Sample records for rift system final

  1. East African Rift System

    Microsoft Academic Search

    R. B. McConnell

    1969-01-01

    THE article entitled ``How far does the Rift System extend through Africa ?'' by Fairhead and Girdler1 is of great interest to geologists who are studying the structure of the African Pre-Cambrian platform, because the exact relocation of the epicentres of earthquakes could have great significance if related to known geological features. For example, in addition to the relationships suggested

  2. The East African rift system

    Microsoft Academic Search

    Jean Chorowicz

    2005-01-01

    This overview paper considers the East African rift system (EARS) as an intra-continental ridge system, comprising an axial rift. It describes the structural organization in three branches, the overall morphology, lithospheric cross-sections, the morphotectonics, the main tectonic features—with emphasis on the tension fractures—and volcanism in its relationships with the tectonics. The most characteristic features in the EARS are narrow elongate

  3. Cenozoic rifting in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. S.; Stock, J. M.; Clayton, R. W.; Davey, F. J.

    2007-12-01

    The West Antarctic Rift System (WARS) experienced two episodes of Cenozoic rifting. Seafloor spreading at the Adare spreading axis, north of the Ross Sea, from Middle Eocene to Late Oligocene time (43 - 26 Ma), was directly linked with motions within the WARS. For this time interval, marine magnetic anomalies within the Adare Basin and structural features within the Ross Sea constrain the motion between East and West Antarctica. During this episode, widespread intrusive activity took place in the continental part of the rift. Subsequent Late Oligocene until present-day (26 - 0 Ma) extension was characterized by a transition to volcanic activity. Yet, the details of extension during this episode have been poorly resolved. We present preliminary results of new seismic reflection and seafloor mapping data acquired on geophysical cruise 07-01 aboard the R/VIB Nathaniel Palmer in the northern part of the rift. Our results suggest that the style of deformation changed from spreading-related faulting into diffuse normal faulting (tilted blocks) that trend NE-SW with little resultant E-W extension. Recent volcanism is distributed throughout but tends to align with the NE-SW trend, into a localized zone. Formation of the Terror Rift, Ross Sea, within the same time frame suggests that the pole of rotation has changed its position, reflecting a change in the relative magnitudes of tensile stresses along the rift. Moreover, this change was accompanied with a sharp decrease of extension rates.

  4. Venus: Geology of Beta Regio rift system

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Borozdin, V. K.; Bobina, N. N.

    1992-01-01

    Beta Regio is characterized by the existence of rift structures. We compiled new geologic maps of Beta Regio according to Magellan data. There are many large uplifted tesserae on beta upland. These tesserae are partly buried by younger volcanic cover. We can conclude, using these observations, that Beta upland formed mainly due to lithospheric tectonic uplifting and was only partly constructed by volcanism. Theia Mons is the center of the Beta rift system. Many rift belts are distributed radially to Theia Mons. Typical widths of rifts are 40-160 km. Rift valleys are structurally represented by crustal grabens or half-grabens. There are symmetrical and asymmetrical rifts. Many rifts have shoulder uplifts up to 0.5-1 km high and 40-60 km wide. Preliminary analysis for rift valley structural cross sections lead to the conclusion that rifts originated due to 5-10 percent crustal extension. Many rifts traverse Beta upland and spread to the surrounding lowlands. We can assume because of these data that Beta rift system has an active-passive origin. It formed due to regional tectonic lithospheric extension. Rifting was accelerated by upper-mantle hot spot origination under the center of passive extension (under the Beta Regio).

  5. Short term development of intracontinental rifts, with reference to the late Quaternary of the Rukwa Rift (East African Rift System)

    Microsoft Academic Search

    T. Kjennerud; S. J. Lippard; P. Vanhauwaert

    2001-01-01

    Relatively low-resolution seismic data and high contemporaneous rift topography normally limit quantitative analysis of normal faults in rifts. The availability of a recently collected high-resolution reflection seismic survey in the SE part of the presently active Rukwa Rift (East African Rift System) coupled with high sedimentation rates in the submerged part of the rift makes detailed quantitative analysis possible. High-resolution

  6. The diverging volcanic rift system

    NASA Astrophysics Data System (ADS)

    Tibaldi, A.; Bonali, F. L.; Corazzato, C.

    2014-01-01

    Eruptions and volcano internal growth are mostly fed by dykes. The comprehension of the control factors on dyke paths is fundamental for the assessment of areas prone to vent formation and to the general understanding of how volcanoes work. We analyse an understudied magma path system; field data of nine volcanoes show they have a rectilinear rift zone in the central part passing into fan-arranged dykes at the two opposite volcano flanks. The geological, geomorphological and structural characteristics of these volcanoes and their substrate suggest that the formation of these "diverging rifts" is not specifically linked to substrate lithology and mechanical behaviour. The studied volcanoes have elongation < 0.88 and V > 10 km3 (mostly > 300 km3). Eight volcanoes have the central rift that is normal to the regional tectonic least principal stress (?3reg) and in one case it is sub-perpendicular. Field data have been combined with scaled analogue modelling, suggesting that if the ?3reg is oblique to the volcano elongation axis, dyke geometry in the edifice axial zone is controlled by elongation and thus by local gravity ?3, but dyke strike becomes perpendicular to ?3reg when dykes intrude the more external areas of the volcano. If a dyke is injected under the volcano flanks with slope inclination > 50°, it attains a geometry parallel to the slope. At lower slope inclinations at the edifice terminations, magma paths diverge outwards and crosscut slopes at high angle. Our data are in agreement with the assumption that regional tectonic stresses can affect large volcanoes up to the summit area guiding the development of a rectilinear thoroughgoing rift, both in extensional and transtensional regimes. The diverging pattern takes place due to reorientation of the local stress field guided by topography only when dyke inception localizes laterally respect to the edifice axis.

  7. The role of inheritance in structuring hyperextended rift systems

    NASA Astrophysics Data System (ADS)

    Manatschal, Gianreto; Lavier, Luc; Chenin, Pauline

    2015-04-01

    A long-standing question in Earth Sciences is related to the importance of inheritance in controlling tectonic processes. In contrast to physical processes that are generally applicable, assessing the role of inheritance suffers from two major problems: firstly, it is difficult to appraise without having insights into the history of a geological system; and secondly all inherited features are not reactivated during subsequent deformation phases. Therefore, the aim of our presentation is to give some conceptual framework about how inheritance may control the architecture and evolution of hyperextended rift systems. We use the term inheritance to refer to the difference between an "ideal" layer-cake type lithosphere and a "real" lithosphere containing heterogeneities and we define 3 types of inheritance, namely structural, compositional and thermal inheritance. Moreover, we assume that the evolution of hyperextended rift systems reflects the interplay between their inheritance (innate/"genetic code") and the physical processes at play (acquired/external factors). Thus, by observing the architecture and evolution of hyperextended rift systems and integrating the physical processes, one my get hints on what may have been the original inheritance of a system. Using this approach, we focus on 3 well-studied rift systems that are the Alpine Tethys, Pyrenean-Bay of Biscay and Iberia-Newfoundland rift systems. For the studied examples we can show that: 1) strain localization on a local scale and during early stages of rifting is controlled by inherited structures and weaknesses 2) the architecture of the necking zone seems to be influenced by the distribution and importance of ductile layers during decoupled deformation and is consequently controlled by the thermal structure and/or the inherited composition of the curst 3) the location of breakup in the 3 examples is not significantly controlled by the inherited structures 4) inherited mantle composition and rift-related mantle processes may control the rheology of the mantle, the magmatic budget, the thermal structure and the localization of final rifting Conversely, the deformation in hyperextended domains is strongly controlled by weak hydrated minerals (e.g. clay, serpentinite) that result form the breakdown of feldspar and olivine due to fluid and reaction assisted deformation and is consequently not inherited but the result of rift induced processes. These key observations show that both inheritance and rift-induced processes play a significant role in the development of magma-poor rift systems and that the role of inheritance may change as the physical conditions vary during the evolving rifting and as rift-induced processes (serpentinization; magma) become more important. Thus, it is not only important to determine the "genetic code" of a rift system, but also to understand how it interacts and evolves during rifting. Understand how far these new ideas and concepts derived from the southern North Atlantic and Alpine Tethys can be translated to other less explored hyperextended rift systems will be one of the challenges of the future research in rifted margins.

  8. Magmatic Versus Amagmatic Rifting in the East African Rift System from Pn and Sn Tomography

    NASA Astrophysics Data System (ADS)

    O'Donnell, J. P.; Nyblade, A.

    2014-12-01

    Geodynamic models of rifting currently rely on the mechanism of hot mantle upwelling and decompressional melting to weaken lithospheric rock to the degree that rifting can initiate. However, many rift segments worldwide are apparently amagmatic. The East African Rift System is a prime example, with large sections of the system subaerially amagmatic. We seek to address the question of whether these apparently amagmatic rift segments merely lack a surficial expression of magmatism which exists at depth, or whether rifting is genuinely amagmatic. Based on regional earthquakes recorded by the Tanzania Broadband Seismic Experiment, the Kenya Broadband Seismic Experiment, the AfricaArray East African Seismic Experiment and several permanent GSN stations, we probe for uppermost mantle melt signatures along the East African Rift System using P- and S-wave speed ratios derived from Pn and Sn tomography. Pn- and Sn-velocity models, and their ratio which can be diagnostic of the presence of fluids, will be presented.

  9. The East African Rift System

    Microsoft Academic Search

    R. B. McConnell

    1967-01-01

    Dr McConnell joined the Geological Survey of Tanganyika in 1939 and worked there and in other parts of the African continent during the following eighteen years. He reviews here geological aspects of the East African rift structure which have a bearing on problems of the upper mantle and continental drift.

  10. The Offshore East African Rift System

    NASA Astrophysics Data System (ADS)

    Franke, D.; Klimke, J.; Jokat, W.; Stollhofen, H.; Mahanjane, S.

    2014-12-01

    Numerous studies have addressed various aspects of the East African Rift system but surprisingly few on the offshore continuation of the south-eastern branch of the rift into the Mozambique Channel. The most prominent article has been published almost 30 years ago by Mougenot et al. (1986) and is based on vintage seismic data. Several studies investigating earthquakes and plate motions from GPS measurements reveal recent deformation along the offshore branch of the East African Rift system. Slip vectors from earthquakes data in Mozambique's offshore basins show a consistent NE direction. Fault plane solutions reveal ~ E-W extensional failure with focal depth clustering around 19 km and 40 km, respectively. Here, we present new evidence for neotectonic deformation derived from modern seismic reflection data and supported by additional geophysical data. The modern rift system obviously reactivates structures from the disintegration of eastern Gondwana. During the Jurassic/Cretaceous opening of the Somali and Mozambique Basins, Madagascar moved southwards along a major shear zone, to its present position. Since the Miocene, parts of the shear zone became reactivated and structurally overprinted by the East African rift system. The Kerimbas Graben offshore northern Mozambique is the most prominent manifestation of recent extensional deformation. Bathymetry data shows that it deepens northwards, with approximately 700 m downthrown on the eastern shoulder. The graben can be subdivided into four subbasins by crosscutting structural lineaments with a NW-SE trend. Together with the N-S striking graben-bounding faults, this resembles a conjugate fault system. In seismic reflection data normal faulting is distinct not only at the earthquake epicenters. The faults cut through the sedimentary successions and typically reach the seafloor, indicating ongoing recent deformation. Reference: Mougenot, D., Recq, M., Virlogeux, P., and Lepvrier, C., 1986, Seaward extension of the East African Rift: Nature, v. 321, p. 599-603

  11. The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East African rift system)

    Microsoft Academic Search

    Uwe Ring

    1994-01-01

    This paper analyzes the importance of preexisting structure for the evolution of the Cenozoic Malawi rift, which constitutes the southernmost part of the western branch of the East African rift system. Kinematic analyses demonstrate that the regional extension direction rotated clockwise from ENE to SE during rifting. Cenozoic rift faults (of dip-, oblique-, and strike-slip character) rejuvenated crustal structures whenever

  12. Mid-continent rift system: a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1984-04-01

    The Mid-continent rift system can be traced by the Mid-continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

  13. Mid-Continent rift system: a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1984-04-01

    The Mid-Continent rift system can be traced by the Mid-Continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

  14. 3D Dynamics of Oblique Rift Systems: Fault Evolution from Rift to Break-up

    NASA Astrophysics Data System (ADS)

    Brune, S.

    2014-12-01

    Rift evolution and passive margin formation has been thoroughly investigated using conceptual and numerical models in two dimensions. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, the majority of rift systems that lead to continental break-up during the last 150 My involved moderate to high rift obliquity. Yet, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Even though the model setup is very simple (horizontally layered, no inherited faults), its evolution exhibits a variety of fault orientations that are solely caused by the interaction of far-field stresses with rift-intrinsic buoyancy and strength. Depending on rift obliquity, these orientations involve rift-parallel, extension-orthogonal, and intermediate normal fault directions as well as strike-slip faults. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Model results are in very good agreement with inferences from the well-studied Gulf of Aden and provide testable predictions for other rifts and passive margins worldwide.

  15. Denudation history of the Malawi and Rukwa Rift flanks (East African Rift System) from apatite fission track thermochronology

    Microsoft Academic Search

    Peter Van der Beek; Evelyne Mbede; Paul Andriessen; Damien Delvaux

    1998-01-01

    Thirty apatite fission track ages and 22 track length measurements are presented from samples of basement rocks flanking the Malawi and Rukwa Rifts (East African Rift System) in order to elucidate the thermotectonic history of the rift flanks. The apatite fission track ages fall in the range 30 ± 15 to 296 ± 10 Ma. The relatively short (11.0–13.2 ?m)

  16. Innovative tephra studies in the East African Rift System

    Microsoft Academic Search

    Giday WoldeGabriel; William K. Hart; Grant Heiken

    2005-01-01

    Geosciences investigations form the foundation for paleoanthropological research in the East African Rift System. However, innovative applications of tephra studies for constraining spatial and temporal relations of diverse geological processes, biostratigraphic records, and paleoenvironmental conditions within the East African Rift System were fueled by paleoanthropological investigations into the origin and evolution of hominids and material culture. Tephra is a collective,

  17. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; van Wijk, Jolante; Cloetingh, Sierd; Morley, Chris K.

    2007-12-01

    The western branch of the East African Rift is composed of an arcuate succession of elongate asymmetric basins, which differ in terms of interaction geometry, fault architecture and kinematics, and patterns of uplift/subsidence and erosion/sedimentation. The basins are located within Proterozoic mobile belts at the edge of the strong Tanzanian craton; surface geology suggests that the geometry of these weak zones is an important parameter in controlling rift development and architecture, although other processes have been proposed. In this study, we use lithosphere-scale numerical models and crustal-scale analogue experiments to shed light on the relations between preexisting structures and rift architecture. Results illustrate that on a regional scale, rift localization within the mobile belts at the curved craton's western border results in an arcuate rift system, which implies that under a constant extensional stress field, part of the western branch experienced orthogonal extension and part oblique extension. Largest depocenters are predicted to form mostly orthogonal to the extension direction, and smaller depocenters will form along the oblique parts of the rift. The varying extension direction along the rift zone furthermore results in lengthwise varying rift asymmetry, segmentation characteristics, and border fault architecture (trend, length, and kinematics). Analogue models predict that discrete upper crustal fabrics may influence the location of accommodation zones and control the architecture of extension-related faults at a local scale. Models support that fabric reactivation is responsible for the oblique-slip kinematics on faults and for the development of Z-shaped or arcuate normal faults typically documented in nature.

  18. Topside Driven 3D Convection Model of the East African Rift System with Comparison to Observed Rift-Parallel Surface Motions

    NASA Astrophysics Data System (ADS)

    Stamps, D. S.; Bangerth, W.; Hager, B.

    2015-05-01

    We test the hypothesis of basal shear driven tectonics where rift-parallel surface motions are observed in an active rift of the East African Rift System using a new 3D regional geodynamic model based on the code ASPECT.

  19. Geophysical studies of the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.; LeMasurier, W.E.; Cooper, A. K.; Tessensohn, F.; Trehu, A.; Damaske, D.

    1991-01-01

    This paper is an effort to integrate the geophysical research over the West Antarctic rift system over the past three decades, including new data in the Ross Sea area within the concepts of continental rifting developed for other areas during the past decade. The results of aeromagnetic, seismic and gravity survey are discussed. -after Authors

  20. Final Rifting and Continental Breakup in the South China Sea

    NASA Astrophysics Data System (ADS)

    Franke, D.; Savva, D.; Pubellier, M. F.; Steuer, S.; Mouly, B.; Auxietre, J. L.; Meresse, F.; Chamot-Rooke, N. R. A.

    2014-12-01

    The magma-poor or intermediate magmatic South China Sea basin shows a triangular shape with a SW pointing apex, which manifests a preceding propagating rift. The earliest phase of rifting started in the Early Paleocene when a Mesozoic convergent margin changed to extension. After about 30 Myrs of rifting, breakup in the major eastern subbasin of the SCS occurred in the Early Oligocene and subsequent breakup of the southwest subbasin took place in the Late Oligocene. Seismic reflection data imaging conjugate crustal sections result in a conceptual model for rift-evolution at conjugate margins in time and space. Distinct are regular undulations in the crust-mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the oceanic domain we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. Largely symmetric structures result from the initial rifting stage. At the future breakup position either of the rift basin bounding faults subsequently penetrates the entire crust, resulting in asymmetry at this location. However, asymmetric deformation which is controlled by large scale detachment faulting is confined to narrow areas and does not result in a margin-wide simple-shear model. Rather considerable along-margin variations are suggested resulting in alternating "upper and lower plate" margins.

  1. Evidence for a Nascent Rift in South Sudan: Westward Extension of the East African Rift System?

    NASA Astrophysics Data System (ADS)

    Maceira, M.; Van Wijk, J. W.; Coblentz, D. D.; Modrak, R. T.

    2013-12-01

    Joint inversion of seismic and gravity data of eastern Africa reveals a low seismic wave velocity arm stretching from the southern Main Ethiopian rift westward in an east-west direction that has not been noticed in earlier work. The zone of low velocities is located in the upper mantle and is not overlain by a known structural rift expression. We analyzed the local pattern of seismicity and the stresses in the African plate to interpret this low velocity arm. The zone of low velocities is located within the Central African Fold Belt, which dissects the northern and southern portions of the African continent. It is seismically active with small to intermediate sized earthquakes occurring in the crust. Seven earthquake solutions indicate (oblique) normal faulting and low-angle normal faulting with a NS to NNW-SSE opening direction, as well as strike-slip faulting. This pattern of deformation is typically associated with rifting. The present day stress field in northeastern Africa reveals a tensional state of stress at the location of the low velocity arm with an opening direction that corresponds to the earthquake data. We propose that the South Sudan low velocity zone and seismic center are part of an undeveloped, nascent rift arm. The arm stretches from the East African Rift system westward.

  2. Mid-Continent rift system - a frontier hydrocarbon province

    SciTech Connect

    Lee, C.K.; Kerr, S.D. Jr.

    1983-08-01

    Geophysical evidence in the Mid-Continent has led to delineation of a rift system active during the Proterozoic Y Era. The Mid-Continent rift system can be traced by the Mid-Continent gravity high and corresponding aeromagnetic anomaly signature from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. The aeromagnetic anomaly signature of the rift trend discloses where these sediments have been preserved. Thick accumulations of upper Proterozoic sediments are indicated by both upward continuation of the aeromagnetic profiles across the rift trend and gravity models which incorporate: 1) a deep mafic body to create the narrow gravity high, 2) anomalously thick crust to account for the more regional gravity low, and 3) sedimentary accumulations on the Precambrian surface to explain the small-scale notches which occur within the narrow gravity high. Reflection seismic data are virtually unknown in the rift area; however, data recently acquired by COCORP across the southern end of the feature in Kansas provide evidence of thick stratified sequences in the rift valley. Studies of the East African rift have revealed that the tropical rift valley is an exceptionally fertile environment for deposition and preservation of kerogenous material. The Sirte, Suez, Viking, Dnieper-Donetz, and Tsaidam basins are just a few of the rift basins currently classed as giant producers. The existence of a rift basin trend with thick accumulations of preserved sediments, demonstrably organic rich, introduces the northern Mid-Continent US as a new frontier for hydrocarbon exploration.

  3. Thermal and mechanical development of the East African Rift System

    E-print Network

    Ebinger, Cynthia Joan

    1988-01-01

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  4. Combining detrital geochronology and sedimentology to assess basin development in the Rukwa Rift of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Hilbert-Wolf, Hannah; Roberts, Eric; Mtelela, Cassy; Downie, Bob

    2015-04-01

    We have employed a multifaceted approach to sedimentary provenance analysis in order to assess the timing and magnitude of tectonic events, sedimentation, and landscape development in the Western Branch of the East African Rift System. Our approach, termed 'Sedimentary Triple Dating', integrates: (1) U-Pb dating via LA-ICPMS; (2) fission track; and (3) (U-Th)/He thermochronology of detrital zircon and apatite. We integrate geochronology, thermochronology, and provenance analysis to relate the initiation of rifting events to regional dynamic uplift, sedimentation patterns, and interpret the far-reaching climatic and evolutionary effects of fluctuating rift flank topography in the Rukwa Rift, a segment of the Western Branch. This work provides additional data to support the recent concept of synchronous development of the Western and Eastern branches of the East African Rift System ~25 Ma, and better constrains the age, location and provenance of subsequent rifting and sedimentation events in the Rukwa Rift Basin. Investigation of well cuttings and outcrop samples from the Neogene-Recent Lake Beds Succession in the Rukwa Rift Basin revealed a suite of previously unrecognized tuffaceous deposits at the base of the succession. A population of euhedral, magmatic zircons from a basal Lake Beds tuff and Miocene-Pliocene detrital zircons from well cuttings suggest that Neogene rift reactivation and volcanism began ~9-10 Ma. This timing is consistent with demonstrated rifting in Uganda and Malawi, as well as with the initiation of volcanism in the Rungwe Volcanic Province at the southern end of the Rukwa Rift, and the estimated development of Lake Tanganyika to the north. Moreover, there appear to be a suite of unconformity bounded stratigraphic units that make up the Lower Lake Beds succession, and detrital zircon maximum depositional ages from these units suggests episodic sedimentation in the rift, punctuated by long hiatuses or uplift, rather than steady subsidence and sedimentation. A distinct, upward-younging trend in detrital zircon populations associated with each stratigraphic interval suggests that volcanism was also episodic through the Late Miocene-Pliocene, and linked to periods of rifting and basin filling. Detrital zircon populations are dominated by Paleoproterozoic grains of the same age as the metamorphic Ubendian Belt that underlies the rift basin and forms the flanks. This provenance, volcaniclastic-dominated sedimentation, and clasts from the rift flanks suggest an internally draining basin and high rift flanks associated with the most recent rifting episode. There are also dominant populations of Neoproterozoic and Mesoproterozoic zircons, likely reworked from the underlying Cretaceous sandstones and derived from younger metamorphic terranes of the Ubendian Belt. Volcanic pulses associated with rifting are responsible for the young magmatic zircons, and suggest the initiation of a late Cenozoic rifting event, further constraining the timing of rifting and basin development in the Western Branch, as well as the timing of landscape change associated with erosion and uplift. Our dates additionally provide important temporal context for the rich vertebrate record described from the East African Rift, illuminating the tectonic backdrop of important large-scale faunal shifts in East Africa.

  5. Recent seismicity of the East African Rift system and its implications

    Microsoft Academic Search

    Fekadu Kebede; Ota Kulhánek

    1991-01-01

    The seismicity of the East African Rift system and southern Red Sea is studied here. Location of earthquake epicenters in East Africa shows that there is a seismicity gap in space and time between the Main Ethiopian Rift system and the eastern rift. However, distribution of earthquake epicenters together with the energy mapping suggest a continuity of seismic activity or

  6. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    Microsoft Academic Search

    Jean-Jacques Tiercelin; Catherine Pflumio; Maryse Castrec; Jacques Boulégue; Pascal Gente; Joël Rolet; Christophe Coussement; Karl O. Stetter; Robert Huber; Sony Buku; Wafula Mifundu

    1993-01-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth

  7. Geochemical Overview of the East African Rift System

    Microsoft Academic Search

    T. Furman

    2003-01-01

    Mafic volcanics of the East African Rift System (EARS) record a protracted history of continental extension that is linked to mantle plume activity. The modern EARS traverses two post-Miocene topographic domes separated by a region of polyphase extension in northern Kenya and southern Ethiopia. Basaltic magmatism commenced ˜45 Ma in this highly extended region, while the onset of plume-related activity

  8. Hydrothermal vents is Lake Tanganyika, East African Rift system

    Microsoft Academic Search

    J. J. Tiercelin; C. Pflumio; M. Castrec

    1993-01-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth

  9. Isotopic and geochemical evidence for a heterogeneous mantle plume origin of the Virunga volcanics, Western rift, East African Rift system

    Microsoft Academic Search

    Ramananda Chakrabarti; Asish R. Basu; Alba P. Santo; Dario Tedesco; Orlando Vaselli

    2009-01-01

    Virunga volcanics in the western rift of the East African Rift system (EARS) show silica-undersaturated, ultra-alkaline, alkalic-mafic compositions. The two active Virunga volcanoes, Nyiragongo and Nyamuragira, are 15 km apart. Nyiragongo shows unusual compositions not seen globally and has the lowest recorded viscosity among terrestrial magmas while Nyamuragira is unusually effusive. These volcanoes occur along the fringes of a topographic uplift

  10. Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System

    Microsoft Academic Search

    Giacomo Corti

    The evolution and characteristics of narrow continental rifting are illustrated in this paper through a review of recent lithospheric-scale analog models of continental extension compared with selected examples from the East African Rift System.Rift location is controlled by reactivation of lithospheric-scale pre-existing weaknesses; in these areas, the initial phases of rifting correspond to the activation of few, large-offset boundary faults

  11. Hydrothermal vents in Lake Tanganyika, East African, Rift system

    NASA Astrophysics Data System (ADS)

    Tiercelin, Jean-Jacques; Pflumio, Catherine; Castrec, Maryse; Boulégue, Jacques; Gente, Pascal; Rolet, Joël; Coussement, Christophe; Stetter, Karl O.; Huber, Robert; Buku, Sony; Mifundu, Wafula

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 °C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza,active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO3-enriched fluid similar to the NaHCO3 thermal fluids from lakes Magadi and Bogoria in the eastern branch off the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction off 219 and 179 °C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130 °N normal-dextral faults that intersect the north- south major rift trend. The source of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza.

  12. Clastic rocks associated with the Midcontinent rift system in Iowa

    USGS Publications Warehouse

    Anderson, Raymond R.; McKay, Robert M.

    1997-01-01

    The Middle Proterozoic Midcontinent Rift System (MRS) of North America is a failed rift that formed in response to region-wide stresses about 1,100 Ma. In Iowa, the MRS is buried beneath 2,200?3,500 ft of Paleozoic and Mesozoic sedimentary rocks and Quaternary glaciogenic deposits. An extremely large volume of sediments was deposited within basins associated with the rift at several stages during its development. Although the uplift of a rift-axial horst resulted in the erosional removal of most of these clastic rocks from the central region of the MRS in Iowa, thick sequences are preserved in a series of horst-bounding basins. Recent studies incorporating petrographic analysis, geophysical modeling, and other analytical procedures have led to the establishment of a preliminary stratigraphy for these clastic rocks and interpretations of basin geometries. This information has allowed the refinement of existing theories and history of MRS formation in Iowa. Additionally, drill samples previously interpreted as indicating the existence of early Paleozoic basins overlying the Proterozoic MRS basins were re-examined. Samples previously interpreted as deep-lying Paleozoic rocks are now known to have caved from upper levels of the drillhole and were out of stratigraphic position. No deep Paleozoic basins exist in this area. These investigations led to the development of petrographic parameters useful in differentiating the Proterozoic MRS Red clastics from Paleozoic clastic rocks having similar lithologies.

  13. Groundwater origin and flow dynamics in active rift systems - A multi-isotope approach in the Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Bretzler, Anja; Osenbrück, Karsten; Gloaguen, Richard; Ruprecht, Janina S.; Kebede, Seifu; Stadler, Susanne

    2011-05-01

    SummaryThis study aims to investigate groundwater recharge and flow patterns in tectonically active rift systems, exemplified by a case study in the Main Ethiopian Rift. The chosen approach includes the investigation of hydrochemical parameters and environmental isotopes ( 3H, ? 2H, ? 18O, ? 13C-DIC, 14C-DIC, 87Sr/ 86Sr). Apparent groundwater ages were determined by radiocarbon dating after correction of 14C-DIC using a modified ? 13C-mixing model and further validation using geochemical modelling with NETPATH. Hydrochemical and isotopic data indicate an evolutionary trend existing from the escarpments towards the Rift floor. Groundwater evolves from tritium-containing and hence recently recharged Ca-HCO 3-type water on the escarpments to tritium-free Na-HCO 3 groundwater dominating deep Rift floor aquifers. Correspondingly, rising pH and HCO3- values coupled with increasingly enriched ? 13C signatures point to hydrochemical evolution of DIC and beginning dilution of the carbon isotope signature by other carbon sources, related to a diffuse influx of mantle CO 2 into the groundwater system. Especially thermal groundwater sampled near the most recent fault zones in the Fantale/Beseka region displays clear influence of mantle CO 2 and increased water-rock interaction, indicated by a shift in ? 13C and 87Sr/ 86Sr signatures. The calculation of apparent groundwater ages revealed an age increase of deep groundwater from the escarpments to the Rift floor, complying with hydrochemical evolution. Within the Rift, samples show a relatively uniform distribution of apparent 14C ages of ˜1800 to ˜2800 years, with the expected down-gradient aging trend lacking, contradicting the predominant intra-rift groundwater flow described in existing transect-based models of groundwater flow. By combining hydrochemical and new isotopic data with knowledge of the structural geology of the Rift, we improve the existing groundwater flow model and propose a new conceptual model by identifying flow paths both transversal and longitudinal to the main Rift axis, the latter being strongly controlled by faulted and tilted blocks on the escarpment steps. The connection between groundwater flow and fault direction make this model applicable to other active rift systems with similar structural settings.

  14. Earthquakes along the East African Rift System: A multiscale, system-wide perspective

    Microsoft Academic Search

    Zhaohui Yang; Wang-Ping Chen

    2010-01-01

    On the basis of a comprehensive data set of precisely determined depths of 121 large to moderate-sized earthquakes along and near the entire East African Rift System (EARS), there are three distinct patterns in focal depths which seem to correlate with progressive stages in the development of the largest active rift in the world. First, away from both ends of

  15. Crustal rheology and depth distribution of earthquakes: Insights from the central and southern East African Rift System

    Microsoft Academic Search

    Julie Albaric; Jacques Déverchère; Carole Petit; Julie Perrot; Bernard Le Gall

    2009-01-01

    The seismicity depth distribution in the central and southern East African Rift System (EARS) is investigated using available catalogs from local, regional and global networks. We select well-determined events and make a re-assessment of these catalogs, including a relocation of 40 events and, where necessary, a declustering. About 560 events are finally used for determining foci depth distribution within 6

  16. Hydrothermal vents is Lake Tanganyika, East African Rift system

    SciTech Connect

    Tiercelin, J.J. [Universite de Bretagne Occidentale, Brest (France)] [Universite de Bretagne Occidentale, Brest (France); Pflumio, C.; Castrec, M. [Universite Paris VI, Paris (France)] [and others] [Universite Paris VI, Paris (France); and others

    1993-06-01

    Sublacustrine hydrothermal vents with associated massive sulfides were discovered during April 1987 at Pemba and Cape Banza on the Zaire side of the northern basin of Lake Tanganyika, East African Rift system. New investigations by a team of ten scuba divers during the multinational (France, Zaire, Germany, and Burundi) TANGANYDRO expedition (August-October 1991) found hydrothermal vents down to a depth of 46 m along north-trending active faults bounding the Tanganyika rift on the western side. Temperatures from 53 to 103 {degrees}C were measured in hydrothermal fluids and sediments. Veins of massive sulfides 1-10 cm thick (pyrite and marcasite banding) were found associated with vents at the Pemba site. At Cape Banza, active vents are characterized by 1-70-cm-high aragonite chimneys, and there are microcrystalline pyrite coatings on the walls of hydrothermal pipes. Hydrothermal fluid end members show distinctive compositions at the two sites. The Pemba end member is a NaHCO{sub 3}-enriched fluid similar to the NaHCO{sub 3} thermal fluids form lakes Magadi and Bogoria in the eastern branch of the rift. The Cape Banza end member is a solution enriched in NaCl. Such brines may have a deep-seated basement origin, as do the Uvinza NaCl brines on the eastern flank of the Tanganyika basin. Geothermometric calculations have yielded temperatures of fluid-rock interaction of 219 and 179 {degrees}C in the Pemba and Cape Banza systems, respectively. Abundant white or reddish-brown microbial colonies resembling Beggiatoa mats were found surrounding the active vents. Thermal fluid circulation is permitted by opening of cracks related to 130{degrees}N normal-dextral faults that intersect the north-south major rift trend. The sources of heat for such hydrothermal systems may relate to the existence of magmatic bodies under the rift, which is suggested by the isotopic composition of carbon dioxide released at Pemba and Cape Banza. 21 refs., 2 figs.

  17. Rheological variations across an active rift system -- results from lithosphere-scale 3D gravity and thermal models of the Kenya Rift

    NASA Astrophysics Data System (ADS)

    Meeßen, Christian; Sippel, Judith; Cacace, Mauro; Scheck-Wenderoth, Magdalena; Fishwick, Stewart; Heine, Christian; Strecker, Manfred R.

    2015-04-01

    Due to its tectono-volcanic activity and economic (geothermal and petroleum) potential, the eastern branch of the East African Rift System (EARS) is one of the best studied extensional systems worldwide and an important natural laboratory for the development of geodynamic concepts on rifting and nascent continental break-up. The Kenya Rift, an integral part of the eastern branch of the EARS, has formed in the area of weak Proterozoic crust of the Mozambique mobile belt adjacent to the rheologically stronger Archean Tanzania craton. To assess the variations in lithospheric strength between different tectonic domains and their influence on the tectonic evolution of the region, we developed a set of structural, density, thermal and rheological 3D models. For these models we integrated multi-disciplinary information, such as published geological field data, sediment thicknesses, well information, existing structural models, seismic refraction and reflection data, seismic tomography, gravity and heat-flow data. Our main approach focused on combined 3D isostatic and gravity modelling. The resulting lithosphere-scale 3D density model provides new insights into the depth distribution of the crust-mantle boundary and thickness variations of different crustal density domains. The latter further facilitate interpretations of variations of lithologies and related physical rock properties. By considering lithology-dependent heat production and thermal conductivity, we calculate the conductive thermal field across the region of the greater Kenya Rift. Finally, the assessed variations in lithology and temperature allow deriving differences in the integrated strength of the lithosphere across the different tectonic domains.

  18. The East African rift system in the light of KRISP 90

    USGS Publications Warehouse

    Keller, Gordon R.; Prodehl, C.; Mechie, J.; Fuchs, K.; Khan, M.A.; Maguire, Peter K.H.; Mooney, W.D.; Achauer, U.; Davis, P.M.; Meyer, R.P.; Braile, L.W.; Nyambok, I.O.; Thompson, G.A.

    1994-01-01

    On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction/teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of 100-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the Kenya rift in the general framework of other continental rifts. Major scientific goals of this phase of KRISP were to reveal the detailed crustal and upper mantle structure under the Kenya rift, to study the relationship between mantle updoming and the development of sedimentary basins and other shallow structures within the rift, to understand the role of the Kenya rift within the Afro-Arabian rift system and within a global perspective and to elucidate fundamental questions such as the mode and mechanism of continental rifting. The KRISP results clearly demonstrate that the Kenya rift is associated with sharply defined lithospheric thinning and very low upper mantle velocities down to depths of over 150 km. In the south-central portion of the rift, the lithospheric mantle has been thinned much more than the crust. To the north, high-velocity layers detected in the upper mantle appear to require the presence of anistropy in the form of the alignment of olivine crystals. Major axial variations in structure were also discovered, which correlate very well with variations in the amount of extension, the physiographic width of the rift valley, the regional topography and the regional gravity anomalies. Similar relationships are particularly well documented in the Rio Grande rift. To the extent that truly comparable data sets are available, the Kenya rift shares many features with other rift zones. For example, crustal structure under the Kenya, Rio Grande and Baikal rifts and the Rhine Graben is generally symmetrically centered on the rift valleys. However, the Kenya rift is distinctive, but not unique, in terms of the amount of volcanism. This volcanic activity would suggest large-scale modification of the crust by magmatism. Although there is evidence of underplating in the form of a relatively high-velocity lower crustal layer, there are no major seismic velocity anomalies in the middle and upper crust which would suggest pervasive magmatism. This apparent lack of major modification is an enigma which requires further study. ?? 1994.

  19. Geochronological and geochemical assessment of Cenozoic volcanism from the Terror Rift region of the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Rilling, Sarah E.

    The work presented in this dissertation explains results from three different methods to determine the relation between tectonism and rift-related volcanism in the Terror Rift region of the West Antarctic Rift System (WARS). Alkaline lavas from seven submarine features, Beaufort Island and Franklin Islands, and several locations near Mt Melbourne were dated by 40Ar/39Ar geochronology and analyzed for elemental and isotopic chemical signatures. Each chapter addresses a different aspect of the hypothesis that the presence of volatiles, primarily H2O or CO2, in the magma source has led to anomalously high volumes of magmatism after rift-related decompressional melting rather than requiring an active mantle plume source. Chapter 2 provides the temporal framework, illustrating that the sampled features range in age from 6.7 Ma to 89 ka, post-dating the main Miocene age phase of Terror Rift extension. Chapter 3 illustrates the traditional enriched elemental and isotopic chemical signatures to support the overall homogeneity of these lavas and previously analyzed areas of the WARS. This chapter also provides a new model for the generation of the Pb isotopic signatures consistent with a history of metasomatism in the magma source. Chapter 4 provides an entirely new chemical dataset for the WARS. The first platinum group element (PGE) abundances and extremely unradiogenic Os isotopic signatures of Cenozoic lavas from Antarctica provide the strongest evidence of melting contributions from a lithospheric mantle source. The combined results from these three studies consistently support the original hypothesis of this dissertation. New evidence suggests that WARS related lavas are not related to a mantle plume(s) as previously proposed. Instead, they are generated by passive, decompressional melting of a source, likely a combination of the asthenospheric and lithospheric mantle, which has undergone previous melting events and metasomatism.

  20. Seismic studies of the East African Rift System and the Tibetan Plateau: Implications for the rheology of lithosphere and the evolution of rifts in continents

    Microsoft Academic Search

    Zhaohui Yang

    2009-01-01

    This dissertation investigates rheology of the continental lithosphere and evolution of continental rifts using earthquake source parameters, precisely determined from waveforms and travel-times in two target regions. First, I investigate the distribution of focal depths for earthquakes that occurred along the East African Rift System (EARS), using both new results of this study and reports from the literature. Three different

  1. Rift-wide correlation of 1.1 Ga Midcontinent rift system basalts: Implications for multiple mantle sources during rift development

    USGS Publications Warehouse

    Nicholson, S.W.; Shirey, S.B.; Schulz, K.J.; Green, J.C.

    1997-01-01

    Magmatism that accompanied the 1.1 Ga Midcontinent rift system (MRS) is attributed to the upwelling and decompression melting of a mantle plume beneath North America. Five distinctive flood-basalt compositions are recognized in the rift-related basalt succession along the south shore of western Lake Superior, based on stratigraphically correlated major element, trace element, and Nd isotopic analyses. These distinctive compositions can be correlated with equivalent basalt types in comparable stratigraphic positions in other MRS localities around western Lake Superior. Four of these compositions are also recognized at Mamainse Point more than 200 km away in eastern Lake Superior. These regionally correlative basalt compositions provide the basis for determining the sequential contribution of various mantle sources to flood-basalt magmatism during rift development, extending a model originally developed for eastern Lake Superior. In this refined model, the earliest basalts were derived from small degrees of partial melting at great depth of an enriched, ocean-island-type plume mantle source (??Nd(1100) value of about 0), followed by magmas representing melts from this plume source and interaction with another mantle source, most likely continental lithospheric mantle (??Nd(1100) < 0). The relative contribution of this second mantle source diminished with time as larger degree partial melts of the plume became the dominant source for the voluminous younger basalts (??Nd(1100) value of about 0). Towards the end of magmatism, mixtures of melts from the plume and a depleted asthenospheric mantle source became dominant (??Nd(1100) = 0 to +3).

  2. Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system

    Microsoft Academic Search

    Giacomo Corti; Jolante van Wijk; Sierd Cloetingh; Chris K. Morley

    2007-01-01

    The western branch of the East African Rift is composed of an arcuate succession of elongate asymmetric basins, which differ in terms of interaction geometry, fault architecture and kinematics, and patterns of uplift\\/subsidence and erosion\\/sedimentation. The basins are located within Proterozoic mobile belts at the edge of the strong Tanzanian craton; surface geology suggests that the geometry of these weak

  3. Rift nucleation, rift propagation and the creation of basement micro-plates within active rifts

    Microsoft Academic Search

    D. Koehn; K. Aanyu; S. Haines; T. Sachau

    2008-01-01

    In this contribution we study the dynamics of rift nucleation and the interaction of propagating rift segments. We use the East African Rift System (EARS) as a case study with special emphasis on the Albertine rift system situated within the western branch of the EARS with the 5000 m high Rwenzori horst, a basement block that was captured by two rift

  4. Earthquakes along the East African Rift System: A multi-scale, continent-wide perspective

    Microsoft Academic Search

    Z. Yang; W. Chen

    2009-01-01

    Based on a comprehensive dataset of precisely determined depths of 121 large to moderate-sized earthquakes along and near the entire East African Rift system (EARS), there are three distinct patterns in focal depths which seem to reflect progressive stages in the development of the largest active rift in the world. First, away from both ends of the western, younger branch

  5. Lithospheric cross sections of the European Cenozoic rift system

    NASA Astrophysics Data System (ADS)

    Prodehl, C.; Mueller, St.; Glahn, A.; Gutscher, M.; Haak, V.

    1992-07-01

    The lithospheric structure of the European Cenozoic rift system ( ECRIS) is presented in transects through the southern Rhine Graben and the Rhenish Massif/Hessen depression, emphasizing the geophysical structure of the lithosphere based on seismic refraction/reflection investigations, teleseismic tomography, electromagnetic depth-sounding models, and gravity, aeromagnetic, earthquake, uplift/subsidence and heat flow data. The rift is clearly expressed in the Rhine Graben, but is not evident at the surface in the area of the Rhenish Massif where its existence is indicated by seismicity. It is characterized by abnormal crustal and upper-mantle structures which vary considerably in horizontal direction. For example, under the Rhine Graben the crust is thinned to 25 km, but at 40 km depth anomalously high velocities are observed. In contrast, beneath the Rhenish Massif the crust is thickened to 35-37 km and under its eastern part a high-velocity thin upper-mantle slice is seen at 30 km depth within the lower crust which, towards the Hessen depression, is gradually replaced by normal Variscan mantle with the Moho near 30 km depth. Under the western part of the Rhenish Massif P- and S-wave velocities are reduced below 50 km depth which is not seen east of the Rhine river. Under the Rhine Graben the existence of a low-velocity upper mantle above 100 km cannot be generalized, but is restricted to confined regions.

  6. Beta Regio rift system on Venus: Geologic interpretation of Magellan images

    NASA Technical Reports Server (NTRS)

    Nikishin, A. M.; Bobina, N. N.; Borozdin, V. K.; Burba, G. A.

    1993-01-01

    Magellan SAR images and altimetric data were used to produce a new geologic map of the Northern part of Beta Regio within the frames of C1-30N279 mapsheet. It was part of our contributions into C1-formate geologic mapping efforts. The original map is at 1:8,000,000 scale. The rift structures are typical for Beta Regio on Venus. There are many large uplifted tessera areas on Beta upland. They occupy areas of higher topography. These tessera are partly burried by younger volcanic cover of plain material. These observations show that Beta upland was formed mainly due to lithospheric tectonical uplifting, and only partly was constructed by volcanic activity. A number of rift valleis traverse Beta upland and spread to the surrounding lowlands. The largest rift crosses Beta N to S. Typical width of rifts is 40 to 160 km. Rift valleis in this region are structurally represented by crustal grabens and half-grabens. There are symmetrical and asymmetrical rifts. A lot of them have shoulder uplifts with the relative high up to 0.5-1 km and width 40 to 60 km. Preliminary analysis of the largest rift valley structural cross-sections leads to the conclusion that it originated due to a 5-10 percent crustal extension. The prominent shield volcano - Theia Mons - is located at the center of Beta rift system. It could be considered as the surface manifestation of the upper mantle hot spot. Most of the rift belts are located radially to Theia Mons. The set of these data leads to conclusion that Beta rift system has an 'active-passive' origin. It was formed due to the regional tectonic lithospheric extension. Rifting was accelerated by the upper mantle hot spot located under the center of passive extension (under Beta Regio).

  7. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Autin, Julia; Manatschal, Gianreto; Sauter, Daniel; Munschy, Marc; Schaming, Marc

    2015-04-01

    The processes related to hyperextension, exhumed mantle domains, lithospheric breakup, and formation of first unequivocal oceanic crust at magma-poor rifted margins are yet poorly understood. In this paper, we try to bring new constraints and new ideas about these latest deformation stages by studying the most distal Australian-Antarctic rifted margins. We propose a new interpretation, linking the sedimentary architectures to the nature and type of basement units, including hyperextended crust, exhumed mantle, embryonic, and steady state oceanic crusts. One major implication of our study is that terms like prerift, synrift, and postrift cannot be used in such polyphase settings, which also invalidates the concept of breakup unconformity. Integration and correlation of all available data, particular seismic and potential field data, allows us to propose a new model to explain the evolution of magma-poor distal rifted margins involving multiple and complex detachment systems. We propose that lithospheric breakup occurs after a phase of proto-oceanic crust formation, associated with a substantial magma supply. First steady state oceanic crust may therefore not have been emplaced before ~53.3 Ma corresponding to magnetic anomaly C24. Observations of magma amount and its distribution along the margins highlight a close magma-fault relationship during the development of these margins.

  8. The stratigraphic architecture of hyper-extended rift systems: A field perspective from Aps, Pyrenees and Baja-California

    NASA Astrophysics Data System (ADS)

    Masini, Emmanuel; Manatschal, Gianreto; Tugend, Julie; Mohn, Geoffroy; Robin, Cécile; Geoffroy, Laurent; Unternehr, Patrick

    2013-04-01

    The discovery of hyper-extended domains in deep water rifted margins challenged the classical view of the evolution of rift systems leading to continental breakup. In these hyper-extended domains, rift basins occur over less than 10km thick extended continental crust or exhumed subcontinental mantle. Neither their imaged stratigraphic architecture and drilled facies nor the subsidence history can be explained by classical McKenzie-type rift models. Studies performed on off- and on-shore examples demonstrate the importance of tectonic exhumation by detachment faulting. However, despite their apparent widespread occurrence in present-day rifted margins, the overall tectono-sedimentary evolution of these systems remains poorly understood. In this study we review and compare key multi-scale observations from 3 different hyper-extended rift systems. 1) The first example, in the Western Pyrenees, corresponds to a complete sediment-rich Cretaceous hyper-extended rift system that can be investigated. 2) The second example in the Swiss Alps, gives the access to supra-detachment sedimentary evolution in a sediment-starved context. 3) The last example exposed in Baja California Sur, shows supra-detachment sedimentary evolution in sediment-rich and shallow water environment. Based on these studies in three different settings, we conclude that the basins forming in the lower and upper plate position respective to detachment fault polarity develop as two different types of basins. Lower plate basins develop over top-basement detachment systems and discontinuous pieces of pre-rift strata (extensional allochthons). In this setting, the sequential development of low-angle detachment systems implies the creation of new real estate crust (new seafloor surfaces) and a complex syn-rift stratigraphic architecture. Through this domain, the deposition of syn- and post-tectonic sediments above exhumation surfaces are diachronous along stretching direction illustrating relative migration of exhumation processes. Syn-tectonic deposits correspond to the erosion of exhumed material and mass-wasting processes along active detachment fault scarps. Once active exhumation migrates, inactive parts of detachment merge to form a lower plate sag basin under thermal subsidence. In contrast, the upper plate basin records a single isochronous sag phase over weakly extended pre-rift strata. This observation suggests that upper plate sag formation is controlled by depth-dependent crustal extension. As illustrated by the different study cases, the sag phase sedimentary record of upper and lower plate settings strongly depends on their respective connection with sediment sourcing systems. Finally, we used the Rifter software developed within the Margin Modelling Phase 3 (MM3) consortium to generate equilibrated lithospheric sections based on our observations. Through these kinematic numerical experiments, we aim to quantify the tectonic, thermal and isostatic evolution of hyper-extended rift systems.

  9. ALVIN investigation of an active propagating rift system, Galapagos 95.5° W

    USGS Publications Warehouse

    Hey, R.N.; Sinton, J.M.; Kleinrock, M.C.; Yonover, R.N.; MacDonald, K.C.; Miller, S.P.; Searle, R.C.; Christie, D.M.; Atwater, T.M.; Sleep, N.H.; Johnson, H. Paul; Neal, C.A.

    1992-01-01

    ALVIN investigations have defined the fine-scale structural and volcanic patterns produced by active rift and spreading center propagation and failure near 95.5° W on the Galapagos spreading center. Behind the initial lithospheric rifting, which is propagating nearly due west at about 50 km m.y.?1, a triangular block of preexisting lithosphere is being stretched and fractured, with some recent volcanism along curving fissures. A well-organized seafloor spreading center, an extensively faulted and fissured volcanic ridge, develops ~ 10 km (~ 200,000 years) behind the tectonic rift tip. Regional variations in the chemical compositions of the youngest lavas collected during this program contrast with those encompassing the entire 3 m.y. of propagation history for this region. A maximum in degree of magmatic differentiation occurs about 9 km behind the propagating rift tip, in a region of diffuse rifting. The propagating spreading center shows a gentle gradient in magmatic differentiation culminating at the SW-curving spreading center tip. Except for the doomed rift, which is in a constructional phase, tectonic activity also dominates over volcanic activity along the failing spreading system. In contrast to the propagating rift, failing rift lavas show a highly restricted range of compositions consistent with derivation from a declining upwelling zone accompanying rift failure. The lithosphere transferred from the Cocos to the Nazca plate by this propagator is extensively faulted and characterized by ubiquitous talus in one of the most tectonically disrupted areas of seafloor known. The pseudofault scarps, where the preexisting lithosphere was rifted apart, appear to include both normal and propagator lavas and are thus more lithologically complex than previously thought. Biological communities, probably vestimentiferan tubeworms, occur near the top of the outer pseudofault scarp, although no hydrothermal venting was observed.

  10. Structural geology of the African rift system: Summary of new data from ERTS-1 imagery. [Precambrian influence

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.

    1974-01-01

    ERTS imagery reveals for the first time the structural pattern of the African rift system as a whole. The strong influence of Precambrian structures on this pattern is clearly evident, especially along zones of cataclastic deformation, but the rift pattern is seen to be ultimately independent in origin and nature from Precambrian tectonism. Continuity of rift structures from one swell to another is noted. The widening of the Gregory rift as its northern end reflects an underlying Precambrian structural divergence, and is not a consequence of reaching the swell margin. Although the Western Rift is now proven to terminate at the Aswa Mylonite Zone, in southern Sudan, lineaments extend northeastwards from Lake Albert to the Eastern Rift at Lake Stefanie. The importance of en-echelon structures in the African rifts is seen to have been exaggerated.

  11. Precambrian lithospheric controls on the development of the East African rift system

    Microsoft Academic Search

    Andrew A. Nyblade; Richard A. Brazier

    2002-01-01

    We propose a new kinematic framework for the East African rift system linking the development of the Eastern and Western rifts via stress transmission across the Archean Tanzania craton. The proposal is based on three observations. (1) A new map of uppermost-mantle P-wave velocities beneath Tanzania, in combination with the results of other seismic, gravity, heat-flow, and xenolith studies, reveals

  12. Monitoring recent crustal movements in the Kenya rift valley by global positioning system (GPS) — a proposal

    NASA Astrophysics Data System (ADS)

    Rostom, R. S.

    There is evidence that the Kenya Rift is active. 1990 witnessed the execution of the Kenya Rift International Seismic Project to study the deep structure of the Kenya Rift. Yet there is no actual measurement of the rate of its spreading. Estimation based on volumes of volcanic rocks extruded over a given period has led to a wide range of estimates (0.2-2 mm/a). There is a need to establish geometrically the real spreading rate at present. The new technology (Global Positioning System) in its precise mode gives a promise to solve the problem. A preliminary network is proposed to consist of 4 points on each of the Rift walls. The logistics of site location, configuration of the network, observation method, frequency, etc. are discussed. The project requires international cooperation for execution.

  13. CASERTZ aeromagnetic data reveal late Cenozoic flood basalts (?) in the West Antarctic rift system

    USGS Publications Warehouse

    Behrendt, John C.

    1994-01-01

    The late Cenozoic volcanic and tectonic activity of the enigmatic West Antarctic rift system, the least understood of the great active continental rifts, has been suggested to be plume driven. In 1991-1992, as part of the CASERTZ (Corridor Aerogeophysics of the Southeast Ross Transect Zone) program, an ~25 000 km aeromagnetic survey over the ice-covered Byrd subglacial basin shows magnetic "texture' critical to interpretations of the underlying extended volcanic terrane. The aeromagnetic data reveal numerous semicircular anomalies ~100-1100 nT in amplitude, interpreted as having volcanic sources at the base of the ice sheet; they are concentrated along north-trending magnetic lineations interpreted as rift fabric. The CASERTZ aeromagnetic results, combined with >100 000 km of widely spaced aeromagnetic profiles, indicate at least 106 km3 of probable late Cenozoic volcanic rock (flood basalt?) in the West Antarctic rift beneath the ice sheet and Ross Ice Shelf. -from Authors

  14. Failure was not an option- the Mid-Continent Rift system succeeded

    NASA Astrophysics Data System (ADS)

    Merino, M.; Stein, C. A.; Stein, S. A.; Keller, G. R.; Flesch, L. M.; Jurdy, D. M.

    2013-12-01

    The 1.1 Ga Mid-Continent Rift (MCR) in North America is often viewed as a failed rift formed by isolated midplate volcanism and extension within the ~1.3-~0.98 Ga Grenville orogeny. An alternative view is suggested by analogy with younger and morphologically similar rift systems, whose plate tectonic settings are more easily understood because their surroundings - including seafloor with magnetic anomalies - have not been deformed or destroyed by subsequent collisions and rifting events. In this view, the MCR was part of a larger plate boundary rifting event that resulted in a successful episode of seafloor spreading. This view is motivated by various pieces of evidence. The MCR rifting looks much like rigid plate block motion, such as associated with the West Central African Rift systems formed during the Mesozoic breakup of Africa and South America and the ongoing rifting in the East African Rift region with seafloor spreading in the Gulf of Aden and the Red Sea. This view explains the affinities of the Grenville-age rocks in the central and southern Appalachians to Amazonia rather than Canadian Grenville-age Appalachian rocks. The MCR extends farther to the south than traditionally assumed along the East Continental Gravity High (a buried feature from Ohio to Alabama). This failed portion of the rift system connected to the rift successfully separating Laurentia and Amazonia. The seafloor spreading separating Amazonia from Laurentia may explain the former's relative motion toward Greenland and Baltica. This model is consistent with some of the ~1.1 Ga geological events in Amazonia. A change in the apparent polar wander path for Laurentia during the period of volcanism of the MCR could be attributed to this plate reconfiguration. The extensional phase on the MCR may have ended because motion was taken up by seafloor spreading between Laurentia and Amazonia rather ending due to another continental collision. Later reverse faulting on the MCR normal faults due to compression, perhaps from collisions around Rodinia's margins, would not be unexpected because the MCR would be a relatively weak intraplate zone due to higher crustal temperatures and faults.

  15. Feedback between magmatic, tectonic and glacial processes in the West Antarctic Rift System (Invited)

    NASA Astrophysics Data System (ADS)

    Rocchi, S.

    2010-12-01

    The western Ross Sea coast of the West Antarctic rift system (WARS) is littered with mid-Eocene to Present alkaline plutons, dike swarms and volcanoes. The mafic igneous products have OIB-HIMU signature, similar to basalts associated with long-lived hotspot tracks, pointing to the possible occurrence of one or more mantle plumes active during the Cenozoic or the Mesozoic. However, He and Pb isotope data suggest alternative views, with a rather shallow magma source not involving deep, undegassed mantle, and affected by a metasomatic episode as young as hundred(s) of million years, an order of magnitude less than typically invoked for mantle plume sources. A shallow rift-driving mechanism is supported also by the geometric relationships between magma emplacement and regional rift-related fault systems. Further, these faults were active coeval with magma emplacement, as demonstrated by the age of a fault-generated pseudotachylyte (34 Ma) and by apatite fission track thermochronology. In a wider perspective, these faults are in striking continuity with Southern Ocean fracture zones, and mantle tomography depicts a low-velocity anomaly of linear (not circular) shape overlapping the belt of these fracture zones. The lack of firm evidence for plume activity is thus at odds with a clear link between large-scale tectonic features and magma emplacement, supporting this three-stage model. (1) The WARS Late Cretaceous amagmatic extension led to metasomatism of the sublithospheric mantle, later rheologically incorporated into the lithosphere. (2) During Eocene-Oligocene times, craton-ward mantle flow under the thinned WARS heated up the mantle at the edge of the Antarctic lithosphere. In mid Eocene, the differential velocity across Southern Ocean fracture zones reactivated Paleozoic translithospheric discontinuities in northern Victoria Land as intraplate dextral strike-slip fault systems, promoting local mantle decompression melting and rise of magmas in plutons and dike swarms related to the main NW-SE discontinuities. (3) From the late Miocene to Present, the mantle flow led to normal faulting of the collapsing rift shoulder, which favored the rise of magmas building up large volcanoes along N-S normal-transtensional faults. This evolution of the WARS tectonic-magmatic activity is coeval with the main episodes of ice sheet development in Antarctica. The two main episodes of climate worsening, at the Eocene-Oligocene and early-mid Miocene transitions, were alternated with advances and retreats of ice sheets, with significant volume and thickness changes, that could be invoked as effective in triggering magma generation. It is thus possible to envisage a feedback system involving the WARS Cenozoic geological processes. The strike-slip rift regime affects magma genesis as well as segmentation and uplift of the Transantarctic Mountains (geodynamic forcing on magmatism and tectonics). Surface uplift affects landscape and temperature (tectonic forcing on environment). Mountainous landscape triggers glaciation (geomorphological forcing on climate), and climate affects temperature, hence erosive potential of glaciers (climate forcing on environment). Finally, ice load-unload cycles could affect magma genesis (glacial forcing on magmatism).

  16. Mantle support of the East African Rift System

    Microsoft Academic Search

    S. Lin; P. E. van Keken; J. P. Brandenburg; T. Furman; J. Bryce

    2007-01-01

    The African Superplume is a region of slow seismic wave velocities in the lower mantle under southern Africa. The uplift, volcanism and rifting that defines the much of eastern and southern Africa suggest a dynamic link between lower mantle dynamics and near-surface processes affecting the African plate. The dynamic link between the lower mantle and the surface, and the structure

  17. Plate kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression, Ethiopia

    NASA Astrophysics Data System (ADS)

    Bottenberg, Helen Carrie

    This work utilizes the Four-Dimensional Plates (4DPlates) software, and Differential Interferometric Synthetic Aperture Radar (DInSAR) to examine plate-scale, regional-scale and local-scale kinematics of the Afro-Arabian Rift System with emphasis on the Afar Depression in Ethiopia. First, the 4DPlates is used to restore the Red Sea, the Gulf of Aden, the Afar Depression and the Main Ethiopian Rift to development of a new model that adopts two poles of rotation for Arabia. Second, the 4DPlates is used to model regional-scale and local-scale kinematics within the Afar Depression. Most plate reconstruction models of the Afro-Arabian Rift System relies on considering the Afar Depression as a typical rift-rift-rift triple junction where the Arabian, Somali and Nubian (African) plates are separating by the Red Sea, the Gulf of Aden and the Main Ethiopian Rift suggesting the presence of "sharp and rigid" plate boundaries. However, at the regional-scale the Afar kinematics are more complex due to stepping of the Red Sea propagator and the Gulf of Aden propagator onto Afar as well as the presence of the Danakil, Ali Sabieh and East Central Block "micro-plates". This study incorporates the motion of these micro-plates into the regional-scale model and defined the plate boundary between the Arabian and the African plates within Afar as likely a diffused zone of extensional strain within the East Central Block. Third, DInSAR technology is used to create ascending and descending differential interferograms from the Envisat Advanced Synthetic Aperture Radar (ASAR) C-Band data for the East Central Block to image active crustal deformation related to extensional tectonics and volcanism. Results of the DInSAR study indicate no strong strain localization but rather a diffused pattern of deformation across the entire East Central Block.

  18. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the Albertine Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A. G.; Link, K.; Kasereka, C. M.; Rümpker, G.

    2014-07-01

    Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  19. Littoral sedimentation of rift lakes: an illustrated overview from the modern to Pliocene Lake Turkana (East African Rift System, Kenya)

    NASA Astrophysics Data System (ADS)

    Schuster, Mathieu; Nutz, Alexis

    2015-04-01

    Existing depositional models for rift lakes can be summarized as clastics transported by axial and lateral rivers, then distributed by fan-deltas and/or deltas into a standing water body which is dominated by settling of fine particles, and experiencing occasional coarser underflows. Even if known from paleolakes and modern lakes, reworking of clastics by alongshore drift, waves and storms are rarely considered in depositional models. However, if we consider the lake Turkana Basin (East African Rift System, Kenya) it is obvious that this vision is incomplete. Three representative time slices are considered here: the modern Lake Turkana, the Megalake Turkana which developed thanks to the African Humid Period (Holocene), and the Plio-Pleistocene highstand episodes of paleolake Turkana (Nachukui, Shungura and Koobi Fora Formations, Omo Group). First, remarkable clastic morphosedimentary structures such as beach ridges, spits, washover fans, lagoons, or wave-dominated deltas are very well developed along the shoreline of modern lake Turkana, suggesting strong hydrodynamics responsible for a major reworking of the fluvial-derived clastics all along the littoral zone (longshore and cross-shore transport) of the lake. Similarly, past hydrodynamics are recorded from prominent raised beach ridges and spits, well-preserved all around the lake, above its present water-level (~360 m asl) and up to ~455 m. These large-scale clastic morphosedimentary structures also record the maximum extent of Megalake Turkana during the African Humid Period, as well as its subsequent regression forced by the end of the Holocene climatic optimum. Several hundreds of meters of fluvial-deltaic-lacustrine deposits spanning the Pliocene-Pleistocene are exposed in the Turkana basin thanks to tectonic faulting. These deposits are world famous for their paleontological and archeological content that documents the very early story of Mankind. They also preserve several paleolake highstand episodes with typical sedimentary facies and structures/bodies reflecting important littoral hydrodynamics distributed from the backshore up to the lower shoreface zones. As a consequence, this preliminary overview from the Lake Turkana Basin, suggests that littoral hydrodynamics are important processes of erosion, transport an redeposition of clastics in rift lakes, and should thus be considered in the next generation of depositional models.

  20. Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology of the lithosphere

    E-print Network

    Déverchère, Jacques

    Depth distribution of earthquakes in the Baikal rift system and its implications for the rheology controlled by a close station and located within the extensional domain of the Baikal rift system) can match, where the crust is supposed to be ductile, in a way very similar to what is found in the East African

  1. Where is the West Antarctic Rift System in the Amundsen Sea and Bellingshausen Sea sectors?

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Kalberg, Thomas; Eagles, Graeme; Dziadek, Ricarda; Kaul, Norbert; Spiegel, Cornelia; Lindow, Julia

    2015-04-01

    The West Antarctic Rift System (WARS) is one of the largest continental rifts globally, but its lateral extent, distribution of local rifts, timing of rifting phases, and mantle processes are still largely enigmatic. It has been presumed that the rift and its crustal extensional processes have widely controlled the history and development of West Antarctic glaciation with an ice sheet of which most is presently based at sub-marine level and which is, therefore, likely to be highly sensitive to ocean warming. While the western domain of the WARS in the Ross Sea has been studied in some detail, only recently have various geophysical and geochemical/thermochronological analyses revealed indications for its eastern extent in the Amundsen Sea and Bellingshausen Sea sectors of the South Pacific realm. The current model, based on these studies and additional data, suggests that the WARS activity included tectonic translateral, transtensional and extensional processes from the Amundsen Sea Embayment to the Bellingshausen Sea region of the southern Antarctic Peninsula. We present the range of existing hypotheses regarding the extent of the eastern WARS as well as published and yet unpublished data that support a conceptual WARS model for the eastern West Antarctica with implications for glacial onset and developments.

  2. Rift border system: The interplay between tectonics and sedimentation in the Reconcavo basin, northeastern Brazil

    SciTech Connect

    Magnavita, L.P.; Silva, T.F. da [Petrobras/E & P - BA, Bahia (Brazil)

    1995-11-01

    A geometric and depositional model is proposed to explain the tectonic and sedimentary evolution of the main border of the Reconcavo basin. The architecture of the rift margin is characterized by a rift border system constituted by (1) a master fault, (2) a step, and (3) a clastic wedge. This footwall-derived clastic wedge is interpreted as alluvial fans and fan deltas composed of conglomerates that interfinger with hanging-wall strata. The analysis of the vertical distribution of coarse-grained components of this wedge suggests that its composition is geographically controlled, and no regular inverted stratigraphy is commonly described for this type of succession. During an initial lacustrine phase, turbidites accumulated farther from and parallel to the rift margin. The mapping of marker beds that bound these lacustrine turbidite deposits may be used to infer major periods of clastic influx and, therefore, to correlate with periods of fault-related subsidence or climatic fluctuations in the depositional basin and erosion of the sediment source area. Periods of limited back-faulting and basin expansion toward the main border are distinguished through patterns of progradation and aggradation indicating progressive retreat of the rift border and younging; in the footwall direction. The overall evolution of the rift border seems to be related to extension, block rotation, hanging-wall subsidence, and footwall uplift associated with the initial master fault, with limited propagation of faults away from the basin into the footwall.

  3. 3D architecture of a complex transcurrent rift system: The example of the Bay of BiscayWestern Pyrenees

    E-print Network

    Demouchy, Sylvie

    3D architecture of a complex transcurrent rift system: The example of the Bay of Biscay 19 April 2010 Available online 24 April 2010 Keywords: 3D structure of rifted basins Gravimetric inversion Seismic interpretation Bay of Biscay Western Pyrenees The Parentis and Arzacq­Mauléon basins

  4. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    Microsoft Academic Search

    Christophe Vigny; Jean-Bernard de Chabalier; Jean-Claude Ruegg; Philippe Huchon; Kurt L. Feigl; Rodolphe Cattin; Laike Asfaw; Khaled Kanbari

    2007-01-01

    Since most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through 2003. The surveys used triangulation (1973), trilateration (1973, 1979,

  5. Tectonic Control on Hydrocarbon Accumulation in the IntraContinental Albertine Graben of the East African Rift System

    Microsoft Academic Search

    Dozith Abeinomugisha; Robert Kasande

    The Albertine Graben is a Tertiary intra-continental rift that developed on the Precambrian orogenic belt of the African Craton. It forms the northern termination of the Western arm of the East African Rift System (EARS) (Figure 1). It stretches from the border between Uganda and Sudan in the north, to Lake Edward in the south. The available geological and geophysical

  6. Stratigraphy, Structure, and Ore Deposits of the Southern Limb of the Midcontinent Rift System

    NSDL National Science Digital Library

    T. Bornhorst

    This site features an overview of the Midcontinent Rift system of North America, an area that extends for more than 2000 km northeasterly from Kansas, through the Lake Superior region, and then southeasterly through lower Michigan. This summary of the stratigraphy, structure, and mineralization of rift rocks provides an overview of the geologic history in northern Wisconsin and upper Michigan. Separate sections describe the tectonic history and structural features of the area, the stratigraphy of volcanic and sedimentary deposits, and the mineralization that produced rich copper and silver deposits. Information is supported by numerous citations while maps and diagrams help illustrate the concepts.

  7. Modeling fault kinematics, segment interaction and transfer zone geometry as a function of pre-existing fabrics: the Albertine rift, East African Rift System

    Microsoft Academic Search

    Kevin Aanyu; Daniel Koehn

    2010-01-01

    This study focuses on the development of the Rwenzori Mountains, an uplift horst block within the northern-most segment of the western branch of the East African Rift System (EARS). Attention is drawn to the role of pre-existing crustal weaknesses left behind by Proterozoic mobile belts that pass around cratonic Archean shields namely the Tanzanian Craton to the southeast and the

  8. Constraints on the magmatic plumbing system of the Dabbahu rift (Afar, Ethiopia) from InSAR and GPS.

    NASA Astrophysics Data System (ADS)

    Wright, T. J.; Calais, E.; Biggs, J.; Lewi, E.; Hamling, I.; Ebinger, C. J.

    2006-12-01

    The 60-km-long Dabbahu segment of Nubia-Arabia plate boundary the experienced a major rifting episode in September 2005 when 2.5~km3 of magma was injected in the upper 10~km of the crust along a dike with a maximum thickness of 8~m (Wright et al., 2006). Subsidence around Dabbahu and Gabho volcanoes, at the northern end of the rift segment, suggests that at least 20% of the injected magma came from shallow magma chambers, 3-5~km beneath these volcanoes. This volume estimate could rise significantly if the magma contains a significant volatile fraction and is highly compressible. However, it is probable that additional, deep magma reservoirs injected magma directly into the dike during the rifting episode. To investigate the magmatic plumbing system around the rift segment, we have created interferograms showing the pre- and post-diking deformation around the Dabbahu rift segment, and analysed cGPS data collected from 10 instruments installed around the rift segment in January 2006. We show that Gabho experienced at least three inflation events prior to the 2005 diking episode, suggesting episodic recharge of the magma chamber beneath Gabho. Furthermore, time series of post-rifting interferograms, and cGPS data, show that Gabho has been inflating extremely rapidly since September 2005, and that Dabbahu, after an initial period of deflation, is now also inflating. A broad area of post-diking subsidence south of the rift segment suggests magma may be flowing towards the rift segment at sub-crustal levels. An additional dyke injection occurred in June 2006 near the centre of the rift segment, without subsidence at Dabbahu and Gabho, implying an additional magmatic source. We will present the latest geodetic data from the Dabbahu rift segment, and simple models of the magmatic plumbing system.

  9. The Midcontinent rift system and the Precambrian basement in southern Michigan

    SciTech Connect

    Smith, W.A. (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology)

    1994-04-01

    The Precambrian basement within Michigan consists of at least three provinces, each characterized by distinctive potential field anomalies: (1) the Eastern Granite-Rhyolite Province (EGRP) in the south, (2) the Grenville Province in the southeast and (3) the Penokean Province to the north. Also located within the basement is the Mid-Michigan rift (MMR), which is the eastern arm of the Midcontinent rift system (MRS). Southwest and parallel to the MMR is a series of linear positive gravity anomalies which has been referred to as the Ft. Wayne rift (FWR) and the Southwest Michigan Anomaly (SWMA). The EGRP, which is characterized by undeformed and unmetamorphosed rhyolite to dacite and epizonal granites, was emplaced ca. 1510--1450 Ma. However, the EGRP may be comprised of several terranes of varying extent and origin based on analysis of potential field data and rock and mineral ages. The MMR and the FWR/SWMA are characterized by linear arrays of positive magnetic and gravity anomalies, which are probably due to thick accumulations of mafic igneous rocks within the rifts. The extent and trends of the FWR/SWMA have been largely inferred from geophysical data with a presumption of the age of about 1,100 Ma. The continuation of the MMR southward into Ohio and Kentucky as a sequence of gravity highs is questionable and needs further resolution. The FWR/SWMA may be part of the East Continent Rift Basin (ECRB). The ECRB, which is a large complex of related rift basins of Keweenawan age (1300 --1100 Ma), may be an extension of the MRS but it is not physically continuous with it. The ECRB lies to the west of the Grenville Front and extends at least from northwest Ohio to central Kentucky. Extensions of the ECRB north and south are speculative.

  10. Two Plumes Beneath the East African Rift System: a Geochemical Investigation into Possible Interactions in Ethiopia

    Microsoft Academic Search

    W. R. Nelson; T. Furman; P. E. van Keken; S. Lin

    2007-01-01

    East African Rift System magmatism began over 40 my ago and has continued through the present. Numerical models have determined two plumes are necessary to create the spatial and temporal distribution of volcanism. Geochemical data support the presence of two chemically distinct plumes initially located beneath the Afar Depression (NE Ethiopia) and the Turkana Depression (SW Ethiopia\\/N Kenya). The timing

  11. Surface-wave Tomography of East African Rift System using Ambient Seismic Noise

    Microsoft Academic Search

    S. Kim; T. Kang; C. Baag; A. A. Nyblade

    2008-01-01

    The surface-wave tomography technique for the ambient seismic noise is applied to the east African rift system to investigate shallow crustal structures of the region. Even if the technique has been widely used in many regions to investigate crustal structure in the world, there have been difficulties in application of the technique to the east African region because of unstable

  12. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    NASA Astrophysics Data System (ADS)

    Vigny, Christophe; de Chabalier, Jean-Bernard; Ruegg, Jean-Claude; Huchon, Philippe; Feigl, Kurt L.; Cattin, Rodolphe; Asfaw, Laike; Kanbari, Khaled

    2007-06-01

    Since most of Tadjoura-Asal rift system sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia plates, it is an ideal natural laboratory for studying rifting processes. We analyze these processes in light of a time series of geodetic measurements from 1978 through 2003. The surveys used triangulation (1973), trilateration (1973, 1979, and 1981-1986), leveling (1973, 1979, 1984-1985, and 2000), and the Global Positioning System (GPS, in 1991, 1993, 1995, 1997, 1999, 2001, and 2003). A network of about 30 GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia. Stations lying in the Danakil block have almost the same velocity as Arabian plate, indicating that opening near the southern tip of the Red Sea is almost totally accommodated in the Afar depression. Inside Djibouti, the Asal-Ghoubbet rift system accommodates 16 ± 1 mm/yr of opening perpendicular to the rift axis and exhibits a pronounced asymmetry with essentially null deformation on its southwestern side and significant deformation on its northeastern side. This rate, slightly higher than the large-scale Arabia-Somalia motion (13 ± 1 mm/yr), suggests transient variations associated with relaxation processes following the Asal-Ghoubbet seismovolcanic sequence of 1978. Inside the rift, the deformation pattern exhibits a clear two-dimensional pattern. Along the rift axis, the rate decreases to the northwest, suggesting propagation in the same direction. Perpendicular to the rift axis, the focus of the opening is clearly shifted to the northeast, relative to the topographic rift axis, in the "Petit Rift," a rift-in-rift structure, containing most of the active faults and the seismicity. Vertical motions, measured by differential leveling, show the same asymmetric pattern with a bulge of the northeastern shoulder. Although the inner floor of the rift is subsiding with respect to the shoulders, all sites within the rift system show uplift at rates varying from 0 to 10 mm/yr with respect to a far-field reference outside the rift.

  13. Tectonic development of the SW Arabian Plate margin within the central Arabian flank of the Red Sea rift system

    NASA Astrophysics Data System (ADS)

    Szymanski, E.; Stockli, D. F.; Johnson, P. R.; Kattan, F. H.; Cosca, M. A.

    2009-12-01

    The Red Sea rift system is a prime example of continental rifting and has contributed significantly to our understanding of the geologic processes that manage the rupture of continental lithosphere. Using a combined geo- and thermochronometric approach, we explore the modes and mechanisms of rift margin development by studying Red Sea rift-related geologic products along the central Saudi Arabian flank of the rift system, north of Jeddah. We use apatite and zircon (U-Th)/He thermochronometry and whole-rock 40Ar/39Ar dating of basalt to define the spatiotemporal relationship between rift flank extensional structures and rift-related harrat volcanism. This technical approach permits the reconstruction of the tectonic margin from early rift architecture, to strain distribution during progressive rifting, and through subsequent whole-scale modifications of the rift flank due to thermal and isostatic factors. Constraints on the dynamics of rift flank deformation are achieved through the collection of geologic samples along long-baseline thermochronometric transects that traverse the entire Arabian shield from the coastal escarpment to the inland Paleozoic sedimentary cover sequences. Long-baseline transects resolve the timing of rift flank uplift and reveal the pattern of lithospheric modification during the rupturing of continental lithosphere. Locally, short-baseline elevation transects map the footwall exhumation of major normal faults that delineate both the modern rift margin and inland extensional basins such as the NW-trending Hamd-Jizil basin, a prominent syn-extensional basin comprised of two distinct half-grabens (Jizil and Hamd) located NW of Medina. Diffuse lithospheric extension during the Oligo-Miocene affected a widespread area well inboard from the modern rift margin; samples from footwall blocks that bound the inland Jizil and Hamd half-grabens yield apatite (U-Th)/He cooling ages of 14.7 ± 0.9 Ma and 24.5 ± 1.5 Ma, respectively. The mid-Miocene age is doubly-significant since it reveals not only a Red Sea rift signal 140 km inboard from the modern border fault complex but also underscores the importance of fault reactivation during progressive rifting since the Jizil half-graben is structurally delineated by faults formed within the Neoproterozoic Najd shear zone fabric. Oligo-Miocene apatite (U-Th)/He ages from Jabal Radwa, a pluton exhumed within the border fault complex, show that rift flank exhumation and extensional faulting occurred within the central portion of the Arabian rift flank penecontemporaneous to faulting in the Hamd-Jizil half-graben system. Within the rift flank fault systems, an absence of footwall exhumation ages younger than ~13 Ma confirms that major extensional faulting migrated basin-ward in the middle Miocene during a time of rift reorganization and the establishment of the Dead Sea-Gulf of Aqaba transform. However, minor deepening of the inland Hamd-Jizil basin continued through the late Miocene as relatively young, basin-internal faults cut 17 Ma - 10 Ma basalt flows from harrat Khaybar that had blanketed the region.

  14. The structure of the cross-cutting volcanic chain of Northern Tanzania and its relation to the East African rift system

    Microsoft Academic Search

    J. D. Fairhead

    1980-01-01

    The WSW---ENE chain of Cenozoic volcanoes in northern Tanzania lies tangental to and on the southeastern flank of the Kenya dome and represents a major cross-cutting feature of the Eastern Rift System dividing areas of the rift that are tectonically distinctly different. These tectonic differences are reflected in the nature of the rift's faulting, volcanism, seismicity and geothermal activity. To

  15. Diachronous Growth of Normal Fault Systems in Multiphase Rift Basins: Structural Evolution of the East Shetland Basin, Northern North Sea

    NASA Astrophysics Data System (ADS)

    Claringbould, Johan S.; Bell, Rebecca E.; A-L. Jackson, Christopher; Gawthorpe, Robert L.; Odinsen, Tore

    2015-04-01

    Our ability to determine the structural evolution and interaction of fault systems (kinematically linked group of faults that are in the km to 10s of km scale) within a rift basin is typically limited by the spatial extent and temporal resolution of the available data and methods used. Physical and numerical models provide predictions on how fault systems nucleate, grow and interact, but these models need to be tested with natural examples. Although field studies and individual 3D seismic surveys can provide a detailed structural evolution of individual fault systems, they are often spatially limited and cannot be used examine the interaction of fault systems throughout the entire basin. In contrast, regional subsurface studies, commonly conducted on widely spaced 2D seismic surveys, are able to capture the general structural evolution of a rift basin, but lack the spatial and temporal detail. Moreover, these studies typically describe the structural evolution of rifts as comprising multiple discrete tectonic stages (i.e. pre-, syn- and post-rift). This simplified approach does not, however, consider that the timing of activity can be strongly diachronous along and between faults that form part of a kinematically linked system within a rift basin. This study focuses on the East Shetland Basin (ESB), a multiphase rift basin located on the western margin of the North Viking Graben, northern North Sea. Most previous studies suggest the basin evolved in response to two discrete phases of extension in the Permian-Triassic and Middle-Late Jurassic, with the overall geometry of the latter rift to be the result of selective reactivation of faults associated with the former rift. Gradually eastwards thickening intra-rift strata (deposited between two rift phases) that form wedges between and within fault blocks have led to two strongly contrasting tectonic interpretations: (i) Early-Middle Jurassic differential thermal subsidence after Permian-Triassic rifting; or (ii) Triassic syn-rift activity on west-dipping faults. Our analysis of regional 2D and basin-wide 3D 'mega-merge' seismic reflection data calibrated by wells allow us to re-evaluate the pre-Triassic-to-Cretaceous structural evolution of the ESB. Our results suggest that pre-Triassic extension was accommodated by diachronous growth of NW-SE-to-NE-SW-striking faults that dipped either to the east or the west. In the NW of the ESB, Triassic syn-rift deposits are observed along large (>20 km long), NE-SW-striking faults. Elsewhere in the basin, post-rift deposits gradually thicken eastward, suggesting differential Triassic post-rift thermal subsidence with its axis to the east of the ESB. Subsequent Early-to-Middle Jurassic deposits thicken eastward across large N-S striking faults, suggesting syn-depositional fault growth. Our observations suggest that, rather than forming in response to discrete periods of extension separated by periods of tectonic quiescence, the ESB witnessed diachronous fault system evolution with faults showing polyphase activity, cross-cutting relationships, and protracted growth from the pre-Triassic to Middle-Late Jurassic. The results of this work reveal the complex structural evolution of rifts, highlight the power of 3D mega-merge seismic reflection data, and demonstrate that the conventional rift package nomenclature of pre-, syn-, and post-rift is difficult to apply at the basin-scale.

  16. The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system

    Microsoft Academic Search

    Berhanu Gizaw

    1996-01-01

    Thermal waters in the Main Ethiopian Rift Valley are characterized by high Na, bicarbonate and fluoride concentrations, and near-neutral to alkaline pH. Sodium, bicarbonate and fluoride are positively correlated in the waters. The principal reason for the bicarbonate in the area is the high rate of carbon dioxide outgassing. This, combined with acid volcanics, geothermal heating, low Ca and low

  17. Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Silveira, G. M.; Custodio, S.; Chamussa, J.; Lebedev, S.; Chang, S. J.; Ferreira, A. M. G.; Fonseca, J. F. B. D.

    2014-12-01

    Unlike the majority of the East African Rift, the Mozambique region has not been deeply studied, not only due to political instabilities but also because of the difficult access to its most interior regions. An earthquake with M7 occurred in Machaze in 2006, which triggered the investigation of this particular region. The MOZART project (funded by FCT, Lisbon) installed a temporary seismic network, with a total of 30 broadband stations from the SEIS-UK pool, from April 2011 to July 2013. Preliminary locations of the seismicity were estimated with the data recorded from April 2011 to July 2012. A total of 307 earthquakes were located, with ML magnitudes ranging from 0.9 to 3.9. We observe a linear northeast-southwest distribution of the seismicity that seems associated to the Inhaminga fault. The seismicity has an extension of ~300km reaching the Machaze earthquake area. The northeast sector of the seismicity shows a good correlation with the topography, tracing the Urema rift valley. In order to obtain an initial velocity model of the region, the ambient noise method is used. This method is applied to the entire data set available and two additional stations of the AfricaARRAY project. Ambient noise surface wave tomography is possible by computing cross-correlations between all pairs of stations and measuring the group velocities for all interstation paths. With this approach we obtain Rayleigh wave group velocity dispersion curves in the period range from 3 to 50 seconds. Group velocity maps are calculated for several periods and allowing a geological and tectonic interpretation. In order to extend the investigation to longer wave periods and thus probe both the crust and upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry - Meier el al 2004) to augment our dataset with Rayleigh wave phase velocities curves in a broad period range. Using this method we expect to be able to explore the lithosphere-asthenosphere depth range beneath Mozambique.

  18. Tectonic and sediment supply control of deep rift lake turbidite systems: Lake Baikal, Russia

    USGS Publications Warehouse

    Nelson, C.H.; Karabanov, E.B.; Colman, Steven M.; Escutia, C.

    1999-01-01

    Tectonically influenced half-graben morphology controls the amount and type of sediment supply and consequent type of late Quaternary turbidite systems developed in the active rift basins of Lake Baikal, Russia. Steep border fault slopes (footwall) on the northwest sides of half-graben basins provide a limited supply of coarser grained clastic material to multiple small fan deltas. These multiple sediment sources in turn laterally feed small (65 km) axially fed elongate mud-rich fans sourced by regional exterior drainage of the Selenga River that supplies large quantities of silt. Basin plain turbidites in the center of the linear basins and axial channels that are controlled by rift-parallel faults are fed from, and interfinger with, aprons and fans. The predictability of the turbidite systems in Lake Baikal provides the best example yet studied of how tectonics and sediment supply interact to control the development of a wide variety of coeval turbidite systems on a single basin floor.

  19. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    NASA Astrophysics Data System (ADS)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through East Antarctica will identify the plate-scale geometry of zones of crustal and lithospheric thinning; 4) understanding when and how East Antarctica acquired its thick crust and high elevation, and why it is so thick and elevated, will place new constraints on models of Cenozoic ice sheet formation and stability. The crustal thickness map for East Antarctica will make it possible to produce a multi-dataset-based geothermal heatflux map for the continent. Estimating the heat flux in the Gamburtsev Subglacial Mountains (GSM) region is particularly critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) geothermal heat flux is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology; 4) an integrated multi-dataset-based geothermal heatflux model for East Antarctica will resolve the wide range of estimates previously published using single datasets.

  20. Spatial and temporal variations of b-values along the East African rift system and the southern Red Sea

    Microsoft Academic Search

    Fekadu Kebede; Ota Kulhánek

    1994-01-01

    Spatial and temporal variation of b-values for the East African rift system and the southern Red Sea is studied. In general, average b-values obtained for the whole East African rift system range from 0.5 to 1.5. Mapping of b-value shows that relatively low average b-values (0.5-0.8) are observed in certain segments of the southern Red Sea, Afar Depression and north

  1. He-Ne-Ar isotope studies of mafic volcanic rocks and mantle xenoliths from the East African Rift System - contrasting isotope signals in different rift branches

    Microsoft Academic Search

    S. A. Halldorsson; D. R. Hilton; P. Scarsi; T. Abebe; K. M. Massi; P. H. Barry; T. P. Fischer; J. de Moor; R. L. Rudnick

    2010-01-01

    Helium isotope studies of the East African Rift System (EARS) suggest the involvement of a deep mantle plume(s) beneath the northern (Ethiopian) segment [1-3]. The highest 3He\\/4He (RA) signatures found to date show a close association with the greatest magma volumes erupted since the Early Cenozoic in the region. While the helium isotope characteristics are well established in the Ethiopia-Afar

  2. Sedimentary fill of 1100 Ma mid-continent rift system

    SciTech Connect

    Ojakangas, R.W.

    1986-05-01

    In the Lake Superior region, four sequences of sedimentary rocks reflect the tectonic-sedimentary framework before, during, and after the magmatic event that resulted in 10,000 m of dominantly basaltic volcanic rocks and large layered gabbroic intrusions. The oldest sequence includes four geographically separated, thin (100 m) pre-volcanic, white to pink, quartzose sandstone units that were deposited in braided alluvial plain-lacustrine environments within the shallow basin that was the initial manifestation of rifting. The second sedimentary sequence consists of immature sediment, largely derived from the volcanic sequence and deposited in alluvial fan, fluvial, and lacustrine environments during intervals between extrusive episodes. These red silty to conglomeratic units range from a few centimeters to hundreds of meters in thickness. The Oronto Group and the younger Bayfield Group and their equivalents are post-volcanic, dominantly red-bed sequences of siltstone, sandstone, and conglomerate, deposited in alluvial fan, fluvial, and lacustrine environments within the elongate basin. The Oronto Group (600 m) includes the Copper Harbor Conglomerate, the Nonesuch Shale (gray, carbonaceous, pyritiferous, and cupriferous argillaceous siltstone) and the Freda Sandstone. The Bayfield Group (2100 m) includes the Orienta Sandstone, the Devils Island Sandstone (100 m of orthoquartzite), and the Chequamegon Sandstone. Whereas volcanic detritus is dominant in most of the Oronto Group and the equivalent Solor Church Formation, extrabasinal granitic detritus dominants in the Bayfield Group and its equivalents (Fond de Lac Formation, Hinckley Sandstone, and Jacobsville Sandstone). Paleocurrent data indicate a general basinward transport of sediment during deposition of the four sequences, 1100 Ma(.) to 950 Ma(.).

  3. Sismotectonics in the western branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Kervyn, François; Mulumba, Jean-Luc; Kipata, Louis; Sebagenzi, Stanislas; Mavonga, Georges; Macheyeki, Athanas; Temu, Elly Bryan

    2013-04-01

    The western branch of the East African rift system is known of its particular seismic activity with larger magnitude (up to Ms 7.3) and more frequent destructive earthquakes than in the eastern branch. As a contribution to the IGCP 601 project Seismotectonic Map of Africa, we compiled the known active faults, thermal springs and historical seismicity in Central Africa. Using the rich archives of the Royal Museum for Central Africa, publications and own field observations, we present a compilation of available data relative to the current seismotectonic activity along the western branch of the East African rift system, in DRC, Rwanda, Burundi and Tanzania. Neotectonic activity related to the western rift branch is in general well expressed and relatively well studied in the eastern flank of this rift branch, in Uganda, Rwanda, Burundi and Tanzania. In contrast, the western flank of this rift branch, largely exposed in the DRC, has attracted less attention. However, data collected during the colonial times show significant sismotectonic activity in East DRC, not only in the western flank of the western rift branch, but extending far westwards up to the margin of the Congo basin. In particular, our predecessors paid a special attention to the mapping and description of thermal springs, noticing that they are often controlled by active faults. In addition, the operators of the relatively dense network of meteorological stations installed in the DRC, Rwanda and Burundi also recorded were with variable level of completeness and detail the earthquakes that they could felt. This provides a rich database that is used to complete the existing knowledge on historical seismicity. An important effort has still to be paid to identify and map potentially active fault due to poor field accessibility, tropical climate weathering and vegetation coverage. The main problem in the compilation of active fault data is that very few of them have been investigated by paleoseismic trenching. Therefore, this compilation will highlight the pattern of neotectonic faults (those active since the onset of the last and currently active tectonic stage) rather than those of active faults (with proven activity during the last 10 Ka). The first- and second-order stress field of this region is relatively well known thanks to the stress inversion of earthquake focal mechanisms, but the more detailed stress field related to the interaction of fault segments has still to be defined.

  4. The Mercedario rift system in the principal Cordillera of Argentina and Chile (32° SL)

    Microsoft Academic Search

    P. Pamela Alvarez; Victor A. Ramos

    1999-01-01

    Recent studies carried out in the High Andes of central-western Argentina in the provinces of San Juan and Mendoza have established its stratigraphic and structural evolution. This paper presents new data on the Triassic–Early Jurassic rift system, the depositional sequences, and a synthesis of the tectonic evolution of the region, along with a correlation with the Chilean continental margin.The paleogeographic

  5. The transition from diffuse to focused extension: Modeled evolution of the West Antarctic Rift system

    NASA Astrophysics Data System (ADS)

    Huerta, Audrey D.; Harry, Dennis L.

    2007-03-01

    Two distinct stages of extension are recognized in the West Antarctic Rift system (WARS). During the first stage, beginning in the Late Cretaceous, extension was broadly distributed throughout much of West Antarctica. A second stage of extension in the late Paleogene was focused primarily in the Victoria Land Basin, near the boundary with the East Antarctic craton. The transition to focused extension was roughly coeval with volcanic activity and strike-slip faulting in the adjacent Transantarctic Mountains. This spatial and temporal correspondence suggests that the transition in extensional style could be the result of a change in plate motions or impingement of a plume. Here we use finite element models to study the processes and conditions responsible for the two-stage evolution of rifting in the WARS. Model results indicate that the transition from a prolonged period of broadly distributed extension to a later period of focused rifting did not require a change in the regional stress regime (changes in plate motion), or deep mantle thermal state (impingement of a plume). Instead, we attribute the transition from diffuse to focused extension to an early stage dominated by the initially weak accreted lithosphere of West Antarctica, and a later stage that concentrated around a secondary weakness located at the boundary between the juvenile West Antarctica lithosphere and Precambrian East Antarctic craton. The modeled transition in extension from the initially weak West Antarctica region to the secondary weakness at the West Antarctic-East Antarctic boundary is precipitated by strengthening of the West Antarctica lithosphere during syn-extensional thinning and cooling. The modeled syn-extensional strengthening of the WARS lithosphere promotes a wide-rift mode of extension between 105 and ˜ 65 Ma. By ˜ 65 Ma most of the extending WARS region becomes stronger than the area immediately adjacent to the East Antarctic craton and extension becomes concentrated near the East Antarctic/West Antarctic boundary, forming the Victoria Land Basin region. Mantle necking in this region leads to syn-extensional weakening that promotes a narrow-rift mode of extension that becomes progressively more focused with time, resulting in formation of the Terror Rift in the western Victoria Land Basin. The geodynamic models demonstrate that the transition from diffuse to focused extension occurs only under a limited set of initial and boundary conditions, and is particularly sensitive to the pre-rift thermal state of the crust and upper mantle. Models that predict diffuse extension in West Antarctica followed by localization of rifting near the boundary between East and West Antarctica require upper mantle temperatures of 730 ± 50 °C and sufficient concentration of heat producing elements in the crust to account for ˜ 50% of the upper mantle temperature. Models with upper mantle temperatures < ca. 680 °C and/or less crustal heat production initially undergo diffuse extension in West Antarctica, and quickly develop a lithospheric neck at the model edge furthest from East Antarctica. Models with upper mantle temperatures > ca. 780 °C do not develop focused rifts, and predict indefinite diffuse extension in West Antarctica.

  6. Two mantle plumes beneath the East African rift system: Sr, Nd and Pb isotope evidence from Kenya Rift basalts

    Microsoft Academic Search

    Nick Rogers; Ray Macdonald; J. Godfrey Fitton; Rhiannon George; Martin Smith; Barbara Barreiro

    2000-01-01

    Major and trace element and radiogenic isotope ratios (Sr, Nd and Pb) are presented for a suite of Neogene to Recent basalts (MgO>4 wt%) from the axial regions of the Kenya Rift. Samples have compositions ranging from hypersthene-normative basalt through alkali basalt to basanite and are a subset of a larger database in which compositions extend to nephelinite. A broadly

  7. Geochronology of volcanic rocks and evolution of the Cenozoic Western Branch of the East African Rift System

    Microsoft Academic Search

    A. B. Kampunzu; M. G. Bonhomme; M. Kanika

    1998-01-01

    New K?Ar age data from the Virunga, Bukavu and Mwenga-Kamituga Volcanic Provinces in the Western Branch of the East African Rift System are given. In the Virunga Province, the earliest volcanic episode, hereafter “initial” Virunga, includes fissural eruptions of continental tholeiites and Na alkaline lavas. These volcanics erupted along normal faults (sub-)parallel to the main north-south rift axis. Tholeiitic flows

  8. Lithospheric dynamics and mantle sources of alkaline magmatism of the Cenozoic West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Wörner, G.

    1999-12-01

    Lithospheric extension in the West Antarctic Rift System and the Ross Sea embayment is related to Cenozoic alkaline volcanism. Basanites and alkali basalts define the two endmembers of primary magmas with distinct petrographic, chemical and isotopic compositions. Basanites are generally more primitive and significantly more enriched in incompatible trace elements than alkali basalts. Parallel incompatible trace-element distribution patterns in both rock types but slightly different isotopic compositions suggest a derivation by different degrees of partial melting from different mantle sources. Sr-, Nd- and Pb-isotopes allow the identification of distinct magma sources: asthenospheric mantle, enriched lithospheric mantle and a HIMU plume component which is widespread beneath the entire area. Spatial and temporal variations in isotopic compositions suggest a relationship between the dynamics of lithospheric extension and changing mantle sources of related magmas. Geothermobarometry on mantle xenoliths documents a pressure-temperature-time evolution of the mantle lithosphere which is related to rifting, uplift and cooling of mantle below the Ross Sea Rift-Transantarctic Mountain transition. This paper reviews existing data and ideas but is biased towards the author's own working area, the Western Ross Sea.

  9. Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda

    Microsoft Academic Search

    F. U. Bauer; U. A. Glasmacher; U. Ring; A. Schumann; B. Nagudi

    2010-01-01

    The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply\\u000a low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)\\/He (AHe) analysis) for tracking the cooling\\u000a history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and\\u000a 85.3 (±5.3) Ma, and

  10. Seismic anisotropy of the lithosphere/asthenosphere system beneath the Rwenzori region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, Benjamin; Löbl, Ulrike; Batte, Arthur; Link, Klemens; Kasereka, Celestine; Rümpker, Georg

    2014-05-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by a bimodal pattern of fast polarizations and an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  11. The Rwenzori Mountains, a Palaeoproterozoic crustal shear belt crossing the Albertine rift system

    NASA Astrophysics Data System (ADS)

    Koehn, D.; Link, K.; Sachau, T.; Passchier, C. W.; Aanyu, K.; Spikings, A.; Harbinson, R.

    2015-04-01

    This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development within the Rwenzori Mountains and that this stiff belt may form part of the reason why the Rwenzori Mountains are relatively high within the rift.

  12. Relationships between pre-rift structure and rift architecture in Lakes Tanganyika and Malawi, East Africa

    Microsoft Academic Search

    J. Versfelt; B. R. Rosendahl

    1989-01-01

    Continental rift systems are rips in plates caused by focusing of extensional stresses along some zone. In the same way that tensile cracks in the side of a brick building generally follow the mortar between bricks, rifts initially follow the weakest pathways in the pre-rift materials. There has even been a suggestion that the occurrence of rifts is controlled by

  13. Seismic Anisotropy of the Lithosphere/Asthenosphere System Beneath the Rwenzori Region of the East-African Rift

    NASA Astrophysics Data System (ADS)

    Homuth, B.; Löbl, U.; Batte, A.; Link, K.; Kasereka, C.; Rumpker, G.

    2014-12-01

    We present results from a temporary seismic network of 32 broad-band stations located around the Rwenzori region of the Albertine rift at the border between Uganda and DR Congo. The study aims to constrain seismic anisotropy and mantle deformation processes in relation to the formation of the rift zone. Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the crust and upper mantle beneath the Rwenzori region. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift-parallel and the average delay time is about 1 s. On the other hand, shear phases from local events within the crust are characterized by an average delay time of 0.04 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with HTI anisotropy caused by magmatic intrusions or lenses located within the lithospheric mantle - as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.

  14. A gravity link between the domally uplifted Cainozoic volcanic centres of North Africa and its similarity to the East African Rift System anomaly

    Microsoft Academic Search

    J. D. Fairhead

    1979-01-01

    Attention is drawn to the existence of a negative gravity lineament linking the domally uplifted Cainozoic volcanic centres of North and West Africa to the negative Bouguer anomaly associated with the East African Rift System. The gravity lineament is shown to have similar dimensions to the Rift System anomaly and is interpreted as resulting from attenuation of the continental lithosphere.

  15. Rift basins - Origin, history, and distribution

    NASA Technical Reports Server (NTRS)

    Burke, K. C.

    1985-01-01

    Rifts are elongate depressions overlying places where the lithosphere has ruptured in extension. Where filled with sediment they may contain exploitable quantities of oil and gas. Because rits form in a variety of tectonic settings, it is helpful to define the particular tectonic environment in which a specific rift or set of rifts has developed. A useful approach has been to relate that environment to the Wilson Cycle of the opening and the closing of oceans. This appreciation of tectonic setting can help in better understanding of the depositional, structural and thermal history of individual rift systems. The global distribution of rifts can also be related to tectonic environment. For example, rifts associated with continental rupture at a temporary still-stand of a continent over the mantle convective system (rifts like those active in East Africa today) can be distinguished from those associated with continental collision (rifts like the Cenozoic rifts of China).

  16. Seismic hazard assessment of the Kivu rift segment based on a new sismo-tectonic zonation model (Western Branch of the East African Rift system)

    NASA Astrophysics Data System (ADS)

    Havenith, Hans-Balder; Delvaux, Damien

    2015-04-01

    In the frame of the Belgian GeoRisCA multi-risk assessment project focused on the Kivu and Northern Tanganyika Region, a seismic hazard map has been produced for this area. It is based on a on a recently re-compiled catalogue using various local and global earthquake catalogues. The use of macroseismic epicenters determined from felt earthquakes allowed to extend the time-range back to the beginning of the 20th century, thus spanning about 100 years. The magnitudes have been homogenized to Mw and the coherence of the catalogue has been checked and validated. The seismo-tectonic zonation includes 10 seismic source areas that have been defined on the basis of the regional geological structure, neotectonic fault systems, basin architecture and distribution of earthquake epicenters. The seismic catalogue was filtered by removing obvious aftershocks and Gutenberg-Richter Laws were determined for each zone. On the basis of this seismo-tectonic information and existing attenuation laws that had been established by Twesigomwe (1997) and Mavonga et al. (2007) for this area, seismic hazard has been computed with the Crisis 2012 (Ordaz et al., 2012) software. The outputs of this assessment clearly show higher PGA values (for 475 years return period) along the Rift than the previous estimates by Twesigomwe (1997) and Mavonga (2007) while the same attenuation laws had been used. The main reason for these higher PGA values is likely to be related to the more detailed zonation of the Rift structure marked by a strong gradient of the seismicity from outside the rift zone to the inside. Mavonga, T. (2007). An estimate of the attenuation relationship for the strong ground motion in the Kivu Province, Western Rift Valley of Africa. Physics of the Earth and Planetary Interiors 62, 13-21. Ordaz M, Martinelli F, Aguilar A, Arboleda J, Meletti C, D'Amico V. (2012). CRISIS 2012, Program for computing seismic hazard. Instituto de Ingeniería, Universidad Nacional Autónoma de México. Twesigomwe, E. (1997). Probabilistic seismic hazard assessment of Uganda, Ph.D. Thesis, Dept. of Physics, Makare University, Uganda.

  17. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, Ana; Custódio, Susana; Chamussa, José; Silveira, Graça; Chang, Sung-Joon; Lebedev, Sergei; Ferreira, Ana; Fonseca, João

    2014-05-01

    Project MOZART - MOZAmbique Rift Tomography (funded by FCT, Lisbon) deployed a total of 30 temporary broadband seismic stations from the SEIS-UK Pool in central and south Mozambique and in NE South Africa. The purpose of this project is the study of the East African Rift System (EARS) in Mozambique. We estimated preliminary locations with the data recorded from April 2011 to July 2012. A total of 307 earthquakes were located, with ML magnitudes ranging from 0.9 to 3.9. We observe a linear northeast-southwest distribution of the seismicity that seems associated to the Inhaminga fault. The seismicity in the northeast sector correlates well with the topography, tracing the Urema rift valley. The seismicity extends to ~300km, reaching the M7 2006 Machaze earthquake area. In order to obtain an initial velocity model of the region, we applied the ambient noise method to the MOZART data and two additional stations from AfricaARRAY. Cross-correlations were computed between all pairs of stations, and we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. The geographical distribution of the group velocity anomalies is in good agreement with the geology map of Mozambique, having lower group velocities in sedimentary basins areas and higher velocities in cratonic regions. We also observe two main regions with different velocities that may indicate a structure not proposed in previous studies. We perform a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle, and in order to extend the investigation to longer periods we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry), while augmenting our dataset with Rayleigh wave phase velocities curves in broad period ranges. In this way we expect to be able to look into the lithosphere-asthenosphere depth range.

  18. Ancient origin and recent divergence of a haplochromine cichlid lineage from isolated water bodies in the East African Rift system.

    PubMed

    Hermann, C M; Sefc, K M; Koblmüller, S

    2011-11-01

    Phylogenetic analysis identified haplochromine cichlids from isolated water bodies in the eastern branch of the East African Rift system as an ancient lineage separated from their western sister group in the course of the South Kenyan-North Tanzanian rift system formation. Within this lineage, the close phylogenetic relatedness among taxa indicates a recent common ancestry and historical connections between now separated water bodies. In connection with a total lack of local genetic diversity attributable to population bottlenecks, the data suggest cycles of extinction and colonization in the unstable habitat provided by the small lakes and rivers in this geologically highly active area. PMID:22026612

  19. Variations in the reflectivity of the moho transition zone beneath the Midcontinent Rift System of North America: results from true amplitude analysis of GLIMPCE data

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Lee, Myung W.; Behrendt, John C.; Cannon, William F.; Green, Adrian

    1992-01-01

    True amplitude processing of The Great Lakes International Multidisciplinary Program on Crustal Evolution seismic reflection data from the Midcontinent Rift System of North America shows large differences in the reflectivity of the Moho transition zone beneath the axial rift, beneath the rift flanks, and outside of the rift. The Moho reflection from the axial rift has a discontinuous, diffractive character marginally stronger (several decibels) than an otherwise transparent lower crust and upper mantle. Beneath the axial rift, Moho is interpreted to be a synrift igneous feature. Beneath the rift flanks, the reflectivity of the Moho transition is generally well developed with two identifiable boundaries, although in places it is weakly reflective to nonreflective, similar to Moho outside the rift. The two boundaries are interpreted as the base of essentially intact, although stretched, prerift Archean crust (upper boundary) and new synrift Moho 1-2 s (6-7 km) deeper (lower boundary). Beneath the rift flanks, the layered reflection Moho transition results from the preexisting crustal composition and fabric modified by synrift igneous processes and extensional tectonic/metamorphic processes. The geologic evidence for extensive basaltic magmatism in the rift is the basis for interpreting the Moho signature as a Keweenawan structure that has been preserved for 1.1 b.y. Extension and magmatism appear to enhance reflectivity in the lower crust and Moho transition zone only where stretching factors are moderate (rift flanks) and not where they are extreme (axial rift). This leads to the prediction that the reflectivity across analogous volcanic passive continental margins should be greatest beneath the moderately stretched continental shelves and should decrease towards the ocean-continent boundary.

  20. Prebreakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    NASA Astrophysics Data System (ADS)

    Bartok, Peter

    1993-01-01

    A review of the prebreakup geology of west central Pangea, comprising northern South America, the Gulf of Mexico, and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The prebreakup analysis focuses attention on the Precambrian, early Paleozoic, and late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two late Precambrian orogenic belts are observed in west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. A second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. Similar aged orogenies in the Appalachians are compared. During the late Paleozoic, renewed orogenic activity, associated with the Gondwana-Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Guayana craton and West African and eastern North American cratons. Mesozoic rifling closely followed either the Precambrian trends or the late Paleozoic orogenic belt. The Triassic component focused along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the "Hispanic Corridor" that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.

  1. Footwall progradation in syn-rift carbonate platform-slope systems (Early Jurassic, Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Fabbi, Simone; Santantonio, Massimo

    2012-12-01

    The so-called Umbria-Marche Domain of Northern Apennines represents a vast depositional system, also stretching across the Adriatic Sea subsurface, that was characterized by dominantly pelagic sedimentation through most of its Jurassic to Oligocene/Early Miocene history. The pelagic succession is underlain by Hettangian shallow-water carbonates (Calcare Massiccio Fm.), constituting a regional carbonate platform that was subjected to tectonic extension due to rifting of the Adria/African Plate in the earliest Jurassic. While tectonic subsidence of the hangingwalls drove the drowning of the platform around the Hettangian/Sinemurian boundary, the production of benthic carbonate on footwall blocks continued parallel to faulting, through a sequence of facies that was abruptly terminated by drowning and development of condensed pelagites in the early Pliensbachian. By then rifting had ceased, so that the Pliensbachian to Early Cretaceous hangingwall deposits represent a post-rift basin-fill succession onlapping the tectonically-generated escarpment margins of the highs. During the early phases of syndepositional faulting, the carbonate factories of footwall blocks were still temporarily able to fill part of the accommodation space produced by the normal faults by prograding into the incipient basins. In this paper we describe for the first time a relatively low-angle (< 10°) clinoform bed package documenting such an ephemeral phase of lateral growth of a carbonate factory. The clinoforms are sigmoidal, and form low-relief (maximum 5-7 m) bodies representing a shallow-water slope that was productive due to development of a Lithocodium-dominated factory. Continued faulting and hangingwall subsidence then decoupled the slope from the platform top, halting the growth of clinoforms and causing the platform margin to switch from accretionary to bypass mode as the pre-rift substrate became exposed along a submarine fault escarpment. The downfaulted clinoform slope was then buried by base-of-escarpment proximal turbidites, forming a bypass wedge. Such a contact would be imaged along a seismic section as an unconformity, suggestive of shut-off of the local carbonate factory and onlap by pelagic mud. The composition of the turbidites, however, at least initially duplicates that of the clinoforms, indicating that the footwall top was still productive, yet the mechanisms of sediment shedding into the basin had changed due to the modifications of submarine topography induced by synsedimentary tectonics.

  2. Spatial variation of primordial 3He in crustal fluids along the East-African Rift system (the Ethiopian and the Kenya Rift section)

    Microsoft Academic Search

    E. Griesshaber; S. Weise; G. Darling

    1994-01-01

    (3)He\\/(4)He compositions are presented for groundwater samples from the Ethiopian segment of the East-Afrikan Rift and from its northern extension, the adjacent Afar region (Djibuti). Helium isotope data are compared to those obtained previously from the Gregory Rift, south of Ethiopia. The distribution pattern of mantle-derived volatiles along the entire East-African-Rift (-from south Kenya to Djibuti-) is discussed and their

  3. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  4. Moho topography of the West Antarctic Rift System from inversion of aerogravity data: ramifications for geothermal heat flux and ice streaming

    Microsoft Academic Search

    M. Studinger

    2007-01-01

    The West Antarctic rift system, a region of thinned continental crust, dominates the lithospheric structure of the Ross Embayment in West Antarctica. Parts of the rift are host to the West Antarctic Ice Sheet, a marine-based ice sheet prone to instability. It has long been hypothesized that the lithospheric structure beneath the West Antarctic Ice Sheet is a major influence

  5. Estimating the age of formation of lakes: An example from Lake Tanganyika, East African Rift system

    SciTech Connect

    Cohen, A.; Soreghan, M.J. [Univ. of Arizona, Tucson, AZ (United States)] [Univ. of Arizona, Tucson, AZ (United States); Scholz, C.A. [Duke Univ. Marine Lab., Beaufort, NC (United States)] [Duke Univ. Marine Lab., Beaufort, NC (United States)

    1993-06-01

    Age estimates for ancient lakes are important for determining their histories and their rates of biotic and tectonic evolution. In the absence of dated core material from the lake`s sedimentary basement, several techniques have been used to generate such age estimates. The most common of these, herein called the reflection seismic-radiocarbon method (RSRM), combines estimates of short-term sediment-accumulation rates derived from radiocarbon-dated cores and depth-to-basement estimates derived from reflection-seismic data at or near the same locality to estimate an age to basement. Age estimates form the RSRM suggest that the structural basins of central Lake Tanganyika began to form between 9 and 12 Ma. Estimates for the northern and southern basins are younger (7 to 8 Ma and 2 to 4 Ma, respectively). The diachroneity of estimates for different segments of the lake is equivocal, and may be due to erosional loss of record in the northern and southern structural basins or to progressive opening of the rift. The RSRM age estimates for Lake Tanganyika are considerably younger than most prior estimates and clarify the extensional history of the western branch of the East African Rift system. 31 refs., 3 figs., 1 tab.

  6. Crustal and mantle structure and anisotropy beneath the incipient segments of the East African Rift System: Preliminary results from the ongoing SAFARI

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; moidaki, M.; Mutamina, D. M.; Atekwana, E. A.; Ingate, S. F.; Reusch, A.; Barstow, N.

    2013-12-01

    Despite the vast wealth of research conducted toward understanding processes associated with continental rifting, the extent of our knowledge is derived primarily from studies focused on mature rift systems, such as the well-developed portions of the East African Rift System (EARS) north of Lake Malawi. To explore the dynamics of early rift evolution, the SAFARI (Seismic Arrays for African Rift Initiation) team deployed 50 PASSCAL broadband seismic stations across the Malawi, Luangwa, and Okavango rifts of the EARS during the summer of 2012. The cumulative length of the profiles is about 2500 km and the planned recording duration is 2 years. Here we present the preliminary results of systematic analyses of data obtained from the first year of acquisition for all 50 stations. A total of 446 high-quality shear-wave splitting measurements using PKS, SKKS, and SKS phases from 84 teleseismic events were used to constrain fast polarization directions and splitting times throughout the region. The Malawi and Okavango rifts are characterized by mostly NE trending fast directions with a mean splitting time of about 1 s. The fast directions on the west side of the Luangwa Rift Zone are parallel to the rift valley, and those on the east side are more N-S oriented. Stacking of approximately 1900 radial receiver functions reveals significant spatial variations of both crustal thickness and the ratio of crustal P and S wave velocities, as well as the thickness of the mantle transition zone. Stations situated within the Malawi rift demonstrate a southward increase in observed crustal thickness, which is consistent with the hypothesis that the Malawi rift originated at the northern end of the rift system and propagated southward. Both the Okavango and Luangwa rifts are associated with thinned crust and increased Vp/Vs, although additional data is required at some stations to enhance the reliability of the observations. Teleseismic P-wave travel-time residuals show a delay of about 1 s at stations in the Okavango rift relative to the Limpopo belt. The study region is characterized by a relatively average mantle transition zone thickness of 250 km except for stations located within and to the immediate NW of the Okavango rift, where it is probably abnormally thin. Additional seismological techniques will be applied to the data set, and the preliminary results from the above initial analyses will be confirmed or modified by data from the SAFARI stations in the second year.

  7. The 1990 to 1991 Sudan earthquake sequence and the extent of the East african rift system.

    PubMed

    Girdler, R W; McConnell, D A

    1994-04-01

    One of the largest earthquakes ever recorded in Africa (surface wave magnitude M(s) = 7.2) occurred about 50 kilometers east of the Upper River Nile on 20 May 1990. Four days later, two more large earthquakes (M(s) = 6.4 and 7.0) occurred about 50 kilometers to the northwest in the Nile Valley. In the following months, a further 60 events were recorded by seismic stations worldwide. The earthquakes are associated with two fault systems: one east of the Nile with azimuth southeast and one along the Nile Valley with azimuth north-northeast. The activity alternated between the two fault systems and indicates that the northern extremity of the western branch of the East African Rift System extends at least 350 kilometers north of Lake Albert. PMID:17778134

  8. Exploring Crustal Structure and Mantle Seismic Anisotropy Associated with the Incipient Southern and Southwestern Branches of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Reed, C. A.; Gao, S. S.; Liu, K. H.; Massinque, B.; Mdala, H. S.; Chindandali, P. R. N.; Moidaki, M.; Mutamina, D. M.

    2014-12-01

    In spite of numerous geoscientific studies, the mechanisms responsible for the initiation and development of continental rifts are still poorly understood. The key information required to constrain various geodynamic models on rift initiation can be derived from the crust/mantle structure and anisotropy beneath incipient rifts such as the Southern and Southwestern branches of the East African Rift System. As part of a National Science Foundation funded interdisciplinary project, 50 PASSCAL broadband seismic stations were deployed across the Malawi, Luangwa, and Okavango rift zones from the summer of 2012 to the summer of 2014. Preliminary results from these 50 SAFARI (Seismic Arrays for African Rift Initiation) and adjacent stations are presented utilizing shear-wave splitting (SWS) and P-S receiver function techniques. 1109 pairs of high-quality SWS measurements, consisting of fast polarization orientations and splitting times, have been obtained from a total of 361 seismic events. The results demonstrate dominantly NE-SW fast orientations throughout Botswana as well as along the northwestern flank of the Luangwa rift valley. Meanwhile, fast orientations beneath the eastern Luangwa rift flank rotate from NNW to NNE along the western border of the Malawi rift. Stations located alongside the western Malawi rift border faults yield ENE fast orientations, with stations situated in Mozambique exhibiting more E-W orientations. In the northern extent of the study region, fast orientations parallel the trend of the Rukwa and Usangu rift basins. Receiver function results reveal that, relative to the adjacent Pan-African mobile belts, the Luangwa rift zone has a thin (30 to 35 km) crust. The crustal thickness within the Okavango rift basin is highly variable. Preliminary findings indicate a northeastward thinning along the southeast Okavango border fault system congruent with decreasing extension toward the southwest. The Vp/Vs measurements in the Okavango basin are roughly 1.75 on average, suggesting an unmodified crustal composition, while those of the Luangwa and southern Malawi rift zones are relatively high, probably suggesting ancient or ongoing magmatic emplacement. The Pan-African mobile belts enveloping the rift zones are mostly characterized by more felsic and thicker crust.

  9. Unravelling the influence of orogenic inheritance on the architecture and tectonic evolution of hyper-extended rift systems

    NASA Astrophysics Data System (ADS)

    Chenin, Pauline; Manatschal, Gianreto; Lavier, Luc

    2014-05-01

    The aim of this starting PhD thesis is to determine under what conditions inheritance produced by former orogens influences subsequent rifting, and to unravel the influence of inherited structures and heterogeneities on the architecture and tectonic evolution of hyper-extended rift systems. To complete this task, we map along the Central and North Atlantic margin 1) rift domains; 2) age of the major rift events; and 3) key structure and heterogeneities inherited from the Caledonian and Variscan orogens. We will then study these data in the light of minimal numerical modelling experiments and use them as a basis for designing more comprehensive numerical models for the North Atlantic rifting. In order to map the Atlantic margins, we use gravity, magnetic data, seismic reflection and refraction to identify the necking zone and the continentward limit of the oceanic domain. This allows us to define the proximal domain where continental crust is not or barely thinned on one side, the unequivocal oceanic domain on the other side, and the hyper-extended domain between them. Within the hyper-extended domain, we rely on seismic data (refraction and reflection) to distinguish the area where the crust and the mantle are decoupled from the area where they are coupled, and to identify potential zones with mantle exhumation and/or magmatic additions. Previous studies mapped these domains along Iberia-Newfoundland and Bay of Biscay. The objective of this PhD is to extend this mapping further to the North, along the Irish, UK and Norwegian margins, into domains with polyphase rifting and magmatic additions. One of the goals of this work is to highlight potential correlations between first-order changes in the architecture and/or magmatic evolution of the Atlantic margin and first-order structures and heterogeneities inherited from the Caledonian and/or Variscan orogens. We also aim to assess the importance of inheritance in structuring and controlling the evolution of hyper-extended magma-rich versus magma-poor rift systems. We present our three preliminary maps, displaying 1) rifts structural domains; 2) the age of necking; and 3) the major Caledonian and Variscan inherited features in Western Europe. We also give insight into the numerical experiments we intend to run.

  10. Active deformation of the Corinth rift, Greece: Results from repeated Global Positioning System surveys between 1990 and 1995

    Microsoft Academic Search

    P. Briole; A. Rigo; H. Lyon-Caen; J. C. Ruegg; K. Papazissi; C. Mitsakaki; A. Balodimou; G. Veis; D. Hatzfeld; A. Deschamps

    2000-01-01

    Between 1990 and 1995, we carried out seven Global Positioning System (GPS) campaigns in the Corinth rift area in order to constrain the spatial and temporal crustal deformation of this active zone. The network, 193 points over ~10,000 km2, samples most of the active faults. In order to estimate the deformation over a longer period, 159 of those points are

  11. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    Microsoft Academic Search

    Christine Atkins Tedrow

    2010-01-01

    The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second

  12. How strong ist the impact of changing topography of the East African Rift System on regional climate?

    Microsoft Academic Search

    Kerstin Prömmel; Frank Kaspar; Ulrich Cubasch

    2010-01-01

    The evolution of the East African Rift System (EARS) leads to a topography change at the surface and the impact of this change on climate in this region can easily be analysed with climate models. In the present study both global and regional climate models are applied. The global climate model is the coupled atmosphere ocean general circulation model ECHO-G

  13. The Okavango Dike Swarm (ODS) of Northern Botswana: Was it associated with a failed Rift System?

    NASA Astrophysics Data System (ADS)

    LePera, Alan; Atekwana, Estella; Abdelsalam, Mohamed

    2014-05-01

    Dikes and dike swarms often play a significant role in the initiation and extension of rift zones. The giant ODS in northern Botswana, Africa represents a Jurassic aged (~180Ma) thermo-tectonic event which developed during the initial lithospheric weakening phase of Gondwana. Detailed investigations of the mafic dike swarm over the last four decades have provided insights into its age, shape, orientation, and chemistry but have thus far been limited in addressing the crustal structure below the swarm. Historically, the ODS has been interpreted as a failed rift arm based on its association with the Bouvet Hotspot and geometric relationship with two other prominent dike swarms. More recent studies suggest instead that the ODS was emplaced along a preexisting Precambrian basement fabric. Accordingly, the origin of the swarm still remains a matter of debate. The objectives of this study were: (1) determine the role of crustal heterogeneities on the emplacement of the dikes, (2) determine variations in crustal thickness below the ODS and geographically related Okavango Rift Zone (ORZ), a zone of incipient rifting and (3) determine along-strike variations in Curie Point Depth (CPD) below the swarm. We used high resolution aeromagnetic data and applied mathematical filters to enhance structures associated with the swarm's oblique geometry. Crustal thicknesses were estimated using the radial average power spectrum method, applied to 1.2km spatial resolution gravity data. 3D inversions were used to map the magnetic basement and determine the depth to the base of the swarm. Our results showed: (1) There were no apparent basement structures with the same 110° orientation as the ODS. (2) Crustal thickness below the swarm ranges from 39 to 45km with an average of 42± 3km, comparable with thicknesses derived from the Southern African Seismic Experiment (SASE). In contrast, crustal thickness below the ORZ is 9 to 16km thinner than the surrounding blocks. (3) The magnetic basement extends to a depth of about 24km and is segmented into a number of along-strike magnetic bodies. The lack of significant crustal thinning below the ODS and poor relationship with the Precambrian basement fabric suggests either the ODS was not associated with a failed rift system or the remnants of the crustal disturbance have since been modified to depict a normal continental crust. The along-strike magnetic bodies conceivably represent mid-crustal feeder chambers, similar to those found in modern extensional environments such as Afar, or magma pooling zones developed along Proterozoic discontinuities. Due to the relative inconsistency of the magnetic anomaly below the swarm we speculate that a majority of the dikes are confined to the upper 5-10km of the crust. The ODS is thus interpreted to be a magma enhanced fissure network emplaced within the upper crust during an extensive period of regional tension induced by a continental wide upwelling of the asthenosphere caused by thermal incubation of the mantle.

  14. Tectonics of the baikal rift deduced from volcanism and sedimentation: a review oriented to the Baikal and Hovsgol lake systems.

    PubMed

    Ivanov, Alexei V; Demonterova, Elena I

    2009-01-01

    As known from inland sedimentary records, boreholes, and geophysical data, the initiation of the Baikal rift basins began as early as the Eocene. Dating of volcanic rocks on the rift shoulders indicates that volcanism started later, in the Early Miocene or probably in the Late Oligocene. Prominent tectonic uplift took place at about 20 Ma, but information (from both sediments and volcanics) on the initial stage of the rifting is scarce and incomplete. A comprehensive record of sedimentation derived from two stacked boreholes drilled at the submerged Akademichesky ridge indicates that the deep freshwater Lake Baikal existed for at least 8.4 Ma, while the exact formation of the lake in its roughly present-day shape and volume is unknown. Four important events of tectonic/environmental changes at about approximately 7, approximately 5, approximately 2.5, and approximately 0.1 Ma are seen in that record. The first event probably corresponds to a stage of rift propagation from the historical center towards the wings of the rift system. Rifting in the Hovsgol area was initiated at about this time. The event of ~5 Ma is a likely candidate for the boundary between slow and fast stages of rifting. It is reflected in a drastic change of sedimentation rate due to isolation of the Akademichesky ridge from the central and northern Lake Baikal basins. The youngest event of 0.1 Ma is reflected by the (87)0Sr/ (86)Sr ratio increase in Lake Baikal waters and probably related to an increasing rate of mountain growth (and hence erosion) resulting from glacial rebounding. The latter is responsible for the reorganization of the outflow pattern with the termination of the paleo-Manzurka outlet and the formation of the Angara outlet. The event of approximately 2.5 Ma is reflected in the decrease of the (87)Sr/(86)Sr and Na/Al ratios in Lake Baikal waters. We suggest that it is associated with a decrease of the dust load due to a reorganization of the atmospheric circulations in Mainland Asia. All these tectonic and climatic events could (and actually did) influence the biota of Lake Baikal. The Hovsgol rift basin was shaped to its recent form between 5.5 and 0.4 Ma. However, freshwater Lake Hovsgol appeared only in the latest pre-Holocene time as a result of meltwater inflow and increase of atmospheric precipitations during the Bølling-Allerød warming. Prior to this, a significantly smaller, saline outflow-free precursor of Lake Hovsgol existed. It explains why two, now connected, lakes of similar water chemistry within similar climatic and tectonic conditions differ so much in their biodiversity. PMID:19198772

  15. Hydrocarbon potential of intracratonic rift basins

    SciTech Connect

    Baker, D.G.; Derksen, S.J.

    1984-09-01

    Significant world oil reserves have been added in recent years from rift system. Examples of petroliferous rift basins may be found on nearly every major continent. As our understanding of the mechanisms of sedimentation and structure in rift basins grows, more rift systems will be found. With a few notable exceptions, rifts that have been explored in the past are those that formed along continental margins. These contain marine sediments, and the conditions of source rock, sediment type, depositional environment, and structural style are well-known exploration concepts. Intracratonic rift systems containing continental sediments, and also because of the problems perceived to accompany continental sedimentation. A good modern analog is the East African rift system. Several companies have made significant oil discoveries in different components of the Central African rift system. Average daily production for 1982 from the basins associated with the Benue trough was 107.928 BOPD. In the Abu Gabra rift component, where Marathon is currently exploring, Chevron has drilled approximately 60 wells. Nineteen of these were discoveries and tested an average rate per well of 3,500 BOPD. The Abu Gabra rift may contain up to 10 billion bbl of oil. Research indicates that this type of rift system is present in other areas of the world. Ongoing worldwide exploration has shown that intracratonic rift basins have the potential to make a significant contribution to world oil reserves.

  16. East African Rift System (EARS) Plume Structure: Insights from Quaternary Mafic Lavas of Turkana, Kenya

    Microsoft Academic Search

    TANYA FURMAN; JULIA G. BRYCE; JEFFREY KARSON; ANNAMARIA IOTTI

    2004-01-01

    Quaternary mafic lavas from Lake Turkana (northern Kenya) provide information on processes operating beneath the East African Rift in an area of anomalous lithospheric and crustal thinning. Inferred depths of melting beneath Turkana (15---20km) are shal- lower than those recorded elsewhere along the rift, consistent with the anomalously thin crustal section. The mafic lavas have elevated incompatible trace element contents

  17. Structure of backarc inner rifts as a weakest zone of arc-backarc system: a case study of the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Sato, Hiroshi; Ishiyama, Tasuya; Kato, Naoko; Abe, Susumu; Saito, Hideo; Shiraishi, Kazuya; Abe, Shiori; Iwasaki, Takaya; Inaba, Mitsuru; No, Tetsuo; Sato, Takeshi; Kodaira, Shuichi; Takeda, Tetsuya; Matsubara, Makoto; Kodaira, Chihiro

    2015-04-01

    A backarc inner rift is formed after a major opening of backarc basin near a volcanic front away from the spreading center of a major backarc basin. An obvious example is the inner rift along the Izu-Bonin arc. Similar inner rift zones have been developed along the Sea of Japan coast of Honshu island, Japan. NE and SW Japan arcs experienced strong shortening after the Miocene backarc rifting. The amount of shortening shows its maximum along the backarc inner rifts, forming a fold-and-thrust of thick post-rift sediments over all the structure of backarc. The rift structure has been investigated by onshore-offshore deep seismic reflection/wide-angle reflection surveys. We got continuous onshore-offshore image using ocean bottom cable and collected offshore seismic reflection data using two ships to obtain large offset data in the difficult area for towing a long streamer cable. The velocity structure beneath the rift basin was deduced by refraction tomography in the upper curst and earthquake tomography in the deeper part. It demonstrates larger P-wave velocity in upper mantle and lower crust, suggesting a large amount of mafic intrusion and thinning of upper continental crust. The deeper seismicity in the lower crust beneath the rift basin accords well to the mafic intrusive rocks. Syn-rift volcanism was bimodal, comprising a reflective unit of mafic rocks around the rift axis and a non-reflective unit of felsic rocks near the margins of the basins. Once rifting ended, thermal subsidence, and subsequently, mechanical subsidence related to the onset of the compressional regime, allowed deposition of up to 5 km of post-rift, deep marine to fluvial sedimentation. Continued compression produced fault-related folds in the post-rift sediments, characterized by thin-skin style of deformation. The syn-rift mafic intrusion in the crust forms convex shape and the boundary between pre-rift crust and mafic intrusive shows outward dipping surface. Due to the post rift compression, the boundary of rock units reactivated as reverse faults, commonly forming a large-scale wedge thrust and produced subsidence of rift basin under compressional stress regime. Large amount of convergence of overriding plate is accommodated along the inner rift, suggesting that it is a weakest zone in whole arc-backarc system. The convergence between young (15 Ma) Shikoku basin and SW Japan arc produced intense shortening along the inner failed rift along the Sea of Japan coast. After the onset of subduction along the Nankai trough, the fold-and-thrust belt was covered by Pliocene marine sediment. Before the 2011 off-Tohoku earthquake (M9), several damaging earthquakes occurred along the backarc fold-and-thrust belt. These represents that a weak backarc inner rift is very sensitive for the stress produce by the subduction interface.

  18. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  19. The formation of clay minerals in faulted granite of the Rhine rift system

    NASA Astrophysics Data System (ADS)

    Schleicher, A. M.; Warr, L. N.; Peacor, D. R.; van der Pluijm, B. A.

    2003-04-01

    Although the Rhine Graben is one of the best studied rift systems in the world, there is still relatively little known about the fluid-rock history of the faulted basement rocks, other than in the Soultz-Sous-Forets (HDR borehole). Effective modelling of the regional flow of fluids within the rift sequence and its underlying basement is dependent on knowledge concerning changes in permeability and porosity of basement faults, which can be empirically assessed by studying the alteration history of cataclasite samples. In this contribution we present the results of a combined X-ray diffraction and electron microscopy (SEM and HRTEM) study of low temperature altered cataclasites in the basement granite from two contrasting localities. 1) The Soultz-Sous-Forets borehole site (sampled below 1417 m), that is located in the western part of the rift basin, and 2) the E-W trending Schauenburg Fault, positioned along the eastern Rhine Graben shoulder. This latter structure marks a vertical contact between Permian rhyolite and Variscan granite and is positioned immediately adjacent to the N-S trending basin boundary fault. The alteration mineralogy of the cataclasites sampled from these localities reveal notable differences, which are considered to reflect variations in the faults burial-uplift and fluid history. The Soultz samples contain mostly anhedral and fibrous illite-muscovite (predominantly 2M polytype) and less chlorite as the main alteration products, which occur both as pore-filling minerals and as replacement products of feldspar (both plagioclase and K-feldspar) and biotite. In contrast, in the Schauenburg Fault 1Md illite/smectite polytypes dominate, along with significant quantities of kaolinite. These minerals are also formed by replacement of feldspars and as neocrystallized pore-filling material. Kaolinite is particularly abundant in the center of the fault, where several generations of well-developed pseudohexagonal stacks can be recognized, partially infilling pore-spaces of the fault rock. The origin of these clay growth events is discussed in terms of both Mesozoic and Tertiary thermal history and meteoric input along the margins of the Upper Rhine Graben region.

  20. The Crust and Mantle Structure of the Mid-Continent Rift System from Ambient Noise and Earthquake Surface Wave Analysis

    NASA Astrophysics Data System (ADS)

    Aleqabi, G. I.; Wiens, D. A.; Wysession, M. E.; van der Lee, S.; Revenaugh, J.; Frederiksen, A. W.; Darbyshire, F. A.; Stein, S. A.; Jurdy, D. M.; Wolin, E.; Bollmann, T. A.

    2014-12-01

    An investigation of the crust and mantle structure beneath the northern part of the Mid-Continent Rift Zone (MCRZ) is carried out using through seismic tomography from both teleseismic earthquake data and ambient seismic noise, using data from the EarthScope USArray Transportable Array (TA) and from the Flexible Array (FA) project SPREE (Superior Rifting EarthScope Experiment). The SPREE project deployed 83 temporary broadband seismic stations in Minnesota, Wisconsin, and Ontario during 2011-2013. The goal is to study the ancient Superior Province rifting via the related crustal and upper mantle modification to the petrologic and thermal structures. Continental rifting 1.1 Ga ago produced an enigmatic horseshoe-shaped rift system that is only exposed in the Lake Superior Region, but shows strong gravity and magnetic anomalies. Cross-correlation between all station pairs of the SPREE and concordant TA stations are used to obtain ambient noise Rayleigh-wave Green's functions, which are in turn used to obtain group and phase velocity dispersion curves in the 8 - 50 s period range. In addition, the two-plane-wave method with finite frequency kernels is used to determine teleseismic earthquake-generated Rayleigh wave phase velocities in the 20 - 182 s period range. Combining the phase velocity measurements from both techniques provides an opportunity to invert for 1-D shear wave velocity structure in the 8 - 182 s period range. Phase velocities generally agree well where the period bands overlap. A three-dimensional S-wave velocity model of the crust and upper mantle is obtained from the 1-D shear wave velocity profiles at each location, also incorporating receiver function estimates of crustal thickness. For the shear inversion the overlapping phase velocities are averaged, with noise correlation results preferentially weighted at short periods and teleseismic results at longer periods. The model shows slow shear velocities at shallow depths along the rift zone due to sediment infill. Slightly slow velocities are also seen in the uppermost mantle along much of the rift zone, perhaps due to Compositional variation. The other clear feature is fast velocities at deeper lithospheric levels in the Superior craton.

  1. A multidisciplinary study of the final episode of the Manda Hararo dyke sequence, Ethiopia, and implications for trends in volcanism during the rifting cycle

    E-print Network

    Barnie, T. D.; Keir, D.; Hamling, I.; Hofmann, B.; Belachew, M.; Carn, S.; Eastwell, D.; Hammond, J. O. S.; Ayele, A.; Oppenheimer, C.; Wright, T.

    2015-01-01

    The sequence of dyke intrusions between 2005 and 2010 in the Manda Hararo rift segment, Ethiopia, provided an opportunity to test conceptual models of continental rifting. Based on trends up to dyke 13 in the sequence, it was anticipated that...

  2. Structural style of the Turkana Rift, Kenya

    SciTech Connect

    Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

    1988-03-01

    Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

  3. Spatial variation of primordial 3-He in crustal fluids along the East-African Rift system (the Ethiopian and the Kenya Rift section)

    NASA Technical Reports Server (NTRS)

    Griesshaber, E.; Weise, S.; Darling, G.

    1994-01-01

    (3)He/(4)He compositions are presented for groundwater samples from the Ethiopian segment of the East-Afrikan Rift and from its northern extension, the adjacent Afar region (Djibuti). Helium isotope data are compared to those obtained previously from the Gregory Rift, south of Ethiopia. The distribution pattern of mantle-derived volatiles along the entire East-African-Rift (-from south Kenya to Djibuti-) is discussed and their sources are identified. Helium isotope ratios (R) for samples from the Ethiopian part of the Rift range from 6.3 to 16.0 times the atmospheric ratio (Ra=1.4 x 10(exp -6) and thus show together with a MOR component a considerable hotspot helium component. These mantle helium concentrations are comparable to those observed in groundwaters and volcanic rocks from the Afar plume region in Djibuti. Here R/Ra values range from 9 to 13 times the atmospheric composition, with mantle-derived helium concentrations being higher than at spreading ocean ridges. R/Ra values from Ethiopia and Djibuti are entirely different from those observed in groundwaters at the southerly extending Gregory Rift in Kenya, where R/Ra values scatter between 0.5 and 6. At the northernmost part of the Gregory Rift, close to Ethiopia mantle helium contents are slightly higher, with R/Ra-values varying between 6.5 and 8.0.

  4. Controls on strain localisation in the Middle to Late Jurassic North Sea rift system 

    E-print Network

    Gill, Caroline E

    2005-01-01

    Extensional fault propagation and linkage play an important role in the structural and sedimentological development of rift basins. In this study, use of 85,000km² 3D seismic data provides a new and unique opportunity ...

  5. DoD-GEIS Rift Valley Fever Monitoring and Prediction System as a Tool for Defense and US Diplomacy

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Tucker, Compton J.; Linthicum, Kenneth J.; Witt, Clara J.; Gaydos, Joel C.; Russell, Kevin L.

    2011-01-01

    Over the last 10 years the Armed Forces Health Surveillance Center's Global Emerging Infections Surveillance and Response System (GEIS) partnering with NASA'S Goddard Space Flight Center and USDA's USDA-Center for Medical, Agricultural & Veterinary Entomology established and have operated the Rift Valley fever Monitoring and Prediction System to monitor, predict and assess the risk of Rift Valley fever outbreaks and other vector-borne diseases over Africa and the Middle East. This system is built on legacy DoD basic research conducted by Walter Reed Army Institute of Research overseas laboratory (US Army Medical Research Unit-Kenya) and the operational satellite environmental monitoring by NASA GSFC. Over the last 10 years of operation the system has predicted outbreaks of Rift Valley fever in the Horn of Africa, Sudan, South Africa and Mauritania. The ability to predict an outbreak several months before it occurs provides early warning to protect deployed forces, enhance public health in concerned countries and is a valuable tool use.d by the State Department in US Diplomacy. At the international level the system has been used by the Food and Agricultural Organization (FAD) and the World Health Organization (WHO) to support their monitoring, surveillance and response programs in the livestock sector and human health. This project is a successful testament of leveraging resources of different federal agencies to achieve objectives of force health protection, health and diplomacy.

  6. Assessing the Influence of Orogenic Inheritance on the Architecture, Time Evolution and Magmatic Budget of Hyper-extended Rift Systems: a Combined Mapping and Numerical Modelling Approach

    NASA Astrophysics Data System (ADS)

    Chenin, P.; Manatschal, G.; Lavier, L. L.; Erratt, D.

    2014-12-01

    The aim of this PhD thesis is to assess the influence of inherited structures and heterogeneities on the architecture and tectonic evolution of hyper-extended rift systems, with special focus on the North Atlantic. We propose a new mapping approach using simple and robust observation-based criteria to identify key features of rift systems, namely: 1) structural elements of rift domains; 2) age of the major rift events; and 3) key structures and heterogeneities inherited from previous orogenic phases. We distinguish between 3 major rift domains: 1) the not or barely thinned proximal domain; 2) the unequivocal oceanic domain characterized by steady-state seafloor spreading; and, between them 3) the hyper-extended domain concentrating most of the deformation using gravity, magnetic and reflection and refraction seismic data. Previous studies mapped these domains along the magma-poor Iberia-Newfoundland and Bay of Biscay. One objective of this PhD is to extend this mapping further to the North, along the Irish, Scottish and Norwegian margins, into domains with polyphase rifting and magmatic additions. In addition, we assign an age to the two most important events in the development of rifted margins, namely the necking and the breakup. This approach requires us to determine how these two events are recorded in the stratigraphy and how they can be mapped in seismic sections. In order to highlight potential links between both rift domain architecture and timing of rifting and orogenic inheritance we map the structures and heterogeneities inherited from previous collision events that may have influenced significantly subsequent rifting. We consider features that: 1) are important enough to have had a potential impact on subsequent deformation; 2) are preserved through time; and 3) bear the potential to be reactivated. Based on these data, we try to link the architecture and evolution of the North Atlantic rift system with the nature and in-depth location of weak features initially present within the lithosphere in the light of minimal numerical modelling experiments and use these results as a basis for designing more comprehensive numerical models for the North Atlantic rifting.

  7. Variations in Mid-Continent Rift magma volumes consistent with microplate evolution

    E-print Network

    Stein, Seth

    active East African and Baikal rifts, has two major arms meeting in the Lake Superior region. One extends Mid- Continent Rift System shows systematic patterns in magma volume between and along the rift's two as a leaky transform. This view of the rift system's evolution is compatible with the rift being part

  8. Kinematics of Rift-Parallel Deformation Along the Rukwa Rift, Western Branch, and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Stamps, D.; Koehn, D.; Burke, K. C.; d'Oreye, N.; Saria, E.; Xu, R.

    2013-12-01

    The East African Rift System spans N-S ~5000 km and currently experiences E-W extension. Previous kinematic studies of the EARS delineated 3 relatively rigid sub-plates (Victoria, Rovuma, and Lwandle) between the Nubian and Somalian plates. GPS observations of these block interiors confirm the rigid plate model, but we also detect a systematic along-rift deformation pattern at GPS stations located within rift zones bounding the western Victoria block and continuing north between the Nubian and Somalian plates. Here we present a kinematic model of present-day rift-parallel deformation along the Western branch, Rukwa Rift, and Main Ethiopian Rift constrained by a new GPS solution, earthquake slip vectors, and mapped active fault structures. We test the roles of block rotation, elastic deformation, and anelastic deformation by varying block geometry, fault slip distribution parameters, estimating permanent strain rate, and scoring each model with GPS observations. We also explore how the present-day deformation patterns relate to longer-term paleostress indicators. Observations of slickensides and offsets in seismic reflection profiles in the northern Western branch (Albertine rift) indicate a change from ~NNE trending normal faulting to include strike-slip motion within the past 7 My that may be related to previously studied stress changes in the Turkana rift. Preliminary results from the kinematic modeling demonstrate simple elastic strain accumulation on major border faults cannot explain an observed systematic northward component in GPS velocities relative to the Victoria block and the Nubian plate.

  9. Rift Valley Fever Virus Nonstructural Protein NSs Promotes Viral RNA Replication and Transcription in a Minigenome System

    Microsoft Academic Search

    Tetsuro Ikegami; C. J. Peters; Shinji Makino

    2005-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins

  10. Rayleigh Wave Phase Velocity and Shear Wave Velocities in the Western Branch of the East African Rift System

    Microsoft Academic Search

    A. N. Adams; A. Nyblade

    2009-01-01

    In this study we present phase velocities and a quasi-three dimensional model of shear wave velocities in the western branch of the East African Rift System and the Tanzania Craton. We incorporate data from a temporary Africa Array broadband network (2007-2009), the Tanzania Broadband Seismic Network (1994-1995), and GSN stations. We employ these datasets to solve for phase velocities using

  11. Tectonic localization of multi-plume hydrothermal fluid flow in a segmented rift system, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Rowland, J. V.; Downs, D. T.; Scholz, C.; de P. S. Zuquim, M.

    2013-05-01

    High-temperature (>250°C) multi-plume hydrothermal systems occur in a range of tectonic settings, though most are extensional or transtensional. A key feature of such settings is their tendency to partition into discrete structural elements that scale with the thickness of the seismogenic zone. The late Miocene to present record of arc magmatism and rifting in the North Island of New Zealand illustrates the importance of structural segmentation and reactivation of inherited basement fabrics on the localisation of hydrothermal upflow. The <2 My-old Taupo Volcanic Zone (TVZ) represents the most recent NE-SW-trending locus of heat and mass transfer in a >15 My record of similarly-oriented magmatism, rifting and hydrothermal activity associated with subduction of the Pacific Plate beneath the North Island of New Zealand. Lateral migration of the locus of arc magmatism, concomitant with roll-back of the subducting slab, is supported by the SE-directed younging of: 1) volcanism; 2) fault-controlled rift basins; and 3) hydrothermal activity, represented by the distribution of epithermal mineralisation within the ~15-3 Ma Coromandel Volcanic Zone (CVZ), and geothermal activity within the TVZ. Currently the TVZ is extending in a NW-SE direction at a rate that varies from ~3 mm/yr to ~15 mm/yr from SW to NE, respectively. The TVZ is partitioned into discrete rift segments, comprising arrays of NE-striking normal faults of ~20 km in length, as expected on mechanical grounds for the 6-8 km-thick seismogenic zone. Transfer zones between rift segments coincide with N-to-NW-trending alignments of geothermal fields, <61 ka volcanic vents, and margins of rhombic shaped caldera boundaries, which supports the notion that such tectonic features are important sites for heat and mass transfer. Although masked at the surface, upward continued aeromagnetic data reveals deep lineations that align with transfer zones and major faults in exposed Mesozoic metasedimentary basement rocks proximal to the TVZ. Transfer zones are thus inferred to be hard-linked at depth via reactivated basement faults, some of which appear to extend into the CVZ. Two similarly oriented features spaced ~ 30 km apart can be recognized elsewhere within the CVZ. The most productive epithermal deposits to date are localised where these inferred transfer zones intersect arc-parallel fault arrays. A similar tectonic configuration occurs in the Deseado Massif, Argentinian Patagonia, where interplay between transfer and rift faults is inferred to have localized hydrothermal fluids in small pull-apart basins and arrays of extension veins for durations >30 My.

  12. Isotopic and geochemical zoning of Devonian magmatism in the Altai–Sayan rift system: Composition and geodynamic nature of mantle sources

    Microsoft Academic Search

    A. A. Vorontsov; V. V. Yarmolyuk; G. S. Fedoseev; A. V. Nikiforov; G. P. Sandimirova

    2010-01-01

    Based on the systematic investigation of the geochemical and isotopic (Sr and Nd) characteristics of basic rocks from various\\u000a volcanic areas of the Devonian Altai-Sayan rift system, the compositions of mantle magma sources were characterized, and the\\u000a geodynamic scenarios of their entrainment into rifting processes were reconstructed. It was found that the titanium-rich basic\\u000a rocks (2.5 2 < 4.2 wt

  13. Cenozoic rift formation in the northern Caribbean

    NASA Technical Reports Server (NTRS)

    Mann, P.; Burke, K.

    1984-01-01

    Rifts form in many different tectonic environments where the lithosphere is put into extension. An outline is provided of the distribution, orientation, and relative ages of 16 Cenozoic rifts along the northern edge of the Caribbean plate and it is suggested that these structures formed successively by localized extension as the Caribbean plate moved eastward past a continental promontory of North America. Evidence leading to this conclusion includes (1) recognition that the rifts become progressively younger westward; (2) a two-phase subsidence history in a rift exposed by upthrusting in Jamaica; (3) the absence of rifts east of Jamaica; and (4) the observation that removal of 1400 km of strike-slip displacement on the Cayman Trough fault system places the Paleogene rifts of Jamaica in an active area of extension south of Yucatan where the rifts of Honduras and Guatemala are forming today.

  14. Oil source rocks in lacustrine sequences from Tertiary grabens, western Mediterranean rift system, northeast Spain

    SciTech Connect

    Anadon, P.; Cawley, S.J.; Julia, R.

    1988-08-01

    Lacustrine sequences, 100-250 m thick, containing oil-prone, organic-rich mudstones (ORM) are exposed in five Tertiary basins in northeastern Spain. They were deposited in small lacustrine basins (up to 50 km/sup 2/) that developed in grabens of the western Mediterranean rift system. ORMs from the Rubielos basin comprise laminated gray mudstones with interbedded rhythmite intervals (up to 2.5 m thick) formed by couplets of organic- and carbonate-rich laminae (< 1 mm thick). In marginal zones, ORMs (up to 10 m thick) alternate with lean, bioturbated green marls (up to 5 m thick). ORMs (Rock-Eval yields /approximately/ 40 kg/MT, HI /approximately/ 850 mg HC/g TOC) had a dominant waxy terrestrial plant input, with significant and variable algal/bacterial input. ORMs in these basins are immature for petroleum generation. Larger lacustrine basins similar to those described above, in more appropriate burial/thermal situations, can be envisioned as zones of potential interest for lacustrine oil exploration in the western Mediterranean.

  15. Controls on contrasting sandbody architectures in resedimented oolitic units from rift systems of the Mediterranean Jurassic

    SciTech Connect

    Abbots, F.V.

    1988-08-01

    Localized development of a small, prograding, sand-rich oolitic fan occurs in the deep-water Brenha Formation (Toarcian-Bajocian) of western Portugal. Controlled by prefan tectonism and a limited source area, its fan characteristics are contrasted with two radically different contemporary oolitic aprons. The Cutri Formation (Bathonian), a minor apron system from Mallorca, is characterized by infrequently initiated, high-density oolitic turbidites related to phases of tectonic activity on platform bounding faults. Affected by minor tectonism and subsidence, this apron was short lived because the source platform was drowned. This contrasts with the Vajont oolite formation (Bajocian-lower Oxfordian), northern Italy, a major resedimented oolitic sandbody interpreted as a tectonically aggraded faulted-slope apron. Predominantly sheet-like oolitic turbidites were fed via a line source from a gullied margin into a deep, narrow rift basin. The resulting wedge-shape sandbody formed from overlapping turbidites stacked into poorly developed, mainly fining-upward cycles aggraded by major fault-related subsidence.

  16. Thermal localization as a potential mechanism to rift cratons Gang Lu a,b,

    E-print Network

    Kaus, Boris

    directly adjacent to orogens or rifts (e.g. the east African Rift System, the Baikal RiftThermal localization as a potential mechanism to rift cratons Gang Lu a,b, , Boris J.P. Kaus b and/or high viscosity are insufficient to keep cratons stable. The forma- tion of continental rifts

  17. Calibration Systems Final Report

    SciTech Connect

    Myers, Tanya L.; Broocks, Bryan T.; Phillips, Mark C.

    2006-02-01

    The Calibration Systems project at Pacific Northwest National Laboratory (PNNL) is aimed towards developing and demonstrating compact Quantum Cascade (QC) laser-based calibration systems for infrared imaging systems. These on-board systems will improve the calibration technology for passive sensors, which enable stand-off detection for the proliferation or use of weapons of mass destruction, by replacing on-board blackbodies with QC laser-based systems. This alternative technology can minimize the impact on instrument size and weight while improving the quality of instruments for a variety of missions. The potential of replacing flight blackbodies is made feasible by the high output, stability, and repeatability of the QC laser spectral radiance.

  18. The Proto-Indian Ocean and a probable paleozoic/mesozoic triradial rift system in East Africa

    NASA Astrophysics Data System (ADS)

    Cannon, R. T.; Simiyu Siambi, W. M. N.; Karanja, F. M.

    1981-02-01

    A revised Paleozoic/Mesozoic stratigraphy of coastal Kenya (including, in particular, the Karroo) based on current geological mapping near Mombasa is briefly described. This stratigraphy provides the geological framework for proposals concerning the Proto-Indian Ocean and the tectonic setting of the Karroo depositional basins. Recent geophysical evidence suggests that, within Gondwanaland, Madagascar was situated off East Africa near Kenya/Tanzania. The southern limits of the marine Lower Jurassic and southern limits of the marine Middle and Upper Jurassic are in similar positions in mainland Africa and Madagascar using the latter reconstruction. These paleogeographic limits also define the position, during the Jurassic, of an embayment from an ocean to the north. Regional geological similarities also support this reconstruction and are reinforced by paleocurrent data from the Karroo of Kenya indicating drainage north-northeast during the Permian and Triassic and possibly the Lower Jurassic. Marine connections during Karroo times appear to be of different ages in Kenya, Tanzania, Somalia, and Madagascar, probably reflecting physical limitations to marine access in fault-separated basins. The above embayment encroached across the Karroo depositional basins from northeast Kenya to southern Tanzania during the Lower and Middle Jurassic, i.e. from the direction towards which the Karroo drainage had been previously directed. Marine conditions remain to the present day so this embayment can be considered the Proto-Indian Ocean for East Africa. The marine incursion took place before the breakup of Gondwanaland suggesting that during the Jurassic the Proto-Indian Ocean in East Africa was an epicontinental sea and not a true ocean (i.e. floored by simatic crust). The epicontinental nature of this sea is confirmed by the lithologies of the associated sediments. Paleontological data indicate that this sea was an arm of Tethys. True oceanic conditions could not have been established until the displacement of Madagascar away from Africa, probably in the Cretaceous. Accepting the above northern position of Madagascar, the writers also postulate that in East Africa the fault-bounded Karroo depositional basins (troughs) were located within a major triradial rift system extending from Lake Malawi at least as far as eastern Kenya (some 1600 km). This rift system, if valid, was established within Gondwanaland over a period ˜100 m.y. in the Paleozoic/Mesozoic (pre-breakup) in marked contrast to the East African Rift System (classical rift valleys) which is mainly a Cainozoic phenomenon (post-breakup). It is, therefore, considered that there is a fundamental difference in origin between the two rift systems.

  19. GLIMPCE Seismic reflection evidence of deep-crustal and upper-mantle intrusions and magmatic underplating associated with the Midcontinent Rift system of North America

    USGS Publications Warehouse

    Behrendt, John C.; Hutchinson, D.R.; Lee, M.; Thornber, C.R.; Trehu, A.; Cannon, W.; Green, A.

    1990-01-01

    Deep-crustal and Moho reflections, recorded on vertical incidence and wide angle ocean bottom Seismometer (OBS) data in the 1986 GLIMPCE (Great Lakes International Multidisciplinary Program on Crustal Evolution) experiment, provide evidence for magmatic underplating and intrusions within the lower crust and upper mantle contemporaneous with crustal extension in the Midcontinent Rift system at 1100 Ma. The rift fill consists of 20-30 km (7-10 s) of basalt flows, secondary syn-rift volcaniclastic and post-basalt sedimentary rock. Moho reflections recorded in Lake Superior over the Midcontinent Rift system have times from 14-18 s (about 46 km to as great as 58 km) in contrast to times of about 11-13 s (about 36-42 km crustal thickness) beneath the surrounding Great Lakes. The Seismically complex deep-crust to mantle transition zone (30-60 km) in north-central Lake Superior, which is 100 km wider than the rift half-graben, reflects the complicated products of tectonic and magmatic interaction of lower-crustal and mantle components during evolution or shutdown of the aborted Midcontinent Rift. In effect, mantle was changed into crust by lowering Seismic velocity (through intrusion of lower density magmatic rocks) and increasing Moho (about 8.1 km s-1 depth. ?? 1990.

  20. A hydrogeologic model of stratiform copper mineralization in the Midcontinent Rift System, Northern Michigan, USA

    USGS Publications Warehouse

    Swenson, J.B.; Person, M.; Raffensperger, J.P.; Cannon, W.F.; Woodruff, L.G.; Berndt, M.E.

    2004-01-01

    This paper presents a suite of two-dimensional mathematical models of basin-scale groundwater flow and heat transfer for the middle Proterozoic Midcontinent Rift System. The models were used to assess the hydrodynamic driving mechanisms responsible for main-stage stratiform copper mineralization of the basal Nonesuch Formation during the post-volcanic/pre-compressional phase of basin evolution. Results suggest that compaction of the basal aquifer (Copper Harbor Formation), in response to mechanical loading during deposition of the overlying Freda Sandstone, generated a pulse of marginward-directed, compaction-driven discharge of cupriferous brines from within the basal aquifer. The timing of this pulse is consistent with the radiometric dates for the timing of mineralization. Thinning of the basal aquifer near White Pine, Michigan, enhanced stratiform copper mineralization. Focused upward leakage of copper-laden brines into the lowermost facies of the pyrite-rich Nonesuch Formation resulted in copper sulfide mineralization in response to a change in oxidation state. Economic-grade mineralization within the White Pine ore district is a consequence of intense focusing of compaction-driven discharge, and corresponding amplification of leakage into the basal Nonesuch Formation, where the basal aquifer thins dramatically atop the Porcupine Mountains volcanic structure. Equilibrium geochemical modeling and mass-balance calculations support this conclusion. We also assessed whether topography and density-driven flow systems could have caused ore genesis at White Pine. Topography-driven flow associated with the Ottawan orogeny was discounted because it post-dates main-stage ore genesis and because recent seismic interpretations of basin inversion indicates that basin geometry would not be conductive to ore genesis. Density-driven flow systems did not produce focused discharge in the vicinity of the White Pine ore district.

  1. The Magma Plumbing System of Dabbahu and Gabho volcanoes (Afar rift, Ethiopia) from InSAR, GPS and Seismicity data

    NASA Astrophysics Data System (ADS)

    Wright, T. J.; Ayele, A.; Belachew, M.; Bennati, L.; Calais, E.; Ebinger, C. J.; Hamling, I. J.; Keir, D.; Lewi, E.; Pagli, C.; Yirgu, G.

    2008-12-01

    In September 2005, a 60-km-long dike, up to 8 meters thick, was intruded into the Dabbahu rift segment, a nascent seafloor spreading center on the Nubia-Arabia plate boundary in the Afar Depression of Northern Ethiopia. Localized subsidence of 2-3 meters at Dabbahu and Gabho, measured by InSAR, indicated that some of the intrusion was fed from shallow magma chambers beneath Dabbahu and Gabho volcanoes, two centers of focused silicic volcanism at the northern end of the rift segment. An array of 9 seismometers recorded seismicity from October 2005 to April 2006 -- three were located in the area between Dabbahu and Gabho, where an explosive, rhyolite eruption took place on 26 September 2005. Ten continuously-recording GPS receivers were installed in January 2006, including one on the flanks of Dabbahu and one on Gabho. In addition, Envisat was programmed to acquire SAR data on every overpass since September 2005, enabling us to build time series of recent deformation. The data show that: (i) Gabho began to uplift aseismically in November/December 2005. Uplift was most rapid initially, with 25 cm in the first six months, and continued until summer 2007. Since then it has been stable. (ii) The southern flank of Dabbahu began subsiding immediately after the main dyke intruded, continuing until ~March 2006, and reaching a maximum of ~10 cm. This occurred above a band of seismicity that dips to the north beneath Dabbahu. (iii) The center of Dabbahu began to uplift in ~March 2006, and has continued steadily for at least 2 years. The total uplift (by July 2008) was ~50 cm. Seismicity in the first six months was concentrated at 3 km depth beneath the uplifting area. (iv) Gabho and Dabbahu did not subside during the dyke injections that have occurred in the southern half of the rift segment since 2005 (nine by July 2008). Despite the remarkably similar behavior to the Krafla system in Iceland, which underwent a rifting episode from 1975 to 1984, these observations require a more complex magma plumbing system. In contrast to the single inferred shallow chamber beneath Krafla, multiple magmatic sources are required in the Dabbahu rift.

  2. Evolution of bimodal volcanism in Gona, Ethiopia: geochemical associations and geodynamic implications for the East African Rift System

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Gregory, R. T.; Richards, I.; Quade, J.; Ebinger, C. J.

    2013-12-01

    The East African rift system in Ethiopia formed in the Earth's youngest flood basalt province, and provides a natural laboratory to study the geochemistry of bimodal volcanism and its implications for plume-derived magmatism, mantle-lithosphere interactions and evolution of continental rifts from plate extension to rupture. Our geochemical studies of the ~6 Ma to recent eruptive products from Gona within the Afar Rift Zone are understood in context of crustal and upper mantle seismic imaging studies that provide constraints on spatial variations. Geochemical (major element, trace element and isotope) analyses of basalts and rhyolitic tuff from Gona indicate a common magma source for these bimodal volcanics. Light rare earth elements (LREEs) are enriched with a strong negative Eu anomaly and a positive Ce anomaly in some of the silicic volcanic rocks. We observe strong depletions in Sr and higher concentrations of Zr, Hf, Th, Nb and Ta. We hypothesize that the silicic rocks may be residues from a plume-derived enriched magma source, following partial melting with fractional crystallization of plagioclase at shallow magma chambers. The absence of Nb-Ta anomaly shows no crustal assimilation by magmas. Sr isotopes, in conjunction with Nd and Pb isotopes and a strong Ce anomaly could reflect interaction of the parent magma with a deep saline aquifer or brine. Nd isotopic ratios (?Nd = 1.9 to 4.6) show similarity of the silicic tuffs and basalts in their isotopic compositions except for some ~6 Ma lavas showing MORB-like values (?Nd = 5 to 8.7) that suggest involvement of the asthenosphere with the plume source. Except for one basaltic tuff, the whole rock oxygen isotopic ratios of the Gona basalts range from +5.8‰ to +7.9‰, higher than the ? values for typical MORB, +5.7. The oxygen isotopes in whole rocks from the rhyolite tuffs vary from 14.6‰ to 20.9‰ while their Sr isotope ratios <0.706, indicative of post-depositional low T alteration of these silicic rocks by a fluid derived from seawater or some crustal fluid not enriched in radiogenic Sr. The bimodality of the volcanic rocks may be genetically related by fractional crystallization or by partial melting of a hydrothermally altered mafic crust from earlier magma generation in the rift, without continental crustal assimilation. The geochemical data, along with geophysical and geodetic studies, assist our understanding of the tectonics of continental break up and plume magmatism in the Afar depression and the East African Rift system.

  3. Evolution of stratigraphic sequences in multisegmented continental rift basins: Comparison of computer models with the basins of the East African rift system

    Microsoft Academic Search

    Juan Contreras; Christopher H. Scholz

    This article presents a series of numerical simulations of the strati- graphic evolution of continental rift basins. We model the geomor- phic and tectonic processes acting in this depositional environment, which contrasts with the traditional approach of modeling the set- tling of sediments, especially in marine clastic basins. What is new in our model is that it can simulate the

  4. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt G.; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G.; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A.; Geirsson, Halldór; La Femina, Peter C.; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J.; Möllhoff, Martin; Braiden, Aoife K.; Eibl, Eva P. S.

    2015-01-01

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  5. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland.

    PubMed

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S; Ófeigsson, Benedikt G; Heimisson, Elías Rafn; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Gudmundsson, Gunnar B; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T; Högnadóttir, Thórdís; Fridriksdóttir, Hildur María; Hensch, Martin; Einarsson, Páll; Magnússon, Eyjólfur; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S; Ágústsdóttir, Thorbjörg; Greenfield, Tim; Green, Robert G; Hjartardóttir, Ásta Rut; Pedersen, Rikke; Bennett, Richard A; Geirsson, Halldór; La Femina, Peter C; Björnsson, Helgi; Pálsson, Finnur; Sturkell, Erik; Bean, Christopher J; Möllhoff, Martin; Braiden, Aoife K; Eibl, Eva P S

    2015-01-01

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of kilometres long. Previous models of rifting events indicate either lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. Here we show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system grew laterally for more than 45 kilometres at a variable rate, with topography influencing the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred primarily over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of magnitude M > 5 earthquakes. Dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries. PMID:25517098

  6. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    Crust at many divergent plate boundaries forms primarily by the injection of vertical sheet-like dykes, some tens of km long. Previous models of rifting events indicate either a lateral dyke growth away from a feeding source, with propagation rates decreasing as the dyke lengthens, or magma flowing vertically into dykes from an underlying source, with the role of topography on the evolution of lateral dykes not clear. We show how a recent segmented dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with a magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of M>5 earthquakes. The dyke growth was slowed down by an effusive fissure eruption near the end of the dyke. Lateral dyke growth with segment barrier breaking by pressure build-up in the dyke distal end explains how focused upwelling of magma under central volcanoes is effectively redistributed over long distances to create new upper crust at divergent plate boundaries.

  7. Pre-breakup geology of the Gulf of Mexico-Caribbean: Its relation to Triassic and Jurassic rift systems of the region

    SciTech Connect

    Bartok, P. (EGEP Consultores, Caracus (Venezuela))

    1993-02-01

    A review of the pre-breakup geology of west-central Pangea, comprised of northern South America, Gulf of Mexico and West Africa, combined with a study of the Mesozoic rift trends of the region confirms a relation between the rift systems and the underlying older grain of deformation. The pre-breakup analysis focuses attention on the Precambrian, Early Paleozoic and Late Paleozoic tectonic events affecting the region and assumes a Pindell fit. Two Late Precambrian orogenic belts are observed in the west central Pangea. Along the northern South American margin and Yucatan a paleo northeast trending Pan-African aged fold belt is documented. A second system is observed along West Africa extending from the High Atlas to the Mauritanides and Rockelides. During the Late Paleozoic, renewed orogenic activity, associated with the Gondwana/Laurentia suture, affected large segments of west central Pangea. The general trend of the system is northeast-southwest and essentially parallels the Gyayana Shield, West African, and eastern North American cratons. Mesozoic rifting closely followed either the Precambrian trends or the Late Paleozoic orogenic belt. The Triassic component focuses along the western portions of the Gulf of Mexico continuing into eastern Mexico and western South America. The Jurassic rift trend followed along the separation between Yucatan and northern South America. At Lake Maracaibo the Jurassic rift system eventually overlaps the Triassic rifts. The Jurassic rift resulted in the [open quotes]Hispanic Corridor[close quotes] that permitted Tethyan and Pacific marine faunas to mix at a time when the Gulf of Mexico underwent continental sedimentation.

  8. Age of Fault Movements in Tanzanian Sector of East African Rift System

    Microsoft Academic Search

    R. M. MacIntyre

    1974-01-01

    THE Neogene volcanic province of northern Tanzania is a southerly extension of the more extensive volcanic areas of Ethiopia and Kenya. It stands astride the Eastern Rift Valley and represents a complex interplay of volcanic activity and widespread Earth movements with associated faulting. A general picture is that an older series of basaltic-trachytic shield volcanoes, together with smaller nephelinitic centres,

  9. The East African rift system in the light of KRISP 90

    Microsoft Academic Search

    G. R. Keller; C. Prodehl; J. Mechie; K. Fuchs; M. A. Khan; P. K. H. Maguire; W. D. Mooney; U. Achauer; P. M. Davis; R. P. Meyer

    1994-01-01

    On the basis of a test experiment in 1985 (KRISP 85) an integrated seismic-refraction\\/ teleseismic survey (KRISP 90) was undertaken to study the deep structure beneath the Kenya rift down to depths of NO-150 km. This paper summarizes the highlights of KRISP 90 as reported in this volume and discusses their broad implications as well as the structure of the

  10. Ambient Noise Tomography of the East African Rift System in Mozambique

    NASA Astrophysics Data System (ADS)

    Domingues, A.; Chamussa, J.; Silveira, G. M.; Custodio, S.; Lebedev, S.; Chang, S.; Ferreira, A. M.; Fonseca, J. F.

    2013-12-01

    A wide range of studies has shown that the cross-correlation of ambient noise can provide an estimate of the Greens functions between pairs of stations. Project MOZART (funded by FCT, Lisbon, PI J. Fonseca) deployed 30 broadband (120s) seismic stations from the SEIS-UK Pool in Central Mozambique and NE South Africa, with the purpose of studying the East African Rift System (EARS) in Mozambique. We applied the Ambient Noise Tomography (ANT) method to broadband seismic data recorded from March 2011 until July 2012. Cross-correlations were computed between all pairs of stations, and from these we obtained Rayleigh wave group velocity dispersion curves for all interstation paths, in the period range from 3 to 50 seconds. We tested various approaches for pre-processing the ambient noise data regarding time-domain and spectral normalisation, as well as the use of phase cross-correlations. Moreover, we examined the robustness of our dispersion maps by splitting our dataset into various sub-sets of Green's functions with similar paths and by quantifying the differences between the dispersion maps obtained from the various sub-sets of data. We find that while the geographical distribution of the group velocity anomalies is well constrained, the amplitudes of the anomalies are slightly less robust. We performed a three-dimensional inversion to obtain the S-wave velocity of the crust and upper mantle. In addition, our preliminary results show a good correlation between the Rayleigh wave group velocity and the geology of Mozambique. In order to extend the investigation to longer periods and, thus, to be able to look into the lithosphere-asthenosphere depth range in the upper mantle, we apply a recent implementation of the surface-wave two-station method (teleseismic interferometry) and augment our dataset with Rayleigh wave phase velocities curves in broad period ranges.

  11. RIFT-BASIN STRUCTURE AND ITS INFLUENCE ON SEDIMENTARY SYSTEMS MARTHA OLIVER WITHJACK AND ROY W. SCHLISCHE

    E-print Network

    ; strike-slip and reverse faults; and extensional fault-displacement, fault-propagation, forced, and fault-bend with associated fault-bend folds. In Type 2 rift basins, contractional activity before rifting produced low faults, and contractional fault-bend and fault-propagation folds. Structures within rift basins affect

  12. Parga Chasma: Coronae and Rifting on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, S. E.; Stofan, E. R.; Buck, W. R.; Martin, P.

    2005-01-01

    The majority of coronae (quasicircular volcano-tectonic features) are found along rifts or fracture belts, and the majority of rifts have coronae [e.g. 1,2]. However, the relationship between coronae and rifts remains unclear [3-6]. There is evidence that coronae can form before, after, or synchronously with rifts [3,4]. The extensional fractures in the rift zones have been proposed to be a result of broad scale upwelling and traction on the lower lithosphere [7]. However, not all rift systems have a significant positive geoid anomaly, as would be expected for an upwelling site [8]. This could be explained if the rifts lacking anomalies are no longer active. Coronae are generally accepted to be sites of local upwelling [e.g. 1], but the observed rifting is frequently not radial to the coronae and extends well beyond the coronae into the surrounding plains. Thus the question remains as to whether the rifts represent regional extension, perhaps driven by mantle tractions, or if the coronae themselves create local thinning and extension of the lithosphere. In the first case, a regional extension model should be consistent with the observed characteristics of the rifts. In the latter case, a model of lithospheric loading and fracturing would be more appropriate. A good analogy may be the propagation of oceanic intraplate volcanoes [9].

  13. Paleoseismic Trenching in the Pajarito Fault System, Rio Grande Rift, New Mexico

    NASA Astrophysics Data System (ADS)

    Gardner, J. N.; Reneau, S. L.; Lewis, C. J.; Lavine, A.; Katzman, D.; Goodwin, L.; Wilson, J.; Kelson, K. I.

    2001-12-01

    The north-trending Pajarito fault system, an approximately 50-km-long complex zone of deformation which includes over 100 km of mapped fault traces, forms the active western boundary of the Rio Grande rift in the vicinity of Los Alamos, NM. Near Los Alamos, the fault system comprises three major, normal faults in a 4-km-wide swath: the down-to-the-east (DTE) Pajarito, DTW Rendija Canyon, and DTW Guaje Mountain fault zones. Four new trenches, and unpublished results from another trench, provide insights on the structural style of faulting and the paleoseismic history of the fault system. Each of these fault zones commonly consists of the local master fault, antithetic faults forming local graben, and intragraben faults or multiple splays from the master fault. Two sites, separated by about 5 km, have been trenched along the Guaje Mountain fault with three of the new trenches at the northern site. At each site the zone of faulting is about 30 m wide, but the main zone of DTW displacements is about 10 m wide with an older portion on the east. At each site the main fault trace is defined by a zone of foliated gouge 30 to 50 cm wide with foliations indicating oblique normal movements; however, slickensides range from vertical to horizontal. Results indicate that 1.5 to greater than 2 m of vertical displacement typifies paleoseismic events on the Guaje Mountain fault with the most recent event (MRE) at about 4 to 6 ka. Retrodeformation analyses at the northern site very strongly imply the Guaje Mountain fault has experienced only one event in the Holocene. The fourth new trench targeted an antithetic fault forming a 150-m-wide graben at the base of the main escarpment in the Pajarito fault zone. Data from this trench indicate a Holocene MRE. Work by others in this portion of the fault system suggests an MRE around 2 ka. Previous studies report the MRE for the Rendija Canyon fault at about 9 or 23 ka. Thus, in spite of their spatial proximity, these faults appear to behave somewhat independently.

  14. Influence of pre-existing fabrics on fault kinematics and rift geometry of interacting segments: Analogue models based on the Albertine Rift (Uganda), Western Branch-East African Rift System

    Microsoft Academic Search

    K. Aanyu; D. Koehn

    2011-01-01

    This study aims at showing how far pre-existing crustal weaknesses left behind by Proterozoic mobile belts, that pass around cratonic Archean shields (Tanzania Craton to the southeast and Congo Craton to the northwest), control the geometry of the Albertine Rift. Focus is laid on the development of the Lake Albert and Lake Edward\\/George sub-segments and between them the greatly uplifted

  15. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    NASA Astrophysics Data System (ADS)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper-extended rift system. In our presentation, we discuss the compressional reactivation of the rift structures by the study of dip sections across the basin, from weakly reactivated sections in the west to strongly reactivated sections in the east. Comparing the sections, it results that the compression reactivated the rift structures (mainly the detachment faults) and that this reactivation occurred in 2 steps. It corresponds to the reactivation through time of the NMB before the SMB. This evolution is in line with an early proto-subduction of the hyper-extended domain beneath the European plate whereas the NMB sediments are wedged, folded and thrust onto the Iberia and Europe margins ("thin-skin" tectonics). The second step occurs when the deformation started to migrate southward resulting in the formation of the axial Pyrenees nappe stack (thick-skin tectonics). These results suggest that the inherited rift structures strongly controlled the initial convergence. Future work will revisit the more reactivated Albian basins throughout the chain to investigate how far the results from western Pyrenees can be used to understand the Central and Eastern Pyrenees. Moreover, this field-oriented study can serve as an example of how rift structures may control style and timing of orogenic processes.

  16. Is the Ventersdorp rift system of southern Africa related to a continental collision between the Kaapvaal and Zimbabwe Cratons at 2.64 Ga AGO?

    NASA Technical Reports Server (NTRS)

    Burke, K.; Kidd, W. S. F.; Kusky, T.

    1985-01-01

    Rocks of the Ventersdorp Supergroup were deposited in a system of northeast trending grabens on the Kaapvaal Craton approximately 2.64 Ga ago contemporary with a continental collision between the Kaapvaal and Zimbabwe Cratons. It is suggested that it was this collision that initiated the Ventersdorp rifting. Individual grabens strike at high angles toward the continental collision zone now exposed in the Limpopo Province where late orogenic left-lateral strike-slip faulting and anatectic granites are recognized. The Ventersdorp rift province is related to extension in the Kaapvaal Craton associated with the collision, and some analogy is seen with such rifts as the Shansi and Baikal Systems associated with the current India-Asia continental collision.

  17. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing

    USGS Publications Warehouse

    Behrendt, John C.; Cooper, A.

    1991-01-01

    The Cenozoic West Antarctic rift system, characterized by Cenozoic bimodal alkalic volcanic rocks, extends over a largely ice-covered area, from the Ross Sea nearly to the Bellingshausen Sea. Various lines of evidence lead to the following interpretation: the transantarctic Mountains part of the rift shoulder (and probably the entire shoulder) has been rising since about 60 Ma, at episodic rates of ~1 km/m.y., most recently since mid-Pliocene Time, rather than continuously at the mean rate of 100 m/m.y. Uplift rates vary along the scarp, which is cut by transverse faults. It is speculated that this uplift may have climatically forced the advance of the Antarctic ice sheet since the most recent warm period. A possible synergistic relation is suggested between episodic tectonism, mountain uplift, and volcanism in the Cenozoic West Antarctic rift system and waxing and waning of the Antarctic ice sheet beginning about earliest Oligocene time. -from Authors

  18. Active fault segments as potential earthquake sources: Inferences from integrated geophysical mapping of the Magadi fault system, southern Kenya Rift

    NASA Astrophysics Data System (ADS)

    Kuria, Z. N.; Woldai, T.; van der Meer, F. D.; Barongo, J. O.

    2010-06-01

    Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic rift extension. Two different models of extension direction (E-W to ESE-WNW and NW-SE) have been proposed. However, they were based on limited field data and lacked subsurface investigations. In this research, we delineated active fault zones from ASTER image draped on ASTER DEM, together with relocated earthquakes. Subsequently, we combined field geologic mapping, electrical resistivity, ground magnetic traverses and aeromagnetic data to investigate the subsurface character of the active faults. Our results from structural studies identified four fault sets of different age and deformational styles, namely: normal N-S; dextral NW-SE; strike slip ENE-WSW; and sinistral NE-SW. The previous studies did not recognize the existence of the sinistral oblique slip NE-SW trending faults which were created under an E-W extension to counterbalance the NW-SE faults. The E-W extension has also been confirmed from focal mechanism solutions of the swarm earthquakes, which are located where all the four fault sets intersect. Our findings therefore, bridge the existing gap in opinion on neo-tectonic extension of the rift suggested by the earlier authors. Our results from resistivity survey show that the southern faults are in filled with fluid (0.05 and 0.2 ?m), whereas fault zones to the north contain high resistivity (55-75 ?m) material. The ground magnetic survey results have revealed faulting activity within active fault zones that do not contain fluids. In addition, the 2D inversion of the four aero-magnetic profiles (209 km long) revealed: major vertical to sub vertical faults (dipping 75-85° east or west); an uplifted, heavily fractured and deformed basin to the north (highly disturbed magnetic signatures) characteristic of on going active rifting; and a refined architecture of the asymmetry graben to the south with an intrarift horst, whose western graben is 4 km deep and eastern graben is much deeper (9 km), with a zone of significant break in magnetic signatures at that depth, interpreted as source of the hot springs south of Lake Magadi (a location confirmed near surface by ground magnetic and resistivity data sets). The magnetic sources to the north are shallow at 15 km depth compared to 22 km to the south. The loss of magnetism to the north is probably due to increased heat as a result of magmatic intrusion supporting active rifting model. Conclusively, the integrated approach employed in this research confirms that fault system delineated to the north is actively deforming under E-W normal extension and is a potential earthquake source probably related to magmatic intrusion, while the presence of fluids within the south fault zone reduce intensity of faulting activity and explains lack of earthquakes in a continental rift setting.

  19. Stress Pattern of the Shanxi Rift System, North China, Inferred from the Inversion of New Focal Mechanisms

    NASA Astrophysics Data System (ADS)

    Li, B.; Atakan, K.; Sorensen, M. B.; Havskov, J.

    2014-12-01

    Earthquake focal mechanisms of the Shanxi rift system, North China, are investigated for the time period 1965 - Apr. 2014. A total of 143 focal mechanisms of ML ? 3.0 earthquakes were compiled. Among them, 105 solutions are newly determined by combining the P-wave first motions and full waveform inversion, and 38 solutions are from available published data. Stress tensor inversion was then performed based on the new database. The results show that most solutions exhibit normal or strike-slip faulting, and the regional stress field is characterized by a stable, dominating NNW-SSE extension and an ENE-WSW compression. This correlates well with results from GPS data, geological field observations and leveling measurements across the faults. Heterogeneity exists in the regional stress field, as indicated by individual stress tensor inversions conducted for five subzones. While the minimum stress axis (?3) appears to be consistent and stable, the orientations, especially the plunges, of the maximum and intermediate stresses (?1 and ?2) vary significantly among the different subzones. Based on our results and combining multidisciplinary observations from geological surveys, GPS and cross-fault monitoring, a kinematic model is proposed, to illustrate the present-day stress field and its correlation with the regional tectonics, as well as the current crustal deformation of the Shanxi rift system. Results obtained in this study, may help to understand the geodynamics, neotectonic activity, active seismicity and potential seismic hazard in this region of North China.

  20. Tectonics of the West Antarctic rift system: new light on the history and dynamics of distributed intracontinental extension

    USGS Publications Warehouse

    Siddoway, C.S.

    2007-01-01

    The West Antarctic rift system (WARS) is the product of multiple stages of intracontinental deformation from Jurassic to Present. The Cretaceous rifting phase accomplished >100 percent extension across the Ross Sea and central West Antarctica, and is widely perceived as a product of pure shear extension orthogonal to the Transantarctic Mountains that led to breakup and opening of the Southern Ocean between West Antarctica and New Zealand. New structural, petrological, and geochronological data from Marie Byrd Land reveal aspects of the kinematics, thermal history, and chronology of the Cretaceous intracontinental extension phase that cannot be readily explained by a single progressive event. Elevated temperatures in "Lachlan-type" crust caused extensive crustal melting and mid-crustal flow within a dextral transcurrent strain environment, leading to rapid extension and locally to exhumation and rapid cooling of a migmatite dome and detachment footwall structures. Peak metamorphism and onset of crustal flow that brought about WARS extension between 105 Ma and 90 Ma is kinematically, temporally, and spatially linked to the active convergent margin system of East Gondwana. West Antarctica-New Zealand breakup is distinguished as a separate event at 83-70 Ma, from the standpoint of kinematics and thermal evolution

  1. Lithospheric structure of the Rio Grande rift.

    PubMed

    Wilson, David; Aster, Richard; West, Michael; Ni, James; Grand, Steve; Gao, Wei; Baldridge, W Scott; Semken, Steve; Patel, Paresh

    2005-02-24

    A high-resolution, regional passive seismic experiment in the Rio Grande rift region of the southwestern United States has produced new images of upper-mantle velocity structure and crust-mantle topography. Synthesizing these results with geochemical and other geophysical evidence reveals highly symmetric lower-crustal and upper-mantle lithosphere extensional deformation, suggesting a pure-shear rifting mechanism for the Rio Grande rift. Extension in the lower crust is distributed over a region four times the width of the rift's surface expression. Here we propose that the laterally distributed, pure shear extension is a combined effect of low strain rate and a regionally elevated geotherm, possibly abetted by pre-existing lithospheric structures, at the time of rift initiation. Distributed extension in the lower crust and mantle has induced less concentrated vertical mantle upwelling and less vigorous small-scale convection than would have arisen from more localized deformation. This lack of highly focused mantle upwelling may explain a deficit of rift-related volcanics in the Rio Grande rift compared to other major rift systems such as the Kenya rift. PMID:15729338

  2. Relations between deformation and sediment-hosted copper mineralization: Evidence from the White Pine part of the Midcontinent rift system

    SciTech Connect

    Mauk, J.L.; Kelly, W.C.; Pluijm, B.A. van der (Univ. of Michigan, Ann Arbor, MI (United States)); Seasor, R.W. (Copper Range Co., White Pine, MI (United States))

    1992-05-01

    Detailed studies over the past decade have significantly extended and revised our knowledge of the geologic history of the well-known White Pine mining district of northern Michigan, and indicate that the location of faults exerted a strong control on copper mineralization in this part of the Midcontinent rift system. At White Pine there is evidence for three episodes of faulting: (1) synsedimentary faulting, (2) subsequent high-angle, dominantly normal faulting, and (3) thrusting. Two stages of copper mineralization are present at White Pine and in the nearby Presque Isle syncline. The first, main-stage mineralization, formed a classic sediment-hosted stratiform copper deposit during early diagenesis. Synsedimentary faults may have provided important conduits for cupriferous brines flowing from underlying red beds of the Copper Harbor Conglomerate into the reduced silts and shales of the Nonesuch Formation, where main-stage copper sulfides and native copper were precipitated. The second stage of copper mineralization was synchronous with thrusting and introduced additional copper to the White Pine ore body and the Presque Isle syncline. Thrust faults and cogenetic tear faults provided conduits for second-stage mineralizing fluids. Collectively, these observations indicate strong control by regional deformation on fluid migration and mineralization in the rocks of the Midcontinent rift, similar to proposed relations between deformation and mineralization in other tectonic settings.

  3. Neotectonic faults and stress field in the East African Rift System around the Tanzanian Craton - A contribution to the seismotectonic map of Africa

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Macheyeki, Athanas Simon; Fernandes, Rui-Manuel; Ayele, Atalay; Meghraoui, Mustapha

    2015-04-01

    As a contribution to the UNESCO-IUGS IGCP 601 project "Seismotectonics and seismic hazards in Africa" and in preparation of the Seismotectonic Map of Africa, we compiled the neotectonic faults related to the East African Rift System around the Tanzanian craton. The initial aim was to identify and map the potentially active faults. Faults are usually defined as active when they show seismogenic displacement during the last 10,000 to 100,000 years, generally on the basis of paleoseismic investigation. In East Africa, however, very few faults have been studied by paleoseismic techniques and even fewer have known historical seismic activation. To address this issue, we mapped faults that show morphological indications of displacement. We used the SRTM DTM (90 and 30 m when available to us), with artificial shading as basis for identify neotectonic faults, in combination with existing data from geological maps, publications and reports, complemented by our own field observations. Thermal springs often occur along tectonically active faults. We use them to distinguish present-day faulting from other mapped faults as they are in most cases structurally controlled. In parallel, we used also the available focal mechanisms and geological fault-slip data to constrain the stress second-order stress field (at the scale of rift segments) and locally also the third-order stress field (at the local scale). All these elements are combined and compared with existing kinematic models for the East African Rift based on earthquake slip vectors, GPS measurements and geologic indicators. The comparison evidences some local discrepancies between the stress field and the direction of opening, probably due to the interactions between different rift segments, as in the Rukwa rift, Mbeya southern junction between the eastern and western rift branches, and in the Manyara-Natron area.

  4. Geochemistry and geochronology of the mafic lavas from the southeastern Ethiopian rift (the East African Rift System): assessment of models on magma sources, plume–lithosphere interaction and plume evolution

    Microsoft Academic Search

    Ryuichi Shinjo; Takele Chekol; Daniel Meshesha; Tetsumaru Itaya; Yoshiyuki Tatsumi

    2011-01-01

    Major and trace element and isotopic ratios (Sr, Nd and Pb) are presented for mafic lavas (MgO > 4 wt%) from the southwestern\\u000a Yabello region (southern Ethiopia) in the vicinity of the East African Rift System (EARS). New K\\/Ar dating results confirm\\u000a three magmatic periods of activity in the region: (1) Miocene (12.3–10.5 Ma) alkali basalts and hawaiites, (2) Pliocene (4.7–3.6 Ma)\\u000a tholeiitic basalts, and

  5. Rapid spatio-temporal variations in rift zone deformation, Corinth rift, Greece

    NASA Astrophysics Data System (ADS)

    Nixon, Casey; McNeill, Lisa; Bull, Jonathan; Henstock, Timothy; Bell, Rebecca; Gawthorpe, Robert; Christodoulou, Dimitris; Kranis, Haris; Ferentinos, George; Papatheodorou, George; Taylor, Brian; Ford, Mary; Sakellariou, Dimitris; Leeder, Mike; Collier, Richard; Goodliffe, Andrew; Sachpazi, Maria

    2015-04-01

    The Gulf of Corinth is a young and highly active rift (<5 Ma) in its initial stages of development. An abundance of marine geophysical data and onshore exposures makes it an ideal case study for investigating early rift and fault development. Using a high resolution chronstratigraphic and rift fault model we investigate along strike variations in the basin development within the rift over the past 1-2 Myr and establishing a history of fault activity on major basin controlling faults, at temporal resolutions of ca. 100 kyr or less. We focus on variations in depocentre development and the distribution of displacement and faulting along and across the rift axis; focussing on the partitioning of deformation between N-dipping and S-dipping faults. The rift basin geometry has a complex history and varies spatially along strike of the rift. We highlight a major change in rift structure ca. 600 ka, changing from a complex rift zone to a uniform asymmetric graben. Syn-rift isochore maps identify two stages that accommodate this change: 1. a switch in rift polarity from a dominant N-thickening depocentre to a dominant S-thickening depocentre between ca. 620-420 ka (a rapid change in rift structure and strain distribution). This change is accommodated by transfer of activity between major faults but also by formation of numerous non-basement cutting small faults. 2. Progressive localization of deformation onto major N-dipping faults on the rift's southern margin. This is characterised by depocentre growth and linkage and increased activity on major N-dipping faults since ~340 ka, with faults becoming kinematically and geometrically linked with almost equal slip rates along strike by ca. 130 ka. Ultimately our results show that the early evolution of a rift fault network can be complex but that a dominant fault set eventually forms even in the earliest stages of rifting. Furthermore a switch in rift polarity is a progressive process with deformation becoming distributed before localizing onto a final dominant fault set, but this process can occur rapidly on a timescale of 100's kyr.

  6. Using remote sensing, ecological niche modeling, and Geographic Information Systems for Rift Valley fever risk assessment in the United States

    NASA Astrophysics Data System (ADS)

    Tedrow, Christine Atkins

    The primary goal in this study was to explore remote sensing, ecological niche modeling, and Geographic Information Systems (GIS) as aids in predicting candidate Rift Valley fever (RVF) competent vector abundance and distribution in Virginia, and as means of estimating where risk of establishment in mosquitoes and risk of transmission to human populations would be greatest in Virginia. A second goal in this study was to determine whether the remotely-sensed Normalized Difference Vegetation Index (NDVI) can be used as a proxy variable of local conditions for the development of mosquitoes to predict mosquito species distribution and abundance in Virginia. As part of this study, a mosquito surveillance database was compiled to archive the historical patterns of mosquito species abundance in Virginia. In addition, linkages between mosquito density and local environmental and climatic patterns were spatially and temporally examined. The present study affirms the potential role of remote sensing imagery for species distribution prediction, and it demonstrates that ecological niche modeling is a valuable predictive tool to analyze the distributions of populations. The MaxEnt ecological niche modeling program was used to model predicted ranges for potential RVF competent vectors in Virginia. The MaxEnt model was shown to be robust, and the candidate RVF competent vector predicted distribution map is presented. The Normalized Difference Vegetation Index (NDVI) was found to be the most useful environmental-climatic variable to predict mosquito species distribution and abundance in Virginia. However, these results indicate that a more robust prediction is obtained by including other environmental-climatic factors correlated to mosquito densities (e.g., temperature, precipitation, elevation) with NDVI. The present study demonstrates that remote sensing and GIS can be used with ecological niche and risk modeling methods to estimate risk of virus establishment in mosquitoes and transmission to humans. Maps delineating the geographic areas in Virginia with highest risk for RVF establishment in mosquito populations and RVF disease transmission to human populations were generated in a GIS using human, domestic animal, and white-tailed deer population estimates and the MaxEnt potential RVF competent vector species distribution prediction. The candidate RVF competent vector predicted distribution and RVF risk maps presented in this study can help vector control agencies and public health officials focus Rift Valley fever surveillance efforts in geographic areas with large co-located populations of potential RVF competent vectors and human, domestic animal, and wildlife hosts. Keywords. Rift Valley fever, risk assessment, Ecological Niche Modeling, MaxEnt, Geographic Information System, remote sensing, Pearson's Product-Moment Correlation Coefficient, vectors, mosquito distribution, mosquito density, mosquito surveillance, United States, Virginia, domestic animals, white-tailed deer, ArcGIS

  7. Europan Cycloidal Rift Densities and Io Volcano Distribution: Implications for Tidal Activity

    Microsoft Academic Search

    M. P. Madison; P. R. Stoddard

    2007-01-01

    Previous works have described cycloidal rifts and how they form (Hoppa, 1999), but none have gone into detail on where they occur and what rift density may mean to the system as a whole. In this study, GIS software is used in conjunction with high-resolution images to map cycloidal rifts on Europa's surface. Total lengths of rifts within varying latitudinal\\/longitudinal

  8. Kinematics and Dynamics of the Kivu Rift System from Seismic Anisotropy, Seismicity, and Structural Analyses

    NASA Astrophysics Data System (ADS)

    Zal, H. J.; Wood, D. A.; Ebinger, C. J.; Scholz, C. A.; d'Oreye, N.; Carn, S. A.; Rutagarama, U.

    2014-12-01

    The westward-tilted Kivu rift in East Africa is bounded by the ~100 km-long, seismically active West Kivu border fault, and dammed at its northern end by flows from the Virunga Volcanic Province. Earlier work delineated faults along the basin margins, but little was known of active faults beneath Lake Kivu, and the lithospheric structure was unexplored. The aims of this study are to determine the kinematics of normal faults and their relation to pre-existing basement structures; to examine the locations of earthquakes with respect to faults in order to delineate zones of active faulting; to evaluate models for the modification of lithosphere by extension and mantle plume processes using seismic shear wave splitting measurements; and to evaluate the role of volcanic loading within the Virunga volcanic province on the evolution of the Kivu basin. We determine rift fault and volcanic fissure locations and orientations using merged high-resolution CHIRP bathymetric and Space Radar Topography Mission data. The majority of faults in the northern sector strike NNE, whereas NE faults are equally important in the southern basin, marking the Kivu-Rusizi accommodation zone. Seismic data was acquired from an 8-station array deployed between March 2012 and April 2013. Although the majority of earthquakes beneath the rift (excluding the active volcanoes) occur at depths of 8-20 km, unusually shallow earthquakes (2-4 km) are located along submerged faults within the East Kivu basin and suggest high pore pressures within the upper crust. Using simple elastic plate flexure model calculations we estimate the maximum deflection of the plate to be ~7 km, using an effective elastic thickness of ~7.5 km. We propose that the rapid subsidence of the ~400 m deep northern Kivu basin occurred in response to volcanic construction. We evaluate models for the modification of lithosphere using shear wave splitting measurements. Splitting results with backazimuths ranging from 88? - 98? and 240? - 286? showed fast polarization directions in close agreement with the apparent plate motion (330?), while results ranging from 32? - 48? have fast polarization directions consistent with the magmatic fabric of the Eastern Kivu Province (NE), suggesting that fluid flow associated with mantle plume processes have modified the lithosphere.

  9. The distribution of basaltic volcanism on Tenerife, Canary Islands: Implications on the origin and dynamics of the rift systems

    Microsoft Academic Search

    A. Geyer; J. Martí

    2010-01-01

    One of the most characteristic features of volcanic islands is the existence of rift zones defined commonly as orientated eruptive fissures or parallel rows of elongate cinder cones and dyke swarms. Occasionally, these rifts can appear at the birth of the volcanic island and persist until the last episodes of its constructions, controlling the form and structure of the island

  10. Evolution of a rift basin dominated by subaerial deposits: The Guaritas Rift, Early Cambrian, Southern Brazil

    NASA Astrophysics Data System (ADS)

    de Almeida, Renato P.; Janikian, Liliane; Fragoso-Cesar, Antonio Romalino S.; Marconato, André

    2009-05-01

    Most existing models for the evolution of rift basins predict the development of deep-water depositional systems during the stage of greatest tectonic subsidence, when accommodation generation potentially outpaces sedimentation. Despite this, some rift basins do not present deep-water systems, instead being dominated by subaerial deposits. This paper focuses on one of these particular rift basins, the Cambrian Guaritas Rift, Southern Brazil, characterized by more than 1500 m of alluvial and aeolian strata deposited in a 50-km-wide basin. The deposits of the Guaritas Rift can be ascribed to four depositional systems: basin-border alluvial fans, bed-load-dominated ephemeral rivers, mixed-load ephemeral rivers and aeolian dune fields. These four systems are in part coeval and in part succeed each other, forming three stages of basin evolution: (i) Rift Initiation to Early Rift Climax stage, (ii) Mid to Late Rift Climax stage, and (iii) Early Post-Rift stage. The first stage comprises most of the Guaritas Group and is characterized by homogeneous bed-load-dominated river deposits, which do not clearly record the evolution of subsidence rates. The onset of sedimentation of finer-grained deposits occurred as a consequence of a reactivation event that changed the outline of the basin and the distribution of the nearby highlands. This strongly suggests that the capture of the main river system to another depression decreased the sediment supply to the basin. The study of the Guaritas Rift indicates that rift basins in which the sediment supply exceeds the accommodation generation occur as a consequence of moderate subsidence combined with the capture of a major river system to the basin during the initial stages of basin evolution. In these basins, changes in the average discharge of the river system or tectonic modification of the drainage network may be the major control on the stratigraphic architecture.

  11. Mercury isotopic composition of hydrothermal systems in the Yellowstone Plateau volcanic field and Guaymas Basin sea-floor rift

    USGS Publications Warehouse

    Sherman, L.S.; Blum, J.D.; Nordstrom, D.K.; McCleskey, R.B.; Barkay, T.; Vetriani, C.

    2009-01-01

    To characterize mercury (Hg) isotopes and isotopic fractionation in hydrothermal systems we analyzed fluid and precipitate samples from hot springs in the Yellowstone Plateau volcanic field and vent chimney samples from the Guaymas Basin sea-floor rift. These samples provide an initial indication of the variability in Hg isotopic composition among marine and continental hydrothermal systems that are controlled predominantly by mantle-derived magmas. Fluid samples from Ojo Caliente hot spring in Yellowstone range in ?202Hg from - 1.02‰ to 0.58‰ (± 0.11‰, 2SD) and solid precipitate samples from Guaymas Basin range in ?202Hg from - 0.37‰ to - 0.01‰ (± 0.14‰, 2SD). Fluid samples from Ojo Caliente display mass-dependent fractionation (MDF) of Hg from the vent (?202Hg = 0.10‰ ± 0.11‰, 2SD) to the end of the outflow channel (&delta202Hg = 0.58‰ ± 0.11‰, 2SD) in conjunction with a decrease in Hg concentration from 46.6pg/g to 20.0pg/g. Although a small amount of Hg is lost from the fluids due to co-precipitation with siliceous sinter, we infer that the majority of the observed MDF and Hg loss from waters in Ojo Caliente is due to volatilization of Hg0(aq) to Hg0(g) and the preferential loss of Hg with a lower ?202Hg value to the atmosphere. A small amount of mass-independent fractionation (MIF) was observed in all samples from Ojo Caliente (?199Hg = 0.13‰ ±1 0.06‰, 2SD) but no significant MIF was measured in the sea-floor rift samples from Guaymas Basin. This study demonstrates that several different hydrothermal processes fractionate Hg isotopes and that Hg isotopes may be used to better understand these processes.

  12. Basement Structure Controls on the Evolution and Geometry of Rift Systems - Insights from Offshore S. Norway using 3D Seismic Data

    NASA Astrophysics Data System (ADS)

    Phillips, Thomas; Jackson, Christopher; Bell, Rebecca; Duffy, Oliver; Fossen, Haakon

    2015-04-01

    Rift basins form within lithosphere containing a range of heterogeneities, such as thin-skinned thrust belts and larger scale structures such as thick-skinned shear zones or crustal sutures. How the presence and reactivation of these structures during later rift events affect the geometry and evolution of rifts remains poorly understood as they are not typically well imaged on seismic data. The main reasons for this are that crystalline basement is often buried beneath thick sedimentary successions and contains small impedance contrasts. Furthermore, larger, crustal-scale, lineaments and sutures may not be imaged at all on seismic data due to their large scale and depth. In this study, we use borehole-constrained 2D and 3D seismic reflection data located around the Egersund and Farsund Basins, offshore south Norway. In both areas, crystalline basement is exceptionally well-imaged on typical 2D and 3D reflection data due to large impedance contrasts within a highly heterogeneous, shallow basement. This allows us to map a series of intrabasement reflections and overlying rift systems. Within the Egersund area, two main types of intrabasement structure are identified and mapped: i) thin (100 m), shallowly dipping (0-10°W) reflections showing a ramp-flat geometry; and ii) thick (1-1.5 km), low angle (c. 30°W) structures comprising of packages of reflections. These structures correlate along-strike northwards to Caledonian orogeny related structures mapped onshore Norway. The thin structures are interpreted as thin-skinned Caledonian thrusts, whereas the thicker structures represent thick-skinned Devonian shear zones formed through orogenic collapse of the Caledonides. Through seismic-stratigraphic analysis of the cover, we document multiple stages of extensional reactivation along these structures during Devonian, Permian-Triassic and Late Jurassic-Early Cretaceous extension followed by reverse reactivation during Late Cretaceous compression. The Farsund Basin is situated above a deep crustal-scale lineament, the Tornquist zone. We also document multiple stages of reactivation and inversion within this basin, linked with motion along the underlying lineament. Reactivation of the Tornquist zone at depth leads to the formation of a deep, narrow basin at shallower levels. However, during reactivation, rift propagation may be inhibited by basement heterogeneities, such as pre-existing basement ridges. We find that the type of reactivated structure can exert a strong control on the geometry and evolution of the overlying rift. Low-angle, thin-skinned Caledonian thrusts have negligible effect on rift evolution as these are not readily reactivated. However, reactivation of thick-skinned structures does affect rift morphology. Direct reactivation of low angle Devonian shear zones forms a series of low angle rift-bounding faults, creating a wide, shallow basin. Conversely, reactivation of deep seated crustal lineaments causes the localisation of strain fields, creating deep, narrow basins. In both cases, the presence of these thick skinned structures acts as a template for the location of later rifts; their subsequent reactivation can then control the rift geometry.

  13. Mesozoic Rifting in the German North Sea

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Jähne, F.; Arfai, J.

    2013-12-01

    The Central Graben is the southernmost expressions of the Mesozoic North Sea rift system that includes the Viking Graben, Moray Firth-Witch Ground grabens and the Horda-Egersund half graben. In the southern North Sea the Central Graben extends across the Dutch and the German exclusive economic zones. The structure of the Central Graben in German territorial waters was mapped in great detail in 2D and 3D seismic data and the stratigraphy has been constraint by borehole data. We provide a detailed review of the rifting activity in the German North Sea sector both in time and space and the link between rifting and salt movement. Major rifting activity started in the Central Graben during the Late Triassic and peaked during the Late Jurassic when extensive rift grabens formed, further influenced by halokinetic movements. First subsidence in the Central Graben area appears in the Early Triassic. This is documented by thickness variations in the sedimentary strata from the Triassic to the Jurassic. Remarkably thick sediments were deposited during the Late Triassic along the eastern border fault of the Central Graben and in the Late Jurassic sediments accumulated along graben-wide extensional faults and in rim-synclines of salt-structures. A basin inversion commenced in the Late Cretaceous resulting in an erosion of wide portions of Lower Cretaceous rocks or even complete removal in some parts. The area to the east of the Central Graben faced a completely different evolution. In this area major rifting activity initiated already in the Early to Middle Triassic. This is evident from huge packages of Middle Buntsandstein to Muschelkalk (Middle Triassic) sediments in the Horn Graben. Jurassic doming, forming the Mid-North Sea High, resulted in almost complete erosion of Lower and Middle Jurassic sediments in the central German North Sea. Sedimentation continued during the Early and Late Cretaceous. The Glückstadt Graben, which is a structure located farther east has a similar evolution as the Horn Graben with high sediment thicknesses deposited during the Triassic. This indicates that initiation of rifting started in the central German North Sea already during the Early Triassic and subsequently migrated to the west into the Central Graben. Before the Triassic thick layers of Permian rock salt (Upper Rotliegend and Zechstein) were deposited in the Central European Basin System, which spans from the UK across the Netherlands, southern Denmark, Germany, and into Poland. Salt movements resulted in the formation of salt diapirs, salt pillows, salt walls and intrusions into faults. Analyses of rim-synclines of salt diapirs reveals that most of the salt structures inside the German Central Graben had a main phase of growth during the Late Jurassic while the salt structures situated toward the southeast had their main phase of growth during the Triassic. The final products of the project are accessible at www.geopotenzial-nordsee.de/.

  14. Seismicity and subsidence following the 2011 Nabro eruption, Eritrea: Insights into the plumbing system of an off-rift volcano

    NASA Astrophysics Data System (ADS)

    Hamlyn, Joanna E.; Keir, Derek; Wright, Tim J.; Neuberg, Jürgen W.; Goitom, Berhe; Hammond, James O. S.; Pagli, Carolina; Oppenheimer, Clive; Kendall, J.-Michael; Grandin, Raphaël.

    2014-11-01

    Nabro volcano, situated to the east of the Afar Rift Zone, erupted on 12 June 2011. Eruptions at such off-rift volcanoes are infrequent, and consequently, the plumbing systems are poorly understood. We present posteruption Synthetic Aperture Radar (SAR) images from the TerraSAR-X satellite and posteruption continuous seismic activity from a local seismic array. Interferometric analysis of SAR data, reveals a circular, 12 km wide, signal subsiding at ˜200 mm/yr. We inverted for the best fit Mogi source finding a 4 ± 1 × 107 m3/yr volume decrease at 7 ± 1 km depth. Between 31 August and 7 October 2011, we located 658 and relocated 456 earthquakes with local magnitudes between -0.4 and 4.5. Seismicity beneath the SE edge of Nabro at 11 km depth is likely associated with high strain rates from deep magma flow into the modeled reservoir. This suggests that magma is supplied through a narrow conduit and then stored at ˜7 km depth. We interpret seismicity at 4-6 km depth as brittle fracturing above the inferred magma reservoir. Focal mechanisms delineate a thrust fault striking NE-SW and dipping 45° to the SE across the caldera floor. We propose that the crustal response is to slip on this fault which crosscuts the caldera rather than to deform on ring faults. The NE-SW fault plane is not associated with measurable surface deformation, indicating that it does not contribute much to the caldera deformation. We show that subsidence of the caldera is controlled by magma chamber processes rather than fault slip.

  15. Paleoseismologic studies of the Pajarito fault system, western margin of the Rio Grande rift near Los Alamos, NM

    SciTech Connect

    Kelson, K.I. (Wm. Lettis Associates, Oakland, CA (United States)); Hemphill-Haley, M.A.; Wong, I.G. (Woodward-Clyde Federal Services, Oakland, CA (United States)); Gardner, J.N.; Reneau, S.L. (Los Alamos National Lab., NM (United States))

    1993-04-01

    As in much of the Basin and Range province, low levels of historical seismicity in the Rio Grande rift (RGR) are inconsistent with abundant geologic evidence for large-magnitude, late Pleistocene and Holocene earthquakes. Recent trenching and surficial mapping along the 40-km-long, north-trending Pajarito fault system (PFS) near Los Alamos provide evidence for multiple surface-rupture events during the late Pleistocene and Holocene. Near Los Alamos, the Pajarito fault (PAF) exhibits an east-facing scarp up to 120 m high that has had at least four surface-rupture events in the past few hundred thousand years. Four trenches across the base of the highest, easternmost fault scarp show that the most-recent rupture occurred prior to about 9 ka, and possible prior to deposition of the 100- to 150-ka El Cajete Pumice. The long-term (post-1.1 Ma) slip rate on the PAF is about 0.1 mm/yr. The down-to-the-west Rendija Canyon (RCF) and Guaje Mountain (GMF) faults both have had at least two surface ruptures since the middle Pleistocene, including most-recent events at about 7.4 ka along the RCF and about 4 to 6 ka along the GMF. Slickensides and other indirect evidence suggest right-oblique normal slip on the RCF and GMF. Long-term (post-1.1 Ma) slip rates on these two faults are approximately an order of magnitude less than that on the PAF. Based on the observed spatial and temporal variations in activity, the subparallel PAF, RCF, and GMF apparently act as independent seismic sources, although they are located only about 1 to 3 km apart. Nevertheless, the average recurrence interval for faults within the PFS is probably comparable to intervals of 10[sup 4] yr estimated along the eastern rift margin near Taos.

  16. Implications of new gravity data for Baikal Rift zone structure

    NASA Technical Reports Server (NTRS)

    Ruppel, C.; Kogan, M. G.; Mcnutt, M. K.

    1993-01-01

    Newly available, 2D Bouguer gravity anomaly data from the Baikal Rift zone, Siberia, indicate that this discrete, intracontinental rift system is regionally compensated by an elastic plate about 50 km thick. However, spectral and spatial domain analyses and isostatic anomaly calculations show that simple elastic plate theory does not offer an adequate explanation for compensation in the rift zone, probably because of significant lateral variations in plate strength and the presence of subsurface loads. Our results and other geophysical observations support the interpretation that the Baikal Rift zone is colder than either the East African or Rio Grande rift.

  17. Mechanical response of the south flank of kilauea volcano, hawaii, to intrusive events along the rift systems

    USGS Publications Warehouse

    Dvorak, J.J.; Okamura, A.T.; English, T.T.; Koyanagi, R.Y.; Nakata, J.S.; Sako, M.K.; Tanigawa, W.T.; Yamashita, K.M.

    1986-01-01

    Increased earthquake activity and compression of the south flank of Kilauea volcano, Hawaii, have been recognized by previous investigators to accompany rift intrusions. We further detail the temporal and spatial changes in earthquake rates and ground strain along the south flank induced by six major rift intrusions which occurred between December 1971 and January 1981. The seismic response of the south flank to individual rift intrusions is immediate; the increased rate of earthquake activity lasts from 1 to 4 weeks. Horizontal strain measurements indicate that compression of the south flank usually accompanies rift intrusions and eruptions. Emplacement of an intrusion at a depth greater than about 4 km, such as the June 1982 southwest rift intrusion, however, results in a slight extension of the subaerial portion of the south flank. Horizontal strain measurements along the south flank are used to locate the January 1983 east-rift intrusion, which resulted in eruptive activity. The intrusion is modeled as a vertical rectangular sheet with constant displacement perpendicular to the plane of the sheet. This model suggests that the intrusive body that compressed the south flank in January 1983 extended from the surface to about 2.4 km depth, and was aligned along a strike of N66??E. The intrusion is approximately 11 km in length, extended beyond the January 1983 eruptive fissures, which are 8 km in length and is contained within the 14-km-long region of shallow rift earthquakes. ?? 1986.

  18. Quantitative challenges to our understanding of the tectonostratigraphic evolution of rift basin systems

    NASA Astrophysics Data System (ADS)

    Olsen, P. E.; Kent, D. V.

    2012-12-01

    Pervasive orbitally-paced lake level cycles combined with magnetic polarity stratigraphy in central Pangean early Mesozoic rift basins provide a thus far unique and very large-scale quantitative basis for observing patterns of basin fill and comparisons with other basins. The 32 Myr accumulation rate history of the Newark basin is segmented into intervals lasting millions of years with virtually no change in the long-term accumulation rate (at the 400-kyr-scale), and the transitions between segments are abrupt and apparently basin-wide. This is startling, because the basin geometry was, and is, a half graben - triangular in cross section and dish-shaped in along-strike section. The long periods of time with virtually no change is challenging given a simple model of basin growth (1), suggesting some kind of compensation in sediment input for the increasing surface of the area of the basin through time. Perhaps even more challenging are observations based on magnetic polarity stratigraphy and the cyclicity, that basins distributed over a huge area of central Pangea (~700,000 km2) show parallel and correlative quantitative changes in accumulation rate with those of the Newark basin. The synchronous changes in the accumulation rate in these basins suggests a very large-scale linkage, the only plausible mechanism for which would seem to be at the plate-tectonic scale, perhaps involving extension rates. Together, we can speculate that some kind of balance between extension rates, basin accommodation space and perhaps regional drainage basin size might have been in operation The most dramatic accumulation rate change in the basins' histories occurred close to, and perhaps causally related to, the Triassic-Jurassic boundary and end-Triassic extinction. The Newark basin, for example exhibits a 4-to-5-fold increase in accumulation rate during the emplacement of the brief (<1 Myr) and aerially massive Central Atlantic Magmatic Province (CAMP) beginning at 201.5 Ma, the only igneous event known during this long rifting episode. Parallel and correlative accumulation rate changes are seen in several of the other northern basins within central Pangea. Surprisingly, the rate of accommodation growth apparently increased dramatically during this time, because not only did the accumulation rate dramatically increase, the lakes apparently deepened during the same time as a huge volume of CAMP igneous material entered the basins. At the same time, the more southern basins in the southeastern US, apparently ceased to subside (2). Our ability to measure time in these rift basins using the orbitally-paced cycles, coupled with the ability to correlate between the basins using magnetic polarity stratigraphy, challenges us to form new mechanistic explanations and quantitative models to test against this rich library of observations. References: 1) Schlische RW & Olsen PE, 1990, Jour. Geol. 98:135. 2) Schlische et al., 2003, in Hames WE et al. (eds), Geophys. Monogr. 136:61.

  19. Granular mechanics and rifting

    NASA Astrophysics Data System (ADS)

    Reber, Jacqueline E.; Hayman, Nicholas W.; Lavier, Luc L.

    2013-04-01

    Numerical models have proved useful in the interpretation of seismic-scale images of rifted margins. In an effort to both test and further illuminate predictions of numerical models, workers have made some strides using map-scale field relations, microstructures, and strain analyses. Yet, fundamental predictions of modeling and tectonic restorations are not able to capture critical observations. For example, many models and interpretations call on continuous faults with restorable kinematic histories. In contrast, s-reflectors and other interpreted shear fabrics in the middle crust tend to be discontinuous and non-planar across a margin. Additionally, most rift-evolution models and interpretations call on end-member ductile flow laws over a range of mechanical and thermal conditions. In contrast, field observations have found that a range of "brittle" fault rocks (e.g., cataclasites and breccias) form in the deeper crust. Similarly, upper crustal materials in deep basins and fault zones can deform through both distributed and localized deformation. Altogether, there appears to be reason to bring a new perspective to aspects of the structural evolution of rifted margins. A granular mechanics approach to crustal deformation studies has several important strengths. Granular materials efficiently localize shear and exhibit a range of stick-slip behaviors, including quasi-viscous rheological responses. These behaviors emerge in discrete element models, analog-materials experiments, and natural and engineered systems regardless of the specific micromechanical flow law. Yet, strictly speaking, granular deformation occurs via failure of frictional contacts between elastic grains. Here, we explore how to relate granular-mechanics models to mesoscale (outcrop) structural evolution, in turn providing insight into basin- and margin- scale evolution. At this stage we are focusing on analog-materials experiments and micro-to-mesoscale observations linking theoretical predictions to structural geological observations. With this combined approach we seek to establish characteristic length scales such as grain sizes and shear zone thicknesses, and time-scales such as stick-slip event dynamics. This would allow us to define a flow law at the mesoscale from comparing the experimental results and the field observations. This rheology could eventually be used to model the strain localization history of rifted margins

  20. Three-dimensional laboratory modelling of rifting: application to the Baikal Rift, Russia

    E-print Network

    Déverchère, Jacques

    -branch configuration of the Baikal rift system only by introducing a weak zone in the area of Lake Baikal. Such a zone to the tension direction. In nature and in the model, rifting starts in the central branch corresponding to Lake Baikal. The modelling also predicts the formation of a fourth oblique f NS-trending branch to the south

  1. 1D model of seismic wave attenuation in the crust and upper mantle in the north-eastern flanc of the Baikal rift system

    NASA Astrophysics Data System (ADS)

    Dobrynina, Anna; Sankov, Vladimir; Chechelnitsky, Vladimir

    2014-05-01

    The deep profiles of quality factor were obtained using coda-waves of local strong and moderate earthquakes (epicentral distances up to 50 km) occurred within north-eastern flanc of the Baikal rift system during 2002-2009. We used two methods: 1 - the coda envelope method [Experimental.., 1981; Kopnichev, 1991] and 2 - the sliding window method (lapse time window 10-15 sec with a step of 5 sec). Depth of coda-wave penetration was determined according to Pulli's formulae [1984], the velocity of coda-wave is 3.55 km/s (equal to shear wave velocity). For analysis we used the Q values at frequency 1 Hz since for this frequency the attenuation field heterogeneity is most evident [Aptikaeva and Kopnichev, 1991]. In result Q-profiles for eleven local areas were obtained. The Q-values vary from 50 to 170 for different profiles and depths. Herewith quality factor changes nonuniformly - the alternation of layers with high and low Q-values is observed. This phenomenon can be explained by existing velocity discontinuity. In particular for all profiles this alternation is confined to the depth about 100 km. Analysis VP-anomalies obtained in result of 2D teleseismic tomography along Baikal rift system [Mordvinova, 2009] shows the existence discontinuity on depth about 100 km under most of Baikal rift system structures. Analysis of 1D profiles of shear wave velocities in the crust and upper mantle after inversion of receiver functions [Anan'in et al., 2009] also shows presence of these discontinuity dividing high and low velocity layers. The comparison of Q-values and shear wave velocities [Anan'in et al., 2009] shown that in high velocity layers quality factor is higher too and vice versa. Multilayer quality factor model for the lithosphere in north-eastern flanc of the Baikal rift system with the alternation of layers with high and low attenuation determined by us together with analogous data obtained by Yu.F. Kopnichev [1992] for south-western flanc of the rift system can be one of inferential evidences of passive rifting mechanism in studied area. The reported study was supported by RFBR (research project N12-05-31038-mol_a) and by grant of President of Russian Federation (research project N MK-1171.2014.5).

  2. Mapping of the major structures of the African rift system using ERTS-1

    NASA Technical Reports Server (NTRS)

    Mohr, P. A. (principal investigator)

    1973-01-01

    The author has identified the following significant results. The structural margin of western Afar with the Ethiopian plateau is marked by a rather wide zone of crustal deformation. ERTS-1 imagery has now permitted a more precise mapping of the structures of this marginal zone, and in particular of the discontinuous marginal graben. The tectonic style of the graben is different in the north from the south, and in the latter region the graben is discordant with the regional tectonic trend. The structural margin of the southern Afar with the Somalian plateau is formed, in the western sector, by a remarkable series of fault-zone splays. Afar-plateau boundary fault-zones successively curve northeast and then NNE to become Afar floor fault-zones, with a distance of about 25 km separating successive turnoffs. The transition from Ethiopian rift to Gulf of Aden tread faulting along this margin is fascinatingly complex. A simplistic crustal thinning model is not adequate to explain all observed structural features of the Afar margins.

  3. Structure of the central Terror Rift, western Ross Sea, Antarctica

    USGS Publications Warehouse

    Hall, Jerome; Wilson, Terry; Henrys, Stuart

    2007-01-01

    The Terror Rift is a zone of post-middle Miocene faulting and volcanism along the western margin of the West Antarctic Rift System. A new seismic data set from NSF geophysical cruise NBP04-01, integrated with the previous dataset to provide higher spatial resolution, has been interpreted in this study in order to improve understanding of the architecture and history of the Terror Rift. The Terror Rift contains two components, a structurally-controlled rollover anticlinal arch intruded by younger volcanic bodies and an associated synclinal basin. Offsets and trend changes in fault patterns have been identified, coincident with shifts in the location of depocenters that define rift sub-basins, indicating that the Terror Rift is segmented by transverse structures. Multiple phases of faulting all post-date 17 Ma, including faults cutting the seafloor surface, indicating Neogene rifting and possible modern activity.

  4. Application of P- and S-receiver functions to investigate crustal and upper mantle structures beneath the Albertine branch of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Gummert, Michael; Lindenfeld, Michael; Wölbern, Ingo; Rümpker, Georg; Kasereka, Celestin; Batte, Arthur

    2014-05-01

    The Rwenzori region at the border between Uganda and the Democratic Republic of Congo is part of the western (Albertine) branch of the East African Rift System (EARS). The region is characterized by a horst structure, the Rwenzori Mountains, reaching elevations of more than 5 km and covering an area of about 120 km by 50 km. The unusual location of the mountain range, between two segments of the Albertine rift, suggests complex structures of the crust and the upper mantle below. In our study, we employ P- and S-receiver functions in order to investigate the corresponding discontinuities of the lithosphere-asthenosphere system. The analyses are based on recordings from a dense network of 33 seismic broadband stations operating in the region for a period of nearly two years, from September 2009 until August 2011. The crustal thickness is analysed by using P-receiver functions and the grid search method of Zhu & Kanamori (2000) which involves the stacking of amplitudes of direct converted (Ps) and multiple phases (PpPs and PpSs) originating from the Moho. The method of S-receiver functions is more effective in analysing deeper discontinuities of the upper mantle, such as the lithosphere-asthenosphere boundary (LAB). The latter method also has the advantage that the interfering influence of multiple phases from shallower discontinuities is avoided. To simplify the analysis of the S-receiver functions, we use an automatic procedure to determine incidence angles used in the rotation from the ZNE system to the ray-centered LQT system. We apply this approach to confirm and significantly extend results from the study of Wölbern et al. (2012), which provided evidence for an intra-lithospheric discontinuity at depths between 54 km and 104 km and the LAB between 135 km and 210 km. Our results provide evidence for significant variations of crustal thickness beneath the region. The Moho depth varies between 20 km beneath the rift valley and 39 km beneath the adjacent rift shoulders. We also consider influences of sediment layers and of a low-velocity intra-crustal zone on the thickness estimates. The comparison of the Moho topography with the hypocentral depth distribution of local earthquakes indicates that the seismicity extends from the surface down to the base of the crust. From our investigation, there is no evidence for a crustal root beneath the Rwenzori mountain range. This observation provides support for rift-induced delamination, as recently proposed by Wallner and Schmeling (2010), to explain the unusual uplift of the Rwenzori Mountains between two rift segments.

  5. Thermochronological investigation of the timing of rifting and rift segmentation in the Gulf of Suez, Egypt

    NASA Astrophysics Data System (ADS)

    Bosworth, W.; Stockli, D. F.

    2006-12-01

    The Tertiary Gulf of Suez rift system is one of the best-studied continental rift systems and has inspired many fundamental geodynamic models for continental rifting. However, our limited knowledge of how extensional strain is spatially and temporally distributed has made it difficult to adequately evaluate models for the dynamic evolution of this rift. A critical aspect of constraining the evolution of rifting and rift segmentation in the Gulf of Suez involves acquiring reliable geochronological constraints on extensional faulting. This study has commenced a systematic investigation of the timing and spatial distribution of rifting, lateral rift segmentation, and rift localization within the Gulf of Suez, Egypt, employing apatite and zircon (U-Th)/He thermochronometry. (U-Th)/He thermochronometric analysis of sample transects from exhumed fault blocks within the rift integrated with structural data will allow us to directly determine the timing, distribution, and magnitude of extension. The onset of major rifting (~24-19 Ma) in the Gulf of Suez was marked by the development of crustal domino-style tilt blocks and syn-rift deposition of the late Oligocene non-marine Abu Zenima Fm and non-marine to restricted marine Nukhul Fm. Development of the Gulf of Aqaba-Dead Sea transform cut off the rift from the Red Sea rift at an early extensional stage. Apatite (AHe) and zircon (ZHe) (U- Th)/He data were collected from basement and pre-rift sedimentary sample transects from the central and southern Sinai Peninsula portion and the Gebel El Zeit area in the southern Gulf of Suez as well as from basement samples from selected drill cores off Gebel El Zeit. Preliminary data exhibit partially reset ages trending as old as ~70 Ma (AHe) and ~450 Ma (ZHe) from shallower structural levels (Proterozoic basement and Phanerozoic cover sequence). Structurally deeper samples yield abundant AHe ages of ~22-24 Ma, indicative of rapid cooling and exhumation during the early Miocene. More basin-ward AHe samples are as young as ~17 Ma, recording continued early to middle Miocene extension in the Gulf of Suez. Detailed thermochronometric dating in progress should yield a more complete picture of the temporal and spatial distribution of extensional faulting in the Gulf of Suez.

  6. Structure and kinematics of the Taupo Rift, New Zealand

    NASA Astrophysics Data System (ADS)

    Seebeck, Hannu; Nicol, Andrew; Villamor, Pilar; Ristau, John; Pettinga, Jarg

    2014-06-01

    The structure and kinematics of the continental intra-arc Taupo Rift have been constrained by fault-trace mapping, a large catalogue of focal mechanisms (N = 202) and fault slip striations. The mean extension direction of ~137° is approximately orthogonal to the regional trend of the rift and arc front (? = 84° and 79°, respectively) and to the strike of the underlying subducting Pacific Plate. Bending and rollback of the subduction hinge strongly influence the location, orientation, and extension direction of intra-arc rifting in the North Island. In detail, orthogonal rifting (? = 85-90°) transitions northward to oblique rifting (? = 69-71°) across a paleovertical-axis rotation boundary where rift faults, extension directions, and basement fabric rotate by ~20-25°. Toward the south, extension is orthogonal to normal faults which are parallel to, and reactivate, steeply dipping basement fabric. Basement reactivation facilitates strain partitioning with a portion of margin-parallel motion in the overriding plate mainly accommodated east of the rift by strike-slip faults in the North Island Fault System (NIFS). Toward the north where the rift and NIFS intersect, ~4 mm/yr strike slip is transferred into the rift with net oblique extension accommodating a component of margin-parallel motion. The trend and kinematics of the Taupo Rift are comparable to late Miocene-Pliocene intra-arc rifting in the Taranaki Basin, indicating that the northeast strike of the subducting plate and the southeast extension direction have been uniform since at least 4 Ma.

  7. Constraints on the magmatic plumbing system of the Dabbahu rift (Afar, Ethiopia) from InSAR and GPS

    Microsoft Academic Search

    T. J. Wright; E. Calais; J. Biggs; E. Lewi; I. Hamling; C. J. Ebinger

    2006-01-01

    The 60-km-long Dabbahu segment of Nubia-Arabia plate boundary the experienced a major rifting episode in September 2005 when 2.5~km3 of magma was injected in the upper 10~km of the crust along a dike with a maximum thickness of 8~m (Wright et al., 2006). Subsidence around Dabbahu and Gabho volcanoes, at the northern end of the rift segment, suggests that at

  8. Evidence of rift valley fever seroprevalence in the Sahrawi semi-nomadic pastoralist system, Western Sahara

    PubMed Central

    2014-01-01

    Background The increasing global importance of Rift Valley fever (RVF) is clearly demonstrated by its geographical expansion. The presence of a wide range of host and vector species, and the epidemiological characteristics of RVF, have led to concerns that epidemics will continue to occur in previously unaffected regions of Africa. The proximity of the Sahrawi territories of Western Sahara to endemic countries, such as Mauritania, Senegal, and Mali with periodic isolation of virus and serological evidence of RVF, and the intensive livestock trade in the region results in a serious risk of RVF spread in the Sahrawi territories, and potentially from there to the Maghreb and beyond. A sero-epidemiological survey was conducted in the Saharawi territories between March and April 2008 to investigate the possible presence of the RVF virus (RVFV) and associated risk factors. A two-stage cluster sampling design was used, incorporating 23 sampling sites. Results A total of 982 serum samples was collected from 461 sheep, 463 goats and 58 camels. Eleven samples (0.97%) tested positive for IgG against the RVFV. There were clusters of high seroprevalence located mostly in the Tifariti (7.69%) and Mehaires (7.14%) regions, with the Tifariti event having been found in one single flock (4/26 positive animals). Goats and older animals were at a significantly increased risk being seropositive (p?=?0.007 and p?=?0.007, respectively). Conclusion The results suggest potential RVF activity in the study area, where intense livestock movement and trade with neighbouring countries might be considered as a primary determinant in the spread of the disease. The importance of a continuous field investigation is reinforced, in light of the risk of RVF expansion to historically unaffected regions of Africa. PMID:24758592

  9. Earthquake Rupture Forecast of M>= 6 for the Corinth Rift System

    NASA Astrophysics Data System (ADS)

    Scotti, O.; Boiselet, A.; Lyon-Caen, H.; Albini, P.; Bernard, P.; Briole, P.; Ford, M.; Lambotte, S.; Matrullo, E.; Rovida, A.; Satriano, C.

    2014-12-01

    Fourteen years of multidisciplinary observations and data collection in the Western Corinth Rift (WCR) near-fault observatory have been recently synthesized (Boiselet, Ph.D. 2014) for the purpose of providing earthquake rupture forecasts (ERF) of M>=6 in WCR. The main contribution of this work consisted in paving the road towards the development of a "community-based" fault model reflecting the level of knowledge gathered thus far by the WCR working group. The most relevant available data used for this exercise are: - onshore/offshore fault traces, based on geological and high-resolution seismics, revealing a complex network of E-W striking, ~10 km long fault segments; microseismicity recorded by a dense network ( > 60000 events; 1.5=5 19th century events and a few paleoseismological investigations, allowing to consider time-dependent ERF. B-value estimates are found to be catalogue-dependent (WCR, homogenized NOA+Thessaloniki, SHARE), which may call for a potential break in scaling relationship. Furthermore, observed discrepancies between seismicity rates assumed for the modeled faults and those expected from GPS deformation rates call for the presence of aseismic deformation. Uncertainty in the ERF resulting from the lack of precise knowledge concerning both, fault geometries and seismic slip rates, is quantified through a logic tree exploration. Median and precentile predictions are then compared to ERF assuming a uniform seismicity rate in the WCR region. The issues raised by this work will be discussed in the light of seismic hazard assessment.

  10. The Role of Rift Obliquity During Pangea Fragmentation

    NASA Astrophysics Data System (ADS)

    Brune, S.; Butterworth, N. P.; Williams, S.; Müller, D.

    2014-12-01

    Does supercontinent break-up follow specific laws? What parameters control the success and the failure of rift systems? Recent analytical and geodynamic modeling suggests that oblique rifting is energetically preferred over orthogonal rifting. This implies that during rift competition, highly oblique branches proceed to break-up while less oblique ones become inactive. These models predict that the relative motion of Earth's continents during supercontinent break-up is affected by the orientation and shape of individual rift systems. Here, we test this hypothesis based on latest plate tectonic reconstructions. Using PyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates, we quantify rift obliquity, extension velocity and their temporal evolution for continent-scale rift systems of the past 200 Myr. Indeed we find that many rift systems contributing to Pangea fragmentation involved strong rift obliquity. East and West Gondwana for instance split along the East African coast with a mean obliquity of 55° (measured as the angle between local rift trend normal and extension direction). While formation of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. Rifting between Australia and Antarctica involved two stages with 25° prior to 100 Ma followed by 50° obliquity and distinct increase of extension velocity. Analyzing the entire passive margin system that formed during Pangea breakup, we find a mean obliquity of 40°, with a standard deviation of 20°. Hence 50% of these margins formed with an angle of 40° or more. Considering that many conceptual models of rifting and passive margin formation assume 2D deformation, our study quantifies the degree to which such 2D models are globally applicable, and highlights the importance of 3D models where oblique rifting is the dominant mode of deformation.

  11. Receiver function imaging of the lithosphere-asthenosphere boundary and melt beneath the Afar Rift in comparison to other systems

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.; Harmon, Nicholas

    2015-04-01

    Heating, melting, and stretching destroy continents at volcanic rifts. Mantle plumes are often invoked to thermally weaken the continental lithosphere and accommodate rifting through the influx of magma. However the relative effects of mechanical stretching vs. melt infiltration and weakening are not well quantified during the evolution of rifting. S-to-p (Sp) imaging beneath the Afar Rift provides additional constraints. We use two methodologies to investigate structure and locate robust features: 1) binning by conversion point and then simultaneous deconvolution in the frequency domain, and 2) extended multitaper followed by migration and stacking. We image a lithosphere-asthenosphere boundary at ~75 km beneath the flank of the Afar Rift vs. its complete absence beneath the rift. Instead, a strong velocity increase with depth at ~75 km depth is imaged. Beneath the rift axis waveform modeling suggests the lack of a mantle lithosphere with a velocity increase at ~75 km depth. Geodynamic models that include high melt retention and suppress thermal convection easily match the required velocity-depth profile, the velocity increase arising from a drop in melt percentage at the onset of decompression melting. Whereas, models with conservative melt retention that include thermal buoyancy effects cannot reproduce the strong velocity increase. The shallow depth of the onset of melting is consistent with a mantle potential temperature = 1350 - 1400°C, i.e., typical for adiabatic decompression melting. Trace element signatures and geochemical modeling have been used to argue for a thick lithosphere beneath the rift and slightly higher mantle potential temperatures ~1450°C, although overall, given modeling assumptions, the results are not in disagreement. Therefore, although a plume initially destroyed the mantle lithosphere, its influence directly beneath Afar today is not strong. Volcanism continues via adiabatic decompression melting assisted by strong melt buoyancy effects. This contrasts with a similar feature at much deeper depth, ~150 km, beneath Hawaii, Iceland, and Galapagos. Improved high resolution imaging of rifting, ridges, and hotspots in a variety of stages and tectonic settings will increase constraints on the forces sustaining volcanism and the factors that dictate the style of breakup beneath rifts.

  12. Teleseismic P-wave Delay Time Tomography of the southern Superior Province and Midcontinent Rift System (MRS) Region

    NASA Astrophysics Data System (ADS)

    Bollmann, T. A.; van der Lee, S.; Frederiksen, A. W.; Wolin, E.; Aleqabi, G. I.; Revenaugh, J.; Wiens, D. A.; Darbyshire, F. A.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) and the northern midwest footprint of USArray's Transportable Array recorded continuous ground motion for a period of 2.5 years. From around 400 M>5.5 teleseismic earthquakes recorded at 337 stations, we measured body wave delay times for 255 of these earthquakes. The P wave delays are accumulated over more than 45 thousand wave paths with turning points in the lower mantle. We combine these delay times with a similar number delay times used in previous tomographic studies of the study region. The latter delay times stem from fewer stations, including Polaris and CNSN stations, and nearly a thousand earthquakes. We combine these two sets of delay times to image the three-dimensional distribution of seismic velocity variations beneath the southern Superior Province and surrounding provinces. This combined data coverage is illustrated in the accompanying figure for a total number of 447 stations . The coverage and the combined delays form the best configuration yet to image the three-dimensional distribution of seismic P and S-wave velocity variations beneath the southern Superior and surrounding provinces. Closely spaced stations (~12 km) along and across the MRS provide higher resolving power for lithospheric structure beneath the rift system. Conforming to expectations that the entire region is underlain by thick, cool lithosphere, a mean delay of -.55 +/- .54 s. This is very similar to the mean delays -.6s +/- .37s measured for this region before 2012. Event corrections range from -.2 +/-.54 s and correlate with tectonics for 80% of the earthquakes. An inversion of these nearly one hundred thousand P and around thirty thousand S-wave delay times for high-resolution P and S-wave velocity structure, respectively, does not show structures that are obviously related to the crustal signature of the MRS. None of structures imaged, align with or have a similar shape to the high Mid-continent Gravity Anomaly (MGA). However, a low-velocity structure is imaged in the lithosphere just east of the MGA.

  13. Lake Baikal - A Touchstone for Global Change and Rift Studies

    NSDL National Science Digital Library

    This is a United States Geological Survey (USGS) fact sheet about the Lake Baikal rift system. This site provides a good general overview of this rift system, illustrating its importance to the overall study of plate tectonics. The Lake Baikal rift system is a modern analogue for formation of ancient Atlantic-type continental margins. It tells us the first chapter in the story of how continents separate and ultimately develop into ocean basins like the Atlantic Ocean. Continental rifting is an important component of plate tectonics theory.

  14. Rift Valley Fever Virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  15. Clinical Research Informatics Systems Project Final Report

    E-print Network

    Provancher, William

    Clinical Research Informatics Systems Project Final Report March 29, 2010 Rev. 8.30.2010 Report Submitted to: Dr. Joyce Mitchell Chair, Department of Medical Informatics Associate Vice President, Health Orientation Checklist (Draft)................................XII #12;Clinical Research Informatics Systems

  16. Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Park, Munjae; Jung, Haemyeong; Kil, Youngwoo

    2015-04-01

    Mantle-derived xenoliths associated with continental rifting can provide important information about the mantle structure and the physicochemical properties of deformation processes in the upper mantle. Metasomatized spinel peridotites from Adam's Diggings (AD) at a rift shoulder and Elephant Butte (EB) at a rift axis in the Rio Grande rift (RGR) were investigated to understand the deformation processes and seismic anisotropy occurring in the upper mantle. As determined through analysis of the lattice preferred orientation (LPO) of olivine by using a scanning electron microscope equipped with electron backscatter diffraction (SEM/EBSD), AD peridotites exhibited C-type LPO of olivine indicating a dominant slip system of (100)[001] at the rift shoulder, whereas EB peridotites exhibited A-type LPO indicating a dominant slip system of (010)[100] at the rift axis. Both geochemical data and microstructural observations indicate that the localized mantle enrichment processes, including melts with hydrous fluids, controlled multiple mantle metasomatisms and deformation of rocks under wet conditions (with olivine C-type LPO) at the rift shoulder (AD), whereas mantle depletion by decompression partial melting caused deformation of rocks under dry conditions (with olivine A-type LPO) at the rift axis (EB). These observations provide evidence for localized hydration and physicochemical heterogeneity of the upper mantle in the Rio Grande rift (RGR) zone. Seismic anisotropy observed beneath this zone can be attributed to the transtensional rupture, such as inhomogeneous stretching, and the petrofabrics of olivine beneath the study area.

  17. InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hamling, Ian J.; Wright, Tim J.; Calais, Eric; Lewi, Elias; Fukahata, Yukitoshi

    2014-04-01

    Increased displacement rates have been observed following manylarge earthquakes and magmatic events. Although an order of magnitude smaller than the displacements associated with the main event, the post-seismic or post-rifting deformation may continue for years to decades after the initial earthquake or dyke intrusion. Due to the rare occurrence of subaerial rifting events, there are very few observations to constrain models of post-rifting deformation. In 2005 September, a 60-km-long dyke was intruded along the Dabbahu segment of the Nubia-Arabia Plate boundary (Afar, Ethiopia), marking the beginning of an ongoing rifting episode. Continued activity has been monitored using satellite radar interferometry and data from global positioning system instruments deployed around the rift in response to the initial intrusion. Using multiple satellite passes, we are able to separate the rift perpendicular and vertical displacement fields around the Dabbahu segment. Rift perpendicular and vertical rates of up to 180 and 240 mm yr-1, respectively. Here, we show that models of viscoelastic relaxation alone are insufficient to reproduce the observed deformation field and that a large portion of the observed signal is related to the movement of magma within the rift segment. Our models suggest upper mantle viscosities of 1018-19 Pa s overlain by an elastic crust of between 15 and 30 km. To fit the observations, inflation and deflation of magma chambers in the centre of the rift and to the south east of the rift axis is required at rates of ˜0.13 and -0.08 km3 yr-1.

  18. Style of rifting and the stages of Pangea breakup

    NASA Astrophysics Data System (ADS)

    Frizon de Lamotte, Dominique; Fourdan, Brendan; Leleu, Sophie; Leparmentier, François; Clarens, Philippe

    2015-05-01

    Pangea results from the progressive amalgamation of continental blocks achieved at 320 Ma. Assuming that the ancient concept of "active" versus "passive" rifting remains pertinent as end-members of more complex processes, we show that the progressive Pangea breakup occurred through a succession of rifting episodes characterized by different tectonic evolutions. A first episode of passive continental rifting during the Upper Carboniferous and Permian led to the formation of the Neo-Tethys Ocean. Then at the beginning of Triassic times, two short episodes of active rifting associated to the Siberian and Emeishan large igneous provinces (LIPs) failed. The true disintegration of Pangea resulted from (1) a Triassic passive rifting leading to the emplacement of the central Atlantic magmatic province (200 Ma) LIP and the subsequent opening of the central Atlantic Ocean during the lowermost Jurassic and from (2) a Lower Jurassic active rifting triggered by the Karoo-Ferrar LIP (183 Ma), which led to the opening of the West Indian Ocean. The same sequence of passive then active rifting is observed during the Lower Cretaceous with, in between, the Parana-Etendeka LIP at 135 Ma. We show that the relationships between the style of rifts and their breakdown or with the type of resulting margins (as magma poor or magma dominated) are not straightforward. Finally, we discuss the respective role of mantle global warming promoted by continental agglomeration and mantle plumes in the weakening of the continental lithosphere and their roles as rifting triggers.

  19. Organic Geochemical and tectonic evolution of the Midcontinent Rift system. Final report

    SciTech Connect

    Hayes, J.M.; Pratt, L.M. [Indiana Univ., Bloomington, IN (United States); Knoll, A.H. [Harvard Univ., Cambridge, MA (United States). Dept. of Organismal and Evolutionary Biology

    1992-12-31

    The older assemblages stand in contrast with the ca. 1000 Ma old Hunting Formation, Arctic Canada, which contains what may be the oldest evidence for modem algae - red algal fossils that compare closely with members of the extant family Bangiophyceae (Butterfield et al., 1990). Taken together the Nonesuch, Shaler, Hunting and other assemblages support the hypothesis of a major episode of eukaryotic diversification ca. 1000 Ma ago. Prior to this time, eukaryotic primary producers must have been physiologically primitive (and now extinct) algae whose abundance in ecosystems is poorly constrained by analogies with the present oceans. Cyanobacteria were major primary producers in a wide range of marine environments. After 1000 Ma, diversifying red green and chromophyte algae contributed significantly to primary production in all save microbial mat communities in restricted environments. It bears mention that such mat communities remained significant potential sources of buried organic matter until the end of the Proterozoic, necessitating exploration strategies that differ from those commonly employed for younger rocks (Knoll, in press). As in Phanerozoic basins, petroleum exploration in Proterozoic rocks requires tools for stratigraphic correlation. In Neoproterozoic (<1000 Ma) rocks, biostratigraphy is possible, and it is aided significantly by C and Sr isotopic chemostratigraphy. New data from the Shaler Group contribute to the construction of C and Sr isotopic curves for Neoproterozoic time, making possible much improved chronostratigraphy for this time interval. (Asmerom et al., 1991; Hayes et al., ms. in preparation).

  20. Controls on (anomalous) topography in rifted margin settings

    NASA Astrophysics Data System (ADS)

    Huismans, Ritske S.

    2015-04-01

    Contrasting end members of volcanic and non-volcanic passive margin formation show a large variability in basin shape and structure, subsidence history, and associated topographic evolution of the onshore rifted margins. The large range of structural style and associated topography of these systems imply a strong variability in the underlying thermo-mechanical conditions at the time of rifting. Rift - passive margin styles ranging from narrow to ultra wide are explained using forward numerical models with varying rheological structure, with strong crust lithosphere leading to narrow rift formation associated with highly elevated rift shoulders and conversely weak crust lithosphere resulting in highly stretched wide rifted conjugate margins and little flank morphology. In some cases rifted margins appear to indicate the formation of anomalous post rift topography. A number of mechanisms including small-scale convective removal of the lower lithosphere, lithosphere counter-flow, and dynamic topography, have been invoked to explain the anomalous topography. Forward numerical models are used to predict the magnitude and characteristic topography associated with each of these mechanisms and to evaluate their potential for explaining these apparent anomalous characteristics of rifts and rifted margins.

  1. Radial Anisotropy beneath the Main Ethiopian Rift and Afar Depression

    NASA Astrophysics Data System (ADS)

    Accardo, N. J.; Gaherty, J. B.; Jin, G.; Shillington, D. J.

    2014-12-01

    The Main Ethiopian Rift (MER) and Afar uniquely capture the final stages of transition from continental rifting in the broader East African Rift System to incipient seafloor spreading above a mantle hotspot. Studies of the region increasingly point to magmatism as a controlling factor on continental extension. However, the character and depth extent of these melt products remain contentious. Radial anisotropy derived from surface waves provides a unique diagnostic constraint on the presence of oriented melt pockets versus broader oriented anisotropic fabrics. This study investigates the thermal and radially anisotropic structure beneath the broader MER and Afar to resolve the magmatic character of the region and ultimately to understand the role of magmatism in present day rift development. We utilize 104 stations from 4 collocated arrays in the MER/Afar region to constrain radial anisotropy within the upper mantle via the inversion of Love- and Rayleigh-wave observations between 25 and 100 s period. We employ a multi-channel cross-correlation algorithm to obtain inter-station phase and amplitude information. The multi-channel phase observations are inverted for dynamic phase velocity across the array, which are then corrected for focusing and multipathing using the amplitude observations via Helmholtz tomography. We jointly invert Love- and Rayleigh-wave structural phase velocity measurements employing crustal constraints from co-located active source experiments to obtain estimates of Vsv and Vsh between 50 - 170 km depth. Preliminary results readily reveal the distinct shear velocity structure beneath the MER and Afar. Within the MER, shear velocity structure suggests pronounced low velocities accompanied by strong anisotropy between 80 - 140 km depth beneath the western Ethiopian plateau and rift valley. Within Afar, shear velocity structure is more varied with the slowest velocities found at shallow depths (less than 70 km depth), accompanied by weak anisotropy. The pronounced changes in the depth extent of slow velocities and strength of anisotropy interpreted to be associated with asthenosphere may reflect variations in the distribution and magnitude of temperature anomalies/melt between continental rifting in the MER and incipient, hot-spot influenced seafloor spreading in Afar.

  2. Twenty-five years of geodetic measurements along the Tadjoura-Asal rift system, Djibouti, East Africa

    E-print Network

    Vigny, Christophe

    sits on dry land in the Afar depression near the triple junction between the Arabia, Somalia, and Nubia GPS sites covers the Republic of Djibouti. Additional points were also measured in Yemen and Ethiopia junction between Arabia, Somalia, and Nubia, is actively deforming by continental stretching, rifting

  3. A Rift Valley fever risk surveillance system for Africa using remotely sensed data: Potential for use on other continents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) is a mosquito-borne viral disease with pronounced health and economic impacts to domestic animals and humans in much of sub-Saharan Africa. Epizootics and epidemics of RVF are closely linked to the occurrence of the warm phase of the El Niño/Southern Oscillation (ENSO) phenom...

  4. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province

    Microsoft Academic Search

    Tanya Furman; David Graham

    1999-01-01

    This study presents new major and trace element and Sr–Nd isotopic results for a suite of Miocene–Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably

  5. Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province

    Microsoft Academic Search

    Tanya Furman; David Graham

    1999-01-01

    This study presents new major and trace element and Sr-Nd isotopic results for a suite of Miocene-Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably

  6. Inventory Systems Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Naddor, Eliezer

    Four computer programs to aid students in understanding inventory systems, constructing mathematical inventory models, and developing optimal decision rules are presented. The program series allows a user to set input levels, simulates the behavior of major variables in inventory systems, and provides performance measures as output. Inventory…

  7. Contemporary surface ruptures in the zone of the Baikal-Mondy fault (Baikal rift system): dynamics of formation and origin

    NASA Astrophysics Data System (ADS)

    Sankov, Vladimir; Sankov, Aleksei; Lebedeva, Marina; Ashurkov, Sergey; Parfeevets, Anna

    2014-05-01

    Sublatitudinal Baikal-Mondy (Tunka) left-lateral strike-slip fault accommodates North Mongolia submeridional rift basins opening (Darkhad and Khubsugul). It is the connecting link between the central and south-western parts of the Baikal rift system. We investigated the present-day activity of faulting on southern border of Mondy basin, which is due to their position at the junction of east-west trending active faults of the Baikal-Mondy fault system with submeridional structures of Khubsugul basin. The investigated area is characterized by high seismic activity. The epicenter of one of the strongest Mondy earthquake 1950 (Mw = 7.0) is located within the Mondy basin. Reconstruction of Late Cenozoic tectonic stress field shows a predominance of strike-slip deformation regime with NW-SE direction of the minimum compression axis and NE-SW direction of the maximum compression axis, which correlates with the present-day stress field derived from the data on earthquake focal mechanisms. On the top of the southern shoulder of Mondy basin a series of extended NE trending surface ruptures that cut the crust of weathering and bedrock across the local watershed were discovered. The rupture length reaches 180 m, width ruptures bedrock reaches 0.6 m. In the bedrock tectonic microfractures of NW and NE directions are dominated, but the NW trending surface ruptures are not observed. In the area of contemporary ruptures the geodetic measurements were carried out in the period 2009-2013. The results of processing the measurement data on the local testing ground showed that most divergent baselines undergoes extension with maximum values reaching 30 mm/year. The block experienced elongation in all directions, but the morphology of ruptures suggests that the main direction of stretching is NW-SE. The intensity of cracks opening decreases markedly with time. According to eyewitnesses known that active crack opening at about 100 mm/year started 4 years before Kultuk earthquake (27.08.2008, Mw = 6.3), the epicenter of which was located near the southern tip of the Baikal basin. The existence of centimeter level deformations is confirmed using of differential SAR interferometry method. A pair of images taken with an interval of 2 years highlighted the linear zone of active deformation in the centimeter level. The length of the structure is about 4 kilometers. The offset along the Line-of-Sight (LOS) direction is from 18 to 42 mm, which corresponds to the vertical displacement of 22 to 50 mm, or a horizontal displacement of 32 to 74 mm (Lebedeva et al., 2013). Along with the described ruptures we discovered normal faults with an amplitude greater than 2 m, which can be traced along the submeridional local watershed. The length of the normal faults reaches 800 m. The morphology and position of these faults can be attributed to their sackung structures. We conclude that the detected current surface ruptures have complex origins and develop under the influence of endogenous (tectonic) and exogenous forces. They founded along NE trending ancient tectonic structures within wide strike-slip zone and main direction of opening corresponds to the direction of extension of paleo- and present-day stress field. According to the dynamics of ruptures opening, the main phase of their formation is connected with stage of Kultuk earthquake preparation. As for geodetic data the block is stretched in all directions, it can be assumed that, by analogy with closely spaced sacking

  8. Young rift kinematics in the Tadjoura rift, western Gulf of Aden, Republic of Djibouti

    NASA Astrophysics Data System (ADS)

    Daoud, Mohamed A.; Le Gall, Bernard; Maury, René C.; Rolet, JoëL.; Huchon, Philippe; Guillou, Hervé

    2011-02-01

    The Tadjoura rift forms the westernmost edge of the westerly propagating Sheba ridge, between Arabia and Somalia, as it enters into the Afar depression. From structural and remote sensing data sets, the Tadjoura rift is interpreted as an asymmetrical south facing half-graben, about 40 km wide, dominated by a large boundary fault zone to the north. It is partially filled up by the 1-3 Myr old Gulf Basalts which onlapped the older Somali Basalts along its shallower southern flexural margin. The major and trace element analysis of 78 young onshore lavas allows us to distinguish and map four distinct basaltic types, namely the Gulf, Somali, Goumarre, and Hayyabley Basalts. These results, together with radiometric age data, lead us to propose a revised volcano-stratigraphic sketch of the two exposed Tadjoura rift margins and to discriminate and date several distinct fault networks of this oblique rift. Morphological and statistical analyses of onshore extensional fault populations show marked changes in structural styles along-strike, in a direction parallel to the rift axis. These major fault disturbances are assigned to the arrest of axial fault tip propagation against preexisting discontinuities in the NS-oriented Arta transverse zone. According to our model, the sinistral jump of rifting into the Asal-Ghoubbet rift segment results from structural inheritance, in contrast with the en échelon or transform mechanism of propagation that prevailed along the entire length of the Gulf of Aden extensional system.

  9. Paleomagnetism and paleointensity of Mid-Continental Rift System basalts at Silver Mountain and Sturgeon River Falls (Upper Michigan)

    NASA Astrophysics Data System (ADS)

    Kulakov, E.; Piispa, E. J.; Laird, M. S.; Smirnov, A. V.; Diehl, J. F.

    2009-12-01

    Paleomagnetic and paleointensity data from Precambrian rocks are of great importance for understanding the early geodynamo and tectonic evolution of the Earth. We will present results from a rock magnetic and paleomagnetic investigation of basaltic lava flow sequences at Silver Mountain and Sturgeon River Falls in Upper Michigan. While the Silver Mountain and Sturgeon River Falls lava flows have not been radiometrically dated, these rocks have been assigned to the Siemens Creek Volcanics, the lowermost member of ~1.1 Ga Powder Mill Group (PMG). The PMG represents one of the oldest volcanic units associated with the Mid-Continental Rift System (MCRS). We sampled 13 lava flows from the Silver Mountain and two lava flows from the Sturgeon River Falls exposures (a minimum of 15 cores per flow were taken). Paleomagnetic directions were determined from detailed thermal and/or alternating field demagnetization preceded by an initial low-temperature (liquid nitrogen) demagnetization. Most specimens revealed a single- or a two-component remanent magnetization. At both locations, the characteristic remanent magnetization (ChRM) has a reversed direction with very steep inclination similar to that found in other rocks representing the early stages of MCRS. Our magnetic hysteresis measurements, unblocking temperature spectra, and scanning electron microscopy analyses suggest low-Ti, pseudosingle-domain titanomagnetite as the principal magnetic carrier in these rocks. For paleointensity determinations, we applied the multispecimen parallel differential pTRM method. These data add to the Precambrian paleointensity database which otherwise remains limited because of alteration and other factors hampering the applicability of conventional Thellier double-heating method.

  10. TerraSAR-X high-resolution radar remote sensing: an operational warning system for Rift Valley fever risk.

    PubMed

    Vignolles, Cécile; Tourre, Yves M; Mora, Oscar; Imanache, Laurent; Lafaye, Murielle

    2010-11-01

    In the vicinity of the Barkedji village (in the Ferlo region of Senegal), the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF) are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m) Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels), Synthetic Aperture Radar satellite (TerraSAR-X) produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images), which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM), NASA/JAXA joint mission, the filling-up and flushing-out rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km(2)) can thus be assessed. This new operational approach (which is independent of weather conditions) is an important development in the mapping of risk components (i.e. hazards plus vulnerability) related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system. PMID:21080318

  11. Multiple mantle upwellings beneath the Northern East-African Rift System from relative P- and S-wave traveltime tomography

    NASA Astrophysics Data System (ADS)

    Civiero, Chiara; Hammond, James; Goes, Saskia; Fishwick, Stewart; Ahmed, Abdulhakim; Ayele, Atalay; Doubre, Cecile; Goitom, Berhe; Keir, Derek; Kendall, Mike; Leroy, Sylvie; Ogubazghi, Ghebrebrhan; Rumpker, Georg; Stuart, Graham

    2015-04-01

    Mantle plumes have been invoked as the likely cause of East African Rift volcanism and extension. However, the nature of mantle upwelling is debated, with proposed configurations ranging from a single broad plume, the African Superplume, connected to the LLSVP beneath Southern Africa, to one or more distinct lower-mantle sources along the rift. We present a new relative travel-time tomography model that images detailed P- and S- wave velocities from P,S and SKS phases below the northern East-African, Red Sea and Gulf of Aden rift. Data comes from stations that cover the area from Tanzania to Saudi Arabia. The aperture of the integrated dataset allows us to image for the first time structures of ~100 km length scale down to depths of 900 km beneath this region. Our images provide evidence of at least two low-velocity structures with a diameter of ~200 km that continue through the transition zone and into the lower mantle: the first extends to at least 900 km beneath Afar, and a second reaching at least 750 km depth just west of the Main Ethiopian Rift, a region with off-rift volcanism. Taking into account seismic sensitivity to temperature and thermally controlled phase boundary topography, we interpret these features as multiple focused upwellings from below the transition zone with excess temperatures of 100±50 K. The scale of the upwellings is smaller than any of the previously proposed lower mantle plume sources. This suggests the ponding or flow of deep-plume material below the transition zone may be spawning smaller upper-mantle upwellings.

  12. HOV system manual. Final report

    SciTech Connect

    NONE

    1998-12-31

    This report is a comprehensive and detailed HOV (High-Occupancy Vehicle) Systems Manual that incorporates current guidelines and practices. The contents of this Manual are, therefore, of immediate interest to both highway and transit professionals in planning, designing, implementing, operating, marketing, and enforcing HOV systems. The Manual is also useful to those charged with achieving air-quality and congestion-management goals as well as policy makers.

  13. Intelligent wind power prediction systems final report

    E-print Network

    Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

  14. Final Barrier: Small System Compliance

    EPA Science Inventory

    This presentation will discuss the use of point-of-use (POU) technology for small drinking water systems. Information will be provided on the USEPA regulations that allow the use of POU for compliance and the technologies that are listed as SSCT for radium and arsenic. Listing o...

  15. Significant crustal thinning beneath the Baikal rift zone: New constraints from receiver function analysis

    E-print Network

    Gao, Stephen Shangxing

    is a major feature of typical continental rifts such as the East African (EAR) and Rio Grande (RGR) rifts of more than 10 km has been observed in the Rio Grande [Wilson et al., 2003] and East African [Prodehl et, still remain as debated issues. [3] The BRZ (Figure 1) is a 1800 km long system of rift depressions

  16. Ethiopian Rift and Plateaus: Some Volcanic Petrochemical Differences

    Microsoft Academic Search

    P. A. Mohr

    1971-01-01

    Volcanism on the Arabo-Ethiopian swell has accompanied the development of the three traversing spreading zones conjoining at Afar: the Red Sea, Gulf of Aden, and African rift systems. The Red Sea and Gulf of Aden floors are formed by oceanic tholerites, but Afar and the main Ethiopian rift show a wider range of more alkaline volcanics, related to slower crustal

  17. The Magma Plumbing System of Dabbahu and Gabho volcanoes (Afar rift, Ethiopia) from InSAR, GPS and Seismicity data

    Microsoft Academic Search

    T. J. Wright; A. Ayele; M. Belachew; L. Bennati; E. Calais; C. J. Ebinger; I. J. Hamling; D. Keir; E. Lewi; C. Pagli; G. Yirgu

    2008-01-01

    In September 2005, a 60-km-long dike, up to 8 meters thick, was intruded into the Dabbahu rift segment, a nascent seafloor spreading center on the Nubia-Arabia plate boundary in the Afar Depression of Northern Ethiopia. Localized subsidence of 2-3 meters at Dabbahu and Gabho, measured by InSAR, indicated that some of the intrusion was fed from shallow magma chambers beneath

  18. The palaeo-lake Suguta and its importance for understanding lake level fluctuations in the East African Rift System

    Microsoft Academic Search

    A. Junginger; D. O. Olago; M. H. Trauth

    2010-01-01

    We studied the most recent dry-wet-dry cycle in the presently arid Suguta Valley in the Northern Kenya Rift where a 300-m-deep lake has formed during the so-called African Humid Period (AHP, 14.8-5.5 ka BP). Hydromodeling suggests that a relatively moderate 25% increase in precipitation was responsible for this dramatic lake level rise, which demonstrates the character of the Suguta Valley

  19. Continental rifting: a planetary perspective

    SciTech Connect

    Muehlberger, W.R.

    1985-01-01

    The only inner planet that has abundant evidence of regional extension, and the consequent generation of rifts in the earth. The absence of plate motion on the other inner planets limits their rifts to localized bulges or subsidence areas. The rifting of oceanic lithosphere is seldom preserved in the geological record. Thus, such rifting must be inferred via plate tectonic interpretation: if there is rifting, then there must be subduction whose results are commonly well preserved. Modern continental rifts are found in many tectonic settings: continental breakup, extension transverse to collisional stresses, or wide regions of nearly uniform extension. Recognition of these settings in older rocks becomes more difficult the farther back in geologic time you travel. Rift basin fillings typically show rapid lateral and vertical facies and thickness changes, bimodal volcanism, and distinctive rift-drift sequences. Proterozoic rifts and aulacogens are well-documented in North America; ex. Keweenawan, western margin of Labrador fold belt, Belt-Uinta and the Wopmay-Athapuscow regions. Documented Archean rifts are rare. In Quebec, the truncated margin of the Minto craton bounded on the south by a 2.8 Ga greenstone belt implies an earlier rift event. The oldest proposed rift dated at 3.0 Ga contains the Pongola Supergroup in southeastern Africa. The presence of Archean dikes demonstrates a rigid crust and andesites as old as 3.5 Ga imply plate tectonics and thus, at least, oceanic rifting.

  20. Volcanic field elongation, vent distribution and tectonic evolution of continental rift: The Main Ethiopian Rift example

    NASA Astrophysics Data System (ADS)

    Mazzarini, Francesco; Le Corvec, Nicolas; Isola, Ilaria; Favalli, Massimiliano

    2015-04-01

    Magmatism and faulting operate in continental rifts and interact at a variety of scales, however their relationship is complex. The African rift, being the best example for both active continental rifting and magmatism, provides the ideal location to study the interplay between the two mechanisms. The Main Ethiopian Rift (MER), which connects the Afar depression in the north with the Turkana depression and Kenya Rift to the south, consists of two distinct systems of normal faults and its floor is scattered with volcanic fields formed by tens to several hundreds monogenetic, generally basaltic, small volcanoes and composite volcanoes and small calderas. The distribution of vents defines the overall shape of the volcanic field. Previous work has shown that the distribution of volcanic vents and the shape of a field are linked to its tectonic environment and its magmatic system. In order to distinguish the impact of each mechanism, we analyzed four volcanic fields located at the boundary between the central and northern MER, three of them (Debre Zeyit, Wonji and Kone) grew in the rift valley and one (Akaki) on the western rift shoulder. The elongation and shape of the fields were analyzed based on their vent distribution using the Principal Component Analysis (PCA), the Vent-to-Vent Distance (VVD), and the two dimensional symmetric Gaussian kernel density estimate methods. We extracted from these methods several parameters characterizing the spatial distribution of points (e.g., eccentricity (e), eigenvector index (evi), angular dispersion (Da)). These parameters allow to define at least three types of shape for volcanic fields: strong elongate (line and ellipse), bimodal/medium elongate (ellipse) and dispersed (circle) shapes. Applied to the natural example, these methods well differentiate each volcanic field. For example, the elongation of the field increases from shoulder to rift axis inversely to the angular dispersion. In addition, the results show that none of the analyzed fields has its shape parallel to the actual trend of youngest and active faulting and volcanism. The alignment analysis shows that the feeders located along the actual rift axis (Wonji and Kone) are parallel to the NNE trend of the youngest fault system. This parallelism decreases as we move to the rift border. Our results suggest that the shape of volcanic fields is controlled mainly by large crustal to lithosphere scale structures (main border faults of the rift) and/or by the Lithosphere-Asthenosphere-Border (LAB) geometry, whereas diking, occurring at shallower levels, is principally controlled by upper crustal stress and strain state.

  1. Evolution of Oblique Rifting on the Main Ethiopian Rift

    NSDL National Science Digital Library

    Giacomo Corti

    Movie showing the evolution of oblique rifting in analogue models (from Corti, 2008, Nature Geosc). Obliquity in this model is 30° (angle between the normal to the rift axis and the direction of extension). Note the two-phase rift evolution with a first phase of boundary fault activity and basin subsidence, followed by activation of en-echelon arranged internal faults obliquely cutting the rift floor.

  2. Rift initiation with volatiles and magma

    NASA Astrophysics Data System (ADS)

    Ebinger, Cynthia; Muirhead, James; Roecker, Steve; Tiberi, Christel; Muzuka, Alfred; Ferdinand, Rrichard; Mulibo, Gabrile; Kianji, Gladys

    2015-04-01

    Rift initiation in cratonic lithosphere remains an outstanding problem in continental tectonics, but strain and magmatism patterns in youthful sectors of the East African rift provide new insights. Few teleseisms occur in the Eastern rift arm of the East African rift system, except the southernmost sector in northern Tanzania where extension occurs in Archaean lithosphere. The change in seismic energy release occurs over a narrow along-axis zone, and between sectors with and without volcanoes in the central rift valley. Are these differences in strain behavior indicative of along-strike variations in a) rheology; b) strain transfer from border faults to magma intrusion zones; c) dike vs fault slip; and/or d) shallow vs deep magma chambers? We present time-space relations of seismicity recorded on a 38-station array spanning the Kenya-Tanzania border, focal mechanisms for the largest events during those time periods, and compare these to longer-term strain patterns. Lower crustal seismicity occurs along the rift length, including sectors on and off craton, and those with and without central rift valley volcanoes, and we see no clear along-strike variation in seismogenic layer thickness. One explanation for widespread lower crustal seismicity is high gas pressures and volatile migration from active metasomatism of upper mantle and magma degassing, consistent with very high volatile flux along fault zones, and widespread metasomatism of xenoliths. Volatile release and migration may be critical to strength reduction of initially cold, strong cratonic lithosphere. Seismicity patterns indicate strain (and fluid?) transfer from the Manyara border fault to Gelai shield volcano (faulting, diking) via Oldoinyo Lengai volcano. Our focal mechanisms and Global CMTs from an intense fault-dike episode (2007) show a local, temporally stable, rotation from ~E-W extension to NE-SE extension in this linkage zone, consistent with longer term patterns recorded in vent and eruptive chain alignments.

  3. Melt-induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves

    Microsoft Academic Search

    I. D. Bastow; S. Pilidou; J.-M. Kendall; G. W. Stuart

    2010-01-01

    The East African rift in Ethiopia is unique worldwide because it captures the final stages of transition from continental rifting to seafloor spreading. A recent study there has shown that magma intrusion plays an important role during the final stages of continental breakup, but the mechanism by which it is incorporated into the extending plate remains ambiguous: wide-angle seismic data

  4. Post Rift Thermal Evolution of Extended Lithosphere

    NASA Astrophysics Data System (ADS)

    Cardoso, R. R.; Hamza, V. M.

    2009-12-01

    An improved thermal model of the lithosphere extension is proposed and its influence in the petroleum system in sedimentary basins examined. The new model assumes existence of time dependent variation in the lithosphere thickness during the post-rift period, which was not take account in the formulation of the Mackenzie model (1978). In the present work we assume that the asymptotic growth of the lithosphere thickness, during the post-rift period, may be represented by an asymptotic relation of the type: L(t)=(L/?)+(L-L/?)erf(?*t) where L(t) is lithospheric thickness at post-rift time t, ? the stretching factor as defined in the McKenzie model, erf the error function and ? a suitable scaling constant. According to the above equation the syn-rift value of L is (L/?). For large times the thickness of the lithosphere approaches asymptotically the pre-rift value of L. The value of ? can be determined by calculating the time necessary for the stretched lithosphere (L/?) to return to original thickness. The results of numerical simulations indicate that the heat flux derived from the new model is substantially lower than the values predicted by the McKenzie model (see Figure 1). The new model has been calibrated using available information on evolution of thermal maturity indices for the Santos Basin, situated in the offshore area of southeast Brazil. Heat flow variations during the post stretch period, for the case in which the stretching factor is 2.5.

  5. Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978

    SciTech Connect

    Callender, J.F.

    1985-04-01

    A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

  6. Petrogenesis of the Ni-Cu-PGE sulfide-bearing Tamarack Intrusive Complex, Midcontinent Rift System, Minnesota

    NASA Astrophysics Data System (ADS)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2015-01-01

    The Tamarack Intrusive Complex (TIC, 1105.6 ± 1.2 Ma) in NE Minnesota, was emplaced during the early stages of the development of the Midcontinent Rift System (MRS, "Early Stage": 1110-1106 Ma). Country rocks of the TIC are those of the Paleoproterozoic Thomson Formation, part of the Animikie Group including sulfide-bearing metasedimentary black shale. The magmatic system is composed of at least two principal mafic-ultramafic intrusive sequences: the sulfide-barren Bowl Intrusion in the south and the "dike" area intrusions in the north which host Ni-Cu-Platinum Group Elements (PGE) mineralization with up to 2.33% Ni, 1.24% Cu, 0.34 g/t Pt, 0.23 g/t Pd and 0.18 g/t Au. Two distinct intrusive units in the "dike" area are the CGO (coarse-grained olivine-bearing) Intrusion, a sub-vertical dike-like body, and the overlying sub-horizontal FGO (fine-grained olivine-bearing) Intrusion. Both intrusions comprise peridotite, feldspathic peridotite, feldspathic pyroxenite, melatroctolite and melagabbro. Massive sulfides are volumetrically minor and mainly occur as lenses emplaced into the country rocks associated with both intrusions. Semi-massive (net-textured) sulfides are distributed at the core of the CGO Intrusion, surrounded by a halo of the disseminated sulfides. Disseminated sulfides also occur in lenses along the base of the FGO Intrusion. Olivine compositions in the CGO Intrusion are between Fo89 and Fo82 and in the FGO Intrusion from Fo84 to Fo82. TIC intrusions have more primitive olivine compositions than that of olivine in the sheet-like intrusions in the Duluth Complex (below Fo70), as well as olivine from the smaller, conduit-related, Eagle and East Eagle Intrusions in Northern Michigan (Fo86 to Fo75). The FeO/MgO ratios of the CGO and FGO Intrusion parental magmas, inferred from olivine compositions, are similar to those of picritic basalts erupted during the early stages of the MRS formation. Trace element ratios differ slightly from other intrusions in the MRS, and are indicative of significant crustal contamination. Differences in textures, whole-rock and mineral compositions, and sulfide distribution are consistent with the emplacement of at least two distinct sulfide saturated magmatic pulses. Ni-enrichment in the TIC indicates that sulfide saturation was attained prior to the sequestration of major proportions of Ni by olivine, possibly at a deeper chamber in the magmatic system. The addition of crustal S from the Thomson Formation sulfidic country rocks is thought to have been the principal process which drove the early attainment of sulfide saturation in the magmas. The CGO Intrusion carried the greater abundance of sulfide liquid, but both the CGO and FGO intrusive sequences represent the accumulation of dense silicate minerals and sulfide liquid in a conduit system. The genetic processes that were operative in the formation of Ni-Cu-PGE mineralization in the Tamarack Intrusive Complex appear to be typical of conduit-style magmatic sulfide deposits associated with large continental basaltic provinces.

  7. The midcontinent rift system

    E-print Network

    Van Schmus, W. R.; Hinze, W. J.

    1985-01-01

    : mostly Keweenawan detritus (Oronto Group and equivalent) anorthosite - Early volcanic flows, - _ sills, dikes_ _ .... - - - - - Prevoleanie sediments ca. 1100 1100 to 1200 OZ Pre... arguments for the existence of two main igenous sequences in the Duluth Complex. The earlier phase involved extensive and efficient melt and crystal segregation to produce rock types with very contrasting mineralogies, such as peridotite, anorthosite...

  8. Rift Valley fever vaccines

    PubMed Central

    Ikegami, Tetsuro; Makino, Shinji

    2009-01-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a tripartite RNA genome. RVFV is transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis or ocular diseases, whereas ruminants experience abortions during outbreak. Effective vaccination of both humans and ruminants is the best approach to control Rift Valley fever. This article summarizes the development of inactivated RVFV vaccine, live attenuated vaccine, and other new generation vaccines. PMID:19837291

  9. Fault Orientations at Obliquely Rifted Margins: Where? When? Why?

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    Present-day knowledge of rifted margin formation is largely based on 2D seismic lines, 2D conceptual models, and corroborated by 2D numerical experiments. However, the 2D assumption that the extension direction is perpendicular to the rift trend is often invalid. In fact, worldwide more than 75% of all rifted margin segments have been formed under significant obliquity exceeding 20° (angle measured between extension direction and rift trend normal): During formation of the Atlantic Ocean, oblique rifting dominated at the sheared margins of South Africa and Patagonia, the Equatorial Atlantic margins, separation of Greenland and North America, and it played a major role in the protracted rift history of the North East Atlantic. Outside the Atlantic Ocean, oblique rifting occurred during the split between East and West Gondwana, the separation of India and Australia, India and Madagascar, Australia and Antarctica, as well as Arabia and Africa. It is presently observed in the Gulf of California, the Aegean and in the East African Rift. Despite its significance, the degree to which oblique lithospheric extension affects first-order rift and passive margin properties like surface stress pattern, fault azimuths, and basin geometry, is still not entirely clear. This contribution provides insight in crustal stress patterns and fault orientations by applying a 3D numerical rift model to oblique extensional settings. The presented forward experiments cover the whole spectrum of oblique extension (i.e. rift-orthogonal extension, low obliquity, high obliquity, strike-slip deformation) from initial deformation to breakup. They are conducted using an elasto-visco-plastic finite element model and involve crustal and mantle layers accounting for self-consistent necking of the lithosphere. Results are thoroughly compared to previous analogue experiments, which yields many similarities but also distinct differences for late rift stages and for high obliquity. Even though the model setup is very simple (horizontally layered, no inherited faults, constant extension velocity and direction), its evolution exhibits a variety of fault orientations that are solely caused by the three-dimensionality of oblique rift systems. Allowing new insights on fault patterns of the proximal and distal margins, the model shows that individual fault populations are activated in a characteristic multi-phase evolution driven by lateral density variations of the evolving rift system. Moreover, the model depicts strain partitioning between rift-parallel and rift-perpendicular far-field velocity components that are accommodated by strike-slip faults in the rift centre and normal faults at the rift sides, respectively. Oblique extensional systems worldwide differ in many aspects and clearly one suit of models cannot explain all rifted margin structures at the same time. However, the distinct pattern of fault populations discussed in this study and their sequence of activity compares very well to previous studies of the Gulf of Aden and holds implications for many other rifted margins worldwide. Note that in nature, the resulting stress and fault pattern will also be affected by inherited heterogeneities, surface processes, as well as melting and dyke dynamics.

  10. Continental rifting - Progress and outlook

    NASA Technical Reports Server (NTRS)

    Baker, B. H.; Morgan, P.

    1981-01-01

    It is noted that in spite of the flood of new data on continental rifts in the last 15 years, there is little consensus about the basic mechanisms and causes of rifting. The remarkable similarities in rift cross sections (shown in a figure), are considered to suggest that the anomalous lithospheric structure of rifts is more dependent on lithosphere properties than the mode of rifting. It is thought that there is a spectrum of rifting processes for which two fundamental mechanisms can be postulated: an active mechanism, whereby thermal energy is transmitted into the lithosphere from the underlying asthenosphere, and a passive mechanism by which mechanical energy is transmitted laterally through the lithosphere as a consequence of plate interactions at a distance. In order to permit the concept of the two fundamentally different mechanisms to be tested, a tentative classification is proposed that divides rifts into two basic categories: active rifting and passive rifting. Here, the magnitude of active rifting will depend on the rate at which lithosphere moves over the thermal source, with rifts being restricted to stationary or slow-moving plates.

  11. Depositional and tectonic framework of the rift basins of Lake Baikal from multichannel seismic data

    USGS Publications Warehouse

    Hutchinson, D.R.; Golmshtok, A.J.; Zonenshain, L.P.; Moore, T.C.; Scholz, C.A.; Klitgord, Kim D.

    1992-01-01

    Recent multichannel seismic reflection data from Lake Baikal, located in a large, active, continental rift in central Asia, image three major stratigraphic units totalling 3.5 to 7.5 km thick in four subbasins. A major change in rift deposition and faulting between the oldest and middle-rift units probably corresponds to the change from slow to fast rifting. A brief comparison of the basins of Lake Baikal with those of the East African rift system highlights differences in structural style that can be explained by differences in age and evolution of the surrounding basement rocks. -from Authors

  12. Geochemistry of hypabyssal rocks of the Midcontinent Rift system in Minnesota, and implications for a Keweenawan magmatic ``family tree``

    SciTech Connect

    Jerde, E.A. [Oak Ridge National Lab., TN (United States)

    1998-11-01

    The hypabyssal rocks associated with the Keweenawan (1.1 Ga) Midcontinent Rift along the Minnesota shore of Lake Superior are a distinct suite within the rock associations of this region. These rocks are found predominantly as ophitic diabase dikes and sills of various sizes, ranging from a few meters to several hundred meters across. Chilled margins were sampled and analyzed by neutron activation analysis and microprobe fused-bead techniques for bulk chemistry. Mineral compositions were obtained by electron microprobe. Variations in composition were found that are consistent with fractionation. Major-element modeling of fractionation indicates that the majority of the hypabyssal rocks formed at moderate pressures ({approximately}6 kbar), although a number show evidence of fractionation at near-surface levels, and some deeper ({approximately}10 kbar). Resorption features seen in plagioclase phenocrysts are evidence for magmatic evolution at varying levels in the crust. It is possible to relate the varied hypabyssal rocks to a single primary parent through polybaric fractionation. This parent is a high-Al primitive olivine tholeiite--a magma composition common among the volcanic rocks associated with the Midcontinent Rift. Trace-element modeling with this same parent composition yields results consistent with the formation of some hypabyssal rocks as products of a periodically tapped and replenished, constantly fractionating magma chamber, which can decouple the behavior of major and trace elements.

  13. Stratigraphic Modelling of Continental Rifting

    NASA Astrophysics Data System (ADS)

    Mondy, Luke; Duclaux, Guillaume; Salles, Tristan; Thomas, Charmaine; Rey, Patrice

    2013-04-01

    Interlinks between deformation and sedimentation have long been recognised as an important factor in the evolution of continental rifts and basins development. However, determining the relative impact of tectonic and climatic forcing on the dynamics of these systems remains a major challenge. This problem in part derives from a lack of modelling tools capable of simulated high detailed surface processes within a large scale (spatially and temporally) tectonic setting. To overcome this issue an innovative framework has been designed using two existing numerical forward modelling codes: Underworld, capable of simulating 3D self-consistent tectonic and thermal lithospheric processes, and Tellus, a forward stratigraphic and geomorphic modelling framework dedicated to simulating highly detailed surface dynamics. The coupling framework enables Tellus to use Underworld outputs as internal and boundary conditions, thereby simulating the stratigraphic and geomorphic evolution of a realistic, active tectonic setting. The resulting models can provide high-resolution data on the stratigraphic record, grain-size variations, sediment provenance, fluvial hydrometric, and landscape evolution. Here we illustrate a one-way coupling method between active tectonics and surface processes in an example of 3D oblique rifting. Our coupled model enables us to visualise the distribution of sediment sources and sinks, and their evolution through time. From this we can extract and analyse at each simulation timestep the stratigraphic record anywhere within the model domain. We find that even from a generic oblique rift model, complex fluvial-deltaic and basin filling dynamics emerge. By isolating the tectonic activity from landscape dynamics with this one-way coupling, we are able to investigate the influence of changes in climate or geomorphic parameters on the sedimentary and landscape record. These impacts can be quantified in part via model post-processing to derive both instantaneous and cumulative erosion/sedimentation.

  14. Continental Rifting in the Western Ross Sea

    NASA Astrophysics Data System (ADS)

    Davey, F. J.; Cande, S. C.; Stock, J. M.

    2014-12-01

    The Ross Sea forms the north western end of the West Antarctic Rift system, a major continental rift that lies across the western part of Antarctica, and results from rifting during the break-up of Gondwana starting some 180 m.y. ago. In the Ross Sea region, extension comprised a regional thinning associated with the break-up of New Zealand and Australia from Antarctica, and a more focussed extension during the Cenozoic. The last episode of extension, largely from 46 Ma - 25 Ma, formed the Victoria Land Basin (VLB) in the southwest, the Northern Basin (offset from the VLB) in north western Ross Sea and the Adare Basin in the deep ocean to the north. Marine magnetic anomalies associated with the seafloor spreading that formed the Adare Basin, extend continuously onto the continental shelf of the Northern Basin, suggesting that the basin is underlain by oceanic crust, consistent with high gravity anomalies across the continental shelf edge. No seismic data exist for the deeper crust of Northern Basin. The amplitude and gradient of gravity anomalies across the basin limit the depth, density contrast and thickness of the dense body underlying it and are consistent with oceanic crust with steep margins at a depth of about 8 - 10 km. The VLB in contrast shows an extensional thinning of the continental crust. The three basins thus show seafloor spreading in the north, continental rifting at the continental margin, and continental thinning in the south. The pole of rotation for the extension lies to the south of the VLB so the rate of extension increases to the north. In addition, the azimuth of the axis of spreading changes relative to the extension direction, presumably as it followed pre-existing zones of weakness in the Antarctic lithosphere. This leads to a much larger degree of strike slip motion in the Northern Basin rifting that may be a significant factor in the development there of narrow rifting of the continental lithosphere.

  15. Forensic investigation of rift-to-drift transitions and volcanic rifted margins birth

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Hertogen, J.

    2008-12-01

    Volcanic rifted margins (VRM) reflect excess magmatism generated during the rift-to-drift transition of a continental rift system evolving into a Mid-Ocean Ridge (MOR). As a result many VRM (e.g. NAIP and CAMP) are recognized as Large Igneous Provinces (LIP). The prominent structural characteristics of VRM are Continental Flood Basalts, High-Velocity Lower Crustal bodies (HVLC) and Seaward Dipping Reflector Sequences (SDRS). However, the causes of these anomalously high eruption rates and magma volumes are presently poorly understood. Controversial issue opinions are based on two competing hypotheses: 1) Mantle plume related mechanisms where the excess magmatism results from elevated mantle temperatures; and 2) Rift induced small scale convection processes causing temperature anomalies and enhancing the mantle rock flux through the melt window. Largely because of difficulties to sample oceanic basement at VRM -due to thick sediment covers- the composition of rift-to-drift transition magmas is generally poorly constrained. We reviewed the geodynamic histories and magma compositions from well known VRM (e.g. NE Australia, E USA, Madagascar) and compared these data with own geochemical data from different NE Atlantic tectono-magmatic VRM zones. These comparisons point to a consistent, general VRM formation model. This model has to explain the primary observation, that geological long periods of extension have been reported -in all investigated VRM areas- prior to the breakup. Extensional far field stress looks to be the main geodynamic cause for continental breakup. Small scale convection during the late phase of a continental rift system is probably the key process generating excess magmatism in LIP related to rift-to-drift transitions.

  16. DCE Bio Detection System Final Report

    SciTech Connect

    Lind, Michael A.; Batishko, Charles R.; Morgen, Gerald P.; Owsley, Stanley L.; Dunham, Glen C.; Warner, Marvin G.; Willett, Jesse A.

    2007-12-01

    The DCE (DNA Capture Element) Bio-Detection System (Biohound) was conceived, designed, built and tested by PNNL under a MIPR for the US Air Force under the technical direction of Dr. Johnathan Kiel and his team at Brooks City Base in San Antonio Texas. The project was directed toward building a measurement device to take advantage of a unique aptamer based assay developed by the Air Force for detecting biological agents. The assay uses narrow band quantum dots fluorophores, high efficiency fluorescence quenchers, magnetic micro-beads beads and selected aptamers to perform high specificity, high sensitivity detection of targeted biological materials in minutes. This final report summarizes and documents the final configuration of the system delivered to the Air Force in December 2008

  17. Vapor Power Systems MAE 4263 Final Exam

    E-print Network

    Vapor Power Systems MAE 4263 Final Exam Wednesday, May 5, 2004 Prof. P.M. Moretti Key Instructions, then think, then write! 1. What is the dewpoint of the exhaust of your car, if the gasoline consists2 so that the mole fraction of water vapor is yH2 O = 9 9 + 8 + 47 = 0:14063 pH2 O = 0:14063 14

  18. Martian canyons and African rifts: Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    1978-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valled Marineris were used to infer an earlier, less eroded reconstruction of the major roughs. The individual canyons were then compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. The overall pattern of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scarps are straighter for longer than on earth. This is probably due to the difference in tectonic histories of the two planets: the complex history of the earth and the resulting complicated basement structures influence the development of new rifts. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  19. Martian canyons and African rifts - Structural comparisons and implications

    NASA Technical Reports Server (NTRS)

    Frey, H.

    1979-01-01

    The resistant parts of the canyon walls of the Martian rift complex Valles Marineris have been used to infer an earlier, less eroded reconstruction of the major troughs. The individual canyons are compared with individual rifts of East Africa. When measured in units of planetary radius, Martian canyons show a distribution of lengths nearly identical to those in Africa, both for individual rifts and for compound rift systems. A common mechanism which scales with planetary radius is suggested. Martian canyons are significantly wider than African rifts. This is consistent with the longstanding idea that rift width is related to crustal thickness: most evidence favors a crust on Mars at least 50% thicker than that of Africa. The overall patterns of the rift systems of Africa and Mars are quite different in that the African systems are composed of numerous small faults with highly variable trend. On Mars the trends are less variable; individual scraps are straighter for longer than on earth. The basement and lithosphere of Mars are inferred to be simple, reflecting a relatively inactive tectonic history prior to the formation of the canyonlands.

  20. GPS Surveys to Detect Rift-Related Active Faulting in the Transantarctic Mountains, Antarctica

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Wilson, T. J.; Willis, M. J.

    2006-12-01

    The Transantarctic Mountains Deformation (TAMDEF) network is a relatively dense GPS array deployed on bedrock throughout the Victoria Land region of Antarctica. The network covers nearly a quarter million square kilometers, extending approximately 675 km N-S and 350 km E-W. It spans the uplifted Transantarctic Mountains rift-flank block, the bounding border fault zone, and the offshore Terror Rift, where there is evidence of neotectonic activity. Embedded within this network are three local arrays of GPS sites established around known or suspected Quaternary faults to test for modern displacements. Two of these fault arrays, located in Hidden Valley and on Doorly Ridge, surround mapped faults within the Transantarctic Mountains Front, the border fault zone separating the uplifted Transantarctic Mountains rift flank from the offshore rift basin. The first of these arrays consists of five monuments surrounding a NE-SW trending fault showing left-lateral strike separation and cutting a hanging valley moraine, indicating Quaternary age faulting. The second fault array is located on Doorly ridge, and consists of two monuments placed on either side of a series of NE-SW trending faults showing normal sense displacements of Jurassic and older crystalline rocks. Finally, six monuments surrounding a NE-SW trending fault with normal displacement of bedrock units in Beacon Valley, located in the interior of the Transantarctic Mountain range, comprise the third fault array. These local fault arrays were first surveyed during the 1996-1997 austral summer field season, and all arrays have been surveyed a minimum of three times, including the most recent survey of all networks during the 2005-2006 field season. Analysis of GPS velocities indicates how strain is being accommodated within the interior of the mountain range, helping to resolve questions regarding the degree of modern tectonic activity in the West Antarctic Rift System.

  1. Rift-flank uplift and rift dynamics, a new perspective

    Microsoft Academic Search

    D. Koehn; T. Sachau; K. Aanyu

    2009-01-01

    In this contribution we present a new model of passive rifting and related rift-flank uplift. The numerical model is based on a lattice spring network coupled with a viscous particle model so that we can simulate visco-elasto-plastic behaviour with dynamic fault development. In our model we show that rift flank uplift can be achieved best when extension in the crust

  2. Gas isotopic signatures (He, C, and Ar) in the Lake Kivu region (western branch of the East African rift system): Geodynamic and volcanological implications

    NASA Astrophysics Data System (ADS)

    Tedesco, D.; Tassi, F.; Vaselli, O.; Poreda, R. J.; Darrah, T.; Cuoco, E.; Yalire, M. M.

    2010-01-01

    On 17 January 2002, the city of Goma was partly destroyed by two of the several lava flows erupted from a roughly N-S oriented fracture system opened along the southern flank of Mount Nyiragongo (Democratic Republic of Congo), in the western branch of the East African rift system. A humanitarian and scientific response was promptly organized by international, governmental, and nongovernmental agencies coordinated by the United Nations and the European Union. Among the different scientific projects undertaken to study the mechanisms triggering this and possible future eruptions, we focused on the isotopic (He, C, and Ar) analysis of the magmatic-hydrothermal and cold gas discharges related to the Nyiragongo volcanic system, the Kivu and Virunga region. The studied area includes the Nyiragongo volcano, its surroundings, and peripheral areas inside and outside the rift. They have been subdivided into seven regions characterized by distinct 3He/4He (expressed as R/Rair) ratios and/or ?13C-CO2 values. The Nyiragongo summit crater fumaroles, whose R/Rair and ?13C-CO2 values are up to 8.73 and from -3.5‰ to -4.0‰ VPDB, respectively, show a clear mantle, mid-ocean ridge basalt (MORB)-like contribution. Similar mantle-like He isotopic values (6.5-8.3 R/Rair) are also found in CO2-rich gas emanations (mazukus) along the northern shoreline of Lake Kivu main basin, whereas the 13?C-CO2 values range from -5.3‰ to -6.8‰ VPDB. The mantle influence progressively decreases in (1) dissolved gases of Lake Kivu (2.6-5.5 R/Rair) and (2) the distal gas discharges within and outside the two sides of the rift (from 0.1 to 1.7 R/Rair). Similarly, ?13C-CO2 ratios of the peripheral gas emissions are lighter (from -5.9‰ to -11.6‰ VPDB) than those of the crater fumaroles. Therefore, the spatial distribution of He and C signatures in the Lake Kivu region is mainly produced by mixing of mantle-related (e.g., Nyiragongo crater fumaroles and/or mazukus gases) and crustal-related (e.g., gas discharges in the Archean craton) fluids. The CO2/3He ratio (up to 10 × 1010) is 1 order of magnitude higher than those found in MORB, and it is due to the increasing solubility of CO2 in the foiditic magma feeding the Nyiragongo volcano. However, the exceptionally high 40Ar*/4He ratio (up to 8.7) of the Nyiragongo crater fumaroles may be related to the difference between He and Ar solubility in the magmatic source. The results of the present investigation suggest that in this area the uprising of mantle-originated f luids seems strongly controlled by regional tectonics in relation to the geodynamic assessment of the rift. These fluids are mainly localized in a relatively small zone between Lake Kivu and Nyiragongo volcano, with important implications in terms of volcanic activity.

  3. Seismic tomography of continental rifts revisited: from relative to absolute heterogeneities

    NASA Astrophysics Data System (ADS)

    Achauer, Ulrich; Masson, Frédéric

    2002-11-01

    Tomographic images for four major continental rift zones, namely the southern Rhine Graben (SRG, Germany/France), the Gregory rift (Kenya) which is the central part of the East African rift system, the Rio Grande rift (RGR) in the United States and the Lake Baikal rift zone (LBR) in Russia have been revisited by calculating and comparing absolute velocity models. The four rifts exhibit strong structural differences in the uppermost mantle down to more than 300-km depth, suggesting major differences in their geodynamic evolution albeit their similarity in age and similar surface expression. The comparative analysis suggests that tomographic images of rift zones can be used to characterize continental rifts, once the corrections to obtain absolute velocities have been carried out. Our results suggest that while the Kenya and the Rio Grande rift may be considered active with large upwelling plumes being the main controlling factor in the evolution, the southern Rhine Graben and the Lake Baikal rift are more likely passive rifts, where complex regional stress fields and inherited structures play the governing role in the evolution.

  4. A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy.

    PubMed

    Tran, A; Ippoliti, C; Balenghien, T; Conte, A; Gely, M; Calistri, P; Goffredo, M; Baldet, T; Chevalier, V

    2013-11-01

    Rift Valley fever (RVF) is a severe mosquito-borne disease that is caused by a Phlebovirus (Bunyaviridae) and affects domestic ruminants and humans. Recently, its distribution widened, threatening Europe. The probability of the introduction and large-scale spread of Rift Valley fever virus (RVFV) in Europe is low, but localized RVF outbreaks may occur in areas where populations of ruminants and potential vectors are present. In this study, we assumed the introduction of the virus into Italy and focused on the risk of vector-borne transmission of RVFV to three main European potential hosts (cattle, sheep and goats). Five main potential mosquito vectors belonging to the Culex and Aedes genera that are present in Italy were identified in a literature review. We first modelled the geographical distribution of these five species based on expert knowledge and using land cover as a proxy of mosquito presence. The mosquito distribution maps were compared with field mosquito collections from Italy to validate the model. Next, the risk of RVFV transmission was modelled using a multicriteria evaluation (MCE) approach, integrating expert knowledge and the results of a literature review on host sensitivity and vector competence, feeding behaviour and abundance. A sensitivity analysis was performed to assess the robustness of the results with respect to expert choices. The resulting maps include (i) five maps of the vector distribution, (ii) a map of suitable areas for vector-borne transmission of RVFV and (iii) a map of the risk of RVFV vector-borne transmission to sensitive hosts given a viral introduction. Good agreement was found between the modelled presence probability and the observed presence or absence of each vector species. The resulting RVF risk map highlighted strong spatial heterogeneity and could be used to target surveillance. In conclusion, the geographical information system (GIS)-based MCE served as a valuable framework and a flexible tool for mapping the areas at risk of a pathogen that is currently absent from a region. PMID:24589097

  5. Rift Valley fever

    Microsoft Academic Search

    G. H. Gerdes

    2004-01-01

    Summary Rift Valley fever (RVF) is an arthropod-borne viral disease of ruminants, camels and humans. It is also a significant zoonosis which may be encountered as an uncomplicated influenza-like illness, but may also present as a haemorrhagic disease with liver involvement; there may also be ocular or neurological lesions. In animals, RVF may be inapparent in non-pregnant adults, but outbreaks

  6. Evolution, distribution, and characteristics of rifting in southern Ethiopia

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; Corti, Giacomo; Sani, Federico; Bonini, Marco; Balestrieri, Maria-Laura; Molin, Paola; Willingshofer, Ernst; Sokoutis, Dimitrios; Cloetingh, Sierd

    2014-04-01

    Southern Ethiopia is a key region to understand the evolution of the East African rift system, since it is the area of interaction between the main Ethiopian rift (MER) and the Kenyan rift. However, geological data constraining rift evolution in this remote area are still relatively sparse. In this study the timing, distribution, and style of rifting in southern Ethiopia are constrained by new structural, geochronological, and geomorphological data. The border faults in the area are roughly parallel to preexisting basement fabrics and are progressively more oblique with respect to the regional Nubia-Somalia motion proceeding southward. Kinematic indicators along these faults are mainly dip slip, pointing to a progressive rotation of the computed direction of extension toward the south. Radiocarbon data indicate post 30 ka faulting at both western and eastern margins of the MER with limited axial deformation. Similarly, geomorphological data suggest recent fault activity along the western margins of the basins composing the Gofa Province and in the Chew Bahir basin. This supports that interaction between the MER and the Kenyan rift in southern Ethiopia occurs in a 200 km wide zone of ongoing deformation. Fault-related exhumation at ~10-12 Ma in the Gofa Province, as constrained by new apatite fission track data, occurred later than the ~20 Ma basement exhumation of the Chew Bahir basin, thus pointing to a northward propagation of the Kenyan rift-related extension in the area.

  7. Active transsection faults in rift transfer zones: evidence for complex stress fields and implications for crustal fragmentation processes in the western branch of the East African Rift

    Microsoft Academic Search

    D. Koehn; M. Lindenfeld; G. Rümpker; K. Aanyu; S. Haines; C. W. Passchier; T. Sachau

    2010-01-01

    New structural and seismologic evidence from the Rwenzori Mountains, Uganda, indicate that continental rifts can capture and\\u000a rotate fragments of the lithosphere while rift segments interact, in a manner analogous to the interaction of small-scale\\u000a fractures. The Rwenzori Mountains are a basement block within the western branch of the East African Rift System that is located\\u000a at the intersection of

  8. Facilities management system (FMS). Final report

    SciTech Connect

    NONE

    1992-04-01

    The remainder of this report provides a detailed, final status of Andersen Consulting`s participation in the FMS systems implementation project and offers suggestions for continued FMS improvements. The report presents the following topics of discussion: (1) Summary and Status of Work (2) Recommendations for Continued Success (3) Contract Deliverables and Client Satisfaction The Summary and Status of Work section presents a detailed, final status of the FMS project at the termination of Andersen`s full-time participation. This section discusses the status of each FMS sub-system and of the Andersen major project deliverables. The Recommendations section offers suggestions for continued FMS success. The topics discussed include recommendations for each of the following areas: (1) End User and Business Operations (2) AISD; Development and Computer Operations (3) Software (4) Technical Platform (5) Control Procedures The Contract Deliverables and Client Satisfaction section discusses feedback received from Johnson Controls management and FMS system users. The report also addresses Andersen`s observations from the feedback.

  9. New K-Ar age determinations of Kilimanjaro volcano in the North Tanzanian diverging rift, East Africa.

    E-print Network

    Paris-Sud XI, Université de

    insu-00304458,version1-23Jul2008 #12;1. Introduction The Eastern Branch of the East African Rift System local stress field. Keywords: Kilimanjaro, East African Rift, K-Ar dating, volcanic history, Tanzania 2New K-Ar age determinations of Kilimanjaro volcano in the North Tanzanian diverging rift, East

  10. Asthenospheric flow and origin of volcanism in the Baikal Rift area Sergei Lebedev a,, Thomas Meier b

    E-print Network

    Utrecht, Universiteit

    ,9] and for high-volume volcanism such as in the East African rift system [10,11]. A more common kindAsthenospheric flow and origin of volcanism in the Baikal Rift area Sergei Lebedev a,, Thomas Meier King Abstract The origin of low-volume, hotspot-like volcanism often observed in continental rift areas

  11. Baikal Rift Zone: Intracratonic rifting without Moho uplift

    Microsoft Academic Search

    H. Thybo; C. Nielsen; M. Jensen; V. D. Suvorov; E. Perchuc

    2006-01-01

    The Baikal Rift Zone is located in Siberia at the centre of the world's largest continental area. It provies a unique opportunity for studying the processes of ongoing continental rifting in an area with thick cratonic crust. The BEST project (Baikal Explosion Seismic Transects) aims at providing seismic velocity models of the crust and uppermost mantle across and along the

  12. Jade data transcription system final report

    SciTech Connect

    Eaton, R.; Iskra, M.; McLean, J. (TRW, Inc., Redondo Beach, CA (USA). Advanced Technology Div.)

    1990-07-25

    The OWL sensor, which is used in conjunction with the Jade program, generates a tremendous volume of data during normal field operations. Historically, the dissemination of this data to analysts has been slowed by difficulties in transcribing to a widely readable media and format. TRW, under contract from Lawrence Livermore National Laboratory, was tasked by Defense Advanced Research Projects Agency (DARPA) with finding an improved method of transcribing the Jade experimental data. During the period of performance on this contract TRW helped to guide the development and operation of an improved transcription system. This final report summarizes the work performed, and provides a written record of information which may be helpful to future users of the newly developed data transcription system. 4 figs.

  13. Unique device identification system. Final rule.

    PubMed

    2013-09-24

    The Food and Drug Administration (FDA) is issuing a final rule to establish a system to adequately identify devices through distribution and use. This rule requires the label of medical devices to include a unique device identifier (UDI), except where the rule provides for an exception or alternative placement. The labeler must submit product information concerning devices to FDA's Global Unique Device Identification Database (GUDID), unless subject to an exception or alternative. The system established by this rule requires the label and device package of each medical device to include a UDI and requires that each UDI be provided in a plain-text version and in a form that uses automatic identification and data capture (AIDC) technology. The UDI will be required to be directly marked on the device itself if the device is intended to be used more than once and intended to be reprocessed before each use. PMID:24066364

  14. Next-generation Geotectonic Data Analysis: Using pyGPlates to quantify Rift Obliquity during Supercontinent Dispersal

    NASA Astrophysics Data System (ADS)

    Butterworth, Nathaniel; Brune, Sascha; Williams, Simon; Müller, Dietmar

    2015-04-01

    Fragmentation of a supercontinent by rifting is an integral part of plate tectonics, yet the dynamics that govern the success or failure of individual rift systems are still unclear. Recently, analytical and thermo-mechanical modelling has suggested that obliquely activated rifts are mechanically favoured over orthogonal rift systems. Hence, where two rift zones compete, the more oblique rift proceeds to break-up while the less oblique one stalls and becomes an aulacogen. This implies that the orientation and shape of individual rift systems affects the relative motion of Earth's continents during supercontinent break-up. We test this hypothesis using the latest global plate tectonic reconstructions for the past 200 million years. The analysis is performed using pyGPlates, a recently developed Python library that allows script-based access to the plate reconstruction software GPlates. We quantify rift obliquity, extension velocity and their temporal evolution for all small-scale rift segments that constituted a major rift system during the last 200 million years. Boundaries between continental and oceanic crust (COBs) mark the end of rifting and the beginning of sea floor spreading, which is why we use a global set of updated COBs in order to pinpoint continental break-up and as a proxy for the local trend of former rift systems. Analysing the entire length of all rift systems during the last 200 My, we find a mean obliquity of ~40° (measured as the angle between extension direction and local rift trend normal), with a standard deviation of 25°. More than 75% of all rift segments exceeded an obliquity of 20° highlighting the fact that oblique rifting is the rule, not the exception. More specifically, East and West Gondwana split along the East African coast with a mean obliquity of 45°. While rifting of the central and southern South Atlantic segment involved a low obliquity of 10°, the Equatorial Atlantic opened under a high angle of 60°. The separation of Australia and Antarctica involved a protracted extension history involving two stages with ~25° prior to 100 Ma followed by more than 50° obliquity. In many cases both obliquity and extension velocity increase during rift evolution (e.g. South Atlantic, India-Antarctica, Australia-Antarctica, Gulf of California), suggesting an underlying geodynamic correlation. Considering that most conceptual models of rift evolution assume 2D deformation, we here quantify the degree to which 2D rift models are globally applicable, and highlight the importance of 3D models where oblique rifting is the dominant mode of deformation.

  15. Final Report - Regulatory Considerations for Adaptive Systems

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Lynch, Jonathan; Bharadwaj, Raj

    2013-01-01

    This report documents the findings of a preliminary research study into new approaches to the software design assurance of adaptive systems. We suggest a methodology to overcome the software validation and verification difficulties posed by the underlying assumption of non-adaptive software in the requirementsbased- testing verification methods in RTCA/DO-178B and C. An analysis of the relevant RTCA/DO-178B and C objectives is presented showing the reasons for the difficulties that arise in showing satisfaction of the objectives and suggested additional means by which they could be satisfied. We suggest that the software design assurance problem for adaptive systems is principally one of developing correct and complete high level requirements and system level constraints that define the necessary system functional and safety properties to assure the safe use of adaptive systems. We show how analytical techniques such as model based design, mathematical modeling and formal or formal-like methods can be used to both validate the high level functional and safety requirements, establish necessary constraints and provide the verification evidence for the satisfaction of requirements and constraints that supplements conventional testing. Finally the report identifies the follow-on research topics needed to implement this methodology.

  16. TDRS satellite over African Rift Valley, Kenya, Africa

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This post deploy view of a TDRS satellite shows a segment of the African Rift Valley near Lake Baringo, Kenya, Africa (3.0S, 36.0E). The African Rift Valley system is a geologic fault having its origins in southern Turkey, through the near east forming the bed of the Jordan River, Gulf of Aqaba, the Red Sea and down through east Africa. The line of lakes and valleys of east Africa are the result of the faulting activity.

  17. K?lauea's Upper East Rift Zone: A Rift Zone in Name Only

    NASA Astrophysics Data System (ADS)

    Swanson, D. A.; Fiske, R. S.

    2014-12-01

    K?lauea's upper east rift zone (UERZ) extends ~3 km southeastward from the summit caldera to the Koáe fault system, where it starts to bend into the main part of the ENE-trending rift zone. The UERZ lacks a distinct positive gravity anomaly (though coverage is poor) and any evidence of deformation associated with magma intrusion. All ground ruptures—and the Puhimau thermal area—trend ENE, crossing the UERZ at a high angle. Lua Manu, Puhimau, and Kóokóolau craters are the only surface evidence of the UERZ. Yet the UERZ is seismically active, and all magma entering the rest of the rift zone must pass through it. Rather than a rift zone in the traditional sense, with abundant dikes and ground ruptures along its trend, the UERZ cuts across the ENE structural grain and serves only as a connector to the rest of the rift zone, not a locus of dike formation along its length. The UERZ probably developed as a consequence of gradual SSE migration of the active part of the main east rift zone at the trailing edge of the south flank. During migration, a connection to the summit reservoir complex must be maintained; otherwise, the middle and lower east rift zone would starve and magma from K?lauea's summit reservoir complex would have to go elsewhere. Over time, the UERZ lengthened and rotated clockwise to maintain the connection. Near the caldera, the UERZ may be widening westward as the summit reservoir complex migrates southward from the center of the caldera to its present position. A layered stress regime results in the upper 2-3 km mimicking the pervasive ENE structural grain of most of K?lauea, whereas the underlying magmatic part of the UERZ responds to stresses related to SE magma transport. Magma intruding upward from the connector forms a dike that follows the ENE structural grain, as during the 1974 eruption. The active east rift zone has been migrating since ~100 ka, estimated by applying a 700-y extension rate across the Koa'e fault system to the ~6.5 km of migration, and presumably the UERZ connector has been developing during this time.

  18. Final design development of silicone southwall glazing system. Final report

    SciTech Connect

    Vanwert, B.; Currin, C.; Mingenbach, W.

    1983-11-01

    This cooperative solar project was undertaken to design, fabricate and test a southwall glazing system based on a flexible silicone glazing. In addition, preliminary cost, performance and market development guidelines were established. A specific silicone glazing was selected and was shown to have a solar transmission of 88%, tensile strength of greater than 50 Newtons/cm, estimated durability greater than 20 years, and to meet an industry standard flame test. A unique and simple film tensioning device was developed by the Architects Taos under contract to maintain the flexible glazing in a taunt condition over its long life without wind flutter and resulting potential damage. The selected silicone glazing was evaluated by using two southwall glazing systems: on passive test chambers and on a concrete block wall of a Dow Corning warehouse building. The evaluation was conducted at Dow Corning Midland, Michigan facilities (43.4/sup 0/N latitude) from April 1981 to March 1982. The data obtained showed that the silicone southwall glazing system using a selective adsorber on a vented concrete block wall provided over 750 MJ/m/sup 2/ of thermal energy during a winter heating system. One experiment demonstrated the performance and ease of installation of the tensioning device developed by this project. Preliminary cost estimates indicate the southwall glazing system with a selective adsorber could be installed for about $55/m/sup 2/ ($5/ft/sup 2/); with a flat black (non-selective adsorber) the installed cost is estimated to be about $40//m/sup 2/ ($4/ft/sup 2/). Prorated over a minimum ten year life, with a capital recovery factor of 0.20, this system would be cost competitive for fuel displacement with $8.00/GJ ($8.44/M Btu) heating energy when vertical wall insolation exceeds 2.5 GJ/m/sup 2/ (0.22 x 10/sup 6/ Btu/ft/sup 2/) for a heating season.

  19. A model for Iapetan rifting of Laurentia based on Neoproterozoic dikes and related rocks

    USGS Publications Warehouse

    Burton, William C.; Southworth, Scott

    2010-01-01

    Geologic evidence of the Neoproterozoic rifting of Laurentia during breakup of Rodinia is recorded in basement massifs of the cratonic margin by dike swarms, volcanic and plutonic rocks, and rift-related clastic sedimentary sequences. The spatial and temporal distribution of these geologic features varies both within and between the massifs but preserves evidence concerning the timing and nature of rifting. The most salient features include: (1) a rift-related magmatic event recorded in the French Broad massif and the southern and central Shenandoah massif that is distinctly older than that recorded in the northern Shenandoah massif and northward; (2) felsic volcanic centers at the north ends of both French Broad and Shenandoah massifs accompanied by dike swarms; (3) differences in volume between massifs of cover-sequence volcanic rocks and rift-related clastic rocks; and (4) WNW orientation of the Grenville dike swarm in contrast to the predominately NE orientation of other Neoproterozoic dikes. Previously proposed rifting mechanisms to explain these features include rift-transform and plume–triple-junction systems. The rift-transform system best explains features 1, 2, and 3, listed here, and we propose that it represents the dominant rifting mechanism for most of the Laurentian margin. To explain feature 4, as well as magmatic ages and geochemical trends in the Northern Appalachians, we propose that a plume–triple-junction system evolved into the rift-transform system. A ca. 600 Ma mantle plume centered east of the Sutton Mountains generated the radial dike swarm of the Adirondack massif and the Grenville dike swarm, and a collocated triple junction generated the northern part of the rift-transform system. An eastern branch of this system produced the Long Range dike swarm in Newfoundland, and a subsequent western branch produced the ca. 554 Ma Tibbit Hill volcanics and the ca. 550 Ma rift-related magmatism of Newfoundland.

  20. Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Schmincke, H.-U.

    2002-08-01

    We studied mechanisms of structural destabilization of ocean island flanks by considering the linkage between volcano construction and volcano destruction, exemplified by the composite Teno shield volcano on Tenerife (Canary Islands). During growth, Tenerife episodically experienced giant landslides, genetically associated with rifting and preferentially located between two arms of a three-armed rift system. The deeply eroded late Miocene Teno massif allows insights into the rifting processes, the failure mechanisms and related structures. The semicircular geometry of palaeo-scarps and fracture systems, breccia deposits and the local dike swarm reconfigurations delineate two clear landslide scarp regions. Following an earlier collapse of the older Los Gigantes Formation to the north, the rocks around the scarp became fractured and intruded by dikes. Substantial lava infill and enduring dike emplacement increased the load on the weak scarp and forced the flank to creep again, finally resulting in the collapse of the younger Carrizales Formation. Once more, the changing stress field caused deformation of the nearby rocks, a fracture belt formed around the scarp and dikes intruded into new (concentric) directions. The outline, size and direction of the second failed flank of Teno very much resembles the first collapse. We suggest structural clues concerning mechanisms of recurrent volcano flank failure, verifying the concept that volcano flanks that have failed are prone to collapse again with similar dimensions.

  1. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    USGS Publications Warehouse

    ten Brink, U.S.; Taylor, M.H.

    2002-01-01

    The Cenozoic rift system of Baikal, located in the interior of the largest continental mass on Earth, is thought to represent a potential analog of the early stage of breakup of supercontinents. We present a detailed P wave velocity structure of the crust and sediments beneath the Central Basin, the deepest basin in the Baikal rift system. The structure is characterized by a Moho depth of 39-42.5 km; an 8-km-thick, laterally continuous high-velocity (7.05-7.4 km/s) lower crust, normal upper mantle velocity (8 km/s), a sedimentary section reaching maximum depths of 9 km, and a gradual increase of sediment velocity with depth. We interpret the high-velocity lower crust to be part of the Siberian Platform that was not thinned or altered significantly during rifting. In comparison to published results from the Siberian Platform, Moho under the basin is elevated by <3 km. On the basis of these results we propose that the basin was formed by upper crustal extension, possibly reactivating structures in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system, the precursor to the formation of the North Atlantic Ocean. We also propose that the Central Baikal rift evolved by episodic fault propagation and basin enlargement, rather than by two-stage rift evolution as is commonly assumed.

  2. Fault evolution in the Potiguar rift termination, Equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2014-10-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify fault architecture and to analyse the evolution of the eastern Equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The Potiguar rift is a Neocomian structure located in the intersection of the Equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide and ~40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en-echelon system of NW- to EW-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by post-rift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the Equatorial margin in the Cretaceous and occurs not only at the rift termination, but also as isolated structures away from the main rift.

  3. Rift zone reorganization through flank instability in ocean island volcanoes: an example from Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Walter, T. R.; Troll, V. R.; Cailleau, B.; Belousov, A.; Schmincke, H.-U.; Amelung, F.; Bogaard, P.

    2005-04-01

    The relationship between rift zones and flank instability in ocean island volcanoes is often inferred but rarely documented. Our field data, aerial image analysis, and 40Ar/39Ar chronology from Anaga basaltic shield volcano on Tenerife, Canary Islands, support a rift zone—flank instability relationship. A single rift zone dominated the early stage of the Anaga edifice (~6-4.5 Ma). Destabilization of the northern sector led to partial seaward collapse at about ~4.5 Ma, resulting in a giant landslide. The remnant highly fractured northern flank is part of the destabilized sector. A curved rift zone developed within and around this unstable sector between 4.5 and 3.5 Ma. Induced by the dilatation of the curved rift, a further rift-arm developed to the south, generating a three-armed rift system. This evolutionary sequence is supported by elastic dislocation models that illustrate how a curved rift zone accelerates flank instability on one side of a rift, and facilitates dike intrusions on the opposite side. Our study demonstrates a feedback relationship between flank instability and intrusive development, a scenario probably common in ocean island volcanoes. We therefore propose that ocean island rift zones represent geologically unsteady structures that migrate and reorganize in response to volcano flank instability.

  4. Multi-Point Combustion System: Final Report

    NASA Technical Reports Server (NTRS)

    Goeke, Jerry; Pack, Spencer; Zink, Gregory; Ryon, Jason

    2014-01-01

    A low-NOx emission combustor concept has been developed for NASA's Environmentally Responsible Aircraft (ERA) program to meet N+2 emissions goals for a 70,000 lb thrust engine application. These goals include 75 percent reduction of LTO NOx from CAEP6 standards without increasing CO, UHC, or smoke from that of current state of the art. An additional key factor in this work is to improve lean combustion stability over that of previous work performed on similar technology in the early 2000s. The purpose of this paper is to present the final report for the NASA contract. This work included the design, analysis, and test of a multi-point combustion system. All design work was based on the results of Computational Fluid Dynamics modeling with the end results tested on a medium pressure combustion rig at the UC and a medium pressure combustion rig at GRC. The theories behind the designs, results of analysis, and experimental test data will be discussed in this report. The combustion system consists of five radially staged rows of injectors, where ten small scale injectors are used in place of a single traditional nozzle. Major accomplishments of the current work include the design of a Multipoint Lean Direct Injection (MLDI) array and associated air blast and pilot fuel injectors, which is expected to meet or exceed the goal of a 75 percent reduction in LTO NOx from CAEP6 standards. This design incorporates a reduced number of injectors over previous multipoint designs, simplified and lightweight components, and a very compact combustor section. Additional outcomes of the program are validation that the design of these combustion systems can be aided by the use of Computational Fluid Dynamics to predict and reduce emissions. Furthermore, the staging of fuel through the individually controlled radially staged injector rows successfully demonstrated improved low power operability as well as improvements in emissions over previous multipoint designs. Additional comparison between Jet- A fuel and a hydrotreated biofuel is made to determine viability of the technology for use with alternative fuels. Finally, the operability of the array and associated nozzles proved to be very stable without requiring additional active or passive control systems. A number of publications have been publish

  5. Rifts in the tectonic structure of East Antarctica

    NASA Astrophysics Data System (ADS)

    Golynsky, Dmitry; Golynsky, Alexander

    2010-05-01

    It was established that riftogenic and/or large linear tectonic structures in East Antarctica are distributed with a steady regularity with average distance between them about 650 km. All these structures (13) represent objects of undoubted scientific and practical interest and might be considered as immediate objects for conducting integrated geological and geophysical investigations. Analysis and generalization of the RADARSAT satellite system imagery and radio-echosounding survey data collected in the eastern part of Princess Elizabeth Land allow us to distinguish spatial boundaries of previously unknown continental rift system that was proposed to name Gaussberg (Golynsky & Golynsky, 2007). The rift is about 500 km long, and taking into consideration its western continuation in the form of short (fragmented) faults, may exceed 700 km. The elevation difference between depressions and horsts reaches 3 km. The rift structure consists of two sub-parallel depressions separated by segmented horst-like rises (escarpments). Deep depressions within the rift reach more than 800 m bsl near the West Ice Shelf and within the central graben occupied by the Phillipi Glacier. The width of the Gaussberg Rift system varies from 60 km in the south-western area to 150 km near the West Ice Shelf. The Gaussberg rift is considered as a part of the Lambert rift system, which has a complicated structure clearly recognized over both the continent and also its margin. The Gaussberg rift probably exploited a weak zone between the Proterozoic mobile belt and the Archaean Vestfold-Rauer cratonic block. Supposedly it initiated at the turn of Jurassic and Permian epoch or a little bit earlier as in case of the Lambert rift where the Permian graben formation with coal-bearing deposits predetermined the subsequent development of submeridional rift zone. The Gaussberg and also the Scott rift developed in the Queen Marie Land, may be considered as continuations of the Mahanadi Valley rift and coal-bearing basins in the Rajmahal Hills of East India, respectively, in the Antarctic continent. These structures can also be considered as major drainage feeders of terrigenous sediments onto the Davis Sea continental margin. Preliminary analysis of the RADARSAT imagery shows that the Denman Glacier occupies a linear fault system (> 400 km), whereas southward continuation of the Scott Glacier area represents a continuous system of horsts that bound a wide central depression.The Scott Glacier together with graben-like structures hidden by ice and with the graben of Lake Vostok may represent an extensive rift system developed as a result of large-scale pre-breakup extension of Gondwana. We speculate that the Gaussberg rift may be considered as a hypothetical accommodation zone of the Carboniferous-Permian intracontinental rift along 4000 km of the west Australian and east Indian margins, which filled with thick Permian-Triassic sediment including alluvial coals.

  6. Results of GPS Observations Across the Kenya Rift Valley

    NASA Astrophysics Data System (ADS)

    Hunja, W.; Kasahara, M.; Takahashi, H.; Kamamia, M.; Tanaka, H.; Miyazaki, K.; Suzuki, A.; Tanaka, K.

    2001-12-01

    Since Feb 1998, GPS measurements have been carried out across the Kenya Rift Valley for the purpose of studying crustal dynamics associated with continental rifting within the East African Rift System. A network comprising of seven stations was established and has been observed periodically for the last three years. Originally, two of the stations were intended to be on a continuously operating mode, while the rest would be occupied on a temporal basis, at least twice to three times per year. However due to unmitigated operational problems there are some large data gaps for the two continuously operating stations. Past geophysical methods have confirmed the East African Rift to be an active divergent boundary. In this study, we present results from the ongoing GPS measurements carried out to determine the current spreading rate across the Kenya Rift. Three main baselines, Malindi-Eldoret, Malindi-KISM and Eldoret-KISM and a combination of other shorter lines were analyzed using ionosphere free double differenced data. Our results indicate some significant length changes of between 2-10mm/yr aligned_@in an East-West direction in two of the baselines. Despite the intermittent data outages, the results obtained so far presents a good pointer to the current dynamics within the Kenya Rift System.

  7. Surface analogue outcrops of deep fractured basement reservoirs in extensional geological settings. Examples within active rift system (Uganda) and proximal passive margin (Morocco).

    NASA Astrophysics Data System (ADS)

    Walter, Bastien; Géraud, Yves; Diraison, Marc

    2014-05-01

    The important role of extensive brittle faults and related structures in the development of reservoirs has already been demonstrated, notably in initially low-porosity rocks such as basement rocks. Large varieties of deep-seated resources (e.g. water, hydrocarbons, geothermal energy) are recognized in fractured basement reservoirs. Brittle faults and fracture networks can develop sufficient volumes to allow storage and transfer of large amounts of fluids. Development of hydraulic model with dual-porosity implies the structural and petrophysical characterization of the basement. Drain porosity is located within the larger fault zones, which are the main fluid transfer channels. The storage porosity corresponds both to the matrix porosity and to the volume produced by the different fractures networks (e.g. tectonic, primary), which affect the whole reservoir rocks. Multi-scale genetic and geometric relationships between these deformation features support different orders of structural domains in a reservoir, from several tens of kilometers to few tens of meters. In subsurface, 3D seismic data in basement can be sufficient to characterize the largest first order of structural domains and bounding fault zones (thickness, main orientation, internal architecture, …). However, lower order structural blocks and fracture networks are harder to define. The only available data are 1D borehole electric imaging and are used to characterize the lowest order. Analog outcrop studies of basement rocks fill up this resolution gap and help the understanding of brittle deformation, definition of reservoir geometries and acquirement of reservoir properties. These geological outcrop studies give information about structural blocks of second and third order, getting close to the field scale. This allows to understand relationships between brittle structures geometry and factors controlling their development, such as the structural inheritance or the lithology (e.g. schistosity, primary structures). Two field cases, located in Morocco and Uganda, allow us to investigate basement complexes at different stages of an extension process and give us analog geological data of similar fractured basement reservoirs. Border faults and associated fracture networks of an active rifting system propagated in Proterozoic basement rocks are analyzed in the Albertine rift system in Uganda. Brittle structures developed along a proximal passive margin of the Atlantic domain are analyzed in Proterozoic basements rocks in Western Anti-Atlas in Morocco.

  8. Extension across the Laptev Sea continental rifts constrained by gravity modeling

    NASA Astrophysics Data System (ADS)

    Mazur, S.; Campbell, S.; Green, C.; Bouatmani, R.

    2015-03-01

    The Laptev Shelf is the area where the Gakkel Ridge, an active oceanic spreading axis, approaches a continental edge, causing a specific structural style dominated by extensive rift structures. From the latest Cretaceous to the Pliocene, extension exerted on the Laptev Shelf created there several deep subsided rifts and high-standing basement blocks. To understand syn-rift basin geometries and sediment supply relationships across the Laptev Shelf, accurate extension estimates are essential. Therefore, we used 2-D gravity modeling and 3-D gravity inversion to constrain the amount of crustal stretching across the North America-Eurasia plate boundary in the Laptev Shelf. The latest Cretaceous-Cenozoic extension in that area is partitioned among two rift zones, the Laptev Rift System and the New Siberian Rift. These rifts were both overprinted on the Eurasian margin that had been stretched by 190-250 km before the Late Cretaceous. While the Laptev Rift System, connected to the Gakkel Ridge, reveals increasing extension toward the shelf edge (190-380 km), the New Siberian Rift is characterized by approximately uniform stretching along strike (110-125 km). The architecture of the Laptev Rift System shows that the finite extension of about 500 km is sufficient to entirely eliminate crystalline continental crust. In the most stretched rift segment, continental mantle is exhumed at the base of the Late Mesozoic basement. The example of the Laptev Rift System shows that extension driven by divergent plate movement is a sufficient cause to produce almost complete continental breakup without an increased heat input from the asthenospheric mantle.

  9. Age constraints for the present fault configuration in the Imperial Valley, California: Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1990-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  10. The continent-ocean transition of the rifted South China continental margin

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo

    2014-05-01

    The continent to ocean transition (COT) architecture of rifted margins represents a key aspect in the study of the variability of different rifting systems and thus, to understand lithospheric extension and final break-up processes. We used 2250 km of reprocessed multichannel seismic data along 4 regional lines and magnetic data acquired across the NW South China continental margin to investigate a previously poorly defined COT. The along-strike structure of the NW subbasin of the South China Sea presents different amounts of extension allowing the study of conjugate pairs of continental margins and their COT in a relative small region. The time-migrated seismic sections allow us to interpreted clear continental and oceanic domains from differences in internal reflectivity, faulting style, fault-block geometry, the seismic character of the top of the basement, the geometry of sediment deposits, and Moho reflections. The continental domain is characterized by arrays of normal faults and associated tilted blocks overlaid by syn-rift sedimentary units. The Moho is imaged as sub-horizontal reflections that define a fairly continuous boundary typically at 8-10 s TWT. Estimation of the thickness of the continental crust using 6 km/s average velocity indicates a ~22 km-thick continental crust under the uppermost slope thinning abruptly to ~9-6 km under the lower slope. The oceanic crust has a comparatively highly reflective top of basement, little-faulting, not discernible syn-tectonic strata, and fairly constant thickness (4-8 km) over tens of km distance defined by usually clear Moho reflections. The COT can be very well defined based on MSC images and occurs across a ~5-10 km narrow zone. Rifting in the NW subbasin resulted in asymmetric conjugate margins. Arrays of tilted fault blocks covered by abundant syn-rift sediment are displayed across the northwestern South China continental margin, whereas the conjugate Macclesfield Bank margin shows abrupt thinning and little faulting. Seismic profiles also show a clear change in the tectonic structure of the margin from NE to SW. On the two NE-most lines, the abrupt crustal thinning occurs over a 20-40 km wide area resulting in final breakup. To the SW, the area of stretched continental crust extends over a comparatively broader ~100-110 km segment of tilted fault-blocks. We interpret that the 3D structural variability and the narrow COT is related to the lateral NE to SW propagation of a spreading center. The early spreading center propagation in the NE suddenly stopped continental stretching during ongoing rifting, causing an abrupt break-up and a narrow COT. Later arrival of spreading center to the SW resulted in a comparatively broader segment of highly stretched continental crust. We suggest that the final structure of the northwest South China continental margin have been governed by the 3D interaction between rifting and oceanic spreading center propagation to a degree larger than by the local lithospheric structure during rifting.

  11. Structural and stratigraphic evolution of the Iberia and Newfoundland hyper-extended rifted margins: A quantitative modeling approach

    NASA Astrophysics Data System (ADS)

    Mohn, Geoffroy; Karner, Garry; Manatschal, Gianreto; Johnson, Christopher

    2014-05-01

    Rifted margins develop through polyphased extensional events leading eventually to break-up. Of particular interests are the stratigraphic and subsidence evolutions of these polyphased rift events. In this contribution, we investigate the spatial and temporal evolution of the Iberia-Newfoundland rift system from the Permian, post-orogenic development of European crust to early Cretaceous break-up on the continental lithosphere between Iberia and Newfoundland. Based on seismic reflection and refraction and ODP drill data combined with a kinematic and flexural model for the deformation of the lithosphere, we explore the general tectono-stratigraphic evolution of Iberia-Newfoundland rift system and its relationship to repeated lithospheric thinning events. Our results emphasize the kinematic and isostatic interactions engendered by the distinct distribution, amplitude and depth-partitioning of extensional events that allowed the formation of the Iberia-Newfoundland rift system. The initial stratigraphic record is controlled by Permian, post-orogenic topographic erosion, lithospheric thinning, and its subsequent thermal re-equilibration that lead to a regional subsidence characterized by non-marine to marine sedimentation. During late Triassic and early Jurassic time, extensional deformation was characterized by broadly-distributed depth uniform thinning related to minor thinning of the crust. From the Late Jurassic onward, extensional deformation was progressively localized and associated with depth-dependent thinning that finally lead to the formation of hyper-extended domains pre-dating the Late Aptian/Early Albian break-up of the Iberia-Newfoundland continental lithosphere. In particular, extension was diachronous, propagating in severity from south to north - while the southern Iberian margin was undergoing significant thinning in the Tithonian-early Berriasian, the northern margin (i.e., Galicia Bank) had yet to start rifting. Break-up is likewise diachronous. These hyper-extended domains were characterized by regional subsidence with little attendant normal faulting. To match the distribution and the magnitude of the subsidence, we required significant depth-dependent middle/lower crustal and mantle thinning achieved via major decoupling horizons within the ductile middle crust. We believe that these results may provide crucial insights into the subsidence history of hyper-extended rifted margins as well as on the mechanisms of continental lithosphere extension and thinning.

  12. What role does crustal heterogeneity play on continental break-up; the interplay of a foldbelt, rift system and ocean basin in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Paton, Douglas; Mortimer, Estelle; Hodgson, Neil

    2015-04-01

    Although extensively studied, two key questions remain unanswered regarding the evolution of the southern South Atlantic. Firstly, where is the Cape Foldbelt (CFB) in offshore South Africa? The CFB is part of the broader Gonwanian Orogeny that prior to South Atlantic rifting continued into the Ventana Foldbelt of Argentina but to date its location in the offshore part of South Africa remains enigmatic. Secondly, the conjugate rift basin to South Africa is the Colorado Basin in Argentina but why does it trend east-west despite its perpendicular orientation to the Atlantic spreading ridge? Current plate models and structural understands cannot explain these fundamental questions. We use newly acquired deep reflection seismic data in the Orange Basin, South Africa, to develop a new structural model for the southern South Atlantic. We characterise the geometry of the Cape Foldbelt onshore and for the first time correlate it into the offshore. We show that it has a north-south trend immediately to the north of the Cape Peninsula but then has a syntaxis (Garies syntaxis) that results in a change to an east-west orientation. This forms the missing jigsaw piece of the Atlantic reconstruction as this is directly beside the restored Colorado Basin. When considered within the pre-break up structural configuration our observations imply that prior to the main phase of Atlantic rifting in the Mezosoic there was significant variation in crustal geometry incorporating the Orange Basin of South Africa, the Colorado Basin and the Gariep Belt of Namibia. These faults were active during Gondwana rifting, but the Colorado rift failed resulting in the present day location of the South Atlantic. Not only do our results improve our understanding of the evolution of the South Atlantic ocean, they highlight the importance of differentiating between early rift evolution and strain localisation during the subsequent rift phase prior to seafloor spreading.

  13. The Eagle and East Eagle sulfide ore-bearing mafic-ultramafic intrusions in the Midcontinent Rift System, upper Michigan: Geochronology and petrologic evolution

    NASA Astrophysics Data System (ADS)

    Ding, Xin; Li, Chusi; Ripley, Edward M.; Rossell, Dean; Kamo, Sandra

    2010-03-01

    The Eagle and East Eagle intrusions are small, subvertical dike-like mafic-ultramafic bodies that cut Proterozoic sedimentary strata in the Baraga Basin in northern Michigan. The Eagle intrusion hosts a newly discovered magmatic Ni-Cu-PGE deposit. The nearby East Eagle intrusion also contains sulfide mineralization, but the extent of this mineralization has yet to be determined by further drilling. Both intrusions contain olivine-bearing rocks such as feldspathic peridotite, melatroctolite, and olivine melagabbro. Sulfide accumulations range from disseminated at both Eagle and East Eagle to semimassive and massive at Eagle. U-Pb baddeleyite dating gives a crystallization age of 1107.2 ± 5.7 Ma for the Eagle intrusion, coeval with eruption of picritic basalts at the base of the volcanic succession in the Midcontinent Rift System (MRS). The Fo contents of olivine cores in the Eagle and East Eagle intrusions vary between 75 and 85 mol %, higher than those of olivine in larger layered intrusions in the MRS such as the Duluth Complex. The FeO/MgO ratios and Al2O3 contents of the parental magmas for the Eagle and East Eagle intrusions inferred from olivine and spinel compositions are similar to those of picritic basalts in the base of the MRS volcanic succession. These petrochemical data suggest that the Eagle and East Eagle intrusions are the intrusive equivalents of high-MgO basalts that erupted in the early stages of continental magmatism associated with the development of the rift. Variations in mineral compositions and incompatible trace element ratios suggest that at least three major pulses of magmas were involved in the formation of low-sulfide rocks in the Eagle intrusion. Lower Fo contents of olivine associated with semimassive sulfides as compared to that of olivine in low-sulfide rocks suggest that the magma associated with the semimassive sulfide was more fractionated than the parental magmas of the low-sulfide rocks in the Eagle intrusion. Accumulation of suspended olivine crystals and sulfide droplets from ascending magmas as they passed through wide parts of the conduits at Eagle and East Eagle played a critical role in the genesis of olivine-rich rocks and sulfide ores in the intrusions. The Eagle Ni-Cu-PGE deposit typifies the conduit-style of magmatic sulfide deposition that is associated with continental basaltic magmatism.

  14. Arc abandonment as a cause for passive continental rifting: Comparison of the Jurassic Mexican Borderland rift and the Cenozoic Rio Grande rift

    NASA Astrophysics Data System (ADS)

    Lawton, Timothy F.; McMillan, Nancy J.

    1999-09-01

    Two rift systems, one of late Mesozoic age and the other of Tertiary age, in the southern Cordillera of North America formed along the inner flanks of former continental arcs. Both rift systems were initiated when arc magmatism abandoned its former inboard extent as a result of retrograde motion of the subducted slab. Similarities in stratigraphy and geochemistry preceding and during crustal extension of each rift system suggest a three-phase magmatic-depositional model for the formation of passive continental rifts above a foundering subducted slab. Continental arc magmatism associated with normal subduction weakens the continental crust during phase 1. Phase 2 involves incipient retrograde motion of the slab, or slab foundering, initiating mantle return into the wedge-shaped volume between slab and overlying continental lithosphere. This causes crustal extension, lithospheric melting, and deposition of conglomerate in nascent rift basins stratigraphically above and adjacent to the extinguished arc. Caldera-related silicic volcanism defines an ignimbrite flare-up, accompanied by extrusion of lithosphere-derived basalt. Mafic volcanism, block faulting, and extensional sedimentary-basin formation continue after the end of silicic volcanism. During phase 3, decompression partial melting of convecting asthenosphere creates basalts with ocean-island chemical affinities intercalated with alluvial or marine sedimentary rocks in extensional basins.

  15. Depositional model and stratigraphic architecture of rift climax Gilbert-type fan deltas (Gulf of Corinth, Greece)

    NASA Astrophysics Data System (ADS)

    Rohais, Sébastien; Eschard, Rémi; Guillocheau, François

    2008-10-01

    Facies, depositional model and stratigraphic architecture of Pleistocene giant Gilbert-type fan deltas are presented, based on outcrop data from the Derveni-Akrata region along the southern coast of the Gulf of Corinth, Greece. The common tripartite consisting of topset, foreset and bottomset [Gilbert, G.K., 1885. The topographic features of lake shores: Washington, D.C., United States Geol. Survey, 5th Annual Report, 69-123.] has been identified, as well as the most distal environment consisting of turbidites, and is organised in a repetitive pattern of four main systems tracts showing a clear facies and volumetric partitioning. The first systems tract (ST1) is characterised by the lack of topset beds and the development of a by-pass surface instead, thick foresets and bottomset beds, and thick well-developed turbiditic systems. This systems tract (ST1) is organised in an overall progradational pattern. The second systems tract (ST2) is characterised by a thin topset and almost no foreset equivalent. This systems tract is not always well-preserved and is organised in an overall retrograding trend with a landward shift in the position of the offlap break. The offshore is characterised by massive sandy turbidites. The third systems tract (ST3) is characterised by small-scale deltas prograding above the staked topsets of the giant Gilbert-type fan delta. Those small Gilbert-type fan deltas are generally organised in a pure progradation evolving to an aggradational-progradational pattern. In the distal setting of those small Gilbert-type fan deltas, almost no deposits are preserved on the remaining topography of the previous Gilbert-type fan delta. The fourth systems tract (ST4) is characterised by continuous vertically aggrading topsets that laterally pass into aggrading and prograding foresets. Bottomsets and distal turbiditic systems are starved. This fourth systems tract (ST4) is organised in an overall aggrading trend. These giant Gilbert-type fan deltas correspond to the Middle Group of the Corinth Rift infill and their stratigraphic development was strongly influenced by evolving rift structure. They record the migration of the depocenter from the rift shoulder to the rift axis in four main sequences from ca. 1.5 to 0.7 Ma, related to the migration of fault activity. It is worth noting that the maximum paleobathymetry was recorded during the final stage of the progradation of the Middle Group, suggesting that the rift climax was diachronous at the scale of the entire basin. The rapid (< 1 Ma) structural and sedimentological evolution, the migration of fault activity as well as the youth of the Corinth Rift, are probably exceptional factors allowing the characterisation of such diachronism.

  16. The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption

    NASA Astrophysics Data System (ADS)

    Klügel, Andreas; Hoernle, Kaj A.; Schmincke, Hans-Ulrich; White, James D. L.

    2000-03-01

    The 1949 rift zone eruption along the Cumbre Vieja ridge on La Palma involved three eruptive centers, 3 km spaced apart, and was chemically and mineralogically zoned. Duraznero crater erupted tephrite for 14 days and shut down upon the opening of Llano del Banco, a fissure that issued first tephrite and, after 3 days, basanite. Hoyo Negro crater opened 4 days later and erupted basanite, tephrite, and phonotephrite, while Llano del Banco continued to issue basanite. The eruption ended with Duraznero erupting basanite with abundant crustal and mantle xenoliths. The tephrites and basanites from Duraznero and Llano del Banco show narrow compositional ranges and define a bimodal suite. Each batch ascended and evolved separately without significant intermixing, as did the Hoyo Negro basanite, which formed at lower degrees of melting. The magmas fractionated clinopyroxene +olivine±kaersutite±Ti-magnetite at 600-800 MPa and possibly 800-1100 MPa. Abundant reversely zoned phenocrysts reflect mixing with evolved melts at mantle depths. Probably as early as 1936, Hoyo Negro basanite entered the deep rift system at 200-350 MPa. Some shallower pockets of this basanite evolved to phonotephrite through differentiation and assimilation of wall rock. A few months prior to eruption, a mixing event in the mantle may have triggered the final ascent of the magmas. Most of the erupted tephrite and basanite ascended from mantle depths within hours to days without prolonged storage in crustal reservoirs. The Cumbre Vieja rift zone differs from the rift zones of Kilauea volcano (Hawaii) in lacking a summit caldera or a summit reservoir feeding the rift system and in being smaller and less active with most of the rift magma solidifying between eruptions.

  17. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for Rift Valley fever virus.

    PubMed

    Tchouassi, David P; Sang, Rosemary; Sole, Catherine L; Bastos, Armanda D S; Teal, Peter E A; Borgemeister, Christian; Torto, Baldwyn

    2013-01-01

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO(2)-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO(2) alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620

  18. Common Host-Derived Chemicals Increase Catches of Disease-Transmitting Mosquitoes and Can Improve Early Warning Systems for Rift Valley Fever Virus

    PubMed Central

    Tchouassi, David P.; Sang, Rosemary; Sole, Catherine L.; Bastos, Armanda D. S.; Teal, Peter E. A.; Borgemeister, Christian; Torto, Baldwyn

    2013-01-01

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health and veterinary problem in sub-Saharan Africa. Surveillance to monitor mosquito populations during the inter-epidemic period (IEP) and viral activity in these vectors is critical to informing public health decisions for early warning and control of the disease. Using a combination of field bioassays, electrophysiological and chemical analyses we demonstrated that skin-derived aldehydes (heptanal, octanal, nonanal, decanal) common to RVF virus (RVFV) hosts including sheep, cow, donkey, goat and human serve as potent attractants for RVFV mosquito vectors. Furthermore, a blend formulated from the four aldehydes and combined with CO2-baited CDC trap without a light bulb doubled to tripled trap captures compared to control traps baited with CO2 alone. Our results reveal that (a) because of the commonality of the host chemical signature required for attraction, the host-vector interaction appears to favor the mosquito vector allowing it to find and opportunistically feed on a wide range of mammalian hosts of the disease, and (b) the sensitivity, specificity and superiority of this trapping system offers the potential for its wider use in surveillance programs for RVFV mosquito vectors especially during the IEP. PMID:23326620

  19. Low-temperature evolution of the Morondava rift basin shoulder in western Madagascar: An apatite fission track study

    NASA Astrophysics Data System (ADS)

    Giese, JöRg; Seward, Diane; Schreurs, Guido

    2012-04-01

    The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ˜330 and ˜215 Ma and ˜260 and ˜95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ˜90-100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.

  20. Timing of the volcanism of the southern Kivu province: implications for the evolution of the western branch of the East African Rift system

    NASA Astrophysics Data System (ADS)

    Pasteels, P.; Villeneuve, M.; De Paepe, P.; Klerkx, J.

    1989-09-01

    New K—Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural eruptions; from 7.5 to 5 Ma alkali basalts and their differentiates are mainly erupted in localized rifts. A culmination of activity occurs between 6.0 and 5.5 Ma ago. Pleistocene alkalic volcanism is restricted to localized areas. The transition from tholeiites to alkali-basaltic volcanism dated around 7.5 Ma would correspond to a major rifting phase which corresponds with the initiation of Lake Kivu Basin formation. The distribution of tholeiitic rocks in the central part of the rift, and predominantly alkalic rocks along the western active border fault, strengthens the idea that the former are associated with tension, the latter with vertical, possibly also strike-slip movements. Volcanism in the Western Rift is restricted to areas where tension occurs in a zone which is located between two zones of strike-slip. In the South Kivu area normal faults intersect strike-slip faults and this seems to have determined the location of volcanic activity. Magma formation is considered to be related with shear heating combined with adiabatic decompression in ascending diapirs. This implies heating at the lithosphere-asthenosphere boundary as a result of extension. Generation of tholeiitic or alkalic magmas is connected with the variable ascent velocity of mantle diapirs or with variable shear heating along the shear zone. Changes in both magma composition and intensity of volcanic activity with time are considered to be related to major phases of rift evolution.

  1. Rift flank segmentation, basin initiation and propagation: a neotectonic example from Lake Baikal

    USGS Publications Warehouse

    Agar, S.M.; Klitgord, Kim D.

    1995-01-01

    New surficial data (field, Landsat TM and topography) define morpho-tectonic domains and rift flank segmentation in the Ol'khon region of the Central Baikal rift. Deformation, drainage and depositional patterns indicate a change in the locus of active extension that may relate to a recent (rift with concomitant shifts in depocentres. Within the hanging wall of the new western border fault, distinct segments control the location of drainage paths and syn-rift deposits. Morphology, sediment thicknesses and fault scarp amplitude indicate that a segmented rift flank graben has propagated southwards along the rift flank and is still actively fragmenting. These surficial data are used to constrain a model for the time-dependent topographic variations during progressive subsidence along a rift flank, involving the transfer of footwall units to hanging-wall domains. Rapid changes in border fault footwall relief in this model are associated with change in the active border fault location with widespread mass-wasting. The model shows that time-dependent histories need to be integrated with flexural uplift models for active normal faults. The active, syn-rift depositional systems of the Ol'khon region provide a valuable analogue for the early evolution of continental margins and the structural controls on syn-rift hydrocarbon sources and reservoirs.

  2. Seismic images of magmatic rifting beneath the western branch of the East African rift

    NASA Astrophysics Data System (ADS)

    Jakovlev, Andrey; Rümpker, Georg; Schmeling, Harro; Koulakov, Ivan; Lindenfeld, Michael; Wallner, Herbert

    2013-11-01

    We have performed a tomographic study using a joint data set that includes local and teleseismic events, recorded by a temporary network in the western branch of the East African rift system. From the travel time residuals, we derive a three-dimensional model of seismic P-wave velocity anomalies for the crust and upper mantle down to a depth of 80 km. Particular attention is paid to the verification of the inversion results by various resolution tests. The results show that the eastern rift shoulder is characterized by relatively high seismic velocities. Lower velocities are obtained beneath the entire length of the rift valley and the Rwenzori Mountains. A prominent feature is observed north-east of the mountain range: here we detected a vertically oriented, cylindrical low-velocity anomaly with maximum amplitudes in the middle crust and the upper mantle lithosphere. We suggest that this anomaly indicates reservoirs of molten material related to the ongoing rifting process within this segment of the rift. Just above this anomaly, at depths between 5 and 16 km, earthquake swarms exist. The observed reduction in P-wave velocity is used to provide constraints on the possible melt content and temperature anomaly in the uppermost mantle. The observed 3-5% P-velocity decrease can be explained by melt fraction up to 2%-3.3% or alternatively by a temperature increase of at least 248 to 376 K and even higher-temperature anomalies are possible if lower ambient temperatures in the reference mantle are assumed. Probably, the two effects act in combination.

  3. Contribution of the FUTUREVOLC project to the study of segmented lateral dyke growth in the 2014 rifting event at Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmundsson, Freysteinn; Hooper, Andrew; Hreinsdóttir, Sigrún; Vogfjörd, Kristín S.; Ófeigsson, Benedikt; Rafn Heimisson, Elías; Dumont, Stéphanie; Parks, Michelle; Spaans, Karsten; Guðmundsson, Gunnar B.; Drouin, Vincent; Árnadóttir, Thóra; Jónsdóttir, Kristín; Gudmundsson, Magnús T.; Samsonov, Sergey; Brandsdóttir, Bryndís; White, Robert S.; Ágústsdóttir, Thorbjörg; Björnsson, Helgi; Bean, Christopher J.

    2015-04-01

    The FUTUREVOLC project (a 26-partner project funded by FP7 Environment Programme of the European Commission, addressing topic "Long-term monitoring experiment in geologically active regions of Europe prone to natural hazards: the Supersite concept) set aims to (i) establish an innovative volcano monitoring system and strategy, (ii) develop new methods for near real-time integration of multi-parametric datasets, (iii) apply a seamless transdisciplinary approach to further scientific understanding of magmatic processes, and (iv) to improve delivery, quality and timeliness of transdisciplinary information from monitoring scientists to civil protection. The project duration is 1 October 2012 - 31 March 2016. Unrest and volcanic activity since August 2014 at one of the focus areas of the project in Iceland, at the Bárðarbunga volcanic system, near the middle of the project duration, has offered unique opportunities for this project. On 16 August 2014 an intense seismic swarm started in Bárðarbunga, the beginning of a major volcano-tectonic rifting event forming over 45 km long dyke extending from the caldera to Holuhraun lava field outside the northern margin of Vatnajökull. A large basaltic, effusive fissure eruption began in Holuhraun on 31 August which had by January formed a lava field with a volume in excess of one cubic kilometre. We document how the FUTUREVOLC project has contributed to the study and response to the subsurface dyke formation, through increased seismic and geodetic coverage and joint interpreation of the data. The dyke intrusion in the Bárðarbunga volcanic system, grew laterally for over 45 km at a variable rate, with an influence of topography on the direction of propagation. Barriers at the ends of each segment were overcome by the build-up of pressure in the dyke end; then a new segment formed and dyke lengthening temporarily peaked. The dyke evolution, which occurred over 14 days, was revealed by propagating seismicity, ground deformation mapped by Global Positioning System (GPS), interferometric analysis of satellite radar images (InSAR), and graben formation. The strike of the dyke segments varies from an initially radial direction away from the Bárðarbunga caldera, towards alignment with that expected from regional stress at the distal end. A model minimizing the combined strain and gravitational potential energy explains the propagation path. Dyke opening and seismicity focused at the most distal segment at any given time, and were simultaneous with a magma source deflation and slow collapse at the Bárðarbunga caldera, accompanied by a series of M>5 earthquakes. Joint interpretation of seismic and geodetic data was reported daily to the civil protection of Iceland and used for effective response and mitigation of the associated hazards. The response to, and studies of, the Bárðarbunga rifting event and eruptions have thus contributed to the achievements of all the objectives of the FUTUREVOLC project.

  4. Using of Remote Sensing Techniques for Monitoring the Earthquakes Activities Along the Northern Part of the Syrian Rift System (LEFT-LATERAL),SYRIA

    NASA Astrophysics Data System (ADS)

    Dalati, Moutaz

    Earthquake mitigation can be achieved with a better knowledge of a region's infra-and substructures. High resolution Remote Sensing data can play a significant role to implement Geological mapping and it is essential to learn about the tectonic setting of a region. It is an effective method to identify active faults from different sources of Remote Sensing and compare the capability of some satellite sensors in active faults survey. In this paper, it was discussed a few digital image processing approaches to be used for enhancement and feature extraction related to faults. Those methods include band ratio, filtering and texture statistics . The experimental results show that multi-spectral images have great potentials in large scale active faults investigation. It has also got satisfied results when deal with invisible faults. Active Faults have distinct features in satellite images. Usually, there are obvious straight lines, circular structures and other distinct patterns along the faults locations. Remotely Sensed imagery Landsat ETM and SPOT XS /PAN are often used in active faults mapping. Moderate and high resolution satellite images are the best choice, because in low resolution images, the faults features may not be visible in most cases. The area under study is located Northwest of Syria that is part of one of the very active deformation belt on the Earth today. This area and the western part of Syria are located along the great rift system (Left-Lateral or African- Syrian Rift System). Those areas are tectonically active and caused a lot of seismically events. The AL-Ghab graben complex is situated within this wide area of Cenozoic deformation. The system formed, initially, as a result of the break up of the Arabian plate from the African plate. This action indicates that these sites are active and in a continual movement. In addition to that, the statistic analysis of Thematic Mapper data and the features from a digital elevation model ( DEM )produced from SAR interferometer show the existence of spectral structures at the same sites. The Arabian plate is moving in a NNW direction, whereas the African plate is moving to the North. The left-lateral motion along the Dead Sea Fault accommodates the difference in movement rate between both plates. The analysis of TM Space Imagery and digital image processing of spectral data show that the lineaments along AL-Ghab graben maybe considered as linear conjunctions accompanied with complex fracturing system. This complex is affected by distance stresses accompanied with intensive forces. The digital image processing of Radar imagery showing the presence of active and fresh faulting zones along the AL-Ghab graben. TM and SAR-DTM data, also showed a gradual color tone and interruptions of linear-ellipse shapes which reflecting the presence of discontinuity contours along the fault zone extension .This features refer to abundance of surface morphological features indicate to Fresh Faults. Recent faulting is expressed as freshly exposed soil within the colluvial apron visible by its light tone color. These indicators had been proved by field checks. Furthermore, the statistic digital analysis of the spectral data show that there are distribution of spectral plumes. These plumes are decreasing in intensity and color contrast from the center of the site to the direction of its edges.

  5. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    SciTech Connect

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  6. Effects of initial weakness on rift architecture S. DYKSTERHUIS1, P. REY1, R. D. MU LLER1 & L. MORESI2

    E-print Network

    Müller, Dietmar

    rift mode, exempli- fied by the East African System, extensional defor- mation localizes alongEffects of initial weakness on rift architecture S. DYKSTERHUIS1, P. REY1, R. D. MU¨ LLER1 & L controlling rift architecture, using both computational and laboratory methods. Here, we examine the effects

  7. Crustal and uppermost mantle structure in the central U.S. encompassing the Midcontinent Rift

    E-print Network

    Mojzsis, Stephen J.

    the MCR, but there is a gradient Moho in the northern part of the rift and a sharp Moho in the south as to the nature and origin of the rift system [Stein et al., 2011]. [3] Figure 1 outlines the location-air gravity high defines its location (see 40 mGal anomaly contour in Figure 1b), but it divides further

  8. Heterogeneity and Reservoir Quality of Yabus and Samaa Formations, Agordeed Field, Melut Rift Basin, Sudan

    Microsoft Academic Search

    Amani Badi; Omer Ali; Abdalla Farwa; Osman Abdullatif

    2010-01-01

    The Tertiary Yabus and Samaa Formations occur within the Melut Rift basin of interior Sudan which is regionally linked to the central and west African rift system. Yabus and Samaa Formations in Agordeed oil field are ones of the most productive oil reservoirs in Melut basin and are composed of sandstones and mudstones lithofacies that differ in size and length

  9. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    E-print Network

    Paris-Sud XI, Université de

    junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotalGeochemical evidence of mantle reservoir evolution during progressive rifting along the western Sciences, Michigan State University, East Lansing, MI 48824, USA b Tonagharraun, Corrandulla, Co. Galway

  10. LANL environmental restoration site ranking system: System description. Final report

    SciTech Connect

    Merkhofer, L.; Kann, A.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States)

    1992-10-13

    The basic structure of the LANL Environmental Restoration (ER) Site Ranking System and its use are described in this document. A related document, Instructions for Generating Inputs for the LANL ER Site Ranking System, contains detailed descriptions of the methods by which necessary inputs for the system will be generated. LANL has long recognized the need to provide a consistent basis for comparing the risks and other adverse consequences associated with the various waste problems at the Lab. The LANL ER Site Ranking System is being developed to help address this need. The specific purpose of the system is to help improve, defend, and explain prioritization decisions at the Potential Release Site (PRS) and Operable Unit (OU) level. The precise relationship of the Site Ranking System to the planning and overall budget processes is yet to be determined, as the system is still evolving. Generally speaking, the Site Ranking System will be used as a decision aid. That is, the system will be used to aid in the planning and budgetary decision-making process. It will never be used alone to make decisions. Like all models, the system can provide only a partial and approximate accounting of the factors important to budget and planning decisions. Decision makers at LANL will have to consider factors outside of the formal system when making final choices. Some of these other factors are regulatory requirements, DOE policy, and public concern. The main value of the site ranking system, therefore, is not the precise numbers it generates, but rather the general insights it provides.

  11. Anatomy of the Mount Isa Fault system: thrust exhumation of middle crustal elements of the Mount Isa Rift basement during the late Isan Orogeny

    Microsoft Academic Search

    R. J. Holcombe; R. Gordon; C. Pratt; M. Carder

    The contractional Isan Orogeny in the Mount Isa Inlier of western Queensland, is generally regarded as a multiphase event spread episodically over a ~100 my interval from ~1600 Ma to ~1500 Ma. It terminated a protracted extensional interval in which rocks of the Haslingdon and Mount Isa Groups accumulated in the superposed Leichhardt River and Mount Isa Rifts at ~1800

  12. RIFT VALLEY FEVER: PREPARING FOR POTENTIAL NEW MOSQUITO-BORNE DISEASES IN THE U.S. WITH A VECTOR SURVEILLANCE SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this symposium we have discussed four diseases that are emerging threats in the U.S., and it may be concluded that in our best defense knowing the vector is as important as knowing the disease. Rift Valley fever, Dengue, and JEE are but a few of the many emerging diseases that we can prepare for...

  13. Common host-derived chemicals increase catches of disease-transmitting mosquitoes and can improve early warning systems for rift valley fever virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF), a mosquito-borne zoonosis, is a major public health problem in sub-Saharan Africa. The emergence and re-emergence of the disease in the last 20 years especially in East Africa, poses a looming health threat which is likely to spread to beyond Africa. This threat is exacerbat...

  14. Timing of the volcanism of the southern Kivu province: implications for the evolution of the western branch of the East African Rift system

    Microsoft Academic Search

    P. Pasteels; M. Villeneuve; P. de Paepe; J. Klerkx

    1989-01-01

    New K-Ar datings of a large rock sampling from the South Kivu volcanic province (Zaire, Rwanda, Burundi) are reported. No ages older than 10 Ma have been obtained. This result contrasts with older assumptions and puts severe constraints on the relations between volcanism and rift evolution. From 10 to 7.5 Ma tholeiitic volcanism predominates corresponding to an episode of fissural

  15. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW?>?-2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50?m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  16. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    E-print Network

    Brest, Université de

    Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya B of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern: The Turkana Cenozoic rifted zone, northern Kenya, Tectonics, 24, TC2002, doi:10.1029/2004TC001637. 1

  17. Rift valley fever.

    PubMed

    Gerdes, Gertruida H

    2002-11-01

    Rift Valley fever virus is an arthropod-borne Phlebovirus endemic in sub-Saharan Africa. Outbreaks also have occurred in Egypt, Madagascar, and most recently in the Arabian peninsula. Large epizootics occur at irregular intervals in seasons of above-average rainfall with persistent flooding and the appearance of large numbers of floodwater-breeding Aedine mosquitoes. The virus is transmitted transovarially and can remain dormant in mosquito eggs during dry interepizootic periods. Low-level virus circulation occurs in high-rainfall forested areas, although individual cases of the disease rarely are recognized. RVF is characterized by abortion in pregnant animals and a high mortality in newborn lambs, kids, and calves. Susceptibility to disease is related to age and breed, with severe disease occurring in the young of exotic sheep and cattle breeds. RVF is a zoonosis, and human beings experience an influenza-like illness and, more rarely, complications such as encephalitis or retinitis. The virus causes a severe hepatitis, particularly in aborted fetuses and newborn lambs. The disease must be differentiated from other conditions that cause death with hepatitis and jaundice. Both an inactivated and a live attenuated vaccine are available. New-generation vaccines are being tested, because the existing mousebrain-attenuated strain induces fetal teratology or abortion in a percentage of pregnant animals. Diagnosis is based on histopathology or the demonstration of viral antigen or antibody. PMID:12442582

  18. Continental rifting and the origin of Beta Regio, Venus

    NASA Technical Reports Server (NTRS)

    Mcgill, G. E.; Steenstrup, S. J.; Barton, C.; Ford, P. G.

    1981-01-01

    Topographic maps based on Pioneer Venus altimetry suggest that Beta Regio, an elevated feature centered at 27 deg N, 282 deg E, is analogous to domes associated with continental rift systems on earth. This interpretation is consistent with the commonly quoted analogy between the East African rift system and the topography of the region from Beta Regio southward to Phoebe Regio. If Beta Regio is a dome, major structural uplift of the crust of Venus is implied, suggesting a more dynamic upper mantle than would be the case if Beta Regio were simply a large volcanic construct.

  19. Liquid waste treatment system. Final report

    SciTech Connect

    Baker, M.N.; Houston, H.M.

    1999-06-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS).

  20. Tectonic Evolution of the Rift Basins in the Northeastern Brazilian Region

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster U.; Bassetto, Marcelo; Vieira, Ines S.

    The transition from onshore failed rifts to offshore sedimentary basins along divergent continental margins is discussed on the basis of a regional, multidisciplinary integration of deep seismic reflection profiling, potential fied methods, geological data, and tectonic analysis. The following themes are addressed: a) the geologic evolution of the onshore and offshore rift systems of the Brazilian northeastern margin; b) the potential field methods response to the deep crustal structures; c) the seismic expression of major structural features in the rifts and within the continental and oceanic crusts; d) a possible geodynamic model for the evolution of the rift system; and e) analogies with a number of failed rifts and passive margin systems in the North Atlantic. The sedimentary basins in northeastern Brazil include a series of asymmetric grabens, such as the onshore Recôncavo-Tucano-Jatobá rift system (RTJ) and the offshore Jacuípe-Sergipe-Alagoas basins (JSA). Pre-rift sediments include Paleozoic to Jurassic/Early Cretaceous sediments deposited above a basement that includes Archean rocks to Late Proterozoic metasediments. The main rift phase (Neocomian to Barremian) terminated in the onshore rifts with fluvial deposits above a major regional unconformity. No further sedimentation is observed in the Recôncavo and Tucano basins, in a marked contrast to the geodynamic evolution of the Sergipe Basin, which is characterized by renewed phases of basement-involved faulting from Aptian to Early Albian, followed by a thermal phase of subsidence. The overall picture of two branches of a rift system, with different geodynamic evolution following the inception of oceanic crust, may be associated with a regional lithospheric extension during the Neocomian, first distributed over a wide region, and subsequently, focussing along a deeper mantle weak zone, local of a later plate rupture.

  1. Traffic management system: Recommendations. Final report

    SciTech Connect

    NONE

    1998-09-30

    This report identifies the primary and secondary air traffic networks inside and outside Buenos Aires Metropolitan Area where particular safety and traffic problems exist. The Consortium Louis Berger International, Inc.-IBI Group-UBATEC provides recommendations divided into two groups: one based on engineering aspects for each identified deficiency in the selected routes; and a second group that is based on the results of the evaluations of needs. This is Volume 5, Recommendations Final Report, and it provides recommendations to optimize transportation in the city of Buenos Aires.

  2. Final Paper DAT Cognitive Art Therapy System

    ERIC Educational Resources Information Center

    Jacobson, Eric

    2009-01-01

    Del Giacco Art Therapy is a cognitive art therapy process that focuses on stimulating the mental sensory systems and working to stabilize the nervous system and create new neural connections in the brain. This system was created by Maureen Del Giacco, Phd. after recovering from her own traumatic brain injury and is based on extensive research of…

  3. Sequencing Information Management System (SIMS). Final report

    Microsoft Academic Search

    1996-01-01

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system

  4. Educational Resources Management System. Final Report.

    ERIC Educational Resources Information Center

    Curtis, William H.

    This project resulted in the development of an Educational Resources Management System (ERMS). The primary purpose of the project was to develop a conceptual design for an integrated system of planning-programing-budgeting-evaluating (PPBES) appropriate for local school districts. In an ERM system, emphasis is on outcomes in terms of learners'…

  5. Final report on the FMIT Control System

    Microsoft Academic Search

    Johnson

    1985-01-01

    The computer control system for the Fusion Materials Irradiation Test Facility (FMIT) prototype accelerator was designed using distributed intelligence driven by a distributed database. The system consists of two minicomputers in the central control room and four microcomputers residing in CAMAC crates located near appropriate subsystems of the accelerator. The system uses single vendor hardware as much as practical in

  6. Final report on the FMIT control system

    Microsoft Academic Search

    James A. Johnson

    1986-01-01

    The computer control system for the Fusion Materials Irradiation Test Facility (FMIT) prototype accelerator was designed using distributed intelligence driven by a distributed database. The system consists of two minicomputers in the central control room and four microcomputers residing in CAMAC crates located near appropriate subsystems of the accelerator. The system uses single vendor hardware as much as practical in

  7. Hypogene and supergene alteration of the zeolite-bearing pyroclastic deposits at Tell Rimah, Jordan, and rift-related processes along the Dead-Sea-Transform Fault System during the Quaternary

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Techmer, A.; Botz, R.; Dohrmann, R.; Kaufhold, S.

    2012-09-01

    The boundary between the Arabian and African plates, is marked in the Middle East by one of the most prominent deep-seated lineamentary structures, called the Dead-Sea-Transform Fault System (DSTFS). Structural and mineralogical processes related to the DSTFS were correlated with equivalent processes leading to the alteration of pyroclastic deposits of alkali-olivine basaltic to nepheline basaltic composition which formed during a time span of less than 0.5 Ma. The large deposit of Tell Rimah, Jordan, is operated for the exploitation of zeolites, tuffs, and as pozzolana raw material. Four discrete stages of mineralizations have been distinguished from each other within these volcanic-hosted mineral deposits. (1) Hypogene syneruptive alteration of pyroclastic rocks produced siliceous gels ("allophane"), smectite, analcime, and phillipsite in vesicles when the groundwater level was low in the rift basin of the DSTFS. The lake-level lowstand caused the fluid system in the pyroclastic cone to become self-sufficient and it has been considered as a closed hydrothermal system. (2) Periods of tectonic and magmatic quiescence grinded the detrital sedimentation in the rift basin to a halt, while triggering a supergene alteration in the eruptive cones on the adjacent Arabian Plate. (3) Epigenetic alteration affected the pyroclastic rocks in the distal part of the DSTFS as a result of a rising water level. The water gradually filled the pore space of the permeable pyroclastic deposits almost to completeness and caused meniscus and blocky cements of calcite, phillipsite and chabazite to develop. In the rift basin, contemporaneously with the alteration of the pyroclastic rocks, freshwater limestones formed on calcareous bedrocks. Ba and Mn minerals in these freshwater limestones were supplied by subaquatic brines. Subsequently, a drastic lowering of the lake water level in the DSTFS converted the system of subaquatic freshwater limestones into subaerial tufa and travertine. As long as the basal parts of the pyroclastic units at Tell Rimah were in the reaches of the saline groundwaters, calcite and faujasite developed in the pyroclastic host rocks. (4) Another lake level lowstand within the rift basin caused the pyroclastic host rocks to get emerged and forced zeolite-carbonate mineralization in the tuffs to a complete stillstand. Hypogene and supergene alteration in these phreatomagmatic-strombolian pyroclastic cones of the Pleistocene x were correlated with lake high- and lowstands in the adjacent rift basin along the DSTFS. The results obtained by current tectono-morphological studies of the rift-related alteration of pyroclastic rocks along the DSTFS may also be applied to basin-and-swell-topographies elsewhere in the world. The current studies involved microscopy supplemented by SEM-EDX, X-ray diffraction analysis, mid (MIR) and far (FIR) infrared spectroscopy. Major and trace elements were analyzed by X-ray fluorescence spectrometry (XRF). C- and O isotope analyses were conducted on carbonate minerals, which were also targeted on by radiocarbon dating.

  8. Manzanita Hybrid Power system Project Final Report

    SciTech Connect

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  9. Solar heating system final design package

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The system is composed of a warm air collector, a logic control unit and a universal switching and transport unit. The collector was originally conceived and designed as an integrated roof/wall system and therefore provides a dual function in the structure. The collector serves both as a solar energy conversion system and as a structural weather resistant skin. The control unit provides totally automatic control over the operation of the system. It receives input data from sensor probes in collectors, storage and living space. The logic was designed so as to make maximum use of solar energy and minimize use of conventional energy. The transport and switching unit is a high-efficiency air-handling system equipped with gear motor valves that respond to outputs from the control system. The fan unit was designed for maximum durability and efficiency in operation, and has permanently lubricated ball bearings and excellent air-handling efficiency.

  10. GIS Early-Warning System for Vectors of Rift Valley Fever: Anomaly Analysis of Climate-Population Associations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A critical component of predicting the risk of transmission of mosquito-borne viruses is knowing the status of vector populations. Mosquito control agencies have good systems for measuring mosquito populations at county or district levels, but these data are not synthesized to regional or national ...

  11. The life cycle of continental rifting as a focus for U.S.-African scientific collaboration

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Atekwana, Estella A.; Keller, G. Randy; Klemperer, Simon L.

    2004-11-01

    The East African Rift System (EARS) provides the unique opportunity found nowhere else on Earth, to investigate extensional processes from incipient rifting in the Okavango Delta, Botswana, to continental breakup and creation of proto-oceanic basins 3000 km to the north in the Afar Depression in Ethiopia, Eritrea, and Djibouti.The study of continental rifts is of great interest because they represent the initial stages of continental breakup and passive margin development, they are sites for large-scale sediment accumulation, and their geomorphology may have controlled human evolution in the past and localizes geologic hazards in the present. But there is little research that provides insights into the linkage between broad geodynamic processes and the life cycle of continental rifts: We do not know why some rifts evolve into mid-ocean ridges whereas others abort their evolution to become aulacogens. Numerous studies of the EARS and other continental rifts have significantly increased our understanding of rifting processes, but we particularly lack studies of the embryonic stages of rift creation and the last stages of extension when continental breakup occurs.

  12. Traffic management system: Phase 2. Final report

    SciTech Connect

    NONE

    1998-09-30

    This report, conducted by Louis Berger International, Inc., was funded by the US Trade and Development Agency. This report identifies the primary and secondary air traffic networks inside and outside Buenos Aires Metropolitan Area where particular safety and traffic problems exist. The Consortium Louis Berger International, Inc.-IBI Group-UBATEC provides recommendations divided into two groups: one based on engineering aspects for each identified deficiency in the selected routes; and a second group that is based on the results of the evaluation of needs. This is Volume 3, Phase 2 Final Report, and it consists of the following: (1) Introduction; (2) Existing Conditions and Deficiencies; (3) Recommendations; and (4) Appendix: Definition of the Primary Network of the Metropolitan Area.

  13. Power system planning and reliability. Final report

    Microsoft Academic Search

    J. Peschon; J. C. Kaltenbach; P. Henault; M. W. Siddiqee; L. P. Hajdu

    1968-01-01

    The recent literature on power system reliability has emphasized the importance of sound planning to satisfy future loads. In view of the extremely high investment costs of electric power systems, it is imperative to have procedures for adding the right kind of equipment at the right time in the right location to achieve the desired level of reliability and quality

  14. Dynamics of ice shelf rift propagation and iceberg calving inferred from geodetic and seismic observations

    E-print Network

    Bassis, Jeremy N.

    2007-01-01

    the rift obtained from a satellite laser altimeter (ICESat).Laser Altimeter System (GLAS) onboard the Ice, Cloud and land Elevation Satellite (Laser Altimeter System (GLAS) on the Ice, Cloud and land Elevation Satellite (

  15. Thermal maturation and organic richness of potential petroleum source rocks in Proterozoic Rice Formation, North American Mid-Continent rift system, northeastern Kansas

    SciTech Connect

    Newell, K.D. (Kansas Geological Survey, Lawrence, KS (United States)); Burruss, R.C.; Palacas, J.G. (Geological Survey, Denver, CO (United States))

    1993-11-01

    A recent well in northeastern Kansas penetrated 296 ft (90.2 m) of dark gray siltstone in the Precambrian Mid-Continent rift (Proterozoic Rice Formation). Correlations indicate this unit may be as thick as 600 ft (183 m) and is possibly time-equivalent to the Nonesuch Shale (Middle Proterozoic) in the Lake Superior region. The upper half of this unit qualifies as a lean source rock (averaging 0.66 wt.% TOC), and organic matter in it is in the transition stage between oil and wet gas generation. The presence of the gray siltstone in this well and similar lithologies in other wells is encouraging because it indicates the source rock deposition may be common along the Mid-Continent rift, and that parts of the rift may remain thermally within the oil and gas window. Microscopic examination of calcite veins penetrating the dark gray siltstone reveals numerous oil-filled and subordinate aqueous fluid inclusions. Homogenization temperatures indicate these rocks have been subjected to temperature of at least 110-115[degrees]C (230-239[degrees]F). Burial during the Phanerozoic is inadequate to account for the homogenization temperatures and thermal maturity of the Precambrian rocks. With the present geothermal gradient, at least 8250 ft (2.5 km) of burial is necessary, but lesser burial may be likely with probably higher geothermal gradients during rifting. Fluorescence colors and gas chromatograms indicate compositions of oils in the fluid inclusions vary. However, oils in the fluid inclusions are markedly dissimilar to the nearest oils produced from Paleozoic rocks.

  16. Proximity sensor system development. CRADA final report

    SciTech Connect

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  17. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  18. Analysis of Hybrid Hydrogen Systems: Final Report

    Microsoft Academic Search

    J. Dean; R. Braun; M. Penev; C. Kinchin

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67\\/kg) within Department of Energy targets ($2.10\\/kg) for central biomass-derived hydrogen production while also providing value-added energy services to

  19. Fault evolution in the Potiguar rift termination, equatorial margin of Brazil

    NASA Astrophysics Data System (ADS)

    de Castro, D. L.; Bezerra, F. H. R.

    2015-02-01

    The transform shearing between South American and African plates in the Cretaceous generated a series of sedimentary basins on both plate margins. In this study, we use gravity, aeromagnetic, and resistivity surveys to identify architecture of fault systems and to analyze the evolution of the eastern equatorial margin of Brazil. Our study area is the southern onshore termination of the Potiguar rift, which is an aborted NE-trending rift arm developed during the breakup of Pangea. The basin is located along the NNE margin of South America that faces the main transform zone that separates the North and the South Atlantic. The Potiguar rift is a Neocomian structure located at the intersection of the equatorial and western South Atlantic and is composed of a series of NE-trending horsts and grabens. This study reveals new grabens in the Potiguar rift and indicates that stretching in the southern rift termination created a WNW-trending, 10 km wide, and ~ 40 km long right-lateral strike-slip fault zone. This zone encompasses at least eight depocenters, which are bounded by a left-stepping, en echelon system of NW-SE- to NS-striking normal faults. These depocenters form grabens up to 1200 m deep with a rhomb-shaped geometry, which are filled with rift sedimentary units and capped by postrift sedimentary sequences. The evolution of the rift termination is consistent with the right-lateral shearing of the equatorial margin in the Cretaceous and occurs not only at the rift termination but also as isolated structures away from the main rift. This study indicates that the strike-slip shearing between two plates propagated to the interior of one of these plates, where faults with similar orientation, kinematics, geometry, and timing of the major transform are observed. These faults also influence rift geometry.

  20. Photovoltaic stand-alone modular systems. Phase 2. Final Report

    Microsoft Academic Search

    G. J. Naff; N. A. Marshall

    1983-01-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching,

  1. National Geoscience Data Repository System. Final report

    SciTech Connect

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  2. Final Report Advanced Quasioptical Launcher System

    SciTech Connect

    Jeffrey Neilson

    2010-04-30

    This program developed an analytical design tool for designing antenna and mirror systems to convert whispering gallery RF modes to Gaussian or HE11 modes. Whispering gallery modes are generated by gyrotrons used for electron cyclotron heating of fusion plasmas in tokamaks. These modes cannot be easily transmitted and must be converted to free space or waveguide modes compatible with transmission line systems.This program improved the capability of SURF3D/LOT, which was initially developed in a previous SBIR program. This suite of codes revolutionized quasi-optical launcher design, and this code, or equivalent codes, are now used worldwide. This program added functionality to SURF3D/LOT to allow creating of more compact launcher and mirror systems and provide direct coupling to corrugated waveguide within the vacuum envelope of the gyrotron. Analysis was also extended to include full-wave analysis of mirror transmission line systems. The code includes a graphical user interface and is available for advanced design of launcher systems.

  3. Sequencing Information Management System (SIMS). Final report

    SciTech Connect

    Fields, C.

    1996-02-15

    A feasibility study to develop a requirements analysis and functional specification for a data management system for large-scale DNA sequencing laboratories resulted in a functional specification for a Sequencing Information Management System (SIMS). This document reports the results of this feasibility study, and includes a functional specification for a SIMS relational schema. The SIMS is an integrated information management system that supports data acquisition, management, analysis, and distribution for DNA sequencing laboratories. The SIMS provides ad hoc query access to information on the sequencing process and its results, and partially automates the transfer of data between laboratory instruments, analysis programs, technical personnel, and managers. The SIMS user interfaces are designed for use by laboratory technicians, laboratory managers, and scientists. The SIMS is designed to run in a heterogeneous, multiplatform environment in a client/server mode. The SIMS communicates with external computational and data resources via the internet.

  4. Resource allocations and expert systems. Final report

    SciTech Connect

    Not Available

    1988-05-12

    The work performed to meet the requirement of this task is a continuing effort, evolving toward a general-purpose reasoning tool. The idea here is to build a more-powerful general expert system than the previous one. Towards that, this new Bayesian inference engine is based on the work done by Pearl and Kim. The advantages of this new inference engine over the previous one are that the representation of the knowledge is more compact and the inferencing is suitable for parallel processing. The inference engine is written in Franz lisp on VAX machine. All the code and a typescript of how to load and use the system is attached.

  5. Lightning protection of distribution systems. Final report

    SciTech Connect

    Uman, M.A.

    1985-02-01

    Analyses are presented of experimental data obtained in the Tampa Bay area during 1978 and 1979 concerning the physical and phenomenological properties of lightning and the interaction of that lightning with the local distribution power systems. Specific results are given regarding: (1) the physical and phenomenology properties of lightning in the Tampa Bay area and its relation to lightning elsewhere; (2) measurement and theory concerning lightning-induced voltages on distribution lines; (3) distribution system operation in the presence of lightning and analytical modeling and prediction of that operation.

  6. Air medium solar heating system. Final report

    Microsoft Academic Search

    2008-01-01

    A demonstration of an air medium solar heating system retrofitted to an existing dwelling in a northern climate, latitude 48°N, is described. The collector measures 64 ft in length by 8 ft high and is located 40 ft from the dwelling. The air transfer is accomplished via 2 - 12 in. round PVC air ducts insulated with 1 in. of

  7. Groundwater irrigation supply system optimization. Final report

    SciTech Connect

    Helweg, O.; Scott, V.

    1980-10-01

    This project was undertaken because it takes 0.34 quads to irrigate the nation's crops, and experts felt that the present efficiency could be doubled by the year 2000. This part of the project looked specifically at the ground water supply system (pump and prime mover plus well) to examine what factors most effect the system performance, how they could be analyzed and corrected. An optimization approach was developed using a simulation model, and economic criteria were set forth, enabling well users to make replacement and repair decisions. Some regional studies were made, concentrating on California and Texas to see what present technologies were being used and gain more insight into possible energy savings. The main conclusions of the project are: (1) the shape of the pump curves (head-capacity and efficiency) are not as important as operating the pump near the point of maximum efficiency. (2) A steep head-discharge curve and flat efficiency curve is significantly more efficient than a flat head-discharge curve and pointed efficiency curve. (3) There may be a linear relationship between decrease in pump efficiency and the amount of sand pumped. (4) The most inefficient ground water systems offer the most incremental savings. (5) Standard economic procedures can give guidance for repair and replacement decisions. (6) A simulation model is helpful to predict costs of ground water systems. (7) Regional studies indicate that about 10 billion Btus may be saved annually by implementing these procedures.

  8. Instructional Media and Carrel Systems. Final Report.

    ERIC Educational Resources Information Center

    Sullivan, Dennis J.; Smith, Edgar A.

    Implementation of a major computer-managed individualized instructional system requires considerable attention to both instructional environments and the media hardware and software employed. This report examines the instructional milieu with respect to performance analyses, learning carrel requirements and the equipment and techniques required to…

  9. Consolidating power plant data systems. Final report

    Microsoft Academic Search

    R. H. Koppe; G. J. Arnst

    1978-01-01

    This report presents the results of a study conducted by S. M. Stroller Corp. for EPRI. The objectives were to study the experience of a number of large industries with the collection and use of equipment-performance data in large complex systems and to assess the feasibility of consolidating power plant data bases. The report discusses the results of interviews conducted

  10. Masirah Graben, Oman: A hidden Cretaceous rift basin

    Microsoft Academic Search

    W. H. Beauchamp; A. C. Ries; M. P. Coward

    1995-01-01

    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system

  11. Stationary flywheel energy storage systems. Final report

    SciTech Connect

    Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

    1982-01-01

    The aim of this system study is to find out industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid should be investigated. As to overall economy, compensation of short time maximum power out-put seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combination with wind energy converters needs further investigation.

  12. Crustal structure and tectonic evolution of the anza rift, northern Kenya

    NASA Astrophysics Data System (ADS)

    Greene, L. C.; Richards, D. R.; Johnson, R. A.

    1991-10-01

    The Anza trough is a Mesozoic rift located in northern Kenya that appears to be the failed third arm of a paleo-triple junction which allowed the separation of Madagascar from Africa during the Jurassic. The rift is oriented NW-SE and its tectonic evolution is related to that of the Mesozoic southern Sudan rift system. We analyzed seismic and gravity data from the southwestern side of the Anza rift including the Chalbi Desert to gain a better understanding of rift structure. Gravity data delineate the main rift basins as well as a small sub-basin on the southwest side of the main rift. Normal faulting evident on the NW end of a 42-km-long, NW-SE oriented Vibroseis® profile, marks the western boundary of the sub-basin. This sub-basin is offset from the trend of the main Anza trough; the western boundary may be a complex fault zone accommodating a change in direction of the main rift trend. Gravity values increase to the NW in the faulted area, suggesting shallowing of basement. A strong NW-dipping reflection from 0.5 s to almost 3 s is interpreted as a pre- to mid-Cretaceous unconformity. The configuration of the unconformity and the normal faulting strongly resembles the half-graben geometry imaged in the East African Rift. Numerous discontinuous reflections can be seen deeper in the section between 6 and 9 s, but a distinct reflection Moho cannot be interpreted with certainty. In addition to seismic and gravity data, regional geologic and well data lead us to conclude that there are probably Jurassic marine sediments in the bottom of the Anza rift.

  13. FY2008 Calibration Systems Final Report

    SciTech Connect

    Cannon, Bret D.; Myers, Tanya L.; Broocks, Bryan T.

    2009-01-01

    The Calibrations project has been exploring alternative technologies for calibration of passive sensors in the infrared (IR) spectral region. In particular, we have investigated using quantum cascade lasers (QCLs) because these devices offer several advantages over conventional blackbodies such as reductions in size and weight while providing a spectral source in the IR with high output power. These devices can provide a rapid, multi-level radiance scheme to fit any nonlinear behavior as well as a spectral calibration that includes the fore-optics, which is currently not available for on-board calibration systems.

  14. Solar heating system installed at Troy, Ohio. Final report

    SciTech Connect

    None

    1980-09-01

    This document is the Final Report of the Solar Energy System located at Troy-Miami County Public Library, Troy, Ohio. The completed system is composed of tree basic subsystems: the collector system consisting of 3264 square feet of Owens Illinois evacuated glass tube collectors; the storage system which includes a 5000-gallon insulated steel tank; and the distribution and control system which includes piping, pumping and control logic for the efficient and safe operation of the entire system. This solar heating system was installed in an existing facility and is, therefore, a retrofit system. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  15. Surface processes in an active rift setting: a source to sink approach from the Sperchios delta, central Greece

    NASA Astrophysics Data System (ADS)

    Pechlivanidou, Sofia; Cowie, Patience; Gawthorpe, Rob

    2015-04-01

    This study presents an integrated source to sink approach to understand the controls on the distribution of sediments source areas, sediment routing and downstream fining in the Sperchios rift system, central Greece. The Sperchios Rift forms an active half-graben basin, which is controlled by major NW-SE trending faults. Detailed sedimentological analysis (grain size, macro/micro faunal, geochemical and mineral magnetic analysis) in conjunction with 14C age constraints reveal the stratigraphic evolution of the Sperchios delta, located at the eastern part of the rift, including the presence of a Holocene transgressive - regressive wedge overlying Late Pleistocene alluvial deposits. The process-based stratigraphic model SedFlux2D is used to simulate the delta evolution and model scenarios are compared with the measured data. A series of sensitivity tests are used to explore uncertainties associated with variations in sediment supply, tectonic subsidence rate, and Holocene relative sea level. We discuss the effects of the major controls, in particular the rate of relative sea-level rise and tectonic subsidence rate, on accommodation creation and thus delta architecture in this active rift setting during the Holocene. The transition from transgression to regression is found to be mainly controlled by the slowing rate of relative sea level rise that occurred approximately 5500 kyrs ago. Finally, we compare the sediment volumes and grain size variations preserved in the Sperchios delta to onshore erosion rates inferred from data collected on bedrock erodibility, measurements of downstream fining, as well as stream-power/transport capacity for both transverse and axial drainage networks. This comparison, when combined with information on relative uplift/subsidence patterns due to active extensional tectonics, allows us to develop a semi-quantitative, process-based source-to-sink model for this area.

  16. Physics of Correlated Systems, Final Project Report

    SciTech Connect

    Greene, Chris H. [University of Colorado at Boulder] [University of Colorado at Boulder

    2014-06-25

    The funding of this DOE project has enabled the P.I. and his collaborators to tackle a number of problems involving nonperturbatively coupled atomic systems, including their interactions with each other and/or with an external electromagnetic field of the type provided by either a continuous-wave or a femtosecond short-pulse laser. The progress includes a new, deeper understanding of an old and famous theory of autoionization lineshapes, developed initially by Ugo Fano in 1935 and later extended in a highly cited 1961 article; the new result specifically is that in a collaboration with the Heidelberg group we have been able to demonstrate an unexpectedly simple behavior in the time domain that is relevant for modern short-pulse lasers. This study also demonstrates a way to modify and even control the lineshapes of unstable atomic and molecular energy levels.

  17. Determination and implication of Lower Crustal Bodies in the Møre rifted margin (offshore Norway)

    NASA Astrophysics Data System (ADS)

    Nirrengarten, Michael; Gernigon, Laurent; Manatschal, Gianreto

    2014-05-01

    The Møre margin is the result of a long period of rifting events influenced by different tectonic processes. The last extension phase of the Møre margin was accompanied by the onset of massive magmatic activity leading to the emplacement of seaward dipping reflector sequences (SDRS). However the previous events were probably characterized by a smaller amount of magmatism, like for a classic magma poor rifted margin. Several refraction studies across the Møre rifted margin have also revealed the occurrence of high velocity lower crustal bodies (LCB) under the distal SDRS wedge but also in more proximal positions of the margin (e.g. Kvarven et al., 2012). The nature, age and location of these LCBs are still questionable and represent key and primary parameters to understand the tectonic and crustal evolution of the volcanic rifted margin. Nature, age and geometry of these LCBs have major implications on the rheological and thermal evolution of the rift/margin system. In light of 2D potential field modelling combined with reflection and refraction seismic data, we reinvestigated the crustal nature of the Møre volcanic rifted margin and adjacent Jan Mayen corridor. In the proximal domain of the Møre volcanic rifted margin, our study shows that the LCBs most likely represent inherited crustal bodies and are not necessarily made of rift-related serpentinised mantle as previously proposed. In the distal margin, our preferred interpretation suggests that the outer LCBs are still made of relics of pre-rift lower continental crustal rocks, more or less intruded and/or underplated by Tertiary magmatic rocks. The seismic, magnetic and gravity data do not easily support large scale exhumation of serpentinised mantle in the inner and outer parts of the Møre Basin. Our model suggests that the Møre rift system evolved through a significant Late Jurassic-Cretaceous thinning phase. This rift episode led to a thin continental crust with pre rift lower crustal rocks but without perennial domains of exhumed and serpentinised mantle. This significant extensional event preceded a Late Cretaceous-Early Tertiary rift episode which is characterised by different and independent magmatic and lithospheric processes leading to breakup (e.g. diking and lithospheric plumbing).

  18. Buried waste containment system materials. Final Report

    SciTech Connect

    Weidner, J.R.; Shaw, P.G.

    1997-10-01

    This report describes the results of a test program to validate the application of a latex-modified cement formulation for use with the Buried Waste Containment System (BWCS) process during a proof of principle (POP) demonstration. The test program included three objectives. One objective was to validate the barrier material mix formulation to be used with the BWCS equipment. A basic mix formula for initial trials was supplied by the cement and latex vendors. The suitability of the material for BWCS application was verified by laboratory testing at the Idaho National Engineering and Environmental Laboratory (INEEL). A second objective was to determine if the POP BWCS material emplacement process adversely affected the barrier material properties. This objective was met by measuring and comparing properties of material prepared in the INEEL Materials Testing Laboratory (MTL) with identical properties of material produced by the BWCS field tests. These measurements included hydraulic conductivity to determine if the material met the US Environmental Protection Agency (EPA) requirements for barriers used for hazardous waste sites, petrographic analysis to allow an assessment of barrier material separation and segregation during emplacement, and a set of mechanical property tests typical of concrete characterization. The third objective was to measure the hydraulic properties of barrier material containing a stop-start joint to determine if such a feature would meet the EPA requirements for hazardous waste site barriers.

  19. Initiation and development of the Kivu rift segment in Central Africa by reactivating un-favorably oriented structural weaknesses

    NASA Astrophysics Data System (ADS)

    Delvaux, Damien; Smets, Benoît

    2015-04-01

    The Kivu rift region forms the central segment of the western branch of the East African rift system, between the northern termination of the Tanganyika rift and the southern extension of the Edward-George rift. Its structure and geological evolution has been revised in the light of a compilation of existing data on earthquake epicenters, focal depth, focal mechanisms, thermal springs and neotectonic faults. It has long been shown that the link between the Kivu rift basin and the Northern termination of the Tanganyika rift basin forms an accommodation zone in which the Rusizi tectonic depression occupies a central place (Ebinger, 1989). In addition, our compilation suggests that the NNE-trending Kivu rift basin and the N-S northern half of the Tanganyika rift basin initiated as separated, partly overlapping and differently oriented basins. The orientation and development of the Kivu rift basin was controlled by an inferred Mid-Proterozoic crustal shear zone and a Pan-African reverse fault front. It was not optimally oriented with the general (first-order) stress field characterized by roughly E-W extension. In a later stage, the more optimally N-S oriented North Tanganyika basin progressed towards the North and connected to Kivu rift in its middle in a region now occupied by the town of Bukavu. This accommodation zone is marked by Quaternary volcanism, warm thermal springs, frequent and relatively shallow seismicity. The southwestern part of the Kivu rift became progressively abandoned but it is still seismically active and hosts a number of warm thermal springs. This particular architecture influences the present-day stress field. This work is a contribution to the Belgian GeoRisCA project. Ebinger, C.J. 1989. Geometric and kinematic development of border faults and accommodation zones, Kivu-Rusizi Rift, Africa. Tectonics, 8, 117-133

  20. Lattice-particle simulation of stress patterns in a Rwenzori-type rift transfer zone

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Koehn, Daniel; Passchier, Cees

    2011-11-01

    A new 3D spring lattice computer model has been developed and used to calculate the stress-field in the vicinity of a rift transfer zone. The numerical setup is based on the Rwenzori block, a transfer zone in the Western Branch of the East African Rift Valley. The study has two closely related, yet independent aims: primarily to gain insight into the pattern and the causes of the stress field in the Rwenzori area. The second aim is the evaluation of the model itself, based on a comparison of the model results with local geological structures. The simulations calculate the stress in the brittle part of the crust, at the topographic surface and at a depth of 10 km. The model does therefore not rely on the rate of the continental extension, but only on the amount. The generated stress maps display the maximum and minimum principal normal stress. The stress is calculated for a total extension of 7.5 km, a value based on common estimates for the local rift extension. The local stress field is created by the interplay of the plate driven far-field stress and the mechanics of the rift system. The propagation of the rift system leads thus to stress rotations and to characteristic stress patterns. An important mechanism is lithospheric bending caused by rift flank uplift, which reverses the far field stress in rift vicinity. The stress-field resulting from the simulations explains several previously unexplained structural features encountered in the Rwenzori block.

  1. Feedbacks between deformation and reactive melt transport in the mantle lithosphere during rifting

    NASA Astrophysics Data System (ADS)

    Tommasi, A.; Baptiste, V.; Vauchez, A. R.; Fort, A.

    2014-12-01

    The East-African rift associates lithospheric thinning with extensive volcanism. Melts, even at low fractions, reduce the mantle viscosity. They also carry and exchange heat, mainly via reactions (latent heat), modifying the temperature and the rheology, which in turn controls their transport through the lithospheric mantle. Analysis of microstructures and crystal preferred orientations of mantle xenoliths from different localities along the East-African rift system highlights strong feedbacks between deformation, melt transport, and thermal evolution in the lithospheric mantle. Microstructures change markedly from south (young) to north (mature rift). In Tanzania, mylonitic to porphyroclastic peridotites predominate in on-axis localities, while off-axis ones are coarse-granular to porphyroclastic, pointing to heterogeneous deformation and variable annealing due to local interaction with fluids or to different time lags between deformation and extraction. Mylonites point to strain localization but there is no evidence for dominant grain boundary sliding: ubiquituous intracrystalline deformation in olivine and orthopyroxene and strong CPO record dislocation creep with dominant [100] glide in olivine. Synkinematic replacement of opx by olivine in both mylonitic and porphyroclastic peridotites suggests that deformation continued in the presence of melt under near-solidus conditions. This heating was transient: exsolutions in opx record cooling before extraction. Mega peridotites, which sample the southern border of the Ethiopian plateau, are coarse-porphyroclastic and show widespread metasomatism by basalts or by evolved volatile-rich low melt fractions. The former predated or was coeval to deformation, since olivine and pyroxene CPO are coherent. Exsolutions in opx imply that the high primary equilibration temperatures, which are consistent with the coarse-grained microstructures, are linked to transient heating. Finally, the fine-grained polygonal microstructures, with evenly distributed interstitial pyroxenes aligned in the foliation, and weak but uncorrelated olivine and pyroxenes CPO in xenoliths from the Gulf of Aden margin record post kinematic reactive melt percolation and refertilisation of the lithospheric mantle controlled by the preexisting fabric.

  2. Rift flank uplift and thermal evolution of an intracratonic rift basin (eastern Canada) determined by combined apatite and zircon (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Hardie, Rebecca; Schneider, David; Metcalf, James; Flowers, Rebecca

    2015-04-01

    As a significant portion of the world's oil reserves are retrieved from rift systems, a better understanding of the timing of thermal evolution and burial history of these systems will increase the potential for the discovery of hydrocarbon-bearing rifts. The Ottawa Embayment of the St. Lawrence Platform of eastern Canada is a reactivated intracratonic rift basin related to the opening of the Iapetus Ocean at ca. 620-570 Ma, followed by the formation of the well-developed continental passive margin. Siliciclastic sediments derived from the adjacent uplifted Neoproterozoic Grenville basement provide the basin fill material. Apatite and zircon (U-Th)/He thermochronology allows for low-temperature analysis across the exposed crystalline rift flank into the synrift sedimentary sequence to resolve the unroofing, burial and subsidence history of the region. Samples were collected along a ~250 km NE-SW transect, oblique to the axis of the rift, from Mont-Tremblant, Québec (~900 m) to the central axis of the Paleozoic rift in the Southern Ontario Lowlands (~300 m). Targets included Neoproterozoic metamorphic rocks of the Grenville Province along the rift flank and basinal Cambro-Ordovician Potsdam Group. Samples from the rift flank yield zircon ages from ca. 650 Ma to ca. 560 Ma and apatite ages from ca. 290 Ma to ca. 190 Ma, with a weak positive correlation between age and grain size. Zircon ages demonstrate a strong negative correlation with radiation damage: as eU increases, age decreases. By incorporating (U-Th)/He ages with regional constraints in the thermal modelling program HeFTy, viable temperature time paths for the region can be determined. Through inverse and forward modeling, preliminary rift flank (U-Th)/He ages correspond to post-Grenville cooling with <4 km of post-Carboniferous burial. The data define slow and long episodes of syn- to post-rift cooling with rates between 0.4 and 0.1 °C/Ma. (U-Th)/He dating of samples along the full-length of the transect will resolve thermal changes in the basin-orogen system and improve our understanding of the rift related history of the region.

  3. Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts

    Microsoft Academic Search

    K. Keranen; S. L. Klemperer

    2008-01-01

    The Main Ethiopian Rift (MER) is commonly considered the archetypal magma-assisted rift. Tomographic images of upper-mantle upwellings beneath the rift, aligned anisotropy beneath magmatic segments, and pervasive magmatic modification of the crust all indicate the importance of magmatic processes in present-day rift evolution. It has been suggested that this magmatic development is responsible for the straight and continuous path the

  4. Next-Generation Linear Collider Final Focus System Stability Tolerances

    SciTech Connect

    Roy, G.; Irwin, J.; /SLAC

    2007-04-25

    The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''{beta}-exchanger'' to manipulate the {beta}-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

  5. Final system instrumentation design package for Decade 80 solar house

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The final configuration of the Decade 80 solar house to monitor and collect system performance data is presented. A review demonstrated by actual operation that the system and the data acquisition subsystem operated satisfactorily and installation of instrumentation was in accordance with the design. This design package is made up of (1) site and system description, (2) operating and control modes, and (3) instrumentation program (including sensor schematic).

  6. Rift architecture and evolution: The Sirt Basin, Libya: The influence of basement fabrics and oblique tectonics

    NASA Astrophysics Data System (ADS)

    Abdunaser, K. M.; McCaffrey, K. J. W.

    2014-12-01

    The Cretaceous-Tertiary northwest-trending Sirt Basin system, Libya, is a rift/sag basin formed on Pan-African to Paleozoic-aged basement of North Africa. In this study, we investigate the rift-basin architecture and tectonic framework of the western Sirt Basin. Using remote sensed data, supported by borehole data from about 300 deep wells and surface geologic maps, we constructed geological cross sections and surface geology maps. Indication of the relative timing of structures and movement along faults has been determined where possible. Direction statistics for all the interpreted linear features acquired in the study area were calculated and given as a total distribution and then the totals are broken down by the major basin elements of the area. Hundreds of lineaments were recognized. Their lengths, range between a hundred meters up to hundreds of kilometers and the longest of the dominant trends are between N35W-N55W and between N55E-N65E which coincides with Sirt Basin structures. The produced rose diagrams reveal that the majority of the surface linear features in the region have four preferred orientations: N40-50W in the Zallah Trough, N45-55W in the Dur al Abd Trough, N35-55W in the Az Zahrah-Al Hufrah Platform, and in contrast in the Waddan Uplift a N55-65E trend. We recognize six lithostratigraphic sequences (phases) in the area's stratigraphic framework. A Pre-graben (Pre-rift) initiation stage involved the Pre-Cretaceous sediments formed before the main Sirt Basin subsidence. Then followed a Cretaceous to Eocene graben-fill stage that can divided into four structurally-active and structurally-inactive periods, and finally a terminal continental siliciclastics-rich package representing the post-rift stage of the development in post-Eocene time. In general five major fault systems dissect and divide the study area into geomorphological elevated blocks and depressions. Most of the oil fields present in the study area are associated with structural hinge zones and adjoining highs. Late Eocene rocks exposed in the western part of the basin exhibit a complex network of branching segmented normal and strike-slip faults, generally with a NNW-SSE structural orientations. Many surface structural features have been interpreted from satellite images which confirm sinistral strike-slip kinematics. Relay ramp structures, numerous elongate asymmetric synclines associated with shallow west limbs and steeper dipping east limbs are developed in the hangingwalls adjacent to west downthrowing normal faults. These structural patterns reflect Cretaceous/Tertiary extensional tectonics with additional control by underlying pre-existing Pan-African basement fabrics and ENE-WSW trending Hercynian structures. We relate the Sirt Basin rift development as exemplified in our study area to the break-up of Gondwana represented by the structural evolution of the West-Central African rift system, and the South and Central Atlantic, the Tethys and the Indian Oceans.

  7. Rift reactivation and migration during multiphase extension

    NASA Astrophysics Data System (ADS)

    Naliboff, John; Buiter, Susanne J. H.

    2015-07-01

    Passive margins may undergo multiple phases of extension with distinct structural, petrological and sedimentary processes before achieving breakup. Observations of rift axis migration through time may reflect cooling, hardening and subsequent abandonment of the rift axis during either long-term periods of slow extension or periods of tectonic quiescence. Here, we use 2D thermo-mechanical numerical models to examine rift reactivation and migration during multiphase extension where a period of tectonic quiescence separates phases of extension. Our goals are to identify the rheological mechanism(s) controlling rift reactivation versus migration and determine if cooling phases may help explain recent interpretations of passive margin architecture and evolution. Our numerical experiments indicate that the relative integrated brittle strength between the initial rift and surrounding regions, rather than the total integrated strength, largely controls rift reactivation versus migration. The tectonic quiescence (cooling) duration required to induce rift migration ranges between 20 and 60 Myr (minimum bounds). This range reflects variations in extension velocity, magnitude of shear zone healing, crustal rheology and asthenospheric rheology. Reactivated rifts after extensive (>20 Myr) cooling periods in some cases develop asymmetric margins with deformation patterns stepping toward the future rift, such as characterizing most of the Atlantic conjugate margins.

  8. Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa

    Microsoft Academic Search

    Mulugeta T. Dugda; Andrew A. Nyblade; Jordi Julia; Charles A. Langston; Charles J. Ammon; Silas Simiyu

    2005-01-01

    Crustal structure in Kenya and Ethiopia has been investigated using receiver function analysis of broadband seismic data to determine the extent to which the Cenozoic rifting and magmatism has modified the thickness and composition of the Proterozoic crust in which the East African rift system developed. Data for this study come from broadband seismic experiments conducted in Ethiopia between 2000

  9. Seismicity of the Earth 1900-2013 East African Rift

    USGS Publications Warehouse

    Hayes, Gavin; Jones, Eric S.; Stadler, Timothy J.; Barnhart, William D.; McNamara, Daniel E.; Benz, Harley M.; Furlong, Kevin P.; Villaseñor, Antonio

    2014-01-01

    Rifting in East Africa is not all coeval; volcanism and faulting have been an ongoing phenomenon on the continent since the Eocene (~45 Ma). The rifting began in northern East Africa, and led to the separation of the Nubia (Africa) and Arabia plates in the Red Sea and Gulf of Aden, and in the Lake Turkana area at the Kenya-Ethiopia border. A Paleogene mantle superplume beneath East Africa caused extension within the Nubia plate, as well as a first order topographic high known as the African superswell which now includes most of the eastern and southern sectors of the Nubia plate. Widespread volcanism erupted onto much of the rising plateau in Ethiopia during the Eocene-Oligocene (45–29 Ma), with chains of volcanoes forming along the rift separating Africa and Arabia. Since the initiation of rifting in northeastern Africa, the system has propagated over 3,000 km to the south and southwest, and it experiences seismicity as a direct result of the extension and active magmatism.

  10. Rifting, landsliding and magmatic variability in the Canary Islands

    NASA Astrophysics Data System (ADS)

    Carracedo, J. C.; Troll, V. R.; Guillou, H.; Badiola, E. R.; Pérez-Torrado, F. J.; Wiesmaier, S.; Delcamp, A.; Gonzalez, A. R.

    2009-04-01

    Rifts, probably the most influential structures in the geology of the Canary Islands, may also be responsible for the development of central felsic volcanoes, which are consistently nested in the collapse basins of the massive lateral collapses found in the Canaries. Three main types of post-collapse volcanism have been observed, particularly in the western Canaries: 1. Collapses followed by relatively scant, non-differentiated volcanism inside the collapse depression (El Golfo, El Hierro; La Orotava and Güímar, Tenerife), 2. those with important, although short-lasting (tens of thousands of years), post-collapse activity including felsic (phonolitic, trachytic) central volcanism (Bejenado, La Palma; Vallehermoso, La Gomera), and 3. those with very important, long-lasting (>100 kyr) post-collapse activity, evolving from primitive to felsic magmatism, eventually resulting in very high stratovolcanoes (Teide, Tenerife). Three consecutive sector collapses (Micheque, Güímar and La Orotava) mass-wasted the flanks of in the NE rift of Tenerife after intense and concentrated eruptive activity, particularly from about 1.10 Ma to 0.96 Ma, with periods of growth up to 15-25 m/kyr. Volcanic activity completely filled the Micheque collapse, evolving from basaltic to differentiated trachytic eruptions. Conversely, nested volcanism was less abundant in the Güímar and La Orotava collapses. This requires two fundamentally different scenarios which may be a function of active versus passive flank collapse trigger mechanisms: 1. The collapse occurs as a result of one of these short but intense intrusive-eruptive periods and probably triggered by concurring extensional stresses at the rifts (rift push), or 2. the giant landslide is derived only from gravitational instability. In the first scenario, the collapse of the flank of the rift may disrupt an established fissural feeding system that rapidly fills the collapse basin. Due to its disruption and the progressive new overburden of dense basaltic and ankaramitic lavas, the plumbing system increasingly favours shallow emplacement of new magma batches and subsequent differentiation, leading to intermediate and felsic nested eruptions. In contrast, a pure gravitational collapse will unload the edifice and allow for a limited amount of dense and primitive magma to erupt that may otherwise have been stored and solidified at depth, e.g. in upper mantle underplating zones. Rifts and their collapse may therefore act as an important factor in providing petrologic variability to oceanic volcanoes. Ad contrarium, it can be argued that felsic nested volcanoes in the Canaries frequently form because giant landslides provide the particular conditions required for primitive rift magmas to differentiate.

  11. Rifting and Post-Rift Reactivation of The Eastern Sardinian Margin (Western Tyrrhenian Back-Arc Basin) Evidenced by the Messinian Salinity Crisis Markers and Salt Tectonics

    NASA Astrophysics Data System (ADS)

    Gaullier, V.; Chanier, F.; Vendeville, B.; Lymer, G.; Lofi, J.; Sage, F.; Maillard, A.; Thinon, I.

    2014-12-01

    The Eastern Sardinian margin formed during the opening of the Tyrrhenian Sea, a back-arc basin created by continental rifting and oceanic spreading related to the eastward migrating Apennine subduction system from middle Miocene to Pliocene times. We carried out the "METYSS" project aiming at better understanding the Miocene-Pliocene relationships between crustal tectonics and salt tectonics in this key-area, where rifting is pro parte coeval with the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma) and Messinian salt décollement creates thin-skinned tectonics. Thereby, we use the MSC seismic markers and the deformation of viscous salt and its brittle overburden as proxies to better delineate the timing of rifting and post-rift reactivation, and especially to quantifying vertical and horizontal movements. Our mapping of the Messinian Erosion Surface and of Messinian Upper and Mobile Units shows that a rifted basin already existed by the Messinian times, revealing a major pre-MSC rifting episode across the entire domain. Because salt tectonics can create fan-shaped geometries in sediments, syn-rift deposits have to be carefully re-examined in order to decipher the effects of crustal tectonics (rifting) and salt tectonics. Our data surprisingly showed that there are no clues for Messinian syn-rift sediments along the East-Sardinia Basin and Cornaglia Terrace, hence no evidence for rifting after Late Tortonian times. Nevertheless, widespread deformation occurred during the Pliocene and is attributed to post-rift reactivation. Some Pliocene vertical movements have been evidenced by discovering localized gravity gliding of the salt and its Late Messinian (UU) and Early Pliocene overburden. To the South, crustal-scale southward tilting triggered along-strike gravity gliding of salt and cover recorded by upslope extension and downslope shortening. To the North, East of the Baronie Ridge, there was some post-salt crustal activity along a narrow N-S basement trough, bounded by crustal faults. The salt geometry would suggest that nothing happened after Messinian times, but some structural features (confirmed by analogue modelling) show that basement fault slip was accommodated by lateral salt flow, which thinned upslope and inflated downslope, while the overlying sediments remained sub-horizontal.

  12. Instructional Systems Development Model for Interactive Videodisc. Final Report.

    ERIC Educational Resources Information Center

    Campbell, J. Olin; And Others

    This third and final report on a 3-year project, which developed authoring and production procedures for interactive videodisc based on the Interservice Procedures for Instructional Systems Development (IPISD), reviews the current state of the art, provides an overview of the project, and describes two videodiscs made for the project and the…

  13. New York Partnership for Statewide Systems Change, 2000. Final Report.

    ERIC Educational Resources Information Center

    Price, Melissa

    This final report describes activities and accomplishments of the New York Partnership for Statewide Systems Change 2000, a 5-year project to increase and improve inclusive educational services to New York State students with severe disabilities at the secondary level and students with serious emotional disturbance at the elementary and middle…

  14. EE 290 Final Project Automatic Door Unlock Flush System (ADUF)

    E-print Network

    Kachroo, Pushkin

    Stalbaum 1 EE 290 Final Project Automatic Door Unlock Flush System (ADUF) Prepared For: Dr. Pushkin Stalbaum Date Submitted: 4/30/09 #12;Stalbaum 2 Abstract: The design of project ADUF is to improve bathroom stall to only one flush per visit. Project ADUF: Born a Las Vegas resident, I have witnessed

  15. The origin of along-rift variations in faulting and magmatism in the Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Keir, Derek; Bastow, Ian D.; Corti, Giacomo; Mazzarini, Francesco; Rooney, Tyrone O.

    2015-03-01

    The geological record at rifts and margins worldwide often reveals considerable along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate architecture and/or the evolving kinematics of extension during breakup may exert first-order control on magmatism. The Main Ethiopian Rift (MER) in East Africa provides an excellent opportunity to address this dichotomy: it exposes, along strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of volcanic cone density and rift obliquity along strike in the MER. By synthesizing these new data in light of existing geophysical, geochemical, and petrological constraints on magma generation and emplacement, we are able to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rifted margin. The timing of rift sector development, the three-dimensional focusing of melt, and the ponding of plume material where the rift dramatically narrows each influence igneous intrusion and volcanism along the MER. However, rifting obliquity plays an important role in localizing intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

  16. The Final Focus Test Beam laser referene system

    SciTech Connect

    Bressler, V.E.; Ruland, R.E.

    1993-05-01

    The original design for the SLAC linac included an alignment reference system with 270 diffraction gratings situated along the 3000 meter linac. These gratings have provided SLAC with a global reference line repeatable to within 200 micro meters. For the Final Focus Test Beam, this laser system has been extended and 13 new diffraction gratings have been installed. Improvements targets and the availability of new instruments allows us to evaluate the performance of the laser reference system at the 510 micro meter level. An explanation of the system and the results of our evaluation are presented.

  17. Left-lateral transtension along the Ethiopian Rift and constrains on the mantle-reference plate motions

    NASA Astrophysics Data System (ADS)

    Muluneh, Ameha A.; Cuffaro, Marco; Doglioni, Carlo

    2014-09-01

    We present the kinematics of the Ethiopian Rift, in the northern part of East African Rift System, derived from compilation of geodetic velocities, focal mechanism inversions, structural data analysis and geological profiles. In the central Ethiopian Rift, the GPS velocity field shows a systematic magnitude increase in ENE direction, and the incremental extensional strain axes recorded by earthquake focal mechanisms and fault slip inversion show ? N100°E orientation. This deviation between direction of GPS velocity vectors and orientation of incremental extensional strain is developed due to left lateral transtensional deformation along the NE-SW trending segment of the rift. This interpretation is consistent with the en-échelon pattern of tensional and transtensional faults, plus the distribution of the volcanic centers, and the asymmetry of the rift itself. We analyzed the kinematics of the Ethiopian Rift also relative to the mantle comparing the results in the deep and shallow hotspot reference frames. While the oblique orientation of the rift was controlled by the pre-existing lithospheric fabric, the two reference frames predict different kinematics of Africa and Somalia plates along the rift itself, both in magnitude and direction, and with respect to the mantle. However, the observed kinematics and tectonics along the rift are more consistent with a faster WSW-ward motion of Africa than Somalia observed in the shallow hotspot framework. The faster WSW motion of Africa with respect to Somalia plate is inferred to be due to the lower viscosity in the top asthenosphere (LVZ-low-velocity zone) beneath Africa. These findings have significant implication for the evolution of continental rifting in transtensional settings and provide evidence for the kinematics of the Ethiopian Rift in the context of the Africa-Somalia plate interaction in the mantle reference frame.

  18. Geodetic observations of the ongoing Dabbahu rifting episode: new dyke intrusions in 2006 and 2007

    Microsoft Academic Search

    Ian J. Hamling; Atalay Ayele; Laura Bennati; Eric Calais; Cynthia J. Ebinger; Derek Keir; Elias Lewi; Tim J. Wright; Gezahegn Yirgu

    2009-01-01

    A 60-km-long dyke intruded the Dabbahu segment of the Nubia-Arabia Plate boundary (Afar, Ethiopia) in 2005 September, marking the beginning of an ongoing rifting episode. We have monitored the continuing activity using Satellite Radar Interferometry (InSAR) and with data from Global Positioning System (GPS) instruments and seismometers deployed around the rift in response to the initial intrusion. These data show

  19. Along-margin variations of magmatism at volcanic passive margins: Numerical models of continental extension with rift propagation barriers

    NASA Astrophysics Data System (ADS)

    Koopmann, Hannes; Brune, Sascha; Franke, Dieter; Breuer, Sonja

    2015-04-01

    Seaward-dipping reflectors (SDRs) constitute a first-order feature of volcanic rifted margins and are imaged in seismic reflection profiles of the North and South Atlantic. Recent studies describe distinct along-strike variations in the distribution of SDRs, where abundance of volcanic material could be spatially linked to transfer fault systems. These segmented the propagating rift that later developed into the ocean, and are interpreted as rift propagation barriers. Here we present 3d numerical forward models of a segmented rift system suggesting a causal link between segment boundaries and magmatic volume variations. Our results explain along-strike variations in magmatism by significant rift-parallel mantle flow across segment boundaries. This rift-parallel flow is caused by a lateral pressure gradient between sequentially opening segments. The along-strike flow of hot material near the segment boundary leads to elevated temperature and thus decompression melting if compared to the segment interior. This takes place without enhancing crustal thinning near the transfer zones and generates peaks in overall pre-break-up melt volumes. We conclude that delayed rift propagation at inherited structures can play an important part in enhancing and localizing volcanic activity by controlling the mantle flow beneath the rift axis.

  20. A Review of New and Anticipated High-Resolution Paleoclimate Records from the East African Rift System and Their Implications for Hominin Evolution and Demography

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.

    2014-12-01

    Our understanding of Late Tertiary/Quaternary climate and environmental history in East Africa has, to date, largely been based on outcrop and marine drill core records. Although these records have proven extremely valuable both in reconstructing environmental change and placing human evolution in an environmental context, their quality is limited by resolution, continuity, uncertainties about superposition and outcrop weathering. To address this problem, long drill core records from extant ancient lakes and lake beds are being collected by several research groups. Long cores (up to 100s of m.) from basin depocenters in both the western and eastern rifts are now available spanning nearly the entire latitudinal range of the East Africa Rift. This network of core records, especially when coupled with outcrop data, is providing an opportunity to compare the nature of important global climate transitions (especially glacial/interglacial events and precessional cycles) across the continent, thereby documenting regional heterogeneity in African climate history. Understanding this heterogeneity is critical for realistically evaluating competing hypotheses of environmental forcing of human evolution, and especially ideas about the dispersal of anatomically modern humans out of Africa in the early Late Pleistocene. In particular, understanding the hydrological and paleoecological history of biogeographic corridors linking eastern Africa, the Nile River Valley and the Levant is likely to be vastly improved through comparative analysis of these new drill cores over the next few years. Because we do not a priori know the primary forcing factors affecting this environmental history, it will essential to develop the best possible age models, employing multiple and novel geochronometric tools to make these comparisons.

  1. Rio Grande rift: problems and perspectives

    SciTech Connect

    Baldridge, W.S.; Olsen, K.H.; Callender, J.F.

    1984-01-01

    Topics and ideas addressed include: (1) the regional extent of the Rio Grande rift; (2) the structure of the crust and upper mantle; (3) whether the evidence for an axile dike in the lower crust is compelling; (4) the nature of faulting and extension in the crust; and (5) the structural and magmatic development of the rift. 88 references, 5 figures.

  2. Evidence of Ancient Rifts Beneath Texas

    NASA Astrophysics Data System (ADS)

    Irie, K.; Velasco, A. A.

    2011-12-01

    Continental rifts are defined as geological features where Earth's lithosphere is pulled away by surface expansion of the Earth. Their physiographic features include linear rift valleys associated with active volcanism. Many rifts fail to split a continent and ancient rifts that failed to split can be found by using seismic waves to image these ancient structures. Using seismic data collected by EarthScope USArray stations in Texas, we calculate teleseismic receiver functions and utilized surface wave dispersion curves to simultaneously invert for the velocity structure beneath each seismic station. With the calculated receiver functions, we generate maps to show preliminary 3-D crust/upper mantle boundary structure, the velocity ratio of P and S waves, and the S-wave velocity structure. We expect to characterize the ancient rift zones that exist in Texas and compare these results with the Rio Grande Rift in New Mexico. The goal for this comparison is to determine whether Rio Grande rift is still active or doomed to be another failed rift.

  3. Geodynamic models of the Wilson Cycle: From rifts to mountains to rifts

    NASA Astrophysics Data System (ADS)

    Buiter, Susanne; Tetreault, Joya; Torsvik, Trond

    2015-04-01

    The Wilson Cycle theory that oceans close and reopen along the former suture is a fundamental concept in plate tectonics. The theory suggests that subduction initiates at a passive margin, closing the ocean, and that future continental extension localises at the ensuing collision zone. Each stage of the Wilson Cycle will therefore be characterised by inherited structural and thermal heterogeneities. Here we investigate the role of Wilson Cycle inheritance by considering the influence of (1) passive margin structure on continental collision and (2) collision zones on passive margin formation. Passive margins may be preferred locations for subduction initiation because inherited faults and areas of exhumed serpentinized mantle may weaken a margin enough to localise shortening. If subduction initiates at a passive margin, the shape and structure of the passive margins will affect future continental collision. Our review of present-day passive margins along the Atlantic and Indian Oceans reveals that most passive margins are located on former collision zones. Continental break-up occurs on relatively young sutures, such as Morocco-Nova Scotia, and on very old sutures, such as the Greenland-Labrador and East Antarctica-Australia systems. This implies that it is not always post-collisional collapse that initiates the extensional phase of a Wilson Cycle. We highlight the impact of collision zone inheritance on continental extension and rifted margin architecture. We show numerical experiments of one Wilson Cycle of subduction, collision, and extension. Subduction initiates at a tapered passive margin. Closure of a 60 Ma ocean leads to continental collision and slab break-off, followed by some tens of kilometres of slab eduction. Mantle flow above the sinking detached slab enhances deformation in the rift area. The resulting rift exposes not only continental crust, but also subduction-related sediments and oceanic crust remnants. Renewed subduction in the post-collision phase is enabled by lithosphere delamination and slab rollback, leading to back-arc extension in a style similar to the Tyrrhenian Sea.

  4. Controls on the development and evolution of transfer zones: the influence of basement structure and sedimentary thickness in the Suez rift and Red Sea

    NASA Astrophysics Data System (ADS)

    Moustafa, Adel R.

    1997-06-01

    Detailed field mapping of the northern part of the Gebel Um Hammad-Gebel Duwi area on the western margin of the Red Sea indicates oppositely dipping rift blocks separated by a 60-km long, WNW-ESE-oriented, reactivated pre-rift fault of Late Precambrian age parallel to the Najd fault system of the Arabian-Nubian Shield. This fault forms the Sudmain transfer zone between the oppositely tilted half-grabens in the northwestern Red Sea region and is associated by a SE-plunging syncline. This pre-rift fault was reactivated by dextral transtension during the Late Oligocene rift opening. Compared to the transfer zones of the Suez rift, the Sudmain transfer zone is narrower. The Gebel Sufr El Dara transfer zone (between the southern and central half-grabens of the Suez rift) is 20 km wide and is also controlled by pre-rift faults oriented ENE-WSW. The latter were reactivated by left-lateral slip during the rift opening. On the other hand, the Gharandal transfer zone (northern part of the Suez rift) is 40-60 km wide and is not affected by the pre-rift faults in the Precambrian basement, perhaps owing to the large thickness of pre-rift sedimentary rocks in this area. The location of the Gharandal transfer zone was controlled by a NE-SW-oriented 'Syrian arc' fold. This study suggests that the northward increase in the width of transfer zones as well as the northward decrease in the length of half-grabens in the Suez-northern Red Sea rift system are related to the corresponding increase in the thickness of pre-rift Phanerozoic sedimentary section from about 400 m in the south to about 1800 m in the north.

  5. Recent and Hazardous Volcanic Activity Along the NW Rift Zone of Piton De La Fournaise Volcano, La Réunion Island

    NASA Astrophysics Data System (ADS)

    Walther, G.; Frese, I.; Di Muro, A.; Kueppers, U.; Michon, L.; Metrich, N.

    2014-12-01

    Shield volcanoes are a common feature of basaltic volcanism. Their volcanic activity is often confined to a summit crater area and rift systems, both characterized by constructive (scoria and cinder cones; lava flows) and destructive (pit craters; caldera collapse) phenomena. Piton de la Fournaise (PdF) shield volcano (La Réunion Island, Indian Ocean) is an ideal place to study these differences in eruptive behaviour. Besides the frequent eruptions in the central Enclos Fouqué caldera, hundreds of eruptive vents opened along three main rift zones cutting the edifice during the last 50 kyrs. Two short rift zones are characterized by weak seismicity and lateral magma transport at shallow depth (above sea level). Here we focus on the third and largest rift zone (15km wide, 20 km long), which extends in a north-westerly direction between PdF and nearby Piton des Neiges volcanic complex. It is typified by deep seismicity (up to 30 km), emitting mostly primitive magmas, testifying of high fluid pressures (up to 5 kbar) and large-volume eruptions. We present new field data (including stratigraphic logs, a geological map of the area, C-14 dating and geochemical analyses of the eruption products) on one of the youngest (~6kyrs) and largest lava field (Trous Blancs eruption). It extends for 24km from a height of 1800 m asl, passing Le Tampon and Saint Pierre cities, until reaching the coast. The source area of this huge lava flow has been identified in an alignment of four previously unidentified pit craters. The eruption initiated with intense fountaining activity, producing a m-thick bed of loose black scoria, which becomes densely welded in its upper part; followed by an alternation of volume rich lava effusions and strombolian activity, resulting in the emplacement of meter-thick, massive units of olivine-basalt alternating with coarse scoria beds in the proximal area. Activity ended with the emplacement of a dm-thick bed of glassy, dense scoria and a stratified lithic breccia, marking the pit crater foundering. Interestingly, this final stage compares well with the formation of pit craters on Kilauea volcano, Hawaii. Reoccurring of similar activity on the NW rift represents a major source of risk, for this now densely populated region (more than 150,000 people living in the affected area).

  6. The Sagatu Ridge dike swarm, Ethiopian rift margin. [tectonic evolution

    NASA Technical Reports Server (NTRS)

    Mohr, P. A.; Potter, E. C.

    1976-01-01

    A swarm of dikes forms the core of the Sagatu Ridge, a 70-km-long topographic feature elevated to more than 4000 m above sea level and 1500 m above the level of the Eastern (Somalian) plateau. The ridge trends NNE and lies about 50 km east of the northeasterly trending rift-valley margin. Intrusion of the dikes and buildup of the flood-lava pile, largely hawaiitic but with trachyte preponderant in the final stages, occurred during the late Pliocene-early Pleistocene and may have been contemporaneous with downwarping of the protorift trough to the west. The ensuing faulting that formed the present rift margin, however, bypassed the ridge. The peculiar situation and orientation of the Sagatu Ridge, and its temporary existence as a line of crustal extension and voluminous magmatism, are considered related to a powerful structural control by a major line of Precambrian crustal weakness, well exposed further south. Transverse rift structures of unknown type appear to have limited the development of the ridge to the north and south.

  7. Faulting migration and localization at fast extension rates during rifting of the Tyrrhenian Basin have lead to break up and mantle exhumation

    NASA Astrophysics Data System (ADS)

    Ranero, C. R.; Sallares, V.; Vendrell, M. G.; Prada, M.; Grevemeyer, I.; Zitellini, N.

    2013-12-01

    The Tyrrhenian basin has been formed by extension of continental lithosphere driven by roll back of the Ionian slab across the mantle during the last ~12 Ma. Rifting opened from west to east, achieving increasing stretching factors from north to south. Extension is currently not active but coincided wide-angle seismic (WAS) and multichannel reflection seismic (MCS) transects of the structure attained at different stretching (beta) factors provide information of the formation processes. The seismic information is analyzed in a 3D context with the integration of multibeam bathymetry that covers the entire basin. Analysis of the WAS data has provided a characterization of the type of crust and its lateral distribution. The northernmost region stopped rifting at beta factors about 1.8. Increasing extension towards the south continues until full crustal separation. Break up was followed by formation of ocean crust. Faulting activity migrated and localized in a different region of the rift system causing a second episode of continental break that in this case was followed by extensive mantle exhumation. The final structure displays two conjugate continental margins separated by an intervening region of ocean crust that laterally abruptly changes to exhumed mantle. Analysis of the MCS images indicates the tectonics processes involved during rifting and also the timing and rates of extension. Seismic stratigraphy calibrated with drill holes indicates that the north to south changes in structure are related mainly to changes in extension rates rather than on large changes in the age of rifting. In addition, the seismic stratigraphy indicates that the change from oceanic back arc spreading to mantle exhumation occurred at fast opening rates, comparable to those of fast spreading centers. Extensive mantle exhumation was followed by an episode of localized basaltic magmatism that stopped possibly coeval with the end of the extension processes in the region. The lateral distribution of rock types, and fast extension rates leading mantle exhumation challenge current conceptual models of continental rifting. We speculate that the spatially abrupt changes in structure, and anomalously fast mantle exhumation followed by basaltic volcanism are related to the three-dimensional structure of the overriding plate. We speculate that the evolution of tectonic and magmatic processes may have been controlled changes in subduction-system dynamics combined with lateral heterogeneities in the thermal and chemical structure of the mantle, and re-fertilization processes related to the slab fluids .

  8. Three-Dimensional (3D) Structure of the Malawi Rift from Remote Sensing and Geophysics Data

    NASA Astrophysics Data System (ADS)

    Salmi, Haifa S. Al; Abdelsalam, Mohamed G.

    2014-05-01

    The Malawi rift is a Cenozoic aged rift representing the southernmost segment of the Western Branch of the East African Rift System (EARS). This rift extends over 900 km from the Rungwe volcanic province (Tanzania) in the north to the Urema graben (Mozambique) to the south, with an average width of 50km. It traverses a complex array of Proterozoic orogenic belts of different ages and Permo-Triassic (Karoo) and cretaceous graben systems. The rift's depth is between 3 to 5km partitioned between the topographic escarpment and the sediments fill. The basin's subsidence reflects accumulation of sediments and rift flank uplift. Regardless of its importance in understanding rift tectonics, especially in Africa, the three-dimensional (3D) geometry of the rift is not fully understood. This research presents results from detailed analysis of Digital Elevation Model (DEM) extracted from the Shuttle Radar Topography Mission (SRTM) data to map surface morphological expressions of the entire basin. These results are compared with available seismic data to provide along-strike and at depth variation of the geometry of the border fault systems, nature of rift segmentation and alternation of the polarity of half-grabens, and the partitioning of displacement between exposed and sub-surface border faults. Our results show the following: (1) Surface expression of border faults show that, unlike the typical half-graben en-echelon rift model, where half-graben segments with opposite polarity are linked together through accommodation zones indicative of soft linkage, the Malawi rift shows along-strike segmentation by changing geometry from half-graben to full graben geometry. A half-graben with specific polarity passes through a full-graben geometry before giving place to a half-graben with the opposite polarity. The length of half-gaben and graben segments becomes shorter as the rift progresses from north to south, and this is accompanied by a decrease in displacement within border faults. This geometry is indicative of the propagation of border faults through hard linkage. (2) The continuation of border faults at the subsurface show patterns consistent with those observed at the surface. At the sub-surface, the general trend of rift segmentation, formation of full grabens at the end of each segment, and the decreases in the length of the segments from north to south is consistent with observations at the surface. This suggests the homogeneity of strain accommodation throughout the depth of border faults. (3) Zones of segmentation of the Malawi rift coincide with regions where the pre-existing structures (both the Proterozoic basement and the Karoo grabens) are at high angle to the trend of the rift whereas well-developed border faults of the basin coincides with N-trending pre-existing structures sub-parallel to the rift.

  9. The Effect of Continental Rifting on Lithospheric Fabric: Evidence From the Mid-Continent Rift

    NASA Astrophysics Data System (ADS)

    Ola, O. B.; Frederiksen, A. W.

    2013-12-01

    The Mid-Continent Rift (MCR) is a major feature of the North American continent: a 1.1 Ga rift that failed to develop into an ocean basin. Though the crustal expression of the rift is preserved, it is impossible to determine from crustal evidence the nature of the lithospheric contribution to the rifting process. The installation of teleseismic instrumentation through the Superior Province Rifting Earthscope Experiment (SPREE) is allowing investigation of the lithosphere beneath the MCR, which will help in addressing questions about the initiation, propagation, and failure of the rift structure. We focus on observing the strength and orientation of lithospheric fabric through measurements of the splitting of teleseismic SK(K)S waves at instruments in and near the rift axis, using the method of Silver and Chan (1991) to find the set of parameters that optimally restores linear particle motion. Our results show that the fast direction varies only subtly across the study area, with the exception of localized outliers. The fast direction is close to the direction of absolute plate motion, but shows greater scatter within the MCR itself. Split times show strong variations (from near-zero to 1.5 s), with lower values within the rift; the Nipigon Embayment stands out as a particularly low-anisotropy region. These measurements suggest that the rifting process thinned the lithosphere or reset its fabric, indicating significant lithospheric participation in the rifting process.

  10. Simulated coal gas MCFC power plant system verification. Final report

    SciTech Connect

    NONE

    1998-07-30

    The objective of the main project is to identify the current developmental status of MCFC systems and address those technical issues that need to be resolved to move the technology from its current status to the demonstration stage in the shortest possible time. The specific objectives are separated into five major tasks as follows: Stack research; Power plant development; Test facilities development; Manufacturing facilities development; and Commercialization. This Final Report discusses the M-C power Corporation effort which is part of a general program for the development of commercial MCFC systems. This final report covers the entire subject of the Unocal 250-cell stack. Certain project activities have been funded by organizations other than DOE and are included in this report to provide a comprehensive overview of the work accomplished.

  11. Joint Technical Architecture for Robotic Systems (JTARS)-Final Report

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Holloway, Sidney E., III

    2006-01-01

    This document represents the final report for the Joint Technical Architecture for Robotic Systems (JTARS) project, funded by the Office of Exploration as part of the Intramural Call for Proposals of 2005. The project was prematurely terminated, without review, as part of an agency-wide realignment towards the development of a Crew Exploration Vehicle (CEV) and meeting the near-term goals of lunar exploration.

  12. The final phase of the ATLAS control system upgrade

    SciTech Connect

    Munson, F.; Kramer, S.; Tieman, B.

    1995-12-01

    The ATLAS facility (Argonne Tandem-Linac Accelerator System) is located at the Argonne National Laboratory. The facility is a tool used in nuclear and atomic physics research focusing primarily on heavy-ion physics. Due to the complexity of the operation of the facility, a computerized control system has always been required. The nature of the design of the accelerator has allowed the accelerator to evolve over time to its present configuration. The control system for the accelerator has evolved as well, primarily in the form of additions to the original design. A project to upgrade the ATLAS control system replacing most of the major original components was first reported on in the Fall of 1992 during the Symposium Of North Eastern Accelerator Personnel (SNEAP) at the AECL, Chalk River Laboratories. A follow-up report was given in the Fall of 1993 at the First Workshop on Applications of Vsystem Software and Users` Meeting at the Brookhaven National Laboratory. This project is presently in its third and final phase. This paper briefly describes the ATLAS facility, summarizes the control system upgrade project, and explains the intended control system configuration at the completion of the final phase of the project.

  13. A volcanic province near the western termination of the Charlie-Gibbs Fracture Zone at the rifted margin, offshore northeast Newfoundland

    NASA Astrophysics Data System (ADS)

    Keen, C. E.; Dafoe, L. T.; Dickie, K.

    2014-06-01

    A mid-Cretaceous to Late Cretaceous volcanic province, named here the Charlie-Gibbs Volcanic Province, is described near the western termination of the Charlie-Gibbs Fracture Zone, against the rifted continental margin northeast of Newfoundland. We used seismic data to map 14 volcanic seamounts, now buried below younger sediments. They rise 0.7 to 2 s two-way time (twt) above the surrounding basement level and are about 8-30 km wide. Some are conical while others are more flat-topped. Underlying igneous units resembling flows and sills are also observed. Based on magnetic modeling of the large positive magnetic anomalies associated with the seamounts, the total thickness of igneous rocks can locally reach about 8 km. This magmatism occurred in the vicinity of the Charlie-Gibbs Fracture Zone and extends about 150 km to the north along the rifted continental margin. The volcanic province also forms the northern boundary of the Jurassic-Early Cretaceous Orphan Basin, along a major transform margin there. Truncation of rift-related structures which extend to deep crustal levels is observed at the transform, along trends similar to those of prerift Appalachian terrane boundaries on the adjacent shelf. This suggests the existence of a preexisting weak zone in the continental lithosphere within which a complex strike-slip fault system developed and may have controlled the location of final continental breakup between the Rockall and North American plates in the Late Cretaceous.

  14. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Trehu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R. F.; Sexton, J.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  15. From conjugate volcanic rifted margins to micro-continent formation: Double breakup development of the Norwegian-Greenland Sea

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Blischke, Anett; Nasuti, Aziz; Olesen, Odleiv; Sand, Morten; Sveinn Arnarson, Thorarinn

    2014-05-01

    We re-evaluate the structure and spreading evolution of the Norwegian-Greenland Sea and surrounding volcanic (rifted) margins based on new high-resolution aeromagnetic surveys. The new dataset combined with long-offset seismic and gravity data allow us to have a better understanding of the structure and evolution of the conjugate margin systems in the Norwegian-Greenland Sea from the rifting to the drifting stage. We particularly focus on the new JAS-12 aeromagnetic survey acquired between the Aegir Ridge and the Jan Mayen micro-continent, which was initially part of the Møre-Vøring-Greenland rift system. Combined with the previous NB-07 and JAS-05 surveys, our final compilation fully covers the continent-ocean transition and the whole oceanic spreading system from the Møre margin to the conjugate Jan Mayen micro-continent with high quality, high-resolution and reliable magnetic data. The new dataset allowed a new, consistent and precise interpretation of the magnetic polarity chrons and oceanic fractures, providing the basis for more accurate rotation poles estimation, and better basin and crustal reconstructions between Norway, Greenland and the Jan Mayen micro-continent. This dataset allowed us to clarify the pre- and post-breakup configurations of the rift system and discuss the mechanisms involved during the onset of the two phases of breakup leading to the micro-continent formation. Our observations and models suggest that the pre-breakup rift system evolved through a significant Late Jurassic-Cretaceous thinning phase. This episode led to a significant thinning of the continental crust and an exhumation of pre-existing lower crust. However, we have not been able to identify and/or validate any clear domains of exhumed and denudated serpentinised mantle. The first Eocene breakup is mostly characterised by severe magmatism (sill, SDRS). Lithospheric/asthenospheric processes leading to rift localisation do not necessarily represent a continuum of lithospheric deformation with the precedent thinning system. Diking and disconnected lithospheric plumbing are proposed to explain the Eocene breakup. After the first phase of continental breakup, two major phases of spreading influenced the Norwegian-Greenland Sea. Phase I (from C24 to C21r, ~54 to 49 Ma) marks the earliest phase of spreading, probably initiated in the central and outer part of the Møre Basin. During this period, the formation of overlapping systems and pseudo-fault development, indirectly influenced by the proto-margin segmentation, suggests the presence of additional micro-plates in the Norwegian-Greenland Sea. We also observed a significant change in the oceanic spreading system in the late Early Eocene. Based on observations from the surrounding areas, this supports a major and distinct tectonic and magmatic event in the Norwegian-Greenland Sea at around C21r (49-47.9 Ma), the beginning of a second phase. During Phase II, from C21r-C12 or possibly younger (48-<32 Ma) of the Norway Basin development, spreading rates decreased, spreading direction changed leading to the formation of unexpected N-S oriented oceanic fracture zones. Phase II probably coincides with the climax of extension and possibly local spreading that is suspected in the southern part of the Jan Mayen micro-continent forming a complex area of oceanic, transitional and continental fragments before its complete dislocation from East Greenland in Latest Oligocene.

  16. Origin of three-armed rifts in volcanic islands: the case of El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Galindo Jiménez, Inés; Becerril Carretero, Laura; Martí Molist, Joan; Gudmundsson, Agust

    2015-04-01

    Rifts zones in volcanic oceanic islands are common structures that have been explained through several theories/models. However, despite all these models it is as yet unclear whether it is the intense intrusive activity or the sector collapses that actually control the structural evolution and geometry of oceanic-island rift zones. Here we provide a new hypothesis to explain the origin and characteristics of the feeding system of oceanic-island rift zones based on the analysis of more than 1700 surface, subsurface (water galleries), and submarine structural data from El Hierro (Canary Islands). El Hierro's geological structure is primarily controlled by a three-armed rift-zone, the arms striking NE, WSW and S. Between the rift axes there are three valleys formed during huge landslides: El Golfo, El Julan, and Las Playas. Our results show: (1) a predominant NE-SW strike of structural elements, which coincides with the main regional trend of the Canary Archipelago as a whole; (2) a clear radial strike distribution of structural elements for the whole volcanic edifice (including submarine flanks) with respect to the centre of the island; (3) that the rift zones are mainly subaerial structures and do not propagate through the submarine edifice; (4) that it is only in the NE rift that structures have a general strike similar to that of the rift as a whole, and; (5) that in the W and S rifts there is not clear main direction, showing the structural elements in the W rift a fan distribution coinciding with the general radial pattern in the island as a whole. Based on these data, we suggest that the radial-striking structures reflect comparatively uniform stress fields that operated during the constructive episodes, mainly conditioned by the combination of overburden pressure, gravitational spreading, and magma-induced stresses. By contrast, in the shallower parts of the edifice, that is, the NE-SW, N-S and WNW-ESE-striking structures, reflect local stress fields related to the formation of mega-landslides and mask the general radial pattern. Thus, the rift zones on El Hierro are shallow structures that commonly capture and divert ascending magma towards different parts of the island but do not condition magma ascent at depth.

  17. Lena Trough (Arctic Ocean): Active mantle exhumation on a continental rifted margin

    Microsoft Academic Search

    J. E. Snow; E. Hellebrand; A. von der Handt; F. Nauret

    2007-01-01

    Lena Trough is the northern continuation of the Mid-Atlantic Ridge through Fram Strait and into the Arctic Ocean. The rifting of Lena Trough began in the Miocene, and significantly, is the final and the most recent event in the separation of the North American from the Eurasian continent. Lena Trough was mapped in 1999, 2001 and 2004 by PFS Polarstern

  18. Lena Trough (Arctic Ocean): Active mantle exhumation on a continental rifted margin

    Microsoft Academic Search

    J. E. Snow; E. Hellebrand; A. von der Handt; F. Nauret

    2004-01-01

    Lena Trough is the northern continuation of the Mid-Atlantic Ridge through Fram Strait and into the Arctic Ocean. The rifting of Lena Trough began in the Miocene, and significantly, is the final and the most recent event in the separation of the North American from the Eurasian continent. Lena Trough was mapped in 1999, 2001 and 2004 by PFS Polarstern

  19. Effects of Oblique Extension and Inherited Structure Geometry on Transfer Zone Development in Continental Rifts: A 4D Analogue Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zwaan, Frank; Schreurs, Guido

    2015-04-01

    INTRODUCTION Inherited structures in the crust form weak zones along which deformation will focus during rifting. Along-strike connection of rift segments may occur along transfer zones, as observed in East Africa. Previous studies have focused on numerical and analog modeling of transfer zones (e.g. Acocella et al., 1999, Allken et al., 2012). We elaborate upon those by investigating the effects of 1) oblique extension and 2) the geometry of linked and non-linked inherited structures on the development of transfer zones. A further improvement is the use of X-ray Computer Tomography (CT) for detailed internal analysis. METHODS The experimental set-up (see Schreurs & Colleta, 1998) contains two sidewalls with a base of compressed foam and plexiglass bars stacked in between. Decompressing this base results in distributed deformation of the overlying model materials. Deforming the model laterally with a mobile base plate produces the strike-slip components for oblique extension. Divergence velocities are in the order of 5 mm/h, translating to ca. 5 mm/Ma in nature, and 1 cm represents 10 km. A 2 cm thick layer of viscous silicone represents the ductile lower crust and a 2 cm quartz sand layer the brittle upper crust. Inherited structures are created with thin lines of silicon laid down on top of the basal silicone layer. Several models were run in a CT-scanner to reveal the 3D evolution of internal structures with time, hence 4D. RESULTS Localization of deformation along the pre-defined structures works well. The models show that the structural style changes with extension obliquity, from wide rift structures to narrower rifts with internal oblique-slip and finally strike-slip structures. Furthermore, rift offset is an important parameter influencing the occurrence of linkage: increasing rift offset decreases linkage as previously observed by Allken et al. (2012). However, increasing divergence obliquity promotes transfer zone formation, as does the presence of rift-connecting inherited zones, whose strike is at an angle of >15° with respect to the divergence direction. CT-analysis indicates that faulting initiated shortly after the start of the experiments, while structures become only clearly visible at the surface only after 1:30h (4% extension). Rift boundary fault angles tend to decrease from an initial 70° to ca. 55° after 4:00h (10% extension). Further CT-analysis will reveal the 3D evolution of the transform zones in more detail. REFERENCES Acocella, V., Faccenna, C., Funiciello, R., Rossetti, F., 1999. Sand-box modelling of basement-controlled transfer zones in extensional domains. Terra Nova, Vol. 11, No. 4, pp 149-156 Allken, V., Huismans, R. S., Thieulot, C., 2012. Factors controlling the mode of rift interaction in brittle-ductile coupled systems: A 3D numerical study, Geochem. Geophys. Geosyst. Vol. 13, Q05010 Schreurs, G., Colletta, B. (1998) Analogue modelling of faulting in zones of continental transpression and transtension. In: Holdsworth, R. E., Strachan R. A., Dewey, J. F., (eds.) 1998. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications. No. 135, pp 59-79

  20. Evolution of the Lake Victoria basin in the context of coeval rift initiation in East Africa: a 3D numerical model approach

    NASA Astrophysics Data System (ADS)

    Wichura, Henry; Quinteros, Javier; Melnick, Daniel; Brune, Sascha; Schwanghart, Wolfgang; Strecker, Manfred R.

    2015-04-01

    Over the last four years sedimentologic and thermochronologic studies in the western and eastern branches of the Cenozoic East African Rift System (EARS) have supported the notion of a broadly contemporaneous onset of normal faulting and rift-basin formation in both segments. These studies support previous interpretations based on geophysical investigations from which an onset of rifting during the Paleogene had been postulated. In light of these studies we explore the evolution of the Lake Victoria basin, a shallow, unfaulted sedimentary basin centered between both branches of the EARS and located in the interior of the East African Plateau (EAP). We quantify the fluvial catchment evolution of the Lake Victoria basin and assess the topographic response of African crust to the onset of rifting in both branches. Furthermore, we evaluate and localize the nature of strain and flexural rift-flank uplift in both branches. We use a 3D numerical forward model that includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology. The model is able to reproduce the flexural response of variably thick lithosphere to rift-related deformation processes such as lithospheric thinning and asthenospheric upwelling. The model domain covers the entire EAP and integrates extensional processes in a heterogeneous, yet cold and thick cratonic block (Archean Tanzania craton), which is surrounded by mechanically weaker Proterozoic mobile belts, which are characterized by thinner lithosphere ("thin spots"). The lower limits of the craton (170 km) and the mobile belts (120 km) are simulated by different depths of the 1300 °C lithosphere-asthenosphere boundary. We assume a constant extension rate of 4 mm/a throughout the entire simulation of 30 Ma and neglect the effect of dynamic topography and magmatism. Even though the model setup is very simple and the resolution is not high enough to calculate realistic rift-flank uplift, it intriguingly reveals important topographic trends. The model shows that elevation differences of 120 to 180 m between the plateau interior and bordering rift shoulders are pronounced enough to form a closed basin after 6.5 Ma of extension. By that time the catchment area is already comparable to the present-day Lake Victoria catchment. Moreover, the final modeled topography, including 1000 m of dynamic and 500 m of pre-plume topography, yields a base basin elevation of 1110 m, which is also in good agreement with the present-day elevation of Lake Victoria. The combined effects of the formation of an extensive lacustrine depositional environment in the interior of the EAP after 6.5 Ma and rift-shoulder uplift may have forced far-reaching environmental impacts. These may have included the onset of the Lake Victoria microclimate, the influence of the basin and surrounding orographic barriers on precipitation patterns in East Africa, and the establishment of a unique flora and fauna.

  1. Mine electrical systems evaluation: mine power system performance. Final report

    Microsoft Academic Search

    R. Stefanko; L. A. Morley

    1974-01-01

    The report covers a literature review, description of continuous miner research, cable temperature measurements, and traction locomotive research. The literature review considers induction motor performance, motor characteristics, effect of temperature on resistance, voltage regulation, and previous Pennsylvania State mine electrical systems studies. Instrumentation and analysis techniques developed over a three-year period are described. Numerous data from mine measurements are analyzed.

  2. Rift Valley Fever in Small Ruminants, Senegal, 2003

    PubMed Central

    Lancelot, Renaud; Thiongane, Yaya; Sall, Baba; Diaité, Amadou; Mondet, Bernard

    2005-01-01

    During the 2003 rainy season, the clinical and serologic incidence of Rift Valley fever was assessed in small ruminant herds living around temporary ponds located in the semi-arid region of the Ferlo, Senegal. No outbreak was detected by the surveillance system. Serologic incidence was estimated at 2.9% (95% confidence interval 1.0–8.7) and occurred in 5 of 7 ponds with large variations in the observed incidence rate (0%–20.3%). The location of ponds in the Ferlo Valley and small ponds were correlated with higher serologic incidence (p = 0.0005 and p = 0.005, respectively). Rift Valley fever surveillance should be improved to allow early detection of virus activity. Ruminant vaccination programs should be prepared to confront the foreseeable higher risks for future epidemics of this disease. PMID:16318720

  3. Geodynamic significance of the TRM segment in the East African Rift: active tectonics and paleostress in western Tanzania

    NASA Astrophysics Data System (ADS)

    Delvaux, D.; Kervyn, F.; Macheyeki, A. S.; Temu, E. B.

    2012-04-01

    The Tanganyika-Rukwa-Malawi (TRM) rift segment in western Tanzania is a key sector for understanding the opening dynamics of the East African rift system (EARS). In an oblique opening model, it is considered as a dextral transfer fault zone that accommodates the general opening of the EARS in a NW-SE direction. In an orthogonal opening model, it accommodates pure dip-slip normal faulting with extension orthogonal to the rift segments and a general E-W extension for the entire EARS. We investigated the active tectonic architecture and paleostress evolution of the Ufipa plateau and adjacent Rukwa basin and in order to define their geodynamic role in the development of the EARS and highlight their pre-rift brittle tectonic history. The active fault architecture, fault-kinematic analysis and paleostress reconstruction show that the recent to active fault systems that control the rift structure develop in a pure extensional setting with extension direction orthogonal to the trend of the TRM segment. Two pre-rift brittle events are evidenced. An older brittle thrusting is related to the interaction between the Bangweulu block and the Tanzanian craton during the late Pan-African (early Paleozoic). It was followed by a transpressional inversion during the early Mesozoic. This inversion stage caused dextral strike-slip faulting along the fault systems that now control the major rift structures. It has been erroneously interpreted as related to the late Cenozoic EARS which instead is characterized by pure normal faulting.

  4. Paleomagnetism and magnetic fabric of the Eastern Cordillera of Colombia: Evidence for oblique convergence and nonrotational reactivation of a Mesozoic intracontinental rift

    NASA Astrophysics Data System (ADS)

    Jiménez, Giovanny; Speranza, Fabio; Faccenna, Claudio; Bayona, German; Mora, Andres

    2014-11-01

    We report the paleomagnetic and magnetic fabric results of 58 sites from Cretaceous-Miocene marine and continental strata from the Eastern Cordillera (EC) and the Cucuta zone, at the junction between the Santander Massif and the Merida Andes of Colombia. The EC is an intracontinental doubly vergent range inverting a Triassic to Early Cretaceous rift zone. Twenty-three sites reveal nonsystematic tectonic rotations, including unrotated areas of the EC range with respect to stable South America. Our data show that the EC inverted a NNE oriented rift zone and that the orientation of the Mesozoic rift and the mountain chain roughly correspond. Interestingly, magnetic lineations from anisotropy of magnetic susceptibility analysis do not trend parallel to the chain but rather are oblique to the main orogenic trend. By also considering GPS evidence of a ~1 cm/yr ENE displacement of central western Colombia accommodated by the EC, we suggest that the Miocene-Recent deformation event of this belt arises from ENE oblique convergence reactivating a NNE oriented rift zone. Oblique shortening was likely partitioned into pure dip-slip shear characterizing thick-skinned frontal thrust sheets (well known along both chain fronts) and by range-parallel right-lateral strike-slip faults, which have not been identified yet, but likely exist in the axial part of the EC. Finally, the 35° ± 9° clockwise rotation observed in four post-Miocene magnetically overprinted sites from the Cucuta zone reflects late Cenozoic and ongoing right-lateral strike-slip displacement occurring along faults parallel to the Boconó fault system, possibly connected with the right-lateral faults inferred to exist along the axial part of the EC.

  5. Late Miocene calc-alkalic volcanism in northwestern Mexico: an expression of rift or subduction-related magmatism?

    NASA Astrophysics Data System (ADS)

    Mora-Klepeis, Gabriela; McDowell, Fred W.

    2004-12-01

    Magmatism in NW Mexico records a Late Miocene transformation from convergence to extension in the Gulf of California rift system. Miocene calc-alkalic rocks in the Baja California peninsula are related to the final subduction of the Farallon plate system, but the heterogeneous nature of volcanism younger than 12.5 Ma has led to conflicting tectonic interpretations. Neogene volcanic rocks in the Sierra Santa Ursula, Sonora, were emplaced in three magma pulses, according to mapping, K-Ar geochronology, and geochemistry. From 23.5 to 15 and 14 to 11.4 Ma, calc-alkalic rocks show an arc-like signature. The 12-11 Ma calc-alkalic dacites, however, are characterized by higher K, Rb, 87Sr/ 86Sr, and light REE abundances than are the older rocks. The timing, petrography, and geochemistry of the 12-11 Ma rocks are interpreted to reflect postsubduction magmatism. A change in magma chemistry from predominantly calc-alkalic to tholeiitic rocks at 10.3 Ma corresponds to orthogonal extension during early Gulf of California evolution. Sr, Nd, and Pb radiogenic isotope signatures show minor changes over time. The volcanic record for 20-12.5 Ma at Sierra Santa Ursula and adjacent areas is consistent with the reconstructed history of the Guadalupe microplate. The interval of magmatism produced from 12 to 11 Ma appears to reflect changes in plate geometry during the transition from subduction to rifting.

  6. SPREE: A Successful Seismic Array by a Failed Rift System; Analysis of Seismic Noise in the Seismically Quiet Mid-continent

    NASA Astrophysics Data System (ADS)

    Wolin, E.; van der Lee, S.; Bollmann, T. A.; Revenaugh, J.; Aleqabi, G. I.; Darbyshire, F. A.; Frederiksen, A. W.; Wiens, D.; Shore, P.

    2014-12-01

    The Superior Province Rifting Earthscope Experiment (SPREE) completed its field recording phase last fall with over 96% data return. While 60% of the stations returned data 100% of the time, only 9 performed below 90% and one station had questionable timing. One station was vandalized, another stolen. One station continued recording after its solar panels were pierced by a bullet, while another two stations survived a wildfire and a blow-down, respectively. The blow-down was an extreme wind event that felled hundreds of thousands of trees around the station. SPREE stations recorded many hundreds of earthquakes. Two regional earthquakes and over 400 teleseismic earthquakes had magnitudes over 5.5 and three, smaller local earthquakes had magnitudes over 2.5. We have calculated power spectral estimates between 0.1-1000 s period for the ~2.5-year lifespan of all 82 SPREE stations. Vertical channels performed quite well across the entire frequency range, falling well below the high noise model of Peterson (1993) and usually within 10-15 dB of nearby Transportable Array stations. SPREE stations' horizontal components suffer from long-period (> 30 s) noise. This noise is quietest at night and becomes up to 30 dB noisier during the day in the summer months. We explore possible causes of this variation, including thermal and atmospheric pressure effects. One possibility is that stations are insulated by snow during the winter, reducing temperature variations within the vault. Spring snowmelt creates instability at many of the SPREE stations, evidenced by frequent recenterings and enhanced long-period noise. For all channels, power in the microseismic band (4-16 s) is strongest in the winter, corresponding to storm season in the Northern Hemisphere, and approximately 20 dB weaker during the summer. The power spectrum and temporal variation of microseismic energy is consistent across the entire SPREE array.

  7. Erosion of Terrestrial Rift Flank Topography: A Quantitative Study

    NASA Technical Reports Server (NTRS)

    Weissel, Jeffrey K.

    1999-01-01

    Many rifted or passive continental margins feature a seaward-facing erosional escarpment which abruptly demarcates deeply weathered, low relief, interior uplands from a deeply incised, high relief coastal zone. It is generally accepted that these escarpments originate at the time of continental rifting and propagate inland through the elevated rift flank topography at rates on the order of 1 km/Myr over the course of a margin's history. Considering the length of passive margins worldwide and an average rift flank plateau height of several hundred meters, it is clear that sediment eroded from passive margins is an important component of the mass flux from continents to oceans through geologic time. The overall goal of the research reported here is to develop a quantitative understanding of the kinematics of escarpment propagation across passive margins and the underlying geological processes responsible for this behavior. Plateau-bounding escarpments in general exhibit two basic forms depending on the direction of surface water drainage on the plateau interior relative to the escarpment. Where surface water flows away from the escarpment, the escarpment takes the form of subdued embayments and promontories, such that its overall trend remains fairly straight as it evolves with time. Where upland streams flow across the escarpment, it takes the form of dramatic, narrow gorges whose heads appear to propagate up the plateau drainage systems as large-scale knickpoints. From work on the Colorado Plateau, Schmidt (1987) noted that the Colorado River is located much closer to the Grand Canyon's south rim, a drainage divide escarpment, than to the north rim, which is a gorge-like escarpment. The main implication is that the gorge-like form might be associated with higher long-term average erosion rates compared to the drainage divide escarpment type.

  8. Surface deformation in volcanic rift zones

    USGS Publications Warehouse

    Pollard, D.D.; Delaney, P.T.; Duffield, W.A.; Endo, E.T.; Okamura, A.T.

    1983-01-01

    The principal conduits for magma transport within rift zones of basaltic volcanoes are steeply dipping dikes, some of which feed fissure eruptions. Elastic displacements accompanying a single dike emplacement elevate the flanks of the rift relative to a central depression. Concomitant normal faulting may transform the depression into a graben thus accentuating the topographic features of the rift. If eruption occurs the characteristic ridge-trough-ridge displacement profile changes to a single ridge, centered at the fissure, and the erupted lava alters the local topography. A well-developed rift zone owes its structure and topography to the integrated effects of many magmatic rifting events. To investigate this process we compute the elastic displacements and stresses in a homogeneous, two-dimensional half-space driven by a pressurized crack that may breach the surface. A derivative graphical method permits one to estimate the three geometric parameters of the dike (height, inclination, and depth-to-center) and the mechanical parameter (driving pressure/rock stiffness) from a smoothly varying displacement profile. Direct comparison of measured and theoretical profiles may be used to estimate these parameters even if inelastic deformation, notably normal faulting, creates discontinuities in the profile. Geological structures (open cracks, normal faults, buckles, and thrust faults) form because of stresses induced by dike emplacement and fissure eruption. Theoretical stress states associated with dilation of a pressurized crack are used to interpret the distribution and orientation of these structures and their role in rift formation. ?? 1983.

  9. The 1974 Ethiopian rift geodimeter survey

    NASA Technical Reports Server (NTRS)

    Mohr, P.

    1977-01-01

    The field techniques and methods of data reduction for five successive geodimeter surveys in the Ethiopian rift valley are enlarged upon, with the considered conclusion that there is progressive accumulation of upper crustal strain, consonant with on-going rift extension. The extension is restricted to the Quaternary volcanotectonic axis of the rift, namely the Wonji fault belt, and is occurring at rates of 3 to 6 mm/yr in the northern sector of the rift valley. Although this concurs with the predictions of platetectonic analysis of the Afar triple junction, it is considered premature to endorse such a concurrence on the basis of only 5 years of observations. This is underlined by the detection of local tectonic contractions and expansions associated with geothermal and gravity anomalies in the central sector of the rift valley. There is a hint of a component of dextral slip along some of the rift-floor fault zones, both from geological evidence and from the strain patterns detected in the present geodetic surveys.

  10. Impact of rheological layering on rift asymmetry

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  11. Deepening, and repairing, the metabolic rift.

    PubMed

    Schneider, Mindi; McMichael, Philip

    2010-01-01

    This paper critically assesses the metabolic rift as a social, ecological, and historical concept describing the disruption of natural cycles and processes and ruptures in material human-nature relations under capitalism. As a social concept, the metabolic rift presumes that metabolism is understood in relation to the labour process. This conception, however, privileges the organisation of labour to the exclusion of the practice of labour, which we argue challenges its utility for analysing contemporary socio-environmental crises. As an ecological concept, the metabolic rift is based on outmoded understandings of (agro) ecosystems and inadequately describes relations and interactions between labour and ecological processes. Historically, the metabolic rift is integral to debates about the definitions and relations of capitalism, industrialism, and modernity as historical concepts. At the same time, it gives rise to an epistemic rift, insofar as the separation of the natural and social worlds comes to be expressed in social thought and critical theory, which have one-sidedly focused on the social. We argue that a reunification of the social and the ecological, in historical practice and in historical thought, is the key to repairing the metabolic rift, both conceptually and practically. The food sovereignty movement in this respect is exemplary. PMID:20645448

  12. Lower Crustal Seismicity, Volatiles, and Evolving Strain Fields During the Initial Stages of Cratonic Rifting

    NASA Astrophysics Data System (ADS)

    Lambert, C.; Muirhead, J.; Ebinger, C. J.; Tiberi, C.; Roecker, S. W.; Ferdinand-Wambura, R.; Kianji, G.; Mulibo, G. D.

    2014-12-01

    The volcanically active East African rift system in southern Kenya and northern Tanzania transects thick cratonic lithosphere, and comprises several basins characterized by deep crustal seismicity. The US-French-Tanzania-Kenya CRAFTI project aims to understand the role of magma and volatile movement during the initiation and evolution of rifting in cratonic lithosphere. Our 38-station broadband network spans all or parts of fault-bounded rift segments, enabling comparison of lithospheric structure, fault kinematics, and seismogenic layer thickness with age and proximity to the deeply rooted Archaen craton. Seismicity levels are high in all basins, but we find profound differences in seismogenic layer thickness along the length of the rift. Seismicity in the Manyara basin occurs almost exclusively within the lower crust, and in spatial clusters that have been active since 1990. In contrast, seismicity in the ~ 5 My older Magadi basin is localized in the upper crust, and the long border fault bounding the west side of the basin is seismically inactive. Between these two basins lies the Natron rift segment, which shows seismicity between ~ 20 and ~2 km depth, and high concentrations at Oldoinyo Lengai and Gelai volcanoes. Older volcanoes on the uplifted western flank (e.g., Ngorongoro) experience swarms of activity, suggesting that active magmatism and degassing are widespread. Focal mechanisms of the frequent earthquakes recorded across the array are spatially variable, and indicate a stress field strongly influenced by (1) Holocene volcanoes, (2) mechanical interactions between adjacent rift basins, and (3) a far-field ESE-WNW extensional stress regime. We explore the spatial correlation between zones of intense degassing along fault systems and seismicity, and examine the influence of high gas pressures on lower and upper crustal seismicity in this youthful cratonic rift zone.

  13. Patagonian broken foreland and related synorogenic rifting: The origin of the Chubut Group Basin

    NASA Astrophysics Data System (ADS)

    Gianni, G.; Navarrete, C.; Orts, D.; Tobal, J.; Folguera, A.; Giménez, M.

    2015-05-01

    The Central Patagonia is characterized by prominent continental deposits that belong to the Cretaceous Chubut Group Basin, whose tectonic setting remains controversial. It has been interpreted as a foreland basin, an extensional basin and even as a sag stage of a rift event. Related deposits outcrop as part of the Patagonian broken foreland, east of the Patagonian Andes. Particulary, the San Bernardo fold and thrust belt, between 42° and 48°S, as the main sector of the broken foreland, constitutes a NNW-trending intraplate belt located 450 km away from the trench. Coincidentally, at these latitudes, 1200 km east of the trench, intraplate deformation has caused tectonic inversion of Mesozoic basins presently located at the Atlantic offshore area. Additionally, at the San Jorge Gulf area this orogenic system interferes with a conspicuous E-W extensional system, transversally disposed to the Andean strike, mainly active between the late Early Cretaceous and late Paleocene. We carried out an integrated analysis from structural, 2-D and 3-D seismic data at the San Bernardo FTB and the adjacent Río Mayo Basin, studying sections of the Chubut Group Basin to unravel the different evolutionary stages. Thus, surface and subsurface evidence of syn-compressional deposition indicate the development of a broken foreland basin related to the formation of the San Bernardo FTB, suggesting an initial growth during the late Early Cretaceous and probably up to the late Paleocene. Our results imply that the Cretaceous compression acted in concert with transversal foreland extension. Hence, we propose a syncontractional rift reactivation of a potential lithospheric anisotropy, triggered by regional contraction. Finally, the origin of compression during this time is discussed in relation to multiple processes that go from high convergence between plates and trenchward motion of South America, collision of mid-ocean ridges, to potential dip changes in the subducted slab, as suggested by arc expansion.

  14. Evolution of the Main Ethiopian Rift in the frame of Afar and Kenya rifts propagation

    Microsoft Academic Search

    Marco Bonini; Giacomo Corti; Fabrizio Innocenti; Piero Manetti; Francesco Mazzarini; Tsegaye Abebe; Zoltan Pecskay

    2005-01-01

    The Main Ethiopian Rift (MER) has a complex structural pattern composed of southern, central, and northern segments. Ages of onset of faulting and volcanism apparently indicate a heterogeneous time-space evolution of the segments, generally referred to as a northward progression of the rifting process. New structural, petrological, and geochronological data have been used to attempt reconciling the evolution of the

  15. The hazardous waste management system--Environmental Protection Agency. Interim final amendments to interim final and final rules.

    PubMed

    1982-06-24

    The Resource Conservation and Recovery Act (RCRA) requires that EPA set regulatory standards for all facilities which treat, store, or dispose of hazardous waste. In partial implementation of its requirement, on January 23, 1981, EPA set regulatory standards for incinerators that burn hazardous waste. These regulations were issued as "interim final," which means that, although they were issued in final form, the Agency invited public comment on them with a view to future amendment. Today, EPA is amending, on an interim final basis, certain of its regulations applicable to hazardous waste incineration facilities. Today's amendments include revisions to: the general standards for permitting hazardous waste incinerators (Part 264, Subpart O), published in the Federal Register on January 23, 1981; the interim status standards for hazardous waste incinerators (Part 265, Subpart O), revised on January 23, 1981; and the consolidated permit requirements for incinerators (Part 122), published on May 19, 1980 and January 23, 1981.U PMID:10255871

  16. A large-scale detachment fault system in deep water area of South China Sea under the background of continental passive rifted margin: A case study of Heshan Sag

    NASA Astrophysics Data System (ADS)

    Lin, Zi; Ren, Jianye; Han, Xiaoying; Chen, Lin

    2015-04-01

    Heshan sag locates in the deep-water area of continental passive rifted margin of northern South China Sea, where preserved strong thinning crust of the ocean-continent transition zone. This area owns particular and unique tectonic settings with the geological characteristics of lithospheric ductile deformation and high temperature gradient, which highly differs from the continental shelf area. In this research, we try to determine the detachment faults within Heshan sag and build its tectonic-stratigraphic framework and geological evolution history as well. The research achievements are as followed: (1) According to the interpretation of 2D seismic profiles covering the whole study area, we basically recognized that Heshan sag was a detachment basin which is floored by a large-scale seaward detachment fault with a very low angle of 10 degrees to 20 degrees and overlain by tilted and hyper extended hanging wall block. And the heave of detachment fault has been extended to approximately 20 km. (2) Based on the latest geophysical and geological data, in the northern part of South China Sea, the strike of Moho surface is from NE to SW. The overall Moho depth is between 10 and 29 km from north to south, from shelf to continental slope and abyssal plain, mirroring the topography of the sediment basement, which means the crustal thickness decreases from land to ocean. Our study area exactly exists in the zone that the crust is hyper-extended and has the characters of continental crust and transitional crust. (3) Continental passive rifted margin closely relates to the ocean-continent transition zone (OCT). Guided by the basin dynamic analysis and lithosphere extension and breakup theory, combined with overseas and domestic research status on OCT and the latest information of adjacent areas, we tried to elucidate the geological nature of OCT and construct continental lithosphere configuration in different tectonic units on the northern continental margin in South China Sea. Also we compared Heshan sag with the northern shelf basins and proposed that it belongs to the distal margin unit where developed extensional detachment system with the crust thinning sharply and the crustal thickness even decreases to zero in the OCT unit. Based on the research work above, we further discuss the relationship between the development of large-scale detachment fault and the spreading of the South China Sea in Cenozoic, hope this study can improve our understanding on the geodynamic construct model of the ocean-continent transition zone better in northern South China Sea, and guide the economic exploration in deep water/ultra-deep water area.

  17. Extreme uplift of basement blocks within continental rifts, joint effort of an ancient fold and thrust belt, crustal bending, lithospheric weakening and erosion

    Microsoft Academic Search

    Daniel Koehn; Till Sachau; Kevin Aanyu

    2010-01-01

    In this contribution we will explain how extreme uplift of a basement block within an extending continental rift is possible. As an example we will use the Rwenzori mountains that lie within the northern part of the western branch of the East African Rift System. This spectacular basement block was uplifted up to heights exceeding 5000m above sea level (4000m

  18. Extension velocity partitioning, rheological crust-mantle and intra-crustal decoupling and tectonically inherited structures: consequences for continental rifting dynamics.

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Mezri, Leila; Burov, Evgueni; Le Pourhiet, Laetitia

    2015-04-01

    We implemented series of systematic thermo-mechanical numerical models testing the importance of the rheological structure and extension rate partitioning for continental rift evolution. It is generally assumed that styles of continental rifting are mainly conditioned by the initial integrated strength of the lithosphere. For example, strong plates are expected to undergo extension in narrow rifting mode, while weak lithospheres would stretch in wide rifting mode. However, we show that this classification is largely insufficient because the notion of the integrated strength ignores the internal rheological structure of the lithosphere that may include several zones of crust-mantle or upper-crust-intermediate (etc) crust decoupling. As well, orogenic crusts characterizing most common sites of continental extension may exhibit inverted lithological sequences, with stronger and denser formerly lower crustal units on top of weaker and lighter upper crustal units. This all may result in the appearance of sharp rheological strength gradients and presence of decoupling zones, which may lead to substantially different evolution of the rift system. Indeed, strong jump-like contrasts in the mechanical properties result in mechanical instabilities while mechanical decoupling between the competent layers results in overall drop of the flexural strength of the system and may also lead to important horizontal flow of the ductile material. In particular, the commonly inferred concept of level of necking (that assumes the existence of a stationary horizontal stretching level during rifting) looses its sense if necking occurs at several distinct levels. In this case, due to different mechanical strength of the rheological layers, several necking levels develop and switch from one depth to another resulting in step-like variations of rifting style and accelerations/decelerations of subsidence during the active phase of rifting. During the post-rifting phase, initially decoupled rheological layers may tend to stick together resulting in step-like strengthening of the lithosphere and deceleration of subsidence. Hence, the entire rift system may exhibit polyphase subsidence behavior, which may be entirely conditioned by its internal structure and not by external factors. In addition, velocity partitioning may also have strong impact on rift evolution. For example, symmetric partitioning of half-velocities on both rift sides does not result in the same evolution as in the case when the same total extension rate is applied at one side only. In particular, asymmetric velocity partitioning results in the development of asymmetric rift evolution without any need in rheological softening. This differences in rift evolution stem from different thermal advection rates that both influence partitioning of thermally dependent rheological strength, phase transitions and buoyancy. The experiments confirm the importance of the above mentioned factors, which have strong implications for continental rifting processes and formation of passive margins.

  19. Triggered seismicity induced by stresses from the Bárðarbunga 2014 rifting event

    NASA Astrophysics Data System (ADS)

    Green, Robert; Greenfield, Tim; White, Robert

    2015-04-01

    From 16th August 2014 a rifting event at Bárðarbunga volcano in Iceland produced large surface deformation associated with rifting and the propagation of a 45 km long dyke northward away from the central volcano. Continuous GPS data from numerous sites recorded tens of centimetres displacements (Sigmundsson et al., Nature 2014) during the emplacement of this dyke, with a maximum widening between two stations of 1.3m. This continuous GPS data along with campaign GPS, InSAR and seismicity have been used to model the geometry and volume of the intruded dyke (Sigmundsson et al., 2014). The subsequent effect on the stress field caused by this intrusive volume was felt by the many volcanic centres in the surrounding area. Tungafellsjökull, Kistufell, Kverkfjöll and Askja all saw elevated levels of seismic activity during and following the intrusion of the dyke. The rapid final northward advance on 27th August also simultaneously caused a magnitude 4.2 earthquake in the geothermal field on the south-east side of Askja caldera, where recorded earthquakes have never previously exceeded a magnitude of two. Locations of earthquakes focussed at the leading edge of the dyke map out its northward propagation in short rapid bursts, and enable a temporal stressing history to be reconstructed. This can be correlated well with seismicity rates at the nearby Askja, Kistufell and Kverkfjöll volcanoes. We present both detailed seismic analysis and stress modelling which demonstrate triggering of increased seismicity and shut off in stress shadows, allowing us to test quantitative models of stress induced seismicity. Our local seismic array covers the numerous volcanic systems beneath the Vatnajökull glacier and surrounding areas in the Icelandic interior, and has been operating for many years leading up to this rifting event, providing excellent constraint on relative seismicity rate changes. We use automatic location routines to produce an extensive earthquake catalogue over time. Further results from our manual refinement techniques (probabilistic locations and relative relocations) and fault plane solution inversion reveal the faulting mechanisms of both the background and triggered activity. We use these faults in our stress modelling to place excellent constraints on the stress evolution at these nearby volcanoes.

  20. Practical reliability and uncertainty quantification in complex systems : final report.

    SciTech Connect

    Grace, Matthew D.; Ringland, James T.; Marzouk, Youssef M. (Massachusetts Institute of Technology, Cambridge, MA); Boggs, Paul T.; Zurn, Rena M.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre; Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM)

    2009-09-01

    The purpose of this project was to investigate the use of Bayesian methods for the estimation of the reliability of complex systems. The goals were to find methods for dealing with continuous data, rather than simple pass/fail data; to avoid assumptions of specific probability distributions, especially Gaussian, or normal, distributions; to compute not only an estimate of the reliability of the system, but also a measure of the confidence in that estimate; to develop procedures to address time-dependent or aging aspects in such systems, and to use these models and results to derive optimal testing strategies. The system is assumed to be a system of systems, i.e., a system with discrete components that are themselves systems. Furthermore, the system is 'engineered' in the sense that each node is designed to do something and that we have a mathematical description of that process. In the time-dependent case, the assumption is that we have a general, nonlinear, time-dependent function describing the process. The major results of the project are described in this report. In summary, we developed a sophisticated mathematical framework based on modern probability theory and Bayesian analysis. This framework encompasses all aspects of epistemic uncertainty and easily incorporates steady-state and time-dependent systems. Based on Markov chain, Monte Carlo methods, we devised a computational strategy for general probability density estimation in the steady-state case. This enabled us to compute a distribution of the reliability from which many questions, including confidence, could be addressed. We then extended this to the time domain and implemented procedures to estimate the reliability over time, including the use of the method to predict the reliability at a future time. Finally, we used certain aspects of Bayesian decision analysis to create a novel method for determining an optimal testing strategy, e.g., we can estimate the 'best' location to take the next test to minimize the risk of making a wrong decision about the fitness of a system. We conclude this report by proposing additional fruitful areas of research.

  1. Latest stages of deformation leading to breakup of the Australian-Antarctic rifted margins: new constraints from deep seismic observations and potential data.

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Autin, Julia; Manatschal, Gianreto; Sauter, Daniel; Munschy, Marc; Schaming, Marc

    2014-05-01

    The discovery of large domains of hyper-extended continental crust and exhumed mantle along many present-day magma-poor rifted margins questions the existing models proposed to explain lithospheric breakup and onset of seafloor spreading. In particular, the amount of magma and its relation to tectonic structures is yet little understood. Trying to find answers to these questions asks to work in the most distal parts of rifted margins where the latest stage of rifting occurred and the first steady state oceanic crust was emplaced. In this aim, the Australian-Antarctic conjugated margins provide an excellent study area. Indeed, the central sector of the Great Australian Bight/Wilkes Land developed in a magma-poor probably ultra-slow setting and displays a complex and not yet well understood Ocean-Continent Transition (OCT). This distal area is well imaged by numerous high quality seismic lines covering the whole OCT and the steady-state oceanic crust. Our seismic observations allow the recognition of different tectono-sedimentary units and magmatic additions. The relation between the sedimentary units, magmatic additions and the tectonic structures enable to define a complex interaction between these processes indicating a clear polyphase evolution of rifting and migration of the deformation towards the area of future breakup. The migration of deformation is well imaged by the fact that each tectono-sedimentary unit "downlaps" oceanwards onto "new" basement, which enables to define basement units that become younger oceanwards. This observation suggests that final rifting is associated with the creation of new "basement" under conditions that are not yet those of a steady state oceanic crust. We propose that two major detachment systems are responsible for mantle exhumation forming this new basement. In particular, they can explain the different deformation phases observed in the tectono-sedimentary sequences and related magmatic additions. It appears that the sedimentary structures linked to these two detachment systems can be followed along the margins over several hundreds of kilometres, indicating that they represent a large scale asymmetric extension. The identification on potential field maps of different domains corresponding to the different basement units allows us to propose an oceanward and gradual variation in the basement composition. It is likely that the amount of magma gradually increases until the emplacement of the first steady state oceanic crust and that magma underplating may have occurred along most of the distal margin. One main question resulting from our model is related to the interpretation of the magnetic anomalies in such an asymmetric context. Answering to this question can help to solve the paleogeographic reconstructions and to better define the age of the lithospheric breakup in these margins.

  2. Postspreading rifting in the Adare Basin, Antarctica: Regional tectonic consequences

    NASA Astrophysics Data System (ADS)

    Granot, R.; Cande, S. C.; Stock, J. M.; Davey, F. J.; Clayton, R. W.

    2010-08-01

    Extension during the middle Cenozoic (43-26 Ma) in the north end of the West Antarctic rift system (WARS) is well constrained by seafloor magnetic anomalies formed at the extinct Adare spreading axis. Kinematic solutions for this time interval suggest a southward decrease in relative motion between East and West Antarctica. Here we present multichannel seismic reflection and seafloor mapping data acquired within and near the Adare Basin on a recent geophysical cruise. We have traced the ANTOSTRAT seismic stratigraphic framework from the northwest Ross Sea into the Adare Basin, verified and tied to DSDP drill sites 273 and 274. Our results reveal three distinct periods of tectonic activity. An early localized deformational event took place close to the cessation of seafloor spreading in the Adare Basin (˜24 Ma). It reactivated a few normal faults and initiated the formation of the Adare Trough. A prominent pulse of rifting in the early Miocene (˜17 Ma) resulted in normal faulting that initiated tilted blocks. The overall trend of structures was NE-SW, linking the event with the activity outside the basin. It resulted in major uplift of the Adare Trough and marks the last extensional phase of the Adare Basin. Recent volcanic vents (Pliocene to present day) tend to align with the early Miocene structures and the on-land Hallett volcanic province. This latest phase of tectonic activity also involves near-vertical normal faulting (still active in places) with negligible horizontal consequences. The early Miocene extensional event found within the Adare Basin does not require a change in the relative motion between East and West Antarctica. However, the lack of subsequent rifting within the Adare Basin coupled with the formation of the Terror Rift and an on-land and subice extension within the WARS require a pronounced change in the kinematics of the rift. These observations indicate that extension increased southward, therefore suggesting that a major change in relative plate motion took place in the middle Miocene. The late Miocene pole of rotation might have been located north of the Adare Basin, with opposite opening sign compared to the Eocene-Oligocene pole.

  3. Review article Rift Valley fever virus (Bunyaviridae: Phlebovirus)

    E-print Network

    Paris-Sud XI, Université de

    Review article Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis Africa (Received 5 February 2010; accepted 21 May 2010) Abstract ­ Rift Valley fever (RVF) virus fever / molecular epidemiology / vector / pathogenesis / diagnostic Table of contents 1. Introduction

  4. The Corinth Rift Laboratory (Greece): What Can Micro-Seismicity Reveal?

    NASA Astrophysics Data System (ADS)

    Lambotte, S.; Matrullo, E.; Satriano, C.; Lyon-Caen, H.; Bernard, P.; Deschamps, A.

    2014-12-01

    In the framework of the Corinth Rift Laboratory, the seismic activity in the western part of the rift is monitored since 2000 by a network of 15 three-component stations (CRLNET). It is characterized by several instrumental and historical large earthquakes with magnitude larger than 5.5, and numerous active swarms. More than 12 years of seismicity (about 100,000 events) that covers seven orders of magnitude of seismic moment Mo (1010 - 1017 Nm) is available. The detailed analysis of the whole seismicity brings insights into the geometry of faults at depth, the nature and the structure of the active zone at 6-8 km depth previously interpreted as a possible detachment, and more generally into the rifting process and mechanical processes at various space-time scales. For this purpose, we identified multiplets and precisely relocated the seismicity using double difference techniques. The seismicity exhibits a complex structure, strongly varying along the rift axis. We will present some specific structures of the seismicity and swarms. The spatio-temporal evolution of earthquake sequences, which repeatedly occur in specific sub-areas of the fault segments, and the relationship with the distribution of the elastic/anelastic structure, the VP/VS ratio and physical properties of the micro-earthquakes (such as seismic moment, static stress-drop, corner frequency and source size) provide important insights on the presence and the role of fluids during the generation of fractures. The variability of the stress release would suggest, in fact, the presence of heterogeneities in the friction distribution and fluid pressure, and normal stress and elastic properties variability in the fault zone. Finally, according with seismic and geodetic observations, we proposed a new mechanical model for the rifting process in this region, implying a non-elastic, mostly aseismic uniform NS opening below the rift axis, coupled with the downwards growth of a yet unmature detachment.

  5. Anisotropy beneath a highly extended continental rift

    NASA Astrophysics Data System (ADS)

    Eilon, Zachary; Abers, Geoffrey A.; Jin, Ge; Gaherty, James B.

    2014-03-01

    have employed shear wave splitting techniques to image anisotropy beneath the D'Entrecasteaux Islands, in southeastern Papua New Guinea. Our results provide a detailed picture of the extending continent that lies immediately ahead of a propagating mid-ocean ridge tip; we image the transition from continental to oceanic extension. A dense shear wave splitting data set from a 2010 to 2011 passive-source seismic deployment is analyzed using single and multichannel methods. Splitting delay times of 1-1.5 s are observed and fast axes of anisotropy trending N-S, parallel to rifting direction, predominate the results. This trend is linked to lattice-preferred orientation of olivine, primarily in the shallow convecting mantle, driven by up to 200 km of N-S continental extension ahead of the westward-propagating Woodlark Rift. This pattern differs from several other continental rifts that evince rift-strike-parallel fast axes and is evident despite the complex recent tectonic history. We contend that across most of this rift, the unusually high rate and magnitude of extension has been sufficient to produce a regime change to a mid-ocean-ridge-like mantle fabric. Stations in the south of our array show more complex splitting that might be related to melt or to complex inherited structure at the edge of the extended region.

  6. Acoustic Resonance Spectroscopy (ARS) Munition Classification System enhancements. Final report

    SciTech Connect

    Vela, O.A.; Huggard, J.C.

    1997-09-18

    Acoustic Resonance Spectroscopy (ARS) is a non-destructive evaluation technology developed at the Los Alamos National Laboratory (LANL). This technology has resulted in three generations of instrumentation, funded by the Defense Special Weapons Agency (DSWA), specifically designed for field identification of chemical weapon (CW) munitions. Each generation of ARS instrumentation was developed with a specific user in mind. The ARS1OO was built for use by the U.N. Inspection Teams going into Iraq immediately after the Persian Gulf War. The ARS200 was built for use in the US-Russia Bilateral Chemical Weapons Treaty (the primary users for this system are the US Onsite Inspection Agency (OSIA) and their Russian counterparts). The ARS300 was built with the requirements of the Organization for the Prohibition of Chemical Weapons (OPCW) in mind. Each successive system is an improved version of the previous system based on learning the weaknesses of each and, coincidentally, on the fact that more time was available to do a requirements analysis and the necessary engineering development. The ARS300 is at a level of development that warrants transferring the technology to a commercial vendor. Since LANL will supply the computer software to the selected vendor, it is possible for LANL to continue to improve the decision algorithms, add features where necessary, and adjust the user interface before the final transfer occurs. This paper describes the current system, ARS system enhancements, and software enhancements. Appendices contain the Operations Manual (software Version 3.01), and two earlier reports on enhancements.

  7. Modular photovoltaic stand-alone systems. Phase I. Final report

    SciTech Connect

    Naff, G.J.; Marshall, N.A.

    1983-02-01

    A Phase I program plan was developed and implemented leading to the detail design of an optimized low power, reliable, low life cycle cost stand-alone photovoltaic (PV) system. Modularity was established in power increments of 0.25 kWp in the range of 0.5 to 16 kWp. The investigations, analyses and designs addressed the balance-of-systems (BOS) elements and subsystems, the PV cells and modules having been designated as an available technology conforming to JPL Block IV, Specification 5101-830. A survey of existing BOS developments was conducted and state-of-the-art BOS designs were generated, evaluated and used in cost trade-offs. A matrix of BOS attributes led to the selection of seven conceptual designs consisting of various BOS elements or combinations thereof. Three of the conceptual designs were selected for further evaluation, preparation of preliminary designs and refinements in life cycle cost trade-offs. The design emerging as the most optimum configuration was selected as the final design candidate. Detail drawings, equipment listings, procurement specifications, test procedures, and production cost estimates were developed in preparation for the Phase II breadboarding of critical control and load management circuits and for the development of an engineering model. Results of the study and designs showed that lead acid batteries are the only practical, near term, available source for electrical energy storage, and, for stand-alone PV power systems, are the major cost driver contributing between 60 to 70% of total system 20 year life cycle costs. For the established range of performance there were only small cost variances between different designs of a given element. It was also shown that properly adjudicated regulation and load management contribute significantly both to reductions in system sizing and improvements in battery life.

  8. Variation in styles of rifting in the Gulf of California.

    PubMed

    Lizarralde, Daniel; Axen, Gary J; Brown, Hillary E; Fletcher, John M; González-Fernández, Antonio; Harding, Alistair J; Holbrook, W Steven; Kent, Graham M; Paramo, Pedro; Sutherland, Fiona; Umhoefer, Paul J

    2007-07-26

    Constraints on the structure of rifted continental margins and the magmatism resulting from such rifting can help refine our understanding of the strength of the lithosphere, the state of the underlying mantle and the transition from rifting to seafloor spreading. An important structural classification of rifts is by width, with narrow rifts thought to form as necking instabilities (where extension rates outpace thermal diffusion) and wide rifts thought to require a mechanism to inhibit localization, such as lower-crustal flow in high heat-flow settings. Observations of the magmatism that results from rifting range from volcanic margins with two to three times the magmatism predicted from melting models to non-volcanic margins with almost no rift or post-rift magmatism. Such variations in magmatic activity are commonly attributed to variations in mantle temperature. Here we describe results from the PESCADOR seismic experiment in the southern Gulf of California and present crustal-scale images across three rift segments. Over short lateral distances, we observe large differences in rifting style and magmatism--from wide rifting with minor synchronous magmatism to narrow rifting in magmatically robust segments. But many of the factors believed to control structural evolution and magmatism during rifting (extension rate, mantle potential temperature and heat flow) tend to vary over larger length scales. We conclude instead that mantle depletion, rather than low mantle temperature, accounts for the observed wide, magma-poor margins, and that mantle fertility and possibly sedimentary insulation, rather than high mantle temperature, account for the observed robust rift and post-rift magmatism. PMID:17653189

  9. A structural analysis of the Midcontinent Rift in Michigan, based on a fault array analysis utilizing slickenside

    SciTech Connect

    Witthuhn, K.M.; Teyssier, C. (Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Geology and Geophysics)

    1992-01-01

    The Midcontinent Rift is a 1.1 billion year old crustal structure which has been defined primarily on the basis of geophysical studies. It displays evidence of both rifting and subsequent closure. Many studies have examined the rift from a petrologic view but few have examined it in any detail from a structural geological viewpoint. This paper examines the structural aspects of the rift, elucidates the direction of closing, and constrains the timing of the system by utilizing paleostress stratigraphy. Establishment of the relative age and sense of movement on faults was accomplished by analyzing slickensides and crystallization on the fault plane. Detailed work on the Keweenaw Peninsula of Michigan suggests a southerly direction for the closing of the rift system, while similar work on Isle Royale suggests an east-southeasterly closing direction. Faults in both areas with opposite sense of movement (dextral vs. sinistral, normal vs. reverse) have similar attitudes indicating a reversal of maximum and minimum stress directions. Stress tensors from both limbs of the Lake Superior syncline were isolated using identical methods, suggesting the geometry or lithology of the system interfered with the manifestation of the far-field stresses. The results suggest then the direction of opening and closing of the rift was constrained by the geometry of the major and minor fault systems and anisotropies in the lava flows.

  10. Palaeostress reconstructions and geodynamics of the Baikal region, Central Asia, Part I. Palaeozoic and Mesozoic pre-rift evolution

    Microsoft Academic Search

    D. Delvaux; R. Moeys; G. Stapel; A. Melnikov; V. Ermikov

    1995-01-01

    This paper presents the first palaeostress results obtained for the basement of the Baikal rift system, in southern Siberia (Russia). Large-scale structural analysis and palaeostress reconstructions show that the Palaeozoic-Mesozoic kinematic history, precursor of the Baikal Cenozoic rifting, is characterized by the succession of six regional palaeostress stages. Stress inversion of fault-slip data and earthquake focal mechanisms is performed using

  11. Longitudinal evolution of the Suez rift structure (Egypt)

    Microsoft Academic Search

    B. Colletta; P. Le Quellec; J. Letouzey; I. Moretti

    1988-01-01

    A three-dimensional study of the structure of the Suez Rift has been carried out using field and subsurface data in an attempt to determine the role of transverse faults and the longitudinal evolution of the rift. As in most intracontinental rifts, the structure of the Gulf of Suez area is governed by normal faults and tilted blocks, whose crests constitute

  12. REVIEW Open Access Towards a better understanding of Rift Valley

    E-print Network

    Paris-Sud XI, Université de

    REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south , Matthieu Roger1 and Betty Zumbo7 Abstract Rift Valley fever virus (Phlebovirus, Bunyaviridae be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever

  13. Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity

    E-print Network

    Boyer, Edmond

    Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity Alain Le Coupanec1 , Divya contro^le, Centre IRD de Montpellier, Montpellier, France Abstract Background: Rift Valley fever (RVF of mosquito saliva in the transmission of Rift Valley fever virus (RVFV) has not been investigated. Objective

  14. FY 93 Thermal Loading Systems Study Final Report

    SciTech Connect

    S.F. Saterlie

    1994-08-29

    The objective of the Mined Geologic Disposal System (MGDS) Thermal Loading Systems Study being conducted by the is to identify a thermal strategy that will meet the performance requirements for waste isolation and will be safe and licensable. Specifically, both postclosure and preclosure performance standards must be met by the thermal loading strategy ultimately selected. In addition cost and schedule constraints must be considered. The Systems Engineering approach requires structured, detailed analyses that will ultimately provide the technical basis for the development, integration, and evaluation of the overall system, not just a subelement of that system. It is also necessary that the systems study construct options from within the range that are allowed within the current legislative and programmatic framework. For example the total amount of fuel that can legally be emplaced is no more than 70,000 metric tons of uranium (MTU) which is composed of 63,000 MTU spent fuel and 7,000 MTU of defense high level waste. It is the intent of this study to begin the structured development of the basis for a thermal loading decision. However, it is recognized that to be able to make a final decision on thermal loading will require underground data on the effects of heating as well as a suite of ''validated'' models. It will be some time before these data and models are available to the program. Developing a final, thermal loading decision will, therefore, be an iterative process. In the interim, the objective of the thermal loading systems study has been to utilize the information available to assess the impact of thermal loading. Where technical justification exists, recommendations to narrow the range of thermal loading options can be made. Additionally, recommendations as to the type of testing and accuracy of the testing needed to establish the requisite information will be made. A constraint on the ability of the study to select an option stems from the lack of primary hard data, uncertainties in derived data, unsubstantiated models, and the inability to fully consider simultaneously coupled processes. As such, the study must rely on idealized models and available data to compare the thermal loading options. This report presents the findings of the FY 1993 MGDS Thermal Loading Systems Study. The objectives of the study were to: (1) if justified, place bounds on the thermal loading which would establish the loading that is ''too hot''; (2) ''grade'' or evaluate the performance as a function of thermal loading of the potential repository to contain high level spent nuclear fuel against performance criteria; (3) evaluate the performance of the various options with respect to cost, safety, and operability; and (4) recommend the additional types of tests and/or analyses to be conducted to provide the necessary information for a thermal loading selection.

  15. Acheron Fossae, Mars: A Martian rift observed by the High Resolution Stereo Camera (HRSC)

    NASA Astrophysics Data System (ADS)

    Kronberg, P.; Hauber, E.; Masson, P.; Neukum, G.; HRSC Co-Investigator Team

    Several large extensional tectonic structures on Mars have been described as possible analogues to terrestrial continental rifts. With few exceptions (e.g., Hauber and Kronberg, 2001), however, there was no detailed description of the rifts, partly because there was no accurate topographic information available. The HRSC on the Mars Express mission began to acquire high-resolution stereo colour images in January 2004. Orbits 37 and 143 in January and February 2004 covered large parts of the Acheron Fossae north of Olympus Mons, respectively. We constructed a Digital Elevation Model (DEM) and registered orthoimages in colour. Our preliminary analysis shows that several rift-like surface features can be identified at Acheron Fossae. We see some large horst and graben structures, the latter being filled with a relatively dark and smooth material. This material is smooth and seems to have been subject to viscous flow. In places, its distribution is obviously controlled by sun exposure, so it may be related to climatic processes. The extensional structures are situated on a topographical high. The graben shoulders are elevated, and this may be the result of rift flank uplift. At least one small, conical volcano can be distinguished. We measured fault offsets in the DEM, and obtain a minimum extension of 3.5 km across the Acheron Fossae system. The actual value is probably higher, since the graben filling obscures the actual vertical offset. Our preliminary conclusion is that the Acheron Fossae are indeed comparable to a terrestrial continental rift.

  16. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct insulation, and improved equipment sizing; and (3) to develop and evaluate innovative techniques applicable to large buildings for sealing ducts and encapsulating internal duct insulation. In the UCB fan project, the goals were: (1) to develop a protocol for testing, analyzing and diagnosing problems in large commercial building built-up air handling systems, and (2) to develop low-cost measurement techniques to improve short term monitoring practices. To meet our stated goals and objectives, this project: (1) continued to investigate and characterize the performance of thermal distribution systems in commercial buildings; (2) performed energy analyses and evaluation for duct-performance improvements for both small and large commercial buildings; (3) developed aerosol injection technologies for both duct sealing and liner encapsulation in commercial buildings; and (4) designed energy-related diagnostic protocols based on short term measurement and used a benchmarking database to compare subject systems with other measured systems for certain performance metrics. This year's efforts consisted of the following distinct tasks: performing characterization measurements for five light commercial building systems and five large-commercial-building systems; analyzing the potential for including duct performance in California's Energy Efficiency Standards for Residential and Non-Residential Buildings (Title 24), including performing energy and equipment sizing analyses of air distribution systems using DOE 2.1E for non-residential buildings; conducting laboratory experiments, field experiments, and modeling of new aerosol injection technologies concepts for sealing and coating, including field testing aerosol-based sealing in two large commercial buildings; improving low-cost fan monitoring techniques measurements, and disseminating fan tools by working with energy practitioners directly where possible and publishing the results of this research and the tools developed on a web-site. The final report consists of five sections listed below. Each section includes its related

  17. Continental rifting and porphyry-molybdenum occurrences in the oslo region, Norway

    NASA Astrophysics Data System (ADS)

    Schönwandt, H. K.; Petersen, J. S.

    1983-05-01

    The overall structure of the Oslo rift-system can be viewed as the result of interference between a N-S trending Permian fault system and a regional NE-SW trending, Precambrian shear-zone. The rift system comprises four mutually opposed horst and graben structures in a centrosymmetrical arrangement. Igneous activity occurred only in two en echelon segments, both of which possess a notable symmetric distribution of rocks and structures around the central axis of the rift system. The axial zone is occupied by Cambro-Silurian sediments which have been intruded by major granite bodies. Extensive lava-plateaus occur on each side of this axial zone. The adjacent zones contain the most prominent cauldrons of province. Further away from the axis follows a zone of batholitic intrusions, emplaced as composite diapirs and plutonic ring complexes. Hornfelsed sediments and volcanics in narrow bands occur at the lateral borders of the province, possibly preserved as the result of marginal tectonics associated with batholith emplacement. The formation of the Oslo Rift system apparently reflects a passive continental rifting which was gradually succeeded by considerable igneous activity. Important porphyry-molybdenum mineralization in the Oslo region is associated with shallow level magmatism in the Glitrevann and Hurdal areas. The porphyry-Mo mineralization in these prospects have several evolutionary features in common: (1) an initial period of effusive eruptions of pyroclastic flows followed by (2) the formation of large-scale ring structures, partly accompanied by peripheral syenite-granite intrusions; (3) the emplacement of a multiple intrusive, central stock of sub-alkaline granite composition which is terminated by (4) the injection of a highly differentiated aplogranite-granophyre, closely associated with the development of the mineralizing hydrothermal porphyry system. Molybdenum mineralization of the Oslo province is closely associated with highly differentiated alkali granites which possess striking similarities to Mo-related granites of the Colorado Mo-province and evolved Rapakivi- or A-type granites, usually considered to be typically associated with bimodal magmatism of crustal extension and continental rifts. The discovery of significant porphyry-Mo mineralization in the Oslo rift associated with Permian igneous rocks draws attention to the possible economic potential of rift structures elsewhere.

  18. Thermomechanical models of the Rio Grande rift

    SciTech Connect

    Bridwell, R.J.; Anderson, C.A.

    1980-01-01

    Fully two-dimensional, coupled thermochemical solutions of a continental rift and platform are used to model the crust and mantle structure of a hot, buoyant mantle diapir beneath the Rio Grande rift. The thermomechanical model includes both linear and nonlinear laws of the Weertman type relating shear stress and creep strain rate, viscosity which depends on temperature and pressure, and activation energy, temperature-dependent thermal conductivity, temperature-dependent coefficient of thermal expansion, the Boussinesq approximation for thermal bouyancy, material convection using a stress rate that is invariant to rigid rotations, an elastically deformable crust, and a free surface. The model determines the free surface velocities, solid state flow field in the mantle, and viscosity structure of lithosphere and asthenosphere. Regional topography and crustal heat flow are simulated. A suite of symmetric models, assumes continental geotherms on the right and the successively increasing rift geotherms on the left. These models predict an asthenospheric flow field which transfers cold material laterally toward the rift at > 300 km, hot, buoyant material approx. 200 km wide which ascends vertically at rates of 1 km/my between 175 to 325 km, and spreads laterally away from the rift at the base of the lithosphere. Crustal spreading rates are similar to uplift rates. The lithosphere acts as stiff, elastic cap, damping upward motion through decreased velocities of 1 km/10 my and spreading uplift laterally. A parameter study varying material coefficients for the Weertman flow law suggests asthenospheric viscosities of approx. 10/sup 22/ to 10/sup 23/ poise. Similar studies predict crustal viscosities of approx. 10/sup 25/ poise. The buoyant process of mantle flow narrows and concentrates heat transport beneath the rift, increases upward velocity, and broadly arches the lithosphere. 10 figures, 1 table.

  19. Young Stellar Object Candidates in the Aquila Rift Region

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-miao; Wang, Hong-chi; Stecklum, B.

    2010-10-01

    Using the 2m telescope of the Turingia State Observatory at Tauten-berg (TLS), imaging observations in 3 wavebands (H ?, R and I) are performed in the 16 fields in the Aquila Rift region. The observed fields cover about 7 square degrees. Excluding the 3 fields with unqualified data, the photometrical analysis is made for the remaining 13 fields, from which point sources are identified, and finally 7 H ? emission-line star candidates are identified by color-color diagrams. The 7 candidates are located in five fields. Three of them are located near the Galactic plane, while the galactic latitudes of the rest are greater than 4°. The 2 M ASS counterparts of the point sources are identified, and the properties of the 7 H ? emission-line star candidates are further analyzed by using the two-color diagrams. It is found that the near-infrared radiation from these H ? emission-line star candidates has no obvious infrared excess, one of them even falls on the main-sequence branch. This indicates that the H ?-emissive young stellar objects (YSOs) are not always accompanied with the infrared excess, and that the results of the H ? emission line observation and the infrared excess observation are mutually supplemented. If the 7 H ? emission-line star candidates are regarded as YSO candidates, then the number of YSOs in the Aquila Rift region is quite small. The further confirmation of these candidates needs subsequent spectral observations.

  20. Crustal Rheology and Rifted Margin Architecture: Comparing Iberia-Newfoundland, Central South Atlantic, and South China Sea

    NASA Astrophysics Data System (ADS)

    Brune, Sascha

    2015-04-01

    Crustal rheology controls the style of rifting and ultimately the architecture of rifted margins: Hot, weak, or thick continental crust is dominated by ductile deformation and extends symmetrically into a wide rift system. Extension in cold, strong, or thin crust is accommodated by brittle faults and ductile shear zones that facilitate narrow rifts with asymmetric fault geometries. This recipe provides the standard framework to understand 2D rift geometry, however, a variety of processes exert significant control on subsequent rift evolution and ultimately on the architecture of rifted margins: inherited structures, melting and volcanism, 3D effects, extension rate, and weakening mechanisms. Numerical forward modelling studies have the opportunity to evaluate the influence of these processes on rift evolution in order to understand the complex interaction between rheology and tectonic history of specific margins. Here I compare the formation of three different magma-poor margin pairs, Iberia-Newfoundland, the Central South Atlantic Rift Segment, and the South China Sea margins within a numerical forward modelling framework. I apply a 2D version of the finite element code SLIM3D, which includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology and is able to reproduces a wide range of rift-related deformation processes such as flexure, lower crustal flow, and faulting. The Iberia-Newfoundland rifted margins are marked by moderate crustal asymmetry, with ~70 km of hyper-extended crust (less than 10 km thick) on the Iberian side and a very narrow margin on the Newfoundland counterpart. Similar to the Iberia-Newfoundland conjugates, the Central South Atlantic margins are predominantly asymmetric, however involve a much stronger degree of asymmetry with more than 200 km of hyper-extended crust offshore Angola, but only few tens of km at the Brazilian side. Kinematic and numerical modelling suggests that the asymmetry is caused by lateral migration of the rift centre, which generates sequential fault activity within the brittle crust. Rift migration results from two processes: (i) Strain hardening takes place in the rift centre due to cooling of upwelling mantle material. (ii) The formation of a low viscosity crustal pocket adjacent to the rift centre is caused by heat transfer from the mantle and viscous strain softening of the lower crust. These mechanisms generate a lateral strength contrast that promotes rift migration in a steady-state manner forming a wide sliver of hyper-extended crust on one margins side, while the conjugate margin becomes narrow. In contrast to these Atlantic examples where wide margins are formed diachronously, the South China Sea evolved in wide rift mode. Here, several hundred kilometres of highly attenuated continental crust are deformed simultaneously during ~40 My of extension. Numerical modelling suggests that the presence of weak, ductile crust enabled the formation of two wide and symmetric margins. Independent indicators for a weak crust come from super-deep basins on the northern margin. These basins appear to be created after the end of active extension and with a significant deficit in brittle faulting, which suggests that subsidence was controlled by sediment loading and accommodated by lower crustal flow, a style of basin formation that is only possible in the presence of low crustal viscosity.

  1. Molecular Epidemiology of Rift Valley Fever Virus

    PubMed Central

    Grobbelaar, Antoinette A.; Weyer, Jacqueline; Leman, Patricia A.; Kemp, Alan; Paweska, Janusz T.

    2011-01-01

    Phylogenetic relationships were examined for 198 Rift Valley fever virus isolates and 5 derived strains obtained from various sources in Saudi Arabia and 16 countries in Africa during a 67-year period (1944–2010). A maximum-likelihood tree prepared with sequence data for a 490-nt section of the Gn glycoprotein gene showed that 95 unique sequences sorted into 15 lineages. A 2010 isolate from a patient in South Africa potentially exposed to co-infection with live animal vaccine and wild virus was a reassortant. The potential influence of large-scale use of live animal vaccine on evolution of Rift Valley fever virus is discussed. PMID:22172568

  2. GPS Constraints on the Spatial Distribution of Extension in the Ethiopian Highlands and Main Ethiopian Rift

    NASA Astrophysics Data System (ADS)

    Amere, Y. B.; Bendick, R. O.; Fisseha, S.; Lewi, E.; Reilinger, R. E.; King, R. W.; Kianji, G.

    2014-12-01

    27 campaign and 17 continuous GPS sites spanning the Ethiopian Highlands, Main Ethiopian Rift (MER), and Somali Platform in Ethiopia and Eritrea were measured for varying durations between 1995 and 2014. Velocities at these sites show that present day strain in NE Africa is not localized only in the Afar depression and MER system. Rather, velocities as high as 6 mm/yr relative to stable Nubia occur in the central Ethiopian highlands west of the rift bounding faults; the northern and southern Ethiopian highlands host velocities as high as 3 mm/yr. These approach the magnitude of Nubia-Somalia spreading accommodated within the rift itself of 6 + 1 mm/yr with an azimuth of N770E. The combination of distributed low strain rate deformation contiguous with higher strain rate plate boundary deformation is similar to that expressed in other tectonically active continental settings like Basin and Range and Tibetan Plateau.Keywords: deformation, localized, distributed, strain, stable Nubia.

  3. Episodic rifting of phanerozoic rocks in the Victoria Land basin, Western Ross Sea, Antarctica

    USGS Publications Warehouse

    Cooper, A. K.; Davey, F.J.

    1985-01-01

    Multichannel seismic-reflection data show that the Victoria Land basin, unlike other sedimentary basins in the Ross Sea, includes a rift-depression 15 to 25 kilometers wide that parallels the Transantarctic Mountains and contains up to 12 kilometers of possible Paleozoic to Holocene age sedimentary rocks. An unconformity separates the previously identified Cenozoic sedimentary section from the underlying strata of possible Mesozoic and Paleozoic age. Late Cenozoic volcanic rocks intrude into the entire section along the eastern flank of the basin. The Victoria Land basin is probably part of a more extensive rift system that has been active episodically since Paleozoic time. Inferred rifting and basin subsidence during Mesozoic and Cenozoic time may be associated with regional crustal extension and uplift of the nearby Transantarctic Mountains.

  4. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    SciTech Connect

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  5. Recent seismic activity of the Kivu Province, Western Rift Valley of Africa

    NASA Astrophysics Data System (ADS)

    Zana, N.; Kamba, M.; Katsongo, S.; Janssen, Th.

    1989-11-01

    The Kivu Province is located at the junction between the well-defined Ruzizi Valley to the south and the Lake Amin Trough to the north. In this zone, the Rift Valley is characterized by the highest uplift and by complex dislocations of the crust, accompanied by the most intensive volcanism of the East African Rift System. In this paper, we show the recent state of the seismic activity of this zone in connection with the seismic activity generated by the volcanoes Nyiragongo and Nyamuragira. The pattern of cumulative energy release by these volcanoes shows a steplike increase that is believed to be a precursor of volcanic eruptions.

  6. Astronaut Neil A. Armstrong Undergoes Communications Systems Final Check

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dunned in his space suit, mission commander Neil A. Armstrong does a final check of his communications system before before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Armstrong; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  7. Astronaut Michael Collins Undergoes Communications Systems Final Check

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Dunned in his space suit, Command Module (CM) pilot Michael Collins does a final check of his communications system before the boarding of the Apollo 11 mission. Launched via a Saturn V launch vehicle, the first manned lunar mission launched from the Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The Saturn V vehicle was developed by the Marshall Space Flight Center (MSFC) under the direction of Dr. Wernher von Braun. The 3-man crew aboard the flight consisted of astronauts Collins; Neil A. Armstrong, Mission Commander; and Edwin E. Aldrin, Jr., Lunar Module (LM) Pilot. Armstrong was the first human to ever stand on the lunar surface, followed by Edwin (Buzz) Aldrin. Meanwhile, astronaut Collins piloted the CM in a parking orbit around the Moon. During a 2½ hour surface exploration, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis. With the success of Apollo 11, the national objective to land men on the Moon and return them safely to Earth had been accomplished.

  8. Syn-rift unconformities punctuating the lower-middle Cambrian transition in the Atlas Rift, Morocco

    NASA Astrophysics Data System (ADS)

    Álvaro, J. Javier; Ezzouhairi, Hassan; Clausen, Sébastien; Ribeiro, M. Luisa; Solá, Rita

    2015-04-01

    The Cambrian Tamdroust and Bab n'Ali Volcanic Complexes represent two magmatic episodes developed in the latest Ediacaran-Cambrian Atlas Rift of Morocco. Their rifting pulses were accompanied by accumulation of volcanosedimentary edifices (dominated by effusive lava flows in the former and explosive acidic aprons in the latter) associated with active tilting and uplift. Sealing of their peneplaned horst-and-graben palaeotopographies led to the onset of distinct onlapping geometries and angular discordances capping eroded basements ranging from the Ediacaran Ouarzazate Supergroup to the Cambrian Asrir Formation. Previous interpretations of these discordances as pull-apart or compressive events are revised here and reinterpreted in an extensional (rifting) context associated with active volcanism. The record of erosive unconformities, stratigraphic gaps, condensed beds and onlapping patterns across the traditional "lower-middle Cambrian" (or Cambrian Series 2-3) transition of the Atlas Rift must be taken into consideration for global chronostratigraphic correlation based on their trilobite content.

  9. RIFT VALLEY FEVER VIRUS: AN EMERGING THREAT TO WILDLIFE, LIVESTOCK, AND HUMANS IN THE U.S. - A REVIEW OF ISSUES AND CONCERNS, AND A GIS EARLY WARNING SYSTEM FOR RVF VECTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) virus is a mosquito-borne zoonotic hemorrhagic disease that causes 100% abortions in ungulates such as cattle, sheep, and goats, and is often fatal to young animals. Though currently confined mainly to Africa this disease could be introduced into the U.S. and spread via mosq...

  10. Evolution of magma-poor continental margins from rifting to seafloor spreading.

    PubMed

    Whitmarsh, R B; Manatschal, G; Minshull, T A

    2001-09-13

    The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid-state deformation and decompression melting within the Earth. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin, and geological mapping of margins of the former Tethys ocean now exposed in the Alps. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward. PMID:11557977

  11. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect

    Winn, R.D. Jr.; Steinmetz, J.C. (Marathon Oil Co., Littleton, CO (United States)); Kerekgyarto, W.L. (Marathon Oil Co., Houston, TX (United States))

    1993-11-01

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  12. InSAR observations of post-rifting deformation around the Dabbahu rift segment, Afar, Ethiopia

    NASA Astrophysics Data System (ADS)

    Hamling, I. J.; Wright, T. J.; Bennati Rassion, L. S.; Calais, E.; Lewi, E.; Pagli, C.

    2010-12-01

    The 60-km-long Dabbahu segment of the Nubia-Arabia plate boundary lies in the Northern Ethiopian region of Afar. In September 2005 a major rifting episode resulted in the injection of a 60-km-long dyke with a maximum thickness of ~8m (e.g. Wright et al., 2006). Subsidence observed at Dabbahu and Gabho volcanoes implied that some of the magma was sourced from shallow reservoirs beneath the volcanoes. Since the September 2005 intrusion, background displacement rates are significantly larger than the average secular divergence between Nubia and Arabia. Furthermore, between June 2006 and July 2009 a further 12 dykes were intruded in the Dabbahu segment, in the vicinity and to the south of Ado'Ale - a dissected, silicic volcanic complex at the centre of the rift segment. Using multiple ascending and descending interferograms, acquired regularly following the onset of rifting, we invert for rift perpendicular and vertical displacement rates around the rift segment. Largest displacement rates are observed around the Ado’ Ale volcanic complex, presumably caused by the accumulation of magma in a shallow (8-10 km) reservoir. Viscoelastic models, consisting of an elastic lid over a viscoelastic half-space, suggest an crustal thickness of ~14 km with an underlying viscosity of 10^18.5 Pa s. However, the presence of multiple magmatic sources around the rift zone cause large residuals between the data and model suggesting that viscoelastic relaxation alone cannot account for the observed deformation

  13. Submarine Thermal Springs on the Galapagos Rift

    Microsoft Academic Search

    John B. Corliss; Jack Dymond; Louis I. Gordon; John M. Edmond; Richard P. von Herzen; Robert D. Ballard; Kenneth Green; David Williams; Arnold Bainbridge; Kathy Crane; Tjeerd H. van Andel

    1979-01-01

    The submarine hydrothermal activity on and near the Galapagos Rift has been explored with the aid of the deep submersible Alvin. Analyses of water samples from hydrothermal vents reveal that hydrothermal activity provides significant or dominant sources and sinks for several components of seawater; studies of conductive and convective heat transfer suggest that two-thirds of the heat lost from new

  14. South Polar Cycloidal Rift on Enceladus

    Microsoft Academic Search

    Terry A. Hurford; R. Greenberg; G. V. Hoppa

    2006-01-01

    Large rifts near the south pole of Enceladus have been observed to be significantly warmer than the surrounding surface (Spencer et al. 2006 Science 311) and are most likely the source of jets of icy particles observed by Cassini (Porco et al. 2006 Science 311). The observed tectonics within the region have been proposed to have formed in response to

  15. Rift Valley Fever, Mayotte, 2007–2008

    PubMed Central

    Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D’Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-01-01

    After the 2006–2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  16. Rift Valley fever, Mayotte, 2007-2008.

    PubMed

    Sissoko, Daouda; Giry, Claude; Gabrie, Philippe; Tarantola, Arnaud; Pettinelli, François; Collet, Louis; D'Ortenzio, Eric; Renault, Philippe; Pierre, Vincent

    2009-04-01

    After the 2006-2007 epidemic wave of Rift Valley fever (RVF) in East Africa and its circulation in the Comoros, laboratory case-finding of RVF was conducted in Mayotte from September 2007 through May 2008. Ten recent human RVF cases were detected, which confirms the indigenous transmission of RFV virus in Mayotte. PMID:19331733

  17. Diagnostic approaches for Rift Valley Fever

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease outbreaks caused by arthropod-borne animal viruses (arboviruses) resulting in significant livestock and economic losses world-wide appear to be increasing. Rift Valley fever (RVF) virus (RVFV) is an important arbovirus that causes lethal disease in cattle, camels, sheep and goats in Sub-Saha...

  18. Late Paleozoic Rifting in northern Pakistan

    NASA Astrophysics Data System (ADS)

    Pogue, Kevin R.; Dipietro, Joseph A.; Khan, Said Rahim; Hughes, Scott S.; Dilles, John H.; Lawrence, Robert D.

    1992-08-01

    Metasedimentary rocks exposed in the eastern Peshawar basin and the southern Swat region of northern Pakistan provide evidence for late Paleozoic continental rifting. The onset of extensional tectonics in the Early Carboniferous is indicated by north derived clasts in the Jafar Kandao Formation eroded from thermally induced uplifts of parts of the formerly passive margin of Gondwana. Rift highlands were eroded until they were inundated during the Middle Carboniferous. Renewed uplift accompanied the eruption of basaltic lava flows during the Early Permian. Uplift along south dipping, northeast striking normal faults during the Carboniferous was accompanied by alkaline magmatism represented by the Shewa-Shahbazgarhi and Warsak porphyries and Koga syenite. Geochemistry of basaltic flows (now amphibolites) and intrusions associated with Permian uplift is similar to the coeval Panjal volcanics of northwestern India and indicates rift zone magmatism. Postrifting thermal subsidence led to the deposition of Upper Triassic marine carbonate rocks which unconformably overlie the rift basalts. A similar tectonic history in central Afghanistan suggests continuity between the two regions prior to the opening of the Neo-Tethys.

  19. Prediction of a Rift Valley fever Outbreak

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using satellite measurements to detect elevated sea surface temperatures (SSTs) and subsequent elevated normalized difference vegetation index (NDVI) data in Africa, we predicted an outbreak of Rift Valley fever (RVF) in humans and animals in the Horn of Africa during September 2006-May 2007. We det...

  20. RIFT VALLEY FEVER POTENTIAL, ARABIAN PENINSULA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rift Valley fever (RVF) was first confirmed outside of Africa in September 2000. This outbreak, which occurred in southwestern coastal Saudi Arabia and neighboring coastal areas of Yemen, followed elevated rainfall levels in nearby highlands which flooded the coastal areas, providing ideal environm...

  1. Longitudinal evolution of Suez rift structure, Egypt

    SciTech Connect

    Colletta, B.; Le Quellec, P.; Letouzey, J.; Moretti, I.

    1988-01-01

    A three-dimensional study of the structure of the Suez Rift has been carried out using field and subsurface data in an attempt to determine the role of transverse faults and the longitudinal evolution of the rift. As in most intracontinental rifts, the structure of the Gulf of Suez area is governed by normal faults and tilted blocks, whose crests constitute the main target of exploratory wells. The fault pattern consists of two major sets of trends: (1) longitudinal faults parallel with the rift axis and created in an extensional regime, trending east-northeast-west-southwest, and (2) transverse faults with north-south to north-northeast-south-southwest dominant trend. The transverse faults are inherited passive discontinuities, whereas most of the longitudinal faults were created during the Neogene in a purely extensional regime. Both sets were simultaneously active, producing a zigzag pattern and rhombic-shaped blocks. The transverse faults can show horizontal strike-slip components and act as relays between major normal faults.

  2. Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting

    NASA Astrophysics Data System (ADS)

    Heeremans, Michel; Larsen, Bjørn T.; Stel, Harry

    1996-12-01

    The Oslo Graben, southern Norway, is a N-S-trending Carboniferous-Permian rift system, characterized by major mafic to silicic magmatism, N-S-trending faults, reactivation of preexisting Precambrian faults and formation of half grabens. Magmatism is expressed by the presence of lavas, dyke injections, cauldron formation and the intrusion of batholiths. Paleostress analyses, mainly based on slickensides, have been performed in the area, both within and outside the rift structure. Combined with the current tectono-magmatic model of the Oslo Graben area, the analyses show the following stress evolution from the Caledonian Orogeny, with its compressional tectonics in the Silurian to the late stages of the Carboniferous-Permian rifting. NW-SE compression occurred in Silurian times, due to the continental collision of the Caledonian Orogeny. After a long period of a missing geological record, the area was affected by N-S compression during the Late Carboniferous. A shallow sedimentary basin developed, indicative for the pre- and proto-rift phases. The transition from the proto-rift phase to the initial rift phase, is marked by a transition from a transpressional regime into a transtensional regime. During the Early Permian, the stress regime changed from pure extension to radial extension. We suggest that the Oslo Graben can not simply be explained in terms of, or passive, or active rifting, but that a combination of both, evolving through time, is more suitable to explain the observations. We propose a model in which the Oslo Graben is initially triggered by far field stresses in the latest Carboniferous and earliest Permian, which infers opening due to passive rifting. These far field stresses are suggested to be linked to the Hercynian Orogeny, active to the south in central Europe in Carboniferous times and the reorganisation of the Pangea supercontinent. In Early Permian times, the stress regime caused radial extension, indicative for uplift and a change to an active mode of rifting. Simultaneously with the radial extension, large volumes of magma are emplaced at near surface levels. Despite all alternative models, an anomalous thermal gradient is necessary to create these large volumes of magmatic material. We propose therefore that shortly after the onset of rifting the dominant rifting mode becomes active (plume-related), although far field stresses might still be present.

  3. Plate-Based Fuel Processing System Final Report

    SciTech Connect

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI took the initial steam reforming plate-reactor concept and advanced it towards an integrated fuel processing system. A substantial amount of modeling was performed to guide the catalyst development and prototype hardware design and fabrication efforts. The plate-reactor mechanical design was studied in detail to establish design guidelines which would help the plate reactor survive the stresses of repeated thermal cycles (from start-ups and shut-downs). Integrated system performance modeling was performed to predict system efficiencies and determine the parameters with the most significant impact on efficiency. In conjunction with the modeling effort, a significant effort was directed towards catalyst development. CESI developed a highly active, sulfur tolerant, coke resistant, precious metal based reforming catalyst. CESI also developed its own non-precious metal based water-gas shift catalyst and demonstrated the catalysts durability over several thousands of hours of testing. CESI also developed a unique preferential oxidation catalyst capable of reducing 1% CO to < 10 ppm CO over a 35 C operating window through a single pass plate-based reactor. Finally, CESI combined the modeling results and steam reforming catalyst development efforts into prototype hardware. The first generation 3kW(e) prototype was fabricated from existing heat-exchanger plates to expedite the fabrication process. This prototype demonstrated steady state operation ranging from 5 to 100% load conditions. The prototype also demonstrated a 20:1 turndown ratio, 10:1 load transient operation and rapid start-up capability.

  4. The Surface Rupture of the 2010 El Mayor-Cucapah Earthquake and its Interaction with the 1892 Laguna Salada Rupture - Complex Fault Interaction in an Oblique Rift System (Invited)

    NASA Astrophysics Data System (ADS)

    Rockwell, T. K.; Fletcher, J. M.; Teran, O.; Mueller, K. J.

    2010-12-01

    The 2010 El Mayor-Cucapah earthquake (Mw 7.2) demonstrates intimate mechanical interactions between two major fault systems that intersect within and along the western margin of the Sierra Cucapah in Baja California, Mexico. Rupture associated with 2010 earthquake produced ~4 m of dextral oblique slip and propagated through an imbricate stack of east-dipping faults. Toward the north, rupture consistently steps left to structurally deeper faults located farther west and in this manner passes through the core of the Sierra Cucapah to its western margin. The western margin of the Sierra Cucapah is defined by the Laguna Salada fault (LSF), which forms part of an active west-directed oblique detachment system recognized as the source of the large (M7+) February 22, 1892 earthquake. In the central Sierra Cucapah, the fault systems are separated by a narrow horst block, and here the 2010 event produced triggered slip on the LSF. These surface breaks follow the exact trace of the 1892 rupture, but their sense of slip (10-30 cm of pure normal displacement) differs radically from the 5 m of oblique dextral-normal slip produced by the 1892 event. Farther north, the narrow horst block is buried beneath strata of the northern Laguna Salada rift basin, and at this location, west-directed scarps of the LSF accommodate a significant component of dextral slip associated with the primary 2010 surface rupture. Thus, the two fault systems combine to accommodate oblique extension in the northern part of the range and likely have linking structures at fairly shallow depth. Newly identified paleo-scarps extend the known 1892 rupture length from 20 km to as much as 42 km, from the Canon Rojo fault to the Yuha Basin; consistent with a Mw 7.2 event and historical reports of MMI VII damage in San Diego. Both fault systems generate large earthquakes (>M7.2), with the west-directed LSF fault accommodating rapid subsidence in the adjacent basin during M7+ events at ~ 2Ka recurrence. Initial mapping of Late Quaternary deposits within the range suggests a much longer recurrence interval for the faults that ruptured in 2010.

  5. Did Paleogene North Atlantic rift-related eruptions drive early Eocene climate cooling?

    Microsoft Academic Search

    David W. Jolley; Mike Widdowson

    2005-01-01

    The delivery of volcanogenic sulphur into the upper atmosphere by explosive eruptions is known to cause significant temporary climate cooling. Therefore, phreatomagmatic and phreatoplinian eruptions occurring during the final rifting stages of active flood basalt provinces provide a potent mechanism for triggering climate change.During the early Eocene, the northeast Atlantic margin was subjected to repeated ashfall for 0.5 m.y. This

  6. Influence of the mechanical coupling and inherited strength variations on the geometry of continental rifts.

    NASA Astrophysics Data System (ADS)

    Philippon, Melody; van Delft, Pim; van Winden, Matthijs; Zamuroviç, Dejan; Sokoutis, Dimitrios; Willingshofer, Ernst; Cloetingh, Sierd

    2013-04-01

    The geometry of continental rifts is strongly controlled by the rheology of the lithosphere at the onset of rifting. This initial geometry will further control the development of ocean spreading centers and the structure of adjacent passive margins. Therefore, understanding the influence of coupling between the different layers of the lithosphere with and without laterally variable strength in the crust is key when investigating continental rifts. In this study we infer the influence of coupling in the crust on the rift geometry by means of crustal scale analogue experiments, where we characterize the response of the crust to deformation in terms of the strength ratio between brittle and ductile crust. The degree of coupling has been varied for setups containing or not a pre-existing weak zone. To allow a better description of the geometry obtained in our models, some key observations such as: a) the degree of tilting of the blocks, b) the total width of the graben, c) the displacement along the main fault and d) the distribution of thinning in the lower crust are monitored. Models containing a weak zone are compared to natural examples of the inherited Mozambique Ocean suture zones (MOSZ) in the Red Sea rift. The modelling results suggest that deformation is not a-priori localized within pre-existing weak zones unless the coupling between the brittle and the ductile crust is high. With respect to the MOSZ, we infer that: (1) Jurassic NW-SE trending grabens developed parallel to but not within the MOSZ and hence reflect a low degree of coupling whereas (2) Eocene rifting in the Red Sea occurred under coupled conditions as deformation strongly focused within the MOSZ. Models without weak zone shows that large-scale detachment faults can also form within a highly coupled crust, which is at variance to the common perception that detachment faulting demands strong decoupling. Our findings shed light on natural rift systems, which show a wide range of geometries that vary from grabens bounded by high angle normal faults (analogue to the geometry of the Upper Rhine Graben & North Sea Central graben) to listric faults rooting on a basal detachment defining a more asymmetric system (similar to the geometry of the golf of Corinth rift).

  7. Analysis of Proterozoic rifting and subsequent subsidence of the Central Congo Basin

    NASA Astrophysics Data System (ADS)

    Kadima Kabongo, Etienne; Sebagenzi Mwene Ntabwoba, Stanislas; Lucazeau, Francis

    2010-05-01

    The Central Basin (or Cuvette Centrale) of Congo is a late-Proterozoic to Recent basin covering near one million km2 with up to 9 km of sediment. Its subsidence has been related to a preexisting failed rift (Daly et al, 1992), whose origin, geometry and structure remain largely unknown. Here we present a combined analysis of subsidence and gravity that provides new lines of evidence for a rift origin. Although the dataset for the Central Basin is poor and has not been improved for a long time (only four deep wells with depths between 1856 and 4666 meters and 33 seismic lines covering 2900 km), it is sufficient for the first order characteristics. The analysis of wells data reveals that the long term subsidence (~450 m.y.) and present-day surface heat flow (~40 mWm-2) are both characteristic of a 250 km thick thermal lithosphere. This is consistent with the Archean age of the craton but not with thermal reworking during Paleozoic as hypothesized by Artemieva (2006). From the seismic lines, we can derive a 3D geometrical basin model divided into three different units defined by two major uncomformities. Each layer is assigned an average density value inferred from geophysical logs and then gravity effect is determined and subtracted from the observed gravity anomalies. The residual map shows a positive SE-NW elongated structure that can be related to a possible rift prior to basin subsidence. In order to determine the associated crustal structure, we simply assumed that the post-rift subsidence is flexural and that the rift isostasy is governed by a depth of necking. The procedure involves first flexural backstripping of sediments assuming a given Equivalent Elastic Thickness EET and then determination of the crustal thickness assuming a given depth of necking DON. EET and DON are varied in order to obtain the minimum misfit between predicted and observed gravity. The best results are obtained for EET = 100 km, DON = 10 km and an initial crust thickness of 35 km. The thinning factor within the rift is 1.75-2.00, which is comparable with modern rift such as Baikal (Poort et al, 1998) or East African Rift (Mechie, 1994). The modeled EET is high (100 km) but comparable with estimated values from Bouguer gravity / topography coherence analysis (Pérez-Gussinyé et al, 2009) for that area. Such a large strength value is consistent with a 250 km thick and cold thermal lithosphere. Finally, the depth of necking DON=10 km is shallow but mostly representative of the strength conditions during rifting as for modern rifts. The hidden rift below Central Basin is in the continuity of neo Proterozoic geological structures, the Bushimay supergroup to the South-East and the the Liki-Bembien group to the North-West, while a satellite structure is connecting to the Sangha aulacogen.

  8. Upper Proterozoic rift-related rocks in the Pensacola Mountains, Antarctica: Precursors to supercontinent breakup?

    Microsoft Academic Search

    Bryan C. Storey; Tony Alabaster; David I. M. Macdonald; Ian L. Millar; Robert J. Pankhurst; Ian W. D. Dalziel

    1992-01-01

    Sedimentological and structural studies in the Pensacola Mountains, Antarctica, suggest that upper Precambrian clastic sedimentary rocks of the Patuxent Formation and associated bimodal volcanic rocks formed in an intracontinental rift setting. The turbidites of the Patuxent Formation are part of a large depositional system, derived from a continental source. Interbedded pillow basalts and basaltic sills have trace and rare earth

  9. TFIIH Transcription Factor, a Target for the Rift Valley Hemorrhagic Fever Virus

    Microsoft Academic Search

    Nicolas Le May; Sandy Dubaele; Luca Proietti De Santis; Agnès Billecocq; Michèle Bouloy; Jean-Marc Egly

    2004-01-01

    The Rift Valley fever virus (RVFV) is the causative agent of fatal hemorrhagic fever in humans and acute hepatitis in ruminants. We found that infection by RVFV leads to a rapid and drastic suppression of host cellular RNA synthesis that parallels a decrease of the TFIIH transcription factor cellular concentration. Using yeast two hybrid system, recombinant technology, and confocal microscopy,

  10. Tectono-magmatic evolution at distal magma-poor rifted margins: insights of the lithospheric breakup at the Australia-Antarctica margins.

    NASA Astrophysics Data System (ADS)

    Gillard, Morgane; Autin, Julia; Manatschal, Gianreto

    2015-04-01

    The discovery of large domains of hyper-extended continental crust and exhumed mantle along many present-day magma-poor rifted margins questions the processes that play during the lithospheric breakup and the onset of seafloor spreading. In particular, the amount of magma and its relation to tectonic structures is yet little understood. Trying to find answers to these questions asks to work at the most distal parts of rifted margins where the transition from rifting to steady state seafloor spreading occurred. The Australian-Antarctic conjugated margins provide an excellent study area. Indeed, the central sector of the Great Australian Bight/Wilkes Land developed in a magma-poor probably ultra-slow setting and displays a complex and not yet well understood Ocean-Continent Transition (OCT). This distal area is well imaged by numerous high quality seismic lines covering the whole OCT and the steady-state oceanic crust. The deformation recorded in the sedimentary units along these margins highlights a migration of the deformation toward the ocean and a clear polyphase evolution. In particular, the observation that each tectono-sedimentary unit downlaps oceanwards onto the basement suggests that final rifting is associated with the creation of new depositional ground under conditions that are not yet those of a steady state oceanic crust. These observations lead to a model of evolution for these distal margins implying the development of multiple detachment systems organizing out-of-sequence, each new detachment fault developing into the previously exhumed basement. This spatial and temporal organization of fault systems leads to a final symmetry of exhumed domains at both conjugated margins. Magma appears to gradually increase during the margin development and is particularly present in the more distal domain where we can observe clear magma/fault interactions. We propose that the evolution of such rifted margins is linked to cycles of delocalisation/re-localisation of the deformation which could be mainly influenced by magma and by the decoupling between the upper brittle deformation and the asthenospheric uplift. In this context, the lithospheric breakup appears to be triggered by progressive syn-extensional thermal and magmatic weakening. However, the observation of continentward dipping reflectors interpreted as flip-flop detachment systems suggests that the localisation of the spreading centre and the onset of the steady state oceanic spreading will not be necessarily associated with a clear magmatic oceanic crust. In case of a low magmatic budget we can rather observe the onset of steady state amagmatic oceanic spreading, similar to what is expected at ultra-slow spreading ridges. This model of evolution (Gillard, 2014, PhD thesis) could well explain the fact that most magma-poor margins display symmetric exhumed domains on conjugate margins. However it raises the question of the nature of magnetic anomalies in ocean-continent transitions and their value for the interpretation of the kinematic evolution of conjugate rifted margins.

  11. What the volcanism of the East African Rift tells us on its evolution and dynamics: a reappraisal

    NASA Astrophysics Data System (ADS)

    Michon, Laurent

    2015-04-01

    The East African Rift (EAR) is one of the most studied tectonic structures on Earth. Classically, it is described as extending from Afar in the North to the Malawi rift in the South, along the eastern and western branches, respectively. A widely accepted consensus also exists on two main points: 1- the rift initiated first with plume emplacement below the northern part of the eastern branch and 2- extension and volcanism subsequently migrated southward along the western branch (e.g., Ebinger, 1989). However, an increasing amount of new geochronological data on the volcanic activity in the southern part of the East African Rift tends to weaken these interpretations and imposes a reassessment of the rift dynamics. The volcanic activity being one of the main characteristics of this rift, I use it here to determine the lateral extension of the rift system and to assess the rift activity through times. First, the volcanism unambiguously indicates that the rift is not limited to the African continent but can be traced in the Mozambique Channel and in Madagascar where it is closely related to active tectonics (graben and transfer faults) initiated since at least the Miocene