Science.gov

Sample records for rift system final

  1. Discussion on final rifting evolution and breakup : insights from the Mid Norwegian - North East Greenland rifted system

    NASA Astrophysics Data System (ADS)

    Peron-Pinvidic, Gwenn; Terje Osmundsen, Per

    2016-04-01

    In terms of rifted margin studies, the characteristics of the distal and outer domains are among the today's most debated questions. The architecture and composition of deep margins are rarely well constrained and hence little understood. Except from in a handful number of cases (eg. Iberia-Newfoundland, Southern Australia, Red Sea), basement samples are not available to decipher between the various interpretations allowed by geophysical models. No consensus has been reached on the basement composition, tectonic structures, sedimentary geometries or magmatic content. The result is that non-unique end-member interpretations and models are still proposed in the literature. So, although these domains mark the connection between continents and oceans, and thus correspond to unique stages in the Earth's lithospheric life cycle, their spatial and temporal evolution are still unresolved. The Norwegian-Greenland Sea rift system represents an exceptional laboratory to work on questions related to rifting, rifted margin formation and sedimentary basin evolution. It has been extensively studied for decades by both the academic and the industry communities. The proven and expected oil and gas potentials led to the methodical acquisition of world-class geophysical datasets, which permit the detailed research and thorough testing of concepts at local and regional scales. This contribution is issued from a three years project funded by ExxonMobil aiming at better understanding the crustal-scale nature and evolution of the Norwegian-Greenland Sea. The idea was to take advantage of the data availability on this specific rift system to investigate further the full crustal conjugate scale history of rifting, confronting the various available datasets. In this contribution, we will review the possible structural and sedimentary geometries of the distal margin, and their connection to the oceanic domain. We will discuss the definition of 'breakup' and introduce a first order conceptual

  2. The East African rift system

    NASA Astrophysics Data System (ADS)

    Chorowicz, Jean

    2005-10-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate zones of thinned continental lithosphere related to asthenospheric intrusions in the upper mantle. This hidden part of the rift structure is expressed on the surface by thermal uplift of the rift shoulders. The graben valleys and basins are organized over a major failure in the lithospheric mantle, and in the crust comprise a major border fault, linked in depth to a low angle detachment fault, inducing asymmetric roll-over pattern, eventually accompanied by smaller normal faulting and tilted blocks. Considering the kinematics, divergent movements caused the continent to split along lines of preexisting lithospheric weaknesses marked by ancient tectonic patterns that focus the extensional strain. The hypothesis favored here is SE-ward relative divergent drifting of a not yet well individualized Somalian plate, a model in agreement with the existence of NW-striking transform and transfer zones. The East African rift system comprises a unique succession of graben basins linked and segmented by intracontinental transform, transfer and accommodation zones. In an attempt to make a point on the rift system evolution through time and space, it is clear that the role of plume impacts is determinant. The main phenomenon is formation of domes related to plume effect, weakening the lithosphere and, long after, failure inducing focused upper mantle thinning, asthenospheric intrusion and related thermal uplift of shoulders. The plume that had formed first at around 30 Ma was not in the Afar but likely in Lake Tana region (Ethiopia

  3. Cenozoic rifting in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. S.; Stock, J. M.; Clayton, R. W.; Davey, F. J.

    2007-12-01

    The West Antarctic Rift System (WARS) experienced two episodes of Cenozoic rifting. Seafloor spreading at the Adare spreading axis, north of the Ross Sea, from Middle Eocene to Late Oligocene time (43 - 26 Ma), was directly linked with motions within the WARS. For this time interval, marine magnetic anomalies within the Adare Basin and structural features within the Ross Sea constrain the motion between East and West Antarctica. During this episode, widespread intrusive activity took place in the continental part of the rift. Subsequent Late Oligocene until present-day (26 - 0 Ma) extension was characterized by a transition to volcanic activity. Yet, the details of extension during this episode have been poorly resolved. We present preliminary results of new seismic reflection and seafloor mapping data acquired on geophysical cruise 07-01 aboard the R/VIB Nathaniel Palmer in the northern part of the rift. Our results suggest that the style of deformation changed from spreading-related faulting into diffuse normal faulting (tilted blocks) that trend NE-SW with little resultant E-W extension. Recent volcanism is distributed throughout but tends to align with the NE-SW trend, into a localized zone. Formation of the Terror Rift, Ross Sea, within the same time frame suggests that the pole of rotation has changed its position, reflecting a change in the relative magnitudes of tensile stresses along the rift. Moreover, this change was accompanied with a sharp decrease of extension rates.

  4. The role of inheritance in structuring hyperextended rift systems

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Lavier, Luc; Chenin, Pauline

    2015-04-01

    -related mantle processes may control the rheology of the mantle, the magmatic budget, the thermal structure and the localization of final rifting Conversely, the deformation in hyperextended domains is strongly controlled by weak hydrated minerals (e.g. clay, serpentinite) that result form the breakdown of feldspar and olivine due to fluid and reaction assisted deformation and is consequently not inherited but the result of rift induced processes. These key observations show that both inheritance and rift-induced processes play a significant role in the development of magma-poor rift systems and that the role of inheritance may change as the physical conditions vary during the evolving rifting and as rift-induced processes (serpentinization; magma) become more important. Thus, it is not only important to determine the "genetic code" of a rift system, but also to understand how it interacts and evolves during rifting. Understand how far these new ideas and concepts derived from the southern North Atlantic and Alpine Tethys can be translated to other less explored hyperextended rift systems will be one of the challenges of the future research in rifted margins.

  5. Intracontinental rift comparisons: Baikal and Rio Grande Rift Systems

    NASA Astrophysics Data System (ADS)

    Lipman, P. W.; Logatchev, N. A.; Zorin, Y. A.; Chapman, C. E.; Kovalenko, V.; Morgan, P.

    Both the Baikal rift in Siberia and the Rio Grande rift in New Mexico, Colorado and Texas are major intracontinental extensional structures of Cenozoic age that affect regions about 1500 km long and several hundred km wide (Figures 1, 2). In the summer of 1988 these rifts were visited by study groups of U.S. and Soviet geoscientists during cooperative field workshops sponsored by the Soviet Academy of Sciences, U.S. National Academy of Sciences, and U.S. Geological Survey.In the Rio Grande region, we spent 2 weeks examining rift features between El Paso, Tex., and Denver, Colo. Particular emphasis was on the sedimentary record of rift evolution, widespread volcanic activity from inception of rifting to the present, geophysical expression of rift features, and relations between rifting and the larger-scale evolution of the North American Cordillera. In the Baikal region, which presents formidable logistic problems for a workshop, we travelled by bus, truck, helicopter, and ship to examine young seismotectonic features, rift-related basalt, and bounding structures of the Siberian craton that influenced rift development (Figure 3).

  6. Numerical modeling of continental rifting: Implications for the East African Rift system

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Burov, Evgueni; Calais, Eric; Leroy, Sylvie; Gerya, Taras; Guillou-Frottier, Laurent; Cloetingh, Sierd

    2016-04-01

    The East African Rift system (EARS) provides a unique system with juxtaposition of two contrasting yet simultaneously formed rift branches, the eastern, magma-rich, and the western, magma-poor, on either side of the old thick Tanzanian craton embedded into younger lithosphere. Here we take advantage of the improvements in our understanding of deep structures, geological evolution and recent kinematics, together with new cutting edge numerical modeling techniques to design a three-dimensional ultra-high resolution viscous plastic thermo-mechanical numerical model that accounts for thermo-rheological structure of the lithosphere and hence captures the essential geophysical features of the central EARS. Based on our experiments, we show that in case of the mantle plume seeded slightly to the northeast of the craton center, the ascending plume material is deflected by the cratonic keel and preferentially channeled along the eastern side of the craton, leading to formation of a large rift zone characterized by important magmatic activity with substantial amounts of melts derived from mantle plume material. This model is in good agreement with the observations in the EARS, as it reproduces the magmatic eastern branch and at the same time, anticlockwise rotation of the craton. However, this experiment does not reproduce the observed strain localization along the western margin of the cratonic bloc. To explain the formation of contrasting magmatic and amagmatic rift branches initiating simultaneously on either side of a non-deforming block as observed in the central EARS, we experimentally explored several scenarios of which three can be retained as specifically pertaining to the EARS: (1) The most trivial first scenario assumes rheologically weak vertical interface simulating the suture zone observed in the geological structure along the western border of the craton; (2) The second scenario involves a second smaller plume initially shifted in SW direction; (3) Finally, a

  7. The Offshore East African Rift System

    NASA Astrophysics Data System (ADS)

    Franke, D.; Klimke, J.; Jokat, W.; Stollhofen, H.; Mahanjane, S.

    2014-12-01

    Numerous studies have addressed various aspects of the East African Rift system but surprisingly few on the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. The most prominent article has been published almost 30 years ago by Mougenot et al. (1986) and is based on vintage seismic data. Several studies investigating earthquakes and plate motions from GPS measurements reveal recent deformation along the offshore branch of the East African Rift system. Slip vectors from earthquakes data in Mozambique's offshore basins show a consistent NE direction. Fault plane solutions reveal ~ E-W extensional failure with focal depth clustering around 19 km and 40 km, respectively. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The modern rift system obviously reactivates structures from the disintegration of eastern Gondwana. During the Jurassic/Cretaceous opening of the Somali and Mozambique Basins, Madagascar moved southwards along a major shear zone, to its present position. Since the Miocene, parts of the shear zone became reactivated and structurally overprinted by the East African rift system. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of recent extensional deformation. Bathymetry data shows that it deepens northwards, with approximately 700 m downthrown on the eastern shoulder. The graben can be subdivided into four subbasins by crosscutting structural lineaments with a NW-SE trend. Together with the N-S striking graben-bounding faults, this resembles a conjugate fault system. In seismic reflection data normal faulting is distinct not only at the earthquake epicenters. The faults cut through the sedimentary successions and typically reach the seafloor, indicating ongoing recent deformation. Reference: Mougenot, D., Recq, M., Virlogeux, P., and Lepvrier, C., 1986, Seaward extension of the East

  8. The Albertine Rift, East Africa: Initial rifting, long-term landscape evolution and final surface uplift

    NASA Astrophysics Data System (ADS)

    Bauer, Friederike U.; Glasmacher, Ulrich A.; Ring, Uwe; Grobe, René W.; Starz, Matthias; Mambo, Vikandy S.

    2013-04-01

    The Albertine Rift and associated Rwenzori Mountains form a striking feature at the north-western portion of the East African Rift System. The Rwenzori Mtns are built up by a dissected Precambrian metamorphic basement block that has been uplifted to heights of more than 5 km. The fundamental subject addressed by this study is the temporal and spatial evolution of the Rwenzori Mtns and adjacent Albertine Rift (western Uganda and Eastern Congo) at different time scales. In order to unlock how and at what time the extreme surface uplift occurred, low-temperature thermochronology methods were applied and combined with thermokinematic modelling. By means of apatite fission-track, apatite and zircon (U-Th-Sm)/He dating, combined with 2D (HeFTy) and 3D (Pecube) thermokinematic modelling different phases of landscape evolution could be determined for the Albertine area, where movements of surface uplift can be traced from Palaeozoic to Neogene times. Since the Palaeozoic several cooling events affected the Albertine area and Rwenzori Mtns, as revealed from samples along the rift shoulders and across the mountain range. Results from low-temperature thermochronology and thermokinematic modelling demonstrate that the Rwenzoris were not exhumed as a coherent block but are composed of distinct decoupled blocks with diverging exhumation histories and block movements along inherited faults. Thus, the evolution of the Rwenzoris was not solely triggered by Neogene rifting; moreover, a Mesozoic topographic Albertine high is conceivable. Since the Miocene renewed rock and surface uplift of distinct blocks with forced movements at the western flank of the Rwenzoris occurred. Rock uplift, thereby, outweighed erosion, resulting in the recent high topography of the Rwenzoris and their asymmetric character. Detrital thermochronology data confirm a Neogene surface uplift and indicate transition of erosional forces in Plio-/Pleistocene times. Thermokinematic modelling, applied to samples

  9. Along-rift Variations in Deformation and Magmatism in the Ethiopian and Afar Rift Systems

    NASA Astrophysics Data System (ADS)

    Keir, D.; Bastow, I. D.; Corti, G.; Mazzarini, F.; Rooney, T. O.

    2015-12-01

    The geological record at rifts and margins worldwide often reveals along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Ethiopian and Afar Rift systems provide an excellent opportunity to address this since it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of distribution and style of volcanism and faulting along strike in the MER and Afar. We also incorporate synthesis of geophysical, geochemical, and petrological constraints on magma generation and emplacement in order to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rift. Along-rift changes in extension by magma intrusion and plate stretching, and the three-dimensional focusing of melt where the rift dramatically narrows each influence igneous intrusion, volcanism and subsidence history. In addition, rift obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  10. 3D Dynamics of Oblique Rift Systems: Fault Evolution from Rift to Break-up

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2014-12-01

    Rift evolution and passive margin formation has been thoroughly investigated using conceptual and numerical models in two dimensions. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, the majority of rift systems that lead to continental break-up during the last 150 My involved moderate to high rift obliquity. Yet, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Even though the model setup is very simple (horizontally layered, no inherited faults), its evolution exhibits a variety of fault orientations that are solely caused by the interaction of far-field stresses with rift-intrinsic buoyancy and strength. Depending on rift obliquity, these orientations involve rift-parallel, extension-orthogonal, and intermediate normal fault directions as well as strike-slip faults. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Model results are in very good agreement with inferences from the well-studied Gulf of Aden and provide testable predictions for other rifts and passive margins worldwide.

  11. Heat flow in the Keweenawan rift system

    NASA Astrophysics Data System (ADS)

    Perry, C.; Mareschal, J.; Jaupart, C. P.

    2012-12-01

    The emplacement of large volumes of mafic volcanic rocks during the Keweenawan rifting has modified the average crustal composition and affects the present steady state heat flux in the region. We have combined new heat flux measurements in the Superior Province of the Canadian Shield and previously published data to characterize the heat flux field around the Keweenawan rift system. For the Nipigon embayment, North of lake Superior in Ontario, mafic intrusions associated with the Keweenawan rifting have resulted in an increase in the volume of mafic rocks in the crust and caused a very small <3mW m-2 decrease in the mean heat flux. There is a very marked decrease in the heat flux (Δ Q ≈ 20mW m-2) beneath the western half of Lake Superior and to the west. The very low values of the surface heat flux (≈ 22mW m-2 correlate with the maximum Bouguer gravity anomaly. The heat flux at the base of the crust in the Canadian Shield has been determined from surface heat flux, heat production, and crustal stucture to be ≈ 15 mW m-2. In the Keweenawan rift, the surface heat flux is only a few mW m-2 higher than the mantle heat flux, which implies that the contribution of the entire crustal column to the surface heat flux is small and that the crust is exclusively made up of depleted mafic volcanic rocks. In the eastern part and northeast of Lake Superior, there is a marked increase in heat flux that correlates with a lower Bouguer anomaly. Local high heat flux anomalies due to intrusions by felsic rocks are superposed with a long wavelength trend of higher heat flow suggesting a more felsic crustal composition in the eastern part of the Keweenawan rift. Simple models suggest that such a thick dense volcanic pile as accumulated in the Keweenawan rift is almost invariably unstable and that very particular conditions were required for it to stabilize in the crust.

  12. Proterozoic Midcontinent Rift System, an overview

    SciTech Connect

    Kerr, S.D.; Landon, S.M.

    1992-01-01

    The Middle and Late Proterozoic Midcontinent Rift System (MRS) extends across the middle US, from Lake Superior through Wisconsin, Minnesota, Iowa and Nebraska into Kansas on the southwest limb and across upper and lower Michigan on the southeast limb. Exploration for oil and gas generated over 7,000 miles of seismic, a leasehold of near seven million acres, but only three test wells. The initial extension of the MRS was marked by filling with layered basalt. Thickness documented by GLIMPCE suggests crustal separation was nearly achieved. The thick dense basalts and thinned pre-rift crust provide high amplitude gravity anomalies which characterize the rift trend. Extension slowed and eventually ceased, creating a sag phase during which clastic sediments were deposited, including sapropelic shale and siltstone, fluvial sandstones and siltstones, and fluvial/alluvial conglomerates. Tectonic inversion to compressional and transpressional forces occurred late in rift history, possibly during part of the period of clastic fill. The MRS trend is highly segmented, with varied tectonic styles, suggesting complex stress systems in its development. The Nonesuch Formation is marine or lacustrine siltstone and shale containing sufficient organic matter to be an effective source rock for oil and gas. Similar facies have been identified along the extent of the western limb, in the subsurface in Minnesota, Iowa and Kansas. TOC values are as high as 3% and maturity ranges from peak oil to advanced. Surface seeps, fluid inclusions, mud log shows and modeling indicate the potential for multiple episodes of generation. Potential reservoir rocks have been identified and seals are present as lacustrine and fluvial shales and possible evaporites. The MRS remains a relatively unexplored frontier hydrocarbon province with giant field potential in the heart of North America.

  13. The offshore East African Rift System: Structural framework at the toe of a juvenile rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Estevão. Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2015-10-01

    The Cenozoic East African Rift System (EARS) extends from the Red Sea to Mozambique. Here we use seismic reflection and bathymetric data to investigate the tectonic evolution of the offshore branch of the EARS. The data indicate multiple and time transgressive neotectonic deformations along ~800 km of the continental margin of northern Mozambique. We observe a transition from a mature rift basin in the north to a juvenile fault zone in the south. The respective timing of deformation is derived from detailed seismic stratigraphy. In the north, a ~30 km wide and more than 150 km long, N-S striking symmetric graben initiated as half-graben in the late Miocene. Extension accelerated in the Pliocene, causing a continuous conjugate border fault and symmetric rift graben. Coevally, the rift started to propagate southward, which resulted in a present-day ~30 km wide half-graben, approximately 200 km farther south. Since the Pleistocene, the rift has continued to propagate another ~300 km, where the incipient rift is reflected by subrecent small-scale normal faulting. Estimates of the overall brittle extension of the matured rift range between 5 and 12 km, with an along-strike southward decrease of the extension rate. The offshore portion of the EARS evolves magma poor, similar to the onshore western branch. The structural evolution of the offshore EARS is suggested to be related to and controlled by differing inherited lithospheric fabrics. Preexisting fabrics may not only guide and focus extension but also control rift architecture.

  14. The mesoproterozoic midcontinent rift system, Lake Superior region, USA

    USGS Publications Warehouse

    Ojakangas, R.W.; Morey, G.B.; Green, J.C.

    2001-01-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ??? 1109-1087 Ma, the age span of the most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance. ?? 2001 Elsevier Science B.V. All rights reserved.

  15. The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA

    NASA Astrophysics Data System (ADS)

    Ojakangas, R. W.; Morey, G. B.; Green, J. C.

    2001-06-01

    Exposures in the Lake Superior region, and associated geophysical evidence, show that a 2000 km-long rift system developed within the North American craton ∽1109-1087 Ma, the age span of most of the volcanic rocks. This system is characterized by immense volumes of mafic igneous rocks, mostly subaerial plateau basalts, generated in two major pulses largely by a hot mantle plume. A new ocean basin was nearly formed before rifting ceased, perhaps due to the remote effect of the Grenville continental collision to the east. Broad sagging/subsidence, combined with a system of axial half-grabens separated along the length of the rift by accommodation zones, provided conditions for the accumulation of as much as 20 km of volcanic rocks and as much as 10 km of post-rift clastic sediments, both along the rift axis and in basins flanking a central, post-volcanic horst. Pre-rift mature, quartzose sandstones imply little or no uplift prior to the onset of rift volcanism. Early post-rift red-bed sediments consist almost entirely of intrabasinally derived volcanic sediment deposited in alluvial fan to fluvial settings; the exception is one gray to black carbon-bearing lacustrine(?) unit. This early sedimentation phase was followed by broad crustal sagging and deposition of progressively more mature red-bed, fluvial sediments with an extra-basinal provenance.

  16. Final Rifting and Continental Breakup in the South China Sea

    NASA Astrophysics Data System (ADS)

    Franke, D.; Savva, D.; Pubellier, M. F.; Steuer, S.; Mouly, B.; Auxietre, J. L.; Meresse, F.; Chamot-Rooke, N. R. A.

    2014-12-01

    The magma-poor or intermediate magmatic South China Sea basin shows a triangular shape with a SW pointing apex, which manifests a preceding propagating rift. The earliest phase of rifting started in the Early Paleocene when a Mesozoic convergent margin changed to extension. After about 30 Myrs of rifting, breakup in the major eastern subbasin of the SCS occurred in the Early Oligocene and subsequent breakup of the southwest subbasin took place in the Late Oligocene. Seismic reflection data imaging conjugate crustal sections result in a conceptual model for rift-evolution at conjugate margins in time and space. Distinct are regular undulations in the crust-mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the oceanic domain we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. Largely symmetric structures result from the initial rifting stage. At the future breakup position either of the rift basin bounding faults subsequently penetrates the entire crust, resulting in asymmetry at this location. However, asymmetric deformation which is controlled by large scale detachment faulting is confined to narrow areas and does not result in a margin-wide simple-shear model. Rather considerable along-margin variations are suggested resulting in alternating "upper and lower plate" margins.

  17. Mid-Continent rift system - a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1983-08-01

    Geophysical evidence in the Mid-Continent has led to delineation of a rift system active during the Proterozoic Y Era. The Mid-Continent rift system can be traced by the Mid-Continent gravity high and corresponding aeromagnetic anomaly signature from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. The aeromagnetic anomaly signature of the rift trend discloses where these sediments have been preserved. Thick accumulations of upper Proterozoic sediments are indicated by both upward continuation of the aeromagnetic profiles across the rift trend and gravity models which incorporate: 1) a deep mafic body to create the narrow gravity high, 2) anomalously thick crust to account for the more regional gravity low, and 3) sedimentary accumulations on the Precambrian surface to explain the small-scale notches which occur within the narrow gravity high. Reflection seismic data are virtually unknown in the rift area; however, data recently acquired by COCORP across the southern end of the feature in Kansas provide evidence of thick stratified sequences in the rift valley. Studies of the East African rift have revealed that the tropical rift valley is an exceptionally fertile environment for deposition and preservation of kerogenous material. The Sirte, Suez, Viking, Dnieper-Donetz, and Tsaidam basins are just a few of the rift basins currently classed as giant producers. The existence of a rift basin trend with thick accumulations of preserved sediments, demonstrably organic rich, introduces the northern Mid-Continent US as a new frontier for hydrocarbon exploration.

  18. Geophysical studies of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.; Lemasurier, W. E.; Cooper, A. K.; Tessensohn, F.; TréHu, A.; Damaske, D.

    1991-12-01

    The West Antarctic rift system extends over a 3000 × 750 km, largely ice covered area from the Ross Sea to the base of the Antarctic Peninsula, comparable in area to the Basin and Range and the East African rift system. A spectacular rift shoulder scarp along which peaks reach 4-5 km maximum elevation marks one flank and extends from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. The rift shoulder has maximum present physiographic relief of 5 km in the Ross Embayment and 7 km in the Ellsworth Mountains-Byrd Subglacial Basin area. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been interpreted as rising since about 60 Ma, at episodic rates of ˜1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100 m/m.y. The rift system is characterized by bimodal alkaline volcanic rocks ranging from at least Oligocene to the present. These are exposed asymmetrically along the rift flanks and at the south end of the Antarctic Peninsula. The trend of the Jurassic tholeiites (Ferrar dolerites, Kirkpatric basalts) marking the Jurassic Transantarctic rift is coincident with exposures of the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed continuously (including the Dufek intrusion) along the lower- elevation (1-2 km) section of Transantarctic Mountains to the Weddell Sea. Widely spaced aeromagnetic profiles in West Antarctica indicate the absence of Cenozoic volcanic rocks in the ice covered part of the Whitmore-Ellsworth-Mountain block and suggest their widespread occurrence beneath the western part of the ice sheet overlying the Byrd Subglacial Basin. A German Federal Institute for Geosciences and Natural Resources (BGR)-U.S. Geological Survey (USGS) aeromagnetic

  19. Gravity study of the Central African Rift system: A model of continental disruption 1. The Ngaoundere and Abu Gabra Rifts

    NASA Astrophysics Data System (ADS)

    Browne, S. E.; Fairhead, J. D.

    1983-05-01

    A regional compilation of published and unpublished gravity data for Central Africa is presented and reveals the presence of a major rift system, called here, the Central African Rift System. It is proposed that the junction area between the Ngaoundere and Abu Gabra rift arms in Western Sudan forms an incipient intraplate, triple-junction with the as yet unfractured, but domally uplifted and volcanically active, Darfur swell. It is only the Darfur swell that shows any similarities to the uplift and rift history of East Africa. The other two rifts arms are considered to be structurally similar to the early stages of passive margin development and thus reflect more closely the initial processes of continental fragmentation than the structures associated with rifting in East Africa.

  20. Geophysical glimpses into the Ferrigno Rift at the northwestern tip of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Bingham, Robert; Ferraccioli, Fausto

    2014-05-01

    The West Antarctic Rift System (WARS) forms one of the largest continental rift systems on Earth. The WARS is of major significance as it forms the lithospheric cradle for the marine-based and potentially unstable West Antarctic Ice Sheet (WAIS). Seismic refraction, reflection, aeromagnetic, gravity and drilling in the Ross Sea have revealed most of what we know about its structure, tectonic and magmatic patterns and sedimentary basins. Aerogeophysical research and passive seismic networks have considerably extended our knowledge of the WARS and its influence on the overlying WAIS in the Siple Coast and Amundsen Sea Embayment (ASE) regions. The Bellingshausen Sea Embayment region has however remained largely unexplored, and hence the possible extent of the WARS in this sector has remained poorly constrained. Here we use a combination of reconnaissance ground-based and airborne radar observations, airborne gravity, satellite gravity and aeromagnetic data to investigate the WARS in the Bellingshausen Sea Embayment, in the area of the Ferrigno Ice Stream (Bingham et al., 2012, Nature). This region is of high significance, as it one of the main sectors of the WAIS that is currently exhibiting rapid ice loss, thought to be driven primarily by oceanic warming. Assessing geological controls on subice topography and ice dynamics is therefore of prime importance in this part of the WAIS. Ground-based and airborne radar image a subglacial basin beneath the Ferrigno Ice Stream that is up to 1.5 kilometres deep and that connects the ice-sheet interior to the Bellingshausen Sea margin. We interpret this basin as a narrow, glacially overdeepened rift basin that formed at the northwestern tip of the WARS. Satellite gravity data cannot resolve such a narrow rift basin but indicate that the crust beneath the region is likely thinned, lending support to the hypothesis that this area is indeed part of the WARS. Widely-spaced aeromagnetic data image a linear low along the inferred

  1. The Midcontinent rift system in Kansas

    SciTech Connect

    Berendsen, P. . Kansas Geological Survey)

    1993-03-01

    A sequence of rift-related mafic volcanic rocks, volcanoclastic-, and clastic sedimentary rocks are recognized in cuttings and cores from about seventy wells in Kansas. The age (1,097.5 Ma) for gabbro in the Poersch [number sign]1 well in northern Kansas, as well as the general petrographic characteristics of the sedimentary rocks throughout the area favors a correlation with established Keweenawan stratigraphy in the Lake Superior region. Rift-related northeast-trending faults and older northwest-trending faults divide the area up into a number of orthogonal fault blocks or basins. Depending upon the tectonic history of the individual basin all or part of the Keweenawan section may be preserved. It is believed that large amounts of Keweenawan clastic sedimentary rock were eroded from the nemaha uplift east of the central graben of the rift and transported in an easterly direction. Prior to deposition of Paleozoic rocks the area was peneplaned. Correlation of various stratigraphic units over any distance is complicated by tectonic activity occurring at several times during the Precambrian and Paleozoic. Stratabound or stratiform deposits can occur both in the Precambrian as well as the overlying Paleozoic rocks. The possibility of massive sulfides to occur in the mafic intrusive rocks must not be excluded. In the core from the Poersch [number sign]1 well sulfides are recognized in gabbroic sills or dikes. Dark, fissile shale, similar to the Nonesuch Shale in the [number sign]1--4 Finn well averages 0.75% organic carbon. Thermal maturation within the rift probably ranges from within the oil window to over maturity.

  2. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and

  3. Rifting, Volcanism, and the Geochemical Character of the Mantle Beneath the West Antarctic Rift System (Invited)

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Aviado, K. B.; Rilling-Hall, S.; Bryce, J. G.; Cabato, J.

    2013-12-01

    The West Antarctic Rift System (WARS) is one of the largest extensional alkali volcanic provinces on Earth, but the mechanisms responsible for generating the massive amounts of its associated magmatism remain controversial. The failure of both passive and active decompression melting models to adequately explain the observed lava volumes has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. 40Ar/39Ar dating and geochemical analyses of the lavas, as well as volatile and trace-element determinations of olivine-hosted melt inclusions shed light on the relationship between rifting and volcanism, and also improve our understanding of the geochemical character of the mantle beneath the WARS. Results show that the magmatism post-dates the main phase of extension along the Terror Rift within the WARS, which supports a decompression-melting model without the benefit of a significant thermal anomaly. However, the observed large magma volumes seem to require a volatile-fluxed mantle, a notion supported by a long history of subduction (>500 Myr) along the paleo-Pacific margin of Gondwana. In fact, the legacy of that subduction may manifest itself in the high H2O concentrations of olivine-hosted melt inclusions (up to 3 wt% in preliminary results from ion probe measurements). The major oxide compositions of lavas in the WARS are best matched to experimental melts of garnet pyroxenite and carbonated peridotite sources. The Pb and Nd isotopic systems are decoupled from each other, suggesting removal of fluid-mobile elements from the mantle source possibly during the long history of subduction along this Gondwana margin. Extremely unradiogenic 187Os/188Os ranging to as low as 0.1081 × 0.0001 hints at the involvement of lithospheric components in generation of magmas in the WARS.

  4. Innovative tephra studies in the East African Rift System

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Hart, William K.; Heiken, Grant

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective, size-independent term used for any material ejected during an explosive volcanic eruption.The East African Rift System has become a magnet for paleoanthropological research ever since the discovery of the first hominids at Olduvai Gorge, in Tanzania, in the 1950s [Leakey et al., 1961]. Currently, numerous multidisciplinary scientific teams from academic institutions in the United States and Western Europe make annual pilgrimages for a couple of months to conduct paleoanthropological field research in the fossil-rich sedimentary deposits of the East African Rift System in Ethiopia, Kenya, and Tanzania. The field expedition consists of geological, paleontological, archaeological, and paleoenvironmental investigations.

  5. The onshore northeast Brazilian rift basins: An early Neocomian aborted rift system

    SciTech Connect

    Matos, R. )

    1990-05-01

    Early Cretaceous rift basins of northeastern Brazil illustrate key three-dimensional geometries of intracontinental rift systems, controlled mainly by the basement structures. These basins were formed and then abandoned during the early extension associated with the north-south-propagating separation of South America and Africa. During the early Neocomian, extensional deformation jumped from the easternmost basins (group 1: Sergipe Alagoas and Gabon basins; group 2: Reconcavo, Tucano, and Jatoba basins) to the west, forming a series of northeast-trending intracratonic basins (group 3: Araripe, Rio do Peixe, Iguatu, Malhada Vermelha, Lima Campos, and Potiguar basins). The intracratonic basins of groups 2 and 3 consist of asymmetric half-grabens separated by basement highs, transfer faults, and/or accommodation zones. These basins are typically a few tens of kilometers wide and trend northeast-southwest, roughly perpendicular to the main extension direction during the early Neocomian. Preexisting upper crustal weakness zones, like the dominantly northeast-southwest-trending shear zones of the Brazilian orogeny, controlled the development of intracrustal listric normal faults. Internal transverse structures such as transfer faults (Reconcavo basin and onshore Potiguar basin) and accommodation zones (onshore Potiguar basin and Araripe basin) were also controlled by the local basement structural framework. Transverse megafaults and lithostructural associations controlled the three main rift trends. The megashear zones of Pernanbuco (Brazil)-Ngaundere (Africa) apparently behaved like a huge accommodation zone, balancing extensional deformation along the Reconcavo-Jatoba/Sergipe Alagoas-Gabon trends with simultaneous extension along the Araripe-Potiguar trend. The Sergipe Alagoas-Gabon trend and the Potiguar basin represent the site of continued evolution into a marginal open basin following early Neocomian deformation.

  6. Unraveling the Interaction Between Mantle Processes and the Tectono-Sedimentary Evolution During Final Rifting Based on the Study of Remnants of the Alpine Tethys Rifted Margins Exposed in the Alps

    NASA Astrophysics Data System (ADS)

    Mohn, G.; Masini, E.; Manatschal, G.; Muntener, O.; Kusznir, N.

    2007-12-01

    The tectonic, sedimentary and isostatic evolution of distal rifted margins are poorly constrained and the available data from present-day magma-poor rifted margins, such as the Iberia-Newfoundland or the Southern Atlantic margins suggest that its evolution is complex and very different from that of proximal margins. In contrast to present-day rifted margins, where rift structures are covered by sediments and are at abyssal depth, remnants of ancient margins preserved in collisional orogens bear, if not overprinted by later deformation, important information on the stratigraphic, tectonic and mantle evolution during rifting. This is particularly true for the Adriatic and parts of the European margins exposed in the Alps in Central Europe. From these margins remnants of the first oceanic crust, the subcontinental mantle, from lower crustal rocks, detachment systems, remnants of the distal and proximal margins and the stratigraphic record of rifting, including pre-, syn- and post-rift sediments are preserved. A paleogeographic reconstruction of all these structures including the associated stratigraphy and the underlying basement represents a unique opportunity to study the relations between shallow crustal and mantle processes during rifting. Previous studies suggested that the margins in the Alps resulted from a complex poly-phase evolution that initiated with distributed stretching (220 to 190 Ma), continued with localized thinning (around 180 Ma) and terminated with exhumation of mantle rocks and first MOR-type magmatism (at 160 Ma). Thus, rifting leading to breakup and opening of the Alpine Tethys was shown to be the result of strain localization and to include a transition from decoupled to coupled deformation in which detachment faulting played an important role. How crustal thinning is linked in detail with strain localization, uplift of distal domains and melt infiltration in the rising mantle during crustal thinning is, however, not yet understood. We will

  7. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  8. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  9. Crust and Mantle Structure of a Closed Rift System from the Superior Province Rifting Earthscope Experiment (SPREE) (Invited)

    NASA Astrophysics Data System (ADS)

    van der Lee, S.; Wolin, E.; Bollmann, T. A.; Tekverk, K.

    2013-12-01

    The existence of the 1.1 Ga Mid-continent Rift System (MRS) in the Great Lakes region of North America is well known on account of its prominent gravity and magnetic anomalies. These elongated anomalies are associated with dense igneous rocks, which surface in sparse outcrops and are imaged in a handful of active source profiles. Part of the MRS cuts across the Archean Superior Craton while other parts cut through at least three different Proterozoic terranes, though there are indications that offsets between rift segments, such as the Belle Plaine Fault, may follow pre-existing terrane boundaries. The total volume of igneous rock imaged in active source data is consistently estimated as at least one million km3, which is enough for a sea floor of the size of the current Gulf of California, or five times the size of Lake Baikal. However, cessation of rifting and closure of the rift uplifted the igneous rocks along the axes, causing lateral gravity gradients of 150 mgal over 50 km between the gravity high above the uplifted igneous rift axis and the low above the sediment deposits in the original rift flanks. Our seismic experiment (SPREE) covers an area around a one thousand km long segment of the MRS. A long, interrupted line of stations follows the rift axis, another line cuts across this high gravity gradient, yet another line cuts across the Belle Plaine rift axis offset, and a TA-like station group north of Lake Superior complements surrounding Transportable Array coverage. The Superior Province Rifting Earthscope Flexible Array (FA) Experiment (SPREE) has been running for two years with a data return of over 96%. Preliminary SPREE and other analyses show puzzling low velocities along the rift axis and complex Moho structure beneath thickened crust. Other crustal features include a large diversity of sediments, from soggy Quaternary mud through meta-sedimentary Proterozoic rocks. At the time of writing we are quantifying the effects of this complex geological

  10. Mantle support of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Lin, S.; van Keken, P. E.; Brandenburg, J. P.; Furman, T.; Bryce, J.

    2007-12-01

    The African Superplume is a region of slow seismic wave velocities in the lower mantle under southern Africa. The uplift, volcanism and rifting that defines the much of eastern and southern Africa suggest a dynamic link between lower mantle dynamics and near-surface processes affecting the African plate. The dynamic link between the lower mantle and the surface, and the structure and dynamics of the upper mantle below the East African Rift System (EARS) remain unclear. As part of a comprehensive geochemical and numerical investigation of basaltic magmatism in the EARS we have modeled the interaction between putative upper mantle plumes and the rifting continental lithosphere. The modeling provides dynamically tested scenarios that explain the observed episodes of Cenozoic volcanism. Results from recent models that provided an explanation for the present day distribution of volcanism (Lin et al., EPSL, 237, 2005) suggest two plumes below Afar and Tanzania whose uplift is influenced by lithospheric topography. In new 3D modeling we provide improved quantification of the mantle involvement in generating EARS volcanism as constrained by the timing of uplift and regional volcanism. The time scales of episodicity of the volcanism observed at Turkana (related to the Tanzania-Kenya plume) since 45 Ma can be explained by deep- seated time-dependent plume activity. We suggest that this time-dependence is due to thermochemical interactions of dense recycled oceanic crust in the thermally hot regions in the African superplume region (Lin and Van Keken, Nature, 436, 2005).

  11. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. ERTS-1 imagery of the African rift system resolves the major Cenozoic faults, zones of warping, and the associated volcanism. It also clearly depicts the crustal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, linearity, etc., are revealed by the ERTS-1 imagery. This applies to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the arcuate faults of the Elgeyo escarpment in the Gregory rift, and hemi-basins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of the Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cenozoic faulting of the degree of obliquity to Precambrian structural trend. Some ground-mapped lithological boundaries are obscure on ERTS-1 imagery. The present approaches to mapping of Precambrian terrain in Africa may require radical revision with the input of satellite imagery.

  12. Benue trough and the mid-African rift system

    SciTech Connect

    Thomas, D.

    1996-01-29

    Large areas of the Anambra and Gongola basins have distinct petroleum exploration problems: a geologically persistent high geothermal gradient that promoted Cretaceous source rock maturation into the gas phase very early on; intrusive lead-zinc mineralization veins attributed to the Senonian igneous and folding event; and meteoric water-flushing along the periphery of the basins. From preliminary analysis, these basins have to be considered high risk for the discovery of commercial oil accumulations. On the other hand, the petroleum potential of the Bornu basins seems favorable. This Nigerian northernmost rift basin continues into the Kanem basin of western Chad, which has proven oil accumulations in Coniacian deltaic sands. Cretaceous paleofacies is considered to be relatively continuous throughout both basins. Paleo-geothermal history is also considered to be similar, although some igneous activity is recorded in the Bornu basin (Senonian?). There is a very real possibility of kerogen-rich non-marine basal Albo-Aptian basin fill lacustrine source rocks, as found in the Doba basin, could be present in the deepest sections of the Nigerian rift basins. Due to the depths involved, no well is expected to penetrate the incipient graben-fill stage sequences; however, possible oil migration from these tectono-stratigraphic units would certainly enhance the petroleum potential of cooler sections of the rift system. As opposed to interpreted thermogenic gas which seems to be prevalent in the Anambra basin.

  13. Ouachita trough: Part of a Cambrian failed rift system

    NASA Astrophysics Data System (ADS)

    Lowe, Donald R.

    1985-11-01

    Pre-flysch (Cambrian-Mississippian) strata of the Ouachita Mountains of Arkansas and Oklahoma include two main sandstone lithofacies: (1) a craton-derived lithofacies made up largely of mature medium- to coarse-grained quartzose and carbonate detritus and, in some units, sediment eroded from exposed basement rocks and (2) an orogen-derived facies made up mainly of fine-grained quartzose sedimentary and metasedimentary debris and possibly, in lower units, a volcaniclastic component. Paleocurrent and distribution patterns indicate that detritus of facies I in the Benton uplift was derived from north and detritus of facies II throughout the Ouachitas was derived from south and east of the depositional basin. Overall sedimentological results suggest that the Ouachita trough was a relatively narrow, two-sided basin throughout most and probably all of its existence and never formed the southern margin of the North American craton. Regional comparisons suggest that it was one of several basins, including the Southern Oklahoma aulacogen, Reelfoot Rift, Illinois Basin, and Rome trough, that formed as a Cambrian failed rift system 150 to 250 m.y. after initial rifting along the Appalachian margin of the North American craton.

  14. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J.; Pflumio, C.; Castrec, M.

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  15. Rheological variations across an active rift system -- results from lithosphere-scale 3D gravity and thermal models of the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Meeßen, Christian; Sippel, Judith; Cacace, Mauro; Scheck-Wenderoth, Magdalena; Fishwick, Stewart; Heine, Christian; Strecker, Manfred R.

    2015-04-01

    Due to its tectono-volcanic activity and economic (geothermal and petroleum) potential, the eastern branch of the East African Rift System (EARS) is one of the best studied extensional systems worldwide and an important natural laboratory for the development of geodynamic concepts on rifting and nascent continental break-up. The Kenya Rift, an integral part of the eastern branch of the EARS, has formed in the area of weak Proterozoic crust of the Mozambique mobile belt adjacent to the rheologically stronger Archean Tanzania craton. To assess the variations in lithospheric strength between different tectonic domains and their influence on the tectonic evolution of the region, we developed a set of structural, density, thermal and rheological 3D models. For these models we integrated multi-disciplinary information, such as published geological field data, sediment thicknesses, well information, existing structural models, seismic refraction and reflection data, seismic tomography, gravity and heat-flow data. Our main approach focused on combined 3D isostatic and gravity modelling. The resulting lithosphere-scale 3D density model provides new insights into the depth distribution of the crust-mantle boundary and thickness variations of different crustal density domains. The latter further facilitate interpretations of variations of lithologies and related physical rock properties. By considering lithology-dependent heat production and thermal conductivity, we calculate the conductive thermal field across the region of the greater Kenya Rift. Finally, the assessed variations in lithology and temperature allow deriving differences in the integrated strength of the lithosphere across the different tectonic domains.

  16. The Lake Albert Rift (uganda, East African Rift System): Deformation, Basin and Relief Evolution Since 17 Ma

    NASA Astrophysics Data System (ADS)

    Brendan, Simon; François, Guillocheau; Cécile, Robin; Olivier, Dauteuil; Thierry, Nalpas; Martin, Pickford; Brigitte, Senut; Philippe, Lays; Philippe, Bourges; Martine, Bez

    2016-04-01

    .5 Ma: Rift stage 1 (subsidence rate: > 500m/Ma up to 600-800 m/Ma; sedimentation rate: 2.4 km3/Ma) - Rifting climax; - 2.5-0.4 Ma: uplift of the Ruwenzori Mountains and shifting from an alluvial system to a network of bedrock river incision - Rift Stage 2 (subsidence rate: 450 to 250 m/Ma; sedimentation rate: 1.5 km3/Ma); - 0.4-0 Ma: long wavelength downwarping of the Tanzanian Craton, initiation of the Lake Victoria trough, drainage network inversion and uplift of the present-day Ugandan escarpment (normal faulting motion of the border faults) with formation of perched valleys associated to the Lower Pleistocene (2.5-0.4 Ma) rivers network. At larger scale, comparison of the Lake Albert Rift evolution with the data available in the basins of both eastern and western branches of the East African Rift System shows that most of the sedimentary basins experienced the same geometrical evolution from large basins with limited fault controls during Late Miocene to narrow true rift in Late Pleistocene (e.g. Northern and Central Kenyan Basins), in agreement with the volcanism distribution, large (width >100 km) during the Miocene times, narrower (width x10 km) from Late Pliocene to Pleistocene times and today limited to narrow rifts.

  17. Geochronological and geochemical assessment of Cenozoic volcanism from the Terror Rift region of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Rilling, Sarah E.

    The work presented in this dissertation explains results from three different methods to determine the relation between tectonism and rift-related volcanism in the Terror Rift region of the West Antarctic Rift System (WARS). Alkaline lavas from seven submarine features, Beaufort Island and Franklin Islands, and several locations near Mt Melbourne were dated by 40Ar/39Ar geochronology and analyzed for elemental and isotopic chemical signatures. Each chapter addresses a different aspect of the hypothesis that the presence of volatiles, primarily H2O or CO2, in the magma source has led to anomalously high volumes of magmatism after rift-related decompressional melting rather than requiring an active mantle plume source. Chapter 2 provides the temporal framework, illustrating that the sampled features range in age from 6.7 Ma to 89 ka, post-dating the main Miocene age phase of Terror Rift extension. Chapter 3 illustrates the traditional enriched elemental and isotopic chemical signatures to support the overall homogeneity of these lavas and previously analyzed areas of the WARS. This chapter also provides a new model for the generation of the Pb isotopic signatures consistent with a history of metasomatism in the magma source. Chapter 4 provides an entirely new chemical dataset for the WARS. The first platinum group element (PGE) abundances and extremely unradiogenic Os isotopic signatures of Cenozoic lavas from Antarctica provide the strongest evidence of melting contributions from a lithospheric mantle source. The combined results from these three studies consistently support the original hypothesis of this dissertation. New evidence suggests that WARS related lavas are not related to a mantle plume(s) as previously proposed. Instead, they are generated by passive, decompressional melting of a source, likely a combination of the asthenospheric and lithospheric mantle, which has undergone previous melting events and metasomatism.

  18. The Corinth Rift Laboratory, Greece (CRL) : A Multidisciplinary Near Fault Observatory (NFO) on a Fast Rifting System

    NASA Astrophysics Data System (ADS)

    Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Briole, P.; Lambotte, S.; Ford, M.; Scotti, O.; Beck, C.; Hubert-Ferrari, A.; Boiselet, A.; Godano, M.; Matrullo, E.; Meyer, N.; Albini, P.; Elias, P.; Nercessian, A.; Katsonopoulou, D.; Papadimitriou, P.; Voulgaris, N.; Kapetanidis, V.; Sokos, E.; Serpetsidaki, A.; el Arem, S.; Dublanchet, P.; Duverger, C.; Makropoulos, K.; Tselentis, A.

    2014-12-01

    The western rift of Corinth (Greece) is one of the most active tectonic structures of the euro-mediterranean area. Its NS opening rate is 1.5 cm/yr ( strain rate of 10-6/yr) results into a high microseismicity level and a few destructive, M>6 earthquakes per century, activating a system of mostly north dipping normal faults. Since 2001, monitoring arrays of the European Corinth Rift Laboratory (CRL, www.crlab.eu) allowed to better track the mechanical processes at work, with short period and broad band seismometers, cGPS, borehole strainmeters, EM stations, …). The recent (300 kyr) tectonic history has been revealed by onland (uplifted fan deltas and terraces) and offshore geological studies (mapping, shallow seismic, coring), showing a fast evolution of the normal fault system. The microseismicity, dominated by swarms lasting from days to months, mostly clusters in a layer 1 to 3 km thick, between 6 and 9 km in depth, dipping towards north, on which most faults are rooting. The diffusion of the microseismicity suggests its triggering by pore pressure transients, with no or barely detected strain. Despite a large proportion of multiplets, true repeaters seem seldom, suggesting a minor contribution of creep in their triggering, although transient or steady creep is clearly detected on the shallow part of some majors faults. The microseismic layer may thus be an immature, downward growing detachment, and the dominant rifting mechanism might be a mode I, anelastic strain beneath the rift axis , for which a mechanical model is under development. Paleoseismological (trenching, paleoshorelines, turbidites), archeological and historical studies completed the catalogues of instrumental seismicity, motivating attempts of time dependent hazard assessment. The Near Fault Observatory of CRL is thus a multidisciplinary research infrastructure aiming at a better understanding and modeling of multiscale, coupled seismic/aseismic processes on fault systems.

  19. Volcanic water flows could have flooded Ganymede's planetary rift system

    SciTech Connect

    Allison, M.L.; Clifford, S.M.

    1985-01-01

    Global expansion on Ganymede of only 1 or 2% created a planetary rift system which was resurfaced over a significant period of the planet's history creating bright, grooved terrain. The most reasonable model entails flooding of grabens by water or slush magmas which rose to the surface along normal faults in the rift system. Various models exist for the origin of the water magmas including isostatic rise of freezing ice I or diapirs of unstable ice III. A model considering the heat balance at the surface of an ice-covered water flow is constructed with the simplifying assumption that both laminar flow and a solid ice cover are achieved relatively soon after eruption. The ice cover will thicken until the underlying flowing water is entirely frozen. Energy into the system comes from solar radiation and the latent heat of freezing. Energy lost will be by evaporative and radiative cooling at the ice surface and by conduction into the substratum. Solving the heat balance allows a prediction for the volume of magma that can flood the surface. For example a flow 5 m thick will take tens of days to freeze, so that discharge rates equal to that of average terrestrial basalt flows could flood relatively large areas of the surface before freezing. Volcanic flooding is therefore a physically viable mechanism for the origin of bright terrain. During freezing the water/ice volume increases, lifting and fracturing the ice cover. These fractures may localize continued tectonic forces producing large displacements and creating the present grooved terrain.

  20. Beta Regio rift system on Venus: Geologic interpretation of Magellan images

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Bobina, N. N.; Borozdin, V. K.; Burba, G. A.

    1993-01-01

    Magellan SAR images and altimetric data were used to produce a new geologic map of the Northern part of Beta Regio within the frames of C1-30N279 mapsheet. It was part of our contributions into C1-formate geologic mapping efforts. The original map is at 1:8,000,000 scale. The rift structures are typical for Beta Regio on Venus. There are many large uplifted tessera areas on Beta upland. They occupy areas of higher topography. These tessera are partly burried by younger volcanic cover of plain material. These observations show that Beta upland was formed mainly due to lithospheric tectonical uplifting, and only partly was constructed by volcanic activity. A number of rift valleis traverse Beta upland and spread to the surrounding lowlands. The largest rift crosses Beta N to S. Typical width of rifts is 40 to 160 km. Rift valleis in this region are structurally represented by crustal grabens and half-grabens. There are symmetrical and asymmetrical rifts. A lot of them have shoulder uplifts with the relative high up to 0.5-1 km and width 40 to 60 km. Preliminary analysis of the largest rift valley structural cross-sections leads to the conclusion that it originated due to a 5-10 percent crustal extension. The prominent shield volcano - Theia Mons - is located at the center of Beta rift system. It could be considered as the surface manifestation of the upper mantle hot spot. Most of the rift belts are located radially to Theia Mons. The set of these data leads to conclusion that Beta rift system has an 'active-passive' origin. It was formed due to the regional tectonic lithospheric extension. Rifting was accelerated by the upper mantle hot spot located under the center of passive extension (under Beta Regio).

  1. Reactivation of a segmented hyper-extended rift system: the example of the Pamplona transfer zone in the western Pyrenees

    NASA Astrophysics Data System (ADS)

    Lescoutre, Rodolphe; Schaeffer, Frédéric; Masini, Emmanuel; Manatschal, Gianreto

    2016-04-01

    Numerous studies have revealed the importance of rift-inheritance on the formation of orogens but little consideration was given to rift segmentation and the role of transfer zones on the architecture of mountain chains. Indeed, structural mapping of passive margins pointed out the occurrence of a strong variability in the rift architecture along the margin when crossing through peculiar features that represent transfer zones. These transfer zones are generally oriented in the extension direction and relay the deformation between rift segments. The aim of this study is twofold: 1) characterize and define the Pamplona fault system as well as the structures and architecture of the basins bounding this major paleo-transfer fault located in the Western Pyrenees, and 2) understand its role during the subsequent Pyrenean convergence. The influence of the Pamplona fault system on the structuration of the Mauléon basin to the northeast and the Basque-Cantabrian basin to the southwest is substantial as expressed by their large offset and the occurrence of exhumed deep crustal and mantle rocks flooring the two basins. On the one hand, field work in the Labourd Massif and the western termination of the Mauléon basin enabled to describe faults and their relations to sedimentary sequences. This work also allowed describing the formation and reactivation of faults according to their orientation and their activity with respect to key markers (pre-Trias and post-Cenomanian). A strong relationship between rift architecture (proximal to distal domains) and structural inheritance is suggested. On the other hand, preliminary results from fieldwork, literature compilation and new tomographic imaging enable to determine the role and the history of the Pamplona fault system during Late Cretaceous compression. A significant work of this starting PhD project will be to determine the rift structures that have been reactivated and to assess their influence on the final architecture of the

  2. Orthorhombic faults system at the onset of the Late Mesozoic-Cenozoic Barents Sea rifting

    NASA Astrophysics Data System (ADS)

    Collanega, Luca; Breda, Anna; Massironi, Matteo

    2016-04-01

    been observed that, in the upper part of the succession, devoid of pre-existing discontinuities and detached from the lower part of the succession by the Upper Triassic shales, the deformation has been accommodated by the newly-formed orthorhombic system; while, in the deeper part of the succession, likely to host pre-existing weakness zones, the deformation has been accommodated through the graben/half-graben system. Hence, during the Late Mesozoic/Cenozoic Barents Sea rifting it seems that the absence of pre-existing discontinuities played a key-role in the development of an orthorhombic fault arrangement in the upper part of the succession rather than a classical plain strain system. Indeed pre-existing discontinuities in the lower part of the succession can focus the deformation, preventing the formation of new faults and in this case favouring a plain strain mode. Furthermore, the Upper Triassic detachment limited the influence of deep structures on the upper part of the succession, allowing initially for the development of an entirely new fault system. As the rifting proceeded, the deep reactivated structures propagated towards the surface and, finally, their activity became predominant on the activity of the orthorhombic system, as indicated by time-thickness maps.

  3. Seismic Migration Imaging of the Lithosphere beneath the Afar Rift System, East Africa

    NASA Astrophysics Data System (ADS)

    Lee, T. T. Y.; Chen, C. W.; Rychert, C.; Harmon, N.

    2015-12-01

    The Afar Rift system in east Africa is an ideal natural laboratory for investigating the incipient continental rifting, an essential component of plate tectonics. The Afar Rift is situated at the triple junction of three rifts, namely the southern Red Sea Rift, Gulf of Aden Rift and Main Ethiopian Rift (MER). The ongoing continental rifting at Afar transitions to seafloor spreading toward the southern Red Sea. The tectonic evolution of Afar is thought to be influenced by a mantle plume, but how the plume affects and interacts with the Afar lithosphere remains elusive. In this study, we use array seismic data to produce high-resolution migration images of the Afar lithosphere from scattered teleseismic wavefields to shed light on the lithospheric structure and associated tectonic processes. Our preliminary results indicate the presence of lithospheric seismic discontinuities with depth variation across the Afar region. Beneath the MER axis, we detect a pronounced discontinuity at 55 km depth, characterized by downward fast-to-slow velocity contrast, which appears to abruptly deepen to 75 km depth to the northern flank of MER. This discontinuity may be interpreted as the lithosphere-asthenosphere boundary. Beneath the Ethiopian Plateau, on the other hand, a dipping structure with velocity increase is identified at 70-90 km depth. Further synthesis of observations from seismic tomography, receiver functions, and seismic anisotropy in the Afar region will offer better understanding of tectonic significance of the lithospheric discontinuities.

  4. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Autin, Julia; Manatschal, Gianreto; Sauter, Daniel; Munschy, Marc; Schaming, Marc

    2015-04-01

    The processes related to hyperextension, exhumed mantle domains, lithospheric breakup, and formation of first unequivocal oceanic crust at magma-poor rifted margins are yet poorly understood. In this paper, we try to bring new constraints and new ideas about these latest deformation stages by studying the most distal Australian-Antarctic rifted margins. We propose a new interpretation, linking the sedimentary architectures to the nature and type of basement units, including hyperextended crust, exhumed mantle, embryonic, and steady state oceanic crusts. One major implication of our study is that terms like prerift, synrift, and postrift cannot be used in such polyphase settings, which also invalidates the concept of breakup unconformity. Integration and correlation of all available data, particular seismic and potential field data, allows us to propose a new model to explain the evolution of magma-poor distal rifted margins involving multiple and complex detachment systems. We propose that lithospheric breakup occurs after a phase of proto-oceanic crust formation, associated with a substantial magma supply. First steady state oceanic crust may therefore not have been emplaced before ~53.3 Ma corresponding to magnetic anomaly C24. Observations of magma amount and its distribution along the margins highlight a close magma-fault relationship during the development of these margins.

  5. Earthquakes along the East African Rift System: A multiscale, system-wide perspective

    NASA Astrophysics Data System (ADS)

    Yang, Zhaohui; Chen, Wang-Ping

    2010-12-01

    On the basis of a comprehensive data set of precisely determined depths of 121 large to moderate-sized earthquakes along and near the entire East African Rift System (EARS), there are three distinct patterns in focal depths which seem to correlate with progressive stages in the development of the largest active rift in the world. First, away from both ends of the western, younger branch of the EARS, very large (Mw ≥ 7) earthquakes occurred in the top 15 km of the crust where surficial expressions of rifting are yet to appear. Curiously, there are unusually deep aftershocks reaching down to 35 ± 3 km. Second, under well-developed but amagmatic rift segments, focal depths show a bimodal distribution, with peaks centered near depths of about 15 ± 5 km and 35 ± 5 km. This pattern is present both under the main axis of the EARS, where rift zone have lengths approaching 1000 km, and beneath rift units 10 times shorter in length. Underside reflections off the Moho indicate that at least part of the second peak in seismicity is due to mantle earthquakes down to 44 ± 4 km, attesting to high differential stress in the mantle lithosphere which is capable of accumulating seismogenic, elastic strain (the "jelly sandwich" rheology). Third, beneath magmatic segments of well-developed rifts, seismicity is largely confined to the upper 15 km of the crust as observed previously, akin to the pattern along mid-ocean ridges where plastic flow due to high temperature inhibits accumulation of shear stress deep in the lithosphere.

  6. The stratigraphic architecture of hyper-extended rift systems: A field perspective from Aps, Pyrenees and Baja-California

    NASA Astrophysics Data System (ADS)

    Masini, Emmanuel; Manatschal, Gianreto; Tugend, Julie; Mohn, Geoffroy; Robin, Cécile; Geoffroy, Laurent; Unternehr, Patrick

    2013-04-01

    exhumation processes. Syn-tectonic deposits correspond to the erosion of exhumed material and mass-wasting processes along active detachment fault scarps. Once active exhumation migrates, inactive parts of detachment merge to form a lower plate sag basin under thermal subsidence. In contrast, the upper plate basin records a single isochronous sag phase over weakly extended pre-rift strata. This observation suggests that upper plate sag formation is controlled by depth-dependent crustal extension. As illustrated by the different study cases, the sag phase sedimentary record of upper and lower plate settings strongly depends on their respective connection with sediment sourcing systems. Finally, we used the Rifter software developed within the Margin Modelling Phase 3 (MM3) consortium to generate equilibrated lithospheric sections based on our observations. Through these kinematic numerical experiments, we aim to quantify the tectonic, thermal and isostatic evolution of hyper-extended rift systems.

  7. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, N.H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.−1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  8. The Kinematic Puzzle of the Gulf of California Rift system

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2007-05-01

    Extensive recent studies of the Gulf of California greatly advanced our understanding of the kinematics of this Pacific-North America plate boundary rift and its crustal structure. However, some kinematic discrepancies that need to be resolved, particularly for the time interval 12-6 Ma, after subduction had stopped but possibly before major opening began in the northern Gulf basins. Correlation of pyroclastic flow deposits across the Upper Delfin Basin segment (Oskin et al., 2001 and subsequent papers) indicates that virtually all of the opening between the coastlines in this segment (from San Felipe/Puertecitos in Baja California to the W side of Tiburon Island) occurred since ~6.1 Ma producing ~250 km of opening of the marine basin. This implies that the crust in the basin should have been brought into the region since ca. 6 Ma, perhaps by production of new igneous crust or remobilization of continental crust to fill the ~250-km gap. The total amount of post-6 Ma opening in the rift, including the onland deformation, is consistent with expected Pacific-North America displacement determined from the global plate circuit since 6 Ma, and it is also consistent with the slip history of the southern San Andreas fault. A smaller amount of motion (tens of kms) can be identified geologically post-12.5 Ma and pre-6 Ma. However, this is not sufficient to match the plate circuit results, which seem to require several hundred more km of Pacific-North America plate motion at this latitude between 12 Ma and 6 Ma. This motion has to have been located elsewhere, not between the modern marine basin boundaries. The Pliocene basin history of the Gulf has varied from place to place, as the loci of extension moved around in the rift system Similar variations in late Miocene time could explain this discrepancy, with abandoned extensional or strike-slip fault systems elsewhere, perhaps in the Sonoran coastal plain. However, further geological and geophysical work is needed to

  9. Simple shear detachment fault system and marginal grabens in the southernmost Red Sea rift

    NASA Astrophysics Data System (ADS)

    Tesfaye, Samson; Ghebreab, Woldai

    2013-11-01

    The NNW-SSE oriented Red Sea rift, which separates the African and Arabian plates, bifurcates southwards into two parallel branches, southeastern and southern, collectively referred to as the southernmost Red Sea rift. The southern branch forms the magmatically and seismo-tectonically active Afar rift, while the less active southeastern branch connects the Red Sea to the Gulf of Aden through the strait of Bab el Mandeb. The Afar rift is characterized by lateral heterogeneities in crustal thickness, and along-strike variation in extension. The Danakil horst, a counterclockwise rotating, narrow sliver of coherent continental relic, stands between the two rift branches. The western margin of the Afar rift is marked by a series of N-S aligned right-lateral-stepping and seismo-tectonically active marginal grabens. The tectonic configuration of the parallel rift branches, the alignment of the marginal grabens, and the Danakil horst are linked to the initial mode of stretching of the continental crust and its progressive deformation that led to the breakup of the once contiguous African-Arabian plates. We attribute the initial stretching of the continental crust to a simple shear ramp-flat detachment fault geometry where the marginal grabens mark the breakaway zone. The rift basins represent the ramps and the Danakil horst corresponds to the flat in the detachment fault system. As extension progressed, pure shear deformation dominated and overprinted the initial low-angle detachment fault system. Magmatic activity continues to play an integral part in extensional deformation in the southernmost Red Sea rift.

  10. Differential opening of the Central and South Atlantic Oceans and the opening of the West African rift system

    NASA Astrophysics Data System (ADS)

    Fairhead, J. D.; Binks, R. M.

    1991-02-01

    Plate tectonic studies of the development of the Central and South Atlantic Oceans using Seasat and Geosat altimeter and magnetic anomaly isochron data now provide quantitative models of seafloor spreading through time. Such models enable an initial assessment of the differential opening between these two oceanic basins to be determined. The Equatorial Atlantic is an integral part of this oceanic rifting process, allowing stresses arising from the differential opening to be dissipated into both the Caribbean and Africa along its northern and southern boundaries respectively. The tectonic model for the West African rift system, based on geological and geophysical studies, shows a series of strike-slip fault zones diverging into Africa from the Gulf of Guinea and dissipating their shear movement into the development of extensional basins orientated perpendicular to these faults zones. The development of the West African rift system was contemporaneous with the early opening of the South Atlantic, continued to develop well after the final breakup of South America from Africa and did not cease until the late Cretaceous when there was a major phase of basin inversion and deformation. Santonian ( ~ 80 Ma) deformation across the Benue Trough (Nigeria) is broadly contemporaneous with dextral shear reactivation of the central African fracture system which, in turn resulted in renewed extension in the Sudan basins during the late Cretaceous and early Tertiary. This paper illustrates the close linkage in both time and space between the history of the African rift basins and the opening of the Atlantic. Both exhibit distinct phases of evolution with the rift basins developing in direct response to the differential opening between the Central and South Atlantic in order to dissipate stresses generated by this opening. The Mesozoic tectonic model proposed is therefore one of an intimate interaction between oceanic and continental tectonics.

  11. Magmatism in rifting and basin formation

    NASA Astrophysics Data System (ADS)

    Thybo, H.

    2008-12-01

    Whether heating and magmatism cause rifting or rifting processes cause magmatic activity is highly debated. The stretching factor in rift zones can be estimated as the relation between the initial and the final crustal thickness provided that the magmatic addition to the crust is insignificant. Recent research demonstrates substantial magmatic intrusion into the crust in the form of sill like structures in the lowest crust in the presently active Kenya and Baikal rift zones and the DonBas palaeo-rift zone in Ukraine. This result may be surprising as the Kenya Rift is associated with large amounts of volcanic products, whereas the Baikal Rift shows very little volcanism. Identification of large amounts of magmatic intrusion into the crust has strong implications for estimation of stretching factor, which in the case of Baikal Rift Zone is around 1.7 but direct estimation gives a value of 1.3-1.4 if the magmatic addition is not taken into account. This may indicate that much more stretching has taken place on rift systems than hitherto believed. Wide sedimentary basins may form around aborted rifts due to loading of the lithosphere by sedimentary and volcanic in-fill of the rift. This type of subsidence will create wide basins without faulting. The Norwegian- Danish basin in the North Sea area also has subsided gradually during the Triassic without faulting, but only few rift structures have been identified below the Triassic sequences. We have identified several mafic intrusions in the form of large batholiths, typically more than 100 km long, 20-40 km wide and 20 km thick. The associated heating would have lifted the surface by about 2 km, which may have been eroded before cooling. The subsequent contraction due to solidification and cooling would create subsidence in a geometry similar to basins that developed by loading. These new aspects of magmatism will be discussed with regard to rifting and basin formation.

  12. Investigation of rifting processes in the Rio Grande Rift using data from an unusually large earthquake swarm. Final report, October 1, 1992--September 30, 1993

    SciTech Connect

    Sanford, A.; Balch, R.; Hartse, H.; House, L.

    1995-03-01

    Because the Rio Grande Rift is one of the best seismically instrumented rift zones in the world, studying its seismicity provides an exceptional opportunity to elucidate the active tectonic processes within continental rifts. Beginning on 29 November 1989, a 15 square km region near Bernardo, NM, produced the strongest and longest lasting sequence of earthquakes in the rift in 54 years. Our research focuses on the Bernardo swarm which occurred 40 km north of Socorro, New Mexico in the axial region of the central Rio Grande rift. Important characteristics concerning hypocenters, fault mechanisms, and seismogenic zones are discussed.

  13. East Antarctic Rift Systems - key to understanding of Gondwana break-up

    NASA Astrophysics Data System (ADS)

    Golynsky, D. A.; Golynsky, A. V.

    2012-04-01

    The results of analysis of radio-echo sounding surveys, the RADARSAT satellite data, magnetic and gravity information give evidence that East Antarctica contains 13 riftogenic systems and/or large linear tectonic structures. Among known and suggested rifts of East Antarctica the Lambert rift has a pivotal position and it manifests oneself as symmetry axis. Six additional systems are revealed on both sides of it and any one of them possesses special features in geologic and geomorphologic aspects. In most cases they inherited the anisotropy of long-lived cratonic blocks. Riftogenic and/or large linear tectonic structures along the East Antarctica coastal regions are distributed with a steady regularity with average distance between them about 650 km. For six (7) structures from 13 (Lambert, Jutulstraumen-Pencksökket, Vestfjella, Mellor-Slessor (Bailey), Wilkes Basin, Gaussberg (?) and Rennick) there is a distinct spatial coupling with trough complexes of the Beacon Supergroup and their subsequent reactivation in Late Jurassic - Permian time when the East Gondwana started break-up. Rift system of the Lambert-Amery Glaciers and Prydz Bay is related to Mesozoic extension events and it inherited structures of Paleozoic grabens. The total length of the rift system exceeds 4000 km of the same scale as largest the World rift belts. The length of the western branch of the Lambert rift that includes the Mellor rift and graben-like structures of the Bailey and Slessor glaciers exceeds 2300 km. Results of radio-echo sounding investigation of the subglacial Aurora Basin allow to suggest that this large basin of sub-meridian extension is underlain by an extensive (> 1000 km) riftogenic structure that is running towards the Transantarctic Mountains where it forms a triple junction with the eastern branch of the Lambert rift and structures of the Wilkes Basin. It is hereby proposed that Aurora-Scott rift is formed by complex system of sub-parallel depressions divided by

  14. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.

    1994-01-01

    The late Cenozoic volcanic and tectonic activity of the enigmatic West Antarctic rift system, the least understood of the great active continental rifts, has been suggested to be plume driven. In 1991-1992, as part of the CASERTZ (Corridor Aerogeophysics of the Southeast Ross Transect Zone) program, an ~25 000 km aeromagnetic survey over the ice-covered Byrd subglacial basin shows magnetic "texture' critical to interpretations of the underlying extended volcanic terrane. The aeromagnetic data reveal numerous semicircular anomalies ~100-1100 nT in amplitude, interpreted as having volcanic sources at the base of the ice sheet; they are concentrated along north-trending magnetic lineations interpreted as rift fabric. The CASERTZ aeromagnetic results, combined with >100 000 km of widely spaced aeromagnetic profiles, indicate at least 106 km3 of probable late Cenozoic volcanic rock (flood basalt?) in the West Antarctic rift beneath the ice sheet and Ross Ice Shelf. -from Authors

  15. Failure was not an option- the Mid-Continent Rift system succeeded

    NASA Astrophysics Data System (ADS)

    Merino, M.; Stein, C. A.; Stein, S. A.; Keller, G. R.; Flesch, L. M.; Jurdy, D. M.

    2013-12-01

    The 1.1 Ga Mid-Continent Rift (MCR) in North America is often viewed as a failed rift formed by isolated midplate volcanism and extension within the ~1.3-~0.98 Ga Grenville orogeny. An alternative view is suggested by analogy with younger and morphologically similar rift systems, whose plate tectonic settings are more easily understood because their surroundings - including seafloor with magnetic anomalies - have not been deformed or destroyed by subsequent collisions and rifting events. In this view, the MCR was part of a larger plate boundary rifting event that resulted in a successful episode of seafloor spreading. This view is motivated by various pieces of evidence. The MCR rifting looks much like rigid plate block motion, such as associated with the West Central African Rift systems formed during the Mesozoic breakup of Africa and South America and the ongoing rifting in the East African Rift region with seafloor spreading in the Gulf of Aden and the Red Sea. This view explains the affinities of the Grenville-age rocks in the central and southern Appalachians to Amazonia rather than Canadian Grenville-age Appalachian rocks. The MCR extends farther to the south than traditionally assumed along the East Continental Gravity High (a buried feature from Ohio to Alabama). This failed portion of the rift system connected to the rift successfully separating Laurentia and Amazonia. The seafloor spreading separating Amazonia from Laurentia may explain the former's relative motion toward Greenland and Baltica. This model is consistent with some of the ~1.1 Ga geological events in Amazonia. A change in the apparent polar wander path for Laurentia during the period of volcanism of the MCR could be attributed to this plate reconfiguration. The extensional phase on the MCR may have ended because motion was taken up by seafloor spreading between Laurentia and Amazonia rather ending due to another continental collision. Later reverse faulting on the MCR normal faults due to

  16. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  17. The Lithosphere of The East African Rift System: Insights From Three-Dimensional Density Modelling

    NASA Astrophysics Data System (ADS)

    Woldetinsae, G.; Götze, H. J.

    2004-12-01

    We use the gravity data that cover the large part of the Afro-Arabian rift system, the eastern branch (Ethiopia-Afar and northern Kenya), in order to produce a regional density model. In an earlier work the new and old gravity data were compiled, evaluated and homogenised using a consistent data reduction procedures. Three basic constraints widely spaced over a 1500 km rift length have been generated between 1969 and 2003 by an international consortium with information from isostatic models, global tomography, geological, geochemical evidences, and petrological and experimental results. These are integrated and applied to the model to constrain upper and lower crustal structures underneath the Rift and Plateau areas. New crustal thickness estimations (Dugda et al., 2004 in press) and inferences from recent velocity models along the axis of the Main Ethiopian Rift (Keller et al., 2004) are added to the density model. Thirty parallel planes cutting across the entire plateau region and Rift system (Afar-Ethiopia-Kenya) are interactively modelled using a starting geometry that invoke asthenospheric upwelling. Densities for the upper crust are calculated using Nafe Drake method, averaged from earlier interpretation and measured ones from the Geological Survey of Ethiopia database (e.g. Geothermal project, GSE petrophysical laboratory, pers. communication). Densities for lower crust are estimated using the approach by Sobolov and Babyko (1994). We used also lower crustal densities calculated by (Simyu and Keller, 1997) for the northern part of Kenya rift. The preliminary model offers a possibility to quantify depth, thickness and volumes of different geological interfaces and bodies. As for example, the estimation of the volume of volcanic constructs on the western plateau of Ethiopia is relatively larger than the eastern plateau. The load map derived from the model indicated maximum crustal loads at the crust/mantle interface (ca. 40km) on the eastern and western flanks

  18. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with

  19. Combining hydrologic and groundwater modelling to characterize a regional aquifer system within a rift setting (Gidabo River Basin, Main Ethiopian Rift)

    NASA Astrophysics Data System (ADS)

    Birk, Steffen; Mechal, Abraham; Wagner, Thomas; Dietzel, Martin; Leis, Albrecht; Winkler, Gerfried; Mogessie, Aberra

    2016-04-01

    The development of groundwater resources within the Ethiopian Rift is complicated by the strong physiographic contrasts between the rift floor and the highland and by the manifold hydrogeological setting composed of volcanic rocks of different type and age that are intersected by numerous faults. Hydrogeochemical and isotope data from various regions within the Ethiopian Rift suggest that the aquifers within the semi-arid rift floor receive a significant contribution of groundwater flow from the humid highland. For example, the major ion composition of groundwater samples from Gidabo River Basin (3302 km²) in the southern part of the Main Ethiopian Rift reveals a mixing trend from the highland toward the rift floor; moreover, the stable isotopes of water, deuterium and O-18, of the rift-floor samples indicate a component recharged in the highland. This work aims to assess if the hydrological and hydrogeological data available for Gidabo River Basin is consistent with these findings and to characterize the regional aquifer system within the rift setting. For this purpose, a two-step approach is employed: First, the semi-distributed hydrological model SWAT is used to obtain an estimate of the spatial and temporal distribution of groundwater recharge within the watershed; second, the numerical groundwater flow model MODFLOW is employed to infer aquifer properties and groundwater flow components. The hydrological model was calibrated and validated using discharge data from three stream gauging stations within the watershed (Mechal et al., Journal of Hydrology: Regional Studies, 2015, doi:10.1016/j.ejrh.2015.09.001). The resulting recharge distribution exhibits a strong decrease from the highland, where the mean annual recharge amounts to several hundred millimetres, to the rift floor, where annual recharge largely is around 100 mm and below. Using this recharge distribution as input, a two-dimensional steady-state groundwater flow model was calibrated to hydraulic

  20. Rift systems on Venus: An assessment of mechanical and thermal models

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.; Head, J. W.

    1985-01-01

    The formation and distribution of major tectonic features on Venus are closely linked to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the Chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. Mechanical and thermal models for terrestrial continental-rifting are applied to the rift systems of Venus. The models are tested against known topographic and tectonic characteristics of Venus chasmata as well as independent information on the physical properties of the Venus crust and lithosphere.

  1. The hydrothermal system associated with the Kilauea East Rift Zone, Hawaii

    SciTech Connect

    Thomas, D.M.; Conrad, M.E.

    1997-12-31

    During the last twenty years drilling and fluid production on the Kilauea East Rift Zone (KERZ) has shown that an active hydrothermal system is associated with much of the rift. Well logging and fluid geochemistry indicate that reservoir temperatures exceed 360 C but are highly variable. Although neither well testing nor pressure decline data have clearly demonstrated the lateral limits of the reservoir, divergent fluid compositions over short distances suggest that the larger hydrothermal system is strongly compartmentalized across the rift zone. The chemical compositions of production fluids indicate that recharge is derived from ocean water and meteoric recharge and isotopic data suggest that the latter may be derived from subsurface inflow from the flanks of Mauna Loa.

  2. Where is the West Antarctic Rift System in the Amundsen Sea and Bellingshausen Sea sectors?

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Kalberg, Thomas; Eagles, Graeme; Dziadek, Ricarda; Kaul, Norbert; Spiegel, Cornelia; Lindow, Julia

    2015-04-01

    The West Antarctic Rift System (WARS) is one of the largest continental rifts globally, but its lateral extent, distribution of local rifts, timing of rifting phases, and mantle processes are still largely enigmatic. It has been presumed that the rift and its crustal extensional processes have widely controlled the history and development of West Antarctic glaciation with an ice sheet of which most is presently based at sub-marine level and which is, therefore, likely to be highly sensitive to ocean warming. While the western domain of the WARS in the Ross Sea has been studied in some detail, only recently have various geophysical and geochemical/thermochronological analyses revealed indications for its eastern extent in the Amundsen Sea and Bellingshausen Sea sectors of the South Pacific realm. The current model, based on these studies and additional data, suggests that the WARS activity included tectonic translateral, transtensional and extensional processes from the Amundsen Sea Embayment to the Bellingshausen Sea region of the southern Antarctic Peninsula. We present the range of existing hypotheses regarding the extent of the eastern WARS as well as published and yet unpublished data that support a conceptual WARS model for the eastern West Antarctica with implications for glacial onset and developments.

  3. Rift border system: The interplay between tectonics and sedimentation in the Reconcavo basin, northeastern Brazil

    SciTech Connect

    Magnavita, L.P.; Silva, T.F. da

    1995-11-01

    A geometric and depositional model is proposed to explain the tectonic and sedimentary evolution of the main border of the Reconcavo basin. The architecture of the rift margin is characterized by a rift border system constituted by (1) a master fault, (2) a step, and (3) a clastic wedge. This footwall-derived clastic wedge is interpreted as alluvial fans and fan deltas composed of conglomerates that interfinger with hanging-wall strata. The analysis of the vertical distribution of coarse-grained components of this wedge suggests that its composition is geographically controlled, and no regular inverted stratigraphy is commonly described for this type of succession. During an initial lacustrine phase, turbidites accumulated farther from and parallel to the rift margin. The mapping of marker beds that bound these lacustrine turbidite deposits may be used to infer major periods of clastic influx and, therefore, to correlate with periods of fault-related subsidence or climatic fluctuations in the depositional basin and erosion of the sediment source area. Periods of limited back-faulting and basin expansion toward the main border are distinguished through patterns of progradation and aggradation indicating progressive retreat of the rift border and younging; in the footwall direction. The overall evolution of the rift border seems to be related to extension, block rotation, hanging-wall subsidence, and footwall uplift associated with the initial master fault, with limited propagation of faults away from the basin into the footwall.

  4. Earthquakes and Geological Structures of the St. Lawrence Rift System

    NASA Astrophysics Data System (ADS)

    Lamontagne, M.; Ranalli, G.

    2013-12-01

    The St. Lawrence Rift System (SLRS), which includes the Ottawa-Bonnechère and Saguenay grabens, is located well inside the North American plate. Most historic and the some 350 earthquakes recorded yearly occur in three main seismically active zones, namely Charlevoix (CSZ), Western Quebec (WQSZ), and Lower St. Lawrence (LSLSZ)). Outside these areas, most of the Canadian Shield and bordering regions have had a very low level of earthquake activity. In the SLRS, moderate to large earthquakes (Moment magnitude (M) 5.5 to M 7) are known to have occurred since 1663 causing landslides and damage mostly to unreinforced masonry elements of buildings located on ground capable of amplifying ground motions. Most earthquakes in these seismic zones share common characteristics such as mid- to upper crustal focal depths, no known surface ruptures and proximity to SLRS faults. Variations also exist such as vast seismically-active region (WQSZ and LSLSZ), presence of a large water body (CSZ and LSLSZ), and absence of SLRS faults near concentration of earthquakes (WQSZ). The CSZ is the best studied seismic zone and there, earthquakes occur in the Canadian Shield, mostly in a 30 X 85 km rectangle elongated along the trend of the St. Lawrence River with local variations in focal depth distribution. Faults related to the SLRS and to a meteor impact structure exist and earthquakes occur along the SLRS faults as well as in between these faults. Overall, the SLRS faults are probably reactivated by the larger earthquakes (M ≥ 4.5) of the 20th century (CSZ in 1925; WQCSZ in 1935 and 1944; Saguenay in 1988) for which we have focal mechanisms. We propose that caution be exercised when linking historical events that have uncertain epicentres with SLRS faults. Similarly, SLRS faults should not be necessarily considered to be the reactivated structures for most small to moderate earthquakes (M < 4.5). A good example of this is the earthquakes of the WQSZ that tend to concentrate in a well

  5. The Midcontinent rift system and the Precambrian basement in southern Michigan

    SciTech Connect

    Smith, W.A. . Dept. of Geology)

    1994-04-01

    The Precambrian basement within Michigan consists of at least three provinces, each characterized by distinctive potential field anomalies: (1) the Eastern Granite-Rhyolite Province (EGRP) in the south, (2) the Grenville Province in the southeast and (3) the Penokean Province to the north. Also located within the basement is the Mid-Michigan rift (MMR), which is the eastern arm of the Midcontinent rift system (MRS). Southwest and parallel to the MMR is a series of linear positive gravity anomalies which has been referred to as the Ft. Wayne rift (FWR) and the Southwest Michigan Anomaly (SWMA). The EGRP, which is characterized by undeformed and unmetamorphosed rhyolite to dacite and epizonal granites, was emplaced ca. 1510--1450 Ma. However, the EGRP may be comprised of several terranes of varying extent and origin based on analysis of potential field data and rock and mineral ages. The MMR and the FWR/SWMA are characterized by linear arrays of positive magnetic and gravity anomalies, which are probably due to thick accumulations of mafic igneous rocks within the rifts. The extent and trends of the FWR/SWMA have been largely inferred from geophysical data with a presumption of the age of about 1,100 Ma. The continuation of the MMR southward into Ohio and Kentucky as a sequence of gravity highs is questionable and needs further resolution. The FWR/SWMA may be part of the East Continent Rift Basin (ECRB). The ECRB, which is a large complex of related rift basins of Keweenawan age (1300 --1100 Ma), may be an extension of the MRS but it is not physically continuous with it. The ECRB lies to the west of the Grenville Front and extends at least from northwest Ohio to central Kentucky. Extensions of the ECRB north and south are speculative.

  6. The development of the East African Rift system in north-central Kenya

    NASA Astrophysics Data System (ADS)

    Hackman, B. D.; Charsley, T. J.; Key, R. M.; Wilkinson, A. F.

    1990-11-01

    Between 1980 and 1986 geological surveying to produce maps on a scale of 1:250,000 was completed over an area of over 100,000 km 2 in north-central Kenya, bounded by the Equator, the Ethiopian border and longitudes 36° and 38 °E. The Gregory Rift, much of which has the structure of an asymmetric half-graben, is the most prominent component of the Cenozoic multiple rift system which extends up to 200 km to the east and for about 100 km to the west, forming the Kenya dome. On the eastern shoulder and fringes two en echelon arrays of late Tertiary to Quaternary multicentre shields can be recognized: to the south is the Aberdares-Mount Kenya-Nyambeni Range chain and, to the north the clusters of Mount Kulal, Asie, Huri Hills and Marsabit, with plateau lavas and fissure vents south of Marsabit in the Laisamis area. The Gregory Rift terminates at the southern end of Lake Turkana. Further north the rift system splays: the arcuate Kinu Sogo fault zone forms an offset link with the central Ethiopian Rift system. In the rifts of north-central Kenya volcanism, sedimentation and extensional tectonics commenced and have been continuous since the late Oligocene. Throughout this period the Elgeyo Fault acted as a major bounding fault. A comparative study of the northern and eastern fringes of the Kenya dome with the axial graben reinforces the impression of regional E-W asymmetry. Deviations from the essential N-trend of the Gregory Rift reflect structural weaknesses in the underlying Proterozoic basement, the Mozambique Orogenic Belt: thus south of Lake Baringo the swing to the southeast parallels the axes of the ca. 620 Ma phase folds. Secondary faults associated with this flexure have created a "shark tooth" array, an expression of en echelon offsets of the eastern margin of the Gregory Rift in a transtensional stress regime: hinge zones where major faults intersect on the eastern shoulder feature intense box faulting and ramp structures which have counterparts in the rift

  7. Characterising East Antarctic Lithosphere and its Rift Systems using Gravity Inversion

    NASA Astrophysics Data System (ADS)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V. Sasha; Rogozhina, Irina

    2013-04-01

    Since the International Geophysical Year (1957), a view has prevailed that East Antarctica has a relatively homogeneous lithospheric structure, consisting of a craton-like mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago (e.g. Ferracioli et al. 2011). Recent recognition of a continental-scale rift system cutting the East Antarctic interior has crystallised an alternative view of much more recent geological activity with important implications. The newly defined East Antarctic Rift System (EARS) (Ferraccioli et al. 2011) appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data by Golynsky & Golynsky (2009) indicates that further rift zones may form widely distributed extension zones within the continent. A pilot study (Vaughan et al. 2012), using a newly developed gravity inversion technique (Chappell & Kusznir 2008) with existing public domain satellite data, shows distinct crustal thickness provinces with overall high average thickness separated by thinner, possibly rifted, crust. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) this is poorly known along the ocean-continent transition, but is necessary to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana, which will also better define how and when these continents separated; 2) lateral variation in crustal thickness can be used to test supercontinent reconstructions and assess the effects of crystalline basement architecture and mechanical properties on rifting; 3) rift zone trajectories through East Antarctica will define the geometry of zones of crustal and lithospheric thinning at plate-scale; 4) it is not clear why or when the crust of East Antarctica became so thick and elevated, but knowing this can be used to test models of

  8. Morphotectonic evolution of two depressions at the southern border of the Baikal rift system

    NASA Astrophysics Data System (ADS)

    Vogt, Henri; Vogt, Thea

    2007-05-01

    Detailed study of two dry depressions in the Baikal rift system: the E-W Khoito Ghol-Tunka-Bistraya depression and the SW-NE Gusinoje-Ivolga depression, aims to provide a better understanding of tectonic control on the intershoulder relief evolution after the rift opened. Both depressions are grabens and both feature a suite of 10-20 km-wide basins alternating with more or less massive highs. Field and laboratory analysis shows that this pattern is of recent tectonic origin and that local breaking-up and subsidence followed the general sinking which originally formed the grabens. The subsidence belts seem to have gradually shifted north and northeastwards. Geomorphological analysis reveals that in both depressions the highs are remnants of a former pediment which was broken up. The young basins display numerous relevant hydrographic anomalies of the secondary channels and a general water-logging. They also suggest that the subsidence belts have gradually shifted north-and northeastwards. In the Gusinoje-Ivolga depression evidence was found of a Plio-Pleistocene river course, parallel to the Selenga river, which was later dismantled by the breaking-up. This depression, parallel to the Baikal rift and belonging to the Mesozoic system of grabens in the Caledonian fold belt, seems to have been included into the general system of rifts during the Pliocene tectonic phase. As for the main hydrographic axes, the Selenga river was set on a Palaeogene-age planation surface before the first tectonic phase and kept its original course. The Irkut river flowed in the Khoito Gol-Tunka-Bistraya depression after the first tectonic phase and was not affected by the later breaking-up. In contrast, the secondary drainage network is largely discordant. Despite their different geotectonic contexts, the two depressions show a similar development of relief pattern ,which poses the question of the style of rift dynamics after the main Pliocene tectonic phase.

  9. Mapping of the major structures of the African rift system

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Lake Tara lies within a previously recognized asymmetric graben situated on the Ethiopian plateau and about 250 km west of the plateau-Afar margin. ERTS-1 imagery confirms the stronger deformation of the western side of the Tara graben, with intense faulting and some associated monoclinal mapping extending between latitudes 12 deg and 14 deg N, and lying close to meridian 37 deg E. The zone of deformation is gently arcuate in plan, trending NNE in the south NNW in the north. In the north, the Quaternary faulting dies out in the alluvial plains of the Takazze Valley; in the south the faulting appears to die out in coincidence with a large erosional escapement trending S30W from Lake Tara to precisely latitude 11 deg N. This escapement aligns with the massive NE-SW escapement of western Simien, northeast of Lake Tara, and may represent erosional recession from major faulting and tilting much older than that of the superimposed, obliquely trending Tara graben. A 30 km diameter circular feature has been identified from the ERTS-1 imagery of the Tara graben, centered on 13 deg 05 min N, 37 deg 20 min E. ERTS-1 imagery further shows that the Tara graben and its associated young volcanics have no direct connection with the Red Sea or Ethiopian rift valley.

  10. Tectonic development of the SW Arabian Plate margin within the central Arabian flank of the Red Sea rift system

    NASA Astrophysics Data System (ADS)

    Szymanski, E.; Stockli, D. F.; Johnson, P. R.; Kattan, F. H.; Cosca, M. A.

    2009-12-01

    The Red Sea rift system is a prime example of continental rifting and has contributed significantly to our understanding of the geologic processes that manage the rupture of continental lithosphere. Using a combined geo- and thermochronometric approach, we explore the modes and mechanisms of rift margin development by studying Red Sea rift-related geologic products along the central Saudi Arabian flank of the rift system, north of Jeddah. We use apatite and zircon (U-Th)/He thermochronometry and whole-rock 40Ar/39Ar dating of basalt to define the spatiotemporal relationship between rift flank extensional structures and rift-related harrat volcanism. This technical approach permits the reconstruction of the tectonic margin from early rift architecture, to strain distribution during progressive rifting, and through subsequent whole-scale modifications of the rift flank due to thermal and isostatic factors. Constraints on the dynamics of rift flank deformation are achieved through the collection of geologic samples along long-baseline thermochronometric transects that traverse the entire Arabian shield from the coastal escarpment to the inland Paleozoic sedimentary cover sequences. Long-baseline transects resolve the timing of rift flank uplift and reveal the pattern of lithospheric modification during the rupturing of continental lithosphere. Locally, short-baseline elevation transects map the footwall exhumation of major normal faults that delineate both the modern rift margin and inland extensional basins such as the NW-trending Hamd-Jizil basin, a prominent syn-extensional basin comprised of two distinct half-grabens (Jizil and Hamd) located NW of Medina. Diffuse lithospheric extension during the Oligo-Miocene affected a widespread area well inboard from the modern rift margin; samples from footwall blocks that bound the inland Jizil and Hamd half-grabens yield apatite (U-Th)/He cooling ages of 14.7 ± 0.9 Ma and 24.5 ± 1.5 Ma, respectively. The mid-Miocene age

  11. Surface Wave Analysis of Regional Earthquakes in the Eastern Rift System (Africa)

    NASA Astrophysics Data System (ADS)

    Oliva, S. J. C.; Guidarelli, M.; Ebinger, C. J.; Roecker, S. W.; Tiberi, C.

    2015-12-01

    The Northern Tanzania Divergence (NTD), the youngest part of the East African Rift System, presents the opportunity to obtain insights about the birth and early stages of rifting before it progresses to mature rifting and seafloor spreading. This region is particularly interesting because the Eastern rift splits into three arms in this area and develops in a region of thick and cold lithosphere, amid the Archaean Tanzanian craton and the Proterozoic orogenic belt (the Masai block). We analyzed about two thousand seismic events recorded by the 39 broadband stations of the CRAFTI network during its two-year deployment in the NTD area in 2013 to 2014. We present the results of surface wave tomographic inversion obtained from fundamental-mode Rayleigh waves for short periods (between 4 to 14 seconds). Group velocity dispersion curves obtained via multiple filter analysis are path-averaged and inverted to produce 0.1º x 0.1º nodal grid tomographic maps for discrete periods using a 2D generalization of the Backus and Gilbert method. To quantify our results in terms of S-wave velocity structure the average group velocity dispersion curves are then inverted, using a linearized least-squares inversion scheme, in order to obtain the shear wave velocity structure for the upper 20 km of the crust. Low velocity anomalies are observed in the region 50 km south of Lake Natron, as well as in the area of the Ngorongoro crater. The implications of our results for the local tectonics and the development of the rifting system will be discussed in light of the growing geophysical database from this region.

  12. Sedimentary budgets of the Tanzania coastal basin and implications for uplift history of the East African rift system

    NASA Astrophysics Data System (ADS)

    Said, Aymen; Moder, Christoph; Clark, Stuart; Abdelmalak, Mohamed Mansour

    2015-11-01

    Data from 23 wells were used to quantify the sedimentary budgets in the Tanzania coastal basin in order to unravel the uplift chronology of the sourcing area located in the East African Rift System. We quantified the siliciclastic sedimentary volumes preserved in the Tanzania coastal basin corrected for compaction and in situ (e.g., carbonates) production. We found that the drainage areas, which supplied sediments to this basin, were eroded in four episodes: (1) during the middle Jurassic, (2) during the Campanian-Palaeocene, (3) during the middle Eocene and (4) during the Miocene. Three of these high erosion and sedimentation periods are more likely related to uplift events in the East African Rift System and earlier rift shoulders and plume uplifts. Indeed, rapid cooling in the rift system and high denudation rates in the sediment source area are coeval with these recorded pulses. However, the middle Eocene pulse was synchronous with a fall in the sea level, a climatic change and slow cooling of the rift flanks and thus seems more likely due to climatic and eustatic variations. We show that the rift shoulders of the East African rift system have inherited their present relief from at least three epeirogenic uplift pulses of middle Jurassic, Campanian-Palaeocene, and Miocene ages.

  13. Mapping hyper-extended rift systems offshore and onshore: insights from the Bay of Biscay- Western Pyrenees

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Kusznir, Nicolas J.; Masini, Emmanuel; Thinon, Isabelle

    2013-04-01

    Research conducted at present-day passive continental margins shows more varied crustal architectures than previously assumed. New seismic data together with drill-holes have revealed the occurrence of extremely thinned continental crust in the distal part of the margin as well as exhumed serpentinised sub-continental mantle oceanwards. In addition the understanding of the formation of hyper-extended rift systems has also greatly benefited from the study of onshore analogs preserved in mountain belts. The Bay of Biscay and Western Pyrenees correspond to a Lower Cretaceous rift system leading to the development of hyper-extended domains and ultimately oceanic crust in the Bay of Biscay. This domain represents one of the best natural laboratories to study the formation processes and evolution of hyper-extended domains. During late Cretaceous compression, these rifted domains were inverted resulting in the present-day Pyrenean mountain belt. In this contribution, we present a new paleogeographic map of the Bay of Biscay-Pyrenean rift system. We integrate results from previous works and new work using different mapping methods to distinguish distinctive crustal domains related to hyper-extended systems both offshore and onshore. We combine seismic interpretations with gravity anomaly inversion and residual depth anomaly analysis to distinguish the different crustal domains across the offshore margin. Onshore, we use an innovative approach based on observations from present-day rifted margin architecture associated with classical field work to map the former hyper-extended domains. Another outcome of this work is the creation of a crustal thickness map using gravity inversion linking offshore and onshore domains from the Bay of Biscay to that of the Western-Pyrenees. This multidisciplinary approach enables us to investigate the spatial and temporal evolution of the Bay of Biscay rift system with the aim of better understanding the formation of hyper-extended domains

  14. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  15. Diachronous Growth of Normal Fault Systems in Multiphase Rift Basins: Structural Evolution of the East Shetland Basin, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; A-L. Jackson, Christopher; Gawthorpe, Robert L.; Odinsen, Tore

    2015-04-01

    Our ability to determine the structural evolution and interaction of fault systems (kinematically linked group of faults that are in the km to 10s of km scale) within a rift basin is typically limited by the spatial extent and temporal resolution of the available data and methods used. Physical and numerical models provide predictions on how fault systems nucleate, grow and interact, but these models need to be tested with natural examples. Although field studies and individual 3D seismic surveys can provide a detailed structural evolution of individual fault systems, they are often spatially limited and cannot be used examine the interaction of fault systems throughout the entire basin. In contrast, regional subsurface studies, commonly conducted on widely spaced 2D seismic surveys, are able to capture the general structural evolution of a rift basin, but lack the spatial and temporal detail. Moreover, these studies typically describe the structural evolution of rifts as comprising multiple discrete tectonic stages (i.e. pre-, syn- and post-rift). This simplified approach does not, however, consider that the timing of activity can be strongly diachronous along and between faults that form part of a kinematically linked system within a rift basin. This study focuses on the East Shetland Basin (ESB), a multiphase rift basin located on the western margin of the North Viking Graben, northern North Sea. Most previous studies suggest the basin evolved in response to two discrete phases of extension in the Permian-Triassic and Middle-Late Jurassic, with the overall geometry of the latter rift to be the result of selective reactivation of faults associated with the former rift. Gradually eastwards thickening intra-rift strata (deposited between two rift phases) that form wedges between and within fault blocks have led to two strongly contrasting tectonic interpretations: (i) Early-Middle Jurassic differential thermal subsidence after Permian-Triassic rifting; or (ii

  16. Continental rift evolution: From rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo

    2009-09-01

    The Main Ethiopian Rift is a key sector of the East African Rift System that connects the Afar depression, at Red Sea-Gulf of Aden junction, with the Turkana depression and Kenya Rift to the South. It is a magmatic rift that records all the different stages of rift evolution from rift initiation to break-up and incipient oceanic spreading: it is thus an ideal place to analyse the evolution of continental extension, the rupture of lithospheric plates and the dynamics by which distributed continental deformation is progressively focused at oceanic spreading centres. The first tectono-magmatic event related to the Tertiary rifting was the eruption of voluminous flood basalts that apparently occurred in a rather short time interval at around 30 Ma; strong plateau uplift, which resulted in the development of the Ethiopian and Somalian plateaus now surrounding the rift valley, has been suggested to have initiated contemporaneously or shortly after the extensive flood-basalt volcanism, although its exact timing remains controversial. Voluminous volcanism and uplift started prior to the main rifting phases, suggesting a mantle plume influence on the Tertiary deformation in East Africa. Different plume hypothesis have been suggested, with recent models indicating the existence of deep superplume originating at the core-mantle boundary beneath southern Africa, rising in a north-northeastward direction toward eastern Africa, and feeding multiple plume stems in the upper mantle. However, the existence of this whole-mantle feature and its possible connection with Tertiary rifting are highly debated. The main rifting phases started diachronously along the MER in the Mio-Pliocene; rift propagation was not a smooth process but rather a process with punctuated episodes of extension and relative quiescence. Rift location was most probably controlled by the reactivation of a lithospheric-scale pre-Cambrian weakness; the orientation of this weakness (roughly NE-SW) and the Late

  17. Sismotectonics in the western branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kervyn, François; Mulumba, Jean-Luc; Kipata, Louis; Sebagenzi, Stanislas; Mavonga, Georges; Macheyeki, Athanas; Temu, Elly Bryan

    2013-04-01

    The western branch of the East African rift system is known of its particular seismic activity with larger magnitude (up to Ms 7.3) and more frequent destructive earthquakes than in the eastern branch. As a contribution to the IGCP 601 project Seismotectonic Map of Africa, we compiled the known active faults, thermal springs and historical seismicity in Central Africa. Using the rich archives of the Royal Museum for Central Africa, publications and own field observations, we present a compilation of available data relative to the current seismotectonic activity along the western branch of the East African rift system, in DRC, Rwanda, Burundi and Tanzania. Neotectonic activity related to the western rift branch is in general well expressed and relatively well studied in the eastern flank of this rift branch, in Uganda, Rwanda, Burundi and Tanzania. In contrast, the western flank of this rift branch, largely exposed in the DRC, has attracted less attention. However, data collected during the colonial times show significant sismotectonic activity in East DRC, not only in the western flank of the western rift branch, but extending far westwards up to the margin of the Congo basin. In particular, our predecessors paid a special attention to the mapping and description of thermal springs, noticing that they are often controlled by active faults. In addition, the operators of the relatively dense network of meteorological stations installed in the DRC, Rwanda and Burundi also recorded were with variable level of completeness and detail the earthquakes that they could felt. This provides a rich database that is used to complete the existing knowledge on historical seismicity. An important effort has still to be paid to identify and map potentially active fault due to poor field accessibility, tropical climate weathering and vegetation coverage. The main problem in the compilation of active fault data is that very few of them have been investigated by paleoseismic trenching

  18. Nature of the Mantle Sources and Bearing on Tectonic Evolution in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Mukasa, S. B.; Rilling-Hall, S.; Marcano, M. C.; Wilson, T. J.; Lawver, L. A.; LeMasurier, W. E.

    2012-12-01

    We collected samples from subaerial lava flows and dredged some Neogene basanitic lavas from seven volcanic edifices in the Ross Sea, Antarctica - a part of the West Antarctic Rift System (WARS) and one of the world's largest alkaline magmatic provinces - for a study aimed at two principal objectives: (1) Geochemical interrogation of the most primitive magmatic rocks to try and understand the nature of the seismically abnormal mantle domain recently identified beneath the shoulder of the Transantarctic Mountains (TAM), the Ross Sea Embayment and Marie Byrd Land; and (2) Using 40Ar/39Ar geochronology to establish a temporal link between magmatism and tectonism, particularly in the Terror Rift. We have attempted to answer the questions of whether magmatism is due to a hot mantle or wet mantle, and whether rifting in the area triggered magmatic activity or vice versa. Results show that the area does not have an age-progressive hotspot track, and the magmatism post-dates the main phase of extension along the Terror Rift within the WARS, which supports a decompression-melting model without the benefit of a significant thermal anomaly. In fact, preliminary volatile measurements on olivine-hosted melt inclusions have yielded water concentrations in excess of 2 wt%, indicating that flux melting was an important complementary process to decompression melting. The major oxide compositions of lavas in the WARS are best matched to experimental melts of carbonated peridotite, though garnet pyroxenite can also be a minor source. The Pb and Nd isotopic systems are decoupled from each other, suggesting removal of fluid-mobile elements from the mantle source possibly during the long history of subduction along the Paleo-Pacific margin of Gondwana. Extremely unradiogenic 187Os/188Os ranging to as low as 0.1081 ± 0.0001 hints at the involvement of lithospheric components in generation of magmas in the WARS.

  19. Mode of rifting in magmatic-rich setting: Tectono-magmatic evolution of the Central Afar rift system

    NASA Astrophysics Data System (ADS)

    Stab, Martin; Bellahsen, Nicolas; Pik, Raphaël; Leroy, Sylvie; Ayalew, Dereje

    2014-05-01

    Observation of deep structures related to break-up processes at volcanic passive margins (VPM) is often a troublesome exercise: thick pre- to syn-breakup seaward-dipping reflectors (SDR) usually mask the continent-ocean boundary and hide the syn-rift tectonic structures that accommodate crustal stretching and thinning. Some of the current challenges are about clarifying 1) if tectonic stretching fits the observed thinning and 2) what is the effect of continuous magma supply and re-thickening of the crust during extension from a rheological point of view? The Afar region in Ethiopia is an ideal natural laboratory to address those questions, as it is a highly magmatic rift that is probably close enough to breakup to present some characteristics of VPM. Moreover, the structures related to rifting since Oligocene are out-cropping, onshore and well preserved. In this contribution, we present new structural field data and lavas (U-Th/He) datings along a cross-section from the Ethiopian Plateau, through the marginal graben down to the Manda-Hararo active rift axis. We mapped continent-ward normal fault array affecting highly tilted trapp series unconformably overlain by tilted Miocene (25-7 Ma) acid series. The main extensional and necking/thinning event took place during the end of this Miocene magmatic episode. It is itself overlain by flat lying Pliocene series, including the Stratoid. Balanced cross-sections of those areas allow us to constrain a surface stretching factor of about 2.1-2.9. Those findings have the following implications: - High beta factor constrained from field observations is at odd with thinning factor of ~1.3 predicted by seismic and gravimetric studies. We propose that the continental crust in Central Afar has been re-thickened by the emplacement of underplated magma and SDR. - The deformation in Central Afar appears to be largely distributed through space and time. It has been accommodated in a 200-300 km wide strip being a diffuse incipient

  20. The Rwenzori Mountains, a Palaeoproterozoic crustal shear belt crossing the Albertine rift system

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Link, K.; Sachau, T.; Passchier, C. W.; Aanyu, K.; Spikings, A.; Harbinson, R.

    2015-04-01

    This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development

  1. Neogene-Quaternary Volcanic Alignments in the Transantarctic Mountains and West Antarctic Rift System of Southern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Paulsen, T. S.; Wilson, T. J.

    2004-12-01

    Neogene-Quaternary volcanism in southern Victoria Land, Antarctica, produced the Erebus Volcanic Province, a suite of alkaline volcanic rocks that extend from the Transantarctic Mountains rift-flank uplift to offshore localities within the West Antarctic rift system. We are mapping volcanic vent patterns in the province to detect alignments indicative of stress/strain patterns during rift evolution. In the southern sector of the Erebus Volcanic Province in the Royal Society Range Block of the Transantarctic Mountains, mapping shows that elliptical scoria cones, fissures, dikes, and linear vent arrays define volcanic alignments that have a dominant NNE trend, with subsidiary WNW trends. Age data for the alignments suggest that this pattern persisted from 14.6 to 0.25 Ma. We are currently completing mapping along an east-west transect crossing the rift margin, and results obtained so far within the rift region indicate a similar pattern of alignments. On the northern flank of Mount Morning, a large volcano just to the east of the Royal Society Range, elliptical scoria cones and linear vent arrays define volcanic alignments that have a dominant NE trend, with a subsidiary NNW trend. Available age data suggest that many of these cone alignments may be of Quaternary age. At Brown Peninsula, further east from the rift flank, cone alignments trend NNE and available ages range from 2 to 3 Ma. To the east of Brown Peninsula, cone alignments trend NW at Black Island, but are of uncertain age; age data on Black Island range from 11 to 3.4 Ma. At White Island, the farthest east into the rift, cone alignments trend NNE and available age data suggest volcanism as young as 0.2 Ma. Although some differences in cone alignment trends are apparent between the rift flank and the rift system across our transect, both regions appear to be dominated by NE trending alignments, which implies a WNW to NW minimum horizontal stress (Shmin) direction. This is oblique to the ENE Shmin Cape

  2. Melt generation in the West Antarctic Rift System: the volatile legacy of Gondwana subduction?

    NASA Astrophysics Data System (ADS)

    Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Cabato, J.

    2013-12-01

    The West Antarctic Rift System (WARS) represents one of the largest extensional alkali volcanic provinces on Earth, yet the mechanisms responsible for driving rift-related magmatism remain controversial. The failure of both passive and active models of decompression melting to explain adequately the observed volume of volcanism has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by roughly 500 Ma of subduction along the paleo-Pacific margin of Gondwana, although both processes are capable of producing the broad seismic anomaly imaged beneath most of the Southern Ocean. Olivine-hosted melt inclusions from basanitic lavas provide a means to evaluate the volatile budget of the mantle responsible for active rifting beneath the WARS. We present H2O, CO2, F, S and Cl concentrations determined by SIMS and major oxide compositions by EMPA for olivine-hosted melt inclusions from lavas erupted in Northern Victoria Land (NVL) and Marie Byrd Land (MBL). The melt inclusions are largely basanitic in composition (4.05 - 17.09 wt % MgO, 37.86 - 45.89 wt % SiO2, and 1.20 - 5.30 wt % Na2O), and exhibit water contents ranging from 0.5 up to 3 wt % that are positively correlated with Cl and F. Coupling between Cl and H2O indicates metasomatic enrichment by subduction-related fluids produced during dehydration reactions; coupling between H2O and F, which is more highly retained in subducting slabs, may be related to partial melting of slab remnants [1]. Application of source lithology filters [2] to whole rock major oxide data shows that primitive lavas (MgO wt % >7) from the Terror Rift, considered the locus of on-going tectonomagmatic activity, have transitioned from a pyroxenite source to a volatilized peridotite source over the past ~4 Ma. Integrating the volatile data with the modeled characteristics of source lithologies suggests that partial melting of lithosphere modified by

  3. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, Benjamin; Löbl, Ulrike; Batte, Arthur; Link, Klemens; Kasereka, Celestine; Rümpker, Georg

    2014-05-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by a bimodal pattern of fast polarizations and an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  4. History of the development of the East African Rift System: A series of interpreted maps through time

    NASA Astrophysics Data System (ADS)

    Macgregor, Duncan

    2015-01-01

    This review paper presents a series of time reconstruction maps of the 'East African Rift System' ('EARS'), illustrating the progressive development of fault trends, subsidence, volcanism and topography. These maps build on previous basin specific interpretations and integrate released data from recent petroleum drilling. N-S trending EARS rifting commenced in the petroliferous South Lokichar Basin of northern Kenya in the Late Eocene to Oligocene, though there seem to be few further deep rifts of this age other than those immediately adjoining it. At various times during the Mid-Late Miocene, a series of small rifts and depressions formed between Ethiopia and Malawi, heralding the main regional rift subsidence phase and further rift propagation in the Plio-Pleistocene. A wide variation is thus seen in the ages of initiation of EARS basins, though the majority of fault activity, structural growth, subsidence, and associated uplift of East Africa seem to have occurred in the last 5-9 Ma, and particularly in the last 1-2 Ma. These perceptions are key to our understanding of the influence of the diverse tectonic histories on the petroleum prospectivity of undrilled basins.

  5. Spatial instability of the rift in the St. Paul multifault transform fracture system, Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sokolov, S. Yu.; Zaraiskaya, Yu. A.; Mazarovich, A. O.; Efimov, V. N.; Sokolov, N. S.

    2016-05-01

    The structure of the acoustic basement of the eastern part of the St. Paul multifault transform fracture system hosts rift paleovalleys and a paleonodal depression that mismatch the position of the currently active zones. This displacement zone, which is composed of five fault troughs, is unstable in terms of the position of the rift segments, which jumped according to redistribution of stresses. The St. Paul system is characterized by straightening of the transform transition between two remote segments of the Mid-Atlantic Ridge (MAR). The eastern part of the system contains anomalous bright-spot-like reflectors on the flattened basement, which is a result of atypical magmatism, that forms the standard ridge relief of the acoustic basement. Deformations of the acoustic basement have a presedimentation character. The present-day deformations with lower amplitude in comparison to the basement are accompanied by acoustic brightening of the sedimentary sequence. The axial Bouguer anomalies in the east of the system continue to the north for 120 km from the active segments of the St. Paul system. Currently seismically active segments of the spreading system are characterized by increasing amplitudes of the E-W displacement along the fault troughs. Cross-correlation of the lengths of the active structural elements of the MAR zone (segments of the ridge and transform fracture zones of displacement) indicates that, statistically, the multifault transform fracture system is a specific type of oceanic strike-slip faults.

  6. Tectonoestratigraphic and Thermal Models of the Tiburon and Wagner Basins, northern Gulf of California Rift System

    NASA Astrophysics Data System (ADS)

    Contreras, J.; Ramirez Zerpa, N. A.; Negrete-Aranda, R.

    2014-12-01

    The northern Gulf of California Rift System consist sofa series faults that accommodate both normal and strike-slip motion. The faults formed a series of half-greens filled with more than 7 km of siliciclastic suc­cessions. Here, we present tectonostratigraphic and heat flow models for the Tiburón basin, in the southern part of the system, and the Wag­ner basin in the north. The models are constrained by two-dimensional seis­mic lines and by two deep boreholes drilled by PEMEX­-PEP. Analysis of the seismic lines and models' results show that: (i) subsidence of the basins is controlled by high-angle normal faults and by flow of the lower crust, (ii) basins share a common history, and (iii) there are significant differences in the way brittle strain was partitioned in the basins, a feature frequently observed in rift basins. On one hand, the bounding faults of the Tiburón basin have a nested geometry and became active following a west-to-east sequence of activation. The Tiburon half-graben was formed by two pulses of fault activity. One took place during the protogulf extensional phase in the Miocene and the other during the opening of Gulf of California in the Pleistocene. On the other hand, the Wagner basin is the result of two fault generations. During the late-to middle Miocene, the west-dipping Cerro Prieto and San Felipe faults formed a domino array. Then, during the Pleistocene the Consag and Wagner faults dissected the hanging-wall of the Cerro Prieto fault forming the modern Wagner basin. Thermal modeling of the deep borehole temperatures suggests that the heat flow in these basins in the order of 110 mW/m2 which is in agreement with superficial heat flow measurements in the northern Gulf of California Rift System.

  7. Upper mantle seismic anisotropy beneath the West Antarctic Rift System and surrounding region from shear wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Accardo, Natalie J.; Wiens, Douglas A.; Hernandez, Stephen; Aster, Richard C.; Nyblade, Andrew; Huerta, Audrey; Anandakrishnan, Sridhar; Wilson, Terry; Heeszel, David S.; Dalziel, Ian W. D.

    2014-07-01

    We constrain azimuthal anisotropy in the West Antarctic upper mantle using shear wave splitting parameters obtained from teleseismic SKS, SKKS and PKS phases recorded at 37 broad-band seismometres deployed by the POLENET/ANET project. We use an eigenvalue technique to linearize the rotated and shifted shear wave horizontal particle motions and determine the fast direction and delay time for each arrival. High-quality measurements are stacked to determine the best fitting splitting parameters for each station. Overall, fast anisotropic directions are oriented at large angles to the direction of Antarctic absolute plate motion in both hotspot and no-net-rotation frameworks, showing that the anisotropy does not result from shear due to plate motion over the mantle. Further, the West Antarctic directions are substantially different from those of East Antarctica, indicating that anisotropy across the continent reflects multiple mantle regimes. We suggest that the observed anisotropy along the central Transantarctic Mountains (TAM) and adjacent West Antarctic Rift System (WARS), one of the largest zones of extended continental crust on Earth, results from asthenospheric mantle strain associated with the final pulse of western WARS extension in the late Miocene. Strong and consistent anisotropy throughout the WARS indicate fast axes subparallel to the inferred extension direction, a result unlike reports from the East African rift system and rifts within the Basin and Range, which show much greater variation. We contend that ductile shearing rather than magmatic intrusion may have been the controlling mechanism for accumulation and retention of such coherent, widespread anisotropic fabric. Splitting beneath the Marie Byrd Land Dome (MBL) is weaker than that observed elsewhere within the WARS, but shows a consistent fast direction, possibly representative of anisotropy that has been `frozen-in' to remnant thicker lithosphere. Fast directions observed inland from the

  8. Active fault systems of the Kivu rift and Virunga volcanic province, and implications for geohazards

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Ebinger, C. J.; Wood, D. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2013-12-01

    H Zal, C Ebinger, D. Wood, C. Scholz, N. d'Oreye, S. Carn, U. Rutagarama The weakly magmatic Western rift system, East Africa, is marked by fault-bounded basins filled by freshwater lakes that record tectonic and climatic signals. One of the smallest of the African Great Lakes, Lake Kivu, represents a unique geohazard owing to the warm, saline bottom waters that are saturated in methane, as well as two of the most active volcanoes in Africa that effectively dam the northern end of the lake. Yet, the dynamics of the basin system and the role of magmatism were only loosely constrained prior to new field and laboratory studies in Rwanda. In this work, we curated, merged, and analyzed historical and digital data sets, including spectral analyses of merged Shuttle Radar Topography Mission topography and high resolution CHIRP bathymetry calibrated by previously mapped fault locations along the margins and beneath the lake. We quantitatively compare these fault maps with the time-space distribution of earthquakes located using data from a temporary array along the northern sector of Lake Kivu, as well as space-based geodetic data. During 2012, seismicity rates were highest beneath Nyiragongo volcano, where a range of low frequency (1-3 s peak frequency) to tectonic earthquakes were located. Swarms of low-frequency earthquakes correspond to periods of elevated gas emissions, as detected by Ozone Monitoring Instrument (OMI). Earthquake swarms also occur beneath Karisimbi and Nyamuragira volcanoes. A migrating swarm of earthquakes in May 2012 suggests a sill intrusion at the DR Congo-Rwanda border. We delineate two fault sets: SW-NE, and sub-N-S. Excluding the volcano-tectonic earthquakes, most of the earthquakes are located along subsurface projections of steep border faults, and intrabasinal faults calibrated by seismic reflection data. Small magnitude earthquakes also occur beneath the uplifted rift flanks. Time-space variations in seismicity patterns provide a baseline

  9. Age relationships for magmatic units of Mid-Continent rift system

    SciTech Connect

    Van Schmus, W.R.

    1989-03-01

    K-Ar ages ranging from about 600 to 1000 Ma have recently been reported for gabbro and basalt recovered from the Texaco 1 Poersch well in Kansas. This has prompted suggestions that rift magmatism there may be distinctly younger than that in the Lake Superior region, and that development of the rift may have lasted several hundred million years. Review of ages from Keweenawan volcanic and plutonic rocks in the Lake Superior region shows that the best results are obtained from U-Pb analyses of zircon and baddeleyite; recent published results range from 1087 to 1108 Ma, with uncertainties on individual ages of /plus minus/ 4 m.y. This finding is consistent with earlier reported U-Pb zircon results. Virtually all other techniques are susceptible to geologic error and generally yield ages of significant less than 1100 Ma. The reliability decreases approximately in the sequence Rb-Sr (whole rock), K-Ar (biotite), Ar/sup 39/-Ar/sup 40/ (whole rock), K-Ar (whole rock), with fresh, coarse-grained plutonic rocks yielding older ages than altered, fine-grained volcanic rocks. K-Ar data on altered, fine-grained mafic rocks, therefore, are very poor indicators of original crystallization ages. Since the rocks from the Texaco 1 Poersch well are fine grained and slightly to moderately altered, their true ages are probably substantially older than 800-900 Ma. Interpretations based on the K-Ar ages from this well are ill advised; tectonic interpretation of the Mid-Continent rift system must wait for more accurate results. Several possibilities exist for obtaining more reliable ages from samples of the Poersch well and other, older wells in the region. These studies are in progress, and any available results will be presented.

  10. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de M

  11. Seismic Anisotropy of the Lithosphere/Asthenosphere System Beneath the Rwenzori Region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A.; Link, K.; Kasereka, C.; Rumpker, G.

    2014-12-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  12. Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fabbi, Simone; Santantonio, Massimo

    2012-12-01

    The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then

  13. Mineralization potential along the trend of the Keweenawan- age Central North American Rift System in Iowa, Nebraska, and Kansas

    USGS Publications Warehouse

    Berendsen, P.

    1989-01-01

    The tectonic and sedimentary environment of the Central North American Rift System (CNARS) provides an excellent setting for major mineral deposits. Major north-northeast-trending high-angle normal or reverse faults and northwest-trending transcurrent fault systems may exercise control over ore forming processes. Gabbro and basalt are the dominant igneous rock types. Carbonatite and kimberlite occur in Nebraska and Kansas. Concentrations of Cu, Ni, Co, Ti, Au, Ag and PG minerals are known to occur in this setting. Arkosic sandstone, siltstone, shale, and minor carbonate units occur on top of the rift basalts and in flanking basins where they may reach thicknesses of 10 km (6 miles). The potential for stratiform or unconformity-related metalliferous deposits should be considered. The rift as a whole remains largely unexplored.

  14. Prebreakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    NASA Astrophysics Data System (ADS)

    Bartok, Peter

    1993-01-01

    A review of the prebreakup geology of west central Pangea, comprising northern South America, the Gulf of Mexico, and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The prebreakup analysis focuses attention on the Precambrian, early Paleozoic, and late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two late Precambrian orogenic belts are observed in west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. A second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. Similar aged orogenies in the Appalachians are compared. During the late Paleozoic, renewed orogenic activity, associated with the Gondwana-Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Guayana craton and West African and eastern North American cratons. Mesozoic rifling closely followed either the Precambrian trends or the late Paleozoic orogenic belt. The Triassic component focused along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the "Hispanic Corridor" that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.

  15. Stratigraphy of Mid-Continent rift system in Kansas as revealed by recent exploration wells

    SciTech Connect

    Newell, K.D.; Berendsen, P.; Watney, W.L.; Doveton, J.H.; Steeples, D.

    1989-03-01

    The Texaco 1 Poersch well in Kansas (11,300 ft TD) was the first significant exploration test of the Mid-Continent Rift System (MRS). An upper succession of rift-related rocks (2846-7429 ft) contains approximately 90% mafic igneous rocks with minor pegmatites and 10% oxidized siltstone and arkose. Arkose and subarkose with minor siltstone and shale make up 90% of a lower succession (7429 ft to TD). The remaining lower succession is composed of mafic igneous rocks. Mafic rocks are typically alkali basalts. Individual flows (detected by presence of amygdules, interflow sediments, compositional differences, and oxidized zones) range in thickness from 20 to 250 ft. Sedimentary rocks in the lower succession are divided into three sequences, each 1000-2000 ft thick. The sequences overlie relatively thin mafic flows or intrusives. Each sequence is generally composed of fining-upward units (50-150 ft thick) attributed to episodic movement and erosion of fault blocks in alluvial fan-dominated sedimentary environments. Shales and siltstones are too oxidized to be viable petroleum source rocks, but gray shale with approximately 0.5% total organic carbon was found in the MRS by the 1-4 Finn well, 21 mi to the northeast. Geologic examination of several shallower Precambrian tests holes near 1 Poersch shows considerable variability in sedimentary and tectonic settings along the MRS. Correlation between wells in Kansas and exposed areas of the MRS is still problematic. Additional wells will be necessary to better understand its hydrocarbon potential.

  16. Variations in the reflectivity of the moho transition zone beneath the Midcontinent Rift System of North America: results from true amplitude analysis of GLIMPCE data

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Lee, Myung W.; Behrendt, John C.; Cannon, William F.; Green, Adrian

    1992-01-01

    True amplitude processing of The Great Lakes International Multidisciplinary Program on Crustal Evolution seismic reflection data from the Midcontinent Rift System of North America shows large differences in the reflectivity of the Moho transition zone beneath the axial rift, beneath the rift flanks, and outside of the rift. The Moho reflection from the axial rift has a discontinuous, diffractive character marginally stronger (several decibels) than an otherwise transparent lower crust and upper mantle. Beneath the axial rift, Moho is interpreted to be a synrift igneous feature. Beneath the rift flanks, the reflectivity of the Moho transition is generally well developed with two identifiable boundaries, although in places it is weakly reflective to nonreflective, similar to Moho outside the rift. The two boundaries are interpreted as the base of essentially intact, although stretched, prerift Archean crust (upper boundary) and new synrift Moho 1-2 s (6-7 km) deeper (lower boundary). Beneath the rift flanks, the layered reflection Moho transition results from the preexisting crustal composition and fabric modified by synrift igneous processes and extensional tectonic/metamorphic processes. The geologic evidence for extensive basaltic magmatism in the rift is the basis for interpreting the Moho signature as a Keweenawan structure that has been preserved for 1.1 b.y. Extension and magmatism appear to enhance reflectivity in the lower crust and Moho transition zone only where stretching factors are moderate (rift flanks) and not where they are extreme (axial rift). This leads to the prediction that the reflectivity across analogous volcanic passive continental margins should be greatest beneath the moderately stretched continental shelves and should decrease towards the ocean-continent boundary.

  17. Syn-Rift Systems of East Godavari Sub Basin: Its Evolution and Hydrocarbon Prospectivity

    NASA Astrophysics Data System (ADS)

    Dash, J., Jr.; Zaman, B.

    2014-12-01

    Krishna Godavari (K.G.) basin is a passive margin basin developed along the Eastern coast of India. This basin has a polyhistoric evolution with multiple rift systems. Rift basin exploration has provided the oil and gas industry with almost one third of discovered global hydrocarbon resources. Understanding synrift sequences, their evolution, depositional styles and hydrocarbon prospectivity has become important with recent discovery of the wells, G-4-6,YS-AF and KG-8 in the K.G. offshore basin. The East Godavari subbasin is a hydrocarbon producing basin from synrift and pre-rift sediments, and hence this was selected as the study area for this research. The study has been carried out by utilizing data of around 58 wells (w1-w58) drilled in the study area 25 of which are hydrocarbon bearing with organic thickness varying from 200 m to 600 m. Age data generated by palaentology and palynology studies have been utilized for calibration of key well logs to differentiate between formations within prerift and synrift sediments. The electrologs of wells like resistivity, gamma ray, neutron, density and sonic logs have been utilized for correlation of different formations in all the drilled wells. The individual thicknesses of sand, shale and coal in the formations have been calculated and tabulated. For Golapalli formation, the isopach and isolith maps were generated which revealed that there were four depocentres with input from the north direction. Schematic geological cross sections were prepared using the well data and seismic data to understand the facies variation across the basin. The sedimentological and petrophysical analysis reports and electro log suites were referred to decipher the environment of deposition, the reservoir characteristics, and play types. The geochemical reports [w4 (Tmax)= 455-468 °C; w1 (Tmax) = 467-514 °C; w4(VRO)= 0.65-0.85; w1(VRO)= 0.83-1.13] revealed the source facies, its maturation and migration timings i.e. the petroleum systems

  18. The Okavango Dike Swarm (ODS) of Northern Botswana: Was it associated with a failed Rift System?

    NASA Astrophysics Data System (ADS)

    LePera, Alan; Atekwana, Estella; Abdelsalam, Mohamed

    2014-05-01

    basement extends to a depth of about 24km and is segmented into a number of along-strike magnetic bodies. The lack of significant crustal thinning below the ODS and poor relationship with the Precambrian basement fabric suggests either the ODS was not associated with a failed rift system or the remnants of the crustal disturbance have since been modified to depict a normal continental crust. The along-strike magnetic bodies conceivably represent mid-crustal feeder chambers, similar to those found in modern extensional environments such as Afar, or magma pooling zones developed along Proterozoic discontinuities. Due to the relative inconsistency of the magnetic anomaly below the swarm we speculate that a majority of the dikes are confined to the upper 5-10km of the crust. The ODS is thus interpreted to be a magma enhanced fissure network emplaced within the upper crust during an extensive period of regional tension induced by a continental wide upwelling of the asthenosphere caused by thermal incubation of the mantle.

  19. Differentiating climatic- and tectonic-controlled lake margin in rift system: example of the Plio-Quaternary Nachukui Formation, Turkana depression, Kenya

    NASA Astrophysics Data System (ADS)

    Alexis, Nutz; Mathieu, Schuster; Abdoulaye, Balde; Jean-Loup, Rubino

    2016-04-01

    The Turkana Depression is part of the eastern branch of the East African Rift System. This area consists of several Oligo-Pliocene north-south oriented half-grabens that connect the Ethiopian and Kenyan rift valleys. Exposed on the west side of the Lake Turkana, the Nachukui Formation represents a Plio-Quaternary syn-rift succession mainly outcropping near the border fault of the North Lake basin. This Formation consists of a > 700 m thick fluvial-deltaic-lacustrine sediments deposited in this area between 4.2 and 0.5 Ma. In this contribution, we present preliminary results from the investigation of the complete succession based on field geology. Facies description and sequence analyses are provided focusing on lake margin evolution through time and deciphering their controlling factors. Two main types of facies association can be distinguished in the Nachukui Fm and reveal two main types of lake margins that alternatively developed in the Turkana basin. Type-1 is characterized by thick conglomeratic proximal alluvial fan fining laterally from the border fault to the central portion of the lake to gravelly distal alluvial fan. Conglomerate and gravel beds display recurrent wave reworking (ripples, clasts sorting, open-work), as well as intercalated shells placer and stromatolites beds. Laterally, facies rapidly grade to offshore siliciclastic muds. These facies are interpreted as aggrading and prograding coarse fan deltas that entered directly in the lake. Their subaqueous parts were then affected by waves and allowed the development of shell placers and stromatolite reefs. This facies association is generally included in thick packages representing long-term prograding trends of several hundred thousand years duration (> 500 ka). Type-2 is characterized by poorly developed alluvial fan near the border fault, rapidly grading laterally to a fluvial plain and then to well-developed wave-dominated coast (beaches, washover fans, coastal wedges), finally connected to

  20. Attractor structures of riftogenesis in the lithosphere of Baikal Rift System

    NASA Astrophysics Data System (ADS)

    Klyuchevskii, A. V.

    2011-03-01

    The study results of modern geodynamics and tectonophysics of the lithosphere of Baikal Rift System (BRS) are generalized. By the data on radii of dislocations, three areas of maximal strain-strength anisotropy of the medium are distinguished, while analysis of seismic moments of earthquakes has showed that in these parts of the lithosphere mostly dip-slip fault-causing quakes of various energy classes take place; i.e., riftogenesis processes dominate. Within the framework of the theory of nonlinear dissipative dynamical systems, these areas are classified as attractor structures of riftogenesis (ASR). ASRs are located in the central part and in the flanks of the BRS, and they form nonlinearity and instability of modern geodynamical and tectonophysical processes in the lithosphere, which are manifested in seismicity of the Baikal Region and Mongolia.

  1. Images of the East Africa Rift System from the Joint Inversion of Body Waves, Surface Waves, and Gravity: Investigating the Role of Magma in Early-Stage Continental Rifting

    NASA Astrophysics Data System (ADS)

    Roecker, S. W.; Ebinger, C. J.; Tiberi, C.; Mulibo, G. D.; Ferdinand-Wambura, R.; Muzuka, A.; Khalfan, M.; Kianji, G.; Gautier, S.; Albaric, J.; Peyrat, S.

    2015-12-01

    With several rift segments at different stages of the rifting cycle, and the last orogenic episode more than 500 Mya, the young (<7 My) Eastern rift system in northern Tanzania and southern Kenya offers an ideal venue to study the role of magma and other fluids in continental rifting. To estimate both the location and volume of magma beneath the rift system, we generated 3D elastic wave images of the crust and uppermost mantle of this region by analyzing data recorded by a local deployment of 40 broad band seismic stations over a period of two years. We jointly inverted P and S wave arrival times from locally recorded earthquakes with Rayleigh wave dispersion curves derived from cross correlating ambient noise. These results were combined with Bouguer gravity anomalies to increase resolution and add constraints. The ambient noise signal appears to be channeled along the axis of the rift system, suggesting a waveguide effect. Tests with synthetic data estimate a spatial resolution in our images on the order of a few km. Our results demonstrate fundamental modifications of continental crustal structure by magmatic processes during the first few My of rift basin development. To first order, our models are dominated by regions of exceptionally low (by 10-20%) shear wavespeed relative to that of average continental crust. To a large extent the wavespeeds mimic the topography, with the slowest shear wave speeds corresponding to the lowest elevations, and tracing out a NE-SW striking region about 20 km wide from the Natron basin in the north to a NW-SE region of similar width beneath the Manyara basin in the south. These low wavespeeds are likely to be a consequence of the presence of magma and other fluids from at least 30 km depth, the limit of depth resolution for this dataset and near the base of the crust (~35 km), and extending to upper crustal levels in some areas. Somewhat surprisingly, a second region of significant low wavespeed beneath the Ngorongoro caldera

  2. The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view

    NASA Astrophysics Data System (ADS)

    Péron-Pinvidic, Gwenn; Manatschal, Gianreto

    2009-10-01

    In classical rift models, deformation is either uniformly distributed leading to symmetric fault bounded basins overlying stretched ductile lower crust (e.g. pure shear McKenzie model) or asymmetric and controlled by large scale detachment faulting (simple shear Wernicke model). In both cases rifting is considered as a mono-phase process and breakup is instantaneous resulting in the juxtaposition of continental and oceanic crust. The contact between these two types of crusts is often assumed to be sharp and marked by a first magnetic anomaly; and breakup is considered to be recorded as a major, basin wide unconformity, also referred to as breakup unconformity. These classical models, are currently challenged by new data from deep rifted margins that ask for a revision of these concepts. In this paper, we review the pertinent observations made along the Iberia-Newfoundland conjugate margins, which bear the most complete data set available from deep magma-poor margins. We reevaluate and discuss the polyphase nature of continental rifting, discuss the nature and significance of the different margin domains and show how they document extreme crustal thinning, retardation of subsidence and a complex transition into seafloor spreading. Although our study is limited to the Iberia-Newfoundland margins, comparisons with other margins suggest that the described evolution is probably more common and applicable for a large number of rifted margins. These new results have major implications for plate kinematic reconstructions and invite to rethink the terminology, the processes, and the concepts that have been used to describe continental rifting and breakup of the lithosphere.

  3. Rift zones and magma plumbing system of Piton de la Fournaise volcano: How do they differ from Hawaii and Etna?

    NASA Astrophysics Data System (ADS)

    Michon, Laurent; Ferrazzini, Valérie; Di Muro, Andrea; Villeneuve, Nicolas; Famin, Vincent

    2015-09-01

    On ocean basaltic volcanoes, magma transfer to the surface proceeds by subvertical ascent from the mantle lithosphere through the oceanic crust and the volcanic edifice, possibly followed by lateral propagation along rift zones. We use a 19-year-long database of volcano-tectonic seismic events together with detailed mapping of the cinder cones and eruptive fissures to determine the geometry and the dynamics of the magma paths intersecting the edifice of Piton de la Fournaise volcano. We show that the overall plumbing system, from about 30 km depth to the surface, is composed of two structural levels that feed distinct types of rift zones. The deep plumbing system is rooted between Piton des Neiges and Piton de la Fournaise volcanoes and has a N30-40 orientation. Above 20 km below sea level (bsl), the main axis switches to a N120 orientation, which permits magma transfer from the lithospheric mantle to the base of the oceanic crust, below the summit of Piton de la Fournaise. The related NW-SE rift zone is 15 km wide, linear, spotted by small to large pyroclastic cones and related lava flows and emits slightly alkaline magmas resulting from high-pressure fractionation of clinopyroxene ± olivine. This rift zone has low magma production rate of ~ 0.5-3.6 × 10- 3 m3s- 1 and an eruption periodicity of around 200 years over the last 30 ka. Seismic data suggest that the long-lasting activity of this rift zone result from regional NNE-SSW extension, which reactivates inherited lithospheric faults by the effect of underplating and/or thermal erosion of the mantle lithosphere. The shallow plumbing system (< 11 km bsl) connects the base of the crust with the Central Cone. It is separated from the deep plumbing system by a relatively large aseismic zone between 8 and 11 km bsl, which may represent a deep storage level of magma. The shallow plumbing system feeds frequent, short-lived summit and flank (NE and SE flanks) eruptions along summit and outer rift zones, respectively

  4. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  5. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about

  6. Hawaii Rifts

    SciTech Connect

    Nicole Lautze

    2015-01-01

    Rifts mapped through reviewing the location of dikes and vents on the USGS 2007 Geologic Map of the State of Hawaii, as well as our assessment of topography, and, to a small extent, gravity data. Data is in shapefile format.

  7. The Goodman swell: a lithospheric flexure caused by crustal loading along the Midcontinent rift system

    USGS Publications Warehouse

    Peterman, Z.E.; Sims, P.K.

    1988-01-01

    Rb-Sr biotite ages of Archean and Early to Middle Proterozoic crystalline rocks in northern Wisconsin and adjacent Upper Peninsula of Michigan describe a regionally systematic pattern related to differential uplift. An "age low' occurs in northern Wisconsin where values range from 1070-1172 Ma for rocks with crystallization ages of 1760 to 1865 Ma. These values overlap with the main episode of mafic igneous activity (1090 to 1120 Ma) along the Midcontinent rift system (MRS). We interpret these low biotite ages as registering closure due to cooling below the 300??C isotherm as a consequence of uplift and rapid erosion of an area that we are informally naming the Goodman swell. We interpret the swell to be a forebulge imposed on an elastic crust by loading of mafic igneous rocks along and within the axis of the MRS. -from Authors

  8. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  9. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly

  10. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  11. Two Plumes Beneath the East African Rift System: a Geochemical Investigation into Possible Interactions in Ethiopia

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.; van Keken, P. E.; Lin, S.

    2007-12-01

    East African Rift System magmatism began over 40 my ago and has continued through the present. Numerical models have determined two plumes are necessary to create the spatial and temporal distribution of volcanism. Geochemical data support the presence of two chemically distinct plumes initially located beneath the Afar Depression (NE Ethiopia) and the Turkana Depression (SW Ethiopia/N Kenya). The timing and eruptive of the Afar and Kenya plumes are also distinct. While there is growing evidence to support the existence of two dynamically and chemically distinct plumes beneath the East African Rift System, the interactions between them remain unclear. Our study focuses on the geochemistry of mafic shield lavas from three locations on the eastern flank of the Ethiopian plateau. These lavas are spatially located between the surface manifestation of the Afar and Kenya plumes. The majority of the lava is alkaline and has experienced varying degrees of olivine and pyroxene fractionation. The northernmost lavas (9°10'N) are transitional and display the most fractionation. Primitive mantle melts were generated at depths near the fertile mantle garnet-spinel transition zone and deeper (80-100km) and are free of metasomatic influence. Minor HREE depletions also support derivation of melts from a garnet-bearing source. Lavas with lithospheric influence are generated from shallower depths and show minor amphibole influence. Overall, geochemical data show the lavas in this study closely resemble those from various episodes of Kenya plume magmatism with modifications attributed to lithospheric contamination. This interpretation is consistent with current numerical models suggesting episodic northward movement of Kenya plume magmas along the lithosphere-asthenosphere boundary. The data imply that the Kenya plume has a much larger spatial influence and therefore a larger geodynamic influence in the EARS than previously recognized.

  12. Rift propagation

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Schubert, G.

    1989-01-01

    A model for rift propagation which treats the rift as a crack in an elastic plate which is filled from beneath by upwelling viscous asthenosphere as it lengthens and opens. Growth of the crack is driven by either remotely applied forces or the pressure of buoyant asthenosphere in the crack and is resisted by viscous stresses associated with filling the crack. The model predicts a time for a rift to form which depends primarily on the driving stress and asthenosphere viscosity. For a driving stress on the order of 10 MPa, as expected from the topography of rifted swells, the development of rifts over times of a few Myr requires an asthenosphere viscosity of 10 to the 16th Pa s (10 to the 17th poise). This viscosity, which is several orders of magnitude less than values determined by postglacial rebound and at least one order of magnitude less than that inferred for spreading center propagation, may reflect a high temperature or large amount of partial melting in the mantle beneath a rifted swell.

  13. Lower Pliensbachian caldera volcanism in high-obliquity rift systems in the western North Patagonian Massif, Argentina

    NASA Astrophysics Data System (ADS)

    Benedini, Leonardo; Gregori, Daniel; Strazzere, Leonardo; Falco, Juan I.; Dristas, Jorge A.

    2014-12-01

    In the Cerro Carro Quebrado and Cerro Catri Cura area, located at the border between the Neuquén Basin and the North Patagonian Massif, the Garamilla Formation is composed of four volcanic stages: 1) andesitic lava-flows related to the beginning of the volcanic system; 2) basal massive lithic breccias that represent the caldera collapse; 3) voluminous, coarse-crystal rich massive lava-like ignimbrites related to multiple, steady eruptions that represent the principal infill of the system; and, finally 4) domes, dykes, lava flows, and lava domes of rhyolitic composition indicative of a post-collapse stage. The analysis of the regional and local structures, as well as, the architectures of the volcanic facies, indicates the existence of a highly oblique rift, with its principal extensional strain in an NNE-SSW direction (˜N10°). The analyzed rocks are mainly high-potassium dacites and rhyolites with trace and RE elements contents of an intraplate signature. The age of these rocks (189 ± 0.76 Ma) agree well with other volcanic sequences of the western North Patagonian Massif, as well as, the Neuquén Basin, indicating that Pliensbachian magmatism was widespread in both regions. The age is also coincident with phase 1 of volcanism of the eastern North Patagonia Massif (188-178 Ma) represented by ignimbrites, domes, and pyroclastic rocks of the Marifil Complex, related to intraplate magmatism.

  14. A common mantle plume source beneath the entire East African Rift System revealed by coupled helium-neon systematics

    NASA Astrophysics Data System (ADS)

    Halldórsson, Sæmundur A.; Hilton, David R.; Scarsi, Paolo; Abebe, Tsegaye; Hopp, Jens

    2014-04-01

    We report combined He-Ne-Ar isotope data of mantle-derived xenoliths and/or lavas from all segments of the East Africa Rift System (EARS). Plume-like helium isotope (3He/4He) ratios (i.e., greater than the depleted MORB mantle (DMM) range of 8 ± 1RA) are restricted to the Ethiopia Rift and Rungwe, the southernmost volcanic province of the Western Rift. In contrast, neon isotope trends reveal the presence of an ubiquitous solar (plume-like) Ne component throughout the EARS, with (21Ne/22Ne)EX values (where (21Ne/22Ne)EX is the air-corrected 21Ne/22Ne ratio extrapolated to Ne-B) as low as 0.034, close to that of solar Ne-B (0.031). Coupling (21Ne/22Ne)EX with 4He/3He ratios indicates that all samples can be explained by admixture between a single mantle plume source, common to the entire rift, and either a DMM or subcontinental lithospheric mantle source. Additionally, we show that the entire sample suite is characterized by low 3He/22NeS ratios (mostly < 0.2)—a feature characteristic of oceanic hot spots such as Iceland. We propose that the origin of these unique noble gas signatures is the deeply rooted African Superplume which influences magmatism throughout eastern Africa. We argue that the Ethiopia and Kenya domes represent two different heads of this common mantle plume source.

  15. Structure of backarc inner rifts as a weakest zone of arc-backarc system: a case study of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tasuya; Kato, Naoko; Abe, Susumu; Saito, Hideo; Shiraishi, Kazuya; Abe, Shiori; Iwasaki, Takaya; Inaba, Mitsuru; No, Tetsuo; Sato, Takeshi; Kodaira, Shuichi; Takeda, Tetsuya; Matsubara, Makoto; Kodaira, Chihiro

    2015-04-01

    compression, the boundary of rock units reactivated as reverse faults, commonly forming a large-scale wedge thrust and produced subsidence of rift basin under compressional stress regime. Large amount of convergence of overriding plate is accommodated along the inner rift, suggesting that it is a weakest zone in whole arc-backarc system. The convergence between young (15 Ma) Shikoku basin and SW Japan arc produced intense shortening along the inner failed rift along the Sea of Japan coast. After the onset of subduction along the Nankai trough, the fold-and-thrust belt was covered by Pliocene marine sediment. Before the 2011 off-Tohoku earthquake (M9), several damaging earthquakes occurred along the backarc fold-and-thrust belt. These represents that a weak backarc inner rift is very sensitive for the stress produce by the subduction interface.

  16. Constraining the Thermal History of the Midcontinent Rift System with Clumped Isotopes and Organic Thermal Maturity Indices

    NASA Astrophysics Data System (ADS)

    Gallagher, T. M.; Sheldon, N. D.; Mauk, J. L.; Gueneli, N.; Brocks, J. J.

    2015-12-01

    The Mesoproterozoic (~1.1 Ga) North American Midcontinent Rift System (MRS) has been of widespread interest to researchers studying its economic mineral deposits, continental rifting processes, and the evolution of early terrestrial life and environments. For their age, the MRS rocks are well preserved and have not been deeply buried, yet a thorough understanding of the regional thermal history is necessary to constrain the processes that emplaced the mineral deposits and how post-burial alteration may have affected various paleo-records. To understand the thermal history of the MRS better, this study presents carbonate clumped isotope (Δ47) temperatures from deposits on the north and south sides of the rift. Due to the age of these deposits and known post-depositional processes, uncertainties exist about whether the clumped isotope signature has been reset. To test this, three generations of calcite were analyzed from the Nonesuch Fm. from the White Pine mine in Michigan including: sedimentary limestone beds, early diagenetic carbonate nodules, and hydrothermal calcite veins associated with the emplacement of copper mineralization. Clumped isotope temperatures from the White Pine mine range from 84 to 131°C, with a hydrothermal vein producing the hottest temperature. The clumped isotope temperature range for samples throughout the rift expands to 41-134°C. The hottest temperatures are associated with areas of known copper mineralization, whereas the coolest temperatures are found on the northern arm of the rift in Minnesota, far from known basin-bounding faults. Our hottest temperatures are broadly consistent with preexisting maximum thermal temperature estimates based on clay mineralogy, fluid inclusions, and organic geochemistry data. Clumped isotope results will also be compared to new hydrocarbon maturity data from the Nonesuch Fm., which suggest that bitumen maturities consistently fall within the early oil window across Michigan and Wisconsin.

  17. Gravity study of the Central African Rift system: a model of continental disruption 2. The Darfur domal uplift and associated Cainozoic volcanism

    NASA Astrophysics Data System (ADS)

    Bermingham, P. M.; Fairhead, J. D.; Stuart, G. W.

    1983-05-01

    Gravity studies of the Darfur uplift, Western Sudan, show it to be associated with a circular negative Bouguer anomaly, 50 mGal in amplitude and 700 km across. A three-dimensional model interpretation of the Darfur anomaly, using constraints deduced from geophysical studies of similar but more evolved Kenya and Ethiopia domes, suggests either a low-density laccolithic body at mid-lithospheric depth (~ 60 km) or a thinned lithosphere with emplacement at high level of low-density asthenospheric material. The regional setting of the Darfur uplift is described in terms of it being an integral part of the Central African Rift System which is shown to be broadly equivalent to the early to middle Miocene stage in the development of the Afro-Arabian Rift System. Comparisons between these rift systems suggest that extensional tectonics and passive rifting, resulting in the subsiding sedimentary rift basins associated with the Ngaoundere, Abu Gabra, Red Sea and Gulf of Aden rifts, are more typical of the early stage development of passive continental margins than the active domal uplift and development of rifted features associated with the Darfur, Kenya and Ethiopia domes.

  18. Rapid spatiotemporal variations in rift structure during development of the Corinth Rift, central Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey W.; McNeill, Lisa C.; Bull, Jonathan M.; Bell, Rebecca E.; Gawthorpe, Robert L.; Henstock, Timothy J.; Christodoulou, Dimitris; Ford, Mary; Taylor, Brian; Sakellariou, Dimitris; Ferentinos, George; Papatheodorou, George; Leeder, Mike R.; Collier, Richard E. LI.; Goodliffe, Andrew M.; Sachpazi, Maria; Kranis, Haralambos

    2016-05-01

    The Corinth Rift, central Greece, enables analysis of early rift development as it is young (<5 Ma) and highly active and its full history is recorded at high resolution by sedimentary systems. A complete compilation of marine geophysical data, complemented by onshore data, is used to develop a high-resolution chronostratigraphy and detailed fault history for the offshore Corinth Rift, integrating interpretations and reconciling previous discrepancies. Rift migration and localization of deformation have been significant within the rift since inception. Over the last circa 2 Myr the rift transitioned from a spatially complex rift to a uniform asymmetric rift, but this transition did not occur synchronously along strike. Isochore maps at circa 100 kyr intervals illustrate a change in fault polarity within the short interval circa 620-340 ka, characterized by progressive transfer of activity from major south dipping faults to north dipping faults and southward migration of discrete depocenters at ~30 m/kyr. Since circa 340 ka there has been localization and linkage of the dominant north dipping border fault system along the southern rift margin, demonstrated by lateral growth of discrete depocenters at ~40 m/kyr. A single central depocenter formed by circa 130 ka, indicating full fault linkage. These results indicate that rift localization is progressive (not instantaneous) and can be synchronous once a rift border fault system is established. This study illustrates that development processes within young rifts occur at 100 kyr timescales, including rapid changes in rift symmetry and growth and linkage of major rift faults.

  19. DoD-GEIS Rift Valley Fever Monitoring and Prediction System as a Tool for Defense and US Diplomacy

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Tucker, Compton J.; Linthicum, Kenneth J.; Witt, Clara J.; Gaydos, Joel C.; Russell, Kevin L.

    2011-01-01

    Over the last 10 years the Armed Forces Health Surveillance Center's Global Emerging Infections Surveillance and Response System (GEIS) partnering with NASA'S Goddard Space Flight Center and USDA's USDA-Center for Medical, Agricultural & Veterinary Entomology established and have operated the Rift Valley fever Monitoring and Prediction System to monitor, predict and assess the risk of Rift Valley fever outbreaks and other vector-borne diseases over Africa and the Middle East. This system is built on legacy DoD basic research conducted by Walter Reed Army Institute of Research overseas laboratory (US Army Medical Research Unit-Kenya) and the operational satellite environmental monitoring by NASA GSFC. Over the last 10 years of operation the system has predicted outbreaks of Rift Valley fever in the Horn of Africa, Sudan, South Africa and Mauritania. The ability to predict an outbreak several months before it occurs provides early warning to protect deployed forces, enhance public health in concerned countries and is a valuable tool use.d by the State Department in US Diplomacy. At the international level the system has been used by the Food and Agricultural Organization (FAD) and the World Health Organization (WHO) to support their monitoring, surveillance and response programs in the livestock sector and human health. This project is a successful testament of leveraging resources of different federal agencies to achieve objectives of force health protection, health and diplomacy.

  20. Basement control in the development of the early cretaceous West and Central African rift system

    NASA Astrophysics Data System (ADS)

    Maurin, Jean-Christophe; Guiraud, René

    1993-12-01

    The structural framework of the Precambrian basement of the West and Central African Rift System (WCARS) is described in order to examine the role of ancient structures in the development of this Early Cretaceous rift system. Basement structures are represented in the region by large Pan-African mobile belts (built at ca. 600 Ma) surrounding the > 2 Ga West African, Congo and Sao Francisco cratons. Except for the small Gao trough (eastern Mali) located near the contact nappe of the Pan-African Iforas suture zone along the edge of the West African craton, the entire WCARS is located within the internal domains of the Pan-African mobile belts. Within these domains, two main structural features occur as the main basement control of the WCARS: (1) an extensive network of near vertical shear zones which trend north-south through the Congo, Brazil, Nigeria, Niger and Algeria, and roughly east-west through northeastern Brazil and Central Africa. The shear zones correspond to intra-continental strike-slip faults which accompanied the oblique collision between the West African, Congo, and Sao Francisco cratons during the Late Proterozoic; (2) a steep metamorphic NW-SE-trending belt which corresponds to a pre-Pan-African (ca. 730 Ma) ophiolitic suture zone along the eastern edge of the Trans-Saharian mobile belt. The post-Pan-African magmatic and tectonic evolution of the basement is also described in order to examine the state of the lithosphere prior to the break-up which occurred in the earliest Cretaceous. After the Pan-African thermo-tectonic event, the basement of the WCARS experienced a long period of intra-plate magmatic activity. This widespread magmatism in part relates to the activity of intra-plate hotspots which have controlled relative uplift, subsidence and occasionally block faulting. During the Paleozoic and the early Mesozoic, this tectonic activity was restricted to west of the Hoggar, west of Aïr and northern Cameroon. During the Late Jurassic

  1. He-Ne-Ar isotope studies of mafic volcanic rocks and mantle xenoliths from the East African Rift System - contrasting isotope signals in different rift branches

    NASA Astrophysics Data System (ADS)

    Halldorsson, S. A.; Hilton, D. R.; Scarsi, P.; Abebe, T.; Massi, K. M.; Barry, P. H.; Fischer, T. P.; de Moor, J.; Rudnick, R. L.

    2010-12-01

    Helium isotope studies of the East African Rift System (EARS) suggest the involvement of a deep mantle plume(s) beneath the northern (Ethiopian) segment [1-3]. The highest 3He/4He (RA) signatures found to date show a close association with the greatest magma volumes erupted since the Early Cenozoic in the region. While the helium isotope characteristics are well established in the Ethiopia-Afar region, Ne and Ar systematics remain poorly constrained. Using a combined He-Ne-Ar isotope approach, our aim is to determine the regional extent of the influence of the Afar plume and to distinguish between subcontinental lithospheric mantle (SCLM) and/or a possible second mantle plume sources located to the south of the Turkana Depression. Xenoliths and mafic lavas from N-Tanzania display a limited range in He isotopes (5-7 RA) with exceptions at Arusha (7.8RA) and Labait (8.7RA), through 7.1-8.7 RA in N-Kenya and S-Ethiopia, to 14.3 RA in the Main Ethiopian Rift and Afar, spanning nearly the entire range of previously reported values. The mean 3He/4He ratio from of lavas and xenoliths from N-Tanzania is remarkably close to the global average of 6.1±0.9 (RA) for continental xenoliths and basalts, thought to represent the SCLM [4]. Thus far, only MORB-like values of 7.3-8.3 RA have been found in volcanics of the Western rift. Initial Ne isotope data reveal the presence of a solar-like Ne component in xenoliths from the Ethiopia-Afar region, with extrapolated 21Ne/22Neex ratios of 0.0365 (assuming Ne-B = 12.5). This trend overlaps that of the Loihi-Kilauea line (L-K). Interestingly, a xenolith from N-Tanzania has a 21Ne/22Neex ratio of 0.0415, falling on a trajectory intermediate between MORB and L-K. The highest 40Ar/36Ar ratio obtained on phenocrysts/xenoliths to date is 1510. The generally low 3He/4He ratios of N-Tanzania likely result from different mixing proportions of asthenospheric sources with lithospheric material, the latter having developed lower 3He/4He ratios

  2. Melt Distribution in the Ethiopian Rift System: Constraints From Seismic Observations and Finite-Frequency Modelling

    NASA Astrophysics Data System (ADS)

    Angus, D.; Hammond, J. O.; Kendall, J.; Wookey, J.

    2008-12-01

    As part of the Ethiopian Afar Geoscientific Lithospheric Experiment (EAGLE) 79 seismic stations were deployed, for up to 18 months, in the Main Ethiopian Rift (MER). Many indicators of melt were observed leading to the idea that magma was driving the rifting process in this region. Some of the best evidence for melt came from observations of anisotropy in studies of surface waves and shear-wave splitting. The shear- wave splitting shows fast directions which change abruptly from being rift parallel on the rift flanks to magmatic-segment parallel in the rift valley. This was interpreted in terms of melt-induced anisotropy. The abrupt change in splitting parameters over small lateral distances suggests that the source of anisotropy is shallow. To further constrain the location of the anisotropy and study the ability of shear-wave splitting to identify sharp lateral changes in anisotropy, we model finite-frequency waveforms for a suite of model representations of the rift zone. This allows us to determine the lateral and vertical extent of the melt-induced anisotropy. The results show how a simple model with two regimes of anisotropy can explain the variability across the rift, in both delay time and shear-wave polarization, over short length scales of the order 20- 40 km. Our models have enabled us to constrain the anisotropic characteristics beneath the MER. Our best model has a 9% anisotropy on the western rift margin, with fast directions of 30°, a 100 km wide rift zone with fast direction of 20° inside the rift zone and with 9% anisotropy close to the western margin, 7% elsewhere, and 7% anisotropy on the eastern margin with fast directions of 30°. In all regions of the model we constrain anisotropy to begin at a depth of 90 km. The depth of anisotropy co-incides with the proposed depth of melt initiation beneath the region, based on geochemistry. Also the elevated splitting beneath the western margin supports evidence of low velocities and highly conductive

  3. Groundwater dynamics in the complex aquifer system of Gidabo River Basin, southern Main Ethiopian Rift: Evidences from hydrochemistry and isotope hydrology

    NASA Astrophysics Data System (ADS)

    Degu, Abraham; Birk, Steffen; Dietzel, Martin; Winkler, Gerfried; Moggessie, Aberra

    2014-05-01

    Located in the tectonically active Main Ethiopian Rift system, the Gidabo River Basin in Ethiopia has a complex hydrogeological setting. The strong physiographic variation from highland to rift floor, variability in volcanic structures and disruption of lithologies by cross-cutting faults contribute for their complex nature of hydrogeology in the area. Until now, the groundwater dynamics and the impact of the tectonic setting on groundwater flow in this region are not well understood, though the local population heavily depends on groundwater as the major water supply. A combined approach based on hydrochemical and isotopic data was applied to investigate the regional flow dynamics of the groundwater and the impact of tectonic setting. Groundwater evolves from slightly mineralized Ca-Mg-HCO3 on the highland to highly mineralized Na-HCO3 dominating type in the deep rift floor aquifers. δ18O and δD composition of groundwater show a general progressive enrichment from the highland to the rift floor, except in thermal and deep rift floor aquifers. Relatively the thermal and deep rift floor aquifers are depleted and show similar signature to the groundwaters of highland, indicating groundwater inflow from the highland. Correspondingly, rising HCO3 and increasingly enriched signatures of δ 13C points to hydrochemical evolution of DIC and diffuse influx of mantle CO2 into the groundwater system. Thermal springs gushing out along some of the fault zones, specifically in the vicinity of Dilla town, display clear influence of mantle CO2 and are an indication of the role of the faults acting as a conduit for deep circulating thermal water to the surface. By considering the known geological structures of the rift, hydrochemical and isotopic data we propose a conceptual groundwater flow model by characterizing flow paths to the main rift axis. The connection between groundwater flow and the impact of faults make this model applicable to other active rift systems with similar

  4. Interaction between transform faults and rift systems: a combined field and experimental approach

    NASA Astrophysics Data System (ADS)

    Tibaldi, Alessandro; Bonali, Fabio; Pasquaré Mariotto, Federico

    2016-04-01

    We present a detailed field structural survey of the area of interaction between the active NW-striking transform Husavik-Flatey Fault (HFF) and the N-S Theystareykir Fissure Swarm (TFS), in North Iceland, integrated by analogue scaled models. Field data contribute to a better understanding of how transform faults work, at a much higher detail than classical marine geophysical studies. Analogue experiments are conducted to analyse the fracture patterns resulting from different possible cases where transform faulting accompanies or postpones the rift motions; different tectonic block configurations are also considered. West of the intersection between the transform fault (HFF) and the rift zone (TFS), the former splays with a gradual bending giving rise to a leading extensional imbricate fan. The westernmost structure of the rift, the N-S Gudfinnugja Fault (GF), is divided into two segments: the southern segment makes a junction with the HFF and is part of the imbricate fan; north of the junction instead, the northern GF appears right-laterally offset by about 20 m. Southeast of the junction, along the possible prolongation of the HFF across the TFS, the strike of the rift faults rotates in an anticlockwise direction, attaining a NNW-SSE orientation. Moreover, the TFS faults north of the HFF prolongation are fewer and have smaller offsets than those located to the south. Through the comparison between the structural data collected in the field at the HFF-TFS connection zone and a set of scaled experiments, we confirm a prolongation of the HFF through the rift, although here the transform fault has a much lower slip-rate than west of the junction. Our data suggest that transform fault terminations may be more complex than previously known, and propagate across a rift through a modification of the rift pattern.

  5. Transition From a Magmatic to a Tectonic Rift System : Seismotectonics of the Eyasi- Manyara Region, Northern Tanzania, East Africa

    NASA Astrophysics Data System (ADS)

    Albaric, J.; Perrot, J.; Deschamps, A.; Deverchere, J.; Wambura, R. F.; Tiberi, C.; Petit, C.; Le Gall, B.; Sue, C.

    2008-12-01

    How a rift system propagates and breaks throughout a cold and thick continental crust remains poorly known. Only few places allow to address the question. In the East African Rift System (EARS), the eastern magma- rich branch abruptly splits into two amagmatic arms (the Eyasi and Manyara faulted systems), south of a E-W volcanic chain (the Ngorongoro-Kilimanjaro transverse volcanic belt), as crossing the Archaean Tanzanian craton margin. We present the first detailed seismotectonic picture of the Eyasi-Manyara rifts where a network of ~25 seismometers was settled from June to November 2007 (SEISMO-TANZ'07 seismological experiment). From the seismicity recorded by the network, we identify active faults and discuss the stress field framework obtained from the inversion of focal mechanisms. We use the determined depth of earthquakes (1) to discuss the crustal structure of the transition zone from a magma-rich to a magma-starved section of the EARS and (2) to further emphasize the rheological control on depth distributions in the EARS (Albaric et al., Tectonophysics, 2008). The stress and strain directions deduced from our work are also used to question recently published kinematics and conceptual models of the EARS (Calais et al., Geol. Soc. London, 2006 ; Le Gall et al., Tectonophysics, 2008).

  6. Oil source rocks in lacustrine sequences from Tertiary grabens, western Mediterranean rift system, northeast Spain

    SciTech Connect

    Anadon, P.; Cawley, S.J.; Julia, R.

    1988-08-01

    Lacustrine sequences, 100-250 m thick, containing oil-prone, organic-rich mudstones (ORM) are exposed in five Tertiary basins in northeastern Spain. They were deposited in small lacustrine basins (up to 50 km/sup 2/) that developed in grabens of the western Mediterranean rift system. ORMs from the Rubielos basin comprise laminated gray mudstones with interbedded rhythmite intervals (up to 2.5 m thick) formed by couplets of organic- and carbonate-rich laminae (< 1 mm thick). In marginal zones, ORMs (up to 10 m thick) alternate with lean, bioturbated green marls (up to 5 m thick). ORMs (Rock-Eval yields /approximately/ 40 kg/MT, HI /approximately/ 850 mg HC/g TOC) had a dominant waxy terrestrial plant input, with significant and variable algal/bacterial input. ORMs in these basins are immature for petroleum generation. Larger lacustrine basins similar to those described above, in more appropriate burial/thermal situations, can be envisioned as zones of potential interest for lacustrine oil exploration in the western Mediterranean.

  7. Calibration Systems Final Report

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  8. Structural style of the Turkana Rift, Kenya

    SciTech Connect

    Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

    1988-03-01

    Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

  9. A hydrogeologic model of stratiform copper mineralization in the Midcontinent Rift System, Northern Michigan, USA

    USGS Publications Warehouse

    Swenson, J.B.; Person, M.; Raffensperger, J.P.; Cannon, W.F.; Woodruff, L.G.; Berndt, M.E.

    2004-01-01

    This paper presents a suite of two-dimensional mathematical models of basin-scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main-stage stratiform copper mineralization of the basal Nonesuch Formation during the post-volcanic/pre-compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward-directed, compaction-driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper-laden brines into the lowermost facies of the pyrite-rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic-grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction-driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass-balance calculations support this conclusion. We also assessed whether topography and density-driven flow systems could have caused ore genesis at White Pine. Topography-driven flow associated with the Ottawan orogeny was discounted because it post-dates main-stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density-driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.

  10. Fluvial systems response to rift margin tectonics: Makhtesh Ramon area, southern Israel

    NASA Astrophysics Data System (ADS)

    Ben-David, Ram; Eyal, Yehuda; Zilberman, Ezra; Bowman, Dan

    2002-06-01

    The geomorphic evolution of Makhtesh Ramon, a feather-shaped erosional valley, and the Nahal Neqarot drainage system to the south occurred largely in response to tectonic activity along the Dead Sea Rift and its western shoulder. Remnants of Miocene clastic sediments (Hazeva Formation) deposited on an erosional peneplain that formed over this area during the Oligocene epoch provide a datum plane for reconstructing subsequent fluvial evolution. These clastic remnants are presently located on the shoulders of Makhtesh Ramon at various elevations. The peneplain truncating the Makhtesh Ramon block has been tilted 0.7% northeastward since the Pliocene epoch (post-Hazeva Formation), whereas that of the Neqarot syncline, south of the Ramon, has been tilted 1.2%. The elliptical exposure of friable Lower Cretaceous sandstone, exposed in the core of the truncated Ramon structure, governed the development of a new ENE directed (riftward) drainage system through capture of streams that previously drained toward the Mediterranean Sea to the northwest. Incised fluvial gaps in the southern rim of Makhtesh Ramon and alluvial fan relicts within Makhtesh Ramon attest to original drainage into the Makhtesh from the south. Remnants of the Plio-Pleistocene Arava Conglomerate on the eastern end of the Neqarot syncline contain clasts from rocks exposed within Makhtesh Ramon, also indicating that streams flowed into the Makhtesh from the southern Neqarot block through the western gaps, then turning eastward and exiting the Makhtesh via the next (Sha'ar-Ramon) gap to the east. Further down-faulting of the Neqarot block during Mid-Late Pleistocene time led to westward retreat of the Neqarot valley and capture of the last stream flowing northward into the Ramon, leaving the modern Makhtesh Ramon isolated from the southern drainage system.

  11. Kinematics of Rift-Parallel Deformation Along the Rukwa Rift, Western Branch, and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Stamps, D.; Koehn, D.; Burke, K. C.; d'Oreye, N.; Saria, E.; Xu, R.

    2013-12-01

    The East African Rift System spans N-S ~5000 km and currently experiences E-W extension. Previous kinematic studies of the EARS delineated 3 relatively rigid sub-plates (Victoria, Rovuma, and Lwandle) between the Nubian and Somalian plates. GPS observations of these block interiors confirm the rigid plate model, but we also detect a systematic along-rift deformation pattern at GPS stations located within rift zones bounding the western Victoria block and continuing north between the Nubian and Somalian plates. Here we present a kinematic model of present-day rift-parallel deformation along the Western branch, Rukwa Rift, and Main Ethiopian Rift constrained by a new GPS solution, earthquake slip vectors, and mapped active fault structures. We test the roles of block rotation, elastic deformation, and anelastic deformation by varying block geometry, fault slip distribution parameters, estimating permanent strain rate, and scoring each model with GPS observations. We also explore how the present-day deformation patterns relate to longer-term paleostress indicators. Observations of slickensides and offsets in seismic reflection profiles in the northern Western branch (Albertine rift) indicate a change from ~NNE trending normal faulting to include strike-slip motion within the past 7 My that may be related to previously studied stress changes in the Turkana rift. Preliminary results from the kinematic modeling demonstrate simple elastic strain accumulation on major border faults cannot explain an observed systematic northward component in GPS velocities relative to the Victoria block and the Nubian plate.

  12. Sedimentation and reservoir distribution related to a tilted block system in the Sardinia Oligocene-Miocene rift (Italy)

    SciTech Connect

    Tremolieres, P.; Cherchi, A.; Eschard, R.; De Graciansky, P.C.; Montadert, L.

    1988-08-01

    In the western Mediterranean basin lies a rift system about 250 km long and 50 km wide and its infilling outcrop (central Sardinia). Seismic reflection surveys show its offshore extension. Block tilting started during the late Oligocene and lasted during Aquitanian-early Burdigalian time. Two main fault trends, with synthetic and antithetic throws, define the more-or-less collapsed blocks. This morphology guided the transit and trapping of sediments. The sedimentation started in a continental environment then, since the Chattian, in marine conditions. In the central part, the series can reach a thickness of 2,000 m. The basement composition and the volcanics products related to the main fault motion controlled the nature of the synrift deposits. According to their location in the rift context, the tilted blocks trap either continental deposits or marine siliciclastic or carbonate deposits. In the deeper part of the graben, sands were redeposited by gravity flows into the basinal marls. The younger prerift deposits are from Eocene to early Oligocene age and locally comprise thick coal layers. Postrift deposits, mainly marls, sealed the blocks and synrift sedimentary bodies. In middle and late Miocene time some faults were reactivated during compressional events. Then, a quaternary extensional phase created the Campidano graben, filled with about 1,000 m of sediments superimposed on the Oligocene-Miocene rift.

  13. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems.

    PubMed

    Ivanov, Alexei V; Demonterova, Elena I

    2009-01-01

    As known from inland sedimentary records, boreholes, and geophysical data, the initiation of the Baikal rift basins began as early as the Eocene. Dating of volcanic rocks on the rift shoulders indicates that volcanism started later, in the Early Miocene or probably in the Late Oligocene. Prominent tectonic uplift took place at about 20 Ma, but information (from both sediments and volcanics) on the initial stage of the rifting is scarce and incomplete. A comprehensive record of sedimentation derived from two stacked boreholes drilled at the submerged Akademichesky ridge indicates that the deep freshwater Lake Baikal existed for at least 8.4 Ma, while the exact formation of the lake in its roughly present-day shape and volume is unknown. Four important events of tectonic/environmental changes at about approximately 7, approximately 5, approximately 2.5, and approximately 0.1 Ma are seen in that record. The first event probably corresponds to a stage of rift propagation from the historical center towards the wings of the rift system. Rifting in the Hovsgol area was initiated at about this time. The event of ~5 Ma is a likely candidate for the boundary between slow and fast stages of rifting. It is reflected in a drastic change of sedimentation rate due to isolation of the Akademichesky ridge from the central and northern Lake Baikal basins. The youngest event of 0.1 Ma is reflected by the (87)0Sr/ (86)Sr ratio increase in Lake Baikal waters and probably related to an increasing rate of mountain growth (and hence erosion) resulting from glacial rebounding. The latter is responsible for the reorganization of the outflow pattern with the termination of the paleo-Manzurka outlet and the formation of the Angara outlet. The event of approximately 2.5 Ma is reflected in the decrease of the (87)Sr/(86)Sr and Na/Al ratios in Lake Baikal waters. We suggest that it is associated with a decrease of the dust load due to a reorganization of the atmospheric circulations in Mainland

  14. Rio Grande rift: An overview

    NASA Astrophysics Data System (ADS)

    Olsen, Kenneth H.; Scott Baldridge, W.; Callender, Jonathan F.

    1987-11-01

    The Rio Grande rift of the southwestern United States is one of the world's principal continental rift systems. It extends as a series of asymmetrical grabens from central Colorado, through New Mexico, to Presidio, Texas, and Chihuahua, Mexico—a distance of more than 1000 km. Although the Rio Grande rift is closely related in timing and structural style to the contiguous Basin and Range extensional province, the two can be distinguished by a variety of geological and geophysical signatures. Rifts (both oceanic and continental) can be defined as elongate depressions overlying places where the entire lithosphere has ruptured in extension. The lithosphere of the Rio Grande rift conforms to this definition, in that: (1) the crust is moderately thinned—Moho depths range from about 45 km under the flanks to about 33 km beneath the rift axis. (2) anomalously low P n velocities (7.6-7.8 km s -1) beneath the rift and a long wavelength gravity low suggest that the asthenosphere is in contact with the base of the crust. The P-velocity is abnormally low (6.4-6.5 km s -1) in the lower half of the crust beneath the rift, suggesting high crustal temperatures. However, associated seismic and volcanologic data indicate the sub-rift lower crust is not dominated by a massive composite mafic intrusion such as is sometimes inferred for the East African rifts. Seismic and magnetotelluric data suggest the presence of a thin (< 1 km) sill-like contemporary midcrustal magma body which may perhaps extend intermittently along much of the length of the rift. Seismic and structural studies indicate a dominant horizontal fabric in the upper and middle crust. The brittle-ductile transition is at depths -15 km except for the major volcanic fields, where it rises to 2-3 km. Structural development of the rift occurred mainly during two time intervals: the early phase beginning at -30 Ma. and lasting 10-12 m.y., and the late phase extending from -10 to 3 Ma. The early phase involved extensive

  15. Final focus system for TLC

    SciTech Connect

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal US function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs.

  16. Evolution of bimodal volcanism in Gona, Ethiopia: geochemical associations and geodynamic implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Gregory, R. T.; Richards, I.; Quade, J.; Ebinger, C. J.

    2013-12-01

    The East African rift system in Ethiopia formed in the Earth's youngest flood basalt province, and provides a natural laboratory to study the geochemistry of bimodal volcanism and its implications for plume-derived magmatism, mantle-lithosphere interactions and evolution of continental rifts from plate extension to rupture. Our geochemical studies of the ~6 Ma to recent eruptive products from Gona within the Afar Rift Zone are understood in context of crustal and upper mantle seismic imaging studies that provide constraints on spatial variations. Geochemical (major element, trace element and isotope) analyses of basalts and rhyolitic tuff from Gona indicate a common magma source for these bimodal volcanics. Light rare earth elements (LREEs) are enriched with a strong negative Eu anomaly and a positive Ce anomaly in some of the silicic volcanic rocks. We observe strong depletions in Sr and higher concentrations of Zr, Hf, Th, Nb and Ta. We hypothesize that the silicic rocks may be residues from a plume-derived enriched magma source, following partial melting with fractional crystallization of plagioclase at shallow magma chambers. The absence of Nb-Ta anomaly shows no crustal assimilation by magmas. Sr isotopes, in conjunction with Nd and Pb isotopes and a strong Ce anomaly could reflect interaction of the parent magma with a deep saline aquifer or brine. Nd isotopic ratios (ɛNd = 1.9 to 4.6) show similarity of the silicic tuffs and basalts in their isotopic compositions except for some ~6 Ma lavas showing MORB-like values (ɛNd = 5 to 8.7) that suggest involvement of the asthenosphere with the plume source. Except for one basaltic tuff, the whole rock oxygen isotopic ratios of the Gona basalts range from +5.8‰ to +7.9‰, higher than the δ values for typical MORB, +5.7. The oxygen isotopes in whole rocks from the rhyolite tuffs vary from 14.6‰ to 20.9‰ while their Sr isotope ratios <0.706, indicative of post-depositional low T alteration of these silicic

  17. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    USGS Publications Warehouse

    Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Trehu, A.; Cannon, W.; Green, A.

    1990-01-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth. ?? 1990.

  18. Rift Fault Geometry and Distribution in Layered Basaltic Rocks: A Comparison Between the Koa'e (Hawai'i) and Krafla (Iceland) Fault Systems

    NASA Astrophysics Data System (ADS)

    Bubeck, A.; Walker, R. J.; MacLeod, C. J.; Imber, J.

    2014-12-01

    Fault systems within incipient rifts that cut basaltic rocks comprise an array of fine-scale structures, including networks of fractures and small displacement (<15 m) faults that accommodate regional extension. These zones of damaged rock have mechanical and physical properties distinct from the surrounding intact host rock. As the rift system evolves this early-formed damage can be reactivated, and influence the distribution and growth of new fractures. Constraining the role of this inter-fault deformation in rift zone development is therefore important to characterizing the regional distribution of extensional strains, and the evolving physical and fluid flow properties of the host rock. Here we use high resolution field and remote mapping of the Koa'e insipient rift fault system on the south flank of Kilauea Volcano on Hawaii's Big Island, and the Krafla rift system, Iceland, to investigate the evolution of segmented rift fault systems in layered basalts, formed at low confining pressures. Extension in the Koa'e system is accommodated dominantly by interaction of zones of opening-mode fractures and areas of surface flexure rather than surface-breaching normal faults, which is attributed to gravitational collapse of Kilauea. Extension in the Krafla system is localised on segmented, large displacement (>20 m) normal faults, the development of which may have been controlled by dyke emplacement. Preliminary comparison between the Koa'e and Krafla systems suggests that strain rate and/or the effective stress path plays a primary role in controlling the geometry, characteristics, and distribution of major faults, and the scale and distribution of secondary (oblique) brittle structures within rift zones.

  19. Magmatism in a Cambrian Laurentian Plate Rift

    NASA Astrophysics Data System (ADS)

    Gilbert, M. C.

    2008-12-01

    Evidences of the Cambrian Southern Oklahoma Aulacogen extend over 1000km from about Dallas out to the Uncompahgre Plateau in SW Colorado. The signature of this originally extensional feature can be traced geophysically, and in some places at the present surface, petrologically and temporally, by the presence of mafic rock. It appears to have been the intracontinental third arm of a plume-generated? triple junction which helped to dismember the southern part of Laurentia on the final break-up of a Neoproterozoic supercontinent. Other parts of Laurentia rifted away and are now found in the Precordillera of Argentina. Rift magmatism appears to have been concentrated nearer the plate edge during the breakup. Perhaps as much as 40,000 km3 of mostly subaerial silicic volcanics and shallow-seated granites overlay and filled the top of the rift in the area of SW Oklahoma. The rift fill below the silicic rocks is large, layered mafic complexes and smaller, layered, hydrous gabbros, the whole set appearing as a shallow AMCG complex. Unusually, direct rift sediments are not obvious. Furthermore, silicic and mafic rocks have identical Nd signatures. Finally, about 20 Ma after rifting ceased and later into the Paleozoic during sea incursion, overlying sediments are thickened 4X compared to equivalent units 100's of kms to the rift sides. This rift appears distinct from most modern rifts. Conclusions are 1) This was a hot, narrow rift; 2) Basaltic magmatism , not sedimentation, filled the rift; 3) Magmatic intensity varied along the rift strike; 4) Silicic rocks were generated mostly directly from new mantle-derived basalt liquids through fractionation, not melting of older crustal rocks; 5) Laurentian lithosphere was weak allowing centering of the Early/Middle Paleozoic large "Oklahoma" basin (pre-Anadarko) over the rift.

  20. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Chamussa, J.; Silveira, G. M.; Custodio, S.; Lebedev, S.; Chang, S.; Ferreira, A. M.; Fonseca, J. F.

    2013-12-01

    A wide range of studies has shown that the cross-correlation of ambient noise can provide an estimate of the Greens functions between pairs of stations. Project MOZART (funded by FCT, Lisbon, PI J. Fonseca) deployed 30 broadband (120s) seismic stations from the SEIS-UK Pool in Central Mozambique and NE South Africa, with the purpose of studying the East African Rift System (EARS) in Mozambique. We applied the Ambient Noise Tomography (ANT) method to broadband seismic data recorded from March 2011 until July 2012. Cross-correlations were computed between all pairs of stations, and from these we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. We tested various approaches for pre-processing the ambient noise data regarding time-domain and spectral normalisation, as well as the use of phase cross-correlations. Moreover, we examined the robustness of our dispersion maps by splitting our dataset into various sub-sets of Green's functions with similar paths and by quantifying the differences between the dispersion maps obtained from the various sub-sets of data. We find that while the geographical distribution of the group velocity anomalies is well constrained, the amplitudes of the anomalies are slightly less robust. We performed a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle. In addition, our preliminary results show a good correlation between the Rayleigh wave group velocity and the geology of Mozambique. In order to extend the investigation to longer periods and, thus, to be able to look into the lithosphere-asthenosphere depth range in the upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry) and augment our dataset with Rayleigh wave phase velocities curves in broad period ranges.

  1. Hydrogeological structure of a seafloor hydrothermal system related to backarc rifting in a continental margin setting

    NASA Astrophysics Data System (ADS)

    Ishibashi, Jun-ichiro

    2016-04-01

    Seafloor hydrothermal systems in the Okinawa Trough backarc basin are considered as related to backarc rifting in a continental margin setting. Since the seafloor is dominantly covered with felsic volcaniclastic material and/or terrigenous sediment, hydrothermal circulation is expected to be distributed within sediment layers of significantly high porosity. Deep drilling through an active hydrothermal field at the Iheya North Knoll in the middle Okinawa Trough during IODP Expedition 331 provided a unique opportunity to directly access the subseafloor. While sedimentation along the slopes of the knoll was dominated by volcanic clasts of tubular pumice, intense hydrothermal alteration was recognized in the vicinity of the hydrothermal center even at very shallow depths. Detailed mineralogical and geochemical studies of hydrothermal clay minerals in the altered sediment suggest that the prevalent alteration is attributed to laterally extensive fluid intrusion and occupation within the sediment layer. Onboard measurements of physical properties of the obtained sediment revealed drastic changes of the porosity caused by hydrothermal interactions. While unaltered sediment showed porosity higher than 70%, the porosity drastically decreased in the layer of anhydrite formation. On the other hand, the porosity remained high (~50%) in the layer of only chlorite alteration. Cap rock formation caused by anhydrite precipitation would inhibit the ascent of high temperature fluids to the seafloor. Moreover, an interbedded nature of pelagic mud units and matrix-free pumice deposits may prompt formation of a tightly layered architecture of aquifers and aquicludes. This sediment architecture should be highly conducive to lateral flow pseudo-parallel to the surface topography. Occurrence of sphalerite-rich sulfides was recognized as associated with detrital and altered sediment, suggesting mineralization related to subsurface chemical processes. Moreover, the vertical profiles of

  2. Miocene Onset of Extension in the Turkana Depression, Kenya: Implications for the Geodynamic Evolution of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Boone, S.; Gleadow, A. J. W.; Kohn, B. P.; Seiler, C.

    2015-12-01

    The Paleogene-Recent East African Rift System (EARS) is the foremost modern example of continental rifting, providing much of our understanding of the early stages of continental breakup. The EARS traverses two regions of crustal uplift, the Ethiopian and East African Domes, separated by the Turkana Depression. This wide region of subdued topography coincides with the NW-SE trend of the Jurassic-Paleogene Anza Rift. Opinions on the fundamental geodynamic driver for EARS rifting are divided, however, principally between models involving migrating plume(s) and a single elongated 'superplume'. While competing models have similar topographic outcomes, they predict different morphotectonic evolutions for the Turkana Depression. Models inferring southward plume-migration imply that the plume must have passed below the Turkana Depression during the Paleogene, in order to have migrated to the East African Dome by the Miocene. The possible temporal denudational response to such plume activity is testable using low temperature thermochronology. We present apatite fission track (AFT) and (U-Th)/He (AHe), and zircon (U-Th)/He (ZHe) data from the Lapurr Range, an uplifted Precambrian basement block in northern Turkana. Low radiation damage ZHe results displaying an age range of ~70-210 Ma, and combined with stratigraphic evidence, suggest ~4-6 km of Jurassic-Early Cretaceous denudation, probably associated with early Anza Rift tectonism. AFT ages of ~9-15 Ma imply subsequent burial beneath no more than ~4 km of overburden, thus preserving the Jurassic-Cretaceous ZHe ages. Together with AFT results, AHe data (~3-19 Ma) support ~2-4 km of Miocene-Pliocene uplift of the Lapurr Range in the footwall of the E-dipping Lapurr normal fault. Miocene AFT and AHe ages are interpreted to reflect the initiation of the EARS in the Turkana Depression. If extension is associated with plume activity, then upwelling in the Turkana region is unlikely to have started prior to the Miocene, much

  3. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  4. Paleoseismology and Fault Interactions of the Pajarito Fault System, Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Gardner, J. N.; Lewis, C. J.; Lavine, A.; Reneau, S. L.; Schultz, E. S.

    2006-12-01

    The Pajarito fault system is the local active boundary fault of the Rio Grande rift in the vicinity of Los Alamos, New Mexico. Detailed geologic and geomorphic mapping, and displacement-length profiles, reveal a complex pattern of structural deformation that suggests interaction and connective growth among the principal faults in the system (Pajarito, Rendija Canyon, Guaje Mountain, and Santa Clara faults, totaling ~55 km in length). At the surface, the Pajarito fault is not a single shear surface but a complex zone of deformation with considerable lateral variation in structural style from south to north. In the area of detailed mapping, the Pajarito fault is a broad zone of distributed deformation: at the southwest corner of the area, structure is dominated by a large monocline, but small faults and monoclines span a breadth of about 2 km with about 125 m of displacement in the last 1.2 million years; at the west central part of the area, the Pajarito fault is expressed as mainly a large normal fault with smaller faults spread across about 1 km with about 80 m of displacement in the last 1.2 million years; and, in the northwestern part of the area, structure is again dominated by a large monocline with normal faulting in a zone about 1.5 km wide with about 65 m of displacement in the last 1.2 million years. These along-strike variations in the deformation of the Pajarito fault suggest that in most places the tip of the master fault does not break the surface; instead, most of what can be observed is subsidiary structure. The implication of the complex structure and styles of deformation in the fault is that it severely complicates paleoseismic exploration for hazard analyses because different subsidiary structures rupture in different seismic events; no individual structure can be identified with even a near- complete paleoseismic record. Additionally, surface rupture hazards must be associated with broad zones instead of individual faults. Seven paleoseismic

  5. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    SciTech Connect

    Bartok, P. )

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. A second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.

  6. Volcano deformation in central Main Ethiopian Rift system (Aluto Volcano) inferred from continuous GPS and dynamic gravity observations

    NASA Astrophysics Data System (ADS)

    Birhanu, Yelebe; Biggs, Juliet; Gottsmann, Joachim; Lewi, Elias; Lloyd, Ryan; Bekele, Berhanu

    2016-04-01

    Silicic volcanic centres in the rift systems frequently experience unrest indicating long-term activity in the underlying magmatic system, but it is difficult to distinguish the contributions of hydrothermal fluids, magma or gasses. Aluto volcano which is located in the central MER system is situated between the Lakes Ziway and Langano in the north and south respectively. Continuous GPS installed from April 2013 to October 2015 shows subsidence initially, with the largest subsidence observed in the eastern part of the caldera (2 cm/yr). InSAR observations from TerraSAR-X show a radially-symmetric pattern of long-term subsidence. Dynamic gravity surveys carried out in October 2014 and 2015 showed that there is a net mass loss in the western and central part of the caldera and mass gain in the eastern and southern part of the caldera, with a sharp gradient between the two. This complex spatial pattern of gravity change is significantly different to the simple pattern of deformation indicating multiple sources of pressure and mass change exist within the caldera. We explain the ratio of gravity to height change (dg/dh) throughout the volcano by considering cooling and crystallisation of magma body, draining and precipitation of hydrothermal fluids and changes in the water table and lake levels. Keywords: volcano deformation, dynamic gravity, continental rift

  7. Crustal Structure of and near the North American Mid-continent Rift System from Receiver Function Studies

    NASA Astrophysics Data System (ADS)

    Zhang, H.; van der Lee, S.; Wolin, E.; Bollmann, T. A.; Revenaugh, J.; Aleqabi, G. I.; Wiens, D. A.; Frederiksen, A. W.; Darbyshire, F. A.

    2014-12-01

    The more than 1000-km-long main branch of the mid-continent rift system (MRS) near Lake Superior and the Minnesota-Wisconsin border nearly took North America apart, but ceased rifting soon after it began. Thermal and magmatic events and subsidence- related sedimentary processes significantly changed the structure of the upper crust across and along the MRS. To map the depth extent and lateral changes in deep lithospheric structure related to the MRS, we estimated and studied receiver functions (RFs) from 82 SPREE (Superior Province Rifting EarthScope Experiment) broadband seismic stations and seven EarthScope Transportable Array stations. We inverted the RFs for depths of seismic-velocity discontinuities and shear-velocity structure of the crust. The RFs for each station are derived from the deconvolution of the radial component with the vertical component in the time domain (Ammon et al., 1991). Using a relatively high corner frequency in the deconvolution passband helps us resolve multiple layers within the crust. The most prominent feature of the RFs is the P-to-S wave converted at the Moho (Fig. 1), which reflects the contrast in rock properties between the lower crust and upper mantle. This Moho-generated P-to-S converted wave is very clear in RFs for stations outside of the MRS. Inside the MRS, the RFs are more ambiguous and suggestive of a basal crustal layer with shear velocities in between typical lower crust and upper mantle values. There is more variation among the RFs for stations within the MRS than among stations outside of the MRS.

  8. Continental Rifts

    NASA Astrophysics Data System (ADS)

    Rosendahl, B. R.

    Continental Rifts, edited by A. M. Quennell, is a new member of the Benchmark Papers in Geology Series, edited in toto by R. W. Fairbridge. In this series the individual volume editors peruse the literature on a given topic, select a few dozen papers of ostensibly benchmark quality, and then reorder them in some sensible fashion. Some of the original papers are republished intact, but many are chopped into “McNuggets™” of information. Depending upon the volume editor, the chopping process can range from a butchering job to careful and prudent pruning. The collecting, sifting, and reorganizing tasks are, of course, equally editor-sensitive. The end product of this series is something akin to a set of Reader's Digest of Geology.

  9. Tectonics of the West Antarctic rift system: new light on the history and dynamics of distributed intracontinental extension

    USGS Publications Warehouse

    Siddoway, C.S.

    2007-01-01

    The West Antarctic rift system (WARS) is the product of multiple stages of intracontinental deformation from Jurassic to Present. The Cretaceous rifting phase accomplished >100 percent extension across the Ross Sea and central West Antarctica, and is widely perceived as a product of pure shear extension orthogonal to the Transantarctic Mountains that led to breakup and opening of the Southern Ocean between West Antarctica and New Zealand. New structural, petrological, and geochronological data from Marie Byrd Land reveal aspects of the kinematics, thermal history, and chronology of the Cretaceous intracontinental extension phase that cannot be readily explained by a single progressive event. Elevated temperatures in "Lachlan-type" crust caused extensive crustal melting and mid-crustal flow within a dextral transcurrent strain environment, leading to rapid extension and locally to exhumation and rapid cooling of a migmatite dome and detachment footwall structures. Peak metamorphism and onset of crustal flow that brought about WARS extension between 105 Ma and 90 Ma is kinematically, temporally, and spatially linked to the active convergent margin system of East Gondwana. West Antarctica-New Zealand breakup is distinguished as a separate event at 83-70 Ma, from the standpoint of kinematics and thermal evolution

  10. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  11. Quantifying the Temporal and Spatial Response of Channel Steepness to Changes in Rift Basin Architecture

    NASA Astrophysics Data System (ADS)

    Robinson, Scott M.

    Quantifying the temporal and spatial evolution of active continental rifts contributes to our understanding of fault system evolution and seismic hazards. Rift systems also preserve robust paleoenvironmental records and are often characterized by strong climatic gradients that can be used to examine feedbacks between climate and tectonics. In this thesis, I quantify the spatial and temporal history of rift flank uplift by analyzing bedrock river channel profiles along footwall escarpments in the Malawi segment of the East Africa Rift. This work addresses questions that are widely applicable to continental rift settings: (1) Is rift-flank uplift sufficiently described by theoretical elliptical along-fault displacement patterns? (2) Do orographic climate patterns induced by rift topography affect rift-flank uplift or morphology? (3) How do uplift patterns along rift flanks vary over geologic timescales? In Malawi, 100-km-long border faults of alternating polarity bound half-graben sedimentary basins containing up to 4km of basin fill and water depths up to 700m. Orographically driven precipitation produces climatic gradients along footwall escarpments resulting in mean annual rainfall that varies spatially from 800 to 2500 mm. Temporal oscillations in climate have also resulted in lake lowstands 500 m below the modern shoreline. I examine bedrock river profiles crossing the Livingstone and Usisya Border Faults in northern Malawi using the channel steepness index (Ksn) to assess importance of these conditions on rift flank evolution. River profiles reveal a consistent transient pattern that likely preserves a temporal record of slip and erosion along the entire border fault system. These profiles and other topographic observations, along with known modern and paleoenvironmental conditions, can be used to interpret a complete history of rift flank development from the onset of rifting to present. I interpret the morphology of the upland landscape to preserve the onset

  12. Is the Ventersdorp rift system of southern Africa related to a continental collision between the Kaapvaal and Zimbabwe Cratons at 2.64 Ga AGO?

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T.

    1985-01-01

    Rocks of the Ventersdorp Supergroup were deposited in a system of northeast trending grabens on the Kaapvaal Craton approximately 2.64 Ga ago contemporary with a continental collision between the Kaapvaal and Zimbabwe Cratons. It is suggested that it was this collision that initiated the Ventersdorp rifting. Individual grabens strike at high angles toward the continental collision zone now exposed in the Limpopo Province where late orogenic left-lateral strike-slip faulting and anatectic granites are recognized. The Ventersdorp rift province is related to extension in the Kaapvaal Craton associated with the collision, and some analogy is seen with such rifts as the Shansi and Baikal Systems associated with the current India-Asia continental collision.

  13. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing

    USGS Publications Warehouse

    Behrendt, John C.; Cooper, A.

    1991-01-01

    The Cenozoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. Various lines of evidence lead to the following interpretation: the transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of ~1 km/m.y., most recently since mid-Pliocene Time, rather than continuously at the mean rate of 100 m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. It is speculated that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. A possible synergistic relation is suggested between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. -from Authors

  14. Kinematics and Dynamics of the Kivu Rift System from Seismic Anisotropy, Seismicity, and Structural Analyses

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Wood, D. A.; Ebinger, C. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2014-12-01

    The westward-tilted Kivu rift in East Africa is bounded by the ~100 km-long, seismically active West Kivu border fault, and dammed at its northern end by flows from the Virunga Volcanic Province. Earlier work delineated faults along the basin margins, but little was known of active faults beneath Lake Kivu, and the lithospheric structure was unexplored. The aims of this study are to determine the kinematics of normal faults and their relation to pre-existing basement structures; to examine the locations of earthquakes with respect to faults in order to delineate zones of active faulting; to evaluate models for the modification of lithosphere by extension and mantle plume processes using seismic shear wave splitting measurements; and to evaluate the role of volcanic loading within the Virunga volcanic province on the evolution of the Kivu basin. We determine rift fault and volcanic fissure locations and orientations using merged high-resolution CHIRP bathymetric and Space Radar Topography Mission data. The majority of faults in the northern sector strike NNE, whereas NE faults are equally important in the southern basin, marking the Kivu-Rusizi accommodation zone. Seismic data was acquired from an 8-station array deployed between March 2012 and April 2013. Although the majority of earthquakes beneath the rift (excluding the active volcanoes) occur at depths of 8-20 km, unusually shallow earthquakes (2-4 km) are located along submerged faults within the East Kivu basin and suggest high pore pressures within the upper crust. Using simple elastic plate flexure model calculations we estimate the maximum deflection of the plate to be ~7 km, using an effective elastic thickness of ~7.5 km. We propose that the rapid subsidence of the ~400 m deep northern Kivu basin occurred in response to volcanic construction. We evaluate models for the modification of lithosphere using shear wave splitting measurements. Splitting results with backazimuths ranging from 88˚ - 98˚ and 240

  15. Inter-Rifting and Inter-Seismic Strain Accumulation in a Propagating Ridge System: A Geodetic Study from South Iceland

    NASA Astrophysics Data System (ADS)

    Travis, M. E.; La Femina, P. C.; Geirsson, H.

    2012-12-01

    The Mid-Atlantic Ridge, a slow spreading (~19 mm/yr) mid-ocean ridge boundary between the North American and Eurasian plates, is exposed subaerially in Iceland as the result of ridge-hotspot interaction. Plate spreading in Iceland is accommodated along neovolcanic zones comprised of central volcanoes and their fissure swarms. In south Iceland plate motion is partitioned between the Western Volcanic Zone (WVZ) and Eastern Volcanic Zone (EVZ). The EVZ is propagating to the southwest, while the WVZ is dying out from the northeast. Plate motion across both systems has been accommodated by repeated rifting events and fissure eruptions. In this study we investigate whether the WVZ is active and accumulating strain, and how strain is partitioned between the WVZ and EVZ. We also test how strain is accumulating along fissure swarms within the EVZ (i.e. is strain accumulation localized to one fissure swarm, or are multiple systems active?). We use GPS data and elastic block models run using the program DEFNODE to investigate these issues. GPS data are processed using the GIPSY-OASIS II software, and have been truncated to the 2000.5-2011 time period to avoid co-seismic displacement from the two June 2000 South Iceland Seismic Zone earthquakes. We also truncate the time series for sites within 20 km of Eyjafjallajökull to the beginning of 2010 to eliminate deformation associated with the March 2010 eruption of that volcano. We correct for co-seismic displacement from the two May 2008 SISZ earthquakes, inflation at Hekla volcano and the horizontal component of glacial isostatic rebound (GIA). Our best-fit model for inter-rifting and inter-seismic elastic strain accumulation suggests 80-90% of spreading is accommodated in the EVZ with the other 10-20% accommodated by the WVZ. The best-fit location of the EVZ is between Veidivotn and Lakigigar in an area of no Holocene volcanic activity. We suggest the WVZ is only active at Hengill and its associated fissure swarm. Geologic and

  16. Neotectonic faults and stress field in the East African Rift System around the Tanzanian Craton - A contribution to the seismotectonic map of Africa

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Macheyeki, Athanas Simon; Fernandes, Rui-Manuel; Ayele, Atalay; Meghraoui, Mustapha

    2015-04-01

    As a contribution to the UNESCO-IUGS IGCP 601 project "Seismotectonics and seismic hazards in Africa" and in preparation of the Seismotectonic Map of Africa, we compiled the neotectonic faults related to the East African Rift System around the Tanzanian craton. The initial aim was to identify and map the potentially active faults. Faults are usually defined as active when they show seismogenic displacement during the last 10,000 to 100,000 years, generally on the basis of paleoseismic investigation. In East Africa, however, very few faults have been studied by paleoseismic techniques and even fewer have known historical seismic activation. To address this issue, we mapped faults that show morphological indications of displacement. We used the SRTM DTM (90 and 30 m when available to us), with artificial shading as basis for identify neotectonic faults, in combination with existing data from geological maps, publications and reports, complemented by our own field observations. Thermal springs often occur along tectonically active faults. We use them to distinguish present-day faulting from other mapped faults as they are in most cases structurally controlled. In parallel, we used also the available focal mechanisms and geological fault-slip data to constrain the stress second-order stress field (at the scale of rift segments) and locally also the third-order stress field (at the local scale). All these elements are combined and compared with existing kinematic models for the East African Rift based on earthquake slip vectors, GPS measurements and geologic indicators. The comparison evidences some local discrepancies between the stress field and the direction of opening, probably due to the interactions between different rift segments, as in the Rukwa rift, Mbeya southern junction between the eastern and western rift branches, and in the Manyara-Natron area.

  17. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    NASA Astrophysics Data System (ADS)

    Tedrow, Christine Atkins

    The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second goal in this study was to determine whether the remotely-sensed Normalized Difference Vegetation Index (NDVI) can be used as a proxy variable of local conditions for the development of mosquitoes to predict mosquito species distribution and abundance in Virginia. As part of this study, a mosquito surveillance database was compiled to archive the historical patterns of mosquito species abundance in Virginia. In addition, linkages between mosquito density and local environmental and climatic patterns were spatially and temporally examined. The present study affirms the potential role of remote sensing imagery for species distribution prediction, and it demonstrates that ecological niche modeling is a valuable predictive tool to analyze the distributions of populations. The MaxEnt ecological niche modeling program was used to model predicted ranges for potential RVF competent vectors in Virginia. The MaxEnt model was shown to be robust, and the candidate RVF competent vector predicted distribution map is presented. The Normalized Difference Vegetation Index (NDVI) was found to be the most useful environmental-climatic variable to predict mosquito species distribution and abundance in Virginia. However, these results indicate that a more robust prediction is obtained by including other environmental-climatic factors correlated to mosquito densities (e.g., temperature, precipitation, elevation) with NDVI. The present study demonstrates that remote sensing and GIS can be used with ecological niche and risk modeling methods to estimate risk of virus establishment in mosquitoes and

  18. The subsurface structure and stratigraphic architecture of rift-related units in the Lishu Depression of the Songliao Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Hongyu; Fan, Tailiang; Wu, Yue

    2015-03-01

    This contribution reports the basin configuration feature, stratigraphy and sedimentary architecture of the Lishu Depression in the Songliao Basin, China. The activity rate, distribution and style of local faulting demonstrate the timing and extent of regional rifting. Distinct episodes of compressional tectonic activity caused uplift and exposure of strata evident as the traditional syn- and post-rift stages of basin evolution. These episodes led to the sequential denudation of the Upper Jurassic Huoshiling Formation, Lower Cretaceous Yingcheng and Denglouku Formations, and corresponding regional unconformities. Acting in tandem with regional compression, activity along the major boundary faults influenced the evolving basin configuration, as well as seismic sequences and sedimentary patterns. Seismic, well log and drill core data described here show subdivision sections of the Lishu Depression strata according to discrete phases of the traditional syn-rift stage of deposition. We refer to these sub-stages as the initial rifting, the intensive rifting and the recession phases. The basin configuration shifted from a graben/half-graben configuration during the initial rifting phase, to a dustpan-shaped half-graben pattern during the subsequent phase of intensive rifting, and finally into a gentle sedimentary basin during the final recession phase. The early seismic sequence divides into a lowstand systems tract (LST), transgressive systems tract (TST) and highstand systems tract (HST). Evidence of the LST within the seismic sequence becomes less apparent with the intensive rifting phase, while the HST occupied an increasing proportion of the section. The shallow water depositional fill formed during the final recession phase consists only of TST and HST components. Depositional environment then shifts from alluvial fan and shallow lacustrine systems to fan delta, braided delta - lake, and finally to a braided fluvial setting. The vertical stacking pattern shifts

  19. Coulomb stress evolution in the Shanxi rift system, North China, since 1303 associated with coseismic, post-seismic and interseismic deformation

    NASA Astrophysics Data System (ADS)

    Li, Bin; Sørensen, Mathilde Bøttger; Atakan, Kuvvet

    2015-12-01

    The Shanxi rift system is one of the most active intraplate tectonic zones in the North China Block, resulting in devastating seismicity. Since 1303, the rift has experienced fifteen Ms ≥ 6.5 earthquakes. Aiming at a better understanding of Coulomb stress evolution and its relationship with the seismicity in the rift system, we investigated the Coulomb stress changes due to coseismic slip and post-seismic relaxation processes following strong earthquakes as well as the interseismic tectonic loading since the 1303 Hongdong Ms = 8.0 earthquake. Our calculation applies a specified regional medium model, takes the gravity effect into account and uses the fault geometry of the next event as the receiver fault in a given calculation. Our results show that nine out of 12 Ms ≥ 6.5 earthquakes since the 1303 Hongdong earthquake and more than 82 per cent of small-medium instrumental events after the 1989 Datong-Yanggao Ms = 6.1 earthquake fall into the total stress increased areas. Our results also reveal the different roles of the coseismic, post-seismic and interseismic Coulomb stress changes in the earthquake triggering process in the Shanxi rift system. In a short period after a strong event, the stress field changes are dominated by coseismic Coulomb stress due to sudden slip of the ruptured fault, while in the long term, the stress field is mainly dominated by the accumulation of interseismic tectonic loading. Post-seismic stress changes play an important role by further modifying the distribution of stress and therefore cannot be ignored. Based on the current stress status in the Shanxi rift system, the Linfen basin, southern and northern Taiyuan basin, Xinding basin and the north part of the rift system are identified as the most likely locations of large events in the future. The results of this study can provide important clues for the further understanding of seismic hazard in the Shanxi rift system and thus help guiding earthquake risk mitigation efforts in

  20. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in δ202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in δ202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (δ202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower δ202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (Δ199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  1. Cenozoic extension in the Kenya Rift from low-temperature thermochronology: Links to diachronous spatiotemporal evolution of rifting in East Africa

    NASA Astrophysics Data System (ADS)

    Torres Acosta, Verónica; Bande, Alejandro; Sobel, Edward R.; Parra, Mauricio; Schildgen, Taylor F.; Stuart, Finlay; Strecker, Manfred R.

    2015-12-01

    The cooling history of rift shoulders and the subsidence history of rift basins are cornerstones for reconstructing the morphotectonic evolution of extensional geodynamic provinces, assessing their role in paleoenvironmental changes and evaluating the resource potential of their basin fills. Our apatite fission track and zircon (U-Th)/He data from the Samburu Hills and the Elgeyo Escarpment in the northern and central sectors of the Kenya Rift indicate a broadly consistent thermal evolution of both regions. Results of thermal modeling support a three-phased thermal history since the early Paleocene. The first phase (~65-50 Ma) was characterized by rapid cooling of the rift shoulders and may be coeval with faulting and sedimentation in the Anza Rift basin, now located in the subsurface of the Turkana depression and areas to the east in northern Kenya. In the second phase, very slow cooling or slight reheating occurred between ~45 and 15 Ma as a result of either stable surface conditions, very slow exhumation, or subsidence. The third phase comprised renewed rapid cooling starting at ~15 Ma. This final cooling represents the most recent stage of rifting, which followed widespread flood-phonolite emplacement and has shaped the present-day landscape through rift shoulder uplift, faulting, basin filling, protracted volcanism, and erosion. When compared with thermochronologic and geologic data from other sectors of the East African Rift System, extension appears to be diachronous, spatially disparate, and partly overlapping, likely driven by interactions between mantle-driven processes and crustal heterogeneities, rather than the previously suggested north-south migrating influence of a mantle plume.

  2. Quantitative challenges to our understanding of the tectonostratigraphic evolution of rift basin systems

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.

    2012-12-01

    Pervasive orbitally-paced lake level cycles combined with magnetic polarity stratigraphy in central Pangean early Mesozoic rift basins provide a thus far unique and very large-scale quantitative basis for observing patterns of basin fill and comparisons with other basins. The 32 Myr accumulation rate history of the Newark basin is segmented into intervals lasting millions of years with virtually no change in the long-term accumulation rate (at the 400-kyr-scale), and the transitions between segments are abrupt and apparently basin-wide. This is startling, because the basin geometry was, and is, a half graben - triangular in cross section and dish-shaped in along-strike section. The long periods of time with virtually no change is challenging given a simple model of basin growth (1), suggesting some kind of compensation in sediment input for the increasing surface of the area of the basin through time. Perhaps even more challenging are observations based on magnetic polarity stratigraphy and the cyclicity, that basins distributed over a huge area of central Pangea (~700,000 km2) show parallel and correlative quantitative changes in accumulation rate with those of the Newark basin. The synchronous changes in the accumulation rate in these basins suggests a very large-scale linkage, the only plausible mechanism for which would seem to be at the plate-tectonic scale, perhaps involving extension rates. Together, we can speculate that some kind of balance between extension rates, basin accommodation space and perhaps regional drainage basin size might have been in operation The most dramatic accumulation rate change in the basins' histories occurred close to, and perhaps causally related to, the Triassic-Jurassic boundary and end-Triassic extinction. The Newark basin, for example exhibits a 4-to-5-fold increase in accumulation rate during the emplacement of the brief (<1 Myr) and aerially massive Central Atlantic Magmatic Province (CAMP) beginning at 201.5 Ma, the only

  3. Paleoseismologic studies of the Pajarito fault system, western margin of the Rio Grande rift near Los Alamos, NM

    SciTech Connect

    Kelson, K.I. ); Hemphill-Haley, M.A.; Wong, I.G. ); Gardner, J.N.; Reneau, S.L. )

    1993-04-01

    As in much of the Basin and Range province, low levels of historical seismicity in the Rio Grande rift (RGR) are inconsistent with abundant geologic evidence for large-magnitude, late Pleistocene and Holocene earthquakes. Recent trenching and surficial mapping along the 40-km-long, north-trending Pajarito fault system (PFS) near Los Alamos provide evidence for multiple surface-rupture events during the late Pleistocene and Holocene. Near Los Alamos, the Pajarito fault (PAF) exhibits an east-facing scarp up to 120 m high that has had at least four surface-rupture events in the past few hundred thousand years. Four trenches across the base of the highest, easternmost fault scarp show that the most-recent rupture occurred prior to about 9 ka, and possible prior to deposition of the 100- to 150-ka El Cajete Pumice. The long-term (post-1.1 Ma) slip rate on the PAF is about 0.1 mm/yr. The down-to-the-west Rendija Canyon (RCF) and Guaje Mountain (GMF) faults both have had at least two surface ruptures since the middle Pleistocene, including most-recent events at about 7.4 ka along the RCF and about 4 to 6 ka along the GMF. Slickensides and other indirect evidence suggest right-oblique normal slip on the RCF and GMF. Long-term (post-1.1 Ma) slip rates on these two faults are approximately an order of magnitude less than that on the PAF. Based on the observed spatial and temporal variations in activity, the subparallel PAF, RCF, and GMF apparently act as independent seismic sources, although they are located only about 1 to 3 km apart. Nevertheless, the average recurrence interval for faults within the PFS is probably comparable to intervals of 10[sup 4] yr estimated along the eastern rift margin near Taos.

  4. (Wind electric systems). Final report

    SciTech Connect

    Sencenbaugh, J.R.

    1981-06-01

    This report details the results of a demonstration project, the design and testing of a low power, high reliability wind electric system for remote, stand-alone locations. The study consisted of two basic areas. An engineering redesign of a sucessful preproduction prototype to determine best material usage in castings and manufacturing time, in addition to evaluating performance vs cost tradeoffs in design. The second stage of the program covered actual field testing of the redesigned machine in remote areas. After field testing, the machine was to undertake a final redesign to correct any weak areas found during the field evaluation period. Three machines of this design were tested throughout various regions of the United States. These units were located in Nederland, Colorado, Whidbey Island, Washington and Fort Cronkite, San Francisco, CA. The results obtained from prolonged testing were both varied and valuable. A detailed structural analysis was done during the preliminary redesign and final design stages of this program. This report is organized in chronological order.

  5. Basement Structure Controls on the Evolution and Geometry of Rift Systems - Insights from Offshore S. Norway using 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas; Jackson, Christopher; Bell, Rebecca; Duffy, Oliver; Fossen, Haakon

    2015-04-01

    Rift basins form within lithosphere containing a range of heterogeneities, such as thin-skinned thrust belts and larger scale structures such as thick-skinned shear zones or crustal sutures. How the presence and reactivation of these structures during later rift events affect the geometry and evolution of rifts remains poorly understood as they are not typically well imaged on seismic data. The main reasons for this are that crystalline basement is often buried beneath thick sedimentary successions and contains small impedance contrasts. Furthermore, larger, crustal-scale, lineaments and sutures may not be imaged at all on seismic data due to their large scale and depth. In this study, we use borehole-constrained 2D and 3D seismic reflection data located around the Egersund and Farsund Basins, offshore south Norway. In both areas, crystalline basement is exceptionally well-imaged on typical 2D and 3D reflection data due to large impedance contrasts within a highly heterogeneous, shallow basement. This allows us to map a series of intrabasement reflections and overlying rift systems. Within the Egersund area, two main types of intrabasement structure are identified and mapped: i) thin (100 m), shallowly dipping (0-10°W) reflections showing a ramp-flat geometry; and ii) thick (1-1.5 km), low angle (c. 30°W) structures comprising of packages of reflections. These structures correlate along-strike northwards to Caledonian orogeny related structures mapped onshore Norway. The thin structures are interpreted as thin-skinned Caledonian thrusts, whereas the thicker structures represent thick-skinned Devonian shear zones formed through orogenic collapse of the Caledonides. Through seismic-stratigraphic analysis of the cover, we document multiple stages of extensional reactivation along these structures during Devonian, Permian-Triassic and Late Jurassic-Early Cretaceous extension followed by reverse reactivation during Late Cretaceous compression. The Farsund Basin is

  6. The 1.1-Ga Midcontinent Rift System, central North America: sedimentology of two deep boreholes, Lake Superior region

    NASA Astrophysics Data System (ADS)

    Ojakangas, Richard W.; Dickas, Albert B.

    2002-03-01

    The Midcontinent Rift System (MRS) of central North America is a 1.1-Ga, 2500-km long structural feature that has been interpreted as a triple-junction rift developed over a mantle plume. As much as 20 km of subaerial lava flows, mainly flood basalts, are overlain by as much as 10 km of sedimentary rocks that are mostly continental fluvial red beds. This rock sequence, known as the Keweenawan Supergroup, has been penetrated by a few deep boreholes in the search for petroleum. In this paper, two deep boreholes in the Upper Peninsula of Michigan are described in detail for the first time. Both the Amoco Production #1-29R test, herein referred to as the St. Amour well, and the nearby Hickey Creek well drilled by Cleveland Cliffs Mining Services, were 100% cored. The former is 7238 ft (2410 m) deep and the latter is 5345 ft (1780 m) deep. The entirety of the stratigraphic succession of the Hickey Creek core correlates very well with the upper portion of the St. Amour core, as determined by core description and point-counting of 43 thin sections selected out of 100 studied thin sections. Two Lower Paleozoic units and two Keweenawan red bed units—the Jacobsville Sandstone and the underlying Freda Sandstone—are described. The Jacobsville is largely a feldspatholithic sandstone and the Freda is largely a lithofeldspathic sandstone. Below the Freda, the remaining footage of the St. Amour core consists of a thick quartzose sandstone unit that overlies a heterogenous unit of intercalated red bed units of conglomerate, sandstone, siltstone, and shale; black shale; individual basalt flows; and a basal ignimbritic rhyolite. This lower portion of the St. Amour core presents an enigma, as it correlates very poorly with other key boreholes located to the west and southwest. While a black shale sequence is similar to the petroleum-bearing Nonesuch Formation farther west, there is no conglomerate unit to correlate with the Copper Harbor Conglomerate. Other key boreholes are

  7. Mechanical response of the south flank of kilauea volcano, hawaii, to intrusive events along the rift systems

    USGS Publications Warehouse

    Dvorak, J.J.; Okamura, A.T.; English, T.T.; Koyanagi, R.Y.; Nakata, J.S.; Sako, M.K.; Tanigawa, W.T.; Yamashita, K.M.

    1986-01-01

    Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66??E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes. ?? 1986.

  8. Mapping of the major structures of the African rift system using ERTS-1

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The structural margin of western Afar with the Ethiopian plateau is marked by a rather wide zone of crustal deformation. ERTS-1 imagery has now permitted a more precise mapping of the structures of this marginal zone, and in particular of the discontinuous marginal graben. The tectonic style of the graben is different in the north from the south, and in the latter region the graben is discordant with the regional tectonic trend. The structural margin of the southern Afar with the Somalian plateau is formed, in the western sector, by a remarkable series of fault-zone splays. Afar-plateau boundary fault-zones successively curve northeast and then NNE to become Afar floor fault-zones, with a distance of about 25 km separating successive turnoffs. The transition from Ethiopian rift to Gulf of Aden tread faulting along this margin is fascinatingly complex. A simplistic crustal thinning model is not adequate to explain all observed structural features of the Afar margins.

  9. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing

    SciTech Connect

    Behrendt, J.C. ); Cooper, A. )

    1991-04-01

    The Cenzoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. It is bounded on one side by a spectacular 4-to 5-km-high rift-shoulder scarp (maximum bedrock relief 5 to 7 km) from northern Victoria Land-Queen Maud Mountains to the Ellsworth-Whitmore-Horlick Mountains. Jurassic tholeiites crop out with the late Cenozoic volcanic rocks along the section of the Transantarctic Mountains from northern Victoria Land to the Horlick Mountains. The Cenozoic rift shoulder diverges here from the Jurassic tholeiite trend, and the tholeiites are exposed discontinuously along the lower elevation (1-2 km) section of the Transantarctic Mountains to the Weddell Sea. Various lines of evidence, no one of which is independently conclusive, lead the authors (as others have also suggested) to interpret the following. The Transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of {approximately}1 km/m.y., most recently since mid-Pliocene time, rather than continuously at the mean rate of 100m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. The authors speculate that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. They suggest a possible synergistic relation between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time.

  10. Continental rift jumps

    NASA Astrophysics Data System (ADS)

    Wood, Charles A.

    1983-05-01

    Continental rift jumps, analogous to jumps of oceanic spreading ridges, are here proposed to be common. Good examples exist in Iceland and Afar (both transitional from ridge to rift jumps), West Africa (Benue Trough and Cameroon Volcanic Line), and Kenya. Indeed, the Kenya rift appears to have jumped c. 100 km eastward c. 10 m.y. ago and is currently jumping further to the east. Possible jumps exist in the Baikal rift, the Limagne-Bresse rift pair, and parallel to ancient continental margins (e.g., the Triassic basins of the eastern U.S. to Baltimore Canyon and Georges Bank). Continental rifts jump distances that are approximately equal to local lithosphere thickness, suggesting that jumped rifts are controlled by lithosphere fracturing, but there appears to be no reason for the fracturing except migration of hot spots.

  11. Rapid spatio-temporal variations in rift zone deformation, Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey; McNeill, Lisa; Bull, Jonathan; Henstock, Timothy; Bell, Rebecca; Gawthorpe, Robert; Christodoulou, Dimitris; Kranis, Haris; Ferentinos, George; Papatheodorou, George; Taylor, Brian; Ford, Mary; Sakellariou, Dimitris; Leeder, Mike; Collier, Richard; Goodliffe, Andrew; Sachpazi, Maria

    2015-04-01

    The Gulf of Corinth is a young and highly active rift (<5 Ma) in its initial stages of development. An abundance of marine geophysical data and onshore exposures makes it an ideal case study for investigating early rift and fault development. Using a high resolution chronstratigraphic and rift fault model we investigate along strike variations in the basin development within the rift over the past 1-2 Myr and establishing a history of fault activity on major basin controlling faults, at temporal resolutions of ca. 100 kyr or less. We focus on variations in depocentre development and the distribution of displacement and faulting along and across the rift axis; focussing on the partitioning of deformation between N-dipping and S-dipping faults. The rift basin geometry has a complex history and varies spatially along strike of the rift. We highlight a major change in rift structure ca. 600 ka, changing from a complex rift zone to a uniform asymmetric graben. Syn-rift isochore maps identify two stages that accommodate this change: 1. a switch in rift polarity from a dominant N-thickening depocentre to a dominant S-thickening depocentre between ca. 620-420 ka (a rapid change in rift structure and strain distribution). This change is accommodated by transfer of activity between major faults but also by formation of numerous non-basement cutting small faults. 2. Progressive localization of deformation onto major N-dipping faults on the rift's southern margin. This is characterised by depocentre growth and linkage and increased activity on major N-dipping faults since ~340 ka, with faults becoming kinematically and geometrically linked with almost equal slip rates along strike by ca. 130 ka. Ultimately our results show that the early evolution of a rift fault network can be complex but that a dominant fault set eventually forms even in the earliest stages of rifting. Furthermore a switch in rift polarity is a progressive process with deformation becoming distributed before

  12. Evidence of rift valley fever seroprevalence in the Sahrawi semi-nomadic pastoralist system, Western Sahara

    PubMed Central

    2014-01-01

    Background The increasing global importance of Rift Valley fever (RVF) is clearly demonstrated by its geographical expansion. The presence of a wide range of host and vector species, and the epidemiological characteristics of RVF, have led to concerns that epidemics will continue to occur in previously unaffected regions of Africa. The proximity of the Sahrawi territories of Western Sahara to endemic countries, such as Mauritania, Senegal, and Mali with periodic isolation of virus and serological evidence of RVF, and the intensive livestock trade in the region results in a serious risk of RVF spread in the Sahrawi territories, and potentially from there to the Maghreb and beyond. A sero-epidemiological survey was conducted in the Saharawi territories between March and April 2008 to investigate the possible presence of the RVF virus (RVFV) and associated risk factors. A two-stage cluster sampling design was used, incorporating 23 sampling sites. Results A total of 982 serum samples was collected from 461 sheep, 463 goats and 58 camels. Eleven samples (0.97%) tested positive for IgG against the RVFV. There were clusters of high seroprevalence located mostly in the Tifariti (7.69%) and Mehaires (7.14%) regions, with the Tifariti event having been found in one single flock (4/26 positive animals). Goats and older animals were at a significantly increased risk being seropositive (p = 0.007 and p = 0.007, respectively). Conclusion The results suggest potential RVF activity in the study area, where intense livestock movement and trade with neighbouring countries might be considered as a primary determinant in the spread of the disease. The importance of a continuous field investigation is reinforced, in light of the risk of RVF expansion to historically unaffected regions of Africa. PMID:24758592

  13. Earthquake Rupture Forecast of M>= 6 for the Corinth Rift System

    NASA Astrophysics Data System (ADS)

    Scotti, O.; Boiselet, A.; Lyon-Caen, H.; Albini, P.; Bernard, P.; Briole, P.; Ford, M.; Lambotte, S.; Matrullo, E.; Rovida, A.; Satriano, C.

    2014-12-01

    Fourteen years of multidisciplinary observations and data collection in the Western Corinth Rift (WCR) near-fault observatory have been recently synthesized (Boiselet, Ph.D. 2014) for the purpose of providing earthquake rupture forecasts (ERF) of M>=6 in WCR. The main contribution of this work consisted in paving the road towards the development of a "community-based" fault model reflecting the level of knowledge gathered thus far by the WCR working group. The most relevant available data used for this exercise are: - onshore/offshore fault traces, based on geological and high-resolution seismics, revealing a complex network of E-W striking, ~10 km long fault segments; microseismicity recorded by a dense network ( > 60000 events; 1.5=5 19th century events and a few paleoseismological investigations, allowing to consider time-dependent ERF. B-value estimates are found to be catalogue-dependent (WCR, homogenized NOA+Thessaloniki, SHARE), which may call for a potential break in scaling relationship. Furthermore, observed discrepancies between seismicity rates assumed for the modeled faults and those expected from GPS deformation rates call for the presence of aseismic deformation. Uncertainty in the ERF resulting from the lack of precise knowledge concerning both, fault geometries and seismic slip rates, is quantified through a logic tree exploration. Median and precentile predictions are then compared to ERF assuming a uniform seismicity rate in the WCR region. The issues raised by this work will be discussed in the light of seismic hazard assessment.

  14. A Rift Valley fever risk surveillance system for Africa using remotely sensed data: potential for use on other continents.

    PubMed

    Linthicum, Kenneth J; Anyamba, Assaf; Britch, Seth C; Chretien, Jean-Paul; Erickson, Ralph L; Small, Jennifer; Tucker, Compton J; Bennett, Kristine E; Mayer, Richard T; Schmidtmann, Edward T; Andreadis, Theodore G; Anderson, John F; Wilson, William C; Freier, Jerome E; James, Angela M; Miller, Ryan S; Drolet, Barbara S; Miller, Scott N; Tedrow, Christy A; Bailey, Charles L; Strickman, Daniel A; Barnard, Donald R; Clark, Gary G; Zou, Li

    2007-01-01

    The authors developed a monitoring and risk mapping system using normalized difference vegetation index (NDVI) times series data derived from the advanced very high resolution radiometer (AVHRR) instrument on polar orbiting national oceanographic and atmospheric administration (NOAA) satellites to map areas with a potential for a Rift Valley fever (RVF) outbreaks in sub-Saharan Africa. This system is potentially an important tool for local, national and international organisations involved in the prevention and control of animal and human disease, permitting focused and timely implementation of disease control strategies several months before an outbreak. We are currently developing a geographic information system (GIS)-based remotely sensed early warning system for potential RVF vectors in the United States. Forecasts of the potential emergence of mosquito vectors will be disseminated throughout the United States, providing several months' warning in advance of potentially elevated mosquito populations. This would allow timely, targeted implementation of mosquito control, animal quarantine and vaccine strategies to reduce or prevent animal and human disease. PMID:20422546

  15. Which Fault Orientations Occur during Oblique Rifting? Combining Analog and Numerical 3d Models with Observations from the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Autin, J.; Brune, S.

    2013-12-01

    Oblique rift systems like the Gulf of Aden are intrinsically three-dimensional. In order to understand the evolution of these systems, one has to decode the fundamental mechanical similarities of oblique rifts. One way to accomplish this, is to strip away the complexity that is generated by inherited fault structures. In doing so, we assume a laterally homogeneous segment of Earth's lithosphere and ask how many different fault populations are generated during oblique extension inbetween initial deformation and final break-up. We combine results of an analog and a numerical model that feature a 3D segment of a layered lithosphere. In both cases, rift evolution is recorded quantitatively in terms of crustal fault geometries. For the numerical model, we adopt a novel post-processing method that allows to infer small-scale crustal fault orientation from the surface stress tensor. Both models involve an angle of 40 degrees between the rift normal and the extensional direction which allows comparison to the Gulf of Aden rift system. The resulting spatio-temporal fault pattern of our models shows three normal fault orientations: rift-parallel, extension-orthogonal, and intermediate, i.e. with a direction inbetween the two previous orientations. The rift evolution involves three distinct phases: (i) During the initial rift phase, wide-spread faulting with intermediate orientation occurs. (ii) Advanced lithospheric necking enables rift-parallel normal faulting at the rift flanks, while strike-slip faulting in the central part of the rift system indicates strain partitioning. (iii) During continental break-up, displacement-orthogonal as well as intermediate faults occur. We compare our results to the structural evolution of the Eastern Gulf of Aden. External parts of the rift exhibit intermediate and displacement-orthogonal faults while rift-parallel faults are present at the rift borders. The ocean-continent transition mainly features intermediate and displacement

  16. Granular mechanics and rifting

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Hayman, Nicholas W.; Lavier, Luc L.

    2013-04-01

    Numerical models have proved useful in the interpretation of seismic-scale images of rifted margins. In an effort to both test and further illuminate predictions of numerical models, workers have made some strides using map-scale field relations, microstructures, and strain analyses. Yet, fundamental predictions of modeling and tectonic restorations are not able to capture critical observations. For example, many models and interpretations call on continuous faults with restorable kinematic histories. In contrast, s-reflectors and other interpreted shear fabrics in the middle crust tend to be discontinuous and non-planar across a margin. Additionally, most rift-evolution models and interpretations call on end-member ductile flow laws over a range of mechanical and thermal conditions. In contrast, field observations have found that a range of "brittle" fault rocks (e.g., cataclasites and breccias) form in the deeper crust. Similarly, upper crustal materials in deep basins and fault zones can deform through both distributed and localized deformation. Altogether, there appears to be reason to bring a new perspective to aspects of the structural evolution of rifted margins. A granular mechanics approach to crustal deformation studies has several important strengths. Granular materials efficiently localize shear and exhibit a range of stick-slip behaviors, including quasi-viscous rheological responses. These behaviors emerge in discrete element models, analog-materials experiments, and natural and engineered systems regardless of the specific micromechanical flow law. Yet, strictly speaking, granular deformation occurs via failure of frictional contacts between elastic grains. Here, we explore how to relate granular-mechanics models to mesoscale (outcrop) structural evolution, in turn providing insight into basin- and margin- scale evolution. At this stage we are focusing on analog-materials experiments and micro-to-mesoscale observations linking theoretical predictions

  17. Mesozoic Rifting in the German North Sea

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Jähne, F.; Arfai, J.

    2013-12-01

    similar evolution as the Horn Graben with high sediment thicknesses deposited during the Triassic. This indicates that initiation of rifting started in the central German North Sea already during the Early Triassic and subsequently migrated to the west into the Central Graben. Before the Triassic thick layers of Permian rock salt (Upper Rotliegend and Zechstein) were deposited in the Central European Basin System, which spans from the UK across the Netherlands, southern Denmark, Germany, and into Poland. Salt movements resulted in the formation of salt diapirs, salt pillows, salt walls and intrusions into faults. Analyses of rim-synclines of salt diapirs reveals that most of the salt structures inside the German Central Graben had a main phase of growth during the Late Jurassic while the salt structures situated toward the southeast had their main phase of growth during the Triassic. The final products of the project are accessible at www.geopotenzial-nordsee.de/.

  18. Application of P- and S-receiver functions to investigate crustal and upper mantle structures beneath the Albertine branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Gummert, Michael; Lindenfeld, Michael; Wölbern, Ingo; Rümpker, Georg; Kasereka, Celestin; Batte, Arthur

    2014-05-01

    The Rwenzori region at the border between Uganda and the Democratic Republic of Congo is part of the western (Albertine) branch of the East African Rift System (EARS). The region is characterized by a horst structure, the Rwenzori Mountains, reaching elevations of more than 5 km and covering an area of about 120 km by 50 km. The unusual location of the mountain range, between two segments of the Albertine rift, suggests complex structures of the crust and the upper mantle below. In our study, we employ P- and S-receiver functions in order to investigate the corresponding discontinuities of the lithosphere-asthenosphere system. The analyses are based on recordings from a dense network of 33 seismic broadband stations operating in the region for a period of nearly two years, from September 2009 until August 2011. The crustal thickness is analysed by using P-receiver functions and the grid search method of Zhu & Kanamori (2000) which involves the stacking of amplitudes of direct converted (Ps) and multiple phases (PpPs and PpSs) originating from the Moho. The method of S-receiver functions is more effective in analysing deeper discontinuities of the upper mantle, such as the lithosphere-asthenosphere boundary (LAB). The latter method also has the advantage that the interfering influence of multiple phases from shallower discontinuities is avoided. To simplify the analysis of the S-receiver functions, we use an automatic procedure to determine incidence angles used in the rotation from the ZNE system to the ray-centered LQT system. We apply this approach to confirm and significantly extend results from the study of Wölbern et al. (2012), which provided evidence for an intra-lithospheric discontinuity at depths between 54 km and 104 km and the LAB between 135 km and 210 km. Our results provide evidence for significant variations of crustal thickness beneath the region. The Moho depth varies between 20 km beneath the rift valley and 39 km beneath the adjacent rift

  19. Exploring for geothermal resource in a dormant volcanic system: The Haleakala Southwest Rift Zone, Maui, Hawai'i

    NASA Astrophysics Data System (ADS)

    Martini, B. A.; Lewicki, J. L.; Kennedy, B. M.; Lide, C.; Oppliger, G.; Drakos, P. S.

    2011-12-01

    Suites of new geophysical and geochemical surveys provide compelling evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai'i. Ground-based gravity (~400 stations) coupled with heli-borne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Lithology and physical property data from future drilling will improve these interpretations. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth; a potentially young source of heat for a modern geothermal system. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ; a weak anomalous flux signal was observed at one young cinder cone location. Dissolved inorganic carbon concentrations and δ13C compositions and 3He/4He values measured in several shallow groundwater samples indicate addition of magmatic CO2 and He to the groundwater system. The general lack of observed magmatic surface CO2 signals on the HSWRZ is therefore likely due to a combination of groundwater 'scrubbing' of CO2 and relatively high biogenic surface CO2 fluxes that mask magmatic CO2. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals attributed to a magmatic source, while aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwaters at both Maui and Puna. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2

  20. Mesozoic fault reactivation along the St. Lawrence Rift System as constrained by (U-Th/He) thermochronology

    NASA Astrophysics Data System (ADS)

    Bouvier, L.; Pinti, D. L.; Tremblay, A.; Minarik, W. G.; Roden-Tice, M. K.; Pik, R.

    2011-12-01

    The Saint Lawrence Rift System (SLRS) is a half-graben, extending for 1000 km along St. Lawrence River valley. Late Proterozoic-Early Paleozoic faults of the graben form the contact with the metamorphic Grenvillian basement to the northwest and extend under the Paleozoic sedimentary sequences of the St. Lawrence Lowlands to the southeast. The SLRS is the second most seismically active area in Canada, but the causes of this activity remain unclear. Reactivation of the SLRS is believed to have occurred along Late Proterozoic to Early Paleozoic normal faults related to the opening of the Iapetus Ocean. The absence of strata younger than the Ordovician makes difficult to determine when the faults reactivated after the Ordovician. Field relations between the normal faults bordering the SLRS and those produced by the Charlevoix impact crater suggest a reactivation of the rift younger than the Devonian, the estimated age of the impact. Apatite (U-Th)/He thermochronology is an adequate tool to recognize thermal events related to fault movements. A thermochronology study was then started along three transects across the SLRS, from Québec up to Charlevoix. Apatites were extracted and separated from five granitic to charnockitic gneisses and an amphibolite of Grenvillian age. The samples were exposed on hanging wall and footwall of the Montmorency and Saint-Laurent faults at three different locations along the SLRS. For precision and accuracy, each of the six samples was analyzed for radiogenic 4He and U-Th contents at least twice. Apatite grains were isolated by heavy liquids and magnetic separation. For each sample, ten apatite grains were selected under optical microscope and inserted into Pt capsules. Particular care was taken to isolate apatite free of mineral and fluid inclusions. Indeed, SEM investigations showed that some inclusions are U-rich monazite, which is a supplementary source of 4He to be avoided. The 4He content was determined by using a static noble gas

  1. Receiver function imaging of the lithosphere-asthenosphere boundary and melt beneath the Afar Rift in comparison to other systems

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.; Harmon, Nicholas

    2015-04-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift provides additional constraints. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift. Instead, a strong velocity increase with depth at ~75 km depth is imaged. Beneath the rift axis waveform modeling suggests the lack of a mantle lithosphere with a velocity increase at ~75 km depth. Geodynamic models that include high melt retention and suppress thermal convection easily match the required velocity-depth profile, the velocity increase arising from a drop in melt percentage at the onset of decompression melting. Whereas, models with conservative melt retention that include thermal buoyancy effects cannot reproduce the strong velocity increase. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Trace element signatures and geochemical modeling have been used to argue for a thick lithosphere beneath the rift and slightly higher mantle potential temperatures ~1450°C, although overall, given modeling assumptions, the results are not in disagreement. Therefore, although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is not strong. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy

  2. A Strong Stress Shadow Effect of the 2004 M=9.2 Sumatra-Andaman Earthquake on the Andaman Sea Transform-Rift System 250 km Away

    NASA Astrophysics Data System (ADS)

    Sevilgen, V.; Stein, R. S.

    2010-12-01

    The 26 December 2004 earthquake ruptured a 1,300-km section of the Sunda megathrust. A transform-rift back-arc system accommodates most of the trench-parallel component of the highly oblique subduction. We used the NEIC earthquake catalog at its M≥4.7 completeness level since 1999, and at M≥4.8 since 1975, to examine the seismicity rate along the transform-rift system. We also combined teleseismic double-difference earthquake relocations from Pesicek et al (JGR, 2010) with Global CMT mechanisms, to more accurately associate focal mechanisms with their fault systems. We find a strong drop in seismicity rate along the Andaman Sea transform system east of the northern end of the 2004 rupture zone. This occurs immediately following the Sumatra-Andaman mainshock and persists to this day. The rate drop is associated with strike-slip mechanisms only; along the portions of the rift system with normal-faulting mechanisms, the seismicity rate increased. We calculate that the Sagaing-West Andaman transform in this region was subjected to a static Coulomb stress drop of 0.25 bar (for an assumed fault friction of 0.4), whereas the rift segments sustained stress increases greater than 1 bar. Both of these calculations are in accord with the observations. Because of the large distance between the megathrust source and the back-arc receiver faults, the imparted stresses are insensitive to the unknown details of the megathrust slip and geometry; because the 2004 slip is so large, the imparted stresses are nevertheless substantial 200-300 km east of the trench, where the seismicity rate changes are observed. Thus, the seismicity shutdown associated with the 2004 earthquake stress shadow furnishes an important test of the static Coulomb stress triggering hypothesis.

  3. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly

  4. Crustal Structure in the area of the North American Mid-Continent Rift System from P-wave Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; van der Lee, S.; Wolin, E.; Bollmann, T. A.; Revenaugh, J.; Wiens, D. A.; Wysession, M. E.; Aleqabi, G. I.; Frederiksen, A. W.; Darbyshire, F. A.; Stein, S. A.; Jurdy, D. M.

    2015-12-01

    The Mid-continent Geophysical Anomaly (MGA) represents the largest gravity anomaly in the North American continental interior, its strongest portion stretching from Iowa to Lake Superior, and is the direct result of 1.1 Ga deposition and uplift of volcanic rocks in the Mid-continent Rift System (MRS). The Superior Province Rifting Earthscope Experiment (SPREE) collected broadband seismic data around this prominent portion of the MGA for 2.5 years from 82 seismic stations, simultaneously with about 30 Transportable Array (TA) stations in the region. To image crustal structure around the MGA, we analyzed the P-wave trains of 119 teleseismic earthquakes at these stations using the time-domain iterative-deconvolution method of Ligorria and Ammon (1999), the waveform-fitting method of Van der Meijde et al. (2003), and the H-κ stacking method of Zhu and
Kanamori (2000). Our aim was to resolve intra-crustal layering and Moho characteristics. Despite considerable noise related to station installation constraints, we find that outside of the MGA, the Moho is sharp and relatively flat, both beneath the Archean Superior Province as well as beneath the Proterozoic terranes to its south. This Moho produces consistent P to S converted phases in the analyzed receiver functions. Receiver functions show much more complexity along the MGA, where P to S converted phases from the Moho are much weaker and more variable with azimuth and epicentral distance. Similar results have been found in Iowa by French et al. (2009). For many stations along the MGA, multiple weak S phases arrive around the time expected for the Moho-converted phase. In addition, strong P-to-S converted phases are observed from the base of shallow sedimentary layers. The base of the sedimentary layer is fairly shallow outside of the MGA, thickens near the flanks where gravity anomalies are low and shallows again in the center where the gravity peaks. We conclude that the Moho is not a strong feature of the MRS

  5. 40Ar/ 39Ar dating constraints on the high-angle normal faulting along the southern segment of the Tan-Lu fault system: An implication for the onset of eastern China rift-systems

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Zhou, Su

    2009-01-01

    High-angle normal faulting in eastern China was an important tectonic process responsible for the rifting of the eastern Asian continental margin. Along the southern segment of the Tan-Lu fault system, part of the eastern China rift-system, 55-70° east-dipping normal faults are the oldest structures within this rift-system. Chlorite, pseudotachylite, and fault breccia are found in fault zones, which are characterized by microstructures and syn-deformation chlorite minerals aligned parallel to a down-dip stretching lineation. 40Ar/ 39Ar dating of syn-deformation chlorite and K-feldspar from the fault gouge zone yields cooling ages of ˜75-70 Ma, interpreted as the timing of slip along the normal faults. This age is older than that of opening of the Japanese sea and back-arc extension in the west Pacific, but similar to the onset of the Indo-Asian (soft?) collision.

  6. Organic Geochemical and tectonic evolution of the Midcontinent Rift system. Final report

    SciTech Connect

    Hayes, J.M.; Pratt, L.M.; Knoll, A.H.

    1992-12-31

    The older assemblages stand in contrast with the ca. 1000 Ma old Hunting Formation, Arctic Canada, which contains what may be the oldest evidence for modem algae - red algal fossils that compare closely with members of the extant family Bangiophyceae (Butterfield et al., 1990). Taken together the Nonesuch, Shaler, Hunting and other assemblages support the hypothesis of a major episode of eukaryotic diversification ca. 1000 Ma ago. Prior to this time, eukaryotic primary producers must have been physiologically primitive (and now extinct) algae whose abundance in ecosystems is poorly constrained by analogies with the present oceans. Cyanobacteria were major primary producers in a wide range of marine environments. After 1000 Ma, diversifying red green and chromophyte algae contributed significantly to primary production in all save microbial mat communities in restricted environments. It bears mention that such mat communities remained significant potential sources of buried organic matter until the end of the Proterozoic, necessitating exploration strategies that differ from those commonly employed for younger rocks (Knoll, in press). As in Phanerozoic basins, petroleum exploration in Proterozoic rocks requires tools for stratigraphic correlation. In Neoproterozoic (<1000 Ma) rocks, biostratigraphy is possible, and it is aided significantly by C and Sr isotopic chemostratigraphy. New data from the Shaler Group contribute to the construction of C and Sr isotopic curves for Neoproterozoic time, making possible much improved chronostratigraphy for this time interval. (Asmerom et al., 1991; Hayes et al., ms. in preparation).

  7. Constraining the thermal and erosional evolution of the Rwenzori Mtns, Albertine Rift, by detrital thermochronology

    NASA Astrophysics Data System (ADS)

    Bauer, F. U.; Roller, S.; Grobe, R. W.; Glasmacher, U. A.; Hinderer, M.; Ring, U.; Mambo, V. S.

    2012-04-01

    In East Africa, the feedback between tectonic uplift, erosional denudation and associated possible climate changes is being studied by a multidisciplinary research group, 'RiftLink'. The group's focus is the Albertine Rift of the East African Rift System, and therein rising Rwenzori Mountains that stretch along the border of Uganda and Eastern D.R. Congo. Data from low-temperature thermochronology analysis of hardrocks comprising apatite fission-track (AFT), zircon and apatite (U-Th-Sm)/He dating (ZHe, AHe) and thermal modelling point to a prolonged cooling history with differentiated exhumation in Neogene times. The final rock uplift in Plio- to Pleistocene times, thereby, was very fast that the erosion could not keep pace [1]. In order to narrow the final exhumation stage detrital thermochronology has proven to be very useful. Therefore, sedimentary successions of the Albertine Rift valley in western Uganda and Eastern D.R. Congo were sampled to perform AFT, ZHe and AHe dating of detrital sediments. In the frame of the presentation we will present first results from the detrital thermochronology study of the Albertine Rift and will discuss its implications for the landscape evolution of this area.

  8. Parameters influencing the location and characteristics of volcanic eruptions in a youthful extensional setting: Insights from the Virunga Volcanic Province, in the Western Branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Smets, Benoît; d'Oreye, Nicolas; Kervyn, Matthieu; Kervyn, François

    2016-04-01

    The East African Rift System (EARS) is often mentioned as the modern archetype for rifting and continental break-up (Calais et al., 2006, GSL Special Publication 259), showing the complex interaction between rift faults, magmatism and pre-existing structures of the basement. Volcanism in the EARS is characterized by very active volcanoes, several of them being among the most active on Earth (Wright et al., 2015, GRL 42). Such intense volcanic activity provides useful information to study the relationship between rifting, magmatism and volcanism. This is the case of the Virunga Volcanic Province (VVP) located in the central part of the Western Branch of the EARS, which hosts two of the most active African volcanoes, namely Nyiragongo and Nyamulagira. Despite the intense eruptive activity in the VVP, the spatial distribution of volcanism and its relationship with the extensional setting remain little known. Here we present a study of the interaction between tectonics, magmatism and volcanism at the scale of the Kivu rift section, where the VVP is located, and at the scale of a volcano, by studying the dense historical eruptive activity of Nyamulagira. Both the complex Precambrian basement and magmatism appear to contribute to the development of the Kivu rift. The presence of transfer zones north and south of the Lake Kivu rift basin favoured the development of volcanic provinces at these locations. Rift faults, including reactivated Precambrian structures influenced the location of volcanism within the volcanic provinces and the rift basin. At a more local scale, the historical eruptive activity of Nyamulagira highlights that, once a composite volcano developed, the gravitational stress field induced by edifice loading becomes the main parameter that influence the location, duration and lava volume of eruptions.

  9. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  10. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    NASA Astrophysics Data System (ADS)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-06-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm/yr, 15 % faster than the half-spreading rate. Here we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 % taken up by bookshelf faulting.

  11. Crustal structure and kinematics of the TAMMAR propagating rift system on the Mid-Atlantic Ridge from seismic refraction and satellite altimetry gravity

    NASA Astrophysics Data System (ADS)

    Kahle, Richard L.; Tilmann, Frederik; Grevemeyer, Ingo

    2016-08-01

    The TAMMAR segment of the Mid-Atlantic Ridge forms a classic propagating system centred about two degrees south of the Kane Fracture Zone. The segment is propagating to the south at a rate of 14 mm yr-1, 15 per cent faster than the half-spreading rate. Here, we use seismic refraction data across the propagating rift, sheared zone and failed rift to investigate the crustal structure of the system. Inversion of the seismic data agrees remarkably well with crustal thicknesses determined from gravity modelling. We show that the crust is thickened beneath the highly magmatic propagating rift, reaching a maximum thickness of almost 8 km along the seismic line and an inferred (from gravity) thickness of about 9 km at its centre. In contrast, the crust in the sheared zone is mostly 4.5-6.5 km thick, averaging over 1 km thinner than normal oceanic crust, and reaching a minimum thickness of only 3.5 km in its NW corner. Along the seismic line, it reaches a minimum thickness of under 5 km. The PmP reflection beneath the sheared zone and failed rift is very weak or absent, suggesting serpentinisation beneath the Moho, and thus effective transport of water through the sheared zone crust. We ascribe this increased porosity in the sheared zone to extensive fracturing and faulting during deformation. We show that a bookshelf-faulting kinematic model predicts significantly more crustal thinning than is observed, suggesting that an additional mechanism of deformation is required. We therefore propose that deformation is partitioned between bookshelf faulting and simple shear, with no more than 60 per cent taken up by bookshelf faulting.

  12. Incipient continental rifting: Insights from the Okavango Rift Zone, northwestern Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, Baraka Damas

    In this dissertation aeromagnetic, gravity, and Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data from the Okavango Rift Zone in northwest Botswana are used to map the distribution of rift and basement structures. The distribution of these structures provide useful insights into the early stages of continental rifting. The objectives of this study are (1) assessing the role of pre-existing structures on rift basin development, (2) characterizing the geometry of the nascent rift basins, (3) documenting fault growth and propagation patterns, and (4) investigating the border fault development. Potential field data especially aeromagnetic data are used to map out structures in the sediment covered basement, whereas SRTM DEM data express the surface morphology of the structures. The azimuth of rift faults parallel the orientation of the fold axes and the prominent foliation directions of the basement rocks. This indicates that pre-existing structures in the basement influenced the development of the rift structures. NE dipping faults consistently exhibit greater displacements than SE dipping faults, suggesting a developing half-graben geometry. Individual faults grow by along axis linkage of small segments that develop from soft linkage (under lapping to overlapping segments) to hard linkage (hooking, fused segments). Major rifts faults are also linking through transfer zones by the process of "fault piracy" to establish an immature border fault system. The relationships between scam heights and vertical throws reveal that the young and active faults are located outside the rift while the faults with no recent activities are in the middle suggesting that the rift is also growing in width. This study demonstrates the utility of potential field data and SRTM DEM to provide a 3-D view of incipient continental rifting processes such as fault growth and propagation.

  13. Iowa portion of rift trend hosts wildcats

    SciTech Connect

    McCaslin, J.C.

    1984-05-07

    Definite signs point to an exploratory effort beginning at the far southwestern end of Iowa's Keweenawan rift - a new frontier for oil and gas hunters. This new round of wildcatting is located on the Midcontinent rift trend, a major geological feature extending to great depths under parts of Michigan, Wisconsin, Minnesota (the Keweenawan rift system), Iowa, Nebraska, Missouri, and Kansas. Recent reports hint that leasing is underway in Minnesota, with interest developing in Iowa, Missouri, and Nebraska sectors. Geophysical evidence has led to the delineation of a rift system active during the Proterozoic Y era. Geologists have traced this system by the Midcontinent gravity high and corresponding aeromagnetic signature from the surface exposure of the Keweenawan supergroup in the Lake Superior basin southwest in the subsurface through the northern Midcontinent states.

  14. Cenozoic rift tectonics of the Japan Sea

    SciTech Connect

    Kimura, K.

    1988-08-01

    The Japan Sea is one of the back-arc basins in trench-arc systems bordering the western Pacific. Recent paleomagnetic works suggest the Japan Sea opened during early to middle Miocene. Radiometric and microfossil ages of the Cenozoic onland sequences in the Japanese Islands elucidate the rift tectonics of the Japan Sea. The rifting history is summarized as follows: nonmarine volcanic formations of prerift stage before 50 Ma, rift-onset unconformity at 40 Ma, nonmarine volcanic formations of synrift stage 20-33 Ma, breakup unconformity 19 Ma showing the opening of the Japan Sea, marine volcanic and sedimentary formations of synrift stage 14.5-18 Ma, beginning of regional subsidence 14.5 Ma corresponding to the end of the Japan Sea opening, marine sedimentary formations of postdrift stage after 14.5 Ma. Rifting is not limited to the synrift stage but is continued to the syndrift stage. Rifting led to a horst-and-graben structure. Thus, the Cenozoic onland sequences in the Japanese Islands are suited for a study of rift tectonics because the sequences were subaerially exposed by the late Miocene-Holocene island-arc tectonics. Rift tectonics cannot be studied as easily in most Atlantic-type passive margins.

  15. NONLINEAR DYNAMICAL SYSTEMS - Final report

    SciTech Connect

    Philip Holmes

    2005-12-31

    This document is the final report on the work completed on DE-FG02-95ER25238 since the start of the second renewal period: Jan 1, 2001. It supplements the annual reports submitted in 2001 and 2002. In the renewal proposal I envisaged work in three main areas: Analytical and topological tools for studying flows and maps Low dimensional models of fluid flow Models of animal locomotion and I describe the progess made on each project.

  16. The rift to break-up evolution of the Gulf of Aden: Insights from 3D numerical lithospheric-scale modelling

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Autin, Julia

    2013-11-01

    The Gulf of Aden provides an ideal setting to study oblique rifting since numerous structural data are available onshore and offshore. Recent surveys showed that the spatio-temporal evolution of the Gulf of Aden rift system is dominated by three fault orientations: displacement-orthogonal (WSW), rift-parallel (WNW) and an intermediate E-W trend. The oldest parts of the rift that are exposed onshore feature displacement-orthogonal and intermediate directions, whereas the subsequently active necking zone involves mainly rift-parallel faults. The final rift phase recorded at the distal margin is characterised by displacement-orthogonal and intermediate fault orientations. We investigate the evolution of the Gulf of Aden from rift initiation to break-up by means of 3D numerical experiments on lithospheric scale. We apply the finite element model SLIM3D which includes realistic, elasto-visco-plastic rheology and a free surface. Despite recent advances, 3D numerical experiments still require relatively coarse resolution so that individual faults are poorly resolved. We address this issue by proposing a simple post-processing method that uses the surface stress-tensor to evaluate stress regime (extensional, strike-slip, compressional) and preferred fault azimuth. The described method is applicable to any geodynamic model and easy to introduce. Our model reproduces the observed fault pattern of the Gulf of Aden and illustrates how multiple fault directions arise from the interaction of local and far-field tectonic stresses in an evolving rift system. The numerical simulations robustly feature intermediate faults during the initial rift phase, followed by rift-parallel normal faulting at the rift flanks and strike-slip faults in the central part of the rift system. Upon break-up, displacement-orthogonal as well as intermediate faults occur. This study corroborates and extends findings from previous analogue experiments of oblique rifting on lithospheric scale and allows new

  17. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  18. Understanding the thermal and tectonic evolution of Marie Byrd Land from a reanalysis of airborne geophysical data in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Quartini, E.; Powell, E. M.; Richter, T.; Damiani, T.; Burris, S. G.; Young, D. A.; Blankenship, D. D.

    2013-12-01

    The West Antarctic Rift System (WARS) is a region characterized by a significant topographic range, a complex tectonic history, and active subglacial volcanism. Those elements exert a large influence on the stability of the West Antarctic Ice Sheet, which flows within the cradle-shaped rift system and is currently grounded well below sea level. This potentially unstable configuration is the motivation for gaining a better understanding of the ice sheet boundary conditions dictated by rift evolution and how they impact the ice flow. In this study we focus on characterizing the distribution of and transition between sedimentary basins and inferred geothermal heat flux from the flanks to the floor of the rift system. We do so through analysis of gravity data both for sources within the deep lithosphere and near surface targets in the crust. A compilation of gravity datasets over West and Central Antarctica and the analysis thereof is presented. In particular we use gravity data collected during several airborne geophysical surveys: CASERTZ (1994-1997), SOAR/WMB (1997-1998), AGASEA (2004-2005), ICEBRIDGE (2008-2011), and GIMBLE (2012-2013). New processing and data reduction methodologies are applied to the older gravity surveys to improve the high frequency signal content and to make these surveys compatible with modern works (i.e. AGASEA, ICEBRIDGE, GIMBLE). The high frequency signal provides better resolution of small-scale features within survey blocks but long-wavelength integrity is retained by registering the airborne free-air disturbance within those blocks to the gravity disturbance derived from the GOCE global satellite gravity field. This allows for consistent long wavelength interpretation across the merged surveys and provides improved gravity analysis of the deep lithosphere while retaining the capacity to study smaller scale features. A crustal model for the area is produced using the Bouguer anomaly and spectral analyses of the Bouguer anomaly and free

  19. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland.

    PubMed

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S; Ófeigsson, Benedikt G; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A; Geirsson, Halldór; La Femina, Peter C; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J; Möllhoff, Martin; Braiden, Aoife K; Eibl, Eva P S

    2015-01-01

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries. PMID:25517098

  20. The Role of Rift Obliquity During Pangea Fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  1. Experimental lithium system. Final report

    SciTech Connect

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  2. Contemporary surface ruptures in the zone of the Baikal-Mondy fault (Baikal rift system): dynamics of formation and origin

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Sankov, Aleksei; Lebedeva, Marina; Ashurkov, Sergey; Parfeevets, Anna

    2014-05-01

    Sublatitudinal Baikal-Mondy (Tunka) left-lateral strike-slip fault accommodates North Mongolia submeridional rift basins opening (Darkhad and Khubsugul). It is the connecting link between the central and south-western parts of the Baikal rift system. We investigated the present-day activity of faulting on southern border of Mondy basin, which is due to their position at the junction of east-west trending active faults of the Baikal-Mondy fault system with submeridional structures of Khubsugul basin. The investigated area is characterized by high seismic activity. The epicenter of one of the strongest Mondy earthquake 1950 (Mw = 7.0) is located within the Mondy basin. Reconstruction of Late Cenozoic tectonic stress field shows a predominance of strike-slip deformation regime with NW-SE direction of the minimum compression axis and NE-SW direction of the maximum compression axis, which correlates with the present-day stress field derived from the data on earthquake focal mechanisms. On the top of the southern shoulder of Mondy basin a series of extended NE trending surface ruptures that cut the crust of weathering and bedrock across the local watershed were discovered. The rupture length reaches 180 m, width ruptures bedrock reaches 0.6 m. In the bedrock tectonic microfractures of NW and NE directions are dominated, but the NW trending surface ruptures are not observed. In the area of contemporary ruptures the geodetic measurements were carried out in the period 2009-2013. The results of processing the measurement data on the local testing ground showed that most divergent baselines undergoes extension with maximum values reaching 30 mm/year. The block experienced elongation in all directions, but the morphology of ruptures suggests that the main direction of stretching is NW-SE. The intensity of cracks opening decreases markedly with time. According to eyewitnesses known that active crack opening at about 100 mm/year started 4 years before Kultuk earthquake (27

  3. Inventory Systems Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Naddor, Eliezer

    Four computer programs to aid students in understanding inventory systems, constructing mathematical inventory models, and developing optimal decision rules are presented. The program series allows a user to set input levels, simulates the behavior of major variables in inventory systems, and provides performance measures as output. Inventory…

  4. How strong ist the impact of changing topography of the East African Rift System on regional climate?

    NASA Astrophysics Data System (ADS)

    Prömmel, Kerstin; Kaspar, Frank; Cubasch, Ulrich

    2010-05-01

    The evolution of the East African Rift System (EARS) leads to a topography change at the surface and the impact of this change on climate in this region can easily be analysed with climate models. In the present study both global and regional climate models are applied. The global climate model is the coupled atmosphere ocean general circulation model ECHO-G and the regional climate model is the non-hydrostatic CLM, which is the climate version of the numerical weather prediction model of the German Meterorological Service. At the lateral boundaries the regional model is driven by the simulations performed with the global model. Different topographical situations representing possible conditions in the past, are simulated with the global and the regional climate model. One assumption affects only the highest peaks of the EARS south of the Turkana Channel by reducing them to 1200 m. The other assumptions affect a much larger area covering the whole of Southern and Eastern Africa. Over this region topography is reduced by 25%, 50%, 75% and 95%. These different topography reductions have an impact on circulation and therefore also on moisture transport. This leads to changes in the precipitation patterns over Africa. One strong effect is the decrease in orographic precipitation windward of the mountains. Wetter conditions can be found over the east coast of Africa, where moisture is transported from the Indian Ocean farther into the continent due to the lower barrier. Both global and regional models show similar results on the continental scale, however the results of the regional model are much more detailed due to the higher horizontal resolution (50 km) compared to the global model (~350 km).

  5. TerraSAR-X high-resolution radar remote sensing: an operational warning system for Rift Valley fever risk.

    PubMed

    Vignolles, Cécile; Tourre, Yves M; Mora, Oscar; Imanache, Laurent; Lafaye, Murielle

    2010-11-01

    In the vicinity of the Barkedji village (in the Ferlo region of Senegal), the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF) are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m) Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels), Synthetic Aperture Radar satellite (TerraSAR-X) produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images), which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM), NASA/JAXA joint mission, the filling-up and flushing-out rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km(2)) can thus be assessed. This new operational approach (which is independent of weather conditions) is an important development in the mapping of risk components (i.e. hazards plus vulnerability) related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system. PMID:21080318

  6. Rift Valley Fever Virus Nonstructural Protein NSs Promotes Viral RNA Replication and Transcription in a Minigenome System

    PubMed Central

    Ikegami, Tetsuro; Peters, C. J.; Makino, Shinji

    2005-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-α/β) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-α/β production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis. PMID:15827175

  7. Paleomagnetism and paleointensity of Mid-Continental Rift System basalts at Silver Mountain and Sturgeon River Falls (Upper Michigan)

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Piispa, E. J.; Laird, M. S.; Smirnov, A. V.; Diehl, J. F.

    2009-12-01

    Paleomagnetic and paleointensity data from Precambrian rocks are of great importance for understanding the early geodynamo and tectonic evolution of the Earth. We will present results from a rock magnetic and paleomagnetic investigation of basaltic lava flow sequences at Silver Mountain and Sturgeon River Falls in Upper Michigan. While the Silver Mountain and Sturgeon River Falls lava flows have not been radiometrically dated, these rocks have been assigned to the Siemens Creek Volcanics, the lowermost member of ~1.1 Ga Powder Mill Group (PMG). The PMG represents one of the oldest volcanic units associated with the Mid-Continental Rift System (MCRS). We sampled 13 lava flows from the Silver Mountain and two lava flows from the Sturgeon River Falls exposures (a minimum of 15 cores per flow were taken). Paleomagnetic directions were determined from detailed thermal and/or alternating field demagnetization preceded by an initial low-temperature (liquid nitrogen) demagnetization. Most specimens revealed a single- or a two-component remanent magnetization. At both locations, the characteristic remanent magnetization (ChRM) has a reversed direction with very steep inclination similar to that found in other rocks representing the early stages of MCRS. Our magnetic hysteresis measurements, unblocking temperature spectra, and scanning electron microscopy analyses suggest low-Ti, pseudosingle-domain titanomagnetite as the principal magnetic carrier in these rocks. For paleointensity determinations, we applied the multispecimen parallel differential pTRM method. These data add to the Precambrian paleointensity database which otherwise remains limited because of alteration and other factors hampering the applicability of conventional Thellier double-heating method.

  8. Multiple mantle upwellings beneath the Northern East-African Rift System from relative P- and S-wave traveltime tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2015-04-01

    Mantle plumes have been invoked as the likely cause of East African Rift volcanism and extension. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to one or more distinct lower-mantle sources along the rift. We present a new relative travel-time tomography model that images detailed P- and S- wave velocities from P,S and SKS phases below the northern East-African, Red Sea and Gulf of Aden rift. Data comes from stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time structures of ~100 km length scale down to depths of 900 km beneath this region. Our images provide evidence of at least two low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first extends to at least 900 km beneath Afar, and a second reaching at least 750 km depth just west of the Main Ethiopian Rift, a region with off-rift volcanism. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of 100±50 K. The scale of the upwellings is smaller than any of the previously proposed lower mantle plume sources. This suggests the ponding or flow of deep-plume material below the transition zone may be spawning smaller upper-mantle upwellings.

  9. Volcanic and Structural History of the NE Rift Zone of Tenerife, Canary Islands, Spain

    NASA Astrophysics Data System (ADS)

    Carracedo, J.; Guillou, H.; Badiola, E. R.; Torrado, F. P.; Troll, V.; Delcamp, A.; Paris, R.; Gonzalez, A. R.

    2008-12-01

    The NE Rift of Tenerife is an excellent example of a persistent, recurrent rift, providing important evidence on the origin and dynamics of these major volcanic features. The rift developed in three successive, intense and relatively short eruptive stages (a few hundred ka), separated by longer periods of quiescence or reduced activity: A Miocene stage (7203+/-155ka), apparently extending the central Miocene shield of Tenerife towards the Anaga massif; an Upper Pliocene stage (2710+/-58ka) and the latest stage, with the main eruptive phase, in the Pleistocene. Detailed geological (GIS) mapping, geomagnetic reversal mapping and stratigraphic correlation, and radioisotopic (K/Ar) dating of volcanic formations allowed the reconstruction of the latest period of rift activity. In the early phases of this stage the majority of the eruptions grouped tightly along the axis of the rift and show reverse polarity (corresponding to the Matuyama). Dykes are of normal and reverse polarities. In the final phase of activity, eruptions are more disperse and lavas and dykes are consistently of normal polarity (Brunhes). Volcanic units of normal polarity crossed by dykes of normal and reverse polarities yield ages apparently compatible with normal events (M-B Precursor and Jaramillo) in the Upper Matuyama epoch. Three lateral collapses successively mass-wasted the rift: The Micheque collapse, completely concealed by subsequent nested volcanism, and the Güímar and La Orotava collapses, that are only partially filled. Pre- collapse and nested volcanism is predominantly basaltic, except in the Micheque collapse, where magmas evolved towards intermediate and felsic (trachytic) compositions. Rifts in the Canary Islands are long-lasting, recurrent features, probably related to primordial, plume-related fractures acting throughout the entire growth of the islands. Basaltic volcanism forms the bulk of the islands and rift zones. However, collapses of the flanks of the rifts disrupt their

  10. Systems Design Orientation. Final Report.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Institutions, Social and Rehabilitation Services, Oklahoma City.

    A 40-hour course in systems design is described. The course was developed for presentation to non-data processing management personnel whose responsibilities include utilization of data processing services. All course material is included. (Author/JY)

  11. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  12. Pristine Rhyolite Glass Melt Inclusions in Quartz Phenocrysts From the 1.1 Ga Midcontinent Rift System, Keweenaw Peninsula, Michigan

    NASA Astrophysics Data System (ADS)

    Student, J. J.; Wark, D. A.; Mutchler, S. R.; Bodnar, R. J.

    2006-12-01

    Pristine rhyolite glass from the Proterozoic eon is rarely reported in the literature. Glass-bearing melt inclusions (MI) have been identified in quartz phenocrysts from rhyolite cobbles found in rift related conglomerates within the Portage Lake Volcanics (PLV) near Calumet, Michigan. The rhyolites represent an aspect of mantle plume related bi-modal magmatism that is contemporaneous with the 1.1 Ga Midcontinent Rift System (MRS). Previous studies classified felsic rocks from the PLV into two types, one that is similar to Icelandic rhyolites (Type I) and another similar to Cenozoic topaz rhyolites (Type II). The MRS rhyolite magmas are thought to have been at high temperatures (900-1100 °C) and low water contents prior to eruption. Low-grade burial metamorphism and hydrothermal alteration has affected some rocks in the region. The MI in this study have been categorized based on their phase assemblages and preservation history. Type 1 MI contain clear glass and a shrinkage bubble, Type 2 contain clear glass, a shrinkage bubble and 1 or more, coarser grained (> 3 um) crystals, and Type 3 MI are totally devitrified or otherwise breached. The MI range in size from 1 to over 200 um in diameter and have a negative hexagonal bi-pyramidal morphology. Major element oxide compositions (75.4-SiO2, 0.09-TiO2, 11.3-Al2O3, 2.2-FeO, 0.04- MnO, 0.06-MgO, 0.84-CaO, 5.9-K2O and 2.85-Na2O in wt %) determined by EPMA for Type 1 MI are similar to whole rock compositions reported for rhyolites in the MRS. The water contents of MI are low, as evidenced by the high totals (98.67 wt %) from the EPMA and the fact that a water peak was not observed during Raman analysis (indicating that the MI contain less than 1 wt % H2O). LA-ICPMS analysis for additional trace elements (Cu, Rb, Sr, Zr, Nb, Cs, Ba, La, Ce, Eu, Yb, Ta, Th and U) were preformed on both Type 1 and Type 2 MI. Discrimination based on Ba/Rb and Ba/Th indicate that the MI are most similar to the Type II rhyolites in the region

  13. Fault growth and propagation during incipient continental rifting: Insights from a combined aeromagnetic and Shuttle Radar Topography Mission digital elevation model investigation of the Okavango Rift Zone, northwest Botswana

    NASA Astrophysics Data System (ADS)

    Kinabo, B. D.; Hogan, J. P.; Atekwana, E. A.; Abdelsalam, M. G.; Modisi, M. P.

    2008-06-01

    Digital Elevation Models (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data and high-resolution aeromagnetic data are used to characterize the growth and propagation of faults associated with the early stages of continental extension in the Okavango Rift Zone (ORZ), northwest Botswana. Significant differences in the height of fault scarps and the throws across the faults in the basement indicate extended fault histories accompanied by sediment accumulation within the rift graben. Faults in the center of the rift either lack topographic expressions or are interpreted to have become inactive, or have large throws and small scarp heights indicating waning activity. Faults on the outer margins of the rift exhibit either (1) large throws or significant scarp heights and are considered older and active or (2) throws and scarp heights that are in closer agreement and are considered young and active. Fault linkages between major fault systems through a process of "fault piracy" have combined to establish an immature border fault for the ORZ. Thus, in addition to growing in length (by along-axis linkage of segments), the rift is also growing in width (by transferring motion to younger faults along the outer margins while abandoning older faults in the middle). Finally, utilization of preexisting zones of weakness allowed the development of very long faults (>100 km) at a very early stage of continental rifting, explaining the apparent paradox between the fault length versus throw for this young rift. This study clearly demonstrates that the integration of the SRTM DEM and aeromagnetic data provides a 3-D view of the faults and fault systems, providing new insight into fault growth and propagation during the nascent stages of continental rifting.

  14. East African Rift

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Places where the earth's crust has formed deep fissures and the plates have begun to move apart develop rift structures in which elongate blocks have subsided relative to the blocks on either side. The East African Rift is a world-famous example of such rifting. It is characterized by 1) topographic deep valleys in the rift zone, 2) sheer escarpments along the faulted walls of the rift zone, 3) a chain of lakes within the rift, most of the lakes highly saline due to evaporation in the hot temperatures characteristic of climates near the equator, 4) voluminous amounts of volcanic rocks that have flowed from faults along the sides of the rift, and 5) volcanic cones where magma flow was most intense. This example in Kenya displays most of these features near Lake Begoria.

    The image was acquired December 18, 2002, covers an area of 40.5 x 32 km, and is located at 0.1 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  15. InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.; Wright, Tim J.; Calais, Eric; Lewi, Elias; Fukahata, Yukitoshi

    2014-04-01

    Increased displacement rates have been observed following manylarge earthquakes and magmatic events. Although an order of magnitude smaller than the displacements associated with the main event, the post-seismic or post-rifting deformation may continue for years to decades after the initial earthquake or dyke intrusion. Due to the rare occurrence of subaerial rifting events, there are very few observations to constrain models of post-rifting deformation. In 2005 September, a 60-km-long dyke was intruded along the Dabbahu segment of the Nubia-Arabia Plate boundary (Afar, Ethiopia), marking the beginning of an ongoing rifting episode. Continued activity has been monitored using satellite radar interferometry and data from global positioning system instruments deployed around the rift in response to the initial intrusion. Using multiple satellite passes, we are able to separate the rift perpendicular and vertical displacement fields around the Dabbahu segment. Rift perpendicular and vertical rates of up to 180 and 240 mm yr-1, respectively. Here, we show that models of viscoelastic relaxation alone are insufficient to reproduce the observed deformation field and that a large portion of the observed signal is related to the movement of magma within the rift segment. Our models suggest upper mantle viscosities of 1018-19 Pa s overlain by an elastic crust of between 15 and 30 km. To fit the observations, inflation and deflation of magma chambers in the centre of the rift and to the south east of the rift axis is required at rates of ˜0.13 and -0.08 km3 yr-1.

  16. Special Delivery Systems. Final Report.

    ERIC Educational Resources Information Center

    Molek, Carol

    The Special Delivery Systems project developed a curriculum for students with learning disabilities (LD) in an adult basic education program. The curriculum was designed to assist and motivate the students in the educational process. Fourteen students with LD were recruited and screened. The curriculum addressed varied learning styles combined…

  17. Final Barrier: Small System Compliance

    EPA Science Inventory

    This presentation will discuss the use of point-of-use (POU) technology for small drinking water systems. Information will be provided on the USEPA regulations that allow the use of POU for compliance and the technologies that are listed as SSCT for radium and arsenic. Listing o...

  18. Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Park, Munjae; Jung, Haemyeong; Kil, Youngwoo

    2015-04-01

    Mantle-derived xenoliths associated with continental rifting can provide important information about the mantle structure and the physicochemical properties of deformation processes in the upper mantle. Metasomatized spinel peridotites from Adam's Diggings (AD) at a rift shoulder and Elephant Butte (EB) at a rift axis in the Rio Grande rift (RGR) were investigated to understand the deformation processes and seismic anisotropy occurring in the upper mantle. As determined through analysis of the lattice preferred orientation (LPO) of olivine by using a scanning electron microscope equipped with electron backscatter diffraction (SEM/EBSD), AD peridotites exhibited C-type LPO of olivine indicating a dominant slip system of (100)[001] at the rift shoulder, whereas EB peridotites exhibited A-type LPO indicating a dominant slip system of (010)[100] at the rift axis. Both geochemical data and microstructural observations indicate that the localized mantle enrichment processes, including melts with hydrous fluids, controlled multiple mantle metasomatisms and deformation of rocks under wet conditions (with olivine C-type LPO) at the rift shoulder (AD), whereas mantle depletion by decompression partial melting caused deformation of rocks under dry conditions (with olivine A-type LPO) at the rift axis (EB). These observations provide evidence for localized hydration and physicochemical heterogeneity of the upper mantle in the Rio Grande rift (RGR) zone. Seismic anisotropy observed beneath this zone can be attributed to the transtensional rupture, such as inhomogeneous stretching, and the petrofabrics of olivine beneath the study area.

  19. Mesozoic and early Tertiary rift tectonics in East Africa

    NASA Astrophysics Data System (ADS)

    Bosworth, William

    1992-08-01

    A complex history of crustal extension occurred in east and central Africa during the Mesozoic and early Tertiary. Beginning in the Late Jurassic, this resulted in a large system of rifts, the Central African rift system, that spanned from central Sudan to southern Kenya. Late Jurassic rifting is best documented in the White and Blue Nile rifts of the Sudan, and records east-west extension in half-graben that were connected by large-scale shear zones and pull-apart basins. Early Cretaceous rifting re-activated Jurassic basins and spread to the large South Sudan rifts and Anza rift in Kenya. By the Late Cretaceous, the extension direction shifted to the NE-SW, and the presently observed large-scale rift geometry was established. In the early Tertiary, some Mesozoic basins were again reactivated, while other regions underwent wrench faulting and basin inversion. The large number of basins preserved in the Central African rift system can be used to construct an evolutionary model of continental rift tectonics. Early phases of extension at low strains produced alternating half-graben/accommodation zone geometries similar to those observed in most young and active continental rifts. At higher strains, some border faults were abandoned so that through-going, simpler active fault systems could evolve. This is interpreted as representing a switch from complex, oppositely dipping detachment structures, with strike dimensions of 50-150 km, to regional detachment structures that continue for hundreds of kilometers parallel to the rift. This change in the type of detachment was accompanied by a shift in the position of the subsidence away from the breakaway to a position focused further within the regional upper plate. Non-rotational, high angle, normal faulting dominates in the development of these late basin geometries. Deciphering similar rift basin histories from passive continental margins may, in many cases, exceed the limits of available reflection seismic data. East

  20. Tectono-Sedimentary Analysis of Rift Basins: Insights from the Corinth Rift, Greece

    NASA Astrophysics Data System (ADS)

    Gawthorpe, Robert; Ford, Mary

    2015-04-01

    Existing models for the tectono-sedimentary evolution of rift basins are strongly linked the growth and linkage of normal fault segments and localization of fault activity. Early stages of faulting (rift initiation phase) are characterized by distributed, short, low displacement fault segments, subdued fault-related topography and small depocentres within which sedimentation keeps pace with subsidence. Following linkage and displacement localization (rift climax phase), deformation if focused onto major, crustal-scale fault zones with kilometre-scale displacement. These major faults generate pronounced tilted fault-block topography, with subsidence rates that outpace sedimentation causing a pronounced change to deep-water deposition. Such models have been successful in helping to understand the gross structural and sedimentary evolution of rift basins, but recent work has suggested that pre-existing structures, normal fault interaction with pre-rift salt and antecedent drainage systems significantly alter this initiation-to-climax perspective of rift basin development. The E-W-striking, Pliocene-Pleistocene Corinth rift, central Greece, is an excellent natural laboratory for studying the tectono-sedimentary evolution of rift basins due to its young age, excellent onshore exposure of syn-rift structure and stratigraphy and extensive offshore seismic data. The rift cuts across the NW-SE-striking Hellenide mountain belt and has migrated northward and westward during its evolution. The Hellenide mountain belt significantly influences topography and drainage in the west of the rift. High topography and large antecedent drainage systems, focused along palaeovalleys, provided high sediment flux to NE-flowing alluvial systems that overfilled early-rift depocentres. Further east, away from the main antecedent drainage networks, contemporaneous deposits comprise deep-lacustrine turbidite channel and lobe complexes and basinal marls. Thus the stratigraphic expression within

  1. Controls on (anomalous) topography in rifted margin settings

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.

    2015-04-01

    Contrasting end members of volcanic and non-volcanic passive margin formation show a large variability in basin shape and structure, subsidence history, and associated topographic evolution of the onshore rifted margins. The large range of structural style and associated topography of these systems imply a strong variability in the underlying thermo-mechanical conditions at the time of rifting. Rift - passive margin styles ranging from narrow to ultra wide are explained using forward numerical models with varying rheological structure, with strong crust lithosphere leading to narrow rift formation associated with highly elevated rift shoulders and conversely weak crust lithosphere resulting in highly stretched wide rifted conjugate margins and little flank morphology. In some cases rifted margins appear to indicate the formation of anomalous post rift topography. A number of mechanisms including small-scale convective removal of the lower lithosphere, lithosphere counter-flow, and dynamic topography, have been invoked to explain the anomalous topography. Forward numerical models are used to predict the magnitude and characteristic topography associated with each of these mechanisms and to evaluate their potential for explaining these apparent anomalous characteristics of rifts and rifted margins.

  2. Style of rifting and the stages of Pangea breakup

    NASA Astrophysics Data System (ADS)

    Frizon de Lamotte, Dominique; Fourdan, Brendan; Leleu, Sophie; Leparmentier, François; Clarens, Philippe

    2015-05-01

    Pangea results from the progressive amalgamation of continental blocks achieved at 320 Ma. Assuming that the ancient concept of "active" versus "passive" rifting remains pertinent as end-members of more complex processes, we show that the progressive Pangea breakup occurred through a succession of rifting episodes characterized by different tectonic evolutions. A first episode of passive continental rifting during the Upper Carboniferous and Permian led to the formation of the Neo-Tethys Ocean. Then at the beginning of Triassic times, two short episodes of active rifting associated to the Siberian and Emeishan large igneous provinces (LIPs) failed. The true disintegration of Pangea resulted from (1) a Triassic passive rifting leading to the emplacement of the central Atlantic magmatic province (200 Ma) LIP and the subsequent opening of the central Atlantic Ocean during the lowermost Jurassic and from (2) a Lower Jurassic active rifting triggered by the Karoo-Ferrar LIP (183 Ma), which led to the opening of the West Indian Ocean. The same sequence of passive then active rifting is observed during the Lower Cretaceous with, in between, the Parana-Etendeka LIP at 135 Ma. We show that the relationships between the style of rifts and their breakdown or with the type of resulting margins (as magma poor or magma dominated) are not straightforward. Finally, we discuss the respective role of mantle global warming promoted by continental agglomeration and mantle plumes in the weakening of the continental lithosphere and their roles as rifting triggers.

  3. Rifting to spreading in the Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Leroy, S.; Razin, P.; Lucazeau, F.; D'Acremont, E.; Autin, J.; Watremez, L.; Robinet, J.; Baurion, C.

    2011-12-01

    The Gulf of Aden margins systems are volcanic to the West, where they are influenced by the Afar hotspot, and non-volcanic East of longitude 46°E. The combined use of magnetics, gravity, seismic reflection, field observations (tectonic and sedimentological) allowed us to obtain better constraints on the timing of continental rifting and seafloor spreading. From the Permo-Triassic to the Oligocene, the Arabian-African plate was subject to distributed extension, probably due, at least from the Cretaceous, to tensile stresses related to the subduction of the Tethysian slab in the north. In Late Eocene, 35 Ma ago, rifting started to localize along the future area of continental breakup. Initially guided by the inherited basins, continental rifting then occurred synchronously over the entire gulf before becoming localized on the northern and southern borders of the inherited grabens, in the direction of the Afar hot-spot. In the areas with non-volcanic margins (in the East), the faults marking the end of rifting trend parallel to the inherited grabens. Only the transfer faults cross-cut the inherited grabens, and some of these faults later developed into transform faults. The most important of these transform faults follow a Precambrian trend. Volcanic margins were formed in the West of the Gulf, up to the Guban graben in the south-east and as far as the southern boundary of the Bahlaf graben in the North-East. Seaward dipping reflectors (SDRs) can be observed on many oil-industry seismic profiles. The influence of the hotspot during rifting was concentrated on the western part of the gulf. Therefore, it seems that the western domain was uplifted and eroded at the onset of rifting, while the eastern domain was characterized by more continuous sedimentation. The phase of distributed deformation was followed by a phase of strain localization during the final rifting stage, just before formation of the Ocean-Continent Transition (OCT), in the most distal graben (DIM

  4. Rift Valley Fever (RVF)

    MedlinePlus

    ... Outbreak resources, VHF information for specific groups, virus ecology, references... RVF Distribution Map Rift Valley Fever Transmission ... Outbreaks Outbreak Summaries RVF Distribution Map Resources Virus Ecology File Formats Help: How do I view different ...

  5. Final focus system for high intensity beams

    SciTech Connect

    Henestroza, E.; Bieniosek, F.M.; Eylon, S.; Roy, P.K.; Yu, S.S.

    2003-05-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The NTX final focus system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final focus lattice consists of four pulsed quadrupole magnets. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. We will present experimental results from NTX on beam envelope and phase space distributions, and compare these results with particle simulations using the particle-in-cell code WARP.

  6. An updated global earthquake catalogue for stable continental regions: reassessing the correlation with ancient rifts

    NASA Astrophysics Data System (ADS)

    Schulte, Saskia M.; Mooney, Walter D.

    2005-06-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) >= 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M>= 6.0) earthquakes are considered. The largest events (M>= 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the presence

  7. An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

    USGS Publications Warehouse

    Schulte, S.M.; Mooney, W.D.

    2005-01-01

    We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ??? 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ??? 6.0) earthquakes are considered. The largest events (M ??? 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the

  8. Volatiles and subduction-recycled lithologies in the petrogenesis of Cenozoic alkaline magmatism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Fahnestock, M. F.

    2015-12-01

    In the West Antarctic Rift System (WARS), the failure of both passive and active models of decompression melting to explain unusually voluminous Cenozoic volcanism has prompted debate about the roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by ~500 Ma of subduction along the paleo-Pacific margin of Gondwana[1], a process capable of generating easily fusible, volatile-rich lithologies and producing the broad seismic low-velocity anomaly imaged beneath the Southern Ocean[2]. We present new geochemical information from submarine lavas in the Ross Sea and subaerial lavas from Franklin Island, Beaufort Island, and Mt. Melbourne in Northern Victoria Land (NVL) supportive of an evolving fluxed mantle source. Lavas exhibit ocean island basalt (OIB)-like trace element signatures and isotopic affinities for the C/FOZO mantle endmember consistent with subduction processing of recycled ocean lithosphere. Lava major-oxide compositions suggest multiple recycled source components, including pyroxenite (associated with older lavas), amphibole-rich metasomes, and volatilized peridotite (associated with the youngest lavas). In-situ analyses of olivine-hosted melt inclusions (MIs) from a subset of host lavas confirm high H2O and CO2 ranging up to 2.94 wt % and 4657 ppm, respectively. MIs exhibit OIB-like trace element compositions and Ba/Rb and Rb/Sr consistent with melting in the presence of hydrated, amphibole-bearing lithosphere[3,4]. We interpret these observations as evidence that ongoing tectonomagmatic activity in the WARS is facilitated by melting of subduction-modified mantle generated by 550 - 100 Ma Gondwana subduction. Following radiogenic ingrowth in high-µ (U/Pb) domains, Cenozoic extension triggered decompression melting of easily fusible, hydrated metasomes and volatilized mantle. This multistage magma model attempts to reconcile geochemical observations with increasing geophysical evidence that the seismic

  9. Radial Anisotropy beneath the Main Ethiopian Rift and Afar Depression

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Jin, G.; Shillington, D. J.

    2014-12-01

    The Main Ethiopian Rift (MER) and Afar uniquely capture the final stages of transition from continental rifting in the broader East African Rift System to incipient seafloor spreading above a mantle hotspot. Studies of the region increasingly point to magmatism as a controlling factor on continental extension. However, the character and depth extent of these melt products remain contentious. Radial anisotropy derived from surface waves provides a unique diagnostic constraint on the presence of oriented melt pockets versus broader oriented anisotropic fabrics. This study investigates the thermal and radially anisotropic structure beneath the broader MER and Afar to resolve the magmatic character of the region and ultimately to understand the role of magmatism in present day rift development. We utilize 104 stations from 4 collocated arrays in the MER/Afar region to constrain radial anisotropy within the upper mantle via the inversion of Love- and Rayleigh-wave observations between 25 and 100 s period. We employ a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information. The multi-channel phase observations are inverted for dynamic phase velocity across the array, which are then corrected for focusing and multipathing using the amplitude observations via Helmholtz tomography. We jointly invert Love- and Rayleigh-wave structural phase velocity measurements employing crustal constraints from co-located active source experiments to obtain estimates of Vsv and Vsh between 50 - 170 km depth. Preliminary results readily reveal the distinct shear velocity structure beneath the MER and Afar. Within the MER, shear velocity structure suggests pronounced low velocities accompanied by strong anisotropy between 80 - 140 km depth beneath the western Ethiopian plateau and rift valley. Within Afar, shear velocity structure is more varied with the slowest velocities found at shallow depths (less than 70 km depth), accompanied by weak

  10. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  11. Mapping Extensional Structures in the Makgadikgadi Pans, Botswana with remote sensing and aeromagnetic data: Implication for the continuation of the East African Rift System in southern Africa

    NASA Astrophysics Data System (ADS)

    Fetkovich, E. J.; Atekwana, E. A.; Abdelsalam, M. G.; Atekwana, E. A.; Katumwehe, A. B.

    2015-12-01

    We used Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) and aeromagnetic data to map extensional structures in the Makgadikgadi Pans in northeastern Botswana. These pans are a major morphological feature in Southern Africa characterized by the presence of low lying and flat topography with the highest elevation of 945 m. This topography was a result of multiple filling and desiccation of paleo-lakes that accompanied alternation of wetter and dryer climate during the Late Quaternary period. The objective of our study was to map the extent and distribution of normal faults using their morphological expression and magnetic signature, and examine their relationship with paleo-shorelines of the pans. We: (1) Created a hill shade relief map from the SRTM DEM; (2) Extracted regional NW-SE trending topographic profiles across the pans; (3) Constructed displacement profiles for major normal faults; and (4) Created tilt derivative images from the aeromagnetic data. We found that: (1) The northeastern part of the pan is dissected by three morphologically-defined NE-trending normal faults. The along strike continuity of these faults is in the range of 75 and 170 km and they are spaced at ~30 km apart from each other. (2) The topographic profiles suggest that the exposed minimum vertical displacement (EMVD), defined by poorly developed escarpments, is in the range of 0 m and 49 m. (3) The displacement profiles of the faults is characterized by maximum EMVD in the middle of the faults and that it decays towards the fault tips. These faults are also apparent in the aeromagnetic maps where they seem to displace E-W trending Karoo-age dikes. (4) At least the outer paleo-shoreline of the pans is modified by the NE-trending faults. This suggests that the faults are younger than the paleo-shorelines, which is suggested to have been developed between 500 and 100 ka. Traditionally, the southwestern extension of the East African Rift System has been assigned to the

  12. Comprehensive Child Welfare Information System. Final rule.

    PubMed

    2016-06-01

    This final rule replaces the Statewide and Tribal Automated Child Welfare Information Systems (S/TACWIS) rule with the Comprehensive Child Welfare Information System (CCWIS) rule. The rule also makes conforming amendments in rules in related requirements. This rule will assist title IV-E agencies in developing information management systems that leverage new innovations and technology in order to better serve children and families. More specifically, this final rule supports the use of cost-effective, innovative technologies to automate the collection of high-quality case management data and to promote its analysis, distribution, and use by workers, supervisors, administrators, researchers, and policy makers. PMID:27295732

  13. Optimization of the NLC final focus system

    SciTech Connect

    Zimmermann, F.; Helm, R.; Irwin, J.

    1995-06-01

    An optimization scheme for final focus systems is discussed and applied to the NLC design. The optical functions at the defocusing sextupoles, the sextupole strength, and the length of the system must obey eight conditions that are imposed by the spot size increase due to higher-order aberrations, the effects of synchrotron radiation in the bending magnets, power supply ripple, magnet vibration tolerances, and the estimated orbit stability at the sextupoles. These eight conditions determine the minimum optimum length of the system. The NLC final focus design was shortened to this optimum.

  14. Submarine and subaerial lavas in the West Antarctic Rift System: Temporal record of shifting magma source components from the lithosphere and asthenosphere

    NASA Astrophysics Data System (ADS)

    Aviado, Kimberly B.; Rilling-Hall, Sarah; Bryce, Julia G.; Mukasa, Samuel B.

    2015-12-01

    The petrogenesis of Cenozoic alkaline magmas in the West Antarctic Rift System (WARS) remains controversial, with competing models highlighting the roles of decompression melting due to passive rifting, active plume upwelling in the asthenosphere, and flux melting of a lithospheric mantle metasomatized by subduction. In this study, seamounts sampled in the Terror Rift region of the Ross Sea provide the first geochemical information from submarine lavas in the Ross Embayment in order to evaluate melting models. Together with subaerial samples from Franklin Island, Beaufort Island, and Mt. Melbourne in Northern Victoria Land (NVL), these Ross Sea lavas exhibit ocean island basalt (OIB)-like trace element signatures and isotopic affinities for the C or FOZO mantle endmember. Major-oxide compositions are consistent with the presence of multiple recycled lithologies in the mantle source region(s), including pyroxenite and volatile-rich lithologies such as amphibole-bearing, metasomatized peridotite. We interpret these observations as evidence that ongoing tectonomagmatic activity in the WARS is facilitated by melting of subduction-modified mantle generated during 550-100 Ma subduction along the paleo-Pacific margin of Gondwana. Following ingrowth of radiogenic daughter isotopes in high-µ (U/Pb) domains, Cenozoic extension triggered decompression melting of easily fusible, hydrated metasomes. This multistage magma generation model attempts to reconcile geochemical observations with increasing geophysical evidence that the broad seismic low-velocity anomaly imaged beneath West Antarctica and most of the Southern Ocean may be in part a compositional structure inherited from previous active margin tectonics.

  15. Petrogenesis of the Ni-Cu-PGE sulfide-bearing Tamarack Intrusive Complex, Midcontinent Rift System, Minnesota

    NASA Astrophysics Data System (ADS)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2015-01-01

    The Tamarack Intrusive Complex (TIC, 1105.6 ± 1.2 Ma) in NE Minnesota, was emplaced during the early stages of the development of the Midcontinent Rift System (MRS, "Early Stage": 1110-1106 Ma). Country rocks of the TIC are those of the Paleoproterozoic Thomson Formation, part of the Animikie Group including sulfide-bearing metasedimentary black shale. The magmatic system is composed of at least two principal mafic-ultramafic intrusive sequences: the sulfide-barren Bowl Intrusion in the south and the "dike" area intrusions in the north which host Ni-Cu-Platinum Group Elements (PGE) mineralization with up to 2.33% Ni, 1.24% Cu, 0.34 g/t Pt, 0.23 g/t Pd and 0.18 g/t Au. Two distinct intrusive units in the "dike" area are the CGO (coarse-grained olivine-bearing) Intrusion, a sub-vertical dike-like body, and the overlying sub-horizontal FGO (fine-grained olivine-bearing) Intrusion. Both intrusions comprise peridotite, feldspathic peridotite, feldspathic pyroxenite, melatroctolite and melagabbro. Massive sulfides are volumetrically minor and mainly occur as lenses emplaced into the country rocks associated with both intrusions. Semi-massive (net-textured) sulfides are distributed at the core of the CGO Intrusion, surrounded by a halo of the disseminated sulfides. Disseminated sulfides also occur in lenses along the base of the FGO Intrusion. Olivine compositions in the CGO Intrusion are between Fo89 and Fo82 and in the FGO Intrusion from Fo84 to Fo82. TIC intrusions have more primitive olivine compositions than that of olivine in the sheet-like intrusions in the Duluth Complex (below Fo70), as well as olivine from the smaller, conduit-related, Eagle and East Eagle Intrusions in Northern Michigan (Fo86 to Fo75). The FeO/MgO ratios of the CGO and FGO Intrusion parental magmas, inferred from olivine compositions, are similar to those of picritic basalts erupted during the early stages of the MRS formation. Trace element ratios differ slightly from other intrusions in the

  16. New data on seismic wave attenuation in the lithosphere and upper mantle of the northeastern flank of the Baikal rift system

    NASA Astrophysics Data System (ADS)

    Dobrynina, A. A.; Sankov, V. A.; Chechelnitsky, V. V.

    2016-05-01

    The investigation data on seismic wave attenuation in the lithosphere and upper mantle of the northeastern flank of the Baikal rift system obtained with a seismic coda envelope and sliding window are considered. Eleven local districts were described by one-dimensional attenuation models characterized by alternation of high and low attenuation layers, which are consistent with the results obtained previously by Yu.F. Kopnichev for the southwestern flank of the Baikal rift system [9]. The subcrust of the lithosphere contains a thin layer with high attenuation of seismic waves likely related to higher heterogeneity (fragmentation) and occurrence of fluids. The lithosphere basement depth varies from 100-120 km in the west within the Baikal folded area to 120-140 km in the east within the Siberian Platform. It is concluded that there are two asthenosphere layers. Based on specific features of the lithosphere and upper mantle structure, it can be assumed that they were subject to gradual modification involving fluidization processes and partial melting in the Late Cenozoic extension under the influence of distant tectogenesis sources.

  17. Continental rifting: a planetary perspective

    SciTech Connect

    Muehlberger, W.R.

    1985-01-01

    The only inner planet that has abundant evidence of regional extension, and the consequent generation of rifts in the earth. The absence of plate motion on the other inner planets limits their rifts to localized bulges or subsidence areas. The rifting of oceanic lithosphere is seldom preserved in the geological record. Thus, such rifting must be inferred via plate tectonic interpretation: if there is rifting, then there must be subduction whose results are commonly well preserved. Modern continental rifts are found in many tectonic settings: continental breakup, extension transverse to collisional stresses, or wide regions of nearly uniform extension. Recognition of these settings in older rocks becomes more difficult the farther back in geologic time you travel. Rift basin fillings typically show rapid lateral and vertical facies and thickness changes, bimodal volcanism, and distinctive rift-drift sequences. Proterozoic rifts and aulacogens are well-documented in North America; ex. Keweenawan, western margin of Labrador fold belt, Belt-Uinta and the Wopmay-Athapuscow regions. Documented Archean rifts are rare. In Quebec, the truncated margin of the Minto craton bounded on the south by a 2.8 Ga greenstone belt implies an earlier rift event. The oldest proposed rift dated at 3.0 Ga contains the Pongola Supergroup in southeastern Africa. The presence of Archean dikes demonstrates a rigid crust and andesites as old as 3.5 Ga imply plate tectonics and thus, at least, oceanic rifting.

  18. The Rwenzori Mountains of western Uganda - Aspects on the evolution of their remarkable morphology within the Albertine Rift

    NASA Astrophysics Data System (ADS)

    Bauer, F. U.; Karl, M.; Glasmacher, U. A.; Nagudi, B.; Schumann, A.; Mroszewski, L.

    2012-09-01

    The Rwenzori Mountains form a narrow mountain range within the western branch of the East African Rift System. They rise to heights of more than 5000 m a.s.l. and are composed of Precambrian metamorphic rocks. Lacking a volcanic origin the Rwenzoris are regarded as an extreme example of rift flank uplift and a key area to study rift-related uplift processes within an extensional setting. To determine these processes and underlying rift dynamics, the presented study provides constraints on the temporal and spatial exhumation history of the Rwenzori Mts. Recent and former geomorphology is investigated, addressing geomorphologic proxies as well as the cooling history. Associated erosion rates are derived from thermochronological data, allowing constraining relief changes over time. It could be demonstrated, that inherited tectonic structures play a major role in routing erosion processes. The cooling history of the Rwenzori Mts derived from low-temperature thermochronology reaches back to Jurassic times. Final exhumation was recorded for Neogene times, with differentiated erosion and uplift movements during the last 10 Ma and a fast final uplift of the Rwenzoris in the near past, where erosion could not compensate for (Bauer et al., 2010a). This paper integrates geomorphologic and thermochronological constraints, in order to provide a basis for understanding the development of the evolution of the Albertine Rift area, with focus placed on the Mesozoic and Cenozoic history of the central Rwenzori Mts.

  19. Inheritance and refertilization of Upper Mantle rocks in Alpine type orogens and rift systems: what and why

    NASA Astrophysics Data System (ADS)

    Muntener, O.

    2015-12-01

    Mantle peridotites and their serpentinized counterparts from ocean-continent transition zones (OCT's) and (ultra-) slow spreading ridges question a series of 'common beliefs' that have been applied to understand Alpine-type collisional orogens in the framework of the ophiolite concept. I will show that inherited mantle signatures play a key role for the interpretation of ophiolites, and similar processes are relevant for present-day passive margins. Field data and petrology demonstrates that ancient, thermally undisturbed, pyroxenite-veined subcontinental mantle formed parts of the ocean floor next to thinned continental crust. These heterogeneities might comprise an ancient subduction component. Mantle upwelling and decompression melting during rifting forms partial melts that enter a thick conductive lithospheric mantle and inevitably leads to freezing of the melt and refertilization of the lithospheric mantle. Mafic bodies (gabbros, basalts) are small and discontinous. The abundance of plagioclase peridotites in the Alpine ophiolites and elswhere along rifted margins are interpreted as recorders of refertilization processes related to thinning and exhumation of mantle lithosphere. Similar features are found (ultra-) slow spreading ridges. Another important result is the discovery of extremely refractory Nd-isotopic compositions with highly radiogenic 147Sm/144Nd, which indicates that partial melting processes and Jurassic magmatism in the Western Tethys are locally decoupled. Although the isotopic variability along ridges is generally explained by mantle heterogeneities such as pyroxenites, an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes, and during the most recent decompression they were unffected by (further) melting. Similarly, refractory rocks from rifted margins and (ultra-) slow spreading ridges have been interpreted to represent ancient melting

  20. Upper Devonian depositional system of Bel'kov Island (New Siberian Islands): An intracontinental rift or a continental margin?

    NASA Astrophysics Data System (ADS)

    Danukalova, M. K.; Kuzmichev, A. B.; Aristov, V. A.

    2014-09-01

    The archipelago of New Siberian Islands situated on the northeastern continental shelf of Eurasia is considered a part of an exotic terrane that collided with Siberia in the Early Cretaceous. Bel'kov Island is located close to the inferred western boundary of this terrane and thus should demonstrate attributes of its localization at the margin of the Paleozoic oceanic basin. The Upper Devonian section on Bel'kov Island is a continuous sequence of deepwater terrigenous rocks, which indicates a tendency toward deepening of the basin previously revealed on adjacent Kotel'ny Island. The lowermost Upper Devonian unit on Bel'kov Island is represented by thin Domanik-like strata resting on the Middle Devonian carbonate platform. The main body of the Upper Devonian sequence, more than 4 km in total thickness, is made up of gravity-flow sediments including turbidites, clay and block diamictites, and olistostromes in the upper part of the section, which accumulated at the slope of the basin or its rise. At many levels, these sediments have been redeposited by along-slope currents. The uppermost unit of organogenic limestone is evidence for compensation of the trough. According to conodont assemblages, the deepwater terrigenous rocks were deposited from the early Frasnian to the early Tournaisian. This time is known for extensive rifting in the eastern Siberian Platform. The data obtained allowed us to reconstruct a NNW-trending Late Devonian rift basin on the Laptev Sea shelf similar to other rifts at the eastern margin of the Siberian Platform.

  1. Rift inheritance in orogenes: a case study from the Western Pyrenees

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Tugend, J.; Kusznir, N. J.; Flament, J.

    2012-12-01

    detachment system separates the stable Iberian continental crust to the south from the hyper-extended domain to the north defining a crustal neck. The second detachment system, further to the north, exhumed mid-crustal and mantle material to the seafloor front of the upper plate. Both systems are overlain by supra-detachment basins. By comparison of cross-basin dip sections, the west to east gradation from weakly to strongly reactivated sections, reactivation modalities through the rifted domain can be described. We show that most of the convergence is accommodated by the inversion of the two rift structures of the lower plate in two stages: 1) An early under-thrusting of the northern hyper-extended domain beneath Europe along the northern detachment system. Sediments were wedged, folded and thrust both north- and southward (thin-skin); 2) the northern structure locks and implies the southward migration of shortening. The southern crustal neck is reactivated leading to frontal nappe-stacking forming the Pyrenean high chain (thick-skin). Using the Rifter® kinematic modeller, we show that this evolution can be computed through isostatically equilibrated crustal sections. These results suggest that the Pyrenees can serve as an example of how a complex rift architecture strongly controls the style and the timing of orogeny to finally impacts the architecture of collisional orogenes.

  2. Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice

    2016-04-01

    Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled

  3. Rift initiation with volatiles and magma

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia; Muirhead, James; Roecker, Steve; Tiberi, Christel; Muzuka, Alfred; Ferdinand, Rrichard; Mulibo, Gabrile; Kianji, Gladys

    2015-04-01

    Rift initiation in cratonic lithosphere remains an outstanding problem in continental tectonics, but strain and magmatism patterns in youthful sectors of the East African rift provide new insights. Few teleseisms occur in the Eastern rift arm of the East African rift system, except the southernmost sector in northern Tanzania where extension occurs in Archaean lithosphere. The change in seismic energy release occurs over a narrow along-axis zone, and between sectors with and without volcanoes in the central rift valley. Are these differences in strain behavior indicative of along-strike variations in a) rheology; b) strain transfer from border faults to magma intrusion zones; c) dike vs fault slip; and/or d) shallow vs deep magma chambers? We present time-space relations of seismicity recorded on a 38-station array spanning the Kenya-Tanzania border, focal mechanisms for the largest events during those time periods, and compare these to longer-term strain patterns. Lower crustal seismicity occurs along the rift length, including sectors on and off craton, and those with and without central rift valley volcanoes, and we see no clear along-strike variation in seismogenic layer thickness. One explanation for widespread lower crustal seismicity is high gas pressures and volatile migration from active metasomatism of upper mantle and magma degassing, consistent with very high volatile flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Seismicity patterns indicate strain (and fluid?) transfer from the Manyara border fault to Gelai shield volcano (faulting, diking) via Oldoinyo Lengai volcano. Our focal mechanisms and Global CMTs from an intense fault-dike episode (2007) show a local, temporally stable, rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with longer term patterns recorded in vent and eruptive

  4. Structural and stratigraphic evolution of the Anza rift, Kenya

    NASA Astrophysics Data System (ADS)

    Bosworth, William; Morley, Chris K.

    1994-09-01

    The Anza rift is a large, multi-phase continental rift basin that links the Lamu embayment of southern Kenya with the South Sudan rifts. Extension and deposition of syn-rift sediments are known to have commenced by the Neocomian. Aptian-Albian strata have, thus far, not been encountered during limited drilling campaigns and, in at least one well, are replaced by a significant unconformity. Widespread rifting occurred during the Cenomanian to Maastrichtian, and continued into the Early Tertiary. Marine waters appear to have reached the central Anza rift in the Cenomanian, and a second marine incursion may have occurred during the Campanian. As no wells have yet reached basement in the basinal deeps, the possibility exists that the Anza rift may have initiated in the Late Jurassic, in conjunction with extension to the south in the Lamu embayment and to the north in the Blue Nile rift of Sudan. Structural and stratigraphic evolution in the Anza rift followed a pattern that has now been inferred in several rift settings. Early phases of extension were accommodated by moderately dipping faults that produced large stratal rotations. Sedimentary environments were dominantly fluvial, with associated small lakes and dune fields. Volcanic activity is documented for the early Neocomian, but its extent is unknown. This initial style of deformation and sedimentation may have continued through several of the earliest pulses of rifting. By the Late Cretaceous, a new system of steeply dipping faults was established, that produced a deep basin without significant rotation of strata in the north, and only minor rotation in the south. This basin geometry favored the establishment of large, deep lakes, which occasionally were connected to the sea. The older basins were partly cannibalized during the sedimentary in-filling of these successor basins. Early Senonian volcanism was encountered in one well, and reflection seismic evidence suggests that one or more thick, regionally

  5. Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978

    SciTech Connect

    Callender, J.F.

    1985-04-01

    A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

  6. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of

  7. Geochemistry of hypabyssal rocks of the Midcontinent Rift system in Minnesota, and implications for a Keweenawan magmatic ``family tree``

    SciTech Connect

    Jerde, E.A.

    1998-11-01

    The hypabyssal rocks associated with the Keweenawan (1.1 Ga) Midcontinent Rift along the Minnesota shore of Lake Superior are a distinct suite within the rock associations of this region. These rocks are found predominantly as ophitic diabase dikes and sills of various sizes, ranging from a few meters to several hundred meters across. Chilled margins were sampled and analyzed by neutron activation analysis and microprobe fused-bead techniques for bulk chemistry. Mineral compositions were obtained by electron microprobe. Variations in composition were found that are consistent with fractionation. Major-element modeling of fractionation indicates that the majority of the hypabyssal rocks formed at moderate pressures ({approximately}6 kbar), although a number show evidence of fractionation at near-surface levels, and some deeper ({approximately}10 kbar). Resorption features seen in plagioclase phenocrysts are evidence for magmatic evolution at varying levels in the crust. It is possible to relate the varied hypabyssal rocks to a single primary parent through polybaric fractionation. This parent is a high-Al primitive olivine tholeiite--a magma composition common among the volcanic rocks associated with the Midcontinent Rift. Trace-element modeling with this same parent composition yields results consistent with the formation of some hypabyssal rocks as products of a periodically tapped and replenished, constantly fractionating magma chamber, which can decouple the behavior of major and trace elements.

  8. Final Report Computational Analysis of Dynamical Systems

    SciTech Connect

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  9. InSAR and GPS measurements along the Kivu segment of the East African Rift System during the 2011-2012 Nyamulagira volcanic eruption.

    NASA Astrophysics Data System (ADS)

    Nobile, Adriano; Geirsson, Halldor; Smets, Benoît; d'Oreye, Nicolas; Kervyn, François

    2016-04-01

    Along the East African Rift System (EARS), magma intrusions represent a major component in continental rifting. When these intrusions reach the surface, they cause volcanic eruptions. This is the case of the last flank eruption of Nyamulagira, which occurred from November 6 2011 to April 2012. Nyamulagira is an active shield volcano with a central caldera, located in the eastern part of the Democratic Republic of Congo, along the Kivu segment of the East African Rift System. From 1948 to 2012, Nyamulagira mostly showed a particular eruptive cycle with 1) classical short-lived (i.e., 20-30 days) flank eruptions, sometimes accompanied with intracrateral activity, which occurred every 1-4 years on average, and 2) less frequent long-lived (i.e., several months) eruptions usually emitting larger volumes of lava that take place at larger distance (>8 km) from the central caldera. The 2011-2012 Nyamulagira eruption is of that second type. Here we used InSAR data from different satellite (Envisat, Cosmo SkyMed, TerraSAR-X and RADARSAT) to measure pre-, co and post-eruptive ground displacement associated with the Nyamulagira 2011-2012 eruption. Results suggest that a magma intrusion preceded by two days the eruption. This intrusion corresponded to the migration of magma from a shallow reservoir (~3km) below the caldera to the two eruptive fissures located ~11 km ENE of the central edifice. Available seismic data are in agreement with InSAR results showing increased seismic activity since November 4 2011, with long- and short-period earthquakes swarms. Using analytical models we invert the measured ground displacements during the first co-eruptive month to evaluate the deformation source parameters and the mechanism of magma emplacement for this eruption. GPS data from permanent stations in the KivuGNet network are used to constrain the temporal evolution of the eruption and evaluate far-field deformation, while the InSAR data is more sensitive to the near-field deformation

  10. Structural inheritance, segmentation, and rift localization in the Gulf of Aden oblique rift

    NASA Astrophysics Data System (ADS)

    Bellahsen, Nicolas; Leroy, Sylvie; Autin, Julia; d'Acremont, Elia; Razin, Philippe; Husson, Laurent; Pik, Raphael; Watremez, Louise; Baurion, Celine; Beslier, Marie-Odile; Khanbari, Khaled; Ahmed, Abdulhakim

    2013-04-01

    well as third order ones that initiated after the onset of oceanic spreading). In the East, the second and third order segmentation is less pronounced as both the OCT and ridge segments are sub-perpendicular to the divergence. During post-rift times, plate reorganization led to oceanic propagator development and second/third transform F.Z. migration along with deformation and vertical movements and normal displacement along the first order transform F.Z. Finally, during Quaternary times, the evolving boundary conditions of the Arabian plate probably also induced vertical movements along the margins.

  11. High Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.; Wohnlich, S.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  12. Fluoride and Geothermal Activities In Continental Rift Zones, Ethiopia

    NASA Astrophysics Data System (ADS)

    Weldesenbet, S. F.

    2012-12-01

    The Central Main Ethiopian Rift basin is a continental rift system characterized by volcano-tectonic depression endowed with huge geothermal resource and associated natural geochemical changes on groundwater quality. Chemical composition of groundwater in the study area showed a well defined trend along flow from the highland and escarpment to the rift floor aquifer. The low TDS (< 500mg/l) Ca-Mg-HCO3 dominated water at recharge area in the highlands and escarpments evolve progressively into Ca-Na-HCO3 and Na-Ca-HCO3 type waters along the rift ward groundwater flow paths. These waters finally appear as moderate TDS (mean 960mg/l) Na-HCO3 type and as high TDS (> 1000 mg/l) Na-HCO3-Cl type in volcano-lacustrine aquifers of the rift floor. High concentrations of fluoride (up to 97.2 mg/l) and arsenic (up to 98μg/l) are recognized feature of groundwaters which occur mostly in the vicinity of the geothermal fields and the rift lakes in the basin. Fluoride and arsenic content of dry volcaniclastic sediments close to these areas are in the range 666-2586mg/kg and 10-13mg/kg respectively. The relationship between fluoride and calcium concentrations in groundwaters showed negative correlation. Near-equilibrium state attained between the mineral fluorite (CaF2) and the majority of fluoride-rich (>30mg/l) thermal groundwater and shallow cold groundwater. This indicated that the equilibrium condition control the high concentration of fluoride in the groundwaters. Whereas undersaturation state of fluorite in some relatively low-fluoride (<30mg/l) thermal waters indicated a dilution by cold waters. Laboratory batch leaching experiments showed that fast dissolution of fluoride from the sediment samples suddenly leached into the interacting water at the first one hour and then remain stable throughout the experiment. The concentrations of leached fluoride from the hot spring deposits, the lacustrine sediments, and the pyroclastic rock are usually low (1% of the total or less than

  13. Rift Valley Fever Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a disease of animals and humans that occurs in Africa and the Arabian Peninsula. A Phlebovirus in the family Bunyaviridae causes the disease that is transmitted by mosquitoes. Epidemics occur during years of unusually heavy rainfall that assessment models are being develo...

  14. Structure and kinematics of the Taupo Rift, New Zealand

    NASA Astrophysics Data System (ADS)

    Seebeck, Hannu; Nicol, Andrew; Villamor, Pilar; Ristau, John; Pettinga, Jarg

    2014-06-01

    The structure and kinematics of the continental intra-arc Taupo Rift have been constrained by fault-trace mapping, a large catalogue of focal mechanisms (N = 202) and fault slip striations. The mean extension direction of ~137° is approximately orthogonal to the regional trend of the rift and arc front (α = 84° and 79°, respectively) and to the strike of the underlying subducting Pacific Plate. Bending and rollback of the subduction hinge strongly influence the location, orientation, and extension direction of intra-arc rifting in the North Island. In detail, orthogonal rifting (α = 85-90°) transitions northward to oblique rifting (α = 69-71°) across a paleovertical-axis rotation boundary where rift faults, extension directions, and basement fabric rotate by ~20-25°. Toward the south, extension is orthogonal to normal faults which are parallel to, and reactivate, steeply dipping basement fabric. Basement reactivation facilitates strain partitioning with a portion of margin-parallel motion in the overriding plate mainly accommodated east of the rift by strike-slip faults in the North Island Fault System (NIFS). Toward the north where the rift and NIFS intersect, ~4 mm/yr strike slip is transferred into the rift with net oblique extension accommodating a component of margin-parallel motion. The trend and kinematics of the Taupo Rift are comparable to late Miocene-Pliocene intra-arc rifting in the Taranaki Basin, indicating that the northeast strike of the subducting plate and the southeast extension direction have been uniform since at least 4 Ma.

  15. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  16. Spatial and temporal variations in fault activity during early development of rift polarity within the offshore Corinth rift, central Greece

    NASA Astrophysics Data System (ADS)

    Nixon, C. W.; Moyle, A.; McNeill, L. C.; Bell, R. E.; Bull, J. M.; Henstock, T.

    2014-12-01

    show that the early evolution of a rift fault network can be complex but that a dominant fault set eventually forms even in the earliest stages of rifting. A switch in rift polarity is a progressive process with deformation becoming distributed before localizing onto a final dominant fault set, but this process can occur rapidly on a timescale of 100's kyr.

  17. DCE Bio Detection System Final Report

    SciTech Connect

    Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.

    2007-12-01

    The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008

  18. North America's Midcontinent Rift: when Rift MET Lip

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S. A.; Kley, J.; Keller, G. R., Jr.; Bollmann, T. A.; Wolin, E.; Zhang, H.; Frederiksen, A. W.; Ola, K.; Wysession, M. E.; Wiens, D.; Alequabi, G.; Waite, G. P.; Blavascunas, E.; Engelmann, C. A.; Flesch, L. M.; Rooney, T. O.; Moucha, R.; Brown, E.

    2015-12-01

    Rifts are segmented linear depressions, filled with sedimentary and igneous rocks, that form by extension and often evolve into plate boundaries. Flood basalts, a class of Large Igneous Provinces (LIPs), are broad regions of extensive volcanism due to sublithospheric processes. Typical rifts are not filled with flood basalts, and typical flood basalts are not associated with significant crustal extension and faulting. North America's Midcontinent Rift (MCR) is an unusual combination. Its 3000-km length formed as part of the 1.1 Ga rifting of Amazonia (Precambrian NE South America) from Laurentia (Precambrian North America) and became inactive once seafloor spreading was established, but contains an enormous volume of igneous rocks. MCR volcanics are significantly thicker than other flood basalts, due to deposition in a narrow rift rather than a broad region, giving a rift geometry but a LIP's magma volume. Structural modeling of seismic reflection data shows an initial rift phase where flood basalts filled a fault-controlled extending basin, and a postrift phase where volcanics and sediments were deposited in a thermally subsiding basin without associated faulting. The crust thinned during rifting and rethickened during the postrift phase and later compression, yielding the present thicker crust. The coincidence of a rift and LIP yielded the world's largest deposit of native copper. This combination arose when a new rift associated with continental breakup interacted with a mantle plume or anomalously hot or fertile upper mantle. Integration of diverse data types and models will give insight into questions including how the magma source was related to the rifting, how their interaction operated over a long period of rapid plate motion, why the lithospheric mantle below the MCR differs only slightly from its surroundings, how and why extension, volcanism, and compression varied along the rift arms, and how successful seafloor spreading ended the rift phase. Papers

  19. A numerical modelling approach to investigate the surface processes response to normal fault growth in multi-rift settings

    NASA Astrophysics Data System (ADS)

    Pechlivanidou, Sofia; Cowie, Patience; Finch, Emma; Gawthorpe, Robert; Attal, Mikael

    2016-04-01

    This study uses a numerical modelling approach to explore structural controls on erosional/depositional systems within rifts that are characterized by complex multiphase extensional histories. Multiphase-rift related topography is generated by a 3D discrete element model (Finch et al., Basin Res., 2004) of normal fault growth and is used to drive the landscape evolution model CHILD (Tucker et al., Comput. Geosci., 2001). Fault populations develop spontaneously in the discrete element model and grow by both tip propagation and segment linkage. We conduct a series of experiments to simulate the evolution of the landscape (55x40 km) produced by two extensional phases that differ in the direction and in the amount of extension. In order to isolate the effects of fault propagation on the drainage network development, we conduct experiments where uplift/subsidence rates vary both in space and time as the fault array evolves and compare these results with experiments using a fixed fault array geometry with uplift rate/subsidence rates that vary only spatially. In many cases, areas of sediment deposition become uplifted and vise-versa due to complex elevation changes with respect to sea level as the fault array develops. These changes from subaerial (erosional) to submarine (depositional) processes have implications for sediment volumes and sediment caliber as well as for the sediment routing systems across the rift. We also explore the consequences of changing the angle between the two phases of extension on the depositional systems and we make a comparison with single-phase rift systems. Finally, we discuss the controls of different erodibilities on sediment supply and detachment-limited versus transport-limited end-member models for river erosion. Our results provide insights into the nature and distribution of sediment source areas and the sediment routing in rift systems where pre-existing rift topography and normal fault growth exert a fundamental control on

  20. How sensitive are sediment routing systems to tectonics and climate? A comparison of sediment fluxes and depositional volumes in the Corinth rift, Greece, over the past 130 ky

    NASA Astrophysics Data System (ADS)

    Watkins, Stephen E.; Whittaker, Alexander C.; Bell, Rebecca E.; McNeill, Lisa C.; Gawthorpe, Robert L.

    2016-04-01

    Sediment supply is a fundamental control on the stratigraphic record. However, a key question is the extent to which tectonics and climate affect sediment fluxes in time and space. To address this question estimates of sediment fluxes must be compared with measured sediment volumes within a closed basin. The Corinth rift in Greece is one of the most actively extending rift basins on Earth, with modern day extension rates of up to 15 mm/yr. The Gulf of Corinth is a closed system and has periodically become a lake during marine lowstands over at least the last 400,000 ky. We have estimated suspended sediment fluxes through time for rivers draining into the Gulf of Corinth using an empirically-derived BQART method. WorldClim climate data, palaeoclimate models and palaeoclimate proxies were used to estimate discharges and temperatures over the last 130 ky. We used high-resolution 2D seismic surveys to interpret the 12 ky highstand, 70 ky lowstand and 130 ky highstand horizons to derive actual basin sedimentary volumes to compare with our sediment input flux estimates. Our results estimate integrated Holocene sediment fluxes into the Gulf of Corinth to be 19 km3 and we constrain how they vary spatially around the Gulf. This number compares exceptionally well with Holocene basin deposit volumes measured from seismic data (30 km3). We estimate sediment fluxes during the last glacial maximum to be significantly lower than the Holocene, likely driven by lower mean annual temperatures. Our results demonstrate that sediment routing systems and sediment export to the Gulf of Corinth is sensitive to glacial-interglacial climate changes from the late Pleistocene to recent.

  1. Deformation rates and localization of an active fault system in relation with rheological and frictional slip properties: The Corinth Rift case

    NASA Astrophysics Data System (ADS)

    El Arem, S.; Lyon-Caen, H.; Bernard, P.; Garaud, J. D.; Rolandone, F.; Briole, P.

    2012-04-01

    The Gulf of Corinth in Greece has attracted increasing attention because of its seismically active complex fault system and considerable seismic hazard. It is one of the most active extensional regions in the Mediterranean area. However, there are still open questions concerning the role and the geometry of the numerous active faults bordering the basin, as well as the mechanisms governing the seismicity. The Corinth Rift Laboratory (CRL http://crlab.eu) project is based on the cooperation of various European institutions that merge their efforts to study fault mechanics and related hazards in this natural laboratory with 10 destructive earthquakes per century (Magnitude > 6), among which 4 in the selected region of CRL. This active rift continues to open over 10-12 Km of width at a rate of 1:5 cm=yr. Most of the faults of the investigated area are in their latest part of cycle, so that the probability of at least one moderate to large earthquake (Magnitude = 6 to 6:7) is very high within a few decades. In the first part of this work, two-dimensional finite element models of a fault system is considered to estimate the effects of the crust rheological parameters on the stress distribution, the horizontal and vertical deformation in the vicinity of the faults, and the plastic deformation localization. We consider elasto-visco-plastic rheology with a power law viscosity for dislocation creep modelling and the Drucker-Prager yield criterion for plasticity. We investigate the rheological properties of the crust and examine their compatibility with both horizontal and vertical GPS observations recorded during campaigns conducted in the last twenty years. The second part is devoted to simulations involving rate and slip history friction laws for earthquake occurence prediction and seismogenic depth approximation. The case of a single fault is examined first, then two active faults are considered to highlight the effect of their interactions on the seismic cycle

  2. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Tassi, F.; Vaselli, O.; Poreda, R. J.; Darrah, T.; Cuoco, E.; Yalire, M. M.

    2010-01-01

    On 17 January 2002, the city of Goma was partly destroyed by two of the several lava flows erupted from a roughly N-S oriented fracture system opened along the southern flank of Mount Nyiragongo (Democratic Republic of Congo), in the western branch of the East African rift system. A humanitarian and scientific response was promptly organized by international, governmental, and nongovernmental agencies coordinated by the United Nations and the European Union. Among the different scientific projects undertaken to study the mechanisms triggering this and possible future eruptions, we focused on the isotopic (He, C, and Ar) analysis of the magmatic-hydrothermal and cold gas discharges related to the Nyiragongo volcanic system, the Kivu and Virunga region. The studied area includes the Nyiragongo volcano, its surroundings, and peripheral areas inside and outside the rift. They have been subdivided into seven regions characterized by distinct 3He/4He (expressed as R/Rair) ratios and/or δ13C-CO2 values. The Nyiragongo summit crater fumaroles, whose R/Rair and δ13C-CO2 values are up to 8.73 and from -3.5‰ to -4.0‰ VPDB, respectively, show a clear mantle, mid-ocean ridge basalt (MORB)-like contribution. Similar mantle-like He isotopic values (6.5-8.3 R/Rair) are also found in CO2-rich gas emanations (mazukus) along the northern shoreline of Lake Kivu main basin, whereas the 13δC-CO2 values range from -5.3‰ to -6.8‰ VPDB. The mantle influence progressively decreases in (1) dissolved gases of Lake Kivu (2.6-5.5 R/Rair) and (2) the distal gas discharges within and outside the two sides of the rift (from 0.1 to 1.7 R/Rair). Similarly, δ13C-CO2 ratios of the peripheral gas emissions are lighter (from -5.9‰ to -11.6‰ VPDB) than those of the crater fumaroles. Therefore, the spatial distribution of He and C signatures in the Lake Kivu region is mainly produced by mixing of mantle-related (e.g., Nyiragongo crater fumaroles and/or mazukus gases) and crustal-related (e

  3. Multiloop Integral System Test (MIST): Final report

    SciTech Connect

    Klingenfus, J.A.; Parece, M.V.

    1989-12-01

    The multiloop integral system test (MIST) facility is part of a multiphase program started in 1983 to address small-break loss-of- coolant accidents (SBLOCAs) specific to Babcock Wilcox (B W) designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the B W Owners group, the Electric Power Research Institute, and B W. The unique features of the B W design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such a RELAP5/MOD2 and TRAC-PF1, for predicting abnormal plant transients. The MIST program included funding for seven individual RELAP pre- and post-test predictions. The comparisons against data and final conclusions are the subject of this volume of the MIST Final Report. 15 refs., 227 figs., 17 tabs.

  4. MIST (multiloop integral system test) final report

    SciTech Connect

    Klingenfus, J.A.; Parece, M.V. . Engineering and Plant Services Div.)

    1990-04-01

    The multiloop integral system test (MIST) facility is part of a multiphase program started in 1983 to address small-break loss-of- coolant accidents (SBLOCAs) specific to Babcock Wilcox (B W) designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the B W Owners Group, the Electric Power Research Institute, and B W. The unique features of the B W design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility --- the once-through integral system (OTIS) --- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5/MOD2 and TRAC-PF1, for predicting abnormal plant transients. The MIST program included funding for seven individual RELAP pre- and post-test predictions. The comparisons against data and final conclusions are the subject of this volume of the MIST Final Report. 15 refs., 227 figs., 18 tabs.

  5. Fault Orientations at Obliquely Rifted Margins: Where? When? Why?

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    setup is very simple (horizontally layered, no inherited faults, constant extension velocity and direction), its evolution exhibits a variety of fault orientations that are solely caused by the three-dimensionality of oblique rift systems. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Moreover, the model depicts strain partitioning between rift-parallel and rift-perpendicular far-field velocity components that are accommodated by strike-slip faults in the rift centre and normal faults at the rift sides, respectively. Oblique extensional systems worldwide differ in many aspects and clearly one suit of models cannot explain all rifted margin structures at the same time. However, the distinct pattern of fault populations discussed in this study and their sequence of activity compares very well to previous studies of the Gulf of Aden and holds implications for many other rifted margins worldwide. Note that in nature, the resulting stress and fault pattern will also be affected by inherited heterogeneities, surface processes, as well as melting and dyke dynamics.

  6. The rift to drift evolution of the South China Sea

    NASA Astrophysics Data System (ADS)

    Ranero, Cesar R.; Cameselle, Alejandra; Franke, Dieter; Barckhausen, Udo

    2016-04-01

    Re-processing with modern algorithms of multichannel seismic reflection records from the South China Sea provide novel images on the crustal structure of the continental margin and its boundary zone with the oceanic crust (COB). The selected re-processed seismic lines strike perpendicular to the margins' trend and cross the entire basin, providing complementary images of conjugated rift segments of the NW, SW, and E sub-basins. Re-processed sections image the post-rift and syn-rift sediment, and fault-bounded basement blocks, often also intra-crustal fault reflections that together provide detailed information of the tectonic structural style during rifting. Further, the largest imaging improvement has been obtained in the delineation of -very often- clear fairly continuous reflections from the crust-mantle boundary across the continental margin into the oceanic crust. The images show how crustal thickness and structure change in parallel to changes in the tectonic style of the deformation during the evolution of the rift. The interpreted COB occurs in regions where the tectonic style displays the most noticeable changes from segments where extension is dominated by normal faulting to segments where faulting is comparatively minor and the crust shows fairly gentle lateral thickness variations; these latter segments are interpreted as oceanic crust. The identification of the continental and oceanic tectonic domains permits to study the along-strike evolution in rifting processes and rift segmentation. Also, the comparison of the tectonic structure of the conjugated flanks of the continental rift across the ocean basins is used to understand the last stages of rifting and the relative importance of tectonic extension and magmatism in final break up and spreading initiation. Although there is ample evidence of important volcanism in the images, with some spectacular large conical volcanoes formed over continental crust and numerous sill-like reflections in the

  7. Forensic investigation of rift-to-drift transitions and volcanic rifted margins birth

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Hertogen, J.

    2008-12-01

    Volcanic rifted margins (VRM) reflect excess magmatism generated during the rift-to-drift transition of a continental rift system evolving into a Mid-Ocean Ridge (MOR). As a result many VRM (e.g. NAIP and CAMP) are recognized as Large Igneous Provinces (LIP). The prominent structural characteristics of VRM are Continental Flood Basalts, High-Velocity Lower Crustal bodies (HVLC) and Seaward Dipping Reflector Sequences (SDRS). However, the causes of these anomalously high eruption rates and magma volumes are presently poorly understood. Controversial issue opinions are based on two competing hypotheses: 1) Mantle plume related mechanisms where the excess magmatism results from elevated mantle temperatures; and 2) Rift induced small scale convection processes causing temperature anomalies and enhancing the mantle rock flux through the melt window. Largely because of difficulties to sample oceanic basement at VRM -due to thick sediment covers- the composition of rift-to-drift transition magmas is generally poorly constrained. We reviewed the geodynamic histories and magma compositions from well known VRM (e.g. NE Australia, E USA, Madagascar) and compared these data with own geochemical data from different NE Atlantic tectono-magmatic VRM zones. These comparisons point to a consistent, general VRM formation model. This model has to explain the primary observation, that geological long periods of extension have been reported -in all investigated VRM areas- prior to the breakup. Extensional far field stress looks to be the main geodynamic cause for continental breakup. Small scale convection during the late phase of a continental rift system is probably the key process generating excess magmatism in LIP related to rift-to-drift transitions.

  8. Insights into extensional processes during magma assisted rifting: Evidence from aligned scoria cones

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Bastow, Ian D.; Keir, Derek

    2011-04-01

    Mechanical and magmatic processes exert first-order control on the architecture and evolution of rifts. As a continental rift develops towards a new oceanic spreading centre, extension that is initially accommodated in a broad zone of faulting and ductile stretching must transition towards a narrow zone of focused magmatic intrusion. The Main Ethiopian Rift (MER), part of the East African Rift System, is an ideal location to study this transition because it captures rifting processes during continental breakup. In this contribution we synthesise geochemical data from scoria cones in the Wonji Fault Belt (WFB) and Silti-Debre Zeyit Fault Zone (SDFZ) in the MER to provide new constraints on the development of mantle melting columns and magmatic plumbing systems since the onset of rifting. We utilize the extensive geophysical and geochemical databases, collected in the Ethiopian Rift, to show that geochemical evidence of heterogeneity in the depth of the mantle melting column which produced Quaternary rift basalts correlates with lithospheric structure. When combined with existing observations of asymmetry across the rift in terms of depth of melting column and magmatic plumbing systems, it is evident that the mechanical structure of the rift, defined during the initial stages of breakup, has played a dominant role in the initial development of magma assisted rifting in the MER. Surface structures and crustal-scale geophysical studies have suggested the WFB is analogous to a sea-floor spreading centre. However, the geochemical characteristics of rift basalts are consistent with mantle tomography that shows no evidence beneath the MER for passive magmatic upwelling beneath discrete rift segments as is observed in the ocean basins. Collectively, the Ethiopian data show that the distribution of mantle melts during the initiation of magma assisted rifting is fundamentally influenced by lithospheric structures formed during earlier syn-rift stretching.

  9. The GLIMPCE seismic experiment: Onshore refraction and wide-angle reflection observations from a fan line over the Lake Superior Midcontinent Rift System

    NASA Astrophysics Data System (ADS)

    Epili, Duryodhan; Mereu, Robert F.

    The 1986 GLIMPCE experiment (Great Lakes International Multidisciplinary Program for Crustal Evolution) was a combined on-ship seismic reflection and onshore seismic refraction experiment designed to determine the structure of the crust beneath the Great Lakes. The main tectonic targets of interest were the Midcontinent Rift System, the Grenville Front, the Penokean and Huronian Fold Belts and the Michipicoten Greenstone Belt. The source of the seismic energy came from a large air gun array fired at closely spaced intervals (50-350 m) over several long lines (150-350 km) crossing the lakes. Major participants of this experiment were the Geological Survey of Canada, the United States Geological Survey and a number of universities and research institutes on both sides of the border. The University of Western Ontario (UWO) collected data at five separate land stations using portable seismic refraction instruments. In this paper we present the results of a fan profile which was recorded from a UWO station on Michipicoten Island for the N-S line A which crossed the axis of the Lake Superior Synclinal Basin. The azimuth and distance ranges for this profile were 237 to 321 degrees and 120 to 170 km respectively. Detailed observations of the record sections show that p. is not a simple arrival but forms a rather complex pattern of irregular multiple arrivals. The wide-angle PmP reflection signals from the Moho are strong and well obilerved only for the shots fired near the ends of the line. The signals from the middle of the profile arrive relatively late and form very weak complex wave trains. These results indicate that the Moho in that area is probably greatly disrupted and gives added support to the rift theory for the structure under the lake. The observations also support the results of earlier crustal studies of Lake Superior which showed that the crust under the eastern part of the lake was exceedingly thick.

  10. Facilities management system (FMS). Final report

    SciTech Connect

    1992-04-01

    The remainder of this report provides a detailed, final status of Andersen Consulting`s participation in the FMS systems implementation project and offers suggestions for continued FMS improvements. The report presents the following topics of discussion: (1) Summary and Status of Work (2) Recommendations for Continued Success (3) Contract Deliverables and Client Satisfaction The Summary and Status of Work section presents a detailed, final status of the FMS project at the termination of Andersen`s full-time participation. This section discusses the status of each FMS sub-system and of the Andersen major project deliverables. The Recommendations section offers suggestions for continued FMS success. The topics discussed include recommendations for each of the following areas: (1) End User and Business Operations (2) AISD; Development and Computer Operations (3) Software (4) Technical Platform (5) Control Procedures The Contract Deliverables and Client Satisfaction section discusses feedback received from Johnson Controls management and FMS system users. The report also addresses Andersen`s observations from the feedback.

  11. Facilities management system (FMS). Final report

    SciTech Connect

    1992-04-01

    This report provides a detailed, final status of Andersen Consulting`s participation in the Facilities Management System (FMS) implementation project under contract with Los Alamos National Laboratory (LANL) and offers suggestions for continued FMS improvements. The report presents the following topics of discussion: (1) summary and status of work (2) recommendations for continued success (3) contract deliverables and client satisfaction. The Summary and Status of Work section presents a detailed, final status of the FMS project at the termination of Andersen`s full-time participation. This section discusses the status of each FMS sub-system and of the Andersen major project deliverables. The Recommendations section offers suggestions for continued FMS success. The topics discussed include recommendations for each of the following areas: (1) End User and Business Operations; (2) AISD; Development and Computer Operations; (3) Software; (4) Technical Platform; and (5) Control Procedures The Contract Deliverables and Client Satisfaction section discusses feedback received from Johnson Controls management and FMS system users. The report also addresses Andersen`s observations from the feedback.

  12. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data

    USGS Publications Warehouse

    Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, Kim D.

    1992-01-01

    Recent multichannel seismic reflection data from Lake Baikal, located in a large, active, continental rift in central Asia, image three major stratigraphic units totalling 3.5 to 7.5 km thick in four subbasins. A major change in rift deposition and faulting between the oldest and middle-rift units probably corresponds to the change from slow to fast rifting. A brief comparison of the basins of Lake Baikal with those of the East African rift system highlights differences in structural style that can be explained by differences in age and evolution of the surrounding basement rocks. -from Authors

  13. At the tip of a propagating rift - The offshore East African Rift

    NASA Astrophysics Data System (ADS)

    Franke, Dieter; Jokat, Wilfried; Ladage, Stefan; Stollhofen, Harald; Klimke, Jennifer; Lutz, Ruediger; Mahanjane, Stefane; Ehrhardt, Axel; Schreckenberger, Bernd

    2016-04-01

    Numerous studies have addressed various aspects of the East African Rift system (EARS) but surprisingly few the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of sub-recent extensional deformation. The seismic reflection data reveals that recent normal faulting often utilizes preexisting, deeply buried half-graben structures which likely are related to the formation of the Somali Basin. The ~30 km wide and ~150 km long symmetric graben is in a stage where the linkage of scattered normal faults already did happen, resulting in increased displacement and accommodation of most of the extension across the basin. However, deep earthquakes below the rift indicate a strong and still preserved lithospheric mantle. Extension is becoming diffuse where an onshore suture, subdividing the northern from the southern metamorphic basement onshore Mozambique, is closest to the offshore rift. It appears likely that this suture is the origin for the variation in rifting style, indicating that mantle fabric resulting from a Cambrian collision has been preserved as mechanical anisotropy of the lithospheric mantle. Further south the rift focuses in an about 30 km wide half-graben. An important finding is that the entire offshore branch of the EARS lacks significant volcanism. Along the offshore EARS there are only negligible indications for recent volcanism in the reflection seismic data such as sills and dikes. Apparently the "Comoros mantle plume" (French and Romanowicz, 2015) has a very minor influence on the progressive extensional deformation along the northern Mozambique continental margin, leading eventually to breakup sometimes in the future. Combining structural with earthquake data reveals that the magma

  14. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  15. The Midcontinent Rift and Grenville connection

    SciTech Connect

    Cambray, F.W.; Fujita, K. . Dept. of Geological Sciences)

    1994-04-01

    The Mid-Proterozoic, Midcontinent Rift System (MRS) is delineated by an inverted U shaped gravity and magnetic anomaly. It terminates in southeast Michigan but a less continuous series of anomalies and sediments, the Eastcontinent Rift occur on a north-south line through Ohio and Kentucky. The geometry allows for a north-south opening, the Lake Superior section being orthogonal to opening, the western arm transtensional and the north-south trending eastern arm a transform boundary offset by pull-apart basins. The opening and closing of the rift overlaps in time with the Grenville Orogeny. Grenville age rocks can also be found in the Llano uplift of Texas. The authors propose a model to explain the temporal and geographic association of the opening and closing of the MRS with the Grenville Orogeny that involves irregular suturing between two continental masses. Initiation of Grenville suturing, associated with south dipping subduction, in the northeast and in the Llano area of Texas would leave portion of unclosed ocean in between. Tensional stresses in the continental crust adjacent to the oceanic remnant could lead to its fragmentation and the formation of the MRS. The remaining oceanic lithosphere would eventually subduct, limiting the opening of the MRS. Continued convergence of the plates would induce compressional stresses thus accounting for the deformation of the MRS. An analogy is made with more recent opening of the Red Sea, Gulf of Aden Rift System in association with irregular collision along the Zagros-Bitlis Sutures.

  16. Hierarchical segmentation of the Malawi Rift: The influence of inherited lithospheric heterogeneity and kinematics in the evolution of continental rifts

    NASA Astrophysics Data System (ADS)

    Laó-Dávila, Daniel A.; Al-Salmi, Haifa S.; Abdelsalam, Mohamed G.; Atekwana, Estella A.

    2015-12-01

    We used detailed analysis of Shuttle Radar Topography Mission-digital elevation model and observations from aeromagnetic data to examine the influence of inherited lithospheric heterogeneity and kinematics in the segmentation of largely amagmatic continental rifts. We focused on the Cenozoic Malawi Rift, which represents the southern extension of the Western Branch of the East African Rift System. This north trending rift traverses Precambrian and Paleozoic-Mesozoic structures of different orientations. We found that the rift can be hierarchically divided into first-order and second-order segments. In the first-order segmentation, we divided the rift into Northern, Central, and Southern sections. In its Northern Section, the rift follows Paleoproterozoic and Neoproterozoic terrains with structural grain that favored the localization of extension within well-developed border faults. The Central Section occurs within Mesoproterozoic-Neoproterozoic terrain with regional structures oblique to the rift extent. We propose that the lack of inherited lithospheric heterogeneity favoring extension localization resulted in the development of the rift in this section as a shallow graben with undeveloped border faults. In the Southern Section, Mesoproterozoic-Neoproterozoic rocks were reactivated and developed the border faults. In the second-order segmentation, only observed in the Northern Section, we divided the section into five segments that approximate four half-grabens/asymmetrical grabens with alternating polarities. The change of polarity coincides with flip-over full-grabens occurring within overlap zones associated with ~150 km long alternating border faults segments. The inherited lithospheric heterogeneity played the major role in facilitating the segmentation of the Malawi Rift during its opening resulting from extension.

  17. Jade data transcription system final report

    SciTech Connect

    Eaton, R.; Iskra, M.; McLean, J. . Advanced Technology Div.)

    1990-07-25

    The OWL sensor, which is used in conjunction with the Jade program, generates a tremendous volume of data during normal field operations. Historically, the dissemination of this data to analysts has been slowed by difficulties in transcribing to a widely readable media and format. TRW, under contract from Lawrence Livermore National Laboratory, was tasked by Defense Advanced Research Projects Agency (DARPA) with finding an improved method of transcribing the Jade experimental data. During the period of performance on this contract TRW helped to guide the development and operation of an improved transcription system. This final report summarizes the work performed, and provides a written record of information which may be helpful to future users of the newly developed data transcription system. 4 figs.

  18. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  19. Magmatic Processes Beneath the East African Rift System (EARS): Insights From Melt Inclusions in Lavas of Turkana, Kenya

    NASA Astrophysics Data System (ADS)

    Waters, C. L.; Bryce, J. G.; Furman, T.

    2004-05-01

    The EARS is an ideal site to study the magmatic processes relevant to continental basaltic volcanism. Within the EARS, the Turkana Depression exhibits maximum extension and crustal thinning [1, 2]. Whole rock elemental and isotopic analyses of Turkana lavas demonstrate heterogeneity that is unlikely due to crustal assimilation during magma transport or storage and is instead attributed to mixing between mantle sources (plume and lithosphere) [3]. In other sites of continental basaltic volcanism, compositional studies of olivine-hosted melt inclusions (MIs) lend perspective on magma chamber processing and source diversity (e.g., [4,5]). MIs hosted in primitive olivine (ol) phenocrysts often sample numerous, discrete melts that existed prior to melt aggregation and homogenization within the continental lithosphere. Thus, ol-hosted MIs from Turkana may also provide insight into magmatic processes beneath continental rifts. Furthermore, Turkana lavas afford an unusual opportunity to study MIs that are likely unaffected by crustal assimilation and provide direct evidence of mantle heterogeneity. We present major element compositional data on ol-hosted MIs from a suite of lavas from the Turkana Depression. To test for geographical control on source heterogeneity beneath the Turkana Rift, analyses in progress encompass basaltic lavas that have been sampled from South and Central Islands and the Barrier. Olivine-hosted MIs in a South Island transitional basalt (MgO= 14.10 wt%, K2O/TiO2= 0.37, K2O/P2O5= 2.08; data from [3]) are dominantly alkaline in composition. Incompatible element ratios between MIs in separate, primitive ol grains (Fo= 83.8-86.7) display significant variability (K2O/TiO2= 0.32-0.63, K2O/P2O5= 1.02-4.36). Also, primitive ol grains (e.g., Fo= 86.2) host multiple MIs that consistently display similar incompatible element variability (e.g., K2O/TiO2= 0.33-0.59, K2O/P2O5=1.27-2.04). These data suggest that melt homogenization occurs at relatively shallow

  20. Recent rift-related volcanism in Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ferguson, David J.; Barnie, Talfan D.; Pyle, David M.; Oppenheimer, Clive; Yirgu, Gezahegn; Lewi, Elias; Kidane, Tesfaye; Carn, Simon; Hamling, Ian

    2010-04-01

    Rift zones are the most common magmatic environment on Earth. However opportunities to observe active rifting are rare, and consequently the volcanological characteristics of rift systems are not well understood. An ongoing phase of magmatic rifting along a section of the Red Sea system in Afar, Ethiopia, presents an exceptional opportunity to constrain relationships between volcanism and crustal growth. Here, by integrating analyses of satellite images (i.e. MODIS, OMI, ASTER, and ALI) with field observations, we characterise two recent (August 2007 and June 2009) basaltic fissure eruptions in Afar and evaluate the role and significance of volcanism in the rifting process. Both events were brief (36-72 h) and erupted 4.4-18 × 10 6 m 3 of lava from a fissure system 4-6.5 km in length. Data from the spaceborne Ozone Monitoring Instrument (OMI) suggests total SO 2 emissions for each eruption of 26 ± 5 kt (2007) and 34 ± 7 kt (2009), consistent with complete degassing of the erupted magma volumes. Using geodetic models for the intrusive activity in Afar we estimate the partitioning of magma between intrusive and extrusive components, up to July 2009, to be ˜ 180:1. Comparing the first-order volcanic characteristics and the intrusive-extrusive volume balance for the Afar volcanism with data from the 1975-1984 Krafla rifting cycle (Iceland) suggests that the volcanic flux in Afar will rise significantly over the next few years as the stresses are increasingly relieved by dyking, and subsequent dykes are able to propagate more easily to the surface. As a consequence, basaltic fissure eruptions in this section of the Afar rift will become of increasing large magnitude as the rifting event matures over the next 5-10 yr. Using available models of magmatic rifting we forecast the likely size and location of future eruptions in Afar.

  1. Examination of the Reelfoot Rift Petroleum System, south-central United States, and the elements that remain for potential exploration and development

    USGS Publications Warehouse

    Coleman, James; Pratt, Thomas L.

    2016-01-01

    No production has been established in the Reel-foot rift. However, at least nine of 22 exploratory wells have reported petroleum shows, mainly gas shows with some asphalt or solid hydrocarbon residue. Regional seismic profiling shows the presence of two large inversion structures (Blytheville arch and Pascola arch). The Blytheville arch is marked by a core of structurally thickened Elvins Shale, whereas the Pascola arch reflects the structural uplift of a portion of the entire rift basin. Structural uplift and faulting within the Reelfoot rift since the late Paleozoic appear to have disrupted older conventional hydrocarbon traps and likely spilled any potential conventional petroleum accumulations. The remaining potential resources within the Reelfoot rift are likely shale gas accumulations within the Elvins Shale; however, reservoir continuity and porosity as well as pervasive faulting appear to be significant future challenges for explorers and drillers.

  2. The rift architecture and extensional tectonics of the South China Sea

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Barckhausen, Udo; Franke, Dieter

    2016-04-01

    Non-volcanic rifted continental margins are classically described as the product of lithospheric stretching and breakup leading to mantle exhumation, and subsequent seafloor spreading. However, recent studies question this model and indicate a wider range of structural evolutions, that challenge the existing model (e.g. Australia-Antarctic Rift System (Direen et al. 2007, 2011); the Tyrrhenian basin (Prada et al., 2014) or the South China Sea (Cameselle et al. 2015)). Rifting in the South China Sea developed from a series of extensional events, from early Eocene to Late Oligocene, resulting in a V-shape oceanic basin affected by the occurrence of several spreading centers, ridges, transform faults and post-spreading volcanism. In recent years, this marginal basin - the largest in East Asia - has increasingly become one of the key sites for the study of rifting and continental break-up. Its relative small size - compared to many classic, Atlantic-type continental margin settings - allows to easily match conjugated rifted margins and its relative youth promotes the preservation of its original nature. To examine the rifting evolution of the South China Sea, we have reprocessed with modern algorithms multichannel seismic profiles acquired during Sonne49 and BGR84 cruises across the three major subbasins: NW, SW and East subbasins. State-of-the-art of processing techniques have been used to increase the signal to noise ratio, including Tau-P and Wiener predictive deconvolution, multiple attenuation by both radon filtering and wave-equation-based surface-related multiple elimination (SRME) and time migration. To complement seismic interpretation, available vintage multichannel seismic data have been reprocessed with a post-stack flow, including Wiener deconvolution, FK-filtering, space and time variant band-pass filter and time migration. The improving quality of the seismic images shows a range of features including post-rift and syn-rift sediments, the structure of

  3. Evolutionary model of the oblique rift basins- Central African Rifts

    NASA Astrophysics Data System (ADS)

    Yang, Kenn-Ming; Cheng, I.-Wen; Wu, Jong-Chang

    2016-04-01

    The geometry of oblique-rifting basin is strongly related with the angle (α) between the trend of rift and that of regional major extensional stress. The main purpose of this study is to investigate characteristics of geometry and kinematics of structure and tectono-stratigraphy during basin evolution of Central African Rifts (CAS). In this study, we simulated the formation of oblique-rifting basin with Particle Flow Code 3-Dimensions-(PFC 3D) and compared the simulation results with the tectonic settings of a series of basin in CAS. CAS started to develop in Early Cretaceous (130Ma) and lasted until the Late Cretaceous (85Ma-80Ma). The following collision between the African and Eurasian plates imposed compressional stress on CAS and folded the strata in the rift basins. Although the characteristics of rift basin formation remain controversial, palinspastic sections constructed in this study show that, in the Early Cretaceous, the rift basins are mainly characterized by normal faults and half-grabens. In the Late Cretaceous, the morphology of the rift basins was altered by large-scaled tectonic compression with the active Borogop Fault of regional scale. Also, en echelon trend of normal faults in the basins were measured and the angles between the trend with that of the rift axes of each basin were demonstrated, indicating that the development of CAS was affected by the regional extensional stress with a dextral component during the rifting process and, therefore, the rift basins were formed by oblique-rifting. In this study, we simulated the oblique-rifting basin model of various α with Particle Flow Code 3-Dimensions-(PFC 3D). The main theory of PFC 3D is based on the Discrete Element Method (DEM), in which parameters are applied to every particle in the models. We applied forces acting on both sides of rift axis, which α are 45°, 60°, 75° and 90° respectively, to simulate basin formation under oblique-rifting process. The study results of simulation

  4. Hydrothermal flow systems in the Midcontinent Rift: Oxygen and hydrogen isotopic studies of the North Shore Volcanic Group and related hypabyssal sills, Minnesota

    SciTech Connect

    Park, Y.R.; Ripley, E.M.

    1999-06-01

    Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. {delta}{sup 18}O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7{per_thousand} and 5.3 to 11.5{per_thousand}, respectively, and most values are higher than those considered normal for basaltic rocks (5.4 to 6.0{per_thousand}). In general, there is a positive correlation between whole rock {delta}{sup 18}O and water content, which suggests that elevated {delta}{sup 18}O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. {delta}{sup 18}O{sub H{sub 2}O} values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from {approximately}{minus}1 to 6{per_thousand} with an average value of {approximately}3{per_thousand}. Smectite in the lower-grade zones gives computed {delta}D{sub H{sub 2}O} values between {minus}26 and {minus}83{per_thousand}, whereas epidote in the higher-grade zones gives {delta}D{sub H{sub 2}O} values of {minus}15 to 6{per_thousand}. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid {delta}D and {delta}{sup 18}O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated {delta}{sup 18}O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the

  5. The effect of thermal weakening and buoyancy forces on rift localization: Field evidences from the Gulf of Aden oblique rifting

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Husson, L.; Autin, J.; Leroy, S.; d'Acremont, E.

    2013-11-01

    On the basis of field and geophysical data, analog and numerical models, we here discuss the role of buoyancy forces arising from thickness variations in the lithosphere during rifting. In the Gulf of Aden, an oceanized Tertiary oblique rift, several successive directions of extension and associated normal faults suggest that transient stress rotations occurred during rifting. Especially, rift-parallel faults (070°E) overprinted the early divergence-perpendicular normal faults (110°E). Moreover, some first-order differences are noticeable between the western part of the Gulf, which deformed under the Afar hot spot influence, and the eastern part. In the western Gulf of Aden, the ocean-continent transition (OCT) and the oceanic ridge have cut obliquely through the inherited and reactivated Mesozoic basins (100°E to 140°E). The OCT trend is parallel to the overall Gulf trend (070°E). In the eastern part, the oceanization occurred within few syn-rift 110°E-trending basins and the OCT trends mostly perpendicular to the divergence direction. Here, we propose that this contrast is strongly controlled by the Afar hot spot: during rifting times, the hot spot likely induced a hot thermal anomaly in the western asthenosphere. This may have triggered both thermal buoyancy forces and thermal weakening of the lithosphere that helped localizing the rift obliquely. In such localized rift, rift-perpendicular trending crustal buoyancy forces (i.e. around 160°E) have enhanced rift-parallel normal faults (070°E) during final rift localization into a narrow zone strongly oblique to the early syn-rift basins. As a consequence of the Afar hot spot, in the west, the ridge is long and straight; in the east, the ridge segments are rather long too (although less than in the west) as the ridge initiated parallel to the OCT; in between, the ridge is more segmented as both the hot spot influence gradually decreases eastward and the ridge initiated obliquely to the OCT.

  6. Multiloop integral system test (MIST): Final report

    SciTech Connect

    Gloudemans, J.R. . Nuclear Power Div.)

    1991-04-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the Once Through Integral System (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in 11 volumes. Volumes 2 through 8 pertain to groups of Phase 3 tests by type; Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the RELAP5/MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include, Test Advisory Group (TAG) issues, facility scaling and design, test matrix, observations, comparison of RELAP5 calculations to MIST observations, and MIST versus the TAG issues. MIST generated consistent integral-system data covering a wide range of transient interactions. MIST provided insight into integral system behavior and assisted the code effort. The MIST observations addressed each of the TAG issues. 11 refs., 29 figs., 9 tabs.

  7. Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities

    NASA Astrophysics Data System (ADS)

    Achauer, Ulrich; Masson, Frédéric

    2002-11-01

    Tomographic images for four major continental rift zones, namely the southern Rhine Graben (SRG, Germany/France), the Gregory rift (Kenya) which is the central part of the East African rift system, the Rio Grande rift (RGR) in the United States and the Lake Baikal rift zone (LBR) in Russia have been revisited by calculating and comparing absolute velocity models. The four rifts exhibit strong structural differences in the uppermost mantle down to more than 300-km depth, suggesting major differences in their geodynamic evolution albeit their similarity in age and similar surface expression. The comparative analysis suggests that tomographic images of rift zones can be used to characterize continental rifts, once the corrections to obtain absolute velocities have been carried out. Our results suggest that while the Kenya and the Rio Grande rift may be considered active with large upwelling plumes being the main controlling factor in the evolution, the southern Rhine Graben and the Lake Baikal rift are more likely passive rifts, where complex regional stress fields and inherited structures play the governing role in the evolution.

  8. Surface analogue outcrops of deep fractured basement reservoirs in extensional geological settings. Examples within active rift system (Uganda) and proximal passive margin (Morocco).

    NASA Astrophysics Data System (ADS)

    Walter, Bastien; Géraud, Yves; Diraison, Marc

    2014-05-01

    structures). Two field cases, located in Morocco and Uganda, allow us to investigate basement complexes at different stages of an extension process and give us analog geological data of similar fractured basement reservoirs. Border faults and associated fracture networks of an active rifting system propagated in Proterozoic basement rocks are analyzed in the Albertine rift system in Uganda. Brittle structures developed along a proximal passive margin of the Atlantic domain are analyzed in Proterozoic basements rocks in Western Anti-Atlas in Morocco.

  9. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison

  10. Carbonate diagenesis and rifting in the Gulf of Suez

    SciTech Connect

    Purser, B.H.; Orszag-Sperber, F.; Aissaoui, D.M. )

    1988-08-01

    Lower Miocene carbonates of the northwest Red Sea and Gulf of Suez have been deposited on a series of structural blocks where bathymetric relief, created by early rift tectonics, has strongly influenced both sedimentation and early diagenesis. Initial submarine cementation by fibrous calcite and aragonite strongly affects slope deposits, destroying most primary porosity. It was followed by several phases of regional dolomitization whose isotopic signatures suggest nonmarine influence. Undolomitized sediments are the exception. An intense dissolution is the principal agent determining petrophysical qualities of the series. Nonmarine sparitic cements are not important, indicating the dissolved carbonate has been flushed out of the system. Finally, large-scale sulfate replacement affects dolomites adjacent to the middle Miocene primary evaporites. These secondary sulfates are associated with a zone of calcitized dolomite (dedolomite). This diagenetic activity obviously reflects repeated changes in the composition of interstitial waters. Its exceptional intensity is explained by the contemporaneous basin relief; the presence of numerous subparallel blocks has resulted in the development of separate bodies of water relating to both meteoric influx and evaporation. Together with normal marine waters, these fluids of variable density have penetrated the intervening sedimentary platforms via the numerous slopes. It is clear that multiphased carbonate diagenesis is one of the many expressions of early rifting.

  11. Rifting of Continental Interiors: Some New Geophysical Data and Interpretations

    NASA Astrophysics Data System (ADS)

    Keller, G. R.

    2005-12-01

    Rifting is one of the major processes that affect the evolution of the continents. This process sometimes leads to continental breakup and the formation of new oceans, but more often does not. This is presumably due to extension not progressing sufficiently to form a new plate margin resulting in a structure, which remains isolated in an intra-plate environment. The Southern Oklahoma aulacogen is such a feature, and the continental portion of the East African rift system may be a modern example. As more detailed geophysical and geological studies of rifts have become available in recent years, a complex picture of rift structure and evolution has emerged. Global patterns that reveal the connections between lithospheric structure (deep and shallow), magmatism (amount and style), amount of extension, uplift, and older structures remain elusive. However, our geophysical studies of modern and paleo rifts in North America, East Africa, and Europe makes it possible to make some general observations: 1). Magmatism in rifts is modest without the presence of a (pre-existing?) thermal anomaly in the mantle. 2). Magmatic modification of the crust takes many forms which probably depend on the nature of older structures present and the state of the lithosphere when rifting is initiated (i.e. cold vs. hot; fertility), 3) There is no clear relation between amount of extension and the amount of magmatic modification of the crust. 4) Brittle deformation in the upper crustal is complex, often asymmetrical and older features often play important roles in focusing deformation. However on a lithospheric scale, rift structure is usually symmetrical. 5) A better understanding of rift processes is emerging as we achieve higher levels of integration of a wide variety of geoscience data.

  12. Exploiting the outcome of FUTUREVOLC: The 2014-2015 rifting event, effusive eruption and gradual caldera collapse at Bardarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Vogfjord, Kristin S.; Gudmundson, Magnus T.; Ofeigsson, Benedikt G.; Dumont, Stéphanie; Parks, Michelle; Jonsdottir, Kristin; Hooper, Andrew; Hreinsdottir, Sigrun; Rafn Heimisson, Elias; White, Robert; Agustsdottir, Thorbjorg; Bean, Chris; Loughlin, Susan C.; Petur Heidarsson, Einar; Barsotti, Sara; Roberts, Matthew; Ripepe, Maurizio; Ilyinskaya, Evgenia; Consortium, Futurevolc

    2016-04-01

    Activity in the Bardarbunga volcanic system in Iceland 2014-2015 included major lava eruption (~1.5 km3) and gradual caldera collapse (~66 m), connected by a 50-km-long laterally injected dyke that formed mostly over 2-4 weeks after onset of activity on 16 August 2014. This rifting event is the main magmatic activity studied by the FUTUREVOLC project, a 3.5 year, 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept. The project end is 31 March 2016 and it had aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. A review will be presented on how FUTUREVOLC has contributed to the response and study of the Bardarbunga activity and other events in Iceland during the project period.

  13. Age constraints for the present fault configuration in the Imperial Valley, California - Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1991-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  14. Age constraints for the present fault configuration in the Imperial Valley, California: Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1990-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  15. What role does crustal heterogeneity play on continental break-up; the interplay of a foldbelt, rift system and ocean basin in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Paton, Douglas; Mortimer, Estelle; Hodgson, Neil

    2015-04-01

    Although extensively studied, two key questions remain unanswered regarding the evolution of the southern South Atlantic. Firstly, where is the Cape Foldbelt (CFB) in offshore South Africa? The CFB is part of the broader Gonwanian Orogeny that prior to South Atlantic rifting continued into the Ventana Foldbelt of Argentina but to date its location in the offshore part of South Africa remains enigmatic. Secondly, the conjugate rift basin to South Africa is the Colorado Basin in Argentina but why does it trend east-west despite its perpendicular orientation to the Atlantic spreading ridge? Current plate models and structural understands cannot explain these fundamental questions. We use newly acquired deep reflection seismic data in the Orange Basin, South Africa, to develop a new structural model for the southern South Atlantic. We characterise the geometry of the Cape Foldbelt onshore and for the first time correlate it into the offshore. We show that it has a north-south trend immediately to the north of the Cape Peninsula but then has a syntaxis (Garies syntaxis) that results in a change to an east-west orientation. This forms the missing jigsaw piece of the Atlantic reconstruction as this is directly beside the restored Colorado Basin. When considered within the pre-break up structural configuration our observations imply that prior to the main phase of Atlantic rifting in the Mezosoic there was significant variation in crustal geometry incorporating the Orange Basin of South Africa, the Colorado Basin and the Gariep Belt of Namibia. These faults were active during Gondwana rifting, but the Colorado rift failed resulting in the present day location of the South Atlantic. Not only do our results improve our understanding of the evolution of the South Atlantic ocean, they highlight the importance of differentiating between early rift evolution and strain localisation during the subsequent rift phase prior to seafloor spreading.

  16. Mapping Mantle Mixing and the Extent of Superplume Influence Using He-Ne-Ar-CO2-N2 Isotopes: The Case of the East Africa Rift System

    NASA Astrophysics Data System (ADS)

    Hilton, D. R.; Halldorsson, S. A.; Scarsi, P.; Castillo, P.; Abebe, T.; Kulongoski, J. T.

    2014-12-01

    Earth's mantle possesses distinct and variable volatile characteristics as sampled by magmatic activity in different tectonic environments. In general, trace element depleted mid-ocean ridge basalts, with low Sr and Pb isotope values (but high ɛNd and ɛHf), release mantle-derived noble gases characterised by 3He/4He ~8 ± 1RA, (21Ne/22Ne)ex ~0.06 and 40Ar/36Ar ≥ 10,000 with CO2 and N2 having δ13C~-5‰ and δ15N ~-5‰, respectively. In contrast, enriched intraplate lavas possess higher 3He/4He (up to 50RA), lower (21Ne/22Ne)ex ~0.035 and 40Ar/36Ar ≤ 10,000 with generally higher but variable δ13C and δ15N. These isotopic attributes of mantle-derived volatiles can be exploited to map the extent, and mixing characteristics, of enriched (plume) mantle with depleted asthenospheric mantle ± the effects of over-riding lithosphere and/or crust. The East African Rift System (EARS) is superimposed upon two massive plateaux - the Ethiopia and Kenya domes - regarded as geophysical manifestations of a superplume source, a huge thermochemical anomaly originated at the core-mantle boundary and providing dynamic support for the plateaux. We present new volatile isotopic and relative abundance data (on the same samples) for geothermal fluids (He-CO2-N2), lavas (He-Ne-Ar) and xenoliths (He-Ne-Ar-CO2-N2) which provide an unprecedented overview of the distribution of mantle volatiles of the Ethiopia Dome, from the Red Sea via the Afar region and Main Ethiopian Rift (MER) to the Turkana Depression. Notably, peaks in geothermal fluid 3He/4He (16RA) and δ15N (+6.5‰) are coincident within the MER but the maximum δ13C (-0.78‰) lies ~100 km to the south. Highs in 3He/4He (14RA), δ13C (~-1‰) and δ15N (+3.4‰) for mafic crystals occur in the Afar region ~ 500km to the north. We assess the significance of the off-set in these volatile isotope signals, for sampling volatile heterogeneity in the plume source and/or the relative sensitivity of different volatiles to

  17. Stable isotope-based Plio-Pleistocene ecosystem reconstruction of some of the earliest hominid fossil sites in the East African Rift System (Chiwondo Beds, N Malawi)

    NASA Astrophysics Data System (ADS)

    Lüdecke, Tina; Thiemeyer, Heinrich; Schrenk, Friedemann; Mulch, Andreas

    2014-05-01

    The isotope geochemistry of pedogenic carbonate and fossil herbivore enamel is a powerful tool to reconstruct paleoenvironmental conditions in particular when climate change plays a key role in the evolution of ecosystems. Here, we present the first Plio-Pleistocene long-term carbon (δ13C), oxygen (δ18O) and clumped isotope (Δ47) records from pedogenic carbonate and herbivore teeth in the Malawi Rift. These data represent an important southern hemisphere record in the East African Rift System (EARS), a key region for reconstructing vegetation patterns in today's Zambezian Savanna and correlation with data on the evolution and migration of early hominids across the Inter-Tropical Convergence Zone. As our study site is situated between the well-known hominid-bearing sites of eastern and southern Africa in the Somali-Masai Endemic Zone and Highveld Grassland it fills an important geographical gap for early hominid research. 5.0 to 0.6 Ma fluviatile and lacustrine deposits of the Chiwondo Beds (NE shore of Lake Malawi) comprise abundant pedogenic carbonate and remains of a diverse fauna dominated by large terrestrial mammals. These sediments are also home to two hominid fossil remains, a mandible of Homo rudolfensis and a maxillary fragment of Paranthropus boisei, both dated around 2.4 Ma. The Chiwondo Beds therefore document early co-existence of these two species. We evaluate δ13C data from fossil enamel of different suid, bovid, and equid species and contrast these with δ13C and δ18O values of pedogenic carbonate. We complement the latter with clumped isotope soil temperature data. Results of almost 800 pedogenic carbonate samples from over 20 sections consistently average δ13C = -8.5 ‰ over the past 5 Ma with no significant short-term δ13C excursions or long-term trends. The data from molar tooth enamel of nine individual suids of the genera Metridiochoerus, Notochoerus and Nyanzachoerus support these findings with average δ13C = -10.0 ‰. The absence

  18. The Eagle and East Eagle sulfide ore-bearing mafic-ultramafic intrusions in the Midcontinent Rift System, upper Michigan: Geochronology and petrologic evolution

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Li, Chusi; Ripley, Edward M.; Rossell, Dean; Kamo, Sandra

    2010-03-01

    The Eagle and East Eagle intrusions are small, subvertical dike-like mafic-ultramafic bodies that cut Proterozoic sedimentary strata in the Baraga Basin in northern Michigan. The Eagle intrusion hosts a newly discovered magmatic Ni-Cu-PGE deposit. The nearby East Eagle intrusion also contains sulfide mineralization, but the extent of this mineralization has yet to be determined by further drilling. Both intrusions contain olivine-bearing rocks such as feldspathic peridotite, melatroctolite, and olivine melagabbro. Sulfide accumulations range from disseminated at both Eagle and East Eagle to semimassive and massive at Eagle. U-Pb baddeleyite dating gives a crystallization age of 1107.2 ± 5.7 Ma for the Eagle intrusion, coeval with eruption of picritic basalts at the base of the volcanic succession in the Midcontinent Rift System (MRS). The Fo contents of olivine cores in the Eagle and East Eagle intrusions vary between 75 and 85 mol %, higher than those of olivine in larger layered intrusions in the MRS such as the Duluth Complex. The FeO/MgO ratios and Al2O3 contents of the parental magmas for the Eagle and East Eagle intrusions inferred from olivine and spinel compositions are similar to those of picritic basalts in the base of the MRS volcanic succession. These petrochemical data suggest that the Eagle and East Eagle intrusions are the intrusive equivalents of high-MgO basalts that erupted in the early stages of continental magmatism associated with the development of the rift. Variations in mineral compositions and incompatible trace element ratios suggest that at least three major pulses of magmas were involved in the formation of low-sulfide rocks in the Eagle intrusion. Lower Fo contents of olivine associated with semimassive sulfides as compared to that of olivine in low-sulfide rocks suggest that the magma associated with the semimassive sulfide was more fractionated than the parental magmas of the low-sulfide rocks in the Eagle intrusion. Accumulation of

  19. Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus

    NASA Technical Reports Server (NTRS)

    Basilevsky, A. T.

    1993-01-01

    This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.

  20. Low lower crustal velocity across Ethiopia: Is the Main Ethiopian Rift a narrow rift in a hot craton?

    USGS Publications Warehouse

    Keranen, K.M.; Klemperer, S.L.; Julia, J.; Lawrence, J. F.; Nyblade, A.A.

    2009-01-01

    [1] The Main Ethiopian Rift (MER) is a classic narrow rift that developed in hot, weak lithosphere, not in the initially cold, thick, and strong lithosphere that would be predicted by common models of rift mode formation. Our new 1-D seismic velocity profiles from Rayleigh wave/receiver function joint inversion across the MER and the Ethiopian Plateau indicate that hot lower crust and upper mantle are present throughout the broad region affected by Oligocene flood basalt volcanism, including both the present rift and the adjacent Ethiopian Plateau hundreds of kilometers from the rift valley. The region of hot lithosphere closely corresponds to the region of flood basalt volcanism, and we interpret that the volcanism and thermal perturbation were jointly caused by impingement of the Afar plume head. Across the affected region, Vs is 3.6-3.8 km/s in the lowermost crust and ???4.3 km/s in the uppermost mantle, both ??0.3 km/s lower than in the eastern and western branches of the East African Rift System to the south. We interpret the low Vs in the lower crust and upper mantle as indicative of hot lithosphere with partial melt. Our results lead to a hybrid rift mode, in which the brittle upper crust has developed as a narrow rift along the Neoproterozoic suture between East and West Gondwana, while at depth lithospheric deformation is distributed over the broad region (??400 km wide) thermally perturbed by the broad thermal upwelling associated with the Afar plume head. Development of both the East African Rift System to the south (in cold, strong lithosphere) and the MER to the north (in hot, weak lithosphere) as narrow rifts, despite their vastly different initial thermal states and depth-integrated lithospheric strength, indicates that common models of rift mode formation that focus only on temperature, thickness, and vertical strength profiles do not apply to these classic continental rifts. Instead, inherited structure and associated lithospheric weaknesses are

  1. Kīlauea's Upper East Rift Zone: A Rift Zone in Name Only

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Fiske, R. S.

    2014-12-01

    Kīlauea's upper east rift zone (UERZ) extends ~3 km southeastward from the summit caldera to the Koáe fault system, where it starts to bend into the main part of the ENE-trending rift zone. The UERZ lacks a distinct positive gravity anomaly (though coverage is poor) and any evidence of deformation associated with magma intrusion. All ground ruptures—and the Puhimau thermal area—trend ENE, crossing the UERZ at a high angle. Lua Manu, Puhimau, and Kóokóolau craters are the only surface evidence of the UERZ. Yet the UERZ is seismically active, and all magma entering the rest of the rift zone must pass through it. Rather than a rift zone in the traditional sense, with abundant dikes and ground ruptures along its trend, the UERZ cuts across the ENE structural grain and serves only as a connector to the rest of the rift zone, not a locus of dike formation along its length. The UERZ probably developed as a consequence of gradual SSE migration of the active part of the main east rift zone at the trailing edge of the south flank. During migration, a connection to the summit reservoir complex must be maintained; otherwise, the middle and lower east rift zone would starve and magma from Kīlauea's summit reservoir complex would have to go elsewhere. Over time, the UERZ lengthened and rotated clockwise to maintain the connection. Near the caldera, the UERZ may be widening westward as the summit reservoir complex migrates southward from the center of the caldera to its present position. A layered stress regime results in the upper 2-3 km mimicking the pervasive ENE structural grain of most of Kīlauea, whereas the underlying magmatic part of the UERZ responds to stresses related to SE magma transport. Magma intruding upward from the connector forms a dike that follows the ENE structural grain, as during the 1974 eruption. The active east rift zone has been migrating since ~100 ka, estimated by applying a 700-y extension rate across the Koa'e fault system to the ~6.5 km

  2. Anomalous deep earthquakes beneath the East African Rift: evidence for rift induced delamination of the lithosphere?

    NASA Astrophysics Data System (ADS)

    Lindenfeld, Michael; Rümpker, Georg; Schmeling, Harro; Wallner, Herbert

    2010-05-01

    The over 5000 m high Rwenzori Mountains are situated within the western branch of the East African Rift System, at the border between Uganda and the Democratic Republic of Congo. They represent a basement block within the rift valley whose origin and relation to the evolution of the EARS are highly puzzling. During 2006/2007 a network of 27 seismological stations was operated in this area to investigate crustal and upper mantle structure in conjunction with local seismicity. The data analysis revealed unexpectedly high microseismic activity. On average more than 800 events per month could be located with magnitudes ranging from 0.5 to 5.1. Hypocentral depths go as deep as 30 km with a pronounced concentration of activity at a depth of about 15 km. This presentation focuses on a cluster of seven earthquakes that were located at anomalous depths between 53 and 60 km. According to our present knowledge these are the deepest events so far observed within the EARS and the African Plate. Their origin might be connected to magmatic intrusions. However, the existence of earthquakes at this depth is enigmatic, especially within a rifting regime were one expects hot and weak material close to the surface, which is not capable of seismogenic deformation. We think that these events are closely related to the evolution of the Rwenzoris. A recent hypothesis to explain the extreme uplift of the Rwenzori Mountains is rift induced delamination (RID) of mantle lithosphere that is captured between two approaching rift segments. By numerical modelling we show that the RID-process is also able to bring material that is cold and brittle enough to release seismic energy into greater depth. Therefore the RID-mechanism gives a consistent explanation for the detected deep events as well as for the uplift of a mountain block in a rift setting.

  3. Geochemistry of 24 Ma Basalts from Northeast Egypt: Implications for Small-Scale Convection Beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Endress, C. A.; Furman, T.; Ali Abu El-Rus, M.

    2009-12-01

    Basalts ~24 Ma in the Cairo-Suez and Fayyum districts of NE Egypt represent the youngest and northernmost lavas potentially associated with the initiation of rifting of the Red Sea. The age of these basalts corresponds to a time period of significant regional magmatism that occurred subsequent to emplacement of 30 Ma flood basalts attributed to the Afar Plume in Ethiopia and Yemen. Beginning ~28 Ma, widespread magmatism occurred across supra-equatorial Africa in Hoggar (Algeria), Tibesti (Chad), Darfur (Sudan), Turkana (Kenya) and Samalat, Bahariya, Quesir and the Sinai Peninsula (Egypt) (e.g. Allegre et al., 1981; Meneisy, 1990; Baldridge et al., 1991; Wilson and Guiraud, 1992; Furman et al., 2006; Lucassen et al., 2008). Available geochemical and isotopic data indicate that Hoggar and Darfur basalts are similar to Turkana lavas, although no direct link between the N African lavas and the Kenya Plume has been made. New geochemical data on the NE Egyptian basalts provide insight into the thermochemical, isotopic, and mineralogical characteristics of the mantle beneath the region in which they were emplaced. The basalts are subalkaline with OIB-like incompatible trace element abundances and homogeneous major element, trace element and isotopic geochemistry. They display relatively flat ITE patterns, with notable positive Pb and negative P anomalies. Isotopic (143Nd/144Nd = 0.51274-0.51285, 87Sr/86Sr = 0.7049-0.7050) and trace element signatures (Ce/Pb = 16-22, Ba/Nb = 9-14, and La/Nb = 0.9-1.0) are consistent with melting of a sub-lithospheric source that has been slightly contaminated by continental crust during ascent and emplacement. The Pb isotopic ratios (206Pb/204Pb = 18.53-18.62, 207Pb/204Pb = 15.59-15.64, and 208Pb/204Pb = 38.80-39.00) in the Egyptian basalts are close to the range of those found in the 30 Ma Ethiopian flood basalts, which are distinct from the more highly radiogenic, high-μ type signature seen in basalts from Turkana, Darfur, and Hoggar

  4. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus.

    PubMed

    Tchouassi, David P; Sang, Rosemary; Sole, Catherine L; Bastos, Armanda D S; Teal, Peter E A; Borgemeister, Christian; Torto, Baldwyn

    2013-01-01

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO(2)-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO(2) alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620

  5. Common Host-Derived Chemicals Increase Catches of Disease-Transmitting Mosquitoes and Can Improve Early Warning Systems for Rift Valley Fever Virus

    PubMed Central

    Tchouassi, David P.; Sang, Rosemary; Sole, Catherine L.; Bastos, Armanda D. S.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2013-01-01

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO2-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO2 alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620

  6. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.

    2015-03-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  7. Introduction - Processes of continental rifting

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Baker, B. H.

    1983-01-01

    It is thought likely that thermal thinning and/or diapirism can cause the extensional stress required for rifting. The rifting, however, will not occur unless the regional tectonic regime permits the sides of the rift to diverge. Whereas passive plate extension could cause rifting in isolation, the extension and rifting are likely to be localized where the lithosphere is weakest over an existing thermal anomaly. In those cases where asthenospheric diapirism occurs, which is essentially a response to thinning of the lithosphere by thermal thinning or plate extension, the effects of diapirism may completely mask the initiating mechanism. It is believed that anomalous heat transfer into the lithosphere, diapirism, and magmatism must all figure in rifting, along with a deviatoric stress field that will permit extension in a developing rift. Even though the models are useful in permitting idealized processes to be quantified and tested, better knowledge of lithosphere properties is considered necessary, in particular knowledge of mantle viscosity and its temperature dependence.

  8. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    USGS Publications Warehouse

    ten Brink, U.S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  9. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal

    NASA Astrophysics Data System (ADS)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar

    2015-04-01

    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of

  10. Final Origin of the Saturn System

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Reufer, A.

    2012-10-01

    Saturn’s middle-sized moons (MSMs) are of diverse geology and composition, totaling 4.4% of the system mass. The rest is Titan, with more mass per planet than Jupiter’s satellites combined. Jupiter has four large satellites with 99.998% of the system mass, and no MSMs. Models to explain the discrepancy exist (e.g. Canup 2010; Mosqueira et al. 2010; Charnoz et al. 2011) but have important challenges. We introduce a new hypothesis, in which Saturn starts with a comparable family of major satellites (Ogihara and Ida 2012). These satellites underwent a final sequence of mergers, each occurring at a certain distance from Saturn. Hydrocode simulations show that galilean satellite mergers can liberate ice-rich spiral arms, mostly from the outer layers of the smaller of the accreting pair. These arms gravitate into clumps 100-1000 km diameter that resemble Saturn’s MSMs in diverse composition and other major aspects. Accordingly, a sequence of mergers (ultimately forming Titan) could leave behind populations of MSMs at a couple of formative distances, explaining their wide distribution in semimajor axis. However, MSMs on orbits that cross that of the merged body are rapidly accumulated unless scattered by resonant interactions, or circularized by mutual collisions, or both. Scattering is likely for the first mergers that take place in the presence of other resonant major satellites. Lastly, we consider that the remarkable geophysical and dynamical vigor of Titan and the MSMs might be explained if the proposed sequence of mergers happened late, triggered by impulsive giant planet migration (Morbidelli et al. 2009). The dynamical scenario requires detailed study, and we focus on analysis of the binary collisions. By analysis of the hydrocode models, we relate the provenance of the MSMs to their geophysical aspects (Thomas et al. 2010), and consider the geophysical, thermal and dynamical implications of this hypothesis for Titan’s origin.

  11. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    USGS Publications Warehouse

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  12. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P.

    2005-04-01

    The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6-4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.

  13. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  14. Os, Nd, O and S isotope constraints on country rock contamination in the conduit-related Eagle Cu-Ni-(PGE) deposit, Midcontinent Rift System, Upper Michigan

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Ripley, Edward M.; Shirey, Steven B.; Li, Chusi

    2012-07-01

    The Eagle Cu-Ni-(PGE) deposit is hosted by mafic to ultramafic intrusive rocks associated with the Marquette-Baraga dike swarm in northern Michigan. Sulfide mineralization formed in a conduit system during early stages in the development of the ∼1.1 Ga Midcontinent Rift System. The conduit environment represents a prime location for melt-rock interaction. In order to better assess the extent of country rock contamination in the Eagle system, a combined trace element, Nd, Os, O and S isotope study of country rocks, sulfide-bearing igneous rocks and massive sulfide was undertaken. Both the Eagle and the weakly mineralized East Eagle intrusion show trace element patterns that are similar to those of picritic basalts that formed during early stages of rift development. The trace element, Os, Nd, and O isotopic values of the igneous rocks are consistent with <5% of bulk contamination by Paleoproterozoic and Archean country rocks. Both the Re-Os and Sm-Nd system provide isochrons that are in agreement with the 1107 Ma U-Pb baddeleyite age of the intrusive rocks. Calculated γOs(1100) and εNd(1100) values for the magmas are +34 and -2. δ18O values of pyroxene in feldspathic pyroxenite range from 6.5‰ to 6.6‰ and provide the only indication that bulk contamination may locally have exceeded 20%. Sulfur isotopic values of disseminated and massive sulfide in the Eagle intrusion range from 0.3‰ to 4.6‰. The δ34S values are much lower than those that characterize most of the country rocks, but could still be indicative of a contribution of S from country rocks of up to ∼50%. Δ33S values of the disseminated and massive sulfides range from -0.10‰ to 0.09‰ indicating a source in Paleoproterozoic country rocks. Semi-massive sulfide in the Eagle deposit has δ34S values between 2.2‰ and 5.3‰, and Δ33S values show a broad range between -0.86‰ and 0.86‰ indicating a major contribution from an Archean source. Isotopic data from the Eagle deposit strongly

  15. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground

  16. Geochemical evidence of mantle reservoir evolution during progressive rifting

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Mohr, P.; Dosso, L.; Hall, C. M.

    2010-12-01

    The Afar region in East Africa, which represents the triple junction of three well-exposed Cenozoic rift systems, is a pivotal domain in the study of rift evolution. The western margin of Afar, defined by a wide transitional region from plateau to rift floor, developed in response to the rifting of the Red Sea commencing shortly after the eruption of the ~31-29 Ma Ethiopian-Yemen flood basalts. The Oligocene lava sequence which covers this rift margin was fed from intensive diking. The dikes and the block-faulting and monoclinal warping that followed provide an opportunity to probe the geochemical reservoirs preserved in the magmatic record and the development of the rifting processes. Argon geochronology reveals that dikes along the western Afar margin span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major and trace element, and isotopic results (Sr-Nd-Pb-Hf) from these dikes demonstrate temporal geochemical heterogeneity defined by variable contributions from the Afar plume, depleted mantle and African lithosphere, consistent with studies of Quaternary basalts from the Ethiopian Rift. On a broader scale our results show that as the western Afar margin matures, the initially significant contribution from the Afar plume wanes in favor of shallow asthenospheric and lithospheric reservoirs. The early dikes, which are coincident with the initial weakening of the lithosphere in a magma-assisted rifting model, geochemically resemble the widespread plume-derived flood basalts and shields that constitute the Ethiopian Plateau. Subsequent diking is characterized by a lesser role for the Afar plume and greater contributions from the African lithosphere and depleted mantle. During the terminal stage of dike emplacement, where focused magmatic intrusion accommodated extension, a more significant fraction is derived from the depleted mantle and less of a

  17. Oblique continental rifting revealed by 3D retro-deformation : example of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Bertrand, G.; Horstmann, M.; Herrmann, O.; Behrmann, J.

    2003-04-01

    Our work has been done within the EU funded ENTEC network, which goal is to study the environmental impact of tectonics in the Upper Rhine Graben (URG). The URG is a NNE-trending crustal-scale small-displacement segment of the European Cenozoic rift system. Subsidence and syn-rift sedimentation started in the late Eocene and reached their maximum during Oligocene and lower Miocene. We present two 3D tectonic models that cover the SE and SW borders of the URG (Freiburg area, SW Germany, and Colmar area, NE France, respectively). As the URG is an asymmetric structure, it was crucial to model both sides. Our goal was to infer the movement history of the fault system, to identify areas of strain concentrations that could help locating possible active movements. Our models include several pre-Tertiary geological horizons, that were retrodeformed as passive objects along the faults. Assuming that "pre-rift" sediments were horizontal, our objective was to obtain this geometry by retrodeforming the models. The best quality of restoration was obtained for displacement directions of N80E to N90E on the main border faults, and N50E to N60E on inner faults. Best results also were obtained with sequences of retrodeformation from the graben center toward its borders. It suggests that faulting migrated toward the graben interior. Our study also shows considerable along-strike variations of cumulated slip on both sides of the graben, with amplitudes up to 2.5 km. This caused warping of the basement with a 30--35 km wavelength. Moreover, analyses of displacement reveal that offset of the base Tertiary is locally smaller than of older horizons, suggesting that segments of the W border fault were active prior to deposition of early Tertiary sediments. Finally, the seismicity in the Freiburg model reveals close coincidence between depth projection of faults and hypocenters of recent earthquakes. This suggests on-going activity of part, at least, of the fault system. Our two models are

  18. Recent geodynamics and evolution of the Moma rift, Northeast Asia.

    NASA Astrophysics Data System (ADS)

    Imaev, V. S.; Imaeva, L. P.; Kozmin, B. M.; Fujita, K. S.; Mackey, K. G.

    2009-04-01

    The Cenozoic Moma rift system is a major tectonic feature in northeast Russia. It is composed of a series of basins (Selennyakh, Kyrin,Lower Moma,Upper Moma,etc.) filled with up to one km thick and bounded by the Chersky Range (up to 3100 m high) on the southwest and the Moma Range (up to 2400 m high) on the northeast. Northeast of the Moma Range is the Indigirka-Zyryanka foreland basin, composed of thick, up to 2.5 km, Eocene, Oligocene, and Miocene coal-bearing sequences, while on the southwestern side of the Chersky Range there are a number of piedmont basins (Tuostakh, Upper Adycha, Derbeke, etc.) containing up to several hundred meters of Miocene and Oligocene coal-bearing deposits. Despite considerable study over the past half-century, there is considerable debate over the origin, present-day tectonics, and evolution of the Moma rift system. The Cenozoic deposits of the basins generally become younger from northwest to southeast with the exception of the Seimchan-Buyunda basin. In the northeast, fan-shaped coal-bearing basins (e.g., Nenneli, Olzhoi, Selennyakh, Uyandina, Tommot, and others) are filled with Miocene to Pliocene deposits, while basins in the southeast (e.g., Taskan) are filled with Neogene sediments. The Seimchan-Buyunda basin, however, has sediments of Oligocene age. The Moma rift system is reflected a major step in the gravity field, presumably separating denser rocks of the Kolyma-Omolon superterrain from somewhat less dense rocks of the Verkhoyansk fold belt (margin of the North Asian Craton). Analysis of travel-times of Pn and Pg waves from local earthquakes indicates an area of thinned crust (30-35 km) southwest of the Moma rift system, extending as a "tongue" from the Lena River delta and the Laptev Sea to the upper part of the Kolyma River, as compared to 40-45 km in the surrounding areas. This region of thinned crust also coincides with a region of high heat flow values measured in boreholes of the Chersky Range (up to 88 mW/m2). Hot

  19. Extension across the Laptev Sea continental rifts constrained by gravity modeling

    NASA Astrophysics Data System (ADS)

    Mazur, S.; Campbell, S.; Green, C.; Bouatmani, R.

    2015-03-01

    The Laptev Shelf is the area where the Gakkel Ridge, an active oceanic spreading axis, approaches a continental edge, causing a specific structural style dominated by extensive rift structures. From the latest Cretaceous to the Pliocene, extension exerted on the Laptev Shelf created there several deep subsided rifts and high-standing basement blocks. To understand syn-rift basin geometries and sediment supply relationships across the Laptev Shelf, accurate extension estimates are essential. Therefore, we used 2-D gravity modeling and 3-D gravity inversion to constrain the amount of crustal stretching across the North America-Eurasia plate boundary in the Laptev Shelf. The latest Cretaceous-Cenozoic extension in that area is partitioned among two rift zones, the Laptev Rift System and the New Siberian Rift. These rifts were both overprinted on the Eurasian margin that had been stretched by 190-250 km before the Late Cretaceous. While the Laptev Rift System, connected to the Gakkel Ridge, reveals increasing extension toward the shelf edge (190-380 km), the New Siberian Rift is characterized by approximately uniform stretching along strike (110-125 km). The architecture of the Laptev Rift System shows that the finite extension of about 500 km is sufficient to entirely eliminate crystalline continental crust. In the most stretched rift segment, continental mantle is exhumed at the base of the Late Mesozoic basement. The example of the Laptev Rift System shows that extension driven by divergent plate movement is a sufficient cause to produce almost complete continental breakup without an increased heat input from the asthenospheric mantle.

  20. Relationship of coronae, regional plains and rift zones on Venus

    NASA Astrophysics Data System (ADS)

    Krassilnikov, A. S.; Kostama, V.-P.; Aittola, M.; Guseva, E. N.; Cherkashina, O. S.

    2012-08-01

    Coronae and rifts are the most prominent volcano-tectonic features on the surface of Venus. Coronae are large radial-concentric structures with diameters of 100 to over 1000 km. They have varied topographical shapes, radial and concentric fracturing and compressional tectonic structures are common for their annuli. Massive volcanism is also connected with some of the structures. Coronae are interpreted to be the result of updoming and fracturing on the surface due to interaction of mantle diapirs with the lithosphere and its subsequent gravitational relaxation. According to Stofan et al. (2001), two types of coronae are observed: type 1 - coronae that have annuli of concentric ridges and/or fractures (407 structures), and type 2 that have similar characteristics to type 1 but lack a complete annulus of ridges and fractures (107 structures). We analyzed 20% of this coronae population (we chose each fifth structure from the Stofan et al. (2001) catalog; 82 coronae of type 1 and 22 coronae of type 2, in total 104 coronae) for the (1) spatial distribution of rift structures and time relationship of rift zones activity with time of regional volcanic plains emplacement, and (2) tectonics, volcanism, age relative to regional plains and relationship with rifts. Two different age groups of rifts on Venus were mapped at the scale 1:50 000 000: old rifts that predate and young rifts that postdate regional plains. Most of young rifts inherit strikes of old rifts and old rifts are reworked by them. This may be evidence of rift-produced uplift zones that were probably mostly stable during both types of rifts formation. Evolution of distribution of rift systems with time (decreasing of distribution and localization of rift zones) imply thickening of the lithosphere with time. Coronae-producing mantle diapirism and uplift of mantle material in rift zones are not well correlated at least in time in most cases, because majority of coronae (77%) of both types has no genetic

  1. Contribution of Transverse Structures, Magma, and Crustal Fluids to Continental Rift Evolution: The East African Rift in Southern Kenya

    NASA Astrophysics Data System (ADS)

    Kattenhorn, S. A.; Muirhead, J.; Dindi, E.; Fischer, T. P.; Lee, H.; Ebinger, C. J.

    2013-12-01

    The Magadi rift in southern Kenya formed at ~7 Ma within Proterozoic rocks of the Mozambique orogenic belt, parallel to its contact with the Archean Tanzania craton. The rift is bounded to the west by the ~1600-m-high Nguruman border fault. The rift center is intensely dissected by normal faults, most of which offset ~1.4-0.8 Ma lavas. Current E-W extensional velocities are ~2-4 mm/yr. Published crustal tomography models from the rift center show narrow high velocity zones in the upper crust, interpreted as cooled magma intrusions. Local, surface-wave, and SKS-splitting measurements show a rift-parallel anisotropy interpreted to be the result of aligned melt zones in the lithosphere. Our field observations suggest that recent fault activity is concentrated at the rift center, consistent with the location of the 1998 seismic swarm that was associated with an inferred diking event. Fault zones are pervasively mineralized by calcite, likely from CO2-rich fluids. A system of fault-fed springs provides the sole fluid input for Lake Magadi in the deepest part of the basin. Many of these springs emanate from the Kordjya fault, a 50-km-long, NW-SE striking, transverse structure connecting a portion of the border fault system (the NW-oriented Lengitoto fault) to the current locus of strain and magmatism at the rift center. Sampled springs are warm (44.4°C) and alkaline (pH=10). Dissolved gas data (mainly N2-Ar-He) suggests two-component mixing (mantle and air), possibly indicating that fluids are delivered into the fault zone from deep sources, consistent with a dominant role of magmatism to the focusing of strain at the rift center. The Kordjya fault has developed prominent fault scarps (~150 m high) despite being oblique to the dominant ~N-S fault fabric, and has utilized an en echelon alignment of N-S faults to accommodate its motion. These N-S faults show evidence of sinistral-oblique motion and imply a bookshelf style of faulting to accommodate dextral-oblique motion

  2. Geochemistry of East African Rift basalts: An overview

    NASA Astrophysics Data System (ADS)

    Furman, Tanya

    2007-06-01

    Mafic lavas erupted along the East African Rift System from the Afar triangle in northern Ethiopia to the Rungwe province in southern Tanzania display a wide range of geochemical and isotopic compositions that reflect heterogeneity in both source and process. In areas with the lowest degree of crustal extension (the Western and Southern Kenya Rifts) primitive lavas record the greatest extent of lithospheric melting, manifest in elevated abundances of incompatible elements and highly radiogenic Sr-Nd-Pb isotopic compositions. Where prolonged extension has removed most or all of the mantle lithosphere (the Turkana and Northern Kenya Rifts), a larger role for sub-lithospheric processes is indicated. At intermediate degrees of extension (the Main Ethiopian Rift) both lithospheric and sub-lithospheric contributions are observed, and crustal assimilation occurs in some cases. Despite the wide compositional range of African Rift basalts, a restricted number of source domains contribute to magmatism throughout the area. These individual domains are: (1) the subcontinental mantle lithosphere; (2) a plume source with high-μ Sr-Nd-Pb-He isotopic affinities, present in all areas within and south of the Turkana Depression; and (3) a plume source with isotopic signatures analogous to those observed in some ocean islands, including high 3He/ 4He values, present throughout the Ethiopian Rift and the Afar region. The two plume sources may both be derived from the South African Superplume, which is likely to be a compositionally heterogeneous feature of the lower mantle.

  3. P Wave Velocity Structure Beneath the Baikal Rift Axis

    NASA Astrophysics Data System (ADS)

    Brazier, R. A.; Nyblade, A. A.; Boman, E. C.

    2001-12-01

    Over 100 p wave travel times from the 1500 km en echelon Baikal Rift system are used in this study.The events range 3 to 13 degrees from Talaya, Russia (TLY) along the axis of southwest northeast trending rift in East Siberia. A Herglotz Wiechert inversion of these events resolved a crust of 6.4 km/s and a gradient in the mantle starting at 35 km depth and 7.7 km/s down to 200 km depth and 8.2 km/s. This is compatible with Gao et al,1994 cross sectional structure which cuts the rift at about 400km from TLY. The Baikal Rift hosts the deepest lake and is the most seismically active rift in the world. It is one of the few continental rifts, it separates the Siberian craton and the Syan-Baikal mobile fold belt. Two events, the March 21 1999 magnitude 5.7 earthquake 638 km from TLY and the November 13th 1995 magnitude 5.9 earthquake 863 km from TLY were modeled for there PnL wave structure using the discrete wavenumber method and the Harvard CMT solutions with adjusted depths from p-pP times. The PnL signals match well. A genetic algorithm will used to perturb the velocity structure and compare to a selection of the events between 3 and 13 degrees many will require moment tensor solutions.

  4. Sedimentary deposits in response to rift geometry in Malawi, Africa

    SciTech Connect

    Bishop, M.G. )

    1991-03-01

    Sedimentary deposits of the Malawi continental rift basin are a direct result of topography and tectonics unique to rift structure. Recent models describe rifts as asymmetric half-graben connected in series by transfer of accommodation zones. Half-graben consist of roughly parallel, tilted fault blocks stepping up from the bounding fault zone where maximum subsidence occurs. The rift becomes a local baselevel and depocenter as regional drainage is shed away by the rift shoulders. Most of the sediments are derived locally due to internal drainage of connected basins, individual basins, and individual fault blocks. The patterns of sedimentation and facies associations depend on structural position at both fault block and half-graben scales. Drainage is directed and dammed by tilted fault blocks. Forward-tilted fault blocks form basinward-thickening sediment wedges filled with facies of axial fluvial systems, alluvial fault-scarp fans, and ponded swamp and lake deposits. These deposits are asymmetrically shifted toward the controlling fault and onlap the upthrown side of the block, ordinarily the site of erosion or nondeposition. Rivers entering the lake on back tilted fault blocks form large deltas resulting in basinward fining and thinning sediment wedges. Lacustrine, nearshore, shoreline, and lake shore plain deposits over multiple fault blocks record lake levels, water chemistry, and tectonic episodes. Tectonic movement periodically changes the basin depth, configuration, and baselevel. This movement results in widespread unconformities deposition and reworking of sediments within the rift.

  5. LANL environmental restoration site ranking system: System description. Final report

    SciTech Connect

    Merkhofer, L.; Kann, A.; Voth, M.

    1992-10-13

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides.

  6. The continent-ocean transition of the rifted South China continental margin

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo

    2014-05-01

    The continent to ocean transition (COT) architecture of rifted margins represents a key aspect in the study of the variability of different rifting systems and thus, to understand lithospheric extension and final break-up processes. We used 2250 km of reprocessed multichannel seismic data along 4 regional lines and magnetic data acquired across the NW South China continental margin to investigate a previously poorly defined COT. The along-strike structure of the NW subbasin of the South China Sea presents different amounts of extension allowing the study of conjugate pairs of continental margins and their COT in a relative small region. The time-migrated seismic sections allow us to interpreted clear continental and oceanic domains from differences in internal reflectivity, faulting style, fault-block geometry, the seismic character of the top of the basement, the geometry of sediment deposits, and Moho reflections. The continental domain is characterized by arrays of normal faults and associated tilted blocks overlaid by syn-rift sedimentary units. The Moho is imaged as sub-horizontal reflections that define a fairly continuous boundary typically at 8-10 s TWT. Estimation of the thickness of the continental crust using 6 km/s average velocity indicates a ~22 km-thick continental crust under the uppermost slope thinning abruptly to ~9-6 km under the lower slope. The oceanic crust has a comparatively highly reflective top of basement, little-faulting, not discernible syn-tectonic strata, and fairly constant thickness (4-8 km) over tens of km distance defined by usually clear Moho reflections. The COT can be very well defined based on MSC images and occurs across a ~5-10 km narrow zone. Rifting in the NW subbasin resulted in asymmetric conjugate margins. Arrays of tilted fault blocks covered by abundant syn-rift sediment are displayed across the northwestern South China continental margin, whereas the conjugate Macclesfield Bank margin shows abrupt thinning and

  7. RIFT VALLEY FEVER: PREPARING FOR POTENTIAL NEW MOSQUITO-BORNE DISEASES IN THE U.S. WITH A VECTOR SURVEILLANCE SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this symposium we have discussed four diseases that are emerging threats in the U.S., and it may be concluded that in our best defense knowing the vector is as important as knowing the disease. Rift Valley fever, Dengue, and JEE are but a few of the many emerging diseases that we can prepare for...

  8. A Rift Valley Fever Risk Surveillance System in Africa Using Remotely Sensed Data in a GIS: Potential for Use on Other Continents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne viral disease with pronounced health and economic impacts to domestic animals and humans in much of sub-Saharan Africa (1). The disease causes high mortality and abortion in domestic animals, and significant morbidity and mortality in humans. RVF epizootic...

  9. An automated GIS/remotely sensed early warning system to detect elevated populations of vectors of Rift Valley fever, a mosquito-borne emerging virus threat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito transmitted infectious diseases, like eastern equine encephalitis (EEE), Rift Valley fever (RVF), and West Nile virus (WNV), pose an international threat to animal and human health. An introduction of RVF into the U.S. would severely impact wild ungulate populations and the beef and dairy ...

  10. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    PubMed

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus. PMID:27402440

  11. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health problem in sub-Saharan Africa. The emergence and re-emergence of the disease in the last 20 years especially in East Africa, poses a looming health threat which is likely to spread to beyond Africa. This threat is exacerbat...

  12. Crustal Structure of the Ethiopian Rift and Adjacent Plateaus: Results of new integrated interpretation

    NASA Astrophysics Data System (ADS)

    Tadesse, K.; Keller, G. R.

    2006-12-01

    The Ethiopian rift is the large part of the East African Rift system, which represents an incipient divergent plate boundary. This important structure provides excellent opportunities to study the transition from continental to oceanic. As a result, geophysical data are becoming increasingly available but some results are contradictory. We used a newly enhanced gravity database and seismic information to produce an integrated interpretation of the crustal structure beneath the Ethiopian rift and the adjacent plateaus. Wide regions have been covered to assess the regional structures including the Kenyan and Ethiopian rifts and the area covered by the Ethiopian flood basalt. Broad negative Bouguer gravity anomalies are delineated over the Ethiopian Plateaus and the Kenyan dome. Residual gravity anomalies, which parallel the major border faults clearly highlight the segregation between the plateaus and the rift valleys. Results of other filtering techniques have clearly revealed individual volcanic centers within the rift valleys. Positive gravity anomalies outside the rift valleys may be associated with older structures, shield volcanoes, or structures that are related to the initiation and propagation of rifting. A long axial profile from the central part of Kenya to the Afar triple junction has been modeled to investigate along-axis crustal variation of the East African rift system, with emphasis on the Ethiopian rift. This modeling has been constrained using seismic refraction data from the Ethiopian Afar Geoscientific Lithospheric Experiment (EAGLE) and Kenya Rift International Seismic Project (KRISP) results. We are able to see a thin crust (~26 km) in the Afar triangle with a gradual thickening (~40 km) southwards towards the Main Central Ethiopian rift (MER). The crust thickness decreases towards Turkana rift (~22 km), and increases again towards the central eastern rift section in Kenya. Our profile model across the MER has revealed that the eastern rift

  13. Mid-lithospheric Discontinuity Beneath the Malawi Rift, Deduced from Gravity Studies and its Relation to the Rifting Process.

    NASA Astrophysics Data System (ADS)

    Njinju, E. A.; Atekwana, E. A.; Mickus, K. L.; Abdelsalam, M. G.; Atekwana, E. A.; Laó-Dávila, D. A.

    2015-12-01

    The World Gravity Map satellite gravity data were used to investigate the lithospheric structure beneath the Cenozoic-age Malawi Rift which forms the southern extension of the Western Branch of the East African Rift System. An analysis of the data using two-dimensional (2D) power spectrum methods indicates the two distinctive discontinuities at depths of 31‒44 km and 64‒124 km as defined by the two steepest slopes of the power spectrum curves. The shallower discontinuity corresponds to the crust-mantle boundary (Moho) and compares well with Moho depth determined from passive seismic studies. To understand the source of the deeper discontinuity, we applied the 2D power spectrum analysis to other rift segments of the Western Branch as well as regions with stable continental lithospheres where the lithospheric structure is well constrained through passive seismic studies. We found that the deeper discontinuity corresponds to a mid-lithospheric discontinuity (MLD), which is known to exist globally at depths between 60‒150 km and as determined by passive seismic studies. Our results show that beneath the Malawi Rift, there is no pattern of N-S elongated crustal thinning following the surface expression of the Malawi Rift. With the exception of a north-central region of crustal thinning (< 35 km), most of the southern part of the rift is underlain by thick crust (~40‒44 km). Different from the Moho, the MLD is shallower beneath the axis of the Malawi Rift forming a N-S trending zone with depths of 64‒80 km, showing a broad and gentle topography. We interpret the MLD as representing a sharp density contrast resulting from metasomatized lithosphere due to lateral migration along mobile belts of hot mantle melt or fluids from a distant plume and not from an ascending asthenosphere. These fluids weaken the lithosphere enhancing rift nucleation. The availability of satellite gravity worldwide makes gravity a promising technique for determining the MLD globally.

  14. Chalcophile element (Ni, Cu, PGE, and Au) variations in the Tamarack magmatic sulfide deposit in the Midcontinent Rift System: implications for dynamic ore-forming processes

    NASA Astrophysics Data System (ADS)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2016-03-01

    The Tamarack magmatic sulfide deposit is hosted by the Tamarack Intrusive Complex (1105.6 ± 1.2 Ma) in the Midcontinent Rift System. The most important sulfide mineralization in the Complex occurs in the northern part, which consists of two separate intrusive units: an early funnel-shaped layered peridotite body containing relatively fine-grained olivine (referred to as the FGO Intrusion) at the top, and a late gabbro-troctolite-peridotite dike-like body containing relatively coarse-grained olivine (referred to as the CGO Intrusion) at the bottom. Disseminated, net-textured, and massive sulfides occur in the base of the FGO Intrusion as well as in the upper part of the CGO Intrusion. The widest part of the CGO Intrusion also hosts a large semi-massive (net-textured) sulfide ore body locally surrounded by disseminated sulfide mineralization. Small massive sulfide veins occur in the footwall of the FGO Intrusion and in the wall rocks of the CGO dike. The sulfide mineralization is predominantly composed of pyrrhotite, pentlandite, and chalcopyrite, plus minor magnetite. Pyrrhotite containing the highest Ni and Co contents occurs in the FGO disseminated sulfides and in the CGO semi-massive sulfide ores, respectively. The most important platinum-group minerals associated with the base metal sulfides are sperrylite (PtAs2), sudburyite (PdSb), and michenerite (PdBiTe). Nickel shows a strong positive correlation with S in all types of sulfide mineralization, and Cu shows a strong positive correlation with S in the disseminated sulfide mineralization. At a given S content, the concentrations of Pt, Pd, and Au in the CGO disseminated sulfides are significantly higher than those in the FGO disseminated sulfides. The semi-massive sulfide ores are characterized by significantly higher IPGE (Ir, Os, Ru, and Rh) concentrations than most of the massive sulfide ores. With few exceptions, all of the various textural types of sulfide mineralization collectively show a good positive

  15. Magmatic cycles pace tectonic and morphological expression of rifting (Afar depression, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Medynski, Sarah; Pik, Raphael; Burnard, Peter; Blard, Pierre-Henri

    2016-04-01

    Dyking and faulting at mid-oceanic ridges are concentrated in narrow axial volcanic zones due to focussing of both melt distribution and tectonic strain along the plate boundary. Due to the predominantly submarine location of oceanic ridges, the interplay between these processes remain poorly constrained in time and space. In this study, we use the Dabbahu-Manda Hararo (DMH) magmatic rift segment (MRS) (Afar, Ethiopia) to answers the long debated chicken-egg question about magmatic and tectonic processes in extensive context: which on comes first, and how those two processes interplay to finally form oceanic ridges? The DMH MRS is an oceanic ridge analogue and here we present quantitative slip rates on major and minor normal fault scarps for the past 40 kyr in the vicinity of a recent (September 2005) dike intrusion. Our data show that the long-term-vertical slip rates of faults that ruptured in 2005 are too low to explain the present rift topography and that the 2005 strain distribution is not the main stress accommodating mechanism in the DMH segment. Instead, we show that the axial valley topography is created by enhanced slip rates which occur only when the amount of magma available in magma reservoirs is limited, thus preventing dykes from reaching the surface. Our results suggest that development of the axial valley topography is regulated by the magma reservoir lifetime and, thus, to the magmatic cycles of replenishment/differentiation (< 100 ky). This implies that in the DMH rift system (with a magma supply typical of an intermediate spreading centre), significant topography of the axial rift valley is transient, and is expressed only when magma available in the reservoirs decreases. The absence of tilting on the rift margins over the last 200 kyr also suggests that amagmatic accommodation of extension is not required over this time period. Extension instead is accommodated by dykes injected laterally from multiple ephemeral reservoirs located along the DMH

  16. The deep structure of Alpine-type orogens: how important is rift-inheritance?

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy

    2016-04-01

    Collisional belts are commonly thought to result from the closure of oceanic basins and subsequent inversion of former rifted margins. The formation and evolution of collisional belts should therefore be closely interlinked with the initial architecture of former rifted margins. Reflection and refraction seismic data from present-day magma-poor rifted margins show the omnipresence of hyperextended domains (severely thinned continental crust (<10 km) and/or exhumed serpentinized mantle with minor magmatic additions) between unequivocal continental and oceanic domains. Integrating these new observations and exploring their impact on mountain building processes may result in alternative interpretations of the lithospheric structure of collisional orogens. We focus on the Pyrenees and Western to Central Alps, respectively resulting from the inversion of a Late Jurassic to Mid Cretaceous and an Early to Mid Jurassic rift system eventually floored by hyperextended crust, exhumed mantle or proto-oceanic crust. The rift-related pre-collisional architecture of the Pyrenees shows many similarities with that proposed for the Alps; although the width of the hyperextended and in particular of the proto-oceanic domains is little constrained. Contrasting with the Pyrenees, remnants of these domains are largely affected by orogeny-related deformation and show a HP-LT to HT-MP metamorphic overprint in the Alps. Nevertheless, in spite of the occurrence of these highly deformed and metamorphosed rocks constituting the internal parts of the Alps, the overall crustal and lithospheric structure looks surprisingly comparable. High resolution tomographic images across both orogens unravel the occurrence of a velocity anomaly dipping underneath the internal domains and progressively attenuated at depth that we interpret as former hyperextended domains subducted/underthrusted during collision. This interpretation contrasts with the classical assumption that the subducted material is made of

  17. Planning for Rift Valley fever virus: use of geographical information systems to estimate the human health threat of white-tailed deer (Odocoileus virginianus)-related transmission.

    PubMed

    Kakani, Sravan; LaBeaud, A Desirée; King, Charles H

    2010-11-01

    Rift Valley fever (RVF) virus is a mosquito-borne phlebovirus of the Bunyaviridae family that causes frequent outbreaks of severe animal and human disease in sub-Saharan Africa, Egypt and the Arabian Peninsula. Based on its many known competent vectors, its potential for transmission via aerosolization, and its progressive spread from East Africa to neighbouring regions, RVF is considered a high-priority, emerging health threat for humans, livestock and wildlife in all parts of the world. Introduction of West Nile virus to North America has shown the potential for "exotic" viral pathogens to become embedded in local ecological systems. While RVF is known to infect and amplify within domestic livestock, such as taurine cattle, sheep and goats, if RVF virus is accidentally or intentionally introduced into North America, an important unknown factor will be the role of local wildlife in the maintenance or propagation of virus transmission. We examined the potential impact of RVF transmission via white-tailed deer (Odocoileus virginianus) in a typical north-eastern United States urban-suburban landscape, where livestock are rare but where these potentially susceptible, ungulate wildlife are highly abundant. Model results, based on overlap of mosquito, human and projected deer densities, indicate that a significant proportion (497/1186 km(2), i.e. 42%) of the urban and peri-urban landscape could be affected by RVF transmission during the late summer months. Deer population losses, either by intervention for herd reduction or by RVF-related mortality, would substantially reduce these likely transmission zones to 53.1 km(2), i.e. by 89%. PMID:21080319

  18. Structural and stratigraphic evolution of the Iberia and Newfoundland hyper-extended rifted margins: A quantitative modeling approach

    NASA Astrophysics Data System (ADS)

    Mohn, Geoffroy; Karner, Garry; Manatschal, Gianreto; Johnson, Christopher

    2014-05-01

    Rifted margins develop through polyphased extensional events leading eventually to break-up. Of particular interests are the stratigraphic and subsidence evolutions of these polyphased rift events. In this contribution, we investigate the spatial and temporal evolution of the Iberia-Newfoundland rift system from the Permian, post-orogenic development of European crust to early Cretaceous break-up on the continental lithosphere between Iberia and Newfoundland. Based on seismic reflection and refraction and ODP drill data combined with a kinematic and flexural model for the deformation of the lithosphere, we explore the general tectono-stratigraphic evolution of Iberia-Newfoundland rift system and its relationship to repeated lithospheric thinning events. Our results emphasize the kinematic and isostatic interactions engendered by the distinct distribution, amplitude and depth-partitioning of extensional events that allowed the formation of the Iberia-Newfoundland rift system. The initial stratigraphic record is controlled by Permian, post-orogenic topographic erosion, lithospheric thinning, and its subsequent thermal re-equilibration that lead to a regional subsidence characterized by non-marine to marine sedimentation. During late Triassic and early Jurassic time, extensional deformation was characterized by broadly-distributed depth uniform thinning related to minor thinning of the crust. From the Late Jurassic onward, extensional deformation was progressively localized and associated with depth-dependent thinning that finally lead to the formation of hyper-extended domains pre-dating the Late Aptian/Early Albian break-up of the Iberia-Newfoundland continental lithosphere. In particular, extension was diachronous, propagating in severity from south to north - while the southern Iberian margin was undergoing significant thinning in the Tithonian-early Berriasian, the northern margin (i.e., Galicia Bank) had yet to start rifting. Break-up is likewise diachronous

  19. Multiple mantle upwellings in the transition zone beneath the northern East-African Rift system from relative P-wave travel-time tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James O. S.; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, J.-Michael; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rümpker, Georg; Stuart, Graham W.

    2015-09-01

    Mantle plumes and consequent plate extension have been invoked as the likely cause of East African Rift volcanism. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume connected to the large low-shear-velocity province beneath Southern Africa, the so-called African Superplume, to multiple lower-mantle sources along the rift. We present a new P-wave travel-time tomography model below the northern East-African, Red Sea, and Gulf of Aden rifts and surrounding areas. Data are from stations that span an area from Madagascar to Saudi Arabia. The aperture of the integrated data set allows us to image structures of ˜100 km length-scale down to depths of 700-800 km beneath the study region. Our images provide evidence of two clusters of low-velocity structures consisting of features with diameter of 100-200 km that extend through the transition zone, the first beneath Afar and a second just west of the Main Ethiopian Rift, a region with off-rift volcanism. Considering seismic sensitivity to temperature, we interpret these features as upwellings with excess temperatures of 100 ± 50 K. The scale of the upwellings is smaller than expected for lower mantle plume sources. This, together with the change in pattern of the low-velocity anomalies across the base of the transition zone, suggests that ponding or flow of deep-plume material below the transition zone may be spawning these upper mantle upwellings. This article was corrected on 28 SEP 2015. See the end of the full text for details.

  20. Magmatic expression of lithospheric thinning across continental rifts

    NASA Astrophysics Data System (ADS)

    Thompson, R. N.; Gibson, S. A.

    1994-05-01

    Studies of magmatism associated with continental rifting have traditionally focused only on volcanism within the downfaulted axial zone and along its immediate flanks. Teleseismic travel-time delay studies during the last decade have confirmed the results of earlier gravity surveys of rifted areas, showing that thinning at the base of the continental lithosphere occurs throughout a zone up to about 10 times wider than the physiographic expression of the rift. It is, therefore, logical to consider rifting-related magmatism on the same scale. Potential sources of mafic magmas in rift zones are the thinned subcontinental lithospheric mantle (SCLM), the convecting mantle beneath the continental plate and mixtures of the two. Detailed elemental and radiogenic isotope geochemical studies show that, during the initial extension of continental rifts, the associated mafic magmatism tends to be: (1) relatively sodic and from predominantly convecting mantle sources at the rift axis; (2) relatively potassic and from predominantly lithospheric mantle sources at the margins of the thinned-plate zone. This underlying geochemical pattern is obscured in many instances by such processes as crustal contamination and magma mixing within open-system reservoirs. The mafic ultrapotassic component that provides a distinctive input to SCLM-source magmas appears to be largely fusible at temperatures well below the dry solidus of SCLM; so that, in some cases, prolonged magmatism at a site causes removal of most or all of the potassic lithosphere-source melt (as mafic ultrapotassic magmas or as a contribution to mixed-source melts) without destruction of that lithosphere segment as a geophysically defined unit. Such a zone of refractory lithosphere permits subsequent, recognisable, convecting mantle source melts to penetrate it and reach the surface. These principles are illustrated by discussion of the Neogene-Quaternary magmatism of the Rio Grande, East African, Rhine and Baikal rifts, in

  1. Complex seismicity patterns in the Rwenzori region: insights to rifting processes at the Albertine Rift.

    NASA Astrophysics Data System (ADS)

    Lindenfeld, M.; Rümpker, G.; Wölbern, I.; Batte, A. G.; Schumann, A.

    2012-04-01

    Numerous seismological studies in East Africa have focused on the northern and eastern branches of the East African Rift System (EARS). However, the seismic activity along the western branch is much more pronounced. Here, the Rwenzori Mountains are located within the Albertine rift valley, at the border between Uganda and D.R. Congo. During a seismic monitoring campaign between February 2006 and September 2007 we have recorded more than 800 earthquakes per month in the Rwenzori area. The earthquake distribution is highly heterogeneous. The majority of located events lie within faults zones to the East and West of the Rwenzoris with the highest seismic activity observed in the northeastern area, were the mountains are in contact with the rift shoulders. The hypocentral depth distribution peaks at 16 km depth and extends down to the Moho which was found at 20 - 32 km depths by teleseismic receiver functions. Local magnitudes range from -0.5 to 5.1 with a b-value of 1.1. Fault plane solutions of 304 events were derived from P-polarities and SV/P amplitude ratios. More than 70% of the source mechanisms exhibit normal faulting. T-axis trends are highly uniform and oriented WNW-ESE, which is perpendicular to the rift axis and in good agreement with kinematic rift models. The area of highest seismic activity NE of the Rwenzoris is characterized by the occurrence of several earthquake clusters in 5 -20 km depth. They have stable positions throughout time and form elongated pipes with 1-2 km diameter and vertical extensions of 3-5 km. From petrological considerations we presume that these earthquake swarms are triggered by fluids and gasses which originate from a magmatic source below the crust. The existence of a magmatic source within the lithosphere is supported by the detection of a shear-wave velocity reduction in 55-80 km depth from receiver-function analysis and the location of mantle earthquakes at about 60 km. We interpret these observations as indication for an

  2. Soil classifications systems review. Final report

    SciTech Connect

    1997-11-01

    Systems used to classify soils are discussed and compared. Major types of classification systems that are reviewed include natural systems, technical systems, the FAO/UNESCO world soil map, soil survey map units, and numerical taxonomy. Natural Classification systems discussed in detail are the United States system, Soil Taxonomy, and the Russian and Canadian systems. Included in the section on technical classification systems are reviews on the AASHO and Unified (ASTM) classification systems. The review of soil classification systems was conducted to establish improved availability of accurate ground thermal conductivity and other heat transfer related properties information. These data are intended to help in the design of closed-loop ground heat exchange systems.

  3. Seismicity within a propagating ice shelf rift: The relationship between icequake locations and ice shelf structure

    NASA Astrophysics Data System (ADS)

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-04-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the austral summers of 2004-2007. We apply a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show ice shelf rifting is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of 1 to 3 h. Even during periods of quiescence, we find significant deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (Mw > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with the propagating ice shelf rifts.

  4. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    NASA Technical Reports Server (NTRS)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  5. Final Paper DAT Cognitive Art Therapy System

    ERIC Educational Resources Information Center

    Jacobson, Eric

    2009-01-01

    Del Giacco Art Therapy is a cognitive art therapy process that focuses on stimulating the mental sensory systems and working to stabilize the nervous system and create new neural connections in the brain. This system was created by Maureen Del Giacco, Phd. after recovering from her own traumatic brain injury and is based on extensive research of…

  6. Rift-drift evolution of the outer Norwegian margin

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Carmen, Gaina; Tadashi, Yamasaki; Gwenn, Péron-Pinvidic; Odleiv, Olesen

    2010-05-01

    Most of the tectonic and dynamic concepts on the evolution of rifted margins have been developed from either intra-continental rift basins or proximal margin usually characterised by small amounts of crustal thinning. Some of these continental margins also display a high level of volcanic activity along the continent-ocean transition (COT). In such a context, the tectonic evolution of the proto-breakup rift system of the outer Norwegian margin is still problematic, due to sub-basalt imaging and a poor knowledge of the mechanisms involved before, during and slightly after the onset of breakup. Regional analysis and interpretation of multichannel seismic data, potential field data, integrated with refined plate reconstruction and finite-element modelling have provided the opportunity to propose an updated tectonic model for the evolution and segmentation of the Norwegian margin and the early Norwegian-Greenland Sea oceanic domain. Timing of deformation and structural styles observed along the conjugates reflect lateral variations of the rifted system which is influenced by complex inherited features, late magma-tectonic processes and local plate instabilities. We show that the deep structures associated with the volcanic rifted margin are still controversial and not necessarily so magmatic. We have also attempted to investigate the role of localised magmatic intrusion in rift and breakup dynamics and compared the results with our geophysical data, offshore Norway. The thickness, composition and temperature of the underplated and/or intruded bodies seem to be important factors that control lithospheric stretching, basin temperature, rift structure, margin asymmetry and COT formation. We also document the early spreading history of the mid-Norwegian by means of two news recent aeromagnetic surveys which highlight a complex spreading evolution correlated with the onset of microcontinent formation (Jan Mayen microcontinent) and an atypical (mid-Eocene?) magmatic event

  7. Rift basins of ocean-continent convergent margins

    SciTech Connect

    Forsythe, R.D.; Newcomb, K.R.

    1986-05-01

    Modern and ancient circum-Pacific convergent margins contain many examples of forearc basins where subsidence, occurring simultaneously with subduction of oceanic lithosphere, is controlled by rifting transverse to the margin. The elongate axes of these deep and narrow basins jut obliquely from the plate margin into the interior of the forearc. Similar to aulacogens, faulting and related subsidence appear greatest at their seaward limits and decreases inland. Examples from eastern Pacific forearcs suggest that localized rifting accommodates margin-parallel extension of forearc blocks that are kinetically linked to motions along major margin-parallel strike-slip fault systems. The most prominent examples of modern forearc rift basins are the Sanak and East Sanak basins of the western Alaska Peninsula subduction zone. In this region, the continental shelf is being rifted apart by a series of northwest- and northeast-trending faults. Basement-activated normal faults bounding the basins have listric geometries. Seismostratigraphic relationships within the basins indicate the protracted, synsedimentary, and active nature of faulting and basin subsidence. Along the Peru-Chile trench, two prominent rifted basins also occur: the Gulf of Guayaquil and the Gulf of Penas-Taitao basin of southern Chile. There, margin-parallel rifting controls subsidence in localized basins at the southern terminus to margin-parallel dextral fault systems. These and other examples suggest that strike-slip motion and transverse rifting of forearcs is a common phenomenon inadequately described by existing two-dimensional models of forearcs. Margin-parallel motions of forearc blocks can be related not only to oblique plate convergence, but also to the geometric and compositional nature of the overriding and subducted plates.

  8. Low-temperature evolution of the Morondava rift basin shoulder in western Madagascar: An apatite fission track study

    NASA Astrophysics Data System (ADS)

    Giese, JöRg; Seward, Diane; Schreurs, Guido

    2012-04-01

    The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ˜330 and ˜215 Ma and ˜260 and ˜95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ˜90-100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.

  9. The geometry of propagating rifts

    NASA Astrophysics Data System (ADS)

    McKenzie, Dan

    1986-03-01

    The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.

  10. Rift flank segmentation, basin initiation and propagation: a neotectonic example from Lake Baikal

    USGS Publications Warehouse

    Agar, S.M.; Klitgord, Kim D.

    1995-01-01

    New surficial data (field, Landsat TM and topography) define morpho-tectonic domains and rift flank segmentation in the Ol'khon region of the Central Baikal rift. Deformation, drainage and depositional patterns indicate a change in the locus of active extension that may relate to a recent (rift with concomitant shifts in depocentres. Within the hanging wall of the new western border fault, distinct segments control the location of drainage paths and syn-rift deposits. Morphology, sediment thicknesses and fault scarp amplitude indicate that a segmented rift flank graben has propagated southwards along the rift flank and is still actively fragmenting. These surficial data are used to constrain a model for the time-dependent topographic variations during progressive subsidence along a rift flank, involving the transfer of footwall units to hanging-wall domains. Rapid changes in border fault footwall relief in this model are associated with change in the active border fault location with widespread mass-wasting. The model shows that time-dependent histories need to be integrated with flexural uplift models for active normal faults. The active, syn-rift depositional systems of the Ol'khon region provide a valuable analogue for the early evolution of continental margins and the structural controls on syn-rift hydrocarbon sources and reservoirs.

  11. Crustal Structure at a Young Continental Rift: A Receiver Function Study from Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Hodgson, I. D. S.; Illsley-Kemp, F.; Gallacher, R. J.; Keir, D.; Ebinger, C. J.; Drooff, C.; Khalfan, M.

    2015-12-01

    Lake Tanganyika, in western Tanzania, spans a large section of the Western rift yet there are very few constraints on bulk crustal and upper mantle structure. The Western rift system has no surface expression of magmatism, which is in stark contrast to the Eastern branch. This observation is difficult to reconcile with the approximately coeval initiation of rifting of the two branches. The variation in the nature of rifting provides a perfect setting to test current hypotheses for the initiation of continental breakup and early-stage development of continental rifts. The deployment of a seismic network of 13 broadband instruments on the south eastern shore of Lake Tanganyika, for 16 months, between 2014 and 2015 provides a unique opportunity to investigate extensional processes in thick continental lithosphere. We present here results from a P to S receiver function study that provides information on bulk crustal Vp/Vs ratio along the rift; a property that is sensitive to the presence of magmatic intrusions in the lower crust. Additionally this method allows us to map variations in crustal thickness both parallel and perpendicular to the rift axis. These results thus provide unprecedented insight into the large-scale mechanics of early-stage continental rifting along the non-volcanic Western rift.

  12. Manzanita Hybrid Power system Project Final Report

    SciTech Connect

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  13. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    SciTech Connect

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  14. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  15. Flexible manufacturing system (FMS) evaluation. Final report

    SciTech Connect

    Setter, D.L.

    1993-02-01

    The applicability of the flexible manufacturing system (FMS) concept to automate machining and inspecting a family of stainless steel and aluminum hardware for electrical components has been evaluated. FMS was found to be appropriate and justifiable and a project was initiated to purchase and implement an FMS system. System specifications and procurement methodologies were developed that resulted in a conventional competitive bid procurement A proposal evaluation technique was developed consisting of 40% price, 40% technical compliance, and 20% supplier management capabilities.

  16. General Training System; GENTRAS. Final Report.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Federal Systems Div.

    GENTRAS (General Training System) is a computer-based training model for the Marine Corps which makes use of a systems approach. The model defines the skill levels applicable for career growth and classifies and defines the training needed for this growth. It also provides a training cost subsystem which will provide a more efficient means of…

  17. Instructional Support Software System. Final Report.

    ERIC Educational Resources Information Center

    McDonnell Douglas Astronautics Co. - East, St. Louis, MO.

    This report describes the development of the Instructional Support System (ISS), a large-scale, computer-based training system that supports both computer-assisted instruction and computer-managed instruction. Written in the Ada programming language, the ISS software package is designed to be machine independent. It is also grouped into functional…

  18. VOCATIONAL EDUCATION INFORMATION SYSTEM. FINAL REPORT.

    ERIC Educational Resources Information Center

    ZWICKEL, I.; AND OTHERS

    STATE- AND FEDERAL-LEVEL DESIGN SPECIFICATIONS WERE DEVELOPED FOR A SYSTEM CAPABLE OF COLLECTING AND REDUCING NATIONWIDE STATISTICAL DATA ON VOCATIONAL EDUCATION. THESE SPECIFICATIONS WERE EXPECTED TO PROVIDE THE BASIS FOR THE ADOPTION BY ALL STATES OF AN INFORMATION REPORTING SYSTEM THAT WOULD MEET BOTH PRESENT AND FUTURE FEDERAL REPORTING…

  19. Thermal maturation and organic richness of potential petroleum source rocks in Proterozoic Rice Formation, North American Mid-Continent rift system, northeastern Kansas

    SciTech Connect

    Newell, K.D. ); Burruss, R.C.; Palacas, J.G. )

    1993-11-01

    A recent well in northeastern Kansas penetrated 296 ft (90.2 m) of dark gray siltstone in the Precambrian Mid-Continent rift (Proterozoic Rice Formation). Correlations indicate this unit may be as thick as 600 ft (183 m) and is possibly time-equivalent to the Nonesuch Shale (Middle Proterozoic) in the Lake Superior region. The upper half of this unit qualifies as a lean source rock (averaging 0.66 wt.% TOC), and organic matter in it is in the transition stage between oil and wet gas generation. The presence of the gray siltstone in this well and similar lithologies in other wells is encouraging because it indicates the source rock deposition may be common along the Mid-Continent rift, and that parts of the rift may remain thermally within the oil and gas window. Microscopic examination of calcite veins penetrating the dark gray siltstone reveals numerous oil-filled and subordinate aqueous fluid inclusions. Homogenization temperatures indicate these rocks have been subjected to temperature of at least 110-115[degrees]C (230-239[degrees]F). Burial during the Phanerozoic is inadequate to account for the homogenization temperatures and thermal maturity of the Precambrian rocks. With the present geothermal gradient, at least 8250 ft (2.5 km) of burial is necessary, but lesser burial may be likely with probably higher geothermal gradients during rifting. Fluorescence colors and gas chromatograms indicate compositions of oils in the fluid inclusions vary. However, oils in the fluid inclusions are markedly dissimilar to the nearest oils produced from Paleozoic rocks.

  20. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  1. Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: Seismic data examples from the East African and Baikal rifts

    USGS Publications Warehouse

    Scholz, C.A.; Moore, T.C., Jr.; Hutchinson, D.R.; Golmshtok, A. Ja; Klitgord, Kim D.; Kurotchkin, A.G.

    1998-01-01

    Lakes Baikal, Malawi and Tanganyika are the world's three largest rift valley lakes and are the classic modem examples of lacustrine rift basins. All the rift lakes are segmented into half-graben basins, and seismic reflection datasets reveal how this segmentation controls the filling of the rift basins through time. In the early stages of rifting, basins are fed primarily by flexural margin and axial margin drainage systems. At the climax of syn-rift sedimentation, however, when the basins are deeply subsided, almost all the margins are walled off by rift shoulder uplifts, and sediment flux into the basins is concentrated at accommodation zone and axial margin river deltas. Flexural margin unconformities are commonplace in the tropical lakes but less so in high-latitude Lake Baikal. Lake levels are extremely dynamic in the tropical lakes and in low-latitude systems in general because of the predominance of evaporation in the hydrologic cycle in those systems. Evaporation is minimized in relation to inflow in the high-latitude Lake Baikal and in most high-latitude systems, and consequently, major sequence boundaries tend to be tectonically controlled in that type of system. The acoustic stratigraphies of the tropical lakes are dominated by high-frequency and high-amplitude lake level shifts, whereas in high-latitude Lake Baikal, stratigraphic cycles are dominated by tectonism and sediment-supply variations.

  2. Kilauea east rift zone magmatism: An episode 54 perspective

    USGS Publications Warehouse

    Thornber, C.R.; Heliker, C.; Sherrod, D.R.; Kauahikaua, J.P.; Miklius, Asta; Okubo, P.G.; Trusdell, F.A.; Budahn, J.R.; Ridley, W.I.; Meeker, G.P.

    2003-01-01

    On January 29 30, 1997, prolonged steady-state effusion of lava from Pu'u'O'o was briefly disrupted by shallow extension beneath Napau Crater, 1 4 km uprift of the active Kilauea vent. A 23-h-long eruption (episode 54) ensued from fissures that were overlapping or en echelon with eruptive fissures formed during episode 1 in 1983 and those of earlier rift zone eruptions in 1963 and 1968. Combined geophysical and petrologic data for the 1994 1999 eruptive interval, including episode 54, reveal a variety of shallow magmatic conditions that persist in association with prolonged rift zone eruption. Near-vent lava samples document a significant range in composition, temperature and crystallinity of pre-eruptive magma. As supported by phenocryst liquid relations and Kilauea mineral thermometers established herein, the rift zone extension that led to episode 54 resulted in mixture of near-cotectic magma with discrete magma bodies cooled to ???1100??C. Mixing models indicate that magmas isolated beneath Napau Crater since 1963 and 1968 constituted 32 65% of the hybrid mixtures erupted during episode 54. Geophysical measurements support passive displacement of open-system magma along the active east rift conduit into closed-system rift-reservoirs along a shallow zone of extension. Geophysical and petrologic data for early episode 55 document the gradual flushing of episode 54 related magma during magmatic recharge of the edifice.

  3. Water-storage-tube systems. Final report

    SciTech Connect

    Hemker, P.

    1981-12-24

    Passive solar collection/storage/distribution systems were surveyed, designed, fabricated, and mechanically and thermally tested. The types studied were clear and opaque fiberglass tubes, metal tubes with plastic liners, and thermosyphoning tubes. (MHR)

  4. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  5. Anatomy of a river drainage reversal in the Neogene Kivu Nile Rift

    NASA Astrophysics Data System (ADS)

    Holzförster, F.; Schmidt, U.

    2007-07-01

    The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu-Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300-350 ka to complete this major event for the sediment supply system of the Kivu-Nile Rift segment.

  6. Minerals as mantle fingerprints: Sr-Nd-Pb-Hf in clinopyroxene and He in olivine distinguish an unusual ancient mantle lithosphere beneath the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Shirey, S. B.; Graham, D. W.

    2011-12-01

    The East African Rift System is a complex region that holds keys to understanding the fundamental geodynamics of continental break-up. In this region, the volcanic record preserves over 30 Myrs of geochemical variability associated with the interplay between shallow and deep asthenospheric sources, continental lithospheric mantle, and continental crust. One fundamental question that is still subject to debate concerns the relationship between the lithospheric mantle and the voluminous flood basalt province that erupted at ~30 Ma in Ethiopia and Yemen. Whole-rock Re-Os isotopic data demonstrate the high-Ti (HT2) flood basalts (187Os/188Ost = 0.1247-0.1329) and peridotite xenoliths (187Os/188Ost = 0.1235-0.1377) from NW Ethiopia have similar isotopic compositions. However, Sr-Nd-Pb-Hf isotopic signatures from peridotite clinopyroxene grains are different from those of the flood basalts. The peridotite clinopyroxene separates bear isotopic affinities to anciently depleted mantle (87Sr/86Sr = 0.7019-0.7029; ɛNd = 12.6-18.5; ɛHf = 13.8-27.6) - more depleted than the MORB source - rather than to the OIB-like 30 Ma flood basalts (87Sr/86Sr ~ 0.704; ɛNd = 4.7-6.7; ɛHf = 12.1-13.5). Peridotite clinopyroxenes display two groups of 206Pb/204Pb compositions: the higher 206Pb/204Pb group (18.7-19.3) is compositionally similar to the flood basalts (206Pb/204Pb = 18.97-19.02) whereas the lower 206Pb/204Pb group (17.1-17.9) overlaps with depleted mantle. This suggests that the Pb isotope systematics in some of the peridotites have been metasomatically perturbed. Helium isotopes were analyzed by crushing olivine separated from the peridotites and the flood basalts. Olivine in the peridotites has low He concentrations (0.78-4.7 ncc/g) and low 3He/4He (4.6-6.6 RA), demonstrating that they cannot be the petrogenetic precursor to the high 3He/4He (>12 RA) flood basalts. Notably, these peridotites have 3He/4He signatures consistent with a lithospheric mantle source. Therefore

  7. National Geoscience Data Repository System. Final report

    SciTech Connect

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  8. Final Report Advanced Quasioptical Launcher System

    SciTech Connect

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  9. Autonomous microexplosives subsurface tracing system final report.

    SciTech Connect

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew; Uhl, James Eugene; Dulleck, George R., Jr.; Ingram, Brian V.; Grubelich, Mark Charles; Rivas, Raul R.; Cooper, Paul W.; Warpinski, Norman Raymond; Kravitz, Stanley H.

    2004-04-01

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping of subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.

  10. Spill response system configuration study. Final report

    SciTech Connect

    Desimone, R.V.; Agosta, J.M.

    1996-05-01

    This report describes the development of a prototype decision support system for oil spill response configuration planning that will help U.S. Coast Guard planners to determine the appropriate response equipment and personnel for major spills. The report discusses the application of advanced artificial intelligence planning techniques, as well as other software tools for spill trajectory modeling, plan evaluation and map display. The implementation of the prototype system is discussed in the context of two specific major spill scenarios in the San Francisco Bay.

  11. The final fate of planetary systems

    NASA Astrophysics Data System (ADS)

    Gaensicke, Boris

    2015-12-01

    The discovery of the first extra-solar planet around a main-sequence star in 1995 has changed the way we think about the Universe: our solar system is not unique. Twenty years later, we know that planetary systems are ubiquitous, orbit stars spanning a wide range in mass, and form in an astonishing variety of architectures. Yet, one fascinating aspect of planetary systems has received relatively little attention so far: their ultimate fate.Most planet hosts will eventually evolve into white dwarfs, Earth-sized stellar embers, and the outer parts of their planetary systems (in the solar system, Mars and beyond) can survive largely intact for billions of years. While scattered and tidally disrupted planetesimals are directly detected at a small number of white dwarfs in the form infrared excess, the most powerful probe for detecting evolved planetary systems is metal pollution of the otherwise pristine H/He atmospheres.I will present the results of a multi-cycle HST survey that has obtained COS observations of 136 white dwarfs. These ultraviolet spectra are exquisitely sensitive to the presence of metals contaminating the white atmosphere. Our sophisticated model atmosphere analysis demonstrates that at least 27% of all targets are currently accreting planetary debris, and an additional 29% have very likely done so in the past. These numbers suggest that planet formation around A-stars (the dominant progenitors of today's white dwarf population) is similarly efficient as around FGK stars.In addition to post-main sequence planetary system demographics, spectroscopy of the debris-polluted white dwarf atmospheres provides a direct window into the bulk composition of exo-planetesimals, analogous to the way we use of meteorites to determine solar-system abundances. Our ultraviolet spectroscopy is particularly sensitive to the detection of Si, a dominant rock-forming species, and we identify up to ten additional volatile and refractory elements in the most strongly

  12. Continental rifting and the origin of Beta Regio, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.

    1981-01-01

    Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.

  13. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  14. Neogene Development of the Terror Rift, western Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Sauli, C.; Sorlien, C. C.; Busetti, M.; De Santis, L.; Wardell, N.; Henrys, S. A.; Geletti, R.; Wilson, T. J.; Luyendyk, B. P.

    2015-12-01

    Terror Rift is a >300 km-long, 50-70 km-wide, 14 km-deep sedimentary basin at the edge of the West Antarctic Rift System, adjacent to the Transantarctic Mountains. It is cut into the broader Victoria Land Basin (VLB). The VLB experienced 100 km of mid-Cenozoic extension associated with larger sea floor spreading farther north. The post-spreading (Neogene) development of Terror Rift is not well understood, in part because of past use of different stratigraphic age models. We use the new Rossmap seismic stratigraphy correlated to Cape Roberts and Andrill cores in the west and to DSDP cores in the distant East. This stratigraphy, and new fault interpretations, was developed using different resolutions of seismic reflection data included those available from the Seismic Data Library System. Depth conversion used a new 3D velocity model. A 29 Ma horizon is as deep as 8 km in the south, and a 19 Ma horizon is >5 km deep there and 4 km-deep 100 km farther north. There is a shallower northern part of Terror Rift misaligned with the southern basin across a 50 km right double bend. It is bounded by steep N-S faults down-dropping towards the basin axis. Between Cape Roberts and Ross Island, the Oligocene section is also progressively-tilted. This Oligocene section is not imaged within northern Terror Rift, but the simplest hypothesis is that some of the Terror Rift-bounding faults were active at least during Oligocene through Quaternary time. Many faults are normal separation, but some are locally vertical or even reverse-separation in the upper couple of km. However, much of the vertical relief of the strata is due to progressive tilting (horizontal axis rotation) and not by shallow faulting. Along the trend of the basin, the relief alternates between tilting and faulting, with a tilting margin facing a faulted margin across the Rift, forming asymmetric basins. Connecting faults across the basin form an accommodation zone similar to other oblique rifts. The Neogene basin is

  15. DISCUS Interactive System Users' Manual. Final Report.

    ERIC Educational Resources Information Center

    Silver, Steven S.; Meredith, Joseph C.

    The results of the second 18 months (December 15, 1968-June 30, 1970) of effort toward developing an Information Processing Laboratory for research and education in library science is reported in six volumes. This volume contains: the basic on-line interchange, DISCUS operations, programming in DISCUS, concise DISCUS specifications, system author…

  16. Multiloop Integral System Test (MIST): Final report

    SciTech Connect

    Geissler, G.O. . Nuclear Power Div. Babcock and Wilcox Co., Alliance, OH . Research and Development Div.)

    1990-08-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility--the Once-Through Integral System (OTIS)--was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predication abnormal plant transients. The MIST Program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type, Volume 9 presents inter-group comparisons, Volume 10 provides comparisons between the calculations of RELAP5/MOD2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 11 pertains to MIST Phase IV tests performed to investigate risk dominant transients and non-LOCA events. 12 refs., 229 figs., 36 tabs.

  17. Multiloop Integral System Test (MIST): Final report

    SciTech Connect

    Geissler, G.O.

    1990-08-01

    The Multiloop Integral System Test (MIST) is part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox designed plants. MIST is sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral facilities to address the thermal-hydraulic SBLOCA questions. MIST and two supporting facilities were specifically designed and constructed for this program, and an existing facility -- the Once-Through Integral System (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST Program is reported in 11 volumes. The program is summarized in Volume 1; Volumes 2 through 8 describes groups of tests by test type, Volume 9 presents inter-group comparisons; Volume 10 provides comparisons between the calculations of RELAP5/MOD 2 and MIST observations, and Volume 11 presents the later Phase 4 tests. This Volume 11 addendum pertains to MIST natural circulation tests. 2 refs., 161 figs., 8 tabs.

  18. Hydrogen energy systems studies. Final technical report

    SciTech Connect

    Ogden, J.M.; Kreutz, T.; Kartha, S.; Iwan, L.

    1996-08-13

    The results of previous studies suggest that the use of hydrogen from natural gas might be an important first step toward a hydrogen economy based on renewables. Because of infrastructure considerations (the difficulty and cost of storing, transmitting and distributing hydrogen), hydrogen produced from natural gas at the end-user`s site could be a key feature in the early development of hydrogen energy systems. In the first chapter of this report, the authors assess the technical and economic prospects for small scale technologies for producing hydrogen from natural gas (steam reformers, autothermal reformers and partial oxidation systems), addressing the following questions: (1) What are the performance, cost and emissions of small scale steam reformer technology now on the market? How does this compare to partial oxidation and autothermal systems? (2) How do the performance and cost of reformer technologies depend on scale? What critical technologies limit cost and performance of small scale hydrogen production systems? What are the prospects for potential cost reductions and performance improvements as these technologies advance? (3) How would reductions in the reformer capital cost impact the delivered cost of hydrogen transportation fuel? In the second chapter of this report the authors estimate the potential demand for hydrogen transportation fuel in Southern California.

  19. Kinematic and thermal evolution of the Moroccan rifted continental margin: Doukkala-High Atlas transect

    NASA Astrophysics Data System (ADS)

    Gouiza, M.; Bertotti, G.; Hafid, M.; Cloetingh, S.

    2010-10-01

    The Atlantic passive margin of Morocco developed during Mesozoic times in association with the opening of the Central Atlantic and the Alpine Tethys. Extensional basins formed along the future continental margin and in the Atlas rift system. In Alpine times, this system was inverted to form the High and Middle Atlas fold-and-thrust belts. To provide a quantitative kinematic analysis of the evolution of the rifted margin, we present a crustal section crossing the Atlantic margin in the region of the Doukkala Basin, the Meseta and the Atlas system. We construct a post-rift upper crustal section compensating for Tertiary to present vertical movements and horizontal deformations, and we conduct numerical modeling to test quantitative relations between amounts and distribution of thinning and related vertical movements. Rifting along the transect began in the Late Triassic and ended with the appearance of oceanic crust at 175 Ma. Subsidence, possibly related to crustal thinning, continued in the Atlas rift in the Middle Jurassic. The numerical models confirm that the margin experienced a polyphase rifting history. The lithosphere along the transect preserved some strength throughout rifting with the Effective Elastic Thickness corresponding to an isotherm of 450°C. A mid-crustal level of necking of 15 km characterized the pre-rift lithosphere.

  20. East Antarctic rifting triggers uplift of the Gamburtsev Mountains.

    PubMed

    Ferraccioli, Fausto; Finn, Carol A; Jordan, Tom A; Bell, Robin E; Anderson, Lester M; Damaske, Detlef

    2011-11-17

    The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 1958. The preservation of Alpine topography in the Gamburtsevs may reflect extremely low long-term erosion rates beneath the ice sheet, but the mountains' origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere. PMID:22094700

  1. Length variation of Gravity-Driven systems in the Amazon River Mouth Basin: a history of carbonate-siliciclastic sedimentation and post-rift subsidence

    NASA Astrophysics Data System (ADS)

    Cruz, Alberto; Gorini, Christian; Letouzey, Jean; Suc, Jean-Pierre; Reis, Tadeu; Silva, Cleverson; Le Bouteiller, Pauline; Granjeon, Didier; Haq, Bilal; Delprat-Jannaud, Florence

    2016-04-01

    This study address the post-rift sedimentary record of the Amazon River Mouth Basin with a focus on gravity tectonics. We investigate shale detachment layers and the timing of different gravity deformation phases. Our study was based on more than 20,000 km of 2D multi-channel seismic data, 4,453 km2 of 3D multi-channel seismic data and 40 exploratory well data. A reliable age model was constructed based on biostratigraphic data. Five industry wells on the shelf/upper slope region and seven scientific wells drilled by DSDP and ODP in the distal Ceará Rise region were used for platform and deep environments correlations. This allowed us to calibrate the seismic lines and compare the sedimentation rates in different domains of the basin (e.g. shelf, slope, deep basin). In the Basin's shelf a widespread carbonate sequence dated as Late Paleocene grew up over a Latest Albian to Early Paleocene prograding clastic sequence. From the Eocene to the Late Miocene a mixed siliciclastic-carbonate aggrading megasequence developed. The first gravitational deformation event took place during the Eocene. The proximal limit (normal faults) of this this gravity-deformation system occurs along the hinge line. The major and deeper detachment layer was identified within the previously deposed Late Cretaceous-Early Paleocene stratigraphic sequence (Cenomanian-Turonian deep shale source rock?). Further downslope, during the same period a stack of thrust sheets was created. In the central part of the Basin, a second gravitational deformation phase took place from Late Oligocene to early Late Miocene. During this period the basal detachment layer (Late Cretaceous?) was reactivated and the frontal thrust sheet created ridges and piggy-back basins. From the Late Miocene to present time, a major increase in the siliciclastic sedimentation rates was evidenced in the axis of the modern Amazon Delta. A huge aggrading-prograding mega-sequence forced the expansion of a third gravitational system

  2. FY07 Final Report for Calibration Systems

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Cannon, Bret D.; Ho, Nicolas

    2007-12-01

    Remote infrared (IR) sensing provides a valuable method for detection and identification of materials associated with nuclear proliferation. Current challenges for remote sensors include minimizing the size, mass, and power requirements for cheaper, smaller, and more deployable instruments without affecting the measurement performance. One area that is often overlooked is sensor calibration design that is optimized to minimize the cost, size, weight, and power of the payload. Yet, an on-board calibration system is essential to account for changes in the detector response once the instrument has been removed from the laboratory. The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact quantum cascade (QC) laser-based calibration systems for infrared sensor systems in order to provide both a spectral and radiometric calibration while minimizing the impact on the instrument payload. In FY05, PNNL demonstrated a multi-level radiance scheme that provides six radiance levels for an enhanced linearity check compared to the currently accepted two-point scheme. PNNL began testing the repeatability of this scheme using a cryogenically cooled, single-mode quantum cascade laser (QCL). A cyclic variation in the power was observed that was attributed to the thermal cycling of the laser's dewar. In FY06, PNNL continued testing this scheme and installed an auxiliary liquid nitrogen reservoir to limit the thermal cycling effects. Although better repeatability was achieved over a longer time period, power fluctuations were still observed due to the thermal cycling. Due to the limitations with the cryogenic system, PNNL began testing Fabry-Perot QCLs that operate continuous-wave (cw) or quasi-cw at room temperature (RT) in FY06. PNNL demonstrated a multi-level scheme that provides five radiance levels in 105 seconds with excellent repeatability. We have continued testing this repeatability in FY07. A burn

  3. Final Report of Strongly Interacting Fermion Systems

    SciTech Connect

    Wilkins, J. W.

    2001-06-25

    There has been significant progress in three broad areas: (A) Optical properties, (B) Large-scale computations, and (C) Many-body systems. In this summary the emphasis is primarily on those papers that point to the research plans. At the same time, some important analytic work is not neglected, some of it even appearing in the description of large-scale Computations. Indeed one of the aims of such computations is to give new insights which lead to development of models capable of simple analytic or nearly analytic analysis.

  4. FY2008 Calibration Systems Final Report

    SciTech Connect

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  5. Imaging systems for biomedical applications. Final report

    SciTech Connect

    Radparvar, M.

    1995-06-06

    Many of the activities of the human body manifest themselves by the presence of a very weak magnetic field outside the body, a field that is so weak that an ultra-sensitive magnetic sensor is needed for specific biomagnetic measurements. Superconducting QUantum Interference Devices (SQUIDs) are extremely sensitive detectors of magnetic flux and have been used extensively to detect the human magnetocardiogram, and magnetoencephalogram. and other biomagnetic signals. In order to utilize a SQUID as a magnetometer, its transfer characteristics should be linearized. This linearization requires extensive peripheral electronics, thus limiting the number of SQUID magnetometer channels in a practical system. The proposed digital SQUID integrates the processing circuitry on the same cryogenic chip as the SQUID magnetometer and eliminates the sophisticated peripheral electronics. Such a system is compact and cost effective, and requires minimal support electronics. Under a DOE-sponsored SBIR program, we designed, simulated, laid out, fabricated, evaluated, and demonstrated a digital SQUID magnetometer. This report summarizes the accomplishments under this program and clearly demonstrates that all of the tasks proposed in the phase II application were successfully completed with confirmed experimental results.

  6. Geophysical tomography imaging system. Final CRADA report

    SciTech Connect

    Norton, S.J.; Won, I.J.

    1998-05-20

    The Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Systems, Inc., and Geophex, Ltd., was established to investigate high-resolution, shallow acoustic imaging of the subsurface. The primary objectives of the CRADA were accomplished, including the evaluation of a new tomographic imaging algorithm and the testing and comparison of two different acoustic sources, the hammer/plate source and an electromagnetic vibratory source. The imaging system was composed essentially of a linear array of geophones, a digital seismograph, and imaging software installed on a personal computer. Imaging was most successful using the hammer source, which was found to be less susceptible to ground roll (surface wave) interference. It is conjectured that the vibratory source will perform better for deeper targets for which ground roll is less troublesome. Potential applications of shallow acoustic imaging are numerous, including the detection and characterization of buried solid waste, unexploded ordnance, and clandestine man-made underground structures associated with treaty verification (e.g., tunnels, underground storage facilities, hidden bunkers).

  7. Physics of Correlated Systems, Final Project Report

    SciTech Connect

    Greene, Chris H.

    2014-06-25

    The funding of this DOE project has enabled the P.I. and his collaborators to tackle a number of problems involving nonperturbatively coupled atomic systems, including their interactions with each other and/or with an external electromagnetic field of the type provided by either a continuous-wave or a femtosecond short-pulse laser. The progress includes a new, deeper understanding of an old and famous theory of autoionization lineshapes, developed initially by Ugo Fano in 1935 and later extended in a highly cited 1961 article; the new result specifically is that in a collaboration with the Heidelberg group we have been able to demonstrate an unexpectedly simple behavior in the time domain that is relevant for modern short-pulse lasers. This study also demonstrates a way to modify and even control the lineshapes of unstable atomic and molecular energy levels.

  8. Earthquake clusters in Corinth Rift

    NASA Astrophysics Data System (ADS)

    Mesimeri, Maria; Papadimitriou, Eleftheria; Karakostas, Vasilios; Tsaklidis, George

    2013-04-01

    Clusters commonly occur as main shock-aftershock (MS-AS) sequences but also as earthquake swarms, which are empirically defined as an increase in seismicity rate above the background rate without a clear triggering main shock earthquake. Earthquake swarms occur in a variety of different environments and might have a diversity of origins, characterized by a high b-value in their magnitude distribution. The Corinth Rift, which was selected as our target area, appears to be the most recent extensional structure, with a likely rate of fault slip of about 1cm/yr and opening of 7mm/yr. High seismic activity accommodates the active deformation with frequent strong (M≥6.0) events and several seismic excitations without a main shock with clearly discriminative magnitude. Identification of earthquake clusters that occurred in this area in last years and investigation of their spatio-temporal distribution is attempted, with the application of known declustering algorithms, aiming to associate their occurrence with certain patterns in seismicity behavior. The earthquake catalog of the National Hellenic Seismological Network is used, and a certain number of clusters were extracted from the dataset, with the MS-AS sequences being distinguished from earthquake swarms. Spatio-temporal properties of each subset were analyzed in detail, after determining the respective completeness magnitude. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non-extensive statistical physics - Application to the geodynamic system of the Hellenic Arc, SEISMO FEAR HELLARC".

  9. Constraints on rift thermal processes from heat flow and uplift

    NASA Technical Reports Server (NTRS)

    Morgan, P.

    1983-01-01

    The implications of heat flow data available from five major Cenozoic continental rift systems for the processes of continental rifting are discussed, and simple thermal models of lithospheric thinning which predict uplift are used to further constrain the thermal processes in the lithosphere during rifting. Compilations of the heat flow data are summarized and the salient results of these compilations are briefly discussed. The uplift predictions of the slow and rapid thinning models, in which thinning is assumed to occur at a respectively slower and faster rate than heat can be conducted into the lithosphere, are presented. Comparison of uplift rates with model results indicates that the lithosphere is in a state between the two models. While uplift is predicted to continue after thinning has ceased due to thermal relaxation of the lithosphere, the rapid thinning model is always predicted to apply to surface heat flow, and an anomaly in this flow is not predicted to develop until after thinning has stopped.

  10. Mirror confinement systems: Final technical report

    SciTech Connect

    Not Available

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab.

  11. Thermal budget of the lower east rift zone, Kilauea Volcano

    USGS Publications Warehouse

    Delaney, Paul T.; Duffield, Wendell A.; Sass, John H.; Kauahikaua, James P.

    1993-01-01

    The lower east rift zone of Kilauea has been the site of repeated fissure eruptions fed by dikes that traverse the depths of interest to geothermal explorations. We find that a hot-rock-and-magma system of low permeability extending along the rift zone at depths below about 4 km and replenished with magma at a rate that is small in comparison to the modern eruption rate Kilauea can supply heat to an overlying hydrothermal aquifer sufficient to maintain temperatures of about 250??C if the characteristic permeability to 4-km depth is about 10-15m2.

  12. Evolution of the sublacustrine geothermal system at Lake Rotomahana, New Zealand: Effects of the 1886 Tarawera Rift eruption-An introduction

    NASA Astrophysics Data System (ADS)

    de Ronde, C. E. J.; Scott, B. J.; Leonard, G. S.; Calvert, A. T.

    2016-03-01

    Modern Lake Rotomahana was formed during the 1886 Tarawera Rift eruption. Explosive phreatomagmatic eruptions excavated a 16-km long series of deep, interconnected craters across the Tarawera Volcanic Complex and through low land to the southwest (Nairn, 1979). Shortly thereafter, water started to infill the southwestern craters, drowning them to form the present-day lake, an area about five times the size of the original lake (Healy, 1975a and 1975b). The modern lake area lies in a down-faulted collapse embayment in the southwestern portion of the Okataina Caldera (Cole, 1970; Nairn et al., 1994; Nairn, 2002). Elsewhere, boundaries for the southern caldera are poorly defined.

  13. Along-axis transition between narrow and wide rifts: Insights from 3D numerical experiments

    NASA Astrophysics Data System (ADS)

    Koptev, Alexander; Calais, Eric; Burov, Evgueni; Leroy, Sylvie; Gerya, Taras

    2016-04-01

    Based on performed high-resolution rheologically consistent three-dimensional thermo-mechanical numerical models, we show that there is a significant difference in the influence of the rheological profile on rifting style in the case of dominant active (plume-activated) rifting compared to dominant passive (far-field tectonic stresses) rifting. Narrow rifting, conventionally attributed to cold strong lithosphere in passive rifting mode, may develop in weak hot ultra-stretched lithosphere during active rifting, after plume impingement on a tectonically pre-stressed lithosphere. In that case, initially ultra-wide small-amplitude rift patterns focus, in a few Myr, in large-scale faults that form a narrow rift. Also, wide rifting may develop during ultra-slow spreading of strong lithosphere, and "switch" to the narrow rifting upon plume impingement. For further understanding the mechanisms behind the interactions between the mantle plume and far-field stresses in case of realistic horizontally heterogeneous lithosphere, we have tested our models on the case of the central East African Rift system (EARS). The EARS south of the Ethiopian Rift Valley bifurcates in two branches (eastern, magma-rich and western, magma-poor) surrounding the strong Tanzanian craton. Broad zones of low seismic velocity observed throughout the upper mantle beneath the central part of the EARS are consistent with the spreading of a deep mantle plume. The extensional features and topographic expression of the Eastern rift varies significantly north-southward: in northern Kenya the area of deformation is very wide (some 150-250 km in E-W direction), to the south the rift narrows to 60-70 km, yet further to the south this localized deformation widens again. Here we investigate this transition between localized and wide rifting using thermo-mechanical numerical modeling that couples, in a dynamic sense, the rise of the upper mantle material with the deformation of the African lithosphere below the

  14. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    NASA Astrophysics Data System (ADS)

    Le Gall, B.; VéTel, W.; Morley, C. K.

    2005-04-01

    Remote sensing data and revised seismic reflection profiles provide new insights about the origin of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern branch of the East African rift system. Contractional structures are dominated by weakly inverted sets of fault blocks within <3.7 Myr old synrift series. Most of reverse extensional faults involve components of oblique-slip, whereas associated hanging wall folds are characterized by large wavelength upright folding. The area of basin inversion is restricted to a 40 × 100 km elongated zone overlying a first-order N140°E trending fault zone in the basement, referred to as the N'Doto transverse fault zone (NTFZ). In the proposed kinematic model, inversion tectonics is assigned to permutation of principal stress axes (σ1/σ2) in addition to the clockwise rotation of extension (from nearly N90°E to N130°E) during Pliocene. The transition from pure extension (Miocene) to a wrench faulting regime (Pliocene) first results in the development of T-type fault networks within a dextrally reactivated shear zone (NTFZ). Inversion tectonics occurred later (<3.7 Ma) in response to a still rotated (˜20°) shortening axis (σ1) oriented N40°E that caused the oblique compression of earlier (NS to N20°E) extensional structures within the NTFZ. The origin of basin inversion and strain concentration in the Turkana rift is thus directly linked to a crustal weakness zone, transverse to the rift axis, and involving steep prerift anisotropies.

  15. Melting during late-stage rifting in Afar is hot and deep.

    PubMed

    Ferguson, D J; Maclennan, J; Bastow, I D; Pyle, D M; Jones, S M; Keir, D; Blundy, J D; Plank, T; Yirgu, G

    2013-07-01

    Investigations of a variety of continental rifts and margins worldwide have revealed that a considerable volume of melt can intrude into the crust during continental breakup, modifying its composition and thermal structure. However, it is unclear whether the cause of voluminous melt production at volcanic rifts is primarily increased mantle temperature or plate thinning. Also disputed is the extent to which plate stretching or thinning is uniform or varies with depth with the entire continental lithospheric mantle potentially being removed before plate rupture. Here we show that the extensive magmatism during rifting along the southern Red Sea rift in Afar, a unique region of sub-aerial transition from continental to oceanic rifting, is driven by deep melting of hotter-than-normal asthenosphere. Petrogenetic modelling shows that melts are predominantly generated at depths greater than 80 kilometres, implying the existence of a thick upper thermo-mechanical boundary layer in a rift system approaching the point of plate rupture. Numerical modelling of rift development shows that when breakup occurs at the slow extension rates observed in Afar, the survival of a thick plate is an inevitable consequence of conductive cooling of the lithosphere, even when the underlying asthenosphere is hot. Sustained magmatic activity during rifting in Afar thus requires persistently high mantle temperatures, which would allow melting at high pressure beneath the thick plate. If extensive plate thinning does occur during breakup it must do so abruptly at a late stage, immediately before the formation of the new ocean basin. PMID:23823795

  16. Geoscience Methods Lead to Paleo-anthropological Discoveries in Afar Rift, Ethiopia

    NASA Astrophysics Data System (ADS)

    WoldeGabriel, Giday; Renne, Paul R.; Hart, William K.; Ambrose, Stanley; Asfaw, Berhane; White, Tim D.

    2004-07-01

    With few exceptions, most of the hominid evolutionary record in Africa is closely associated with the East African Rift System. The exceptions are the South African and Chadian hominids collected from the southern and west-central parts of the continent, respectively. The Middle Awash region stands alone as the most prolific paleoanthropological area ever discovered (Figure 1). Its paleontological record has yielded over 13,000 vertebrate fossils, including several hominid taxa, ranging in age from 5.8 Ma to the present. The uniqueness of the Middle Awash hominid sites lies in their occurrence within long, > 6 Ma volcanic and sedimentary stratigraphic records. The Middle Awash region has yielded the longest hominid record yet available. The region is characterized by distinct geologic features related to a volcanic and tectonic transition zone between the continental Main Ethiopian and the proto-oceanic Afar Rifts. The rift floor is wider-200 km-than other parts of the East African Rift (Figure 1). Moreover, its Quaternary axial rift zone is wide and asymetrically located close to the western margin. The fossil assemblages and the lithostratigraphic records suggest that volcanic and tectonic activities within the broad rift floor and the adjacent rift margins were intense and episodic during the late Neogene rift evolution.

  17. The life cycle of continental rifting as a focus for U.S.-African scientific collaboration

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.

    2004-11-01

    The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.

  18. Phanerozoic Rifting Phases And Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Hassaan, Mahmoud

    2016-04-01

    connected with NW,WNW and N-S faults genetically related to volcano-hydrothermal activity associated the Red Sea rifting. At Sherm EL-Sheikh hydrothermal manganese deposit occurs in Oligocene clastics within fault zone. Four iron-manganese-barite mineralization in Esh-Elmellaha plateau are controlled by faults trending NW,NE and nearly E-W intersecting Miocene carbonate rocks. Barite exists disseminated in the ores and as a vein in NW fault. In Shalatee - Halaib district 24 manganese deposits and barite veins with sulphide patches occur within Miocene carbonates distributed along two NW fault planes,trending 240°and 310° and occur in granite and basalt . Uranium -lead-zinc sulfide mineralization occur in Late Proterozoic granite, Late Cretaceous sandstones, and chiefly in Miocene clastic-carbonate-evaporate rocks. The occurrences of uranium- lead-zinc and iron-manganese-barite mineralization have the characteristic features of hypogene cavity filling and replacement deposits correlated with Miocene- Recent Aden volcanic rocks rifting. In western Saudi Arabia barite-lead-zinc mineralization occurs at Lat. 25° 45' and 25° 50'N hosted by Tertiary sediments in limestone nearby basaltic flows and NE-SW fault system. The mineralized hot brines in the Red Sea deeps considered by the author a part of this province. The author considers the constant rifting phases of Pangea and then progressive fragmentation of Western Gondwana during the Late Carboniferous-Lias, Late Jurassic-Early Aptian, Late Aptian - Albian and Late Eocene-Early Miocene and Oligocene-Miocene, responsible for formation of the mineral deposits constituting the M provinces. During these events, rifting, magmatism and hydrothermal activities took place in different peri-continental margins.

  19. Solar heating system installed at Troy, Ohio. Final report

    SciTech Connect

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  20. Rift-related active fault-system and a direction of maximum horizontal stress in the Cairo-Suez district, northeastern Egypt: A new approach from EMR-Technique and Cerescope data

    NASA Astrophysics Data System (ADS)

    Hagag, Wael; Obermeyer, Hennes

    2016-09-01

    An active fault system has been detected along the Cairo-Suez district in northeastern Egypt, applying the EMR-Technique using Cerescope. The E-W (old Mediterranean) and NW-SE (Red Sea-Gulf of Suez) fault-trends are estimated to have ongoing activity. Horizontal EMR-measurements indicate a NW to NNW orientation as a maximum horizontal stress direction (σ1), whereas an E-W orientation to has a secondary tendency. A simplified stress map for the Cairo-Suez district is constructed from the horizontal stress data measured at about 20 locations within the district. The mapped stresses will contribute to the stress data of the Cairo-Suez region on the world stress map (WSM). The present study results indicate rejuvenation of the inherited Mesozoic E-W oriented and Oligocene-Miocene rift-related NW-SE oriented faults. The transfer of rift-related deformation from Red Sea-Gulf of Suez region, which is currently undergoing an extensional stress regime in NE to NNE direction, would explain a seismotectonic activity of the Cairo-Suez district. These results are consistent with a present day NNW oriented compressional stresses attributed to a convergence between the African and Eurasian plates.

  1. New Insights into the Transition From Magmatic to Tectonic Rifting

    NASA Astrophysics Data System (ADS)

    Bialas, R. W.; Buck, W. R.; Qin, R.

    2008-12-01

    Magma plays a major role in the development of many rifts and continental margins. This is particularly clear for some of the more recent continental rifts including the Afro-Arabian Rift System and the breakup of South America from Africa. We are interested in how magma, injected as dikes, may lead to weakening of the lithosphere so that rifting can proceed even if the supply of magma wanes. We use a hybrid numerical model to simulate the effect of dike injection on continental lithopsheric rifting. We have developed a numerical diking simulation where the key diking parameters controlling the input of magma are the magma chamber size, minimum diking interval, and maximum tectonic force. The model includes a 2D finite difference code (FLAC) for tracking long- term stress build-up and strain in a viscoelastic-plactic model lithosphere. A boundary element code is used to simulate the effect of short-duration dike intrusion events that are specified to occur periodically at the center of the model region. The stresses from the finite difference code are applied to the boundary element code to calculate how much a dike opens as a function of depth. If a dike is generated, basaltic-density magma is "injected" into the finite difference model based on the distribution of dike opening obtained from the boundary element code. Diking thermally weakens the lithosphere and changes the lithospheric density structure, both weakening the lithosphere and reduce the force difference needed to continue extension. Varying the diking interval and magma chamber size, changes the rates magma input and lithospheric weakening. The maximum tectonic force effects the rate of magma injection, total magmatic extension, and hence, the timing of the transition from magmatic to tectonic extension. With normal lithospheric thicknesses and thermal structure, this transition may require as little as 3-5 km of magmatic extension before the onset of tectonic rifting.

  2. Fault kinematics and tectonic stress in the seismically active Manyara Dodoma Rift segment in Central Tanzania Implications for the East African Rift

    NASA Astrophysics Data System (ADS)

    Macheyeki, Athanas S.; Delvaux, Damien; De Batist, Marc; Mruma, Abdulkarim

    2008-07-01

    The Eastern Branch of the East African Rift System is well known in Ethiopia (Main Ethiopian Rift) and Kenya (Kenya or Gregory Rift) and is usually considered to fade away southwards in the North Tanzanian Divergence, where it splits into the Eyasi, Manyara and Pangani segments. Further towards the south, rift structures are more weakly expressed and this area has not attracted much attention since the mapping and exploratory works of the 1950s. In November 4, 2002, an earthquake of magnitude Mb = 5.5 struck Dodoma, the capital city of Tanzania. Analysis of modern digital relief, seismological and geological data reveals that ongoing tectonic deformation is presently affecting a broad N-S trending belt, extending southward from the North Tanzanian Divergence to the region of Dodoma, forming the proposed "Manyara-Dodoma Rift segment". North of Arusha-Ngorongoro line, the rift is confined to a narrow belt (Natron graben in Tanzania) and south of it, it broadens into a wide deformation zone which includes both the Eyasi and Manyara grabens. The two-stage rifting model proposed for Kenya and North Tanzania also applies to the Manyara-Dodoma Rift segment. In a first stage, large, well-expressed topographic and volcanogenic structures were initiated in the Natron, Eyasi and Manyara grabens during the Late Miocene to Pliocene. From the Middle Pleistocene onwards, deformations related to the second rifting stage propagated southwards to the Dodoma region. These young structures have still limited morphological expressions compared to the structures formed during the first stage. However, they appear to be tectonically active as shown by the high concentration of moderate earthquakes into earthquake swarms, the distribution of He-bearing thermal springs, the morphological freshness of the fault scarps, and the presence of open surface fractures. Fault kinematic and paleostress analysis of geological fault data in basement rocks along the active fault lines show that recent

  3. Rifting, heat flux, and water availability beneath the catchment of Pine Island Glacier

    NASA Astrophysics Data System (ADS)

    Jordan, T. A.; Ferraccioli, F.; Hindmarsh, R. C.

    2012-04-01

    The West Antarctic Rift System (WARS) is a major rift system that developed in the Cretaceous and Cenozoic. It forms the lithsopheric cradle for the marine-based, and potentially unstable West Antarctic Ice Sheet (WAIS). Determining the geological boundary conditions beneath the WAIS and in particular geothermal heat flux may help model its response to external climatic forcing. However, in the Amundsen Sea Embayment sector of WAIS, where major glaciers such as Pine Island and Thwaites are rapidly changing today, fundamental properties such as geothermal heat flux to the base of the ice sheet have remained poorly constrained due to sparse geophysical data coverage and the lack of drilling sites. New crustal thickness estimates derived from airborne gravity data (Jordan et al., 2010, GSA Bul.), are interpreted to show a continuation of the WARS beneath Pine Island Glacier, and suggest two phases of continental rifting affected this region. Here we explore the impact of continental rifting on geothermal heat flux variations and basal water availability beneath Pine Island Glacier. Using 1D thermal models of rift evolution, we assess geothermal heat flux configurations resulting from either single or two-phase rifting and explore the dependency on the age of rifting and pre-rift setting. Additionally, 1D glaciological models were implemented to predict the changes in subglacial water distribution created by different rifting models. Our modelling reveals that geothermal heat-flux beneath the WAIS is critically sensitive to rift age and evolution and has the potential to significantly alter basal conditions if it continued to be active in the Neogene as some recent geological interpretations suggest.

  4. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  5. Massive and prolonged deep carbon emissions associated with continental rifting

    NASA Astrophysics Data System (ADS)

    Lee, Hyunwoo; Muirhead, James D.; Fischer, Tobias P.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys

    2016-02-01

    Carbon from Earth’s interior is thought to be released to the atmosphere mostly via degassing of CO2 from active volcanoes. CO2 can also escape along faults away from active volcanic centres, but such tectonic degassing is poorly constrained. Here we use measurements of diffuse soil CO2, combined with carbon isotopic analyses to quantify the flux of CO2 through fault systems away from active volcanoes in the East African Rift system. We find that about 4 Mt yr-1 of mantle-derived CO2 is released in the Magadi-Natron Basin, at the border between Kenya and Tanzania. Seismicity at depths of 15-30 km implies that extensional faults in this region may penetrate the lower crust. We therefore suggest that CO2 is transferred from upper-mantle or lower-crustal magma bodies along these deep faults. Extrapolation of our measurements to the entire Eastern rift of the rift system implies a CO2 flux on the order of tens of megatonnes per year, comparable to emissions from the entire mid-ocean ridge system of 53-97 Mt yr-1. We conclude that widespread continental rifting and super-continent breakup could produce massive, long-term CO2 emissions and contribute to prolonged greenhouse conditions like those of the Cretaceous.

  6. ­­Are current models for normal fault array evolution applicable to natural rifts?

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    Conceptual models predicting the geometry and evolution of normal fault arrays are vital to assess rift physiography, syn-rift sediment dispersal and seismic hazard. Observations from data-rich rifts and numerical and physical models underpin widely used fault array models predicting: i) during rift initiation, arrays are defined by multiple, small, isolated faults; ii) as rifting progresses, strain localises onto fewer larger structures; and iii) with continued strain, faulting migrates toward the rift axis, resulting in rift narrowing. Some rifts display these characteristics whereas others do not. Here we present several case studies documenting fault migration patterns that do not fit this ideal. In this presentation we will begin by reviewing existing fault array models before presenting a series of case studies (including from the northern North Sea and the Gulf of Corinth), which document fault migration patterns that are not predicted by current fault evolution models. We show that strain migration onto a few, large faults is common in many rifts but that, rather than localising onto these structures until the cessation of rifting, strain may 'sweep' across the basin. Furthermore, crustal weaknesses developed in early tectonic events can cause faults during subsequent phases of extension to grow relatively quickly and accommodate the majority if not all of the rift-related strain; in these cases, strain migration does not and need not occur. Finally, in salt-influenced rifts, strain localisation may not occur at all; rather, strain may become progressively more diffuse due to tilting of the basement and intrastratal salt décollements, thus leading to superimposition of thin-skinned, gravity-driven and thick-skinned, plate-driven, basement-involved extension. We call for the community to unite to develop the next-generation of normal fault array models that include complexities such as the thermal and rheological properties of the lithosphere, specific

  7. Classification of the rift zones of venus: Rift valleys and graben belts

    NASA Astrophysics Data System (ADS)

    Guseva, E. N.

    2016-05-01

    The spatial distribution of rift zones of Venus, their topographic configuration, morphometric parameters, and the type of volcanism associating with rifts were analyzed. This allowed the main characteristic features of rifts to be revealed and two different types of rift-forming structures, serving for classification of rift zones as rift valleys and graben belts, to be isolated. These structural types (facies) of rift zones are differently expressed in the relief: rift valleys are individual deep (several kilometers) W-shaped canyons, while graben belts are clusters of multiple V-shaped and rather shallow (hundreds of meters) depressions. Graben belts are longer and wider, as compared to rift valleys. Rift valleys are spatially associated with dome-shaped volcanic rises and large volcanos (concentrated volcanic sources), while graben belts do not exhibit such associations. Volcanic activity in the graben belts are presented by spacious lava fields with no apparent sources of volcanism. Graben belts and rift valleys were formed during the Atlian Period of geologic history of Venus, and they characterized the tectonic style of the planet at the late stages of its geologic evolution. Formation of this or that structural facies of the rift zones of Venus were probably governed by the thickness of the lithosphere, its rheological properties, and the development degree of the mantle diapirs associating with rift zones.

  8. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas

    NASA Astrophysics Data System (ADS)

    Ren, Jianye; Tamaki, Kensaku; Li, Sitian; Junxia, Zhang

    2002-02-01

    During the Late Mesozoic and Cenozoic, extension was widespread in Eastern China and adjacent areas. The first rifting stage spanned in the Late Jurassic-Early Cretaceous times and covered an area of more than 2 million km 2 of NE Asia from the Lake Baikal to the Sikhot-Alin in EW direction and from the Mongol-Okhotsk fold belt to North China in NS direction. This rifting was characterized by intracontinental rifts, volcanic eruptions and transform extension along large-scale strike-slip faults. Based on the magmatic activity, filling sequence of basins, tectonic framework and subsidence analysis of basins, the evolution of this area can be divided into three main developmental phases. The first phase, calc-alkaline volcanics erupted intensely along NNE-trending faults, forming Daxing'anling volcanic belt, NE China. The second phase, Basin and Range type fault basin system bearing coal and oil developed in NE Asia. During the third phase, which was marked by the change from synrifting to thermal subsidence, very thick postrift deposits developed in the Songliao basin (the largest oil basin in NE China). Following uplift and denudation, caused by compressional tectonism in the near end of Cretaceous, a Paleogene rifting stage produced widespread continental rift systems and continental margin basins in Eastern China. These rifted basins were usually filled with several kilometers of alluvial and lacustrine deposits and contain a large amount of fossil fuel resources. Integrated research in most of these rifting basins has shown that the basins are characterized by rapid subsidence, relative high paleo-geothermal history and thinned crust. It is now accepted that the formation of most of these basins was related to a lithospheric extensional regime or dextral transtensional regime. During Neogene time, early Tertiary basins in Eastern China entered a postrifting phase, forming regional downwarping. Basin fills formed in a thermal subsidence period onlapped the fault

  9. The evolving contribution of border faults and intra-rift faults in early-stage East African rifts: insights from the Natron (Tanzania) and Magadi (Kenya) basins

    NASA Astrophysics Data System (ADS)

    Muirhead, J.; Kattenhorn, S. A.; Dindi, E.; Gama, R.

    2013-12-01

    In the early stages of continental rifting, East African Rift (EAR) basins are conventionally depicted as asymmetric basins bounded on one side by a ~100 km-long border fault. As rifting progresses, strain concentrates into the rift center, producing intra-rift faults. The timing and nature of the transition from border fault to intra-rift-dominated strain accommodation is unclear. Our study focuses on this transitional phase of continental rifting by exploring the spatial and temporal evolution of faulting in the Natron (border fault initiation at ~3 Ma) and Magadi (~7 Ma) basins of northern Tanzania and southern Kenya, respectively. We compare the morphologies and activity histories of faults in each basin using field observations and remote sensing in order to address the relative contributions of border faults and intra-rift faults to crustal strain accommodation as rifting progresses. The ~500 m-high border fault along the western margin of the Natron basin is steep compared to many border faults in the eastern branch of the EAR, indicating limited scarp degradation by mass wasting. Locally, the escarpment shows open fissures and young scarps 10s of meters high and a few kilometers long, implying ongoing border fault activity in this young rift. However, intra-rift faults within ~1 Ma lavas are greatly eroded and fresh scarps are typically absent, implying long recurrence intervals between slip events. Rift-normal topographic profiles across the Natron basin show the lowest elevations in the lake-filled basin adjacent to the border fault, where a number of hydrothermal springs along the border fault system expel water into the lake. In contrast to Natron, a ~1600 m high, densely vegetated, border fault escarpment along the western edge of the Magadi basin is highly degraded; we were unable to identify evidence of recent rupturing. Rift-normal elevation profiles indicate the focus of strain has migrated away from the border fault into the rift center, where

  10. A 4D Analogue Modeling Study Assessing the Effects of Transtension and Inherited Structures on Rift Interaction

    NASA Astrophysics Data System (ADS)

    Zwaan, F.; Schreurs, G.; Naliboff, J.; Buiter, S. J.

    2015-12-01

    The interaction of individual rift segments determines the evolution of a rift system and subsequent continental break-up. Inherited heterogeneities control where initial rifts will form and since these are often not properly aligned, rift segments form separately and need to interact. Another important factor affecting rift-segment interaction is the obliquity of plate divergence (transtension), which also promotes eventual continent break-up (Brune et al., 2012). Both analogue and numerical techniques have been used to model rift interaction (e.g. Acocella et al., 1999; Allken et al., 2012) but transtension has never been applied. Here we present a first-order analogue study that elaborates upon earlier studies by assessing the effects of (1) transtension, (2) rift offset and (3) presence and geometry of inherited weak zones that link rift segments. An improved analogue set-up allows more freedom in inherited structure geometry and model analysis with X-Ray Computer Tomography (CT) techniques reveals internal structures with time (Fig. 2 and 3). Our experiments yield the following conclusions: Increasing the degree of transtension (decreasing angle α in Fig. 1) controls general rift structures: from wide rifts in orthogonal divergence settings to narrower rifts with oblique internal structures under transtensional conditions to narrow strike-slip dominated systems towards the strike-slip domain; Rift linkage through transfer zones (hard linkage) is generally promoted by 1) decreasing rift offset and 2) increasing the degree of transtension. However, initial rift linkage might involve relay ramps (soft linkage) due to the interplay of divergence direction and rift offset; Inherited rift-linking weak zones have little effect on rift interaction unless they are oriented ca. perpendicular to the divergence direction; Since the orthogonal divergence models resemble natural examples (Fig. 3), our transtension models might predict what structures can be expected in

  11. Next-Generation Linear Collider Final Focus System Stability Tolerances

    SciTech Connect

    Roy, G.; Irwin, J.; /SLAC

    2007-04-25

    The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''{beta}-exchanger'' to manipulate the {beta}-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

  12. Rift strength controls rapid plate accelerations: A global analysis of Pangea fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Williams, S.; Butterworth, N. P.; Müller, D.

    2015-12-01

    Motions of Earth's plates are thought to be driven by slab pull, basal drag, and ridge push. Here we propose that plate motions during supercontinental fragmentation are decisively controlled by the non-linear decay of a resistive force: rift strength. We use state-of-the-art global tectonic reconstructions and the new geotectonic analysis tool pyGPlates to analyze the transition from rifting to sea-floor spreading of well-studied post-Pangea rift systems (Central Atlantic, South Atlantic, Iberia/Newfoundland, Australia/Antarctica, North Atlantic, South China Sea, Gulf of California). In all cases, continental extension starts with a slow phase (< 10 mm/yr, full extension velocity) followed by a rapid acceleration over periods of a few My that introduces a fast rift phase (> 10 mm/yr). The transition from slow to fast extension takes place long before crustal break-up. In fact, we find that approximately half of the present day rifted margin area was created during the slow, and the other half during the fast phase. We reproduce the transition from slow to fast rifting using numerical forward models with force boundary conditions, such that rift velocities are not imposed but instead evolve naturally in response to changing strength of the rift. These models show that the two-phase velocity behavior during rifting and the rapid speed-up are intrinsic features of continental rupture that can be robustly inferred for different crust and mantle rheologies.It has been proposed that abrupt plate accelerations can be caused by plume-lithosphere interaction, subduction initiation, and slab detachment. However, none of these mechanisms explains our result that plate speed-up systematically precedes continental break-up. We therefore propose dynamic rift weakening as a new mechanism for rapid plate motion changes.

  13. Tag team tectonics: mantle upwelling and lithospheric heterogeneity ally to rift continents (Invited)

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.

    2013-12-01

    The configuration of continents we know today is the result of several billion years of active Wilson Cycle tectonics. The rifting of continents and subsequent development of ocean basins is an integral part of long-term planetary-scale recycling processes. The products of this process can be seen globally, and the East African Rift System (EARS) provides a unique view of extensional processes that actively divide a continent. Taken together with the adjoining Red Sea and Gulf of Aden, the EARS has experienced over 40 Ma of volcanism and ~30 Ma of extension. While early (pre-rift) volcanism in the region is attributed to mantle plume activity, much of the subsequent volcanism occurs synchronously with continental rifting. Numerous studies indicate that extension and magmatism are correlated: extension leads to decompression melting while magmatism accommodates further extension (e.g. Stein et al., 1997; Buck 2004; Corti 2012). Evaluation of the entire EARS reveals significant geochemical patterns - both spatial and temporal - in the volcanic products. Compositional variations are tied directly to the melt source(s), which changes over time. These variations can be characterized broadly by region: the Ethiopian plateau and Turkana Depression, the Kenya Rift, and the Western Rift. In the Ethiopian plateau, early flood basalt volcanism is dominated by mantle plume contributions with variable input from lherzolitic mantle lithosphere. Subsequent alkaline shield volcanism flanking the juvenile Main Ethiopian Rift records the same plume component as well as contributions from a hydrous peridotitic lithosphere. The hydrous lithosphere does not contribute indefinitely. Instead, young (< 2 Ma) volcanism taps a combination of the mantle plume and anhydrous depleted lithospheric mantle. In contrast, volcanism in the Kenya Rift and the Western Rift are derived dominantly from metasomatized lithospheric mantle rather than mantle plume material. These rifts lie in the mobile

  14. Final system instrumentation design package for Decade 80 solar house

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The final configuration of the Decade 80 solar house to monitor and collect system performance data is presented. A review demonstrated by actual operation that the system and the data acquisition subsystem operated satisfactorily and installation of instrumentation was in accordance with the design. This design package is made up of (1) site and system description, (2) operating and control modes, and (3) instrumentation program (including sensor schematic).

  15. The 2003-2004 seismic swarm in the western Corinth rift: Evidence for a multiscale pore pressure diffusion process along a permeable fault system

    NASA Astrophysics Data System (ADS)

    Duverger, Clara; Godano, Maxime; Bernard, Pascal; Lyon-Caen, Hélène; Lambotte, Sophie

    2015-09-01

    Microseismic multiplets occurring in the western Corinth rift, Greece, during a large swarm are analyzed to retrieve their spatiotemporal characteristics. These multiplets activated small subfaults at depth (˜7 km), up to 1 km long, at the root of two parallel active normal faults. The swarm migrates westward nearly horizontally over 10 km at an average velocity of 50 m/d with a diffusivity of 0.5 m2 s-1. It successively activates the Aigion fault, a relay zone in its hanging wall, and the Fassouleika fault. Within each multiplet, hypocenters also migrate with diffusivities ranging from 0.001 to 0.4 m2 s-1. The largest internal diffusivities appear at the core of the layer defined by the clusters. These results are interpreted as a hydroshear process caused by pore pressure migration within permeable corridors resulting from the intersection of the major faults with a brittle geological layer inherited from the Hellenic nappe stack.

  16. A Review of New and Anticipated High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Hominin Evolution and Demography

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.

    2014-12-01

    Our understanding of Late Tertiary/Quaternary climate and environmental history in East Africa has, to date, largely been based on outcrop and marine drill core records. Although these records have proven extremely valuable both in reconstructing environmental change and placing human evolution in an environmental context, their quality is limited by resolution, continuity, uncertainties about superposition and outcrop weathering. To address this problem, long drill core records from extant ancient lakes and lake beds are being collected by several research groups. Long cores (up to 100s of m.) from basin depocenters in both the western and eastern rifts are now available spanning nearly the entire latitudinal range of the East Africa Rift. This network of core records, especially when coupled with outcrop data, is providing an opportunity to compare the nature of important global climate transitions (especially glacial/interglacial events and precessional cycles) across the continent, thereby documenting regional heterogeneity in African climate history. Understanding this heterogeneity is critical for realistically evaluating competing hypotheses of environmental forcing of human evolution, and especially ideas about the dispersal of anatomically modern humans out of Africa in the early Late Pleistocene. In particular, understanding the hydrological and paleoecological history of biogeographic corridors linking eastern Africa, the Nile River Valley and the Levant is likely to be vastly improved through comparative analysis of these new drill cores over the next few years. Because we do not a priori know the primary forcing factors affecting this environmental history, it will essential to develop the best possible age models, employing multiple and novel geochronometric tools to make these comparisons.

  17. Abrupt plate accelerations shape rifted continental margins.

    PubMed

    Brune, Sascha; Williams, Simon E; Butterworth, Nathaniel P; Müller, R Dietmar

    2016-08-11

    Rifted margins are formed by persistent stretching of continental lithosphere until breakup is achieved. It is well known that strain-rate-dependent processes control rift evolution, yet quantified extension histories of Earth's major passive margins have become available only recently. Here we investigate rift kinematics globally by applying a new geotectonic analysis technique to revised global plate reconstructions. We find that rifted margins feature an initial, slow rift phase (less than ten millimetres per year, full rate) and that an abrupt increase of plate divergence introduces a fast rift phase. Plate acceleration takes place before continental rupture and considerable margin area is created during each phase. We reproduce the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The extension models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength--velocity feedback, which can be robustly inferred for diverse lithosphere configurations and rheologies. Our results explain differences between proximal and distal margin areas and demonstrate that abrupt plate acceleration during continental rifting is controlled by the nonlinear decay of the resistive rift strength force. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time. PMID:27437571

  18. Low-temperature thermochronologic constraints on cooling and exhumation trends along conjugate margins, within core complexes and eclogite-bearing gneiss domes of the Woodlark rift system of eastern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fitzgerald, P. G.; Baldwin, S.; Bermudez, M. A.; Miller, S. R.; Webb, L. E.; Little, T.

    2012-12-01

    In eastern Papua New Guinea, active sea-floor spreading within the Woodlark Basin has been propagating westward since at least 6 Ma into heterogeneous crust of the Woodlark Rift. The seafloor spreading system divides the northern conjugate margin (Woodlark Rise) from the southern margin (Pocklington Rise). West of the seafloor spreading rift-tip are high-standing extensional gneiss domes and core complexes of the D'Entrecasteaux Islands (DEI). Domes comprise amphibolite and eclogite-facies gneisses, and Pleistocene granitoid intrusions. Flanked by mylonitic shear zone carapaces and normal faults, the domes are juxtaposed against an upper plate that includes ultramafic rocks and gabbro, correlated with the Papuan ultramafic belt. Petrologic and structural evidence from the DEI has been interpreted as evidence for diapiric ascent of the largely felsic domes, with thermo-mechanical modeling proposing (U)HP exhumation in terms of diapiric flow aided by propagating extension, with feedback between the two. Core complexes lacking evidence for diapiric-aided exhumation include the Prevost Range (eastern Normanby Island), Dayman Dome (Papuan Peninsula), and Misima Island (southern conjugate margin). Thermochronology is being applied to understand the thermal and exhumation history, and hence help constrain mechanisms of (U)HP exhumation. AFT and AHe ages from samples near sea-level along conjugate margins and DEI range from ca. 12 Ma to <1 Ma, generally decreasing from east to west, although with some localized variation. Confined track length distributions (CTLD), obtained using 252Cf implantation, generally indicate rapid cooling (means ≥~14 μm), except on Goodenough Island, the western-most and highest-standing dome. On Goodenough Island, samples from the core zone have AFT ages from ~3 - <1 Ma with age decreasing with decreasing elevation. Core zone samples have mean track lengths (7-13 μm) and are positively skewed, whereas samples from shear zones are younger (<1

  19. Comparing Carbonate-Depositing Hydrothermal Systems Along the Mid-Atlantic Ridge at Lost City Hydrothermal Field and Along the Rio Grande rift in the Southwestern US: Geochemistry, Geomicrobiology and Mineralogy

    NASA Astrophysics Data System (ADS)

    Cron, B. R.; Crossey, L.; Hall, J.; Takacs-Vesbach, C.; Dahm, K.; Northup, D.; Karlstrom, K.

    2008-12-01

    Both continental and marine rift settings are characterized by hydrothermal vents (smokers) that include important components of mantle-derived "endogenic" fluids. These fluids ascend along extensional faults and provide unique biologic settings. We hypothesize that deep crustal processes support near-surface metabolic strategies by delivering chemically reduced constituents to partially oxidized surface environments. Lost City hydrothermal field, a marine vent system located 15 km west of the Mid-Atlantic ridge, exhibits a range of temperatures (40 to 75°C), pH (9-9.8), and mineral compositions (carbonate rather than sulfide-dominated) that were originally thought to be non-existent in marine vent systems. Travertine depositing CO2 springs within the Rio Grande rift, NM exhibit striking similarities in many respects to vents in Lost City. Previous research has already determined the importance of methanogenic and sulfur metabolizing microorganisms in carbonate structures at Lost City. Phylogenetic analysis of 16S rRNA genes from a terrestrial CO2 spring was performed. In addition, cells from bacteria and fungi were also cultured with oligotrophic media. Both archaeal phylotypes from the terrestrial spring grouped within Marine Group I of the Crenarchaeota, a clade dominated by sequences from hydrothermal marine vents, including some from Lost City. We will report comparative analyses of sequences from Lost City and both cultured and environmental clone libraries from the terrestrial spring using UniFrac. Geochemical modeling of data (water and gas chemistry from both locations) is used to rank the energy available for dozens of metabolic reactions. SEM and microprobe data are presented to compare mineral compositions. Our results will be discussed in respect to the tectonic setting, microbial community distributions, and the geochemical composition and textural properties of the carbonates that are precipitated in each of these systems.

  20. Fault deformation mechanisms and fault rocks in micritic limestones: Examples from Corinth rift normal faults

    NASA Astrophysics Data System (ADS)

    Bussolotto, M.; Benedicto, A.; Moen-Maurel, L.; Invernizzi, C.

    2015-08-01

    A multidisciplinary study investigates the influence of different parameters on fault rock architecture development along normal faults affecting non-porous carbonates of the Corinth rift southern margin. Here, some fault systems cut the same carbonate unit (Pindus), and the gradual and fast uplift since the initiation of the rift led to the exhumation of deep parts of the older faults. This exceptional context allows superficial active fault zones and old exhumed fault zones to be compared. Our approach includes field studies, micro-structural (optical microscope and cathodoluminescence), geochemical analyses (δ13C, δ18O, trace elements) and fluid inclusions microthermometry of calcite sin-kinematic cements. Our main results, in a depth-window ranging from 0 m to about 2500 m, are: i) all cements precipitated from meteoric fluids in a close or open circulation system depending on depth; ii) depth (in terms of P/T condition) determines the development of some structures and their sealing; iii) lithology (marly levels) influences the type of structures and its cohesive/non-cohesive nature; iv) early distributed rather than final total displacement along the main fault plane is the responsible for the fault zone architecture; v) petrophysical properties of each fault zone depend on the variable combination of these factors.

  1. Rift flank uplift and thermal evolution of an intracratonic rift basin (eastern Canada) determined by combined apatite and zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Hardie, Rebecca; Schneider, David; Metcalf, James; Flowers, Rebecca

    2015-04-01

    As a significant portion of the world's oil reserves are retrieved from rift systems, a better understanding of the timing of thermal evolution and burial history of these systems will increase the potential for the discovery of hydrocarbon-bearing rifts. The Ottawa Embayment of the St. Lawrence Platform of eastern Canada is a reactivated intracratonic rift basin related to the opening of the Iapetus Ocean at ca. 620-570 Ma, followed by the formation of the well-developed continental passive margin. Siliciclastic sediments derived from the adjacent uplifted Neoproterozoic Grenville basement provide the basin fill material. Apatite and zircon (U-Th)/He thermochronology allows for low-temperature analysis across the exposed crystalline rift flank into the synrift sedimentary sequence to resolve the unroofing, burial and subsidence history of the region. Samples were collected along a ~250 km NE-SW transect, oblique to the axis of the rift, from Mont-Tremblant, Québec (~900 m) to the central axis of the Paleozoic rift in the Southern Ontario Lowlands (~300 m). Targets included Neoproterozoic metamorphic rocks of the Grenville Province along the rift flank and basinal Cambro-Ordovician Potsdam Group. Samples from the rift flank yield zircon ages from ca. 650 Ma to ca. 560 Ma and apatite ages from ca. 290 Ma to ca. 190 Ma, with a weak positive correlation between age and grain size. Zircon ages demonstrate a strong negative correlation with radiation damage: as eU increases, age decreases. By incorporating (U-Th)/He ages with regional constraints in the thermal modelling program HeFTy, viable temperature time paths for the region can be determined. Through inverse and forward modeling, preliminary rift flank (U-Th)/He ages correspond to post-Grenville cooling with <4 km of post-Carboniferous burial. The data define slow and long episodes of syn- to post-rift cooling with rates between 0.4 and 0.1 °C/Ma. (U-Th)/He dating of samples along the full-length of the transect

  2. Instructional Systems Development Model for Interactive Videodisc. Final Report.

    ERIC Educational Resources Information Center

    Campbell, J. Olin; And Others

    This third and final report on a 3-year project, which developed authoring and production procedures for interactive videodisc based on the Interservice Procedures for Instructional Systems Development (IPISD), reviews the current state of the art, provides an overview of the project, and describes two videodiscs made for the project and the…

  3. Aural Study Systems for the Visually Handicapped. Final Report.

    ERIC Educational Resources Information Center

    Nolan, Carson Y.; Morris, June E.

    Presented is the final report on development of an aural study system which involved approximately 1000 visually handicapped elementary, secondary, and college students. Given is background information such as the relative effectiveness of reading and listening during study, and factors that affect listening comprehension such as learner…

  4. Feedbacks between deformation and reactive melt transport in the mantle lithosphere during rifting

    NASA Astrophysics Data System (ADS)

    Tommasi, A.; Baptiste, V.; Vauchez, A. R.; Fort, A.

    2014-12-01

    The East-African rift associates lithospheric thinning with extensive volcanism. Melts, even at low fractions, reduce the mantle viscosity. They also carry and exchange heat, mainly via reactions (latent heat), modifying the temperature and the rheology, which in turn controls their transport through the lithospheric mantle. Analysis of microstructures and crystal preferred orientations of mantle xenoliths from different localities along the East-African rift system highlights strong feedbacks between deformation, melt transport, and thermal evolution in the lithospheric mantle. Microstructures change markedly from south (young) to north (mature rift). In Tanzania, mylonitic to porphyroclastic peridotites predominate in on-axis localities, while off-axis ones are coarse-granular to porphyroclastic, pointing to heterogeneous deformation and variable annealing due to local interaction with fluids or to different time lags between deformation and extraction. Mylonites point to strain localization but there is no evidence for dominant grain boundary sliding: ubiquituous intracrystalline deformation in olivine and orthopyroxene and strong CPO record dislocation creep with dominant [100] glide in olivine. Synkinematic replacement of opx by olivine in both mylonitic and porphyroclastic peridotites suggests that deformation continued in the presence of melt under near-solidus conditions. This heating was transient: exsolutions in opx record cooling before extraction. Mega peridotites, which sample the southern border of the Ethiopian plateau, are coarse-porphyroclastic and show widespread metasomatism by basalts or by evolved volatile-rich low melt fractions. The former predated or was coeval to deformation, since olivine and pyroxene CPO are coherent. Exsolutions in opx imply that the high primary equilibration temperatures, which are consistent with the coarse-grained microstructures, are linked to transient heating. Finally, the fine-grained polygonal microstructures

  5. Study of a final focus system for high intensity beams

    SciTech Connect

    Henestroza, Enrique; Eylon, Shmuel; Roy, Prabir K.; Yu, Simon S.; Bieniosek, Frank M.; Shuman, Derek B.; Waldron, William L.

    2004-06-01

    The NTX experiment at the Heavy Ion Fusion Virtual National Laboratory is exploring the performance of neutralized final focus systems for high perveance heavy ion beams. The final focus scenario in an HIF driver consists of several large aperture quadrupole magnets followed by a drift section in which the beam space charge is neutralized by a plasma. This beam is required to hit a millimeter-sized target spot at the end of the drift section. The objective of the NTX experiments and associated theory and simulations is to study the various physical mechanisms that determine the final spot size (radius r{sub s}) at a given distance (f) from the end of the last quadrupole. In a fusion driver, f is the standoff distance required to keep the chamber wall and superconducting magnets properly protected. The NTX final quadrupole focusing system produces a converging beam at the entrance to the neutralized drift section where it focuses to a small spot. The final spot is determined by the conditions of the beam entering the quadrupole section, the beam dynamics in the magnetic lattice, and the plasma neutralization dynamics in the drift section. The main issues are the control of emittance growth due to high order fields from magnetic multipoles and image fields. In this paper, we will describe the theoretical and experimental aspects of the