophysics Data System (ADS)

    Franco-Magalhaes, Ana. O. B.; Hackspacher, Peter C.; Glasmacher, Ulrich A.; Saad, A. R.

    2010-05-01

    Low-temperature thermochronology was applied at the Brazilian passive continental margin in order to understand and reconstruct the post-rift evolution since the break-up of southwestern Gondwana. Thermochronological data obtained from apatite fission-track analysis of Neoproterozoic metamorphic and Paleozoic to Mesozoic siliciclastic rocks as well as Mesozoic dikes from the Ponta Grossa Arch provided ages between 66.2 (1.3) and 5.9 (0.8) Ma. These data clearly indicate a post-rift reactivation during the Late Cretaceous and Paleogene. Integrating the results of older thermochronological studies, the reactivation of the southeastern Brazilian margin could be described in three main phases. Furthermore, the spatial distribution of age data indicate a NE-age group (NE of Curitiba) of about 20 Ma and a SW-age group (Curitiba and NW) of about 50 Ma. The change of ages follows the NW-SE trending São Jerônimo-Curiúva fault zone that can be traced offshore into the southern end of the Santos basin. Within the Santos basin these lineament terminates the salt occurrence in the south. It seams to play a major role in the structural evolution of the Santos basin and the Rio Grande Rise. Sedimentological studies in the Santos basin evidenced that the transport direction changed in Miocene time. During the Oligocene and earlier the sediments were transported mainly from the direction of the "Curitiba area" into the Santos basin. Within the Miocene an additional transport direction from an area north of Curitiba developed.

  10. Style of extensional tectonism during rifting, Red Sea and Gulf of Aden

    USGS Publications Warehouse

    Bohannon, R.G.

    1989-01-01

    Geologic and geophysical studies from the Arabian continental margin in the southern Red Sea and LANDSAT analysis of the northern Somalia margin in the Gulf of Aden suggest that the early continental rifts were long narrow features that formed by extension on closely spaced normal faults above moderate- to shallow-dipping detachments with break-away zones defining one rift flank and root zones under the opposing rift flank. The rift flanks presently form the opposing continental margins across each ocean basin. The detachment on the Arabian margin dips gently to the west, with a breakaway zone now eroded above the deeply dissected terrain of the Arabian escarpment. A model is proposed in which upper crustal breakup occurs on large detachment faults that have a distinct polarity. -from Author

  11. Inflation rates, rifts, and bands in a pāhoehoe sheet flow

    USGS Publications Warehouse

    Hoblitt, Richard P.; Orr, Tim R.; Heliker, Christina; Denlinger, Roger P.; Hon, Ken; Cervelli, Peter F.

    2012-01-01

    The margins of sheet flows—pāhoehoe lavas emplaced on surfaces sloping Inflation and rift-band formation is probably cyclic, because the pattern we observed suggests episodic or crude cyclic behavior. Furthermore, some inflation rifts contain numerous bands whose spacing and general appearances are remarkably similar. We propose a conceptual model wherein the inferred cyclicity is due to the competition between the fluid pressure in the flow's liquid core and the tensile strength of the viscoelastic layer where it is weakest—in inflation rifts. The viscoelastic layer consists of lava that has cooled to temperatures between 800 and 1070 °C. This layer is the key parameter in our model because, in its absence, rift banding and stepwise changes in the flow height would not occur.

  12. Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Weemstra, Cornelis; Leroy, Sylvie; Boschi, Lapo; Keir, Derek; Ren, Yong; Molinari, Irene; Ahmed, Abdulhakim; Stuart, Graham W.; Rolandone, Frédérique; Khanbari, Khaled; Hammond, James O. S.; Kendall, J. M.; Doubre, Cécile; Ganad, Ismail Al; Goitom, Berhe; Ayele, Atalay

    2015-04-01

    During the breakup of continents in magmatic settings, the extension of the rift valley is commonly assumed to initially occur by border faulting and progressively migrate in space and time toward the spreading axis. Magmatic processes near the rift flanks are commonly ignored. We present phase velocity maps of the crust and uppermost mantle of the conjugate margins of the southern Red Sea (Afar and Yemen) using ambient noise tomography to constrain crustal modification during breakup. Our images show that the low seismic velocities characterize not only the upper crust beneath the axial volcanic systems but also both upper and lower crust beneath the rift flanks where ongoing volcanism and hydrothermal activity occur at the surface. Magmatic modification of the crust beneath rift flanks likely occurs for a protracted period of time during the breakup process and may persist through to early seafloor spreading.

  13. Workshop on The Rio Grande Rift: Crustal Modeling and Applications of Remote Sensing

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P. (Editor)

    1980-01-01

    The elements of a program that could address significant earth science problems by combining remote sensing and traditional geological, geophysical, and geochemical approaches were addressed. Specific areas and tasks related to the Rio Grande Rift are discussed.

  14. Late Proterozoic rift control on the shape of the Appalachians: The Pennsylvania reentrant

    SciTech Connect

    Gates, A.E. New York Geological Survey, Albany, NY ); Valentino, D.W. New York Geological Survey, Albany, NY )

    1991-11-01

    The Pennsylvania reentrant, the most prominent deviation in the trend of the Appalachians, is the product of Late Proterozoic rifting. The Peters Creek Formation, Pennsylvania-Maryland Piedmont, contains rift-generated, deep-water turbidite deposits of Late Proterozoic-Cambrian( ) age. These rocks are an extension of the Westminster terrane and lie well to the northeast of the southern Appalachian Late Proterozoic-Cambrian rift basin (Lynchburg-Chilhowee Group basin). The basin into which the Peters Creek Formation was deposited may have connected the southern rift basin with one to the north. The preservation of the Peters Creek Formation and other age equivalent units within the Pennsylvania reentrant indicates that the New York promontory acted as a buttress to Paleozoic orogenic activity.

  15. Geologic Mapping of the Juno Chasma Quadrangle, Venus: Establishing the Relation Between Rifting and Volcanism

    NASA Technical Reports Server (NTRS)

    Senske, D. A.

    2008-01-01

    To understand the spatial and temporal relations between tectonic and volcanic processes on Venus, the Juno Chasma region is mapped. Geologic units are used to establish regional stratigraphic relations and the timing between rifting and volcanism.

  16. Early growth of Kohala volcano and formation of long Hawaiian rift zones

    USGS Publications Warehouse

    Lipman, P.W.; Calvert, A.T.

    2011-01-01

    Transitional-composition pillow basalts from the toe of the Hilo Ridge, collected from outcrop by submersible, have yielded the oldest ages known from the Island of Hawaii: 1138 ?? 34 to 1159 ?? 33 ka. Hilo Ridge has long been interpreted as a submarine rift zone of Mauna Kea, but the new ages validate proposals that it is the distal east rift zone of Kohala, the oldest subaerial volcano on the island. These ages constrain the inception of tholeiitic volcanism at Kohala, provide the first measured duration of tholeiitic shield building (???870 k.y.) for any Hawaiian volcano, and show that this 125-km-long rift zone developed to near-total length during early growth of Kohala. Long eastern-trending rift zones of Hawaiian volcanoes may follow fractures in oceanic crust activated by arching of the Hawaiian Swell in front of the propagating hotspot. ?? 2011 Geological Society of America.

  17. Potential for North American Mosquitoes (Diptera: Culicidae) to Transmit Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine which biting insects should be targeted for control should Rift Valley fever virus (RVFV) be detected in North America, we evaluated Culex erraticus, Culex erythrothorax, Culex pipiens, Culex quinquefasciatus, Culex tarsalis, Aedes dorsalis, Aedes vexans, Anopheles quadrimaculatus, and ...

  18. Banderas Rift Zone: A plausible NW limit of the Jalisco Block

    NASA Astrophysics Data System (ADS)

    Alvarez, Román

    2002-10-01

    Echo soundings recently made in Bahía de Banderas show that this region is a graben with steeply dipping walls and several basins; it is the offshore continuation of the Valle de Banderas graben, and of a branching rift (Río Ameca rift) originating in the Tepic-Zacoalco rift zone. The general trend of the three structures is ENE with some NE trending offsets, and they have a total length of 150 km; this Banderas Rift Zone is proposed as the NW limit of the Jalisco block. The existence of this limit suggests that there is another platelet, or block, between the Jalisco block and a portion of the Rivera plate, probably bounded by the Tres Marías escarpment, the Jalisco block and the North America plate.

  19. Arshan palaeoseismic feature of the Tunka fault (Baikal rift zone, Russia)

    NASA Astrophysics Data System (ADS)

    Smekalin, Oleg P.; Shchetnikov, Alexander A.; White, Dustin

    2013-01-01

    The traditional concept of the rift development of flank depressions in the Baikal rift zone is now doubted in view of some indicators for compression deformations identified by the seismogeological and geodetic methods. Besides, the paleoseismological investigations revealed seismogenic strike-slips and reverse faults in the Tunka fault zone that is a major structure-controlling element of the Tunka rift depression. However, a detailed study of the upslope-facing scarp in the Arshan paleoseismogenic structure zone has shown that its formation might be due to rift mechanism of basin formation. Age estimation has been made for the previously unknown pre-historic earthquake whose epicentral area coincides with the western flank of the Arshan paleoseismogenic structure. Judging from previously determined ages of paleoearthquakes, the mean recurrence period for faulting events on the central Tunka fault is 2780-3440 years.

  20. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.

    1994-01-01

    The late Cenozoic volcanic and tectonic activity of the enigmatic West Antarctic rift system, the least understood of the great active continental rifts, has been suggested to be plume driven. In 1991-1992, as part of the CASERTZ (Corridor Aerogeophysics of the Southeast Ross Transect Zone) program, an ~25 000 km aeromagnetic survey over the ice-covered Byrd subglacial basin shows magnetic "texture' critical to interpretations of the underlying extended volcanic terrane. The aeromagnetic data reveal numerous semicircular anomalies ~100-1100 nT in amplitude, interpreted as having volcanic sources at the base of the ice sheet; they are concentrated along north-trending magnetic lineations interpreted as rift fabric. The CASERTZ aeromagnetic results, combined with >100 000 km of widely spaced aeromagnetic profiles, indicate at least 106 km3 of probable late Cenozoic volcanic rock (flood basalt?) in the West Antarctic rift beneath the ice sheet and Ross Ice Shelf. -from Authors

  1. Failure was not an option- the Mid-Continent Rift system succeeded

    NASA Astrophysics Data System (ADS)

    Merino, M.; Stein, C. A.; Stein, S. A.; Keller, G. R.; Flesch, L. M.; Jurdy, D. M.

    2013-12-01

    The 1.1 Ga Mid-Continent Rift (MCR) in North America is often viewed as a failed rift formed by isolated midplate volcanism and extension within the ~1.3-~0.98 Ga Grenville orogeny. An alternative view is suggested by analogy with younger and morphologically similar rift systems, whose plate tectonic settings are more easily understood because their surroundings - including seafloor with magnetic anomalies - have not been deformed or destroyed by subsequent collisions and rifting events. In this view, the MCR was part of a larger plate boundary rifting event that resulted in a successful episode of seafloor spreading. This view is motivated by various pieces of evidence. The MCR rifting looks much like rigid plate block motion, such as associated with the West Central African Rift systems formed during the Mesozoic breakup of Africa and South America and the ongoing rifting in the East African Rift region with seafloor spreading in the Gulf of Aden and the Red Sea. This view explains the affinities of the Grenville-age rocks in the central and southern Appalachians to Amazonia rather than Canadian Grenville-age Appalachian rocks. The MCR extends farther to the south than traditionally assumed along the East Continental Gravity High (a buried feature from Ohio to Alabama). This failed portion of the rift system connected to the rift successfully separating Laurentia and Amazonia. The seafloor spreading separating Amazonia from Laurentia may explain the former's relative motion toward Greenland and Baltica. This model is consistent with some of the ~1.1 Ga geological events in Amazonia. A change in the apparent polar wander path for Laurentia during the period of volcanism of the MCR could be attributed to this plate reconfiguration. The extensional phase on the MCR may have ended because motion was taken up by seafloor spreading between Laurentia and Amazonia rather ending due to another continental collision. Later reverse faulting on the MCR normal faults due to

  2. East Antarctic Rift Systems - key to understanding of Gondwana break-up

    NASA Astrophysics Data System (ADS)

    Golynsky, D. A.; Golynsky, A. V.

    2012-04-01

    The results of analysis of radio-echo sounding surveys, the RADARSAT satellite data, magnetic and gravity information give evidence that East Antarctica contains 13 riftogenic systems and/or large linear tectonic structures. Among known and suggested rifts of East Antarctica the Lambert rift has a pivotal position and it manifests oneself as symmetry axis. Six additional systems are revealed on both sides of it and any one of them possesses special features in geologic and geomorphologic aspects. In most cases they inherited the anisotropy of long-lived cratonic blocks. Riftogenic and/or large linear tectonic structures along the East Antarctica coastal regions are distributed with a steady regularity with average distance between them about 650 km. For six (7) structures from 13 (Lambert, Jutulstraumen-Pencksökket, Vestfjella, Mellor-Slessor (Bailey), Wilkes Basin, Gaussberg (?) and Rennick) there is a distinct spatial coupling with trough complexes of the Beacon Supergroup and their subsequent reactivation in Late Jurassic - Permian time when the East Gondwana started break-up. Rift system of the Lambert-Amery Glaciers and Prydz Bay is related to Mesozoic extension events and it inherited structures of Paleozoic grabens. The total length of the rift system exceeds 4000 km of the same scale as largest the World rift belts. The length of the western branch of the Lambert rift that includes the Mellor rift and graben-like structures of the Bailey and Slessor glaciers exceeds 2300 km. Results of radio-echo sounding investigation of the subglacial Aurora Basin allow to suggest that this large basin of sub-meridian extension is underlain by an extensive (> 1000 km) riftogenic structure that is running towards the Transantarctic Mountains where it forms a triple junction with the eastern branch of the Lambert rift and structures of the Wilkes Basin. It is hereby proposed that Aurora-Scott rift is formed by complex system of sub-parallel depressions divided by

  3. Rift to drift transition in Siberian Arctic and its impact on continental margin architecture

    NASA Astrophysics Data System (ADS)

    Drachev, S. S.

    2003-04-01

    The East Siberian Arctic Continental Margin (ESAM) represents a rare case of rifting to spreading transition. Present-day geodynamics of this plate tectonic interplay is characterized by a very slow plate divergence in the Laptev Sea as this regions is located just landward of the slowest spreading center worldwide (the Gakkel Ridge), close to the pole of North American/Eurasian plate rotation. However the existing geological and geophysical data, mainly seismic reflection and potential field data, allow conclusion that this situation has been far different in the past. Just after its formation at the end of Late Cretaceous through a series of plate convergence and folding episodes the crust of the ESAM has been strongly modified by an intense rifting. The earliest rift episode took place eastward of the present Laptev Sea, in the East Siberian Sea and probably Chukchi seas, where presently abandoned rifts are stretched landward along the principal weakened zones in the ESAM basement. This rifting might have been related to a spreading episode in the Amerasia Basin and perhaps was triggered by a mantle plume ca. 120 mln. yr. ago (De Long and Franz Joseph Land basalts). Outer parts of the ERAM might have also been rifted away to create marginal blocks, as the Arlis and Chukchi plateau. Second rift event was clearly related to the opening of the Eurasia Basin, preceding it and remaining active through the Cenozoic. The rift to drift transition has been taking place in a huge, “dry” and still active Laptev Rift System, which is a landward projection of the Gakkel Ridge spreading axis. This extension had a major effect on the western ERAM causing strong normal faulting and crustal thinning, up to 70% in some places. However, total crustal extension in the Laptev Rift System is considerably smaller than a value of total opening of the Eurasia Basin, so the spreading is not completely accommodated by the rifting. It may be speculated that a major portion of this

  4. A Numerical and Analogue Study of Dike Ascent in Asymmetric Continental Rift Zones

    NASA Astrophysics Data System (ADS)

    Schierjott, J.; Maccaferri, F.; Acocella, V.; Rivalta, E.

    2015-12-01

    In continental rift zones, tectonic extension generates deep topographic depressions, typically graben or half-graben structures, confined by large border faults. Volcanism may be distributed within, at the border and outside of the depressions, and the mechanisms controlling this distribution are debated. Recently, Maccaferri et al. (2014) proposed that the reorientation of the principal stresses linked to crustal thinning and overall crustal mass redistribution in rift zones modifies the expected trajectory of ascending magma pockets and plays a fundamental role in the distribution of volcanism at the surface. However, the model does not explain why volcanism is asymmetric in most continental rift zones. The goal of this study is to investigate the relation between the characteristic distribution of volcanism at the surface, the distribution and geometry of magma storage at depth, and the observed geometric asymmetry of the grabens at most rift zones. By using a boundary element model for dike propagation and analogue laboratory experiments we evaluate the ascent path of magmatic dikes in asymmetric continental rifts.We find that the position of the magma source along the cross section of the rift and its spatial extent and the asymmetry of the graben cross section are the most important factors controlling one-sided volcanic activity at surface. For dikes starting beneath the rift's center, the more asymmetric the rift structure the more likely is asymmetric volcanic activity. Dikes are deflected to the shallow rift side and no volcanism develops on the deep side or only focused in one spot. However, if the position of the magma ponding region is offset towards the deep side of the graben, the dikes tend to emerge on the rift shoulder adjacent to such deep side. To a minor extent, also the starting depth of the dikes, any topographic loading on the graben flanks due to flank uplift and the background tectonic stress impact the surface distribution of volcanism

  5. The Lithosphere of The East African Rift System: Insights From Three-Dimensional Density Modelling

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H. J.

    2004-12-01

    We use the gravity data that cover the large part of the Afro-Arabian rift system, the eastern branch (Ethiopia-Afar and northern Kenya), in order to produce a regional density model. In an earlier work the new and old gravity data were compiled, evaluated and homogenised using a consistent data reduction procedures. Three basic constraints widely spaced over a 1500 km rift length have been generated between 1969 and 2003 by an international consortium with information from isostatic models, global tomography, geological, geochemical evidences, and petrological and experimental results. These are integrated and applied to the model to constrain upper and lower crustal structures underneath the Rift and Plateau areas. New crustal thickness estimations (Dugda et al., 2004 in press) and inferences from recent velocity models along the axis of the Main Ethiopian Rift (Keller et al., 2004) are added to the density model. Thirty parallel planes cutting across the entire plateau region and Rift system (Afar-Ethiopia-Kenya) are interactively modelled using a starting geometry that invoke asthenospheric upwelling. Densities for the upper crust are calculated using Nafe Drake method, averaged from earlier interpretation and measured ones from the Geological Survey of Ethiopia database (e.g. Geothermal project, GSE petrophysical laboratory, pers. communication). Densities for lower crust are estimated using the approach by Sobolov and Babyko (1994). We used also lower crustal densities calculated by (Simyu and Keller, 1997) for the northern part of Kenya rift. The preliminary model offers a possibility to quantify depth, thickness and volumes of different geological interfaces and bodies. As for example, the estimation of the volume of volcanic constructs on the western plateau of Ethiopia is relatively larger than the eastern plateau. The load map derived from the model indicated maximum crustal loads at the crust/mantle interface (ca. 40km) on the eastern and western flanks

  6. The magmatic budget of Atlantic type rifted margins: is it related to inheritance?

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Tugend, Julia; Picazo, Suzanne; Müntener, Othmar

    2016-04-01

    In the past, Atlantic type rifted margins were either classified as volcanic or non-volcanic. An increasing number of high quality reflection and refraction seismic surveys and drill hole data show a divergent style of margin architecture and an evolution in which the quantity and distribution of syn-rift magmatism is variable, independently of the amount of extension. Overgeneralized classifications and models assuming simple relations between magmatic and extensional systems are thus inappropriate to describe the formation of rifted margins. More recent studies show that the magmatic evolution of rifted margins is complex and cannot be characterized based on the volume of observed magma alone. On the one hand, so-called "non-volcanic" margins are not necessarily amagmatic, as shown by the results of ODP drilling along the Iberia-Newfoundland rifted margins. On the other hand, magma-rich margins, such as the Norwegian, NW Australian or the Namibia rifted margins show evidence for hyper-extension prior to breakup. These observations suggest that the magmatic budget does not only depend on extension rates but also on the composition and temperature of the decompressing mantle. Moreover, the fact that the magmatic budget may change very abruptly along strike and across the margin is difficult to reconcile with the occurrence of plumes or other deep-seated large-scale mantle phenomena only. These overall observations result in questions on how magmatic and tectonic processes are interacting during rifting and lithospheric breakup and on how far inheritance may control the magmatic budget during rifting. In our presentation we will review results from the South and North Atlantic and the Alpine Tethys domain and will discuss the structural and magmatic evolution of so-called magma-rich and magma-poor rifted margins. In particular, we will try to define when, where and how much magma forms during rifting and lithospheric breakup. The key questions that we aim to address

  7. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  8. The Importance of Magmatic Fluids in Continental Rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Ebinger, C. J.; Lee, H.; Fischer, T. P.; Roecker, S. W.; Kianji, G.

    2015-12-01

    The breakup of strong continental lithosphere requires more than far-field tectonic forces. Growing evidence for early-stage cratonic rift zones points to the importance of heat, magma and volatile transfer in driving lithospheric strength reduction. The relative contributions of these processes are fundamental to our understanding of continental rifting. We present a synthesis of results from geological, geochemical and geophysical studies in one of the most seismically and volcanically active sectors of the East African Rift (Kenya-Tanzania border) to investigate the role of fluids during early-stage rifting (<10 Ma). Xenolith data indicate that rifting initiated in initially thick lithosphere. Diffuse soil CO2 flux maxima occur in the vicinity of faults, with carbon isotope values exhibiting a mantle-derived signature. These faults feed aligned sets of hydrothermal springs, which have N2-He-Ar relative abundances also indicating a mantle-derived source. Geochemical and surface faulting information are integrated with subsurface imaging and fault kinematic data derived from the 38-station CRAFTI broadband seismic array. Teleseismic and abundant local earthquakes enable assessment of the state-of-stress and b-values as a function of depth. High Vp/Vs ratios and tomographic imaging suggest the presence of fluids in the crust, with high pore fluid pressures driving failure at lower tectonic stress. Together, these cross-disciplinary data provide compelling evidence that early-stage rifting in East Africa is assisted by fluids exsolved from deep magma bodies, some of which are imaged in the lower crust. We assert that the flux of deep magmatic fluids during rift initiation plays a key role in weakening lithosphere and localizing strain. High surface gas fluxes, fault-fed hydrothermal springs and persistent seismicity highlight the East African Rift as the ideal natural laboratory for investigating fluid-driven faulting processes in extensional tectonic environments.

  9. Imaging continental breakup using teleseismic body waves: The Woodlark Rift, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Abers, Geoffrey A.; Gaherty, James B.; Jin, Ge

    2015-09-01

    This study images the upper mantle beneath the D'Entrecasteax Islands, Papua New Guinea, providing insight into mantle deformation beneath a highly rifted continent adjacent to propagating spreading centers. Differential travel times from P and S-wave teleseisms recorded during the 2010-2011 CDPapua passive seismic experiment are used to invert for separate VP and VS velocity models of the continental rift. A low-velocity structure marks the E-W axis of the rift, correlating with the thinnest crust, high heat flow, and a linear trend of volcanoes. This slow region extends 250 km along strike from the oceanic spreading centers, demonstrating significant mantle extension ahead of seafloor breakup. The rift remains narrow to depth indicating localization of extension, perhaps as a result of mantle hydration. A high-VP structure at depths of 90-120 km beneath the north of the array is more than 6.5% faster than the rift axis and contains well-located intermediate depth earthquakes. These independent observations place firm constraints on the lateral thermal contrast at depth between the rift axis and cold lithosphere to the north that may be related to recent subduction, although the polarity of subduction cannot be resolved. This geometry is gravitationally unstable; downwelling or small-scale convection could have facilitated rifting and rapid lithospheric removal, although this may require a wet mantle to be realistic on the required time scales. The high-V structure agrees with the maximum P,T conditions recorded by young ultra-high pressure rocks exposed on the rift axis and may be implicated in their genesis.

  10. Potential role of strain hardening in the cessation of rifting at constant tectonic force

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi; Stephenson, Randell

    2009-01-01

    In this study the cessation of rifting at constant tectonic force is discussed from the viewpoint of lithospheric rheology using a simple one-dimensional numerical model. The behaviour of the conventionally adopted constant force model re-examined in this study contradicts some general features in the development of sedimentary basins. Strain hardening is implemented to explain the contradictions, in which the viscosity of the mantle is a function of not only the strain rate and temperature but also the total strain. The roles of various strain hardening parameters in rifting dynamics are examined, including the strain required for the onset of hardening, the strain interval required for the completion of hardening and the factor controlling the increase in mantle viscosity. It is shown that a model with strain hardening can explain many characteristic features of sedimentary basin formation better than the conventional constant force model. There are a variety of ways in which rifting can be terminated by the strain hardening model, depending on the initial lithospheric structure, magnitude of tectonic force and the hardening process. One possible strain hardening mechanism involves the switch from wet to dry rheology associated with decompressional melting, though the implemented strain hardening formula could be generally applicable to any hardening phenomenon and could therefore be physically interpreted as such. The results of this study also provide important insights into sedimentary basin subsidence in relation to rifting dynamics. The end of an initial rapid ("syn-rift" like) subsidence phase is not necessarily equivalent to the end of actual rifting as in the constant force model. The transition from initial rapid subsidence to long-term, more subdued ("post-rift" like), subsidence is actually marked by the onset of deceleration of rifting. Since significant extension still continues for some time thereafter, the subsequent long-term subsidence includes

  11. Deformation during the 1975-1984 Krafla rifting crisis, NE Iceland, measured from historical optical imagery

    NASA Astrophysics Data System (ADS)

    Hollingsworth, James; Leprince, SéBastien; Ayoub, FrançOis; Avouac, Jean-Philippe

    2012-11-01

    We measure the displacement field resulting from the 1975-1984 Krafla rifting crisis, NE Iceland, using optical image correlation. Images are processed using the COSI-Corr software package. Surface extension is accommodated on normal faults and fissures which bound the rift zone, in response to dike injection at depth. Correlation of declassified KH-9 spy and SPOT5 satellite images reveals extension between 1977-2002 (2.5 m average opening over 80 km), while correlation of aerial photos between 1957-1990 provide measurements of the total extension (average 4.3 m opening over 80 km). Our results show ˜8 m of opening immediately north of Krafla caldera, decreasing to 3-4 m at the northern end of the rift. Correlation of aerial photos from 1957-1976 reveal a bi-modal pattern of opening along the rift during the early crisis, which may indicate either two different magma sources located at either end of the rift zone (a similar pattern of opening was observed in the 2005 Afar rift crisis in East Africa), or variations in rock strength along the rift. Our results provide new information on how past dike injection events accommodate long-term plate spreading, as well as providing more details on the Krafla rift crisis. This study also highlights the potential of optical image correlation using inexpensive declassified spy satellite and aerial photos to measure deformation of the Earth's surface going back many decades, thus providing a new tool for measuring Earth surface dynamics, e.g. glaciers, landsliding, coastal erosion, volcano monitoring and earthquake studies, when InSAR and GPS data are not available.

  12. Rifting to drifting transition of the Southwest Subbasin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Song, Taoran; Li, Chun-Feng

    2015-09-01

    Continental rupturing process and related dynamics on the onset of seafloor spreading remain poorly understood in the opening of the South China Sea. To constrain the timing and cause of major tectonic events, we focus on the rifting-to-drifting transition of the Southwest Subbasin, which has very wide extended continental margins. By carefully interpreting rifting structures and carbonate platforms and reefs, we distinguished two major unconformities, i.e., the breakup unconformity (BRU) and the mid-Miocene unconformity, in the two conjugate margins of the Southwest Subbasin. The age of the BRU in our study area is near the Oligocene/Miocene boundary (~23 Ma). Pre-stack depth migration of a recently acquired multichannel reflection seismic profile reveals complex structures and strong lateral velocity variations associated with a 3.5 km thick syn-rifting sequence developed right at the continent-ocean boundary (COB) of the Southwest Subbasin. This syn-rifting sequence is bounded landwards by a large seaward dipping fault, and tapers out seawards. An erosional truncation, which represents the mid-Miocene unconformity landwards but the older breakup unconformity on the seaward side, occurred at the top of this sequence. The overall transitional deformation style from the rifting to drifting suggests a successive episode of rifting, faulting, compression, tilting, and erosion at the COB during the crustal thinning and mantle upwelling. Localized thick syn-rifting deposition and early deposition beneath the BRU in the oceanic domain exist only at the seaward concave part of the COB, indicating discrete rifting and seafloor spreading prior to the buildup of a unified spreading center for the entire subbasin.

  13. Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling

    NASA Astrophysics Data System (ADS)

    Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.

    2007-08-01

    Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration

  14. Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjie; Chen, Yun; Yuan, Xiaohui; Tian, Xiaobo; Klemperer, Simon L.; Xu, Tao; Bai, Zhiming; Zhang, Hongshuang; Wu, Jing; Teng, Jiwen

    2013-10-01

    The Tibetan Plateau is undergoing north-south shortening accompanied by west-east extension, as evidenced by the widespread development of north-south trending normal faults, grabens and rifts. While the mode of the north-south shortening has been the main focus of most international studies, knowledge of the deep structure beneath South Tibet is required for understanding the mechanism of the west-east extension. The onset of the north-south trending normal faulting is commonly taken as an indicator that the Tibetan Plateau was uplifted to a near-maximum elevation before entering a collapsing stage. Here we report on the receiver functions of a seismological experiment across the northern segment of the Yadong-Gulu Rift (YGR), one of the youngest rifts in South Tibet. The migrated receiver function images reveal that the YGR is a high-angle normal fault characterized by a 5-km Moho rise from its western to eastern flank, together with distinct differences in the crustal structure and intracrustal seismic conversion patterns between the two flanks. This highly asymmetric lithospheric structure suggests whole-crustal extension controlled by a simple/general shear rifting mechanism. This simple/general shear rifting in the YGR is attributed to an eastward (horizontal) shear at the base of the upper crust, as evidenced by the observed Tibetan GPS velocity field and our observation of shear wave splitting discrepancy among the upper crust, lower crust and lithospheric mantle. We propose that in the YGR, simple shear rifting accommodates the northward injection of the Indian lithosphere, which may suggest that the onset of the north-south normal faulting does not indicate gravitational collapse of the Tibetan lithosphere.

  15. Structural evolution of the southern transfer zone of the Gulf of Suez rift, Egypt

    NASA Astrophysics Data System (ADS)

    Abd-Allah, Ali M. A.; Abdel Aal, Mohamed H.; El-Said, Mohamed M.; Abd El-Naby, Ahmed

    2014-08-01

    We present a detailed study about the initiation and reactivations of Zeit-El Tor transfer zone, south Gulf of Suez rift, and its structural setting and tectonic evolution with respect to the Cretaceous-Cenozoic tectonic movements in North Egyptian margin. NE trending zone of opposed-dipping faults (22 km wide) has transferred the NE and SW rotations of the sub-basins in central and south Gulf of Suez rift, respectively. The evolution of this zone started by reactivation of the NE oriented late Neoproterozoic fractures that controlled the occurrence of Dokhan Volcanics in the rift shoulders. Later, the Syrian Arc contraction reactivated these fractures by a sinistral transpression during the Late Cretaceous-Eocene time. N64°E extension of the Oligo-Miocene rift reactivated the NE fractures by a sinistral transtension. During this rifting, the NE trending faults forming the transfer zone were more active than the rift-bounding faults; the Upper Cretaceous reverse faults in the blocks lying between these NE trending faults were rotated; and drape-related reverse faults and the positive flower structures were formed. Tectonic inversion from contraction to extension controlled the distribution and thickness of the Upper Cretaceous-Miocene rocks.

  16. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    USGS Publications Warehouse

    Robbins, E.I.

    1983-01-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys. ?? 1983.

  17. Formation of the Shanxi Rift in North China: The control of preexisting lithospheric weakness

    NASA Astrophysics Data System (ADS)

    Lin, F.; Liu, M.; Ye, J.

    2012-12-01

    The Shanxi Rift is an active seismic zone in North China, developed mainly since Pliocene (~5 Ma). Its formation has been associated with the Indo-Asian collision; other hypothesized causes include a regional extensional stress field associated with subduction of the western pacific plate and mantle upwelling under the North China Plain. However, these mechanisms do not explain why the rift system did not form along the western boundary of the North China Plain, where lithospheric thickness changes sharply from more than 150 km under the Ordos block and the Taihangshan Mountains to the west, to less than 70 km under the North China Plain. We have used a viscoplastic finite element model to explore the conditions for localized rifting in North China. Our results show that, for all the hypothesized causes, the preferred site of rifting would be along the boundary zone of changing lithospheric thickness. The only way to initiate the Shanxi rift in its current location, which is between the Ordos block and the Taihangshan Mountains with thick lithosphere, is to have preexisting lithospheric weakening there. This lithospheric weakness was likely formed during the collision between the Easter North China block and the Western North China block during the Paleoproterozoic (~1.8 Ga). Hence the ancient tectonic event still controls the young continental rifting.

  18. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins

    NASA Astrophysics Data System (ADS)

    Sutra, Emilie; Manatschal, Gianreto; Mohn, Geoffroy; Unternehr, Patrick

    2013-08-01

    Many recent papers describe the structure of the Iberia and Newfoundland rifted margins; however, none of them propose kinematic restorations of the complete rift system to quantify the amount of extension necessary to exhume mantle and initiate seafloor spreading. In our study, we use two pairs of cross sections considered as conjugate lines: one across the Galicia Bank-Flemish Cap and the other across the Southern Iberia Abyssal Plain-Flemish Pass. Both transects have been imaged by reflection- and refraction-seismic methods and have been drilled during Ocean Drilling Program Legs 103, 149, 173, and 210. Drilling penetrated parts of the rift stratigraphy and the underlying basement. The cross sections can therefore be considered as the best-documented conjugate transects across present-day hyperextended, magma-poor rifted margins. The aim of this paper is threefold: (1) provide a detailed description of the crustal architecture of the two conjugate sections, (2) define the extensional structures and their ages, and (3) quantify the amount of strain and strain rate accommodated along these lines. This paper proposes a quantitative description of extension along the Iberia-Newfoundland rift system and discusses the limitations and problems in quantifying extensional deformation along hyperextended rifted margins.

  19. Rates of volcanic activity along the southwest rift zone of Mauna Loa volcano, Hawaii.

    USGS Publications Warehouse

    Lipman, P.W.

    1981-01-01

    Flow-by-flow mapping of the 65 km long subaerial part of the southwest rift zone and adjacent flanks of Mauna Loa Volcano, Hawaii, and about 50 new 14C dates on charcoal from beneath these flows permit estimates of rates of lava accumulation and volcanic growth over the past 10 000 years. The sequence of historic eruptions along the southwest rift zone, beginning in 1868, shows a general pattern of uprift migration and increasing eruptive volume, culminating in the great 1950 eruption. No event comparable to 1950, in terms of volume or vent length, is evident for at least the previous 1000 years. Rates of lava accumulation along the zone have been subequal to those of Kilauea Volcano during the historic period but they were much lower in late prehistoric time (unpubl. Kilauea data by R. T. Holcomb). Rates of surface covering and volcanic growth have been markedly asymmetric along Mauna Loa's southwest rift zone. Accumulation rates have been about half again as great on the northwest side of the rift zone in comparison with the southeast side. The difference apparently reflects a westward lateral shift of the rift zone of Mauna Loa away from Kilauea Volcano, which may have acted as a barrier to symmetrical growth of the rift zone. -Author

  20. 3-D magnetotelluric image of offshore magmatism at the Walvis Ridge and rift basin

    NASA Astrophysics Data System (ADS)

    Jegen, Marion; Avdeeva, Anna; Berndt, Christian; Franz, Gesa; Heincke, Björn; Hölz, Sebastian; Neska, Anne; Marti, Anna; Planert, Lars; Chen, J.; Kopp, Heidrun; Baba, Kiyoshi; Ritter, Oliver; Weckmann, Ute; Meqbel, Naser; Behrmann, Jan

    2016-06-01

    The Namibian continental margin marks the starting point of the Tristan da Cunha hotspot trail, the Walvis Ridge. This section of the volcanic southwestern African margin is therefore ideal to study the interaction of hotspot volcanism and rifting, which occurred in the late Jurassic/early Cretaceous. Offshore magnetotelluric data image electromagnetically the landfall of Walvis Ridge. Two large-scale high resistivity anomalies in the 3-D resistivity model indicate old magmatic intrusions related to hot-spot volcanism and rifting. The large-scale resistivity anomalies correlate with seismically identified lower crustal high velocity anomalies attributed to magmatic underplating along 2-D offshore seismic profiles. One of the high resistivity anomalies (above 500 Ωm) has three arms of approximately 100 km width and 300 km to 400 km length at 120° angles in the lower crust. One of the arms stretches underneath Walvis Ridge. The shape is suggestive of crustal extension due to local uplift. It might indicate the location where the hot-spot impinged on the crust prior to rifting. A second, smaller anomaly of 50 km width underneath the continent ocean boundary may be attributed to magma ascent during rifting. We attribute a low resistivity anomaly east of the continent ocean boundary and south of Walvis Ridge to the presence of a rift basin that formed prior to the rifting.

  1. The Kinematic Puzzle of the Gulf of California Rift system

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2007-05-01

    Extensive recent studies of the Gulf of California greatly advanced our understanding of the kinematics of this Pacific-North America plate boundary rift and its crustal structure. However, some kinematic discrepancies that need to be resolved, particularly for the time interval 12-6 Ma, after subduction had stopped but possibly before major opening began in the northern Gulf basins. Correlation of pyroclastic flow deposits across the Upper Delfin Basin segment (Oskin et al., 2001 and subsequent papers) indicates that virtually all of the opening between the coastlines in this segment (from San Felipe/Puertecitos in Baja California to the W side of Tiburon Island) occurred since ~6.1 Ma producing ~250 km of opening of the marine basin. This implies that the crust in the basin should have been brought into the region since ca. 6 Ma, perhaps by production of new igneous crust or remobilization of continental crust to fill the ~250-km gap. The total amount of post-6 Ma opening in the rift, including the onland deformation, is consistent with expected Pacific-North America displacement determined from the global plate circuit since 6 Ma, and it is also consistent with the slip history of the southern San Andreas fault. A smaller amount of motion (tens of kms) can be identified geologically post-12.5 Ma and pre-6 Ma. However, this is not sufficient to match the plate circuit results, which seem to require several hundred more km of Pacific-North America plate motion at this latitude between 12 Ma and 6 Ma. This motion has to have been located elsewhere, not between the modern marine basin boundaries. The Pliocene basin history of the Gulf has varied from place to place, as the loci of extension moved around in the rift system Similar variations in late Miocene time could explain this discrepancy, with abandoned extensional or strike-slip fault systems elsewhere, perhaps in the Sonoran coastal plain. However, further geological and geophysical work is needed to

  2. A 4D Analogue Modeling Study Assessing the Effects of Transtension and Inherited Structures on Rift Interaction

    NASA Astrophysics Data System (ADS)

    Zwaan, F.; Schreurs, G.; Naliboff, J.; Buiter, S. J.

    2015-12-01

    The interaction of individual rift segments determines the evolution of a rift system and subsequent continental break-up. Inherited heterogeneities control where initial rifts will form and since these are often not properly aligned, rift segments form separately and need to interact. Another important factor affecting rift-segment interaction is the obliquity of plate divergence (transtension), which also promotes eventual continent break-up (Brune et al., 2012). Both analogue and numerical techniques have been used to model rift interaction (e.g. Acocella et al., 1999; Allken et al., 2012) but transtension has never been applied. Here we present a first-order analogue study that elaborates upon earlier studies by assessing the effects of (1) transtension, (2) rift offset and (3) presence and geometry of inherited weak zones that link rift segments. An improved analogue set-up allows more freedom in inherited structure geometry and model analysis with X-Ray Computer Tomography (CT) techniques reveals internal structures with time (Fig. 2 and 3). Our experiments yield the following conclusions: Increasing the degree of transtension (decreasing angle α in Fig. 1) controls general rift structures: from wide rifts in orthogonal divergence settings to narrower rifts with oblique internal structures under transtensional conditions to narrow strike-slip dominated systems towards the strike-slip domain; Rift linkage through transfer zones (hard linkage) is generally promoted by 1) decreasing rift offset and 2) increasing the degree of transtension. However, initial rift linkage might involve relay ramps (soft linkage) due to the interplay of divergence direction and rift offset; Inherited rift-linking weak zones have little effect on rift interaction unless they are oriented ca. perpendicular to the divergence direction; Since the orthogonal divergence models resemble natural examples (Fig. 3), our transtension models might predict what structures can be expected in

  3. The Corinth Rift Laboratory (CRL) strainmeters: calibration and data analysis

    NASA Astrophysics Data System (ADS)

    Canitano, A.; Bernard, P.; Linde, A. T.; Sacks, S. I.; Boudin, F.

    2010-12-01

    The Gulf of Corinth (Greece) is one of the most seismic regions in Europe, producing some strong earthquakes in the decades, 1 to 1.5 cm/yr of north-south extension, and frequent seismic swarms. This structure is a 110 km long, N110E oriented graben bounded by systems of very recent normal faults. The Corinth Rift Laboratory (CRL) project is concentrated in the western part of the rift, around the city of Aigion, where instrumental seismicity and strain rate is highest. The CRL Network is made up about fifteen seismic stations as well as tiltmeters, strainmeters or GPS in order to study the local seismicity, and to observe and model the short and long term mechanics of the normal fault system. The instrumental seismicity in the Aigion zone clearly shows a strong concentration of small earthquakes between 5 and 10 km. In order to study slow transient deformation,two borehole strainmeters have been installed in the area (Trizonia, Monasteraki). We focus here on the one installed in the Trizonia island, which is continuously recording the horizontal strain at 150 m depth with a short term resolution better than 10-9. The dominant signal is the earth and sea tidal effects (few 10-7 strain), this one is modulated by the mechanical effects of the free oscillations of the Gulf with periods between 8 and 40 min. The barometric pressure fluctuations acts in combination with the mean sea level variation at longer periods and both effects are not independant. The comparison between the strain data and the two forcing signals exhibits a non zero phase delay of the sea-level which is increasing with period. We estimate a transfer function after few correlation iterations for each forcing signal but the physical interpretation of the sea-level function is still unclear. As the strainmeter is at 150 m depth, below the shoreline, a sea water percolation on land would increase the effect of sea level fluctuation, and be more efficient at longer periods. The dilatometer response to

  4. The development of the Midcontinent Rift in the context of rapid paleogeographic change

    NASA Astrophysics Data System (ADS)

    Swanson-Hysell, N.; Vaughn, A. A.; Mustain, M. R.; Feinberg, J. M.

    2012-12-01

    Despite being active for >20 million years and resulting in the thinning of pre-rift crust by a factor of 3 or more, the 1.1 Ga Midcontinent Rift failed to dismember the Laurentian craton. This failure resulted in the preservation of a thick record of rift-related volcanic and sedimentary rocks that give geoscientists a powerful window into the development of this ancient rift. Most models for the development of the Midcontinent Rift attribute its origin to the upwelling and decompression melting of a mantle plume. On the basis of the great volume of generated magma and interpretation of geochemical data, it is argued that the early stage plateau flood basalts of the rift (~1110-1105 Ma) and the main stage volcanics that erupted into the central basin (~1100-1095 Ma) were both dominated by plume-sourced melts. However, this model needs to be reconciled with paleomagnetic data from rift volcanics that reveal a significant decrease in inclination between the early and main stage volcanics. New data we have developed from 90+ flows of the early stage Osler Volcanic Group bolster evidence from the succession at Mamainse Point that this change in inclination is the result of fast equatorward plate motion during the early stage and into the main stage of rift volcanism. Even with >20° of latitudinal motion from the time of initial volcanism to eruption of the thick main stage volcanics, magmatism was largely confined to the same geographic region in a relatively narrow central basin. If a long-lived plume was in a fixed position relative to Earth's spin axis, the large relative motion of Laurentia would make it unable to continue to be a source of melt to the rift. Two possible explanations to reconcile a plume-contribution in the main stage with this latitudinal change are: (1) That the active contribution from an underlying plume was limited to the early stage of volcanism, but substantial volume of material accreted to the lithosphere that was subsequently sampled

  5. Metasomatism and the Weakening of Cratons: A Mechanism to Rift Cratons

    NASA Astrophysics Data System (ADS)

    Wenker, Stefanie; Beaumont, Christopher

    2016-04-01

    The preservation of cratons is a demonstration of their strength and resistance to deformation. However, several cratons are rifting now (e.g. Tanzania and North China Craton) or have rifted in the past (e.g. North Atlantic Craton). To explain this paradox, we suggest that widespread metasomatism of the originally cold depleted dehydrated craton mantle lithosphere root can act as a potential weakening mechanism. This process, particularly melt metasomatism, increases root density through a melt-peridotite reaction, and reduces root viscosity by increasing the temperature and rehydrating the cratonic mantle lithosphere. Using 2D numerical models, we model silicate-melt metasomatism and rehydration of cold cratonic mantle lithosphere that is positioned beside standard Phanerozoic lithosphere. The models are designed to investigate when a craton is sufficiently weakened to undergo rifting and is no longer protected by the initially weaker adjacent standard Phanerozoic lithosphere. Melt is added to specified layers in the cratonic mantle lithosphere at a uniform volumetric rate determined by the duration of metasomatism (3 Myr, 10 Myr or 30 Myr), until a total of ~30% by volume of melt has been added. During melt addition heat and mass are properly conserved and the density and volume increase by the respective amounts required by the reaction with the peridotite. No extensional boundary conditions are applied to the models during the metasomatism process. As expected, significant refertilization leads to removal and thinning of progressively more gravitationally unstable cratonic mantle lithosphere. We show that the duration of metasomatism dictates the final temperature in the cratonic upper mantle lithosphere. Consequently, when extensional boundary conditions are applied in our rifting tests in most cases the Phanerozoic lithosphere rifts. The craton rifts only in the models with the hottest cratonic upper mantle lithosphere. Our results indicate rifting of cratons

  6. The role of discrete intrabasement shear zones during multiphase continental rifting

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas B.; Jackson, Christopher A.-L.; Bell, Rebecca E.; Duffy, Oliver B.; Fossen, Haakon

    2016-04-01

    Rift systems form within areas of relatively weak, heterogeneous lithosphere, containing a range of pre-existing structures imparted from previous tectonic events. The extent to which these structures may reactivate during later rift phases, and therefore affect the geometry and evolution of superposed rift systems, is poorly understood. The greatest obstacle to understanding how intrabasement structures influence the overlying rift is obtaining detailed constraints on the origin and 3D geometry of structures within crystalline basement. Such structures are often deeply buried beneath rift systems and therefore rarely sampled directly. In addition, due to relatively low internal acoustic impedance contrasts and large burial depths, crystalline basement typically appears acoustically transparent on seismic reflection data showing no resolvable internal structure. However, offshore SW Norway, beneath the Egersund Basin, intrabasement structures are exceptionally well-imaged due to large impedance contrasts within a highly heterogeneous and shallow basement. We use borehole-constrained 2D and 3D seismic reflection data to constrain the 3D geometry of these intrabasement reflections, and examine their interactions with the overlying rift system. Two types of intrabasement structure are observed: (i) thin (c. 100 m) reflections displaying a characteristic trough-peak-trough wavetrain; and (ii) thick (c. 1 km), sub-parallel reflection packages dipping at c. 30°. Through 1D waveform modelling we show that these reflection patterns arise from a layered sequence as opposed to a single interface. Integrating this with our seismic mapping we correlate these structures to the established onshore geology; specifically layered mylonites associated with the Caledonian thrust belt and cross-cutting extensional Devonian shear zones. We observe multiple phases of reactivation along these structures throughout multiple rift events, in addition to a range of interactions with

  7. Volcanic and Structural History of the NE Rift Zone of Tenerife, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Carracedo, J.; Guillou, H.; Badiola, E. R.; Torrado, F. P.; Troll, V.; Delcamp, A.; Paris, R.; Gonzalez, A. R.

    2008-12-01

    The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence on the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka), separated by longer periods of quiescence or reduced activity: A Miocene stage (7203+/-155ka), apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710+/-58ka) and the latest stage, with the main eruptive phase, in the Pleistocene. Detailed geological (GIS) mapping, geomagnetic reversal mapping and stratigraphic correlation, and radioisotopic (K/Ar) dating of volcanic formations allowed the reconstruction of the latest period of rift activity. In the early phases of this stage the majority of the eruptions grouped tightly along the axis of the rift and show reverse polarity (corresponding to the Matuyama). Dykes are of normal and reverse polarities. In the final phase of activity, eruptions are more disperse and lavas and dykes are consistently of normal polarity (Brunhes). Volcanic units of normal polarity crossed by dykes of normal and reverse polarities yield ages apparently compatible with normal events (M-B Precursor and Jaramillo) in the Upper Matuyama epoch. Three lateral collapses successively mass-wasted the rift: The Micheque collapse, completely concealed by subsequent nested volcanism, and the Güímar and La Orotava collapses, that are only partially filled. Pre- collapse and nested volcanism is predominantly basaltic, except in the Micheque collapse, where magmas evolved towards intermediate and felsic (trachytic) compositions. Rifts in the Canary Islands are long-lasting, recurrent features, probably related to primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their

  8. Melt Distribution in the Ethiopian Rift System: Constraints From Seismic Observations and Finite-Frequency Modelling

    NASA Astrophysics Data System (ADS)

    Angus, D.; Hammond, J. O.; Kendall, J.; Wookey, J.

    2008-12-01

    As part of the Ethiopian Afar Geoscientific Lithospheric Experiment (EAGLE) 79 seismic stations were deployed, for up to 18 months, in the Main Ethiopian Rift (MER). Many indicators of melt were observed leading to the idea that magma was driving the rifting process in this region. Some of the best evidence for melt came from observations of anisotropy in studies of surface waves and shear-wave splitting. The shear- wave splitting shows fast directions which change abruptly from being rift parallel on the rift flanks to magmatic-segment parallel in the rift valley. This was interpreted in terms of melt-induced anisotropy. The abrupt change in splitting parameters over small lateral distances suggests that the source of anisotropy is shallow. To further constrain the location of the anisotropy and study the ability of shear-wave splitting to identify sharp lateral changes in anisotropy, we model finite-frequency waveforms for a suite of model representations of the rift zone. This allows us to determine the lateral and vertical extent of the melt-induced anisotropy. The results show how a simple model with two regimes of anisotropy can explain the variability across the rift, in both delay time and shear-wave polarization, over short length scales of the order 20- 40 km. Our models have enabled us to constrain the anisotropic characteristics beneath the MER. Our best model has a 9% anisotropy on the western rift margin, with fast directions of 30°, a 100 km wide rift zone with fast direction of 20° inside the rift zone and with 9% anisotropy close to the western margin, 7% elsewhere, and 7% anisotropy on the eastern margin with fast directions of 30°. In all regions of the model we constrain anisotropy to begin at a depth of 90 km. The depth of anisotropy co-incides with the proposed depth of melt initiation beneath the region, based on geochemistry. Also the elevated splitting beneath the western margin supports evidence of low velocities and highly conductive

  9. The Role of Rift Obliquity in Formation of the Gulf of California

    NASA Astrophysics Data System (ADS)

    Bennett, Scott Edmund Kelsey

    The Gulf of California illustrates how highly oblique rift geometries, where transform faults are kinematically linked to large-offset normal faults in adjacent pull-apart basins, enhance the ability of continental lithosphere to rupture and, ultimately, hasten the formation of new oceanic basins. The Gulf of California rift has accommodated oblique divergence of the Pacific and North America tectonic plates in northwestern Mexico since Miocene time. Due to its infancy, the rifted margins of the Gulf of California preserve a rare onshore record of early continental break-up processes from which to investigate the role of rift obliquity in strain localization. Using new high-precision paleomagnetic vectors from tectonically stable sites in north-central Baja California, I compile a paleomagnetic transect of Miocene ignimbrites across northern Baja California and Sonora that reveals the timing and distribution of dextral shear associated with inception of this oblique rift. I integrate detailed geologic mapping, basin analysis, and geochronology of pre-rift and syn-rift volcanic units to determine the timing of fault activity on Isla Tiburon, a proximal onshore exposure of the rifted North America margin, adjacent to the axis of the Gulf of California. The onset of strike-slip faulting on Isla Tiburon, ca. 8 - 7 Ma, was synchronous with the onset of transform faulting along a significant length of the nascent plate boundary within the rift. This tectonic transition coincides with a clockwise azimuthal shift in Pacific-North America relative motion that increased rift obliquity. I constrain the earliest marine conditions on southwest Isla Tiburon to ca. 6.4 - 6.0 Ma, coincident with a regional latest Miocene marine incursion in the northern proto-Gulf of California. This event likely flooded a narrow, incipient topographic depression along a ˜650 km-long portion of the latest Miocene plate boundary and corresponds in time and space with formation of a newly

  10. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Smets, Benoît

    2015-04-01

    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  11. The Thinning of the lithosphere before Magmatic Spreading is Established at the Western End of the Cocos-Nazca Rift

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Schouten, H.

    2015-12-01

    The transition from rifting of oceanic lithosphere to full magmatic spreading is examined at the Galapagos triple junction (GTJ) where the tip of the Cocos-Nazca spreading center (called C-N Rift) is propagating westward and breaking apart 0.5 Ma lithosphere formed at the East Pacific Rise near 2 15'N. Bathymetric mapping of the western section of the C-N Rift is limited, but sufficient to obtain a first-order understanding of how seafloor spreading is established. An initial rifting stage is followed by rifting with magma supply and lastly, full magmatic spreading is established. The flexural rotation of normal faults that border the rift basins is used to document thinning of the effective elastic thickness of the lithosphere before magmatic spreading begins. The earliest faults show small outward rotation (1-5 degrees) for their offset suggesting that they cut thick lithosphere. Subsequent faults closer to the axis have larger outward rotations (up to 35-40 degrees) with larger offset indicating that the lithosphere was much thinner at the time of faulting and that low-angle detachment faults are forming. It is during late stage rifting and prior to full magmatic spreading that detachment faults such as the Intrarift ridge along Hess Deep rift are observed. Studies of low-angle detachment faulting during continental breakup at the Woodlark Basin suggest that their formation signals the input of magma beneath the rift. If this also is the case at the C-N Rift then magma is being supplied beneath Hess Deep rift. The axis of the segment immediately east of Hess Deep rift is characterized by a shallow graben with small seamounts scattered along it, typical of segments farther to the east, and we infer that full magmatic seafloor spreading has been established here. Our results provide new information on the formation of divergent boundaries in oceanic lithosphere, and place constraints on the supply of magma to a newly developing plate boundary.

  12. Block rotations in the Rio Grande Rift, New Mexico

    NASA Technical Reports Server (NTRS)

    Brown, L. L.; Golombek, M. P.

    1986-01-01

    Paleomagnetic data from 13 sites of intrusive and extrusive rocks associated with the Oligocene Espinaso Formation around the Ortiz mountains, New Mexico, indicate mean magnetic directions of I = 42.1 deg and D = 337.8 deg, with a corresponding pole position of 67.9 deg N latitude and 142.3 deg E longitude. From comparison with the expected Oligocene direction, 17.8 + or - 11.3 deg of counterclockwise rotation is found, and the similar rotations for Oligocene and Pliocene age rocks suggests that motion has occurred in the past 5 m.y. Data support the previously suggested diamond-shaped crustal block extending from the San Luis basin southward to the Albuquerque basin bounded by well-defined recently active fault zones. The size of the block, the counterclockwise nature of rotation and the timing of motion are supported by geologic and structural data. The counterclockwise rotation of the block has resulted in uplift at the acute ends of the block and subsidence at the obtuse ends, and the driving mechanism may be left slip along the rift.

  13. Block rotations in the Rio Grande Rift, New Mexico

    SciTech Connect

    Brown, L.L.; Golombek, M.P.

    1986-06-01

    Paleomagnetic data from 13 sites of intrusive and extrusive rocks associated with the Oligocene Espinaso Formation around the Ortiz mountains, New Mexico, indicate mean magnetic directions of I = 42.1 deg and D = 337.8 deg, with a corresponding pole position of 67.9 deg N latitude and 142.3 deg E longitude. From comparison with the expected Oligocene direction, 17.8 + or - 11.3 deg of counterclockwise rotation is found, and the similar rotations for Oligocene and Pliocene age rocks suggests that motion has occurred in the past 5 m.y. Data support the previously suggested diamond-shaped crustal block extending from the San Luis basin southward to the Albuquerque basin bounded by well-defined recently active fault zones. The size of the block, the counterclockwise nature of rotation and the timing of motion are supported by geologic and structural data. The counterclockwise rotation of the block has resulted in uplift at the acute ends of the block and subsidence at the obtuse ends, and the driving mechanism may be left slip along the rift. 47 references.

  14. The North Galactic Pole Rift and the Local Hot Bubble

    NASA Astrophysics Data System (ADS)

    Snowden, S. L.; Koutroumpa, D.; Kuntz, K. D.; Lallement, R.; Puspitarini, L.

    2015-06-01

    The North Galactic Pole Rift (NGPR) is one of the few distinct neutral hydrogen clouds at high Galactic latitudes that have well-defined distances. It is located at the edge of the Local Cavity (LC) and provides an important test case for understanding the Local Hot Bubble (LHB), the presumed location for the hot diffuse plasma responsible for much of the observed 1/4 keV emission originating in the solar neighborhood. Using data from the ROSAT All-Sky Survey and the Planck reddening map, we find the path length within the LC (LHB plus Complex of Local Interstellar Clouds) to be 98 ± 27 pc, in excellent agreement with the distance to the NGPR of 98 ± 6 pc. In addition, we examine another 14 directions that are distributed over the sky where the LC wall is apparently optically thick at 1/4 keV. We find that the data in these directions are also consistent with the LHB model and a uniform emissivity plasma filling most of the LC.

  15. A lithospheric investigation of the Southern Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Averill, Matthew George

    2007-12-01

    The crustal structure of the Rio Grande Rift is an important link to the understanding of mantle, crustal and surface processes associated with continental rift environments. We present a model for the crustal velocity structure of the rift derived from the analysis of seismic refraction/wide-angle reflection data acquired during the Potrillo Volcanic Field (PVF) experiment in May 2003. The 205 km long profile, consisting of 8 shots and 793 receivers across southern New Mexico and Far West Texas, was designed as a detailed seismic investigation of the structure and composition of the Southern Rio Grande Rift (SRGR) and the Potrillo Volcanic field, a very recent and well-known xenolith locale. Our results provide several new insights into the structure of the SRGR, including: (1) A new detailed cross-section of the basins and range structure across southern New Mexico into Far West Texas; (2) evidence for slightly thicker crust (˜30--31 km) in the SRGR than previously modeled with little overall topography on the Moho; (3) a highly complex upper-crustal velocity structure underlying the PVF, that includes several high velocity bodies between 5 and 10 km depth; (4) increased seismic reflectivity within the crust and at the Moho interface concentrated below the PVF and; (5) a dramatic step in a mid-crustal interface from west to east indicating a thickening of the mid-crust below the PVF. Interpretation of our velocity results is complimented by use gravity modeling, magnetic and heat flow data and xenolith studies. Furthermore, the resolution of our model has been analyzed using a new approach to determine velocity uncertainty in tomographic modeling. Along the profile, the velocity structure of the upper 3--5 km reflects the basins and ranges of this recently extended area. Basin fill ranges in velocity from 2.5 to 4.5 km/s. In the ranges, velocities are 4.7 to 5.3 km/s and reflect uplifted Paleozoic sedimentary rock. A middle crust interface marks the transition

  16. Persistence of Rift Valley fever virus in East Africa

    NASA Astrophysics Data System (ADS)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.

    2012-04-01

    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  17. Middle Stone Age starch acquisition in the Niassa Rift, Mozambique

    NASA Astrophysics Data System (ADS)

    Mercader, Julio; Bennett, Tim; Raja, Mussa

    2008-09-01

    The quest for direct lines of evidence for Paleolithic plant consumption during the African Middle Stone Age has led scientists to study residues and use-wear on flaked stone tools. Past work has established lithic function through multiple lines of evidence and the spatial breakdown of use-wear and microscopic traces on tool surfaces. This paper focuses on the quantitative analysis of starch assemblages and the botanical identification of grains from flake and core tools to learn about human ecology of carbohydrate use around the Niassa woodlands, in the Mozambican Rift. The processing of starchy plant parts is deduced from the occurrence of starch assemblages that presumably got attached to stone tool surfaces by actions associated with extractive or culinary activities. Specifically, we investigate starch grains from stone tools recently excavated in northern Mozambique at the site of Mikuyu; which presumably spans the middle to late Pleistocene and represents similar sites found along the Malawi/Niassa corridor that links East, Southern, and Central Africa. Starch was extracted and processed with a diverse tool kit consisting of scrapers, cores, points, flakes, and other kinds of tools. The microbotanical data suggests consumption of seeds, legumes, caryopses, piths, underground storage organs, nuts, and mesocarps from more than a dozen families. Our data suggest a great antiquity for starch use in Africa as well as an expanded diet and intensification.

  18. An Assembly Model of Rift Valley Fever Virus

    PubMed Central

    Rusu, Mirabela; Bonneau, Richard; Holbrook, Michael R.; Watowich, Stanley J.; Birmanns, Stefan; Wriggers, Willy; Freiberg, Alexander N.

    2012-01-01

    Rift Valley fever virus (RVFV) is a bunyavirus endemic to Africa and the Arabian Peninsula that infects humans and livestock. The virus encodes two glycoproteins, Gn and Gc, which represent the major structural antigens and are responsible for host cell receptor binding and fusion. Both glycoproteins are organized on the virus surface as cylindrical hollow spikes that cluster into distinct capsomers with the overall assembly exhibiting an icosahedral symmetry. Currently, no experimental three-dimensional structure for any entire bunyavirus glycoprotein is available. Using fold recognition, we generated molecular models for both RVFV glycoproteins and found significant structural matches between the RVFV Gn protein and the influenza virus hemagglutinin protein and a separate match between RVFV Gc protein and Sindbis virus envelope protein E1. Using these models, the potential interaction and arrangement of both glycoproteins in the RVFV particle was analyzed, by modeling their placement within the cryo-electron microscopy density map of RVFV. We identified four possible arrangements of the glycoproteins in the virion envelope. Each assembly model proposes that the ectodomain of Gn forms the majority of the protruding capsomer and that Gc is involved in formation of the capsomer base. Furthermore, Gc is suggested to facilitate intercapsomer connections. The proposed arrangement of the two glycoproteins on the RVFV surface is similar to that described for the alphavirus E1-E2 proteins. Our models will provide guidance to better understand the assembly process of phleboviruses and such structural studies can also contribute to the design of targeted antivirals. PMID:22837754

  19. Rift Valley Fever Virus Infection in Golden Syrian Hamsters

    PubMed Central

    Scharton, Dionna; Van Wettere, Arnaud J.; Bailey, Kevin W.; Vest, Zachary; Westover, Jonna B.; Siddharthan, Venkatraman; Gowen, Brian B.

    2015-01-01

    Rift Valley fever virus (RVFV) is a formidable pathogen that causes severe disease and abortion in a variety of livestock species and a range of disease in humans that includes hemorrhagic fever, fulminant hepatitis, encephalitis and blindness. The natural transmission cycle involves mosquito vectors, but exposure can also occur through contact with infected fluids and tissues. The lack of approved antiviral therapies and vaccines for human use underlies the importance of small animal models for proof-of-concept efficacy studies. Several mouse and rat models of RVFV infection have been well characterized and provide useful systems for the study of certain aspects of pathogenesis, as well as antiviral drug and vaccine development. However, certain host-directed therapeutics may not act on mouse or rat pathways. Here, we describe the natural history of disease in golden Syrian hamsters challenged subcutaneously with the pathogenic ZH501 strain of RVFV. Peracute disease resulted in rapid lethality within 2 to 3 days of RVFV challenge. High titer viremia and substantial viral loads were observed in most tissues examined; however, histopathology and immunostaining for RVFV antigen were largely restricted to the liver. Acute hepatocellular necrosis associated with a strong presence of viral antigen in the hepatocytes indicates that fulminant hepatitis is the likely cause of mortality. Further studies to assess the susceptibility and disease progression following respiratory route exposure are warranted. The use of the hamsters to model RVFV infection is suitable for early stage antiviral drug and vaccine development studies. PMID:25607955

  20. Probable rift origin of Canada Basin, Arctic Ocean

    USGS Publications Warehouse

    Tailleur, Irvin L.

    1973-01-01

    Formation of the Canada basin by post-Triassic rifting seems the most workable and logical hypothesis on the basis of available information. Speculated counterclockwise rotation of the Alaska-Chukchi continental edge best rationalizes the complex geology of northern Alaska, whereas the assumption that a single continental block was present before the Jurassic makes the best palinspastic fit for Arctic America. The Arctic Ocean is the focus of present-day spreading and probably was the focus of earlier stages of spreading in which spread of the Canada basin would have been an initial stage. Spread of the Canada basin is probable if the Atlantic formed by sea-floor spreading, because analogies between the Arctic and Atlantic edges indicate a common origin for the ocean basins. Late Cretaceous and younger deflections of the Cordillera in the Arctic and diabasic emplacements in the northern Arctic Islands may reflect later stages of spreading. Pre-Mesozoic plate tectonism may be represented by the widespread Proterozoic diabasic emplacements in the Canadian Arctic and by the Franklinian-lnnuitian tract, where the volcanogenic rocks and deformation resulted not from a classical eugeosyncline-miogeosyncline couple, but from the junction of a mid-Paleozoic continental edge and another plate on closure of a pre-Arctic Ocean.

  1. Probable rift origin of the Canada basin, Arctic Ocean

    USGS Publications Warehouse

    Tailleur, Irvin L.

    1973-01-01

    Formation of the Canada basin by post-Triassic rifting seems the most workable and logical hypothesis with information available. Speculated counterclockwise rotation of the Alaska-Chukchi continental edge best rationalizes the complex geology of northern Alaska, whereas a single continental block before the Jurassic makes the best palinspastic fit for Arctic America. The Arctic Ocean is the focus of present-day spreading and probably was the focus of earlier stages of spreading in which spread of the Canada basin would be an initial stage. If the Atlantic formed by seafloor spreading, spread of the Canada basin is probable because analogies between the Arctic and Atlantic edges indicate a common origin for the ocean basins. Late Cretaceous and younger deflections of the Cordillera in the Arctic and diabasic emplacements in the northern Arctic Islands may reflect later stages of spreading. Pre-Mesozoic plate tectonism may be represented by the widespread Proterozoic diabasic emplacements in the Canadian Arctic and by the Franklinian-Innuitian tract where the volcanogenic rocks and deformation resulted not from a classical eugeosyncline-miogeosyncline couple but from the junction of a mid-Paleozoic continental edge and another plate on closure of a pre-Arctic Ocean.