Science.gov

Sample records for ring finger e3

  1. Structural model of ubiquitin transfer onto an artificial RING finger as an E3 ligase

    NASA Astrophysics Data System (ADS)

    Miyamoto, Kazuhide

    2014-10-01

    The artificial WSTF PHD_EL5 RING finger was designed via ``α-helical region substitution'', and its structural model for the attachment of activated ubiquitin has been demonstrated. Chemical modifications of Cys residues, the circular dichroism spectra, and substrate-independent ubiquitination assays illustrated that the WSTF PHD_EL5 RING finger has E3 activity, and it is ubiquitinated via Lys14. Homology modeling calculations revealed that the WSTF PHD_EL5 RING finger possesses a classical RING fold for specific E2-E3 binding. The docking poses of the WSTF PHD_EL5 RING finger with the UbcH5b-ubiquitin conjugate provided insight into its functional E2 interaction and development of ubiquitination at the atomic level. The structural model of the artificial WSTF PHD_EL5 RING finger proposed by the present work is useful and may help to extend the strategy of α-helical region substitution.

  2. Identification of TRIM22 as a RING finger E3 ubiquitin ligase

    SciTech Connect

    Duan Zhijian; Gao Bo; Xu Wei; Xiong Sidong

    2008-09-26

    TRIM22, a member of the TRIM family proteins which contain RING finger, B-box, and coiled-coil domains, has been reported as a transcriptional regulator and involved in various cellular processes. In this study, the E3 ubiquitin ligase activity, a novel property of TRIM22, was demonstrated. It was found that TRIM22 underwent self-ubiquitylation in vitro in combination with the E2 enzyme UbcH5B and the ubiquitylation was dependent on its RING finger domain. Further evidences showed that TRIM22 could also be self-ubiquitylated in vivo. Importantly, TRIM22 was conjugated with poly-ubiquitin chains and stabilized by the proteasome inhibitor in 293T cells, suggesting that TRIM22 targeted itself for proteasomal degradation through the poly-ubiquitylation. We also found that TRIM22 was located in the nucleus, indicating that TRIM22 might function as a nuclear E3 ubiquitin ligase.

  3. The RING Finger E3 Ligase SpRing is a Positive Regulator of Salt Stress Signaling in Salt-Tolerant Wild Tomato Species.

    PubMed

    Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun

    2016-03-01

    Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. PMID:26786853

  4. Ring finger protein 146/Iduna is a Poly (ADP-ribose) polymer binding and PARsylation dependent E3 ubiquitin ligase

    PubMed Central

    Zhou, Zhi-dong; Chan, Christine Hui-shan; Xiao, Zhi-cheng

    2011-01-01

    Recent findings suggest that Ring finger protein 146 (RNF146), also called Iduna, have neuroprotective property due to its inhibition of Parthanatos via binding with Poly(ADP-ribose) (PAR). The Parthanatos is a PAR dependent cell death that has been implicated in many human diseases. RNF146/Iduna acts as a PARsylation-directed E3 ubquitin ligase to mediate tankyrase-dependent degradation of axin, thereby positively regulates Wnt signaling. RNF146/Iduna can also facilitate DNA repair and protect against cell death induced by DNA damaging agents or γ-irradiation. It can translocate to the nucleus after cellular injury and promote the ubiquitination and degradation of various nuclear proteins involved in DNA damage repair. The PARsylation-directed ubquitination mediated by RNF146/Iduna is analogous to the phosphorylation-directed ubquitination catalyzed by Skp1-Cul1-F-box (SCF) E3 ubiquitin complex. RNF146/Iduna has been found to be implicated in neurodegenerative disease and cancer development. Therefore modulation of the PAR-binding and PARsylation dependent E3 ligase activity of RNF146/Iduna could have therapeutic significance for diseases, in which PAR and PAR-binding proteins play key pathophysiologic roles. PMID:22274711

  5. Ring Finger Protein 149 Is an E3 Ubiquitin Ligase Active on Wild-type v-Raf Murine Sarcoma Viral Oncogene Homolog B1 (BRAF)*

    PubMed Central

    Hong, Seung-Woo; Jin, Dong-Hoon; Shin, Jae-Sik; Moon, Jai-Hee; Na, Young-Soon; Jung, Kyung-Ah; Kim, Seung-Mi; Kim, Jin Cheon; Kim, Kyu-pyo; Hong, Yong Sang; Lee, Jae-Lyun; Choi, Eun Kyung; Lee, Jung Shin; Kim, Tae Won

    2012-01-01

    Members of the RAF family (ARAF, BRAF, and CRAF/RAF-1) are involved in a variety of cellular activities, including growth, survival, differentiation, and transformation. An oncogene encodes BRAF, the function of which is linked to MEK activation. BRAF is the most effective RAF kinase in terms of induction of MEK/ERK activity. However, the mechanisms involved in BRAF regulation remain unclear. In the present work, we used a tandem affinity purification approach to show that RNF149 (RING finger protein 149) interacts with wild-type BRAF. The latter protein is a RING domain-containing E3 ubiquitin ligase involved in control of gene transcription, translation, cytoskeletal organization, cell adhesion, and epithelial development. We showed that RNF149 bound directly to the C-terminal kinase-containing domain of wild-type BRAF and induced ubiquitination, followed by proteasome-dependent degradation, of the latter protein. Functionally, RNF149 attenuated the increase in cell growth induced by wild-type BRAF. However, RNF149 did not bind to mutant BRAF or induce ubiquitination thereof. Thus, we show that RNF149 is an E3 ubiquitin ligase active on wild-type BRAF. PMID:22628551

  6. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling.

    PubMed

    Yang, Liang; Liu, Qiaohong; Liu, Zhibin; Yang, Hao; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-01-01

    Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis. PMID:25913143

  7. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance

    PubMed Central

    Lim, Sung Don; Cho, Hyun Yong; Park, Yong Chan; Ham, Deok Jae; Lee, Ju Kyong; Jang, Cheol Seong

    2013-01-01

    Thermotolerance is very important for plant survival when plants are subjected to lethally high temperature. However, thus far little is known about the functions of RING E3 ligase in response to heat shock in plants. This study found that one rice gene encoding the RING finger protein was specifically induced by heat and cold stress treatments but not by salinity or dehydration and named it OsHCI1 (Oryza sativa heat and cold induced 1). Subcellular localization results showed that OsHCI1 was mainly associated with the Golgi apparatus and moved rapidly and extensively along the cytoskeleton. In contrast, OsHCI1 may have accumulated in the nucleus under high temperatures. OsHCI1 physically interacted with nuclear substrate proteins including a basic helix-loop-helix transcription factor. Transient co-overexpression of OsHCI1 and each of three nuclear proteins showed that their fluorescent signals moved into the cytoplasm as punctuate formations. Heterogeneous overexpression of OsHCI1 in Arabidopsis highly increased survival rate through acquired thermotolerance. It is proposed that OsHCI1 mediates nuclear–cytoplasmic trafficking of nuclear substrate proteins via monoubiquitination and drives an inactivation device for the nuclear proteins under heat shock. PMID:23698632

  8. RKP, a RING finger E3 ligase induced by BSCTV C4 protein, affects geminivirus infection by regulation of the plant cell cycle.

    PubMed

    Lai, Jianbin; Chen, Hao; Teng, Kunling; Zhao, Qingzhen; Zhang, Zhonghui; Li, Yin; Liang, Liming; Xia, Ran; Wu, Yaorong; Guo, Huishan; Xie, Qi

    2009-03-01

    The C4 protein from Curtovirus is known as a major symptom determinant, but the mode of action of the C4 protein remains unclear. To understand the mechanism of involvement of C4 protein in virus-plant interactions, we introduced the C4 gene from Beet severe curly top virus (BSCTV) into Arabidopsis under a conditional expression promoter; the resulting overexpression of BSCTV C4 led to abnormal host cell division. RKP, a RING finger protein, which is a homolog of the human cell cycle regulator KPC1, was discovered to be induced by BSCTV C4 protein. Mutation of RKP reduced the susceptibility to BSCTV in Arabidopsis and impaired BSCTV replication in plant cells. Callus formation is impaired in rkp mutants, indicating a role of RKP in the plant cell cycle. RKP was demonstrated to be a functional ubiquitin E3 ligase and is able to interact with cell-cycle inhibitor ICK/KRP proteins in vitro. Accumulation of the protein ICK2/KRP2 was found increased in the rkp mutant. The above results strengthen the possibility that RKP might regulate the degradation of ICK/KRP proteins. In addition, the protein level of ICK2/KRP2 was decreased upon BSCTV infection. Overexpression of ICK1/KRP1 in Arabidopsis could reduce the susceptibility to BSCTV. In conclusion, we found that RKP is induced by BSCTV C4 and may affect BSCTV infection by regulating the host cell cycle. PMID:19000158

  9. The RING Finger Ubiquitin E3 Ligase OsHTAS Enhances Heat Tolerance by Promoting H2O2-Induced Stomatal Closure in Rice.

    PubMed

    Liu, Jianping; Zhang, Cuicui; Wei, Chuchu; Liu, Xin; Wang, Mugui; Yu, Feifei; Xie, Qi; Tu, Jumin

    2016-01-01

    Heat stress often results in the generation of reactive oxygen species, such as hydrogen peroxide, which plays a vital role as a secondary messenger in the process of abscisic acid (ABA)-mediated stomatal closure. Here, we characterized the rice (Oryza sativa) HEAT TOLERANCE AT SEEDLING STAGE (OsHTAS) gene, which plays a positive role in heat tolerance at the seedling stage. OsHTAS encodes a ubiquitin ligase localized to the nucleus and cytoplasm. OsHTAS expression was detected in all tissues surveyed and peaked in leaf blade, in which the expression was concentrated in mesophyll cells. OsHTAS was responsive to multiple stresses and was strongly induced by exogenous ABA. In yeast two-hybrid assays, OsHTAS interacted with components of the ubiquitin/26S proteasome system and an isoform of rice ascorbate peroxidase. OsHTAS modulated hydrogen peroxide accumulation in shoots, altered the stomatal aperture status of rice leaves, and promoted ABA biosynthesis. The results suggested that the RING finger ubiquitin E3 ligase OsHTAS functions in leaf blade to enhance heat tolerance through modulation of hydrogen peroxide-induced stomatal closure and is involved in both ABA-dependent and DROUGHT AND SALT TOLERANCE-mediated pathways. PMID:26564152

  10. HTLV-1 Tax Stimulates Ubiquitin E3 Ligase, Ring Finger Protein 8, to Assemble Lysine 63-Linked Polyubiquitin Chains for TAK1 and IKK Activation

    PubMed Central

    Ho, Yik-Khuan; Zhi, Huijun; Bowlin, Tara; Dorjbal, Batsukh; Philip, Subha; Zahoor, Muhammad Atif; Shih, Hsiu-Ming; Semmes, Oliver John; Schaefer, Brian; Glover, J. N. Mark; Giam, Chou-Zen

    2015-01-01

    Human T lymphotropic virus type 1 (HTLV-1) trans-activator/oncoprotein, Tax, impacts a multitude of cellular processes, including I-κB kinase (IKK)/NF-κB signaling, DNA damage repair, and mitosis. These activities of Tax have been implicated in the development of adult T-cell leukemia (ATL) in HTLV-1-infected individuals, but the underlying mechanisms remain obscure. IKK and its upstream kinase, TGFβ-activated kinase 1 (TAK1), contain ubiquitin-binding subunits, NEMO and TAB2/3 respectively, which interact with K63-linked polyubiquitin (K63-pUb) chains. Recruitment to K63-pUb allows cross auto-phosphorylation and activation of TAK1 to occur, followed by TAK1-catalyzed IKK phosphorylation and activation. Using cytosolic extracts of HeLa and Jurkat T cells supplemented with purified proteins we have identified ubiquitin E3 ligase, ring finger protein 8 (RNF8), and E2 conjugating enzymes, Ubc13:Uev1A and Ubc13:Uev2, to be the cellular factors utilized by Tax for TAK1 and IKK activation. In vitro, the combination of Tax and RNF8 greatly stimulated TAK1, IKK, IκBα and JNK phosphorylation. In vivo, RNF8 over-expression augmented while RNF8 ablation drastically reduced canonical NF-κB activation by Tax. Activation of the non-canonical NF-κB pathway by Tax, however, is unaffected by the loss of RNF8. Using purified components, we further demonstrated biochemically that Tax greatly stimulated RNF8 and Ubc13:Uev1A/Uev2 to assemble long K63-pUb chains. Finally, co-transfection of Tax with increasing amounts of RNF8 greatly induced K63-pUb assembly in a dose-dependent manner. Thus, Tax targets RNF8 and Ubc13:Uev1A/Uev2 to promote the assembly of K63-pUb chains, which signal the activation of TAK1 and multiple downstream kinases including IKK and JNK. Because of the roles RNF8 and K63-pUb chains play in DNA damage repair and cytokinesis, this mechanism may also explain the genomic instability of HTLV-1-transformed T cells and ATL cells. PMID:26285145

  11. The RING Finger Ubiquitin E3 Ligase SDIR1 Targets SDIR1-INTERACTING PROTEIN1 for Degradation to Modulate the Salt Stress Response and ABA Signaling in Arabidopsis

    PubMed Central

    Zhang, Huawei; Cui, Feng; Wu, Yaorong; Lou, Lijuan; Liu, Lijing; Tian, Miaomiao; Ning, Yuese; Shu, Kai; Tang, Sanyuan; Xie, Qi

    2015-01-01

    The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway. PMID:25616872

  12. The creation of the artificial RING finger from the cross-brace zinc finger by {alpha}-helical region substitution

    SciTech Connect

    Miyamoto, Kazuhide; Togiya, Kayo

    2010-04-16

    The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the {alpha}-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD{sub R}ING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD{sub R}ING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD{sub R}ING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.

  13. Regulation of cancer stem cells by RING finger ubiquitin ligases

    PubMed Central

    Sun, Xiao-Hong

    2014-01-01

    Like normal stem cells, cancer stem cells (CSCs) are capable of self-renewal, either by symmetric or asymmetric cell division. They have the exclusive ability to reproduce malignant tumors indefinitely, and to confer resistance in response to radiation or chemotherapy. The ubiquitin modification system plays various roles in physiology and pathology. The key component for the specificity of this system is ubiquitin ligases (E3s). Of these E3s, the majority are RING finger proteins. Many RING finger E3s, such as the Cullin1-Skp1-F-box protein (SCF) E3s, CBL, BRCA1, MDM2 and von Hippel-Lindau tumour suppressor (VHL), are crucial in the regulation of cell-cycle progression and cell differentiation. As a result, many RING finger E3s are implicated in the positive and negative regulation of CSC maintenance. This review summarizes current knowledge in this research field. PMID:27358852

  14. Characterization and Promoter Analysis of a Cotton Ring-Type Ubiquitin Ligase (E3) Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 337 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus a...

  15. Index and ring finger ratio--a morphologic sex determinant in South-Indian children.

    PubMed

    Kanchan, Tanuj; Pradeep Kumar, G

    2010-12-01

    To investigate the sexual dimorphism of index and ring finger ratio in South Indian children. The index finger length (IFL) and the ring finger length (RFL) were measured in 350 subjects aged between 2 and 12 years using a steel measuring tape. The index and ring finger ratio was computed by dividing index finger length by ring finger length. The data obtained were analyzed statistically using SPSS, version 11.0. Mean RFL was greater than mean IFL in both males and females. The mean ring finger length was longer in males than females and mean index finger length longer in females than males. However, these sex differences observed for index and ring finger length were not significant in both hands. Statistically significant sex differences were observed from the derived index and ring finger ratio. The mean index and ring finger ratio was found to be higher in females than males. Significant correlation was found between age and index and ring finger lengths. Index and ring finger ratio however, did not show any significant correlation with age. This study suggests that among South-Indian children, the index and ring finger ratio of 0.97 and less is indicative of male, and a ratio of more than 0.97 is indicative of female sex. The ratio can be a useful sex indicator irrespective of the age of the individual. PMID:20369311

  16. AUTOUBIQUITINATION OF BCA2 RING E3 LIGASE REGULATES ITS OWN STABILITY AND AFFECTS CELL MIGRATION

    PubMed Central

    Amemiya, Yutaka; Azmi, Peter; Seth, Arun

    2009-01-01

    Accumulating evidence suggests that ubiquitination plays a role in cancer by changing the function of key cellular proteins. Previously, we isolated BCA2 gene from a library enriched for breast tumor mRNAs. The BCA2 protein is a RING type E3 ubiquitin ligase and is overexpressed in human breast tumors. In order to deduce the biochemical and biological function of BCA2, we searched for BCA2 binding partners using human breast and fetal brain cDNA libraries and BacterioMatch two-hybrid system. We identified 62 interacting partners, majority of those were found to encode ubiquitin precursor proteins including ubiquitin C and ubiquitinA-52. Using several deletion and point mutants, we found that the BCA2 zinc finger (BZF) domain at the N-terminus specifically binds ubiquitin and ubiquitinated proteins. The autoubiquitination activity of BCA2, RING-H2 mutant, BZF mutant, and various lysine mutants of BCA2 were investigated. Our results indicate that the BCA2 protein is strongly ubiquitinated and no ubiquitination is detected with the BCA2 RING-H2 mutant, indicating that the RING domain is essential for autoubiquitination. Mutation of the K26 and K32 lysines in the BZF domain also abrogated autoubiquitination activity. Interestingly, mutation of the K232 and K260 lysines in and near the RING domain resulted in an increase in autoubiquitination activity. Additionally, in cellular migration assays, BCA2 mutants showed altered cell motility compared to wild-type BCA2. On the basis of these findings, we propose that BCA2 maybe an important factor regulating breast cancer cell migration/metastasis. We put-forward a novel model for BCA2 E3 ligase mediated cell regulation. PMID:18819927

  17. Ring finger protein 43 expression is associated with genetic alteration status and poor prognosis among patients with intrahepatic cholangiocarcinoma.

    PubMed

    Talabnin, Chutima; Janthavon, Patcharee; Thongsom, Sunisa; Suginta, Wipa; Talabnin, Krajang; Wongkham, Sopit

    2016-06-01

    Ring finger E3 ligases have roles in processes central to maintenance of genomic integrity and cellular homeostasis. Many ring finger E3 ligases are implicated in malignancy. Ring finger protein 43 (RNF43) is a ring finger E3 ligase that negatively regulates the Wnt/β-catenin signaling pathway. RNF43 is frequently mutated in several types of malignancy, including intrahepatic cholangiocarcinoma (ICC). The significance of its expression in ICC has not, however, been reported. We determined RNF43 expression and identified RNF43 polymorphisms in ICC tissues. We also investigated the correlation between RNF43 expression and RNF43 mutation status, RNF43 polymorphisms, clinicopathological features, and prognosis of ICC patients. RNF43 reduced expression in ICC, and the reduction of RNF43 messenger RNA expression was significantly correlated with the presence of rs2257205 and RNF43 somatic mutations, confirming that all RNF43 somatic mutations in ICC are inactivating. Overall survival was worst in patients with down-regulation of RNF43. Univariate and multivariate analyses revealed that RNF43 expression was an independent prognostic factor. There was no statistically significant association between RNF43 messenger RNA and protein expression nor any clinicopathological features or RNF43 polymorphisms. The results imply that RNF43 is down-regulated in ICC and may play a crucial role during development of ICC. PMID:26980022

  18. RING finger protein PLR-1 blocks Wnt signaling by altering trafficking of Wnt Receptors

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan E.

    Secreted Wnt proteins control a wide range of essential developmental processes, including axon guidance and establishment of anteroposterior neuronal polarity. We identified a transmembrane RING finger protein, PLR-1, that governs the response to Wnts by reducing the cell surface levels of Wnt receptors Frizzled, CAM-1 and LIN-18 in Caenorhabditis elegans. Frizzled, CAM-1 and LIN-18 are normally enriched at the plasma membrane where they are capable of detecting and responding to extracellular Wnts. However, when PLR-1 is expressed Frizzled, CAM-1 and LIN-18 are no longer detected at the cell surface and instead colocalize with PLR-1 in endosomes and Golgi. PLR-1 is related to a broad family of transmembrane proteins that contain a lumenal protease associated domain and a cytosolic RING finger. The RING finger is a hallmark of one type of E3 ubiquitin ligase and monoubiquitination is commonly used to regulate protein trafficking. Protease associated domains are largely thought to mediate interactions between proteins. To identify the domains responsible for PLR-1 regulation of Frizzled from the cell surface we utilized a series of fluorescently tagged fusion proteins and protein truncations containing various domains from PLR-1 and Frizzled. Our data suggests that PLR-1 and Frizzled interact and form a complex via their respective extracellular/lumenal domains, and that ubiqiuitination of Frizzled by PLR-1 targets the Frizzled/PLR-1 complex to the endosome.

  19. Allosteric Activation of E2-RING Finger-Mediated Ubiquitylation by a Structurally Defined Specific E2-Binding Region of gp78

    SciTech Connect

    Das, Ranabir; Mariano, Jennifer; Tsai, Yien Che; Kalathur, Ravi C.; Kostova, Zlatka; Li, Jess; Tarasov, Sergey G.; McFeeters, Robert L.; Altieri, Amanda S.; Ji, Xinhua; Byrd, R. Andrew; Weissman, Allan M.

    2010-11-12

    The activity of RING finger ubiquitin ligases (E3) is dependent on their ability to facilitate transfer of ubiquitin from ubiquitin-conjugating enzymes (E2) to substrates. The G2BR domain within the E3 gp78 binds selectively and with high affinity to the E2 Ube2g2. Through structural and functional analyses, we determine that this occurs on a region of Ube2g2 distinct from binding sites for ubiquitin-activating enzyme (E1) and RING fingers. Binding to the G2BR results in conformational changes in Ube2g2 that affect ubiquitin loading. The Ube2g2:G2BR interaction also causes an 50-fold increase in affinity between the E2 and RING finger. This results in markedly increased ubiquitylation by Ube2g2 and the gp78 RING finger. The significance of this G2BR effect is underscored by enhanced ubiquitylation observed when Ube2g2 is paired with other RING finger E3s. These findings uncover a mechanism whereby allosteric effects on an E2 enhance E2-RING finger interactions and, consequently, ubiquitylation.

  20. Systematic Analysis of Dimeric E3-RING Interactions Reveals Increased Combinatorial Complexity in Human Ubiquitination Networks*

    PubMed Central

    Woodsmith, Jonathan; Jenn, Robert C.; Sanderson, Chris M.

    2012-01-01

    Ubiquitination controls the stability or function of many human proteins, thereby regulating a wide range of physiological processes. In most cases the combinatorial pattern of protein interactions that facilitate substrate recognition or modification remain unclear. Moreover, the efficiency of ubiquitination reactions can be altered by the formation of homo- and heterotypic E3-RING complexes. To establish the prevalence and nature of binary E3-RING/E3-RING interactions systematic yeast two-hybrid screens were performed to test 7269 potential interactions between 124 human E3-RING proteins. These studies identified 228 dimeric interactions between 100 E3-RINGs, of which 205 were novel. Complementary co-immunoprecipitation studies were performed to test predicted network interactions, showing a high correlation (64%) with primary yeast two-hybrid data. This data was integrated with known E3-RING interactions, tissue expression profiles and proteomic ubiquitination datasets to facilitate identification of subnetworks in which E3-RING dimerization events have the potential to alter network structure. These results reveal a widespread yet selective pattern of E3-RING dimerization events, which have the potential to confer further combinatorial complexity within human ubiquitination cascades. PMID:22493164

  1. Magic Ring: A Finger-Worn Device for Multiple Appliances Control Using Static Finger Gestures

    PubMed Central

    Jing, Lei; Zhou, Yinghui; Cheng, Zixue; Huang, Tongjun

    2012-01-01

    An ultimate goal for Ubiquitous Computing is to enable people to interact with the surrounding electrical devices using their habitual body gestures as they communicate with each other. The feasibility of such an idea is demonstrated through a wearable gestural device named Magic Ring (MR), which is an original compact wireless sensing mote in a ring shape that can recognize various finger gestures. A scenario of wireless multiple appliances control is selected as a case study to evaluate the usability of such a gestural interface. Experiments comparing the MR and a Remote Controller (RC) were performed to evaluate the usability. From the results, only with 10 minutes practice, the proposed paradigm of gestural-based control can achieve a performance of completing about six tasks per minute, which is in the same level of the RC-based method. PMID:22778612

  2. SGR9, a RING type E3 ligase, modulates amyloplast dynamics important for gravity sensing.

    NASA Astrophysics Data System (ADS)

    Morita, Miyo T.; Nakamura, Moritaka; Tasaka, Masao

    Gravitropism is triggered when the directional change of gravity is sensed in the specific cells, called statocytes. In higher plants, statocytes contain sinking heavier amyloplasts which are particular plastids accumulating starch granules. The displacement of amyloplasts within the statocytes is thought to be the initial event of gravity perception. We have demonstrated that endodermal cells are most likely to be the statocytes in Arabidop-sis shoots. Live cell imaging of the endodermal cell of stem has shown that most amyloplasts are sediment to the direction of gravity but they are not static. Several amyloplasts move dynamically in an actin filament (F-actin) dependent manner. In the presence of actin poly-merization inhibitor, all amyloplasts become static and sediment to the direction of gravity. In addition, stems treated with the inhibitor can exhibit gravitropism. These results suggest that F-actin-dependent dynamic movement of amyloplasts is not essential for gravity sensing. sgr (shoot gravitropism) 9 mutant exhibits greatly reduced shoot gravitropism. In endodermal cells of sgr9, dynamic amyloplast movement was predominantly observed and amyloplasts did not sediment to the direction of gravity. Interestingly, inhibition of actin polymerization re-stored both gravitropism and amyloplast sedimentation in sgr9. The SGR9 encodes a novel RING finger protein, which is localized to amyloplasts in endodermal cells. SGR9 showed ubiq-uitin E3 ligase activity in vitro. Together with live cell imaging of amyloplasts and F-actin, our data suggest that SGR9 modulate interaction between amyloplasts and F-actin on amylo-plasts. SGR9 positively act on amyloplasts sedimentation, probably by releasing amyloplasts from F-actin. SGR9 that is localized to amyloplast, possibly degrades unknown substrates by its E3 ligase activity, and this might promote release of amyloplasts from F-actin.

  3. Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases

    PubMed Central

    Riley, B.E.; Lougheed, J.C.; Callaway, K.; Velasquez, M.; Brecht, E.; Nguyen, L.; Shaler, T.; Walker, D.; Yang, Y.; Regnstrom, K.; Diep, L.; Zhang, Z.; Chiou, S.; Bova, M.; Artis, D.R.; Yao, N.; Baker, J.; Yednock, T.; Johnston, J.A.

    2013-01-01

    Parkin is a RING-between-RING E3 ligase that functions in the covalent attachment of ubiquitin to specific substrates, and mutations in Parkin are linked to Parkinson’s disease, cancer and mycobacterial infection. The RING-between-RING family of E3 ligases are suggested to function with a canonical RING domain and a catalytic cysteine residue usually restricted to HECT E3 ligases, thus termed ‘RING/HECT hybrid’ enzymes. Here we present the 1.58 Å structure of Parkin-R0RBR, revealing the fold architecture for the four RING domains, and several unpredicted interfaces. Examination of the Parkin active site suggests a catalytic network consisting of C431 and H433. In cells, mutation of C431 eliminates Parkin-catalysed degradation of mitochondria, and capture of an ubiquitin oxyester confirms C431 as Parkin’s cellular active site. Our data confirm that Parkin is a RING/HECT hybrid, and provide the first crystal structure of an RING-between-RING E3 ligase at atomic resolution, providing insight into this disease-related protein. PMID:23770887

  4. The Membrane Associated RING-CH Proteins: A Family of E3 Ligases with Diverse Roles through the Cell

    PubMed Central

    Means, Robert E.

    2014-01-01

    Since the discovery that conjugation of ubiquitin to proteins can drive proteolytic degradation, ubiquitination has been shown to perform a diverse range of functions in the cell. It plays an important role in endocytosis, signal transduction, trafficking of vesicles inside the cell, and even DNA repair. The process of ubiquitination-mediated control has turned out to be remarkably complex, involving a diverse array of proteins and many levels of control. This review focuses on a family of structurally related E3 ligases termed the membrane-associated RING-CH (MARCH) ubiquitin ligases, which were originally discovered as structural homologs to the virals E3s, K3, and K5 from Kaposi's sarcoma-associated herpesvirus (KSHV). These proteins contain a catalytic RING-CH finger and are typically membrane-bound, with some having up to 14 putative transmembrane domains. Despite several lines of evidence showing that the MARCH proteins play a complex and essential role in several cellular processes, this family remains understudied.

  5. Muscle ring finger 1 mediates cardiac atrophy in vivo.

    PubMed

    Willis, Monte S; Rojas, Mauricio; Li, Luge; Selzman, Craig H; Tang, Ru-Hang; Stansfield, William E; Rodriguez, Jessica E; Glass, David J; Patterson, Cam

    2009-04-01

    Pathological cardiac hypertrophy, induced by various etiologies such as high blood pressure and aortic stenosis, develops in response to increased afterload and represents a common intermediary in the development of heart failure. Understandably then, the reversal of pathological cardiac hypertrophy is associated with a significant reduction in cardiovascular event risk and represents an important, yet underdeveloped, target of therapeutic research. Recently, we determined that muscle ring finger-1 (MuRF1), a muscle-specific protein, inhibits the development of experimentally induced pathological; cardiac hypertrophy. We now demonstrate that therapeutic cardiac atrophy induced in patients after left ventricular assist device placement is associated with an increase in cardiac MuRF1 expression. This prompted us to investigate the role of MuRF1 in two independent mouse models of cardiac atrophy: 1) cardiac hypertrophy regression after reversal of transaortic constriction (TAC) reversal and 2) dexamethasone-induced atrophy. Using echocardiographic, histological, and gene expression analyses, we found that upon TAC release, cardiac mass and cardiomyocyte cross-sectional areas in MuRF1(-/-) mice decreased approximately 70% less than in wild type mice in the 4 wk after release. This was in striking contrast to wild-type mice, who returned to baseline cardiac mass and cardiomyocyte size within 4 days of TAC release. Despite these differences in atrophic remodeling, the transcriptional activation of cardiac hypertrophy measured by beta-myosin heavy chain, smooth muscle actin, and brain natriuretic peptide was attenuated similarly in both MuRF1(-/-) and wild-type hearts after TAC release. In the second model, MuRF1(-/-) mice also displayed resistance to dexamethasone-induced cardiac atrophy, as determined by echocardiographic analysis. This study demonstrates, for the first time, that MuRF1 is essential for cardiac atrophy in vivo, both in the setting of therapeutic

  6. Characterization of a novel RING-type ubiquitin E3 ligase GhRING2 differentially expressed in cotton fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ubiquitin-proteasome proteolysis pathway is responsible for the degradation of abnormal and short-lived proteins to regulate many important biochemical activities in eukaryotes. By employing affymetrix microarray analysis, we have identified a novel ubiquitin ligase E3 gene GhRING2 that is diffe...

  7. Removal of a Tungsten Carbide Ring from the Finger of a Pregnant Patient: A Case Report Involving 2 Emergency Departments and the Internet

    PubMed Central

    Moser, Alexandre; Exadaktylos, Aristomenis

    2016-01-01

    Introduction. Destructive or nondestructive procedures may be used to remove rings from injured fingers. Because of their hardness, tungsten carbide rings present special problems. Case Presentation. The patient was a 33-year-old woman, two weeks before delivery, with a swollen and reddened ring finger. It was decided to remove a tungsten carbide ring from her ring finger. This was achieved by shattering the ring with locking pliers. The patient's ring finger recovered fully. PMID:27042363

  8. GCT of proximal phalanx of ring finger: a case report.

    PubMed

    Khare, Pratima; Kishore, Bimal; Gupta, Rashmi Jain; Vanita; Dhal, Anil

    2012-08-01

    Giant-cell tumor (GCT) of bone arising from phalanx of a finger is extremely rare. Rizzoli Orthopedic Institute in their study on 900 treated cases of GCT from 1947-1997 reported only 0.9% incidence of GCT in bones of the hand. There was no case of GCT of the phalanges in that series. We report here a case of GCT of bone arising from phalanx of finger because of its very unusual location. The tumor was diagnosed on the basis of fine-needle aspiration cytology and confirmed by histopathology. PMID:21656700

  9. Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C.

    PubMed

    Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R; Weissmann, Florian; Ordureau, Alban; Wu, Kuen-Phon; Zhang, Wei; Yu, Shanshan; Mercredi, Peter Y; Harrison, Joseph S; Davidson, Iain F; Qiao, Renping; Lu, Ying; Dube, Prakash; Brunner, Michael R; Grace, Christy R R; Miller, Darcie J; Haselbach, David; Jarvis, Marc A; Yamaguchi, Masaya; Yanishevski, David; Petzold, Georg; Sidhu, Sachdev S; Kuhlman, Brian; Kirschner, Marc W; Harper, J Wade; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A

    2016-06-01

    Protein ubiquitination involves E1, E2, and E3 trienzyme cascades. E2 and RING E3 enzymes often collaborate to first prime a substrate with a single ubiquitin (UB) and then achieve different forms of polyubiquitination: multiubiquitination of several sites and elongation of linkage-specific UB chains. Here, cryo-EM and biochemistry show that the human E3 anaphase-promoting complex/cyclosome (APC/C) and its two partner E2s, UBE2C (aka UBCH10) and UBE2S, adopt specialized catalytic architectures for these two distinct forms of polyubiquitination. The APC/C RING constrains UBE2C proximal to a substrate and simultaneously binds a substrate-linked UB to drive processive multiubiquitination. Alternatively, during UB chain elongation, the RING does not bind UBE2S but rather lures an evolving substrate-linked UB to UBE2S positioned through a cullin interaction to generate a Lys11-linked chain. Our findings define mechanisms of APC/C regulation, and establish principles by which specialized E3-E2-substrate-UB architectures control different forms of polyubiquitination. PMID:27259151

  10. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling

    PubMed Central

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  11. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling.

    PubMed

    Joo, Hyunhee; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling. PMID:27439598

  12. A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125.

    PubMed

    Bijlmakers, Marie-José; Teixeira, João M C; Boer, Roeland; Mayzel, Maxim; Puig-Sàrries, Pilar; Karlsson, Göran; Coll, Miquel; Pons, Miquel; Crosas, Bernat

    2016-01-01

    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2(120-128)) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2(120-128) region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2. PMID:27411375

  13. A C2HC zinc finger is essential for the RING-E2 interaction of the ubiquitin ligase RNF125

    PubMed Central

    Bijlmakers, Marie-José; Teixeira, João M. C.; Boer, Roeland; Mayzel, Maxim; Puig-Sàrries, Pilar; Karlsson, Göran; Coll, Miquel; Pons, Miquel; Crosas, Bernat

    2016-01-01

    The activity of RING ubiquitin ligases (E3s) depends on an interaction between the RING domain and ubiquitin conjugating enzymes (E2), but posttranslational events or additional structural elements, yet largely undefined, are frequently required to enhance or regulate activity. Here, we show for the ubiquitin ligase RNF125 that, in addition to the RING domain, a C2HC Zn finger (ZnF) is crucial for activity, and a short linker sequence (Li2120-128) enhances activity. The contribution of these regions was first shown with truncated proteins, and the essential role of the ZnF was confirmed with mutations at the Zn chelating Cys residues. Using NMR, we established that the C2HC ZnF/Li2120-128 region is crucial for binding of the RING domain to the E2 UbcH5a. The partial X-ray structure of RNF125 revealed the presence of extensive intramolecular interactions between the RING and C2HC ZnF. A mutation at one of the contact residues in the C2HC ZnF, a highly conserved M112, resulted in the loss of ubiquitin ligase activity. Thus, we identified the structural basis for an essential role of the C2HC ZnF and conclude that this domain stabilizes the RING domain, and is therefore required for binding of RNF125 to an E2. PMID:27411375

  14. Enhancing the Expressiveness of Fingers: Multi-touch Ring Menus for Everyday Applications

    NASA Astrophysics Data System (ADS)

    Kammer, Dietrich; Lamack, Frank; Groh, Rainer

    In the future, environments equipped with interaction surfaces sensitive to touch input will be a key factor to enable ambient intelligence. The user's fingers become input devices, allowing simple and intuitive interaction, like the manipulation of digital objects. However, people are used to everyday applications offering a wide variety of menu choices. We evaluate ring menus to enhance the expressiveness of finger interaction on multi-touch devices. Applicability and limits of ring menus are discussed with regard to our implementation by means of a preliminary user study.

  15. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis.

    PubMed

    Plechanovová, Anna; Jaffray, Ellis G; Tatham, Michael H; Naismith, James H; Hay, Ronald T

    2012-09-01

    Ubiquitin modification is mediated by a large family of specificity determining ubiquitin E3 ligases. To facilitate ubiquitin transfer, RING E3 ligases bind both substrate and a ubiquitin E2 conjugating enzyme linked to ubiquitin via a thioester bond, but the mechanism of transfer has remained elusive. Here we report the crystal structure of the dimeric RING domain of rat RNF4 in complex with E2 (UbcH5A) linked by an isopeptide bond to ubiquitin. While the E2 contacts a single protomer of the RING, ubiquitin is folded back onto the E2 by contacts from both RING protomers. The carboxy-terminal tail of ubiquitin is locked into an active site groove on the E2 by an intricate network of interactions, resulting in changes at the E2 active site. This arrangement is primed for catalysis as it can deprotonate the incoming substrate lysine residue and stabilize the consequent tetrahedral transition-state intermediate. PMID:22842904

  16. Circumferential burns to the fingers associated with gold and platinum rings.

    PubMed

    Regan, M W; Moss, A L

    1986-06-01

    Two patients sustained circumferential burns to the fingers associated with metal rings. The first case was caused by molten zinc and was treated by early burn excision and split skin grafting, while the second case was an electrical burn caused by a car battery and was treated conservatively. PMID:3730915

  17. Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases

    PubMed Central

    Pruneda, Jonathan N.; Littlefield, Peter J.; Soss, Sarah E.; Nordquist, Kyle A.; Chazin, Walter J.; Brzovic, Peter S.; Klevit, Rachel E.

    2012-01-01

    Despite the widespread importance of RING/U-box E3 ubiquitin ligases in ubiquitin (Ub) signaling, the mechanism by which this class of enzymes facilitates Ub transfer remains enigmatic. Here we present a structural model for a RING/U-box E3:E2~Ub complex poised for Ub transfer. The model and additional analyses reveal that E3 binding biases dynamic E2~Ub ensembles toward closed conformations with enhanced reactivity for substrate lysines. We identify a key hydrogen bond between a highly conserved E3 sidechain and an E2 backbone carbonyl, observed in all structures of active RING/U-Box E3/E2 pairs, as the linchpin for allosteric activation of E2~Ub. The conformational biasing mechanism is generalizable across diverse E2s and RING/U-box E3s, but is not shared by HECT-type E3s. The results provide a structural model for a RING/U-box E3:E2~Ub ligase complex and identify the long sought-after source of allostery for RING/U-Box activation of E2~Ub conjugates. PMID:22885007

  18. Structure of a RING E3 Trapped in Action Reveals Ligation Mechanism for the Ubiquitin-like Protein NEDD8

    PubMed Central

    Scott, Daniel C.; Sviderskiy, Vladislav O.; Monda, Julie K.; Lydeard, John R.; Cho, Shein Ei; Harper, J. Wade; Schulman, Brenda A.

    2014-01-01

    SUMMARY Most E3 ligases use a RING domain to activate a thioester-linked E2~ubiquitin-like protein (UBL) intermediate and promote UBL transfer to a remotely bound target protein. Nonetheless, RING E3 mechanisms matching a specific UBL and acceptor lysine remain elusive, including for RBX1, which mediates NEDD8 ligation to cullins and >10% of all ubiquitination. We report the structure of a trapped RING E3-E2~UBL-target intermediate representing RBX1-UBC12~NEDD8-CUL1-DCN1, which reveals the mechanism of NEDD8 ligation and how a particular UBL and acceptor lysine are matched by a multifunctional RING E3. Numerous mechanisms specify cullin neddylation while preventing noncognate ubiquitin ligation. Notably, E2-E3-target and RING-E2~UBL modules are not optimized to function independently, but instead require integration by the UBL and target for maximal reactivity. The UBL and target regulate the catalytic machinery by positioning the RINGE2~UBL catalytic center, licensing the acceptor lysine, and influencing E2 reactivity, thereby driving their specific coupling by a multifunctional RING E3. PMID:24949976

  19. Simulated Microbe Removal around Finger Rings Using Different Hand Sanitation Methods

    PubMed Central

    Alur, Archana A; Rane, Madhavi J; Scheetz, James P; Lorenz, Douglas J; Gettleman, Lawrence

    2009-01-01

    Aim It is our opinion that the CDC and the WHO have underestimated cross-contamination under examination gloves in dental clinics while wearing jewelry, such as finger rings. These agencies only “recommend” removing jewelry, and only washing hands for 15 seconds with soap and warm water before donning gloves. This study examined several washing procedures and finger rings using simulated microbes. Methodology A gloved rubber hand manikin was made and fitted with a fresh disposable vinyl glove. Four fingers were fitted with rings or no ring, dusted with simulated microbes, and washed with a scrub brush for 5, 15, and 25 seconds under 20°C and 40°C water alone, or with liquid hand soap. Light levels (in lux) of fluorescent powder before and after washing were measured and delta scores calculated for changes in light levels, equivalent to effectiveness of hand washing procedures. A full-factorial, 3-factor analysis of variance (ANOVA) was used to test for differences among levels of the three study factors—time, temperature, and soap use. Tukey's post hoc honestly significant difference (HSD) test was applied to significant factors to examine pair-wise differences between factor levels. Results It was found that the longer the hands with rings were washed with a scrub brush under flowing water, the more simulated microbes were removed. By 25 seconds, all methods were essentially the same. Simulated microbes were more difficult to remove from the palm compared to the back of the hand. The liquid hand soap used in this study was more effective with warm water than cold. When given a choice of washing with cold water up to 15 seconds, it would be preferable not to use soap to remove simulated microbes. Qualitatively, the outer surface of finger rings were more effectively cleaned than the crevice below the ring, and the ring with a stone setting appeared to accumulate and retain simulated microbes more than other rings. Conclusion The most effective treatment was

  20. Characterization of Glycosomal RING Finger Proteins of Trypanosomatids

    PubMed Central

    Saveria, Tracy; Kessler, Peter; Jensen, Bryan C.; Parsons, Marilyn

    2007-01-01

    The glycosomes of trypanosomatids are essential organelles that are evolutionarily related to peroxisomes of other eukaryotes. The peroxisomal RING proteins - PEX2, PEX10 and PEX12 - comprise a network of integral membrane proteins that function in the matrix protein import cycle. Here, we describe PEX10 and PEX12 in Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi. We expressed GFP fusions of each T. brucei coding region in procyclic form T. brucei, where they localized to glycosomes and behaved as integral membrane proteins. Despite the weak transmembrane predictions for TbPEX12, protease protection assays demonstrated that both the N and C termini are cytosolic, similar to mammalian PEX12. GFP fusions of T. cruzi PEX10 and L. major PEX12 also localized to glycosomes in T. brucei indicating that glycosomal membrane protein targeting is conserved across trypanosomatids. PMID:17188680

  1. Understanding Cullin-RING E3 Biology through Proteomics-based Substrate Identification*

    PubMed Central

    Harper, J. Wade; Tan, Meng-Kwang Marcus

    2012-01-01

    Protein turnover through the ubiquitin-proteasome pathway controls numerous developmental decisions and biochemical processes in eukaryotes. Central to protein ubiquitylation are ubiquitin ligases, which provide specificity in targeted ubiquitylation. With more than 600 ubiquitin ligases encoded by the human genome, many of which remain to be studied, considerable effort is being placed on the development of methods for identifying substrates of specific ubiquitin ligases. In this review, we describe proteomic technologies for the identification of ubiquitin ligase targets, with a particular focus on members of the cullin-RING E3 class of ubiquitin ligases, which use F-box proteins as substrate specific adaptor proteins. Various proteomic methods are described and are compared with genetic approaches that are available. The continued development of such methods is likely to have a substantial impact on the ubiquitin-proteasome field. PMID:22962057

  2. The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner

    PubMed Central

    Chen, Shuhua; Davies, Adelina A.; Sagan, Daniel; Ulrich, Helle D.

    2005-01-01

    Tolerance to replication-blocking DNA lesions is achieved by means of ubiquitylation of PCNA, the processivity clamp for replicative DNA polymerases, by components of the RAD6 pathway. In the yeast Saccharomyces cerevisiae the ubiquitin ligase (E3) responsible for polyubiquitylation of the clamp is the RING finger protein Rad5p. Interestingly, the RING finger, responsible for the protein's E3 activity, is embedded in a conserved DNA-dependent ATPase domain common to helicases and chromatin remodeling factors of the SWI/SNF family. Here, we demonstrate that the Rad5p ATPase domain provides the basis for a function of the protein in DNA double-strand break repair via a RAD52- and Ku-independent pathway mediated by the Mre11/Rad50/Xrs2 protein complex. This activity is distinct and separable from the contribution of the RING domain to ubiquitin conjugation to PCNA. Moreover, we show that the Rad5 protein physically associates with the single-stranded DNA regions at a processed double-strand break in vivo. Our observations suggest that Rad5p is a multifunctional protein that—by means of independent enzymatic activities inherent in its RING and ATPase domains—plays a modulating role in the coordination of repair events and replication fork progression in response to various different types of DNA lesions. PMID:16224103

  3. Transcriptional repression by RING finger protein TIF1 beta that interacts with the KRAB repressor domain of KOX1.

    PubMed Central

    Moosmann, P; Georgiev, O; Le Douarin, B; Bourquin, J P; Schaffner, W

    1996-01-01

    Many of the vertebrate zinc finger factors of the Kruppel type (C2H2 zinc fingers) contain in their N-terminus a conserved sequence referred to as the KRAB (Kruppel-associated box) domain that, when tethered to DNA, efficiently represses transcription. Using the yeast two-hybrid system, we have isolated an 835 amino acid RING finger (C3HC4 zinc finger) protein, TIF1 beta (also named KAP-1), that specifically interacts with the KRAB domain of the human zinc finger factor KOX1/ZNF10. TIF1 beta, TIF1 alpha, PML and efp belong to a characteristic subgroup of RING finger proteins that contain one or two other Cys/His-rich clusters (B boxes) and a putative coiled-coil in addition to the classical C3HC4 RING finger motif (RBCC configuration). Like TIF1 alpha, TIF1 beta also contains an additional Cys/His cluster (PHD finger) and a bromo-related domain. When tethered to DNA, TIF1 beta can repress transcription in transiently transfected mammalian cells both from promoter-proximal and remote (enhancer) positions, similarly to the KRAB domain itself. We propose that TIF1 beta is a mediator of the transcriptional repression exerted by the KRAB domain. PMID:9016654

  4. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance.

    PubMed

    Lim, Chae Woo; Hwang, Byung Kook; Lee, Sung Chul

    2015-09-01

    Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression. PMID:26249046

  5. Dasatinib Targets B-Lineage Cells but Does Not Provide an Effective Therapy for Myeloproliferative Disease in c-Cbl RING Finger Mutant Mice

    PubMed Central

    Duyvestyn, Johanna M.; Taylor, Samuel J.; Dagger, Samantha A.; Orandle, Marlene; Morse, Herbert C.; Thien, Christine B. F.; Langdon, Wallace Y.

    2014-01-01

    This study aimed to determine whether the multi-kinase inhibitor dasatinib would provide an effective therapy for myeloproliferative diseases (MPDs) involving c-Cbl mutations. These mutations, which occur in the RING finger and linker domains, abolish the ability of c-Cbl to function as an E3 ubiquitin ligase and downregulate activated protein tyrosine kinases. Here we analyzed the effects of dasatinib in a c-Cbl RING finger mutant mouse that develops an MPD with a phenotype similar to the human MPDs. The mice are characterized by enhanced tyrosine kinase signaling resulting in an expansion of hematopoietic stem cells, multipotent progenitors and cells within the myeloid lineage. Since c-Cbl is a negative regulator of c-Kit and Src signaling we reasoned that dasatinib, which targets these kinases, would be an effective therapy. Furthermore, two recent studies showed dasatinib to be effective in inhibiting the in vitro growth of cells from leukemia patients with c-Cbl RING finger and linker domain mutations. Surprisingly we found that dasatinib did not provide an effective therapy for c-Cbl RING finger mutant mice since it did not suppress any of the hematopoietic lineages that promote MPD development. Thus we conclude that dasatinib may not be an appropriate therapy for leukemia patients with c-Cbl mutations. We did however find that dasatinib caused a marked reduction of pre-B cells and immature B cells which correlated with a loss of Src activity. This study is therefore the first to provide a detailed characterization of in vivo effects of dasatinib in a hematopoietic disorder that is driven by protein tyrosine kinases other than BCR-ABL. PMID:24718698

  6. The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control

    PubMed Central

    Collart, Martine A.

    2013-01-01

    The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins. PMID:27335678

  7. Contamination of Dentist’s Hands with and without Finger Rings

    PubMed Central

    Naeem, Ahmad; Saluja, Sachdev Arti; Krishna, Deo; Shitanshu, Malhotra; Arun, Sachdev; Taseer, Bashir

    2015-01-01

    Background: Disease prevention is better than its cure. The role of healthcare worker’s hand in the transmission and spread of an infectious disease to the patient is well acknowledged. Indeed, the hands of a health care worker can easily pick potentially pathogenic bacteria and fungi from hand touch surfaces before wearing of gloves. For these microorganisms to multiply rapidly, a moist environment present underneath the gloves acts a good cultivating media. It is also reported that the multiplication rate also increases several folds with the duration of glove use. Materials and Methods: Dentists 20 with rings and 20 without rings were considered. Skin samples from the hand soon after professional hand cleaning and glove disposal were collected. The occurrence of potentially pathogenic fungi and bacteria were examined and investigated disposal were collected. The occurrence of potentially pathogenic fungi and bacteria were examined and investigated with biochemical and cultural laboratory tests. Results: Bacteria and fungi were significantly more frequent in dentist’s hand with rings than those without rings. 63% versus 37% (bacterial prevalence), among the isolated potentially pathogenic microorganisms were Staphylococcus aureus, Escherichia coli, and Candida albicans. Conclusion: In the present study potentially pathogenic microorganisms were more frequent in dentists who wore finger rings under gloves. PMID:26464552

  8. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML.

    PubMed Central

    Borden, K L; Boddy, M N; Lally, J; O'Reilly, N J; Martin, S; Howe, K; Solomon, E; Freemont, P S

    1995-01-01

    Acute promyelocytic leukaemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and the retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex (termed ND10, Kr bodies, nuclear bodies, PML oncogenic domains or PODs) which is disrupted in the APL disease state. PML contains a number of characterized motifs including a Zn2+ binding domain called the RING or C3HC4 finger. Here we describe the solution structure of the PML RING finger as solved by 1H NMR methods at physiological pH with r.m.s. deviations for backbone atoms of 0.88 and 1.39 A for all atoms. Additional biophysical studies including CD and optical spectroscopy, show that the PML RING finger requires Zn2+ for autonomous folding and that cysteines are used in metal ligation. A comparison of the structure with the previously solved equine herpes virus IE110 RING finger, shows significant differences suggesting that the RING motif is structurally diverse. The role of the RING domain in PML nuclear body formation was tested in vivo, by using site-directed mutagenesis and immunofluorescence on transiently transfected NIH 3T3 cells. Independently mutating two pairs of cysteines in each of the Zn2+ binding sites prevents PML nuclear body formation, suggesting that a fully folded RING domain is necessary for this process. These results suggest that the PML RING domain is probably involved in protein-protein interactions, a feature which may be common to other RING finger domains. Images PMID:7729428

  9. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. PMID:19824037

  10. Transcription factor single-minded 2 (SIM2) is ubiquitinated by the RING-IBR-RING-type E3 ubiquitin ligases.

    PubMed

    Okui, Michiyo; Yamaki, Akiko; Takayanagi, Atsushi; Kudoh, Jun; Shimizu, Nobuyoshi; Shimizu, Yoshiko

    2005-09-10

    Human single-minded 2 (SIM2) is a member of the basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) family of transcription factors and is associated with the etiology of Down syndrome phenotype. Here, we examined a possibility of the post-translational modification of SIM2 protein by transfecting various expression constructs followed by the analysis with immunoprecipitation and Western blotting. In fact, transient expression of SIM2 cDNA in HEK293 cells revealed poly-ubiquitination of SIM2 protein. In the stable transfectants, a proteasome inhibitor MG132 protected the poly-ubiquitinated SIM2 protein from degradation. Furthermore, in the cells co-transfected with SIM2 and each of four different E3 ubiquitin ligases, SIM2 was immunoprecipitated with the RING-IBR-RING-type E3 ubiquitin ligases, Parkin and HHARI, but it was not immunoprecipitated with other E3 ligases, such as one RING-type Siah-1 and the PHD type AIRE. A series of deletion constructs revealed that Parkin actually binds to SIM2 with the IBR (294-377)-RING2 (378-465) domains and that the sites for poly-ubiquitination of SIM2 reside within the PAS1-PAS2 region (aa 141-289). We postulated that transcription factor SIM2 and E3 ubiquitin ligase Parkin may interact each other to play an important physiological role in the brain development which is controlled by ubiquitination. PMID:15963499

  11. Altered gene expression patterns in muscle ring finger 1 null mice during denervation- and dexamethasone-induced muscle atrophy

    PubMed Central

    Watson, Monica L.; Waddell, David S.; Neff, Eric S.; Baehr, Leslie M.; Ross, Adam P.; Bodine, Sue C.

    2013-01-01

    Muscle atrophy can result from inactivity or unloading on one hand or the induction of a catabolic state on the other. Muscle-specific ring finger 1 (MuRF1), a member of the tripartite motif family of E3 ubiquitin ligases, is an essential mediator of multiple conditions inducing muscle atrophy. While most studies have focused on the role of MuRF1 in protein degradation, the protein may have other roles in regulating skeletal muscle mass and metabolism. We therefore systematically evaluated the effect of MuRF1 on gene expression during denervation and dexamethasone-induced atrophy. We find that the lack of MuRF1 leads to few differences in control animals, but there were several significant differences in specific sets of genes upon denervation- and dexamethasone-induced atrophy. For example, during denervation, MuRF1 knockout mice showed delayed repression of metabolic and structural genes and blunted induction of genes associated with the neuromuscular junction. In the latter case, this pattern correlates with blunted HDAC4 and myogenin upregulation. Lack of MuRF1 caused fewer changes in the dexamethasone-induced atrophy program, but certain genes involved in fat metabolism and intracellular signaling were affected. Our results demonstrate a new role for MuRF1 in influencing gene expression in two important models of muscle atrophy. PMID:24130153

  12. The RING-Finger Ubiquitin Ligase HAF1 Mediates Heading date 1 Degradation during Photoperiodic Flowering in Rice[OPEN

    PubMed Central

    Yang, Ying; Fu, Debao; Zhu, Chunmei; He, Yizhou; Zhang, Huijun; Liu, Tao; Li, Xianghua; Wu, Changyin

    2015-01-01

    The photoperiodic response is one of the most important factors determining heading date in rice (Oryza sativa). Although rhythmic expression patterns of flowering time genes have been reported to fine-tune the photoperiodic response, posttranslational regulation of key flowering regulators has seldom been elucidated in rice. Heading date 1 (Hd1) encodes a zinc finger transcription factor that plays a crucial role in the photoperiodic response, which determines rice regional adaptability. However, little is known about the molecular mechanisms of Hd1 accumulation during the photoperiod response. Here, we identify a C3HC4 RING domain-containing E3 ubiquitin ligase, Heading date Associated Factor 1 (HAF1), which physically interacts with Hd1. HAF1 mediates ubiquitination and targets Hd1 for degradation via the 26S proteasome-dependent pathway. The haf1 mutant exhibits a later flowering heading date under both short-day and long-day conditions. In addition, the haf1 hd1 double mutant headed as late as hd1 plants under short-day conditions but exhibited a heading date similar to haf1 under long-day conditions, thus indicating that HAF1 may determine heading date mainly through Hd1 under short-day conditions. Moreover, high levels of Hd1 accumulate in haf1. Our results suggest that HAF1 is essential to precise modulation of the timing of Hd1 accumulation during the photoperiod response in rice. PMID:26296966

  13. Identification of RING finger protein 4 (RNF4) as a modulator of DNA demethylation through a functional genomics screen.

    PubMed

    Hu, Xiaoyi V; Rodrigues, Tânia M A; Tao, Haiyan; Baker, Robert K; Miraglia, Loren; Orth, Anthony P; Lyons, Gary E; Schultz, Peter G; Wu, Xu

    2010-08-24

    DNA methylation is an important epigenetic modification involved in transcriptional regulation, nuclear organization, development, aging, and disease. Although DNA methyltransferases have been characterized, the mechanisms for DNA demethylation remain poorly understood. Using a cell-based reporter assay, we performed a functional genomics screen to identify genes involved in DNA demethylation. Here we show that RNF4 (RING finger protein 4), a SUMO-dependent ubiquitin E3-ligase previously implicated in maintaining genome stability, plays a key role in active DNA demethylation. RNF4 reactivates methylation-silenced reporters and promotes global DNA demethylation. Rnf4 deficiency is embryonic lethal with higher levels of methylation in genomic DNA. Mechanistic studies show that RNF4 interacts with and requires the base excision repair enzymes TDG and APE1 for active demethylation. This activity appears to occur by enhancing the enzymatic activities that repair DNA G:T mismatches generated from methylcytosine deamination. Collectively, our study reveals a unique function for RNF4, which may serve as a direct link between epigenetic DNA demethylation and DNA repair in mammalian cells. PMID:20696907

  14. Makorin Ring Finger Protein 1 as Adjunctive Marker in Liquid-based Cervical Cytology.

    PubMed

    Lee, Maria; Chang, Min Young; Shin, Ha-Yeon; Shin, Eunah; Hong, Sun Won; Kim, Kyung-Mi; Chay, Doo Byung; Cho, Hanbyoul; Kim, Jae-Hoon

    2016-01-01

    To assess the utility of makorin ring finger protein 1 (MKRN1) as a marker of cervical pathology.A PROspective specimen collection and retrospective Blinded Evaluation study was conducted. Liquid-based cytology samples were collected from 187 women, embedding all residuals as cell blocks for immunohistochemical staining of MKRN1 and P16 . Results of liquid-based cervical cytology, immunostained cell block sections, and human papillomavirus (HPV) hybrid capture (with real-time polymerase chain reaction) were analyzed. Clinical outcomes were analyzed overall and in subsets of specimens yielding atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesions.Makorin ring finger protein 1 positivity and grades (1-3) of cervical intraepithelial neoplasia (CIN) increased in tandem (CIN1, 32.4%; CIN2, 60.0%; and CIN3, 80.0%), reaching 92.3% in invasive cancer. Sensitivity, specificity, positive predictive value, and negative predictive value in detecting CIN2+ via MKRN1 were 73.8%, 76.8%, 75.6%, and 75.0%, respectively. The performance of liquid-based cytology was poorer by comparison (61.3%, 69.5%, 66.2%, and 64.8%, respectively), and HPV assay (versus MKRN1 immunohistochemical staining) displayed lower specificity (67.7%). Combined HPV + MKRN1 testing proved highest in sensitivity, specificity, positive predictive value, and negative predictive value (71.8%, 85.5%, 82.3%, and 76.5%, respectively), whereas corresponding values for cytology + HPV (60.6%, 81.8%, 75.4%, and 69.2%) and cytology + MKRN1 (58.8%, 84.1%, 78.3%, and 67.7%) were all similar. In instances of atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesions, the HPV + MKRN1 combination performed best by above measures (100%, 72.7%, 73.9%, and 100%), followed by cytology + MKRN1 (100%, 50.0%, 60.7%, and 100%).Makorin ring finger protein 1 displayed greater sensitivity and specificity than liquid-based cytology and

  15. Cloning and characterization of a novel RING finger protein that interacts with class V myosins.

    PubMed

    El-Husseini, A E; Vincent, S R

    1999-07-01

    We have identified a novel protein (BERP) that is a specific partner for the tail domain of myosin V. Class V myosins are a family of molecular motors thought to interact via their unique C-terminal tails with specific proteins for the targeted transport of organelles. BERP is highly expressed in brain and contains an N-terminal RING finger, followed by a B-box zinc finger, a coiled-coil (RBCC domain), and a unique C-terminal beta-propeller domain. A yeast two-hybrid screening indicated that the C-terminal beta-propeller domain mediates binding to the tail of the class V myosin myr6 (myosin Vb). This interaction was confirmed by immunoprecipitation, which also demonstrated that BERP could associate with myosin Va, the product of the dilute gene. Like myosin Va, BERP is expressed in a punctate pattern in the cytoplasm as well as in the neurites and growth cones of PC12 cells. We also found that the RBCC domain of BERP is involved in protein dimerization. Stable expression of a mutant form of BERP lacking the myosin-binding domain but containing the dimerization domain resulted in defective PC12 cell spreading and prevented neurite outgrowth in response to nerve growth factor. Our studies present a novel interaction for the beta-propeller domain and provide evidence for a role for BERP in myosin V-mediated cargo transport. PMID:10391919

  16. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded βC1.

    PubMed

    Shen, Qingtang; Hu, Tao; Bao, Min; Cao, Linge; Zhang, Huawei; Song, Fengmin; Xie, Qi; Zhou, Xueping

    2016-06-01

    The βC1 protein encoded by the Tomato yellow leaf curl China virus-associated betasatellite functions as a pathogenicity determinant. To better understand the molecular basis whereby βC1 functions in pathogenicity, a yeast two-hybrid screen of a tobacco cDNA library was carried out using βC1 as the bait. The screen revealed that βC1 interacts with a tobacco RING-finger protein designated NtRFP1, which was further confirmed by the bimolecular fluorescence complementation and co-immunoprecipitation assays in Nicotiana benthamiana cells. Expression of NtRFP1 was induced by βC1, and in vitro ubiquitination assays showed that NtRFP1 is a functional E3 ubiquitin ligase that mediates βC1 ubiquitination. In addition, βC1 was shown to be ubiquitinated in vivo and degraded by the plant 26S proteasome. After viral infection, plants overexpressing NtRFP1 developed attenuated symptoms, whereas plants with silenced expression of NtRFP1 showed severe symptoms. Other lines of evidence showed that NtRFP1 attenuates βC1-induced symptoms through promoting its degradation by the 26S proteasome. Taken together, our results suggest that tobacco RING E3 ligase NtRFP1 attenuates disease symptoms by interacting with βC1 to mediate its ubiquitination and degradation via the ubiquitin/26S proteasome system. PMID:27018391

  17. Ring finger protein ZIN interacts with human immunodeficiency virus type 1 Vif.

    PubMed

    Feng, Feng; Davis, Adam; Lake, Julie-Anne; Carr, Jill; Xia, Wei; Burrell, Christopher; Li, Peng

    2004-10-01

    Virion infectivity factor (Vif) protein of human immunodeficiency virus type 1 (HIV-1) is essential for the productive infection of primary human CD4 T lymphocytes and macrophages. Vif overcomes the HIV-inhibitory effects of cellular factor APOBEC3G, which has cytidine deaminase activity. We previously reported the isolation of a Vif-interacting ring finger protein, Triad 3, from a human leukocyte cDNA library, using the yeast two-hybrid system. The full-length cellular protein homologue of Triad 3 has been recently identified as the zinc finger protein inhibiting NF-kappaB (ZIN). Sequence analysis indicates that Triad 3 protein contains all four major ring-like motifs of ZIN. We report here that ZIN binds to purified Vif in vitro and that Triad 3/ZIN interacts with HIV-1 Vif in transfected human 293T cells, as demonstrated by coimmunoprecipitation. To test the biological relevance of this interaction, we produced infectious HIV-1 NL4.3 in the presence or absence of cotransfected ZIN. HIV-1 NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were twofold less infectious in a single-cycle infectivity assay than virus produced in the absence of exogenous ZIN. It was further shown that cells infected with HIV NL4.3 virus stocks produced in the presence of exogenously expressed ZIN were impaired in viral DNA synthesis by twofold. The impairment in viral reverse transcription and the reduction in single-cycle viral infectivity were both shown to be dependent on the presence of Vif in the virus producer cells. The possible mechanisms by which ZIN interferes with the early events of HIV-1 replication are discussed. PMID:15367624

  18. The brain finger protein gene (ZNF179), a member of the RING finger family, maps within the Smith-Magenis syndrome region at 17p11.2

    SciTech Connect

    Kimura, Toshiyuki; Arakawa, Yoshiki; Inazawa, Johji

    1997-03-31

    Smith-Magenis syndrome (SAIS) is caused by a microdeletion of 17p11.2 and comprises developmental and growth delay, facial abnormalities, unusual behavior and sleep problems. This phenotype may be due to haploinsufficiency of several contiguous genes. The human brain finger protein gene (ZNF179), a member of the RING finger protein family, has been isolated and mapped to l7p11.2. FISH analyses of metaphase or interphase chromosomes of 6 patients with SMS show that ZNF179 was deleted in one of the 2 homologs (17p11.2), indicating a possible association of the defect of this gene with the pathogenesis of SMS. Furthermore, using a prophase FISH ordering system, we sublocalized ZNF179 proximally to LLGL which lies on the critical region for SMS. 27 refs., 2 figs.

  19. RING E3-Catalyzed E2 Self-Ubiquitination Attenuates the Activity of Ube2E Ubiquitin-Conjugating Enzymes.

    PubMed

    Banka, Prerana Agarwal; Behera, Adaitya Prasad; Sarkar, Sayani; Datta, Ajit B

    2015-07-01

    Ubiquitination of a target protein is accomplished through sequential actions of the E1, E2s, and the E3s. E2s dictate the modification topology while E3 ligases confer substrate specificity and recruit the cognate E2. Human genome codes for ~35 different E2 proteins; all of which contain the characteristic ubiquitin-conjugating UBC core domain sufficient for catalysis. Many of these E2 enzymes also have N- or C-terminal extensions; roles of which are not very well understood. We show that the N-terminal extension of Ube2E1 undergoes intramolecular auto-ubiquitination. This self-ubiquitination activity is enhanced in the presence of interacting RING E3 ligases and results in a progressive attenuation of the E2 activity toward substrate/E3 modification. We also find that the N-terminal ubiquitination sites are conserved in all the three Ube2Es and replacing them with arginine renders all three full-length Ube2Es equally active as their core UBC domains. Based on these results, we propose that E3-catalyzed self-ubiquitination acts as a key regulatory mechanism that controls the activity of Ube2E class of ubiquitin E2s. PMID:25960396

  20. RNF135, RING finger protein, promotes the proliferation of human glioblastoma cells in vivo and in vitro via the ERK pathway

    PubMed Central

    Liu, Yongjian; Wang, Feng; Liu, Yongsheng; Yao, Yiqun; Lv, Xiupeng; Dong, Bin; Li, Jun; Ren, Siyang; Yao, Yiwen; Xu, Yinghui

    2016-01-01

    Ring finger protein 135 (RNF135), located on chromosome 17q11.2, is a RING finger domain-containing E3 ubiquitin ligase that was identified as a bio-marker and therapy target of glioblastoma. In our study, we confirmed that RNF135 was up-regulated in glioblastoma tissues compared with normal brain (NB) tissues, and that RNF135 knockdown inhibited proliferation and migration and led to cell cycle arrest in the G0/G1 phase in vivo. By lowering RNF135 expression, phosphorylated Erk and cell cycle protein CDK4 were down-regulated, while p27Kip1 and p21Waf1/Cip1 were up-regulated in U87 and U251 cells in vitro. In addition, using the immunofluorescence double labelling method, we found that RNF135 and P-Erk were co-localized in the cytoplasm and were highly expressed in glioblastoma samples compared with NB tissues. Moreover, the growth of U87 cell-transplanted tumours in nude mice was inhibited while transduced with Lv-shRNF135. Taken together, our findings demonstrate the biological effects of RNF135 in glioblastoma cell proliferation, migration and cell cycle, and its role in the progression of glioblastoma may be associated with the ERK signal transduction pathway. PMID:26856755

  1. RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex

    PubMed Central

    Brown, Nicholas G.; VanderLinden, Ryan; Watson, Edmond R.; Qiao, Renping; Grace, Christy R. R.; Yamaguchi, Masaya; Weissmann, Florian; Frye, Jeremiah J.; Dube, Prakash; Ei Cho, Shein; Actis, Marcelo L.; Rodrigues, Patrick; Fujii, Naoaki; Peters, Jan-Michael; Stark, Holger; Schulman, Brenda A.

    2015-01-01

    For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2∼Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaborates with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING–E2∼Ub catalytic modules such as APC11–UBCH10∼Ub collide with distally tethered disordered substrates remains poorly understood. We report structural mechanisms of UBCH10 recruitment to APCCDH1 and substrate ubiquitination. Unexpectedly, in addition to binding APC11’s RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APCCDH1–UBCH10∼Ub–substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin–RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin–RING–E2 interactions establish APC’s specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. We propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3–E2∼Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation. PMID:25825779

  2. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation

    PubMed Central

    Bulatov, Emil; Ciulli, Alessio

    2015-01-01

    In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs. PMID:25886174

  3. NERF encodes a RING E3 ligase important for drought resistance and enhances the expression of its antisense gene NFYA5 in Arabidopsis

    PubMed Central

    Gao, Wei; Liu, Wenwen; Zhao, Meng; Li, Wen-Xue

    2015-01-01

    NFYA5 is an important drought-stress inducible transcription factor gene that is targeted by miR169 in Arabidopsis. We show here that the cis-natural antisense transcript gene of NFYA5, NFYA5 Enhancing RING FINGER (NERF), can produce siRNAs from their overlapping region (OR) and affect NFYA5 transcripts by functioning together with miR169. The NERF protein functions as an E3 ligase for ubiquitination. Overexpression of NERF or OR cDNA leads to siRNANERF accumulation, miR169 repression, and NFYA5 transcript enhancement; knock-down of NERF transcripts by an artificial miRNA enhances miR169 abundance and reduces NFYA5 transcripts. Overexpression of NFYA5 does not affect the NERF mRNA level. Deep sequencing of the small RNA library from 35S::OR plants identifies 960 sequences representing 323 unique siRNAs that originate from OR; the sequences of some siRNANERF are similar/complementary to those of miR169. Overexpression of the 195- to 280-bp OR cDNA-containing siRNAs similar/complementary to miR169 also leads to the accumulation of NFYA5 transcripts. Analysis of NERF knock-down plants and NERF overexpression lines showed that, like NFYA5, NERF is important for controlling stomatal aperture and drought resistance. This regulatory model might apply to other natural antisense transcripts with positively correlated expression patterns. PMID:25514924

  4. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.

    PubMed

    Dong, Chun-Hai; Agarwal, Manu; Zhang, Yiyue; Xie, Qi; Zhu, Jian-Kang

    2006-05-23

    Plant responses to cold stress are mediated by a transcriptional cascade, in which the transcription factor ICE1 and possibly related proteins activate the expression of C-repeat (CRT)-binding factors (CBFs), leading to the transcription of downstream effector genes. The variant RING finger protein high expression of osmotically responsive gene (HOS)1 was identified genetically as a negative regulator of cold responses. We present evidence here that HOS1 is an E3 ligase required for the ubiquitination of ICE1. HOS1 physically interacts with ICE1 and mediates the ubiquitination of ICE1 both in vitro and in vivo. We found that cold induces the degradation of ICE1 in plants, and this degradation requires HOS1. Consistent with enhanced cold-responsive gene expression in loss-of-function hos1 mutant plants, overexpression of HOS1 represses the expression of CBFs and their downstream genes and confers increased sensitivity to freezing stress. Our results indicate that cold stress responses in Arabidopsis are attenuated by a ubiquitination/proteasome pathway in which HOS1 mediates the degradation of the ICE1 protein. PMID:16702557

  5. Chromosome mapping of human (ZNF179), mouse, and rat genes for brain finger protein (bfp), a member of the RING finger family

    SciTech Connect

    Matsuda, Yoichi; Hori, Tada-aki; Inoue, Satoshi; Orimo, Akira

    1996-04-15

    The bfp, a member of the RING finger family, has been shown to be predominantly expressed in brain and up-regulated in neural differentiation of P19 embryonic carcinoma cells. Chromosome mapping of the bfp gene by fluorescence in situ hybridization reveals that human BFP (ZNF179) is located at 17p11.2, mouse Bfp at 11B1.3, and rat BFP at 10q22. These results provide additional evidence that the mouse 11B region displays conserved linkage homology with the 17p11.2 region of the human genome and the 10q22 region of the rat genome. 12 refs., 2 figs.

  6. Characterization of an Italian Founder Mutation in the RING-Finger Domain of BRCA1

    PubMed Central

    Colombo, Mara; Congregati, Caterina; Sarkar, Mohosin; Magliery, Thomas J.; Ripamonti, Carla B.; Foglia, Claudia; Peissel, Bernard; Zaffaroni, Daniela; Manoukian, Siranoush; Tondini, Carlo; Barile, Monica; Pensotti, Valeria; Bernard, Loris

    2014-01-01

    The identification of founder mutations in cancer predisposing genes is important to improve risk assessment in geographically defined populations, since it may provide specific targets resulting in cost-effective genetic testing. Here, we report the characterization of the BRCA1 c.190T>C (p.Cys64Arg) mutation, mapped to the RING-finger domain coding region, that we detected in 43 hereditary breast/ovarian cancer (HBOC) families, for the large part originating from the province of Bergamo (Northern Italy). Haplotype analysis was performed in 21 families, and led to the identification of a shared haplotype extending over three BRCA1-associated marker loci (0.4 cM). Using the DMLE+2.2 software program and regional population demographic data, we were able to estimate the age of the mutation to vary between 3,100 and 3,350 years old. Functional characterization of the mutation was carried out at both transcript and protein level. Reverse transcriptase-PCR analysis on lymphoblastoid cells revealed expression of full length mRNA from the mutant allele. A green fluorescent protein (GFP)-fragment reassembly assay showed that the p.Cys64Arg substitution prevents the binding of the BRCA1 protein to the interacting protein BARD1, in a similar way as proven deleterious mutations in the RING-domain. Overall, 55 of 83 (66%) female mutation carriers had a diagnosis of breast and/or ovarian cancer. Our observations indicate that the BRCA1 c.190T>C is a pathogenic founder mutation present in the Italian population. Further analyses will evaluate whether screening for this mutation can be suggested as an effective strategy for the rapid identification of at-risk individuals in the Bergamo area. PMID:24516540

  7. RING Finger Protein RNF207, a Novel Regulator of Cardiac Excitation

    PubMed Central

    Roder, Karim; Werdich, Andreas A.; Li, Weiyan; Liu, Man; Kim, Tae Yun; Organ-Darling, Louise E.; Moshal, Karni S.; Hwang, Jung Min; Lu, Yichun; Choi, Bum-Rak; MacRae, Calum A.; Koren, Gideon

    2014-01-01

    Two recent studies (Newton-Cheh, C. et al. (2009) Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat. Genet. 41, 399–406 and Pfeufer, A. et al. (2009) Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat. Genet. 41, 407–414) identified an association, with genome-wide significance, between a single nucleotide polymorphism within the gene encoding RING finger protein 207 (RNF207) and the QT interval. We sought to determine the role of RNF207 in cardiac electrophysiology. Morpholino knockdown of RNF207 in zebrafish embryos resulted in action potential duration prolongation, occasionally a 2:1 atrioventricular block, and slowing of conduction velocity. Conversely, neonatal rabbit cardiomyocytes infected with RNF207-expressing adenovirus exhibited shortened action potential duration. Using transfections of U-2 OS and HEK293 cells, Western blot analysis and immunocytochemistry data demonstrate that RNF207 and the human ether-a-go-go-related gene (HERG) potassium channel interact and colocalize. Furthermore, RNF207 overexpression significantly elevated total and membrane HERG protein and HERG-encoded current density by ∼30–50%, which was dependent on the intact N-terminal RING domain of RNF207. Finally, coexpression of RNF207 and HSP70 increased HERG expression compared with HSP70 alone. This effect was dependent on the C terminus of RNF207. Taken together, the evidence is strong that RNF207 is an important regulator of action potential duration, likely via effects on HERG trafficking and localization in a heat shock protein-dependent manner. PMID:25281747

  8. Ring Finger Protein 11 Inhibits Melanocortin 3 and 4 Receptor Signaling

    PubMed Central

    Müller, Anne; Niederstadt, Lars; Jonas, Wenke; Yi, Chun-Xia; Meyer, Franziska; Wiedmer, Petra; Fischer, Jana; Grötzinger, Carsten; Schürmann, Annette; Tschöp, Matthias; Kleinau, Gunnar; Grüters, Annette; Krude, Heiko; Biebermann, Heike

    2016-01-01

    Intact melanocortin signaling via the G protein-coupled receptors (GPCRs), melanocortin receptor 4 (MC4R), and melanocortin receptor 3 (MC3R) is crucial for body weight maintenance. So far, no connection between melanocortin signaling and hypothalamic inflammation has been reported. Using a bimolecular fluorescence complementation library screen, we identified a new interaction partner for these receptors, ring finger protein 11 (RNF11). RNF11 participates in the constitution of the A20 complex that is involved in reduction of tumor necrosis factor α (TNFα)-induced NFκB signaling, an important pathway in hypothalamic inflammation. Mice treated with high-fat diet (HFD) for 3 days demonstrated a trend toward an increase in hypothalamic Rnf11 expression, as shown for other inflammatory markers under HFD. Furthermore, Gs-mediated signaling of MC3/4R was demonstrated to be strongly reduced to 20–40% by co-expression of RNF11 despite unchanged total receptor expression. Cell surface expression was not affected for MC3R but resulted in a significant reduction of MC4R to 61% by co-expression with RNF11. Mechanisms linking HFD, inflammation, and metabolism remain partially understood. In this study, a new axis between signaling of specific body weight regulating GPCRs and factors involved in hypothalamic inflammation is suggested. PMID:27551276

  9. An ascidian RING finger gene is specifically expressed in a single cell of larval ocellus.

    PubMed

    Sun, Xutong; Okuyama, Makiko; Miyazaki, Katsumi; Zhang, Shicui; Wada, Hiroshi

    2003-07-17

    The ascidian nervous system is extremely simple, although the structure of it is comparable with the complex vertebrate nervous system. This simplicity makes the ascidian nervous system a good model to understand how the neuronal circuit is built up in the chordate nervous system. In order to study the formation of the neuronal circuit at the single cell level, molecular markers to characterize specific single cells are desired. In the present paper, we describe the gene expression pattern of CIGL: an ascidian homologue of Goliath, a Drosophila RING-finger gene. In the early embryonic stage, CiGl is expressed in the lateral part of the neural tube and in several peripheral nerve cells. Later in the larval stage, CiGl specifically marks ocellus: one of the pigment cells in the ascidian brain, which is involved in the photoreceptive system. CiGl will be useful to understand the differentiation mechanism of ocellus, and especially to test the model proposed by. In addition, the finding of this single cells specific gene expression pattern at a certain developmental stage encourages us to look for more genes which mark single cells, especially those that have not been well characterized. PMID:12909346

  10. Loss of c-Cbl RING finger function results in high-intensity TCR signaling and thymic deletion

    PubMed Central

    Thien, Christine B F; Blystad, Frøydis D; Zhan, Yifan; Lew, Andrew M; Voigt, Valentina; Andoniou, Christopher E; Langdon, Wallace Y

    2005-01-01

    Signaling from the T-cell receptor (TCR) in thymocytes is negatively regulated by the RING finger-type ubiquitin ligase c-Cbl. To further investigate this regulation, we generated mice with a loss-of-function mutation in the c-Cbl RING finger domain. These mice exhibit complete thymic deletion by young adulthood, which is not caused by a developmental block, lack of progenitors or peripheral T-cell activation. Rather, this phenotype correlates with greatly increased expression of the CD5 and CD69 activation markers and increased sensitivity to anti-CD3-induced cell death. Thymic loss contrasts the normal fate of the c-Cbl−/− thymus, even though thymocytes from both mutant mice show equivalent enhancement in proximal TCR signaling, Erk activation and calcium mobilization. Remarkably, only the RING finger mutant thymocytes show prominent TCR-directed activation of Akt. We show that the mutant c-Cbl protein itself is essential for activating this pathway by recruiting the p85 regulatory subunit of PI 3-kinase. This study provides a unique model for analyzing high-intensity TCR signals that cause thymocyte deletion and highlights multiple roles of c-Cbl in regulating this process. PMID:16211006

  11. Muscle RING Finger-1 Promotes a Maladaptive Phenotype in Chronic Hypoxia-Induced Right Ventricular Remodeling

    PubMed Central

    Campen, Matthew J.; Paffett, Michael L.; Colombo, E. Sage; Lucas, Selita N.; Anderson, Tamara; Nysus, Monique; Norenberg, Jeffrey P.; Gershman, Ben; Hesterman, Jacob; Hoppin, Jack; Willis, Monte

    2014-01-01

    Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension. PMID:24811453

  12. Muscle RING finger-1 promotes a maladaptive phenotype in chronic hypoxia-induced right ventricular remodeling.

    PubMed

    Campen, Matthew J; Paffett, Michael L; Colombo, E Sage; Lucas, Selita N; Anderson, Tamara; Nysus, Monique; Norenberg, Jeffrey P; Gershman, Ben; Hesterman, Jacob; Hoppin, Jack; Willis, Monte

    2014-01-01

    Exposure to chronic hypoxia (CH) induces elevated pulmonary artery pressure/resistance, leading to an eventual maladaptive right ventricular hypertrophy (RVH). Muscle RING finger-1 (MuRF1) is a muscle-specific ubiquitin ligase that mediates myocyte atrophy and has been shown to play a role in left ventricular hypertrophy and altered cardiac bioenergetics in pressure overloaded hearts. However, little is known about the contribution of MuRF1 impacting RVH in the setting of CH. Therefore, we hypothesized that MuRF1 deletion would enhance RVH compared to their wild-type littermates, while cardiac-specific overexpression would reduce hypertrophy following CH-induced pulmonary hypertension. We assessed right ventricular systolic pressure (RVSP), right ventricle to left ventricle plus septal weight ratio (RV/LV+S) and hematocrit (Hct) following a 3-wk isobaric CH exposure. Additionally, we conducted dual-isotope SPECT/CT imaging with cardiac function agent 201Tl-chloride and cell death agent 99mTc-annexin V. Predictably, CH induced pulmonary hypertension, measured by increased RVSP, RV/LV+S and Hct in WT mice compared to normoxic WT mice. Normoxic WT and MuRF1-null mice exhibited no significant differences in RVSP, RV/LV+S or Hct. CH-induced increases in RVSP were also similar between WT and MuRF1-null mice; however, RV/LV+S and Hct were significantly elevated in CH-exposed MuRF1-null mice compared to WT. In cardiac-specific MuRF1 overexpressing mice, RV/LV+S increased significantly due to CH exposure, even greater than in WT mice. This remodeling appeared eccentric, maladaptive and led to reduced systemic perfusion. In conclusion, these results are consistent with an atrophic role for MuRF1 regulating the magnitude of right ventricular hypertrophy following CH-induction of pulmonary hypertension. PMID:24811453

  13. Analysis and interpretation of a unique Arabic finger ring from the Viking Age town of Birka, Sweden.

    PubMed

    Wärmländer, Sebastian K T S; Wåhlander, Linda; Saage, Ragnar; Rezakhani, Khodadad; Hamid Hassan, Saied A; Neiß, Michael

    2015-01-01

    In this work we used non-destructive SEM imaging and EDS analysis to characterize the material composition of an Arabic finger ring, which was found in a 9(th) c. woman's grave at the Viking Age (A.D. 793-1066) trading center of Birka, Sweden. The ring is set with a violet stone inscribed with Arabic Kufic writing, here interpreted as reading "il-la-lah", i.e. "For/to Allah". The stone was previously thought to be an amethyst, but the current results show it to be coloured glass. The ring has been cast in a high-grade silver alloy (94.5/5.5 Ag/Cu) and retains the post-casting marks from the filing done to remove flash and mold lines. Thus, the ring has rarely been worn, and likely passed from the silversmith to the woman buried at Birka with few owners in between. The ring may therefore constitute material evidence for direct interactions between Viking Age Scandinavia and the Islamic world. Being the only ring with an Arabic inscription found at a Scandinavian archaeological site, it is a unique object among Swedish Viking Age material. The technical analysis presented here provides a better understanding of the properties and background of this intriguing piece of jewelry. PMID:25707897

  14. RING protein Trim32 associated with skin carcinogenesis has anti-apoptotic and E3-ubiquitin ligase properties.

    PubMed

    Horn, Elizabeth J; Albor, Amador; Liu, Yuangang; El-Hizawi, Sally; Vanderbeek, Gretchen E; Babcock, Melissa; Bowden, G Tim; Hennings, Henry; Lozano, Guillermina; Weinberg, Wendy C; Kulesz-Martin, Molly

    2004-02-01

    Tripartite motif protein 32, Trim32, mRNA and protein expression was elevated in independently transformed and tumorigenic keratinocytes of a mouse epidermal carcinogenesis model, in ultraviolet B (UVB)-induced squamous cell carcinomas (SCC), and in approximately 20-25% of chemically induced mouse papillomas and human head and neck SCCs. This suggests that elevated Trim32 expression occurs frequently in experimental epidermal carcinogenesis and is relevant to human cancer. Transduced Trim32 increased colony number in an epidermal in vitro transformation assay and epidermal thickening in vivo when skin-grafted to athymic nu/nu mice. These effects were not associated with proliferation and were not sufficient for tumorigenesis, even with 12-O-tetradecanoylphorbol-13-acetate treatment or defects in the tumor suppressor p53. However, transduced Trim32 inhibited the synergistic effect of tumor necrosis factor alpha (TNFalpha) on UVB-induced apoptosis of keratinocytes in vitro and the apoptotic response of keratinocyte grafts exposed to UVB-light in vivo. Consistent with its RING domain, Trim32 exhibited characteristics of E3-ubiquitin ligases, including being ubiquitylated itself and interacting with ubiquitylated proteins, with increases in these properties following treatment of cultured keratinocytes with TNFalpha/UVB. Interestingly, missense point mutation of human TRIM32 has been reported in Limb-Girdle Muscular Dystrophy Type 2H, an autosomal recessive disease. We propose a model in which Trim32 activities as an E3-ubiquitin ligase favor initiated cell survival in carcinogenesis by blocking UVB-induced TNFalpha apoptotic signaling. PMID:14578165

  15. The RING E3 Ligase KEEP ON GOING Modulates JASMONATE ZIM-DOMAIN12 Stability1[OPEN

    PubMed Central

    Pauwels, Laurens; Ritter, Andrés; Goossens, Jonas; Durand, Astrid Nagels; Liu, Hongxia; Gu, Yangnan; Geerinck, Jan; Boter, Marta; Vanden Bossche, Robin; De Clercq, Rebecca; Van Leene, Jelle; Gevaert, Kris; De Jaeger, Geert; Solano, Roberto; Stone, Sophia; Innes, Roger W.; Callis, Judy; Goossens, Alain

    2015-01-01

    Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCFCOI1) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCFCOI1 components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability. PMID:26320228

  16. TRIM32 protein sensitizes cells to tumor necrosis factor (TNFα)-induced apoptosis via its RING domain-dependent E3 ligase activity against X-linked inhibitor of apoptosis (XIAP).

    PubMed

    Ryu, Yeung Sook; Lee, Younglang; Lee, Keun Woo; Hwang, Chae Young; Maeng, Jin-Soo; Kim, Jeong-Hoon; Seo, Yeon-Soo; You, Kwan-Hee; Song, Byeongwoon; Kwon, Ki-Sun

    2011-07-22

    TRIM32, which belongs to the tripartite motif (TRIM) protein family, has the RING finger, B-box, and coiled-coil domain structures common to this protein family, along with an additional NHL domain at the C terminus. TRIM32 reportedly functions as an E3 ligase for actin, a protein inhibitor of activated STAT y (PIASy), dysbindin, and c-Myc, and it has been associated with diseases such as muscular dystrophy and epithelial carcinogenesis. Here, we identify a new substrate of TRIM32 and propose a mechanism through which TRIM32 might regulate apoptosis. Our overexpression and knockdown experiments demonstrate that TRIM32 sensitizes cells to TNFα-induced apoptosis. The RING domain is necessary for this pro-apoptotic function of TRM32 as well as being responsible for its E3 ligase activity. TRIM32 colocalizes and directly interacts with X-linked inhibitor of apoptosis (XIAP), a well known cancer therapeutic target, through its coiled-coil and NHL domains. TRIM32 overexpression enhances XIAP ubiquitination and subsequent proteasome-mediated degradation, whereas TRIM32 knockdown has the opposite effect, indicating that XIAP is a substrate of TRIM32. In vitro reconstitution assay reveals that XIAP is directly ubiquitinated by TRIM32. Our novel results collectively suggest that TRIM32 sensitizes TNFα-induced apoptosis by antagonizing XIAP, an anti-apoptotic downstream effector of TNFα signaling. This function may be associated with TRIM32-mediated tumor suppressive mechanism. PMID:21628460

  17. Evidence for a regulatory role of Cullin-RING E3 ubiquitin ligase 7 in insulin signalling§

    PubMed Central

    Kruse, Michael; Hartmann, Thomas; Lempart, Justine; Mühlich, Susanne; Pfeiffer, Andreas F. H.; Field, Loren J.; Charron, Maureen J.; Pan, Zhen-Qiang; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    Dysfunctional regulation of signalling pathways downstream of the insulin receptor plays a pivotal role in the pathogenesis of insulin resistance and type 2 diabetes. In this study we report both in vitro and in vivo experimental evidence for a role of Cullin-RING E3 ubiquitin ligase 7 (CRL7) in the regulation of insulin signalling and glucose homeostasis. We show that Cul7−/− mouse embryonic fibroblasts displayed enhanced AKT and Erk MAP kinase phosphorylation upon insulin stimulation. Depletion of CUL7 by RNA interference in C2C12 myotubes led to increased activation of insulin signalling pathways and cellular glucose uptake, as well as a reduced capacity of these cells to execute insulin-induced degradation of insulin receptor substrate 1 (IRS1). In vivo, heterozygosity of either Cul7 or Fbxw8, both key components of CRL7, resulted in elevated PI3 kinase / AKT activation in skeletal muscle tissue upon insulin stimulation when compared to wild-type controls. Finally, Cul7+/− or Fbxw8+/− mice exhibited enhanced insulin sensitivity and plasma glucose clearance. Collectively, our findings point to a yet unrecognized role of CRL7 in insulin-mediated control of glucose homeostasis by restraining PI3 kinase / AKT activities in skeletal muscle cells. PMID:24219910

  18. Inhibition of Cullin-RING E3 ubiquitin ligase 7 by simian virus 40 large T antigen

    PubMed Central

    Hartmann, Thomas; Xu, Xinsong; Kronast, Mira; Muehlich, Susanne; Meyer, Kathleen; Zimmermann, Wolfgang; Hurwitz, Jerard; Pan, Zhen-Qiang; Engelhardt, Stefan; Sarikas, Antonio

    2014-01-01

    Simian virus 40 (SV40) large tumor antigen (LT) triggers oncogenic transformation by inhibition of key tumor suppressor proteins, including p53 and members of the retinoblastoma family. In addition, SV40 transformation requires binding of LT to Cullin 7 (CUL7), a core component of Cullin-RING E3 ubiquitin ligase 7 (CRL7). However, the pathomechanistic effects of LT–CUL7 interaction are mostly unknown. Here we report both in vitro and in vivo experimental evidence that SV40 LT suppresses the ubiquitin ligase function of CRL7. We show that SV40 LT, but not a CUL7 binding-deficient mutant (LTΔ69–83), impaired 26S proteasome-dependent proteolysis of the CRL7 target protein insulin receptor substrate 1 (IRS1), a component of the insulin and insulin-like growth factor 1 signaling pathway. SV40 LT expression resulted in the accumulation and prolonged half-life of IRS1. In vitro, purified SV40 LT reduced CRL7-dependent IRS1 ubiquitination in a concentration-dependent manner. Expression of SV40 LT, or depletion of CUL7 by RNA interference, resulted in the enhanced activation of IRS1 downstream signaling pathways phosphatidylinositol-3-kinase/AKT and Erk mitogen-activated pathway kinase, as well as up-regulation of the downstream target gene c-fos. Finally, SV40 LT-positive carcinoma of carcinoembryonic antigen 424/SV40 LT transgenic mice displayed elevated IRS1 protein levels and activation of downstream signaling. Taken together, these data suggest that SV40 LT protects IRS1 from CRL7-mediated degradation, thereby sustaining high levels of promitogenic IRS1 downstream signaling pathways. PMID:24550499

  19. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4)*

    PubMed Central

    Hendriks, Ivo A.; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V.; Vertegaal, Alfred C. O.

    2015-01-01

    Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536

  20. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4).

    PubMed

    Hendriks, Ivo A; Schimmel, Joost; Eifler, Karolin; Olsen, Jesper V; Vertegaal, Alfred C O

    2015-06-19

    Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR. PMID:25969536

  1. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene

    PubMed Central

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3′ untranslated region (3′UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3′UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  2. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene.

    PubMed

    Ma, Changping; Song, Huibin; Yu, Lei; Guan, Kaifeng; Hu, Pandi; Li, Yang; Xia, Xuanyan; Li, Jialian; Jiang, Siwen; Li, Fenge

    2016-01-01

    A growing number of reports have revealed that microRNAs (miRNAs) play critical roles in spermatogenesis. Our previous study showed that miR-762 is differentially expressed in immature and mature testes of Large White boars. Our present data shows that miR-762 directly binds the 3' untranslated region (3'UTR) of ring finger protein 4 (RNF4) and down-regulates RNF4 expression. A single nucleotide polymorphism (SNP) in the RNF4 3'UTR that is significantly associated with porcine sperm quality traits leads to a change in the miR-762 binding ability. Moreover, miR-762 promotes the proliferation of and inhibits apoptosis in porcine immature Sertoli cells, partly by accelerating DNA damage repair and by reducing androgen receptor (AR) expression. Taken together, these findings suggest that miR-762 may play a role in pig spermatogenesis by regulating immature Sertoli cell growth. PMID:27596571

  3. Structure of a glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface.

    PubMed

    Duda, David M; Olszewski, Jennifer L; Tron, Adriana E; Hammel, Michal; Lambert, Lester J; Waddell, M Brett; Mittag, Tanja; DeCaprio, James A; Schulman, Brenda A

    2012-08-10

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF(FBW7) complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  4. Structure of a Glomulin-RBX1-CUL1 complex: inhibition of a RING E3 ligase through masking of its E2-binding surface

    PubMed Central

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-01-01

    Summary The ~300 human Cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1’s RING domain, regulates the RBX1-CUL1-containing SCFFBW7 complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN’s selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition. PMID:22748924

  5. Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface

    SciTech Connect

    Duda, David M.; Olszewski, Jennifer L.; Tron, Adriana E.; Hammel, Michal; Lambert, Lester J.; Waddell, M. Brett; Mittag, Tanja; DeCaprio, James A.; Schulman, Brenda A.

    2012-11-01

    The approximately 300 human cullin-RING ligases (CRLs) are multisubunit E3s in which a RING protein, either RBX1 or RBX2, recruits an E2 to catalyze ubiquitination. RBX1-containing CRLs also can bind Glomulin (GLMN), which binds RBX1's RING domain, regulates the RBX1-CUL1-containing SCF{sup FBW7} complex, and is disrupted in the disease Glomuvenous Malformation. Here we report the crystal structure of a complex between GLMN, RBX1, and a fragment of CUL1. Structural and biochemical analyses reveal that GLMN adopts a HEAT-like repeat fold that tightly binds the E2-interacting surface of RBX1, inhibiting CRL-mediated chain formation by the E2 CDC34. The structure explains the basis for GLMN's selectivity toward RBX1 over RBX2, and how disease-associated mutations disrupt GLMN-RBX1 interactions. Our study reveals a mechanism for RING E3 ligase regulation, whereby an inhibitor blocks E2 access, and raises the possibility that other E3s are likewise controlled by cellular proteins that mask E2-binding surfaces to mediate inhibition.

  6. CBL Linker Region and RING Finger Mutations Lead to Enhanced Granulocyte-Macrophage Colony-stimulating Factor (GM-CSF) Signaling via Elevated Levels of JAK2 and LYN*

    PubMed Central

    Javadi, Mojib; Richmond, Terri D.; Huang, Kai; Barber, Dwayne L.

    2013-01-01

    Juvenile myelomonocytic leukemia (JMML) is characterized by hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). SHP2, NF-1, KRAS, and NRAS are mutated in JMML patients, leading to aberrant regulation of RAS signaling. A subset of JMML patients harbor CBL mutations associated with 11q acquired uniparental disomy. Many of these mutations are in the linker region and the RING finger of CBL, leading to a loss of E3 ligase activity. We investigated the mechanism by which CBL-Y371H, a linker region mutant, and CBL-C384R, a RING finger mutant, lead to enhanced GM-CSF signaling. Expression of CBL mutants in the TF-1 cell line resulted in enhanced survival in the absence of GM-CSF. Cells expressing CBL mutations displayed increased phosphorylation of GM-CSF receptor βc subunit in response to stimulation, although expression of total GM-CSFR βc was lower. This suggested enhanced kinase activity downstream of GM-CSFR. JAK2 and LYN kinase expression is elevated in CBL-Y371H and CBL-C384R mutant cells, resulting in enhanced phosphorylation of CBL and S6 in response to GM-CSF stimulation. Incubation with the JAK2 inhibitor, TG101348, abolished the increased phosphorylation of GM-CSFR βc in cells expressing CBL mutants, whereas treatment with the SRC kinase inhibitor dasatinib resulted in equalization of GM-CSFR βc phosphorylation signal between wild type CBL and CBL mutant samples. Dasatinib treatment inhibited the elevated phosphorylation of CBL-Y371H and CBL-C384R mutants. Our study indicates that CBL linker and RING finger mutants lead to enhanced GM-CSF signaling due to elevated kinase expression, which can be blocked using small molecule inhibitors targeting specific downstream pathways. PMID:23696637

  7. cDNA cloning, characterization and expression analysis of DTX2, a human WWE and RING-finger gene, in human embryos.

    PubMed

    Yi, Zhengfang; Yi, Tingfang; Wu, Zirong

    2006-06-01

    The WWE domain is a conserved globular domain in several proteins and predicted to mediate specificprotein-protein interactions in ubiquitin and ADP ribose conjugation systems. The RING domain is a conserved and specialized zinc-finger motif with 40-60 residues binding to two zinc atoms, which is also probably involved in mediating protein-protein interactions. Here, from human fetal heart cDNA library, we identified DTX2, a human WWE & RING-finger gene, with high similarity with its homologues. Evaluation of full-length cDNA obtained by RACE indicated it encodes a protein composed of two WWE domains and a RING-finger region. The DTX2 gene located in human chromosome 7q11.23 spanning approximately 44.3 kb on the genome and the deduced protein is 622 amino acids. Northern analysis revealed DTX2 was expressed in the 18-week, 22.5-week human embryo hearts and adult hearts, especially with high levels in the 18-week and adult hearts. Taken together, these results indicate that DTX2 is a gene encoding a WWE-RING-finger protein and involved in regulating heart development and heart functions. PMID:17286044

  8. Role of TRIM5α RING domain E3 ubiquitin ligase activity in capsid disassembly, reverse transcription blockade, and restriction of simian immunodeficiency virus.

    PubMed

    Kim, Jonghwa; Tipper, Christopher; Sodroski, Joseph

    2011-08-01

    The mammalian tripartite motif protein, TRIM5α, recognizes retroviral capsids entering the cytoplasm and blocks virus infection. Depending on the particular TRIM5α protein and retrovirus, complete disruption of the TRIM5α RING domain decreases virus-restricting activity to various degrees. TRIM5α exhibits RING domain-dependent E3 ubiquitin ligase activity, but the specific role of this activity in viral restriction is unknown. We created a panel of African green monkey TRIM5α (TRIM5α(AGM)) mutants, many of which are specifically altered in RING domain E3 ubiquitin ligase function, and characterized the phenotypes of these mutants with respect to restriction of simian and human immunodeficiency viruses (SIV(mac) and HIV-1, respectively). TRIM5α(AGM) ubiquitin ligase activity was essential for both the accelerated disassembly of SIV(mac) capsids and the disruption of reverse transcription. The levels of SIV(mac) particulate capsids in the cytosol of target cells expressing the TRIM5α variants strongly correlated with the levels of viral late reverse transcripts. RING-mediated ubiquitylation and B30.2(SPRY) domain-determined capsid binding independently contributed to the potency of SIV(mac) restriction by TRIM5α(AGM). In contrast, TRIM5α proteins attenuated in RING ubiquitin ligase function still accelerated HIV-1 capsid disassembly, inhibited reverse transcription, and blocked infection. Replacement of the helix-4/5 loop in the SIV(mac) capsid with the corresponding region of the HIV-1 capsid diminished the dependence of restriction on TRIM5α RING function. Thus, ubiquitylation mediated by the RING domain of TRIM5α(AGM) is essential for blocking SIV(mac) infection at the stage of capsid uncoating. PMID:21680520

  9. IRT1 DEGRADATION FACTOR1, a RING E3 Ubiquitin Ligase, Regulates the Degradation of IRON-REGULATED TRANSPORTER1 in Arabidopsis[C][W][OPEN

    PubMed Central

    Shin, Lung-Jiun; Lo, Jing-Chi; Chen, Guan-Hong; Callis, Judy; Fu, Hongyong; Yeh, Kuo-Chen

    2013-01-01

    Fe is an essential micronutrient for plant growth and development; plants have developed sophisticated strategies to acquire ferric Fe from the soil. Nongraminaceous plants acquire Fe by a reduction-based mechanism, and graminaceous plants use a chelation-based mechanism. In Arabidopsis thaliana, which uses the reduction-based method, IRON-REGULATED TRANSPORTER1 (IRT1) functions as the most important transporter for ferrous Fe uptake. Rapid and constitutive degradation of IRT1 allows plants to quickly respond to changing conditions to maintain Fe homeostasis. IRT1 degradation involves ubiquitination. To identify the specific E3 ubiquitin ligases involved in IRT1 degradation, we screened a set of insertional mutants in RING-type E3 ligases and identified a mutant that showed delayed degradation of IRT1 and loss of IRT1-ubiquitin complexes. The corresponding gene was designated IRT1 DEGRADATION FACTOR1 (IDF1). Evidence of direct interaction between IDF1 and IRT1 in the plasma membrane supported the role of IDF1 in IRT1 degradation. IRT1 accumulation was reduced when coexpressed with IDF1 in yeast or Xenopus laevis oocytes. IDF1 function was RING domain dependent. The idf1 mutants showed increased tolerance to Fe deficiency, resulting from increased IRT1 levels. This evidence indicates that IDF1 directly regulates IRT1 degradation through its RING-type E3 ligase activity. PMID:23995086

  10. Effects of RING-SH2Grb², a chimeric protein containing the E3 ligase domain of Cbl, on the EGFR pathway.

    PubMed

    Lee, Wei-Hao; Wang, Pei-Yu; Lin, Yu-Hung; Chou, He-Yen; Lee, Yen-Hsien; Lee, Chien-Kuo; Pai, Li-Mei

    2014-12-31

    The E3 ubiquitin-protein ligase Casitas B-lineage lymphoma protein (Cbl) negatively regulates epidermal growth factor receptor (EGFR) signaling pathway in many organisms, and has crucial roles in cell growth, development and human pathologies, including lung cancers. RING-SH2Grb² a chimeric protein of 215 amino acids containing the RING domain of Cbl that provides E3 ligase activity, and the SH2 domain of Grb2 that serves as an adaptor for EGFR. In this study, we demonstrated that RING-SH2Grb² could promote the ubiquitinylation and degradation of EGFR in a human non-small cell lung carcinoma cell line H1299. Moreover, we discovered that the RING-SH2Grb² chimera promoted the internalization of ligand-bound EGFR, inhibited the growth of H1299 cells, and significantly suppressed tumor growth in a xenograft mouse model. In summary, our results revealed a potential new cancer therapeutic approach for non-small cell lung cancer. PMID:25575524

  11. RING finger protein 4 (RNF4) derepresses gene expression from DNA methylation.

    PubMed

    Wang, Yu

    2014-12-01

    RNF4 is an E3 ubiquitin ligase originally identified as a transcription co-activator. The mechanism by which RNF4 promotes transcription remains unclear. In this study, I found that RNF4 antagonizes transcriptional repression mediated by DNA methylation. RNF4 does not promote DNA demethylation, but mediates the ubiquitination of MeCP2, a methyl-CpG-binding domain (MBD) protein. Removal of MeCP2 from gene promoters activates transcription. This study thus not only uncovers how RNF4 functions as a transcription activator, but also reveals the mechanism by which MeCP2 protein stability is regulated. PMID:25355316

  12. Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression.

    PubMed

    Hwang, Sun-Goo; Park, Hyeon Mi; Han, A-Reum; Jang, Cheol Seong

    2016-02-01

    High levels of arsenic (As) in plants are a serious threat to human health, and arsenic accumulation affects plant metabolism and ultimately photosynthesis, growth, and development. We attempted to isolate As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase genes from rice, and we have designated one such gene Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1). OsAIR1 expression was induced under abiotic stress conditions, including drought, salt, heat, and As exposure. Results from an in vitro ubiquitination assay showed that OsAIR1 possesses E3 ligase activity. Within the cell, the expression of this gene was found to be localized to the vacuole. In a network-based analysis, we found significantly enriched gene ontology (GO) functions, which included ribonucleoprotein complexes such as ribosomes, suggesting that the function of OsAIR1 are related to translation. Differences in the proportion of seedlings with expanded cotyledons and root lengths, and the lack of differences in germination rates between OsAIR1-overexpressing lines and control plants under AsV stress, suggest that OsAIR1 may positively regulate post-germination plant growth under stress conditions. PMID:26788958

  13. The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development

    PubMed Central

    Illingworth, Robert S.; Moffat, Michael; Mann, Abigail R.; Read, David; Hunter, Chris J.; Pradeepa, Madapura M.; Adams, Ian R.; Bickmore, Wendy A.

    2015-01-01

    Polycomb-repressive complex 1 (PRC1) and PRC2 maintain repression at many developmental genes in mouse embryonic stem cells and are required for early development. However, it is still unclear how they are targeted and how they function. We show that the ability of RING1B, a core component of PRC1, to ubiquitinate histone H2A is dispensable for early mouse embryonic development and much of the gene repression activity of PRC1. Our data support a model in which PRC1 and PRC2 reinforce each other's binding but suggest that the key functions of PRC1 lie beyond the enzymatic capabilities of RING1B. PMID:26385961

  14. Expression of a gene encoding a rice RING zinc-finger protein, OsRZFP34, enhances stomata opening.

    PubMed

    Hsu, Kuo-Hsuan; Liu, Chia-Chin; Wu, Shaw-Jye; Kuo, Ying-Yu; Lu, Chung-An; Wu, Ching-Rong; Lian, Pei-Jyun; Hong, Chwan-Yang; Ke, Yi-Ting; Huang, Juin-Hua; Yeh, Ching-Hui

    2014-09-01

    By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca(2+) sensing, K(+) regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening. PMID:25002225

  15. Oestrogen receptors and small nuclear ring finger protein 4 (RNF4) in malignant ovarian germ cell tumours.

    PubMed

    Salonen, Jonna; Butzow, Ralf; Palvimo, Jorma J; Heikinheimo, Markku; Heikinheimo, Oskari

    2009-08-13

    The peak incidence of malignant ovarian germ cell tumours occurs soon after puberty. Thus, gonadal steroids may play a role in their development. Oestrogen receptors (ERalpha and ERbeta) and their co-regulators, including small nuclear ring finger protein 4 (SNURF/RNF4) mediate oestrogen actions. While ERbeta and SNURF are down-regulated in testicular germ cell tumours, their role in the ovarian germ cell tumours remains unknown. We herein studied the different subtypes of malignant ovarian germ cell tumours, and found that they all express ERalpha, ERbeta, and SNURF. Stimulation with oestradiol (E2), ERalpha, ERbeta and SNURF significantly up-regulated mRNA expression in the human germinoma derived NCC-IT cells. Further, the effects of E2 were counteracted by an anti-oestrogen (ICI 182,780). Neither E2 nor ICI 182,780 had an effect on the proliferation of NCC-IT cells as assessed by flow cytometric analysis. Our results suggest that oestrogen signalling has a role in malignant ovarian germ cell tumours. PMID:19524139

  16. C3HC4-Type RING Finger Protein NbZFP1 Is Involved in Growth and Fruit Development in Nicotiana benthamiana

    PubMed Central

    Wu, Wenxian; Cheng, Zhiwei; Liu, Mengjie; Yang, Xiufen; Qiu, Dewen

    2014-01-01

    C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS) analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco. PMID:24901716

  17. MAT1 ('menage à trois') a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK.

    PubMed Central

    Devault, A; Martinez, A M; Fesquet, D; Labbé, J C; Morin, N; Tassan, J P; Nigg, E A; Cavadore, J C; Dorée, M

    1995-01-01

    The kinase responsible for Thr161-Thr160 phosphorylation and activation of cdc2/cdk2 (CAK:cdk-activating kinase) has been shown previously to comprise at least two subunits, cdk7 and cyclin H. An additional protein co-purified with CAK in starfish oocytes, but its sequencing did not reveal any similarity with any known protein. In the present work, a cDNA encoding this protein is cloned and sequenced in both starfish and Xenopus oocytes. It is shown to encode a new member of the RING finger family of proteins with a characteristic C3HC4 motif located in the N-terminal domain. We demonstrate that the RING finger protein (MAT1: 'menage à trois') is a new subunit of CAK in both vertebrate and invertebrates. However, CAK may also exist in oocytes as heterodimeric complexes between cyclin H and cdk7 only. Stable heterotrimeric CAK complexes were generated in reticulocyte lysates programmed with mRNAs encoding Xenopus cdk7, cyclin H and MAT1. In contrast, no heterodimeric cyclin H-cdk7 complex could be immunoprecipitated from reticulocyte lysates programmed with cdk7 and cyclin H mRNAs only. Stabilization of CAK complexes by MAT1 does not involve phosphorylation of Thr176, as the Thr176-->Ala mutant of Xenopus cdk7 could engage as efficiently as wild-type cdk7 in ternary complexes. Even though starfish MAT1 is almost identical to Xenopus MAT1 in the RING finger domain, the starfish subunit could not replace the Xenopus subunit and stabilize cyclin H-cdk7 in reticulocyte lysate, suggesting that the MAT1 subunit does not (or not only) interact with cyclin H-cdk7 through the RING finger domain. Images PMID:7588631

  18. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO

    PubMed Central

    Keusekotten, Kirstin; Bade, Veronika N.; Meyer-Teschendorf, Katrin; Sriramachandran, Annie Miriam; Fischer-Schrader, Katrin; Krause, Anke; Horst, Christiane; Schwarz, Günter; Hofmann, Kay; Dohmen, R. Jürgen; Praefcke, Gerrit J. K.

    2013-01-01

    RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length. PMID:24151981

  19. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO.

    PubMed

    Keusekotten, Kirstin; Bade, Veronika N; Meyer-Teschendorf, Katrin; Sriramachandran, Annie Miriam; Fischer-Schrader, Katrin; Krause, Anke; Horst, Christiane; Schwarz, Günter; Hofmann, Kay; Dohmen, R Jürgen; Praefcke, Gerrit J K

    2014-01-01

    RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length. PMID:24151981

  20. Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress.

    PubMed

    Kim, Soo Jin; Kim, Woo Taek

    2013-08-19

    AtATL78 is an Arabidopsis RING E3 ubiquitin ligase. RT-PCR and promoter-GUS assays revealed that AtATL78 was up-regulated by cold stress and down-regulated by drought. AtATL78 was localized at the plasma-membrane. Suppression of AtATL78 increased tolerance to cold stress but decreased tolerance to drought. Our data suggests that AtATL78 is a negative regulator of cold stress response and a positive regulator of drought stress response in Arabidopsis. These results further suggest that AtATL78 plays opposing roles in cold and drought stress responses. PMID:23831064

  1. Targeting RING domains of Mdm2–MdmX E3 complex activates apoptotic arm of the p53 pathway in leukemia/lymphoma cells

    PubMed Central

    Wu, W; Xu, C; Ling, X; Fan, C; Buckley, B P; Chernov, M V; Ellis, L; Li, F; Muñoz, I G; Wang, X

    2015-01-01

    Reactivation of tumor-suppressor p53 for targeted cancer therapy is an attractive strategy for cancers bearing wild-type (WT) p53. Targeting the Mdm2–p53 interface or MdmX ((MDM4), mouse double minute 4)–p53 interface or both has been a focus in the field. However, targeting the E3 ligase activity of Mdm2–MdmX really interesting new gene (RING)–RING interaction as a novel anticancer strategy has never been explored. In this report, we describe the identification and characterization of small molecule inhibitors targeting Mdm2–MdmX RING–RING interaction as a new class of E3 ligase inhibitors. With a fluorescence resonance energy transfer-based E3 activity assay in high-throughput screening of a chemical library, we identified inhibitors (designated as MMRis (Mdm2–MdmX RING domain inhibitors)) that specifically inhibit Mdm2–MdmX E3 ligase activity toward Mdm2 and p53 substrates. MMRi6 and its analog MMRi64 are capable of disrupting Mdm2–MdmX interactions in vitro and activating p53 in cells. In leukemia cells, MMRi64 potently induces downregulation of Mdm2 and MdmX. In contrast to Nutlin3a, MMRi64 only induces the expression of pro-apoptotic gene PUMA (p53 upregulated modulator of apoptosis) with minimal induction of growth-arresting gene p21. Consequently, MMRi64 selectively induces the apoptotic arm of the p53 pathway in leukemia/lymphoma cells. Owing to the distinct mechanisms of action of MMRi64 and Nutlin3a, their combination synergistically induces p53 and apoptosis. Taken together, this study reveals that Mdm2–MdmX has a critical role in apoptotic response of the p53 pathway and MMRi64 may serve as a new pharmacological tool for p53 studies and a platform for cancer drug development. PMID:26720344

  2. Requirement of the C3HC4 zinc RING finger of the Arabidopsis PEX10 for photorespiration and leaf peroxisome contact with chloroplasts.

    PubMed

    Schumann, Uwe; Prestele, Jakob; O'Geen, Henriette; Brueggeman, Robert; Wanner, Gerhard; Gietl, Christine

    2007-01-16

    Plant peroxisomes perform multiple vital metabolic processes including lipid mobilization in oil-storing seeds, photorespiration, and hormone biosynthesis. Peroxisome biogenesis requires the function of peroxin (PEX) proteins, including PEX10, a C(3)HC(4) Zn RING finger peroxisomal membrane protein. Loss of function of PEX10 causes embryo lethality at the heart stage. We investigated the function of PEX10 with conditional sublethal mutants. Four T-DNA insertion lines expressing pex10 with a dysfunctional RING finger were created in an Arabidopsis WT background (DeltaZn plants). They could be normalized by growth in an atmosphere of high CO(2) partial pressure, indicating a defect in photorespiration. beta-Oxidation in mutant glyoxysomes was not affected. However, an abnormal accumulation of the photorespiratory metabolite glyoxylate, a lowered content of carotenoids and chlorophyll a and b, and a decreased quantum yield of photosystem II were detected under normal atmosphere, suggesting impaired leaf peroxisomes. Light and transmission electron microscopy demonstrated leaf peroxisomes of the DeltaZn plants to be more numerous, multilobed, clustered, and not appressed to the chloroplast envelope as in WT. We suggest that inactivation of the RING finger domain in PEX10 has eliminated protein interaction required for attachment of peroxisomes to chloroplasts and movement of metabolites between peroxisomes and chloroplasts. PMID:17215364

  3. Global Analysis of Ankyrin Repeat Domain C3HC4-Type RING Finger Gene Family in Plants

    PubMed Central

    Liu, Shiyang; Yu, Mingli; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-01-01

    Ankyrin repeat (ANK) C3HC4-type RING finger (RF) genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa) XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families. PMID:23516424

  4. Global analysis of ankyrin repeat domain C3HC4-type RING finger gene family in plants.

    PubMed

    Yuan, Xiaowei; Zhang, Shizhong; Liu, Shiyang; Yu, Mingli; Su, Hongyan; Shu, Huairui; Li, Xinzheng

    2013-01-01

    Ankyrin repeat (ANK) C3HC4-type RING finger (RF) genes comprise a large family in plants and play important roles in various physiological processes of plant life. In this study, we identified 187 ANK C3HC4-type RF proteins from 29 species with complete genomes and named the ANK C3HC4-type RF proteins the XB3-like proteins because they are structurally related to the rice (Oryza sativa) XB3. A phylogenetic relationship analysis suggested that the XB3-like genes originated from ferns, and the encoded proteins fell into 3 major groups. Among these groups, we found that the spacing between the metal ligand position 6 and 7, and the conserved residues, which was in addition to the metal ligand amino acids, in the C3HC4-type RF were different. Using a wide range of protein structural analyses, protein models were established, and all XB3-like proteins were found to contain two to seven ANKs and a C3HC4-type RF. The microarray data for the XB3-like genes of Arabidopsis, Oryza sative, Zea mays and Glycine max revealed that the expression of XB3-like genes was in different tissues and during different life stages. The preferential expression of XB3-like genes in specified tissues and the response to phytohormone and abiotic stress treatments of Arabidopsis and Zea mays not only confirmed the microarray analysis data but also demonstrated that the XB3-like proteins play roles in plant growth and development as well as in stress responses. Our data provide a very useful reference for the identification and functional analysis of members of this gene family and also provide a new method for the genome-wide analysis of gene families. PMID:23516424

  5. Extra-articular tenosynovial chondromatosis of the left ring finger in a 23-year-old man: A case report and literature review

    PubMed Central

    CHEN, YU-XIAN; LU, YUN-XIANG; ZHUANG, ZE; LI, ZHI-YONG

    2015-01-01

    Tenosynovial chondromatosis is an extra-articular version of articular synovial chondromatosis and a relatively rare condition that can affect the tendon sheath, bursa, or joint synovial tissue. Tenosynovial chondromatosis is rarely reported in the literature and is often misdiagnosed. In the present study, a case of extra-articular tenosynovial chondromatosis of the left ring finger in a 23-year-old man is reported. Three different-sized nodules were identified upon surgery and all were removed via synovectomy. The patient was symptom free 6 months postoperatively, and there were no signs of recurrence after 1.5 years of follow-up. The literature describing tenosynovial chondromatosis in the fingers is also reviewed. PMID:26622530

  6. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions.

    PubMed

    Suh, Ji Yeon; Kim, Woo Taek

    2015-08-01

    Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis. PMID:26086094

  7. A lysine-to-arginine mutation on NEDD8 markedly reduces the activity of cullin RING E3 ligase through the impairment of neddylation cascades

    SciTech Connect

    Sui, Yiyan; Liu, Yaobin; Xu, Guoqiang

    2015-06-12

    Neural-precursor-cell-expressed developmentally down-regulated 8 (NEDD8) is a ubiquitin-like modifier, which forms covalent conjugates on lysines of its substrates. This post-translational modification, neddylation, plays important roles in tumor cell proliferation and viability. Ubiquitin can form diverse polyubiquitin chains, on its seven lysines, which play important functions in various biological processes. However, the roles of lysines in NEDD8 have not been explored. Here, we generated nine NEDD8 point mutants, each with one lysine replaced by an arginine, to study the putative function of lysines in NEDD8. Our experiments discover that Lys27 in NEDD8 is a critical residue for protein neddylation. Replacement of this residue with arginine almost completely eliminates the conjugation of NEDD8 to its substrates. Furthermore, we find that the K27R mutant impairs NEDD8 conjugation to the E2 enzyme, which normally forms thioester bonds for further transferring NEDD8 to its ligases and substrates. Therefore, this mutation completely inhibits global protein neddylation, including neddylation of cullin family proteins, resulting in decreased activity of cullin-RING E3 ligases. This work sheds new light on the roles of NEDD8 lysines on neddylation cascades and provides a dominant negative mutant for the study of neddylation and its biological functions. - Highlights: • Lys27 in NEDD8 is critical for protein neddylation. • NEDD8 K27R mutant impairs the NEDD8 conjugation. • NEDD8 K27R mutant significantly reduces the activity of cullin-RING E3 ligases.

  8. RING domain dimerization is essential for RNF4 function.

    PubMed

    Liew, Chu Wai; Sun, Huaiyu; Hunter, Tony; Day, Catherine L

    2010-10-01

    RNF4 [RING (really interesting new gene) finger protein 4] family ubiquitin ligases are RING E3 ligases that regulate the homoeostasis of SUMOylated proteins by promoting their ubiquitylation. In the present paper we report that the RING domain of RNF4 forms a stable dimer, and that dimerization is required for ubiquitin transfer. Our results suggest that the stability of the E2~ubiquitin thioester bond is regulated by RING domain dimerization. PMID:20681948

  9. Flying saucer1 is a transmembrane RING E3 ubiquitin ligase that regulates the degree of pectin methylesterification in Arabidopsis seed mucilage.

    PubMed

    Voiniciuc, Catalin; Dean, Gillian H; Griffiths, Jonathan S; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L; Estelle, Mark; Haughn, George W

    2013-03-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca(2+) ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca(2+) or completely rescued using alkaline Ca(2+) chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1-yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  10. FLYING SAUCER1 Is a Transmembrane RING E3 Ubiquitin Ligase That Regulates the Degree of Pectin Methylesterification in Arabidopsis Seed Mucilage[W

    PubMed Central

    Voiniciuc, Cătălin; Dean, Gillian H.; Griffiths, Jonathan S.; Kirchsteiger, Kerstin; Hwang, Yeen Ting; Gillett, Alan; Dow, Graham; Western, Tamara L.; Estelle, Mark; Haughn, George W.

    2013-01-01

    Pectins are complex polysaccharides that form the gel matrix of the primary cell wall and are abundant in the middle lamella that holds plant cells together. Their degree of methylesterification (DM) impacts wall strength and cell adhesion since unesterified pectin regions can cross-link via Ca2+ ions to form stronger gels. Here, we characterize flying saucer1 (fly1), a novel Arabidopsis thaliana seed coat mutant, which displays primary wall detachment, reduced mucilage extrusion, and increased mucilage adherence. These defects appear to result from a lower DM in mucilage and are enhanced by the addition of Ca2+ or completely rescued using alkaline Ca2+ chelators. FLY1 encodes a transmembrane protein with a RING-H2 domain that has in vitro E3 ubiquitin ligase activity. FLY1 is orthologous to TRANSMEMBRANE UBIQUITIN LIGASE1, a Golgi-localized E3 ligase involved in the quality control of membrane proteins in yeast. However, FLY1–yellow fluorescent protein (YFP) fusions are localized in punctae that are predominantly distinct from the Golgi and the trans-Golgi network/early endosome in the seed coat epidermis. Wortmannin treatment, which induces the fusion of late endosomes in plants, resulted in enlarged FLY1-YFP bodies. We propose that FLY1 regulates the DM of pectin in mucilage, potentially by recycling pectin methylesterase enzymes in the endomembrane system of seed coat epidermal cells. PMID:23482858

  11. Cloning and molecular characterization of the potato RING finger protein gene StRFP1 and its function in potato broad-spectrum resistance against Phytophthora infestans.

    PubMed

    Ni, Xuemei; Tian, Zhendong; Liu, Jun; Song, Botao; Xie, Conghua

    2010-04-15

    Really interesting new gene (RING) finger proteins function as ubiquitin ligase and play key roles in biotic and abiotic stresses. A new RING-H2 finger protein gene, StRFP1, was cloned from Phytophthora infestans-inoculated leaves of potato (Solanum tuberosum) clone 386209.10, which is free of R1-R11 genes. The deduced amino acid sequence was characterized by an N-terminal transmembrane domain, a GLD region and a RING-H2 finger signature. StRFP1 is homologous to the tobacco NtACRE132 protein and belongs to the ATL family. The DNA gel blot analysis and mapping revealed that StRFP1, an intron-free gene, had one to two copies in the potato genome and was located on chromosome 3. RT-PCR assays showed that StRFP1 was constitutively expressed in potato plants and significantly induced in detached potato leaves by P. infestans and plant defense-related signal molecules, abscisic acid, salicylic acid and methyl jasmonate. Transient expression studies revealed that StRFP1 fused with GFP localized to the plasma membrane or out of that in onion epidermal cells. The function of StRFP1 in potato resistance against late blight was further investigated by constructing overexpression and RNA interference (RNAi) vectors, which were introduced into potato cv. E-potato 3, respectively. By challenging the detached leaves with mixture races of P. infestans, all of the StRFP1-overexpressing plants displayed slower disease development than non-transformed controls in terms of the lesion growth rate (LGR). In contrast, StRFP1-silencing plants through RNAi were more susceptible to pathogen infection. The present results demonstrate that StRFP1 contributes to broad-spectrum resistance against P. infestans in potato. PMID:20042252

  12. RBR E3 ubiquitin ligases: new structures, new insights, new questions

    PubMed Central

    Spratt, Donald E.; Walden, Helen; Shaw, Gary S.

    2014-01-01

    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. PMID:24576094

  13. The LRR and RING Domain Protein LRSAM1 Is an E3 Ligase Crucial for Ubiquitin-Dependent Autophagy of Intracellular Salmonella Typhimurium

    PubMed Central

    Huett, Alan; Heath, Robert J.; Begun, Jakob; Sassi, Slim O.; Baxt, Leigh A.; Vyas, Jatin M.; Goldberg, Marcia B.; Xavier, Ramnik J.

    2013-01-01

    SUMMARY Several species of pathogenic bacteria replicate within an intracellular vacuolar niche. Bacteria that escape into the cytosol are captured by the autophagic pathway and targeted for lysosomal degradation, representing a defense against bacterial exploitation of the host cytosol. Autophagic capture of Salmonella Typhimurium occurs predominantly via generation of a polyubiquitin signal around cytosolic bacteria, binding of adaptor proteins, and recruitment of autophagic machinery. However, the components mediating bacterial target selection and ubiquitination remain obscure. We identify LRSAM1 as the E3 ligase responsible for anti-Salmonella autophagy-associated ubiquitination. LRSAM1 localizes to several intracellular bacterial pathogens and generates the bacteria-associated ubiquitin signal; these functions require LRSAM1’s leucine-rich repeat and RING domains, respectively. Using cells from LRSAM1-deficient individuals, we confirm that LRSAM1 is required for ubiquitination associated with intracellular bacteria but dispensable for ubiquitination of aggregated proteins. LRSAM1 is therefore a bacterial recognition protein and ubiquitin ligase that defends the cytoplasm from invasive pathogens. PMID:23245322

  14. The Arabidopsis Botrytis Susceptible1 Interactor Defines a Subclass of RING E3 Ligases That Regulate Pathogen and Stress Responses1[C][W

    PubMed Central

    Luo, Hongli; Laluk, Kristin; Lai, Zhibing; Veronese, Paola; Song, Fengming; Mengiste, Tesfaye

    2010-01-01

    We studied the function of Arabidopsis (Arabidopsis thaliana) Botrytis Susceptible1 Interactor (BOI) in plant responses to pathogen infection and abiotic stress. BOI physically interacts with and ubiquitinates Arabidopsis BOS1, an R2R3MYB transcription factor previously implicated in stress and pathogen responses. In transgenic plants expressing the BOS1-β-glucuronidase transgene, β-glucuronidase activity could be detected only after inhibition of the proteosome, suggesting that BOS1 is a target of ubiquitin-mediated degradation by the proteosome. Plants with reduced BOI transcript levels generated through RNA interference (BOI RNAi) were more susceptible to the necrotrophic fungus Botrytis cinerea and less tolerant to salt stress. In addition, BOI RNAi plants exhibited increased cell death induced by the phytotoxin α-picolinic acid and by a virulent strain of the bacterial pathogen Pseudomonas syringae, coincident with peak disease symptoms. However, the hypersensitive cell death associated with different race-specific resistance genes was unaffected by changes in the level of BOI transcript. BOI expression was enhanced by B. cinerea and salt stress but repressed by the plant hormone gibberellin, indicating a complex regulation of BOI gene expression. Interestingly, BOI RNAi plants exhibit reduced growth responsiveness to gibberellin. We also present data revealing the function of three Arabidopsis BOI-RELATED GENES (BRGs), which contribute to B. cinerea resistance and the suppression of disease-associated cell death. In sum, BOI and BRGs represent a subclass of RING E3 ligases that contribute to plant disease resistance and abiotic stress tolerance through the suppression of pathogen-induced as well as stress-induced cell death. PMID:20921156

  15. Ring finger protein 166 potentiates RNA virus-induced interferon-β production via enhancing the ubiquitination of TRAF3 and TRAF6

    PubMed Central

    Chen, Hai-Wei; Yang, Yong-Kang; Xu, Hao; Yang, Wei-Wei; Zhai, Zhong-He; Chen, Dan-Ying

    2015-01-01

    Host cells orchestrate the production of IFN-β upon detecting invading viral pathogens. Here, we report that Ring finger protein 166 (RNF166) potentiates RNA virus-triggered IFN-β production. Overexpression of RNF166 rather than its homologous proteins RNF114, RNF125, and RNF138, enhanced Sendai virus (SeV)-induced activation of the IFN-β promoter. Knockdown of endogenous RNF166, but not other RNFs, inhibited the IFN-β production induced by SeV and encephalomyocarditis virus. RNF166 interacted with TRAF3 and TRAF6. SeV-induced ubiquitination of TRAF3 and TRAF6 was suppressed when endogenous RNF166 rather than RNF114/138 was knocked down. These findings suggest that RNF166 positively regulates RNA virus-triggered IFN-β production by enhancing the ubiquitination of TRAF3 and TRAF6. PMID:26456228

  16. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato.

    PubMed

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  17. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato

    PubMed Central

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  18. ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases.

    PubMed

    Guzmán, Plinio

    2014-02-01

    Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution. PMID:24388516

  19. Absence of Association between Polymorphisms in the RING E3 Ubiquitin Protein Ligase Gene and Ex Vivo Susceptibility to Conventional Antimalarial Drugs in Plasmodium falciparum Isolates from Dakar, Senegal.

    PubMed

    Gendrot, Mathieu; Fall, Bécaye; Madamet, Marylin; Fall, Mansour; Wade, Khalifa Ababacar; Amalvict, Rémy; Nakoulima, Aminata; Benoit, Nicolas; Diawara, Silman; Diémé, Yaya; Diatta, Bakary; Wade, Boubacar; Pradines, Bruno

    2016-08-01

    The RING E3 ubiquitin protein ligase is crucial for facilitating the transfer of ubiquitin. The only polymorphism identified in the E3 ubiquitin protein ligase gene was the D113N mutation (62.5%) but was not significantly associated with the 50% inhibitory concentration (IC50) of conventional antimalarial drugs. However, some mutated isolates (D113N) present a trend of reduced susceptibility to piperaquine (P = 0.0938). To evaluate the association of D113N polymorphism with susceptibility to antimalarials, more isolates are necessary. PMID:27185795

  20. Finger pain

    MedlinePlus

    Pain - finger ... Nearly everyone has had finger pain at some time. You may have: Tenderness Burning Stiffness Numbness Tingling Coldness Swelling Change in skin color Redness Many conditions, such ...

  1. The Ring Finger Protein RNF6 Induces Leukemia Cell Proliferation as a Direct Target of Pre-B-cell Leukemia Homeobox 1.

    PubMed

    Xu, Xin; Han, Kunkun; Tang, Xiaowen; Zeng, Yuanying; Lin, Xu; Zhao, Yun; Zhang, Zubin; Cao, Biyin; Wu, Depei; Mao, Xinliang

    2016-04-29

    RNF6 is a little-studied ring finger protein. In the present study, we found that RNF6 was overexpressed in various leukemia cells and that it accelerated leukemia cell proliferation, whereas knockdown of RNF6 delayed tumor growth in xenografts. To find out the mechanism of RNF6 overexpression in leukemia, we designed a series of truncated constructs of RNF6 regulatory regions in the luciferase reporter system. The results revealed that the region between -144 and -99 upstream of the RNF6 transcription start site was critical and that this region contained a PBX1 recognition element (PRE). PBX1 modulated RNF6 expression by binding to the specific PRE. When PRE was mutated, RNF6 transcription was completely abolished. Further studies showed that PBX1 collaborated with PREP1 but not MEIS1 to modulate RNF6 expression. Moreover, RNF6 expression could be suppressed by doxorubicin, a major anti-leukemia agent, via down-regulating PBX1. This study thus suggests that RNF6 overexpression in leukemia is under the direction of PBX1 and that the PBX1/RNF6 axis can be developed as a novel therapeutic target of leukemia. PMID:26971355

  2. A cancer-associated RING finger protein, RNF43, is a ubiquitin ligase that interacts with a nuclear protein, HAP95

    SciTech Connect

    Sugiura, Takeyuki Yamaguchi, Aya; Miyamoto, Kentaro

    2008-04-15

    RNF43 is a recently discovered RING finger protein that is implicated in colon cancer pathogenesis. This protein possesses growth-promoting activity but its mechanism remains unknown. In this study, to gain insight into the biological action of RNF43 we characterized it biochemically and intracellularly. A combination of indirect immunofluorescence analysis and biochemical fractionation experiments suggests that RNF43 resides in the endoplasmic reticulum (ER) as well as in the nuclear envelope. Sucrose density gradient fractionation demonstrates that RNF43 co-exists with emerin, a representative inner nuclear membrane protein in the nuclear subcompartment. The cell-free system with pure components reveals that recombinant RNF43 fused with maltose-binding protein has autoubiquitylation activity. By the yeast two-hybrid screening we identified HAP95, a chromatin-associated protein interfacing the nuclear envelope, as an RNF43-interacting protein and substantiated this interaction in intact cells by the co-immunoprecipitation experiments. HAP95 is ubiquitylated and subjected to a proteasome-dependent degradation pathway, however, the experiments in which 293 cells expressing both RNF43 and HAP95 were treated with a proteasome inhibitor, MG132, show that HAP95 is unlikely to serve as a substrate of RNF43 ubiquitin ligase. These results infer that RNF43 is a resident protein of the ER and, at least partially, the nuclear membrane, with ubiquitin ligase activity and may be involved in cell growth control potentially through the interaction with HAP95.

  3. Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana

    PubMed Central

    Gao, Yongshun; Nishikawa, Hitoshi; Badejo, Adebanjo Ayobamidele; Shibata, Hitoshi; Sawa, Yoshihiro; Nakagawa, Tsuyoshi; Maruta, Takanori; Shigeoka, Shigeru; Smirnoff, Nicholas; Ishikawa, Takahiro

    2011-01-01

    Ascorbate (AsA) is a redox buffer and enzyme cofactor with various proposed functions in stress responses and growth. The aim was to identify genes whose transcript levels respond to changes in leaf AsA. The AsA-deficient Arabidopsis mutant vtc2-1 was incubated with the AsA precursor L-galactono-1,4-lactone (L-GalL) to increase leaf AsA concentration. Differentially expressed genes screened by DNA microarray were further characterized for AsA responsiveness in wild-type plants. The analysis of 14 candidates by real-time PCR identified an aspartyl protease gene (ASP, At1g66180) and a C3HC4-type RING zinc finger gene (AtATL15, At1g22500) whose transcripts were rapidly responsive to increases in AsA pool size caused by L-GalL and AsA supplementation and light. Transgenic Arabidopsis plants expressing an AtATL15 promoter::luciferase reporter confirmed that the promoter is L-GalL, AsA, and light responsive. The expression patterns of ASP and AtATL15 suggest they have roles in growth regulation. The promoter of AtATL15 is responsive to AsA status and will provide a tool to investigate the functions of AsA in plants further. PMID:21421703

  4. Expression of aspartyl protease and C3HC4-type RING zinc finger genes are responsive to ascorbic acid in Arabidopsis thaliana.

    PubMed

    Gao, Yongshun; Nishikawa, Hitoshi; Badejo, Adebanjo Ayobamidele; Shibata, Hitoshi; Sawa, Yoshihiro; Nakagawa, Tsuyoshi; Maruta, Takanori; Shigeoka, Shigeru; Smirnoff, Nicholas; Ishikawa, Takahiro

    2011-06-01

    Ascorbate (AsA) is a redox buffer and enzyme cofactor with various proposed functions in stress responses and growth. The aim was to identify genes whose transcript levels respond to changes in leaf AsA. The AsA-deficient Arabidopsis mutant vtc2-1 was incubated with the AsA precursor L-galactono-1,4-lactone (L-GalL) to increase leaf AsA concentration. Differentially expressed genes screened by DNA microarray were further characterized for AsA responsiveness in wild-type plants. The analysis of 14 candidates by real-time PCR identified an aspartyl protease gene (ASP, At1g66180) and a C3HC4-type RING zinc finger gene (AtATL15, At1g22500) whose transcripts were rapidly responsive to increases in AsA pool size caused by L-GalL and AsA supplementation and light. Transgenic Arabidopsis plants expressing an AtATL15 promoter::luciferase reporter confirmed that the promoter is L-GalL, AsA, and light responsive. The expression patterns of ASP and AtATL15 suggest they have roles in growth regulation. The promoter of AtATL15 is responsive to AsA status and will provide a tool to investigate the functions of AsA in plants further. PMID:21421703

  5. A point mutation of zebrafish c-cbl gene in the ring finger domain produces a phenotype mimicking human myeloproliferative disease.

    PubMed

    Peng, X; Dong, M; Ma, L; Jia, X-E; Mao, J; Jin, C; Chen, Y; Gao, L; Liu, X; Ma, K; Wang, L; Du, T; Jin, Y; Huang, Q; Li, K; Zon, L I; Liu, T; Deng, M; Zhou, Y; Xi, X; Zhou, Y; Chen, S

    2015-12-01

    Controlled self-renewal and differentiation of hematopoietic stem/progenitor cells (HSPCs) are critical for vertebrate development and survival. These processes are tightly regulated by the transcription factors, signaling molecules and epigenetic factors. Impaired regulations of their function could result in hematological malignancies. Using a large-scale zebrafish N-ethyl-N-nitrosourea mutagenesis screening, we identified a line named LDD731, which presented significantly increased HSPCs in hematopoietic organs. Further analysis revealed that the cells of erythroid/myeloid lineages in definitive hematopoiesis were increased while the primitive hematopoiesis was not affected. The homozygous mutation was lethal with a median survival time around 14-15 days post fertilization. The causal mutation was located by positional cloning in the c-cbl gene, the human ortholog of which, c-CBL, is found frequently mutated in myeloproliferative neoplasms (MPN) or acute leukemia. Sequence analysis showed the mutation in LDD731 caused a histidine-to-tyrosine substitution of the amino acid codon 382 within the RING finger domain of c-Cbl. Moreover, the myeloproliferative phenotype in zebrafish seemed dependent on the Flt3 (fms-like tyrosine kinase 3) signaling, consistent with that observed in both mice and humans. Our study may shed new light on the pathogenesis of MPN and provide a useful in vivo vertebrate model of this syndrome for screening drugs. PMID:26104663

  6. Isolation, expression analysis and characterization of NEFA-interacting nuclear protein 30 and RING finger and SPRY domain containing 1 in skeletal muscle.

    PubMed

    Waddell, David S; Duffin, Paige J; Haddock, Ashley N; Triplett, Virginia E; Saredy, Jason J; Kakareka, Karina M; Eldredge, John T

    2016-01-15

    Muscle atrophy results from a range of physiological conditions, including immobilization, spinal cord damage, inflammation and aging. In this study we describe two genes, NEFA-interacting nuclear protein 30 (Nip30) and RING Finger and SPRY domain containing 1 (Rspry1), which have not previously been characterized or shown to be expressed in skeletal muscle. Furthermore, Nip30 and Rspry1 were transcriptionally induced in response to neurogenic muscle wasting in mice and were also found to be expressed endogenously at the RNA and protein level in C2C12 mouse muscle cells. Interestingly, during analysis of Nip30 and Rspry1 it was observed that these genes share a 230 base pair common regulatory region that contains several putative transcription regulatory elements. In order to assess the transcriptional activity of the Nip30 and Rspry1 regulatory regions, a fragment of the promoter of each gene was cloned, fused to a reporter gene, and transfected into cells. The Nip30 and Rspry1 reporters were both found to have significant transcriptional activity in cultured cells. Furthermore, the Nip30-Rspry1 common regulatory region contains a conserved E-box enhancer, which is an element bound by myogenic regulatory factors that function in the regulation of muscle-specific gene expression. Therefore, in order to determine if the predicted E-box was functional, Nip30 and Rspry1 reporters were transfected into cells ectopically expressing the myogenic regulatory factor, MyoD1, resulting in significant induction of both reporter genes. In addition, mutation of the conserved E-box element eliminated MyoD1 activation of the Nip30 and Rspry1 reporters. Finally, GFP-tagged Nip30 was found to localize to the nucleus, while GFP-tagged Rspry1 was found to localize to the cytoplasm of muscle cells. PMID:26497270

  7. Ring finger protein20 regulates hepatic lipid metabolism through protein kinase A-dependent sterol regulatory element binding protein1c degradation

    PubMed Central

    Lee, Jae Ho; Lee, Gha Young; Jang, Hagoon; Choe, Sung Sik; Koo, Seung-Hoi; Kim, Jae Bum

    2014-01-01

    Sterol regulatory element binding protein1c (SREBP1c) is a key transcription factor for de novo lipogenesis during the postprandial state. During nutritional deprivation, hepatic SREBP1c is rapidly suppressed by fasting signals to prevent lipogenic pathways. However, the molecular mechanisms that control SREBP1c turnover in response to fasting status are not thoroughly understood. To elucidate which factors are involved in the inactivation of SREBP1c, we attempted to identify SREBP1c-interacting proteins by mass spectrometry analysis. Since we observed that ring finger protein20 (RNF20) ubiquitin ligase was identified as one of SREBP1c-interacting proteins, we hypothesized that fasting signaling would promote SREBP1c degradation in an RNF20-dependent manner. In this work, we demonstrate that RNF20 physically interacts with SREBP1c, leading to degradation of SREBP1c via ubiquitination. In accordance with these findings, RNF20 represses the transcriptional activity of SREBP1c and turns off the expression of lipogenic genes that are targets of SREBP1c. In contrast, knockdown of RNF20 stimulates the expression of SREBP1c and lipogenic genes and induces lipogenic activity in primary hepatocytes. Furthermore, activation of protein kinase A (PKA) with glucagon or forskolin enhances the expression of RNF20 and potentiates the ubiquitination of SREBP1c via RNF20. In wild-type and db/db mice, adenoviral overexpression of RNF20 markedly suppresses FASN promoter activity and reduces the level of hepatic triglycerides, accompanied by a decrease in the hepatic lipogenic program. Here, we reveal that RNF20-induced SREBP1c ubiquitination down-regulates hepatic lipogenic activity upon PKA activation. Conclusion: RNF20 acts as a negative regulator of hepatic fatty acid metabolism through degradation of SREBP1c upon PKA activation. Knowledge regarding this process enhances our understanding of how SREBP1c is able to turn off hepatic lipid metabolism during nutritional deprivation

  8. The association between the ring finger protein 213 (RNF213) polymorphisms and moyamoya disease susceptibility: a meta-analysis based on case-control studies.

    PubMed

    Sun, Xun-Sha; Wen, Jun; Li, Jiao-Xing; Lai, Rong; Wang, Yu-Fang; Liu, Hui-Jiao; Sheng, Wen-Li

    2016-06-01

    A number of studies assessed the association of ring finger protein 213 (RNF213) gene polymorphisms with moyamoya disease (MMD), but the results were not entirely consistent. This meta-analysis was performed to explore the relationship between RNF213 polymorphisms and moyamoya disease in Asian population. A systematic search from the PubMed, MEDLINE, EMBASE, ISI web of science, CNKI, China CBM and WANFANG DATA databases was conducted to retrieve published studies until March 2015. Statistical analyses were performed using the STATA12.0 software. Fixed or random effects model, subgroup analysis, sensitivity analysis, and publication bias were used to improve the comprehensive analysis. Eight papers including 904 MMD patients and 2258 controls were recruited in the meta-analysis. rs112735431 was closely associated with the risk of MMD among Asian population in all genetic models (dominant model: OR 103.39, 95 % CI 52.25-204.55, P = 1.69e-40; recessive model: OR 16.45, 95 % CI 6.00-45.10, P = 5.33e-08; additive model: OR 61.49, 95 % CI 22.07-171.33, P = 3.32e-15), especially in the Japanese population. Subgroup analysis revealed highly statistically significant higher risk in the patients with family histories. Although another polymorphism rs148731719 showed no significant association with the MMD, rs138130613 was found to be related to the higher risk in Chinese population (dominant model: OR 8.34, 95 % CI 1.72-40.47, P = 0.008). Our meta-analysis strengthens RNF213 rs112735431 is closely associated with the increased risk of MMD in Japanese, and the screening combined with rs112735431 and rs138130613may improve the detection rate for MMD in China. PMID:26847828

  9. The prolific ATL family of RING-H2 ubiquitin ligases

    PubMed Central

    Guzmán, Plinio

    2012-01-01

    An abundant class of E3 ubiquitin ligases encodes the RING-finger domain. The RING finger binds to the E2 ubiquitin-conjugating enzyme and brings together both the E2 and substrate. It is predicted that 477 RING finger E3 ligases exist in Arabidopsis thaliana. A particular family among them, named Arabidopsis Tóxicos en Levadura (ATL), consists of 91 members that contain the RING-H2 variation and a hydrophobic domain located at the N-terminal end. Transmembrane E3 ligases are important in several biological processes. For instance, some transmembrane RING finger E3 ligases are main participants in the endoplasmic reticulum-associated degradation pathway that targets misfolded proteins. Functional analysis of a number of ATLs has shown that some of them regulate distinct pathways in plants. Several ATLs have been shown to participate in defense responses, while others play a role in the regulation of the carbon/nitrogen response during post-germinative seedling growth transition, in the regulation of cell death during root development, in endosperm development, or in the transition to flowering under short day conditions. The ATL family has also been instrumental in evolution studies for showing how gene families are expanded in plant genomes. PMID:22827943

  10. Mallet finger - aftercare

    MedlinePlus

    Baseball finger - aftercare; Drop finger - aftercare; Avulsion fracture - mallet finger - aftercare ... Mallet finger occurs when you cannot straighten your finger: when you try to straighten it, the tip of your ...

  11. The EBAX-type Cullin-RING E3 Ligase and Hsp90 Guard the Protein Quality of the SAX-3/Robo Receptor in Developing Neurons

    PubMed Central

    Wang, Zhiping; Hou, Yanli; Guo, Xing; van der Voet, Monique; Boxem, Mike; Dixon, Jack E.; Chisholm, Andrew D.; Jin, Yishi

    2013-01-01

    SUMMARY Although protein quality control (PQC) is generally perceived as important for the development of the nervous system, the specific mechanisms of neuronal PQC have remained poorly understood. Here, we report that C. elegans EBAX-1 (Elongin BC-Binding AXon regulator), a conserved BC-box protein, regulates axon guidance through PQC of the SAX-3/Robo receptor. EBAX-1 buffers guidance errors against temperature variations. As a substrate-recognition subunit in the Elongin BC-containing Cullin-RING ubiquitin ligase (CRL), EBAX-1 also binds to DAF-21, a cytosolic Hsp90 chaperone. The EBAX-type CRL and DAF-21 collaboratively regulate SAX-3-mediated axon pathfinding. Biochemical and imaging assays indicate that EBAX-1 specifically recognizes misfolded SAX-3 and promotes its degradation in vitro and in vivo. Importantly, vertebrate EBAX also shows substrate preference towards aberrant Robo3 implicated in horizontal gaze palsy with progressive scoliosis (HGPPS). Together, our findings demonstrate a triage PQC mechanism mediated by the EBAX-type CRL and DAF-21/Hsp90 that maintains the accuracy of neuronal wiring. PMID:24012004

  12. FUNCTIONAL ANALYSIS OF A RING DOMAIN ANKYRIN REPEAT PROTEIN THAT IS HIGHLY EXPRESSED DURING FLOWER SENESCENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A gene encoding a RING zinc finger ankyrin repeat protein (MjXB3), a putative E3 ubiquitin ligase, is highly expressed in petals of senescing four o'clock (Mirabilis jalapa) flowers, increasing >40 000-fold during the onset of visible senescence. The gene has homologues in many other species, and t...

  13. Regulation of autophagy by E3 ubiquitin ligase RNF216 through BECN1 ubiquitination

    PubMed Central

    Xu, Congfeng; Feng, Kuan; Zhao, Xiaonan; Huang, Shiqian; Cheng, Yiji; Qian, Liu; Wang, Yanan; Sun, Hongxing; Jin, Min; Chuang, Tsung-Hsien; Zhang, Yanyun

    2015-01-01

    Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases. PMID:25484083

  14. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth

    PubMed Central

    Zhang, Bicheng; Huang, Jun; Li, Hong-Liang; Liu, Ting; Wang, Yan-Yi; Waterman, Paul; Mao, Ai-Ping; Xu, Liang-Guo; Zhai, Zhonghe; Liu, Depei; Marrack, Philippa; Shu, Hong-Bing

    2011-01-01

    We report here the identification of GIDE, a mitochondrially located E3 ubiquitin ligase. GIDE contains a C-terminal Ring finger domain, which is mostly conserved with those of the IAP family members, and which is required for its E3 ligase activity. Overexpression of GIDE induces apoptosis via a pathway involving activation of caspases since the caspase inhibitors, XIAP and an inactive mutant of caspase-9 block GIDE-induced apoptosis. GIDE also activates JNK, and blockade of JNK activation inhibits GIDE-induced release of cytochrome c and Smac and apoptosis, suggesting that JNK activation precedes release of cytochrome c and Smac and is required for GIDE-induced apoptosis. These proapoptotic properties of GIDE require its E3 ligase activity. When somewhat over or underexpressed, GIDE slows or hastens cell growth respectively. These pro-apoptotic or growth rate effects of GIDE may account for its absence from tumor cells. PMID:18591963

  15. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates a guard to prevent injury to the patient's finger. (b) Classification. Class I (general controls)....

  16. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates a guard to prevent injury to the patient's finger. (b) Classification. Class I (general controls)....

  17. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates a guard to prevent injury to the patient's finger. (b) Classification. Class I (general controls)....

  18. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates a guard to prevent injury to the patient's finger. (b) Classification. Class I (general controls)....

  19. 21 CFR 880.6200 - Ring cutter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... used to cut a ring on a patient's finger so that the ring can be removed. The device incorporates a guard to prevent injury to the patient's finger. (b) Classification. Class I (general controls)....

  20. Rings

    SciTech Connect

    Davis, R.L.

    1989-01-01

    The essence of vortex physics is that at certain low-energy scales elementary excitations of a point particle theory can behave like strings rather than particles. Vortices are the resulting string-like solutions; their thickness sets the distance scale beyond which physics is string-like rather than particle-like. String degrees of freedom are massless in the sense that excitations on a string can have an arbitrarily low frequency. Non-string degrees of freedom correspond to massive particles and are absent from the low energy spectrum. This article considers only field theories with vortices at low energies. The possible existence of a class of solitons in these vortex theories will be discussed. They are vortex rings: they are localized and finite in energy, and able to carry the quantum numbers of point particles. Rings are thus particle-like solutions of a vortex theory, which is itself a limit of a point particle field theory.

  1. Finger Stiffness.

    PubMed

    Oosterhoff, Thijs C H; Nota, Sjoerd P F T; Ring, David

    2015-06-01

    Background Finger stiffness varies substantially in patients with hand and upper extremity illness and can be notably more than expected for a given pathophysiology. In prior studies, pain intensity and magnitude of disability consistently correlate with coping strategies such as catastrophic thinking and kinesiophobia, which can be characterized as overprotectiveness. In this retrospective study we address the primary research question whether patients with finger stiffness are more often overprotective when the primary pathology is outside the hand (e.g. distal radius fracture) than when it is located within the hand. Methods In an orthopaedic hand surgery department 160 patients diagnosed with more finger stiffness than expected for a given pathophysiology or time point of recovery between December 2006 and September 2012 were analyzed to compare the proportion of patients characterized as overprotective for differences by site of pathology: (1) inside the hand, (2) outside the hand, and (3) psychiatric etiology (e.g. clenched fist). Results Among 160 subjects with more finger stiffness than expected, 132 (82 %) were characterized as overprotective including 88 of 108 (81 %) with pathology in the hand, 39 of 44 (89 %) with pathology outside the hand, and 5 of 8 (63 %) with psychiatric etiology. These differences were not significant. Conclusions Overprotectiveness is common in patients with more finger stiffness than expected regardless the site and type of primary pathology. It seems worthwhile to recognize and treat maladaptive coping strategies early during recovery to limit impairment, symptoms, and disability. PMID:26078497

  2. Finger Multiplication

    ERIC Educational Resources Information Center

    Holmes, Bill

    2010-01-01

    The author has been prompted to write this article about finger multiplication for a number of reasons. Firstly there are a number of related articles in past issues of "Mathematics Teaching" ("MT") which have connections to this algorithm. Secondly, very few of his primary teaching students and professional colleagues appear to be aware of the…

  3. Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

    PubMed

    Pan, I-Chun; Tsai, Huei-Hsuan; Cheng, Ya-Tan; Wen, Tuan-Nan; Buckhout, Thomas J; Schmidt, Wolfgang

    2015-10-01

    Acclimation to changing environmental conditions is mediated by proteins, the abundance of which is carefully tuned by an elaborate interplay of DNA-templated and post-transcriptional processes. To dissect the mechanisms that control and mediate cellular iron homeostasis, we conducted quantitative high-resolution iTRAQ proteomics and microarray-based transcriptomic profiling of iron-deficient Arabidopsis thaliana plants. A total of 13,706 and 12,124 proteins was identified with a quadrupole-Orbitrap hybrid mass spectrometer in roots and leaves, respectively. This deep proteomic coverage allowed accurate estimates of post-transcriptional regulation in response to iron deficiency. Similarly regulated transcripts were detected in only 13% (roots) and 11% (leaves) of the 886 proteins that differentially accumulated between iron-sufficient and iron-deficient plants, indicating that the majority of the iron-responsive proteins was post-transcriptionally regulated. Mutants harboring defects in the RING DOMAIN LIGASE1 (RGLG1)(1) and RING DOMAIN LIGASE2 (RGLG2) showed a pleiotropic phenotype that resembled iron-deficient plants with reduced trichome density and the formation of branched root hairs. Proteomic and transcriptomic profiling of rglg1 rglg2 double mutants revealed that the functional RGLG protein is required for the regulation of a large set of iron-responsive proteins including the coordinated expression of ribosomal proteins. This integrative analysis provides a detailed catalog of post-transcriptionally regulated proteins and allows the concept of a chiefly transcriptionally regulated iron deficiency response to be revisited. Protein data are available via ProteomeXchange with identifier PXD002126. PMID:26253232

  4. Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases.

    PubMed

    Thomas, Jemima C; Matak-Vinkovic, Dijana; Van Molle, Inge; Ciulli, Alessio

    2013-08-01

    Proteins of the ankyrin-repeat and SOCS-box (ASB) family act as the substrate-recognition subunits of ECS-type (ElonginBC-Cullin-SOCS-box) Cullin RING E3 ubiquitin ligase (CRL) complexes that catalyze the specific polyubiquitination of cellular proteins to target them for degradation by the proteasome. Therefore, ASB multimeric complexes are involved in numerous cell processes and pathways; however, their interactions, assembly, and biological roles remain poorly understood. To enhance our understanding of ASB CRL systems, we investigated the structure, affinity, and assembly of the quaternary multisubunit complex formed by ASB9, Elongin B, Elongin C (EloBC), and Cullin 5. Here, we describe the application of several biophysical techniques including differential scanning fluorimetry, isothermal titration calorimetry (ITC), nanoelectrospray ionization, and ion-mobility mass spectrometry (IM-MS) to provide structural and thermodynamic information for a quaternary ASB CRL complex. We find that ASB9 is unstable alone but forms a stable ternary complex with EloBC that binds with high affinity to the Cullin 5 N-terminal domain (Cul5NTD) but not to Cul2NTD. The structure of the monomeric ASB9-EloBC-Cul5NTD quaternary complex is revealed by molecular modeling and is consistent with IM-MS and temperature-dependent ITC data. This is the first experimental study to validate structural information for the assembly of the quaternary N-terminal region of an ASB CRL complex. The results suggest that ASB E3 ligase complexes function and assemble in an analogous manner to that of other CRL systems and provide a platform for further molecular investigation of this important protein family. The data reported here will also be of use for the future development of chemical probes to examine the biological function and modulation of other ECS-type CRL systems. PMID:23837592

  5. Drought Stress-Induced Rma1H1, a RING Membrane-Anchor E3 Ubiquitin Ligase Homolog, Regulates Aquaporin Levels via Ubiquitination in Transgenic Arabidopsis Plants[C][W

    PubMed Central

    Lee, Hyun Kyung; Cho, Seok Keun; Son, Ora; Xu, Zhengyi; Hwang, Inhwan; Kim, Woo Taek

    2009-01-01

    Ubiquitination is involved in a variety of biological processes, but the exact role of ubiquitination in abiotic responses is not clearly understood in higher plants. Here, we investigated Rma1H1, a hot pepper (Capsicum annuum) homolog of a human RING membrane-anchor 1 E3 ubiquitin (Ub) ligase. Bacterially expressed Rma1H1 displayed E3 Ub ligase activity in vitro. Rma1H1 was rapidly induced by various abiotic stresses, including dehydration, and its overexpression in transgenic Arabidopsis thaliana plants conferred strongly enhanced tolerance to drought stress. Colocalization experiments with marker proteins revealed that Rma1H1 resides in the endoplasmic reticulum (ER) membrane. Overexpression of Rma1H1 in Arabidopsis inhibited trafficking of an aquaporin isoform PIP2;1 from the ER to the plasma membrane and reduced PIP2;1 levels in protoplasts and transgenic plants. This Rma1H1-induced reduction of PIP2;1 was inhibited by MG132, an inhibitor of the 26S proteasome. Furthermore, Rma1H1 interacted with PIP2;1 in vitro and ubiquitinated it in vivo. Similar to Rma1H1, Rma1, an Arabidopsis homolog of Rma1H1, localized to the ER, and its overexpression reduced the PIP2;1 protein level and inhibited trafficking of PIP2;1 from the ER to the plasma membrane in protoplasts. In addition, reduced expression of Rma homologs resulted in the increased level of PIP2;1 in protoplasts. We propose that Rma1H1 and Rma1 play a critical role in the downregulation of plasma membrane aquaporin levels by inhibiting aquaporin trafficking to the plasma membrane and subsequent proteasomal degradation as a response to dehydration in transgenic Arabidopsis plants. PMID:19234086

  6. Expansion and Diversification of BTL Ring-H2 Ubiquitin Ligases in Angiosperms: Putative Rabring7/BCA2 Orthologs

    PubMed Central

    Aguilar-Henonin, Laura; Guzmán, Plinio

    2013-01-01

    RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes. PMID:23951330

  7. Expansion and diversification of BTL ring-H2 ubiquitin ligases in angiosperms: putative Rabring7/BCA2 orthologs.

    PubMed

    Aguilar-Hernández, Victor; Medina, Juliana; Aguilar-Henonin, Laura; Guzmán, Plinio

    2013-01-01

    RING finger E3 ligases are components of the ubiquitin proteasome system (UPS) that mediate the transfer of ubiquitin to substrates. Single-subunit RING finger E3s binds the E2 ubiquitin-conjugating enzyme and contains recognition sequences for the substrate within the same polypeptide. Here we describe the characterization of a class of RING finger E3 ligases that is conserved among eukaryotes. This class encodes a RING-H2 domain related in sequence to the ATL RING-H2 domain, another class of E3 ligases, and a C2/C2 zing finger at the amino-terminus, formerly described as BZF. In viridiplantae (green algae and land plants), we designed this family as BTL for BZF ATLs. BTLs are putative orthologs of the mammalian Rabring7/BCA2 RING-H2 E3s that have expanded in angiosperms. They are found in numbers ranging from three to thirty-one, which is in contrast to the one to three members normally found in animals, fungi, and protists. Furthermore, the number of sequence LOGOs generated in angiosperms is four times greater than that in other eukaryotes. In contrast to ATLs, which show expansion by tandem duplication, tandemly duplicated BTLs are scarce. The mode of action of Rabring7/BCA2 and BTLs may be similar since both the Rabring7/BCA2 BZF and the ath|BTL4 BZF are likely to mediate the binding of ubiquitin. This study introduces valuable information on the evolution and domain structure of the Rabring7/BCA2/BTL class of E3 ligases which may be important for core eukaryotic genes. PMID:23951330

  8. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    PubMed

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs. PMID:27312108

  9. Finger Injuries and Disorders

    MedlinePlus

    You use your fingers and thumbs to do everything from grasping objects to playing musical instruments to typing. When there is something wrong ... the skin of your palm. It causes the fingers to stiffen and bend. Trigger finger - an irritation ...

  10. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation[OPEN

    PubMed Central

    2015-01-01

    Abscisic acid (ABA) is a phytohormone that plays a fundamental role in plant development and stress response, especially in the regulation of stomatal closure in response to water deficit stress. The signal transduction that occurs in response to ABA and drought stress is mediated by protein phosphorylation and ubiquitination. This research identified Arabidopsis thaliana RING ZINC-FINGER PROTEIN34 (RZP34; renamed here as CHY ZINC-FINGER AND RING PROTEIN1 [CHYR1]) as an ubiquitin E3 ligase. CHYR1 expression was significantly induced by ABA and drought, and along with its corresponding protein, was expressed mainly in vascular tissues and stomata. Analysis of CHYR1 gain-of-function and loss-of-function plants revealed that CHYR1 promotes ABA-induced stomatal closure, reactive oxygen species production, and plant drought tolerance. Furthermore, CHYR1 interacted with SNF1-RELATED PROTEIN KINASE2 (SnRK2) kinases and could be phosphorylated by SnRK2.6 on the Thr-178 residue. Overexpression of CHYR1T178A, a phosphorylation-deficient mutant, interfered with the proper function of CHYR1, whereas CHYR1T178D phenocopied the gain of function of CHYR1. Thus, this study identified a RING-type ubiquitin E3 ligase that functions positively in ABA and drought responses and detailed how its ubiquitin E3 ligase activity is regulated by SnRK2.6-mediated protein phosphorylation. PMID:26508764

  11. The E3 ubiquitin ligase GREUL1 anteriorizes ectoderm during Xenopus development.

    PubMed

    Borchers, Annette G M; Hufton, Andrew L; Eldridge, Adam G; Jackson, Peter K; Harland, Richard M; Baker, Julie C

    2002-11-15

    We have identified a family of RING finger proteins that are orthologous to Drosophila Goliath (G1, Gol). One of the members, GREUL1 (Goliath Related E3 Ubiquitin Ligase 1), can convert Xenopus ectoderm into XAG-1- and Otx2-expressing cells in the absence of both neural tissue and muscle. This activity, combined with the finding that XGREUL1 is expressed within the cement gland, suggests a role for GREUL1 in the generation of anterior ectoderm. Although GREUL1 is not a direct inducer of neural tissue, it can activate the formation of ectopic neural cells within the epidermis of intact embryos. This suggests that GREUL1 can sensitize ectoderm to neuralizing signals. In this paper, we provide evidence that GREUL1 is an E3 ubiquitin ligase. Using a biochemical assay, we show that GREUL1 catalyzes the addition of polyubiquitin chains. These events are mediated by the RING domain since a mutation in two of the cysteines abolishes ligase activity. Mutation of these cysteines also compromises GREUL1's ability to induce cement gland. Thus, GREUL1's RING domain is necessary for both the ubiquitination of substrates and for the conversion of ectoderm to an anterior fate. PMID:12435366

  12. The Prp19 U-box Crystal Structure Suggests a Common Dimeric Architecture for a Class of Oligomeric E3 Ubiquitin Ligases †,‡

    PubMed Central

    Vander Kooi, Craig W.; Ohi, Melanie D.; Rosenberg, Joshua A.; Oldham, Michael L.; Newcomer, Marcia E.; Gould, Kathleen L.; Chazin, Walter J.

    2008-01-01

    Prp19 is an essential splicing factor and a member of the U-box family of E3 ubiquitin ligases. Prp19 forms a tetramer via a central coiled-coil domain. Here we show the U-box domain of Prp19 exists as a dimer within the context of the Prp19 tetramer. A high-resolution structure of the homo-dimeric state of the Prp19 U-box was determined by x-ray crystallography. Mutation of the U-box dimer interface abrogates U-box dimer formation and is lethal in vivo. The structure of the U-box dimer enables construction of a complete model of Prp19 providing insights into how the tetrameric protein functions as an E3 ligase. Finally, comparison of the Prp19 U-box homodimer with the heterodimeric complex of BRCA1/BARD1 RING-finger domains uncovers a common architecture for a family of oligmeric U-box and RING-finger E3 ubiquitin ligases, which has mechanistic implications for E3 ligase mediated poly-ubiquitination and E4 poly-ubiquitin ligases. PMID:16388587

  13. Noncontacting Finger Seal

    NASA Technical Reports Server (NTRS)

    Proctor, Margaret P. (Inventor); Steinetz, Bruce M. (Inventor)

    2004-01-01

    An annular finger seal is adapted to be interposed between a high pressure upstream region and a lower pressure downstream region to provide noncontact sealing along a rotatable member. The finger seal comprises axially juxtaposed downstream and upstream finger elements, each having integrally spaced fingers. The downstream fingers each have a lift pad, whereas the upstream fingers lack a pad. Each pad extends in a downstream direction. Each upstream finger is spaced from the rotating member a greater distance than each pad. Upon sufficient rotational speed of the rotating member, each pad is operative to lift and ride on a thin film of fluid intermediate the rotating member and the Pad.

  14. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase

    PubMed Central

    Li, Hua

    2013-01-01

    SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target. PMID:23136067

  15. Structural basis for the indispensable role of a unique zinc finger motif in LNX2 ubiquitination

    PubMed Central

    Nayak, Digant; Sivaraman, J.

    2015-01-01

    LNX (Ligand of Numb Protein-X) proteins, LNX1 and LNX2, are RING- and PDZ-based E3-ubiquitin ligases known to interact with Numb. Silencing of LNX2 has been reported to down-regulate WNT and NOTCH, two key signaling pathways in tumorigenesis. Here we report the identification of the domain boundary of LNX2 to confer its ubiquitination activity, its crystal structure along with functional studies. We show that the RING domain in LNX2 is flanked by two Zinc-binding motifs (Zn-RING-Zn), in which the N-terminal Zinc-binding motif adopts novel conformation. Although this motif follows the typical Cys2His2-type zinc finger configuration, it is devoid of any secondary structure and forms an open circle conformation, which has not been reported yet. This unique N-terminal Zn-finger motif is indispensable for the activity and stability of LNX2, as verified using mutational studies. The Zn-RING-Zn domain of LNX2 is a dimer and assumes a rigid elongated structure that undergoes autoubiquitination and undergoes N-terminal polyubiquitination. The ubiquitin chains consist of all seven possible isopeptide linkages. These results were validated using full-length LNX2. Moreover we have demonstrated the ubiquitination of cell fate determinant protein, Numb by LNX2. Our study provides a structural basis for the functional machinery of LNX2 and thus provides the opportunity to investigate suitable drug targets against LNX2. PMID:26451611

  16. UHRF2, another E3 ubiquitin ligase for p53

    SciTech Connect

    Bai, Lu; Wang, Xiaohui; Jin, Fangmin; Yang, Yan; Qian, Guanhua; Duan, Changzhu

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer UHRF2 associates with p53 in vivo and in vitro. Black-Right-Pointing-Pointer UHRF2 interacts with p53 through its SRA/YDG domain. Black-Right-Pointing-Pointer UHRF2 ubiquitinates p53 in vivo and in vitro. -- Abstract: UHRF2, ubiquitin-like with PHD and ring finger domains 2, is a nuclear E3 ubiquitin ligase, which is involved in cell cycle and epigenetic regulation. UHRF2 interacts with multiple cell cycle proteins, including cyclins (A2, B1, D1, and E1), CDK2, and pRb; moreover, UHRF2 could ubiquitinate cyclin D1 and cyclin E1. Also, UHRF2 has been shown to be implicated in epigenetic regulation by associating with DNMTs, G9a, HDAC1, H3K9me2/3 and hemi-methylated DNA. We found that UHRF2 associates with tumor suppressor protein p53, and p53 is ubiquitinated by UHRF2 in vivo and in vitro. Given that both UHRF2 and p53 are involved in cell cycle regulation, this study may suggest a novel signaling pathway on cell proliferation.

  17. Simultaneous dislocation of both interphalangeal joints in the middle finger.

    PubMed

    Hester, Thomas; Mahmood, Shoib; Morar, Yateen; Singh, Ravi

    2015-01-01

    Simultaneous dorsal dislocation of both interphalangeal joints (IPJs) in one finger is an uncommon injury. This injury usually occurs on the ulnar side of the hand involving ring and little fingers. We report a case of simultaneous dislocation of both IPJs in the middle finger. Closed reduction and splinting with the IPJs in extension provided a good result with full range of motion at the patient's final follow-up. PMID:25979959

  18. A mouse forward genetics screen identifies LISTERIN as an E3 ubiquitin ligase involved in neurodegeneration

    PubMed Central

    Chu, Jessie; Hong, Nancy A.; Masuda, Claudio A.; Jenkins, Brian V.; Nelms, Keats A.; Goodnow, Christopher C.; Glynne, Richard J.; Wu, Hua; Masliah, Eliezer; Joazeiro, Claudio A. P.; Kay, Steve A.

    2009-01-01

    A mouse neurological mutant, lister, was identified through a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Homozygous lister mice exhibit profound early-onset and progressive neurological and motor dysfunction. lister encodes a RING finger protein, LISTERIN, which functions as an E3 ubiquitin ligase in vitro. Although lister is widely expressed in all tissues, motor and sensory neurons and neuronal processes in the brainstem and spinal cord are primarily affected in the mutant. Pathological signs include gliosis, dystrophic neurites, vacuolated mitochondria, and accumulation of soluble hyperphosphorylated tau. Analysis with a different lister allele generated through targeted gene trap insertion reveals LISTERIN is required for embryonic development and confirms that direct perturbation of a LISTERIN-regulated process causes neurodegeneration. The lister mouse uncovers a pathway involved in neurodegeneration and may serves as a model for understanding the molecular mechanisms underlying human neurodegenerative disorders. PMID:19196968

  19. Hand and Finger Exercises

    MedlinePlus

    Hand and Finger Exercises  Place your palm flat on a table. Raise and lower your fingers one ... times for ____ seconds.  Pick up objects with your hand. Start out with larger objects. Repeat ____ times for ____ ...

  20. Toward a Phonetic Representation of Hand Configuration: The Fingers

    ERIC Educational Resources Information Center

    Johnson, Robert E.; Liddell, Scott K.

    2011-01-01

    In this article we describe a componential, articulatory approach to the phonetic description of the configuration of the four fingers. Abandoning the traditional holistic, perceptual approach, we propose a system of notational devices and distinctive features for the description of the four fingers proper (index, middle, ring, and pinky).…

  1. A novel ubiquitin-protein ligase E3 functions as a modulator of immune response against lipopolysaccharide in Pacific oyster, Crassostrea gigas.

    PubMed

    Cheng, Qi; Wang, Hao; Jiang, Shuai; Wang, Lingling; Xin, Lusheng; Liu, Conghui; Jia, Zhihao; Song, Linsheng; Zhu, Beiwei

    2016-07-01

    Ubiquitination is an important post-translational protein modification and plays a crucial role in various processes such as cell cycle, signal transduction, and transcriptional regulation. In the present study, a novel ubiquitin (Ub)-protein ligase E3 (designed as CgE3Rv1) was identified from Crassostrea gigas, and its ubiquitination regulation in the immune response against lipopolysaccharide (LPS) stimulation was investigated. The open reading frame of CgE3Rv1 gene was of 1455 bp encoding a polypeptide of 484 amino acids with the predicted molecular mass of 54.89 kDa. There were two transmembrane regions and a RING-variant (RINGv) domain identified in CgE3Rv1. CgE3Rv1 shared similar C4HC3 zinc-finger-like motif with those RINGv domain Ub-protein ligases E3s identified from vertebrates and invertebrates, and it was closely clustered with the membrane-associated RING-CH2 (MARCH2) Ub-protein ligases E3s in the phylogenetic tree. The mRNA transcript of CgE3Rv1 was highest expressed in gonads and hemolymph (p < 0.05), and its mRNA expression level in hemocytes was significantly increased at 6 h (p < 0.01) after the stimulation of LPS, while the up-regulated mRNA expression was significantly decreased (p < 0.01) after acetylcholine stimulation. No significant changes of CgE3Rv1 expression were observed after peptidoglycan or mannan stimulation. Immunohistochemistry and in situ hybridization assays revealed that CgE3Rv1 protein and mRNA were dominantly distributed in the gonad. In the hemocytes, CgE3Rv1 was mainly located around the nucleus, and slightly distributed in the cytoplasm and on the cell membrane. Recombinant CgE3Rv1 RINGv domain protein (rCgE3Rv1-RINGv) was confirmed to activate the Ub reaction system in vitro with the aid of Ub-activating enzyme E1 and Ub-conjugating enzyme E2. These results demonstrated that CgE3Rv1 was an Ub-protein ligase E3, which was involved in the immune response against LPS and the interaction with cell surface signal

  2. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Krüppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress.

    PubMed

    Kuo, Ching-Ying; Li, Xu; Kong, Xiang-Qian; Luo, Cheng; Chang, Che-Chang; Chung, Yiyin; Shih, Hsiu-Ming; Li, Keqin Kathy; Ann, David K

    2014-07-25

    Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the

  3. An Arginine-rich Motif of Ring Finger Protein 4 (RNF4) Oversees the Recruitment and Degradation of the Phosphorylated and SUMOylated Krüppel-associated Box Domain-associated Protein 1 (KAP1)/TRIM28 Protein during Genotoxic Stress*

    PubMed Central

    Kuo, Ching-Ying; Li, Xu; Kong, Xiang-Qian; Luo, Cheng; Chang, Che-Chang; Chung, Yiyin; Shih, Hsiu-Ming; Li, Keqin Kathy; Ann, David K.

    2014-01-01

    Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the

  4. Left hand finger force in violin playing: tempo, loudness, and finger differences.

    PubMed

    Kinoshita, Hiroshi; Obata, Satoshi

    2009-07-01

    A three-dimensional force transducer was installed in the neck of a violin under the A string at the D5 position in order to study the force with which the violinist clamps the string against the fingerboard under normal playing conditions. Violinists performed repetitive sequences of open A- and fingered D-tones using the ring finger at tempi of 1, 2, 4, 8, and 16 notes/s at mezzo-forte. At selected tempi, the effects of dynamic level and the use of different fingers were investigated as well. The force profiles were clearly dependent on tempo and dynamic level. At slow tempi, the force profiles were characterized by an initial pulse followed by a level force to the end of the finger contact period. At tempi higher than 2 Hz, only pulsed profiles were observed. The peak force exceeded 4.5 N at 1 and 2 Hz and decreased to 1.7 N at 16 Hz. All force and impulse values were lower at softer dynamic levels, and when using the ring or little finger compared to the index finger. PMID:19603895

  5. Finger snapping during seizures.

    PubMed

    Overdijk, M J; Zijlmans, M; Gosselaar, P H; Olivier, A; Leijten, F S S; Dubeau, F

    2014-01-01

    We describe two patients who showed snapping of the right hand fingers during invasive intracranial EEG evaluation for epilepsy surgery. We correlated the EEG changes with the finger-snapping movements in both patients to determine the underlying pathophysiology of this phenomenon. At the time of finger snapping, EEG spread from the supplementary motor area towards the temporal region was seen, suggesting involvement of these sites. PMID:25667884

  6. Fingers that change color

    MedlinePlus

    ... conditions can cause fingers or toes to change color: Buerger disease Chilblains. Painful inflammation of small blood vessels. Cryoglobulinemia Frostbite Necrotizing vasculitis Peripheral artery disease ...

  7. Speed invariance of independent control of finger movements in pianists

    PubMed Central

    Soechting, John F.

    2012-01-01

    Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists. PMID:22815403

  8. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships.

    PubMed

    Dempsey-Jones, Harriet; Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles; Makin, Tamar R

    2016-03-01

    Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. PMID:26631145

  9. Transfer of tactile perceptual learning to untrained neighboring fingers reflects natural use relationships

    PubMed Central

    Harrar, Vanessa; Oliver, Jonathan; Johansen-Berg, Heidi; Spence, Charles

    2015-01-01

    Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization. PMID:26631145

  10. Rolling friction robot fingers

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1992-01-01

    A low friction, object guidance, and gripping finger device for a robotic end effector on a robotic arm is disclosed, having a pair of robotic fingers each having a finger shaft slideably located on a gripper housing attached to the end effector. Each of the robotic fingers has a roller housing attached to the finger shaft. The roller housing has a ball bearing mounted centering roller located at the center, and a pair of ball bearing mounted clamping rollers located on either side of the centering roller. The object has a recess to engage the centering roller and a number of seating ramps for engaging the clamping rollers. The centering roller acts to position and hold the object symmetrically about the centering roller with respect to the X axis and the clamping rollers act to position and hold the object with respect to the Y and Z axis.

  11. Interaction of finger enslaving and error compensation in multiple finger force production

    PubMed Central

    Martin, Joel R.; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2009-01-01

    Previous studies have documented two patterns of finger interaction during multi-finger pressing tasks, enslaving and error compensation, which do not agree with each other. Enslaving is characterized by positive correlation between instructed (master) and non-instructed (slave) finger(s) while error compensation can be described as a pattern of negative correlation between master and slave fingers. We hypothesize that pattern of finger interaction, enslaving or compensation, depends on the initial force level and the magnitude of the targeted force change. Subjects were instructed to press with four fingers (I - index, M - middle, R - ring, and L - little) from a specified initial force to a target forces following a ramp target line. Force-force relations between master and each of three slave fingers were analyzed during the ramp phase of trials by calculating correlation coefficients within each master-slave pair and then 2-factor ANOVA was performed to determine effect of initial force and force increase on the correlation coefficients. It was found that, as initial force increased, the value of the correlation coefficient decreased and in some cases became negative, i.e. the enslaving transformed into error compensation. Force increase magnitude had a smaller effect on the correlation coefficients. The observations support the hypothesis that the pattern of inter-finger interaction—enslaving or compensation—depends on the initial force level and, to a smaller degree, on the targeted magnitude of the force increase. They suggest that the controller views tasks with higher steady-state forces and smaller force changes as implying a requirement to avoid large changes in the total force. PMID:18985331

  12. Multiple Fingers - One Gestalt.

    PubMed

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration. PMID:26863671

  13. Finger and toenail onycholysis.

    PubMed

    Zaias, N; Escovar, S X; Zaiac, M N

    2015-05-01

    Onycholysis - the separation of the nail plate from the nail bed occurs in fingers and toenails. It is diagnosed by the whitish appearance of the separated nail plate from the nail bed. In fingers, the majority is caused by trauma, manicuring, occupational or self-induced behavior. The most common disease producing fingernail onycholysis is psoriasis and pustular psoriasis. Phototoxic dermatitis, due to drugs can also produce finger onycholysis. Once the separation occurs, the environmental flora sets up temporary colonization in the available space. Finger onycholysis is most common in women. Candida albicans is often recovered from the onycholytic space. Many reports, want to associate the yeast as cause and effect, but the data are lacking and the treatment of the candida does not improve finger onycholysis. A reasonable explanation for the frequent isolation of Candida and Pseudomonas in fingernail onycholysis in women, is the close proximity the fingers have to the vaginal and gastrointestinal tract. Fifty per cent of humans harbour C. albicans in the GI tract and it is frequently carried to the vagina during hygienic practices. Finger onycholysis is best treated by drying the nail 'lytic' area with a hair blower, since all colonizing biota are moisture loving and perish in a dry environment. Toenail onycholysis has a very different etiology. It is mechanical, the result of pressure on the toes from the closed shoes, while walking, because of the ubiquitous uneven flat feet producing an asymmetric gait with more pressure on the foot with the flatter sole. PMID:25512134

  14. Development of cylindrical-type finger force measuring system using force sensors and its characteristics evaluation

    NASA Astrophysics Data System (ADS)

    Kim, Hyeon-Min; Yoon, Joungwon; Shin, Hee-Suk; Kim, Gab-Soon

    2012-02-01

    Some patients cannot use their hands because of the paralysis of their fingers. Their fingers can recover with rehabilitative training, and the extent of rehabilitation can be judged by grasping a cylindrical-object with their fingers. At present, the cylindrical-object used in hospitals is only a plastic cylinder, which cannot measure grasping force of the fingers. Therefore, doctors must judge the extent of rehabilitation by watching patients' fingers as they grasp the plastic cylinder. In this paper, the development of two cylindrical-type finger force measuring systems with four force sensors for left hand and right hand were developed. The developed finger force measuring system can measure the grasping force of patients' each finger (forefinger, middle finger, ring finger and little finger), and the measured results could be used to judge the rehabilitation extent of a finger patient. The grasping force tests of men and women were performed using the developed cylindrical-type finger force measuring systems. The tests confirm that the average finger forces of right hand and left hand for men were about 194 N and 179 N, and for women, 108 N and 95 N.

  15. Articular synovial chondromatosis of the finger.

    PubMed

    Sano, Kazufumi; Hashimoto, Tomohisa; Kimura, Kazumasa; Ozeki, Satoru

    2014-10-01

    A 40-year-old woman presented with a six-month history of synovial chondromatosis of the metacarpophalangeal joint of the right ring finger, which was resected through both dorsal and volar incisions. To our knowledge there have been only 17 reported cases of articular synovial chondromatosis of the digital joint so far. We present a case affecting the metacarpophalangeal joint with a review of scattered information found in other 17 reports. PMID:23596991

  16. Fingering in Confined Elastic Layers

    NASA Astrophysics Data System (ADS)

    Biggins, John; Mahadevan, L.; Wei, Z.; Saintyves, Baudouin; Bouchaud, Elizabeth

    2015-03-01

    Fingering has recently been observed in soft highly elastic layers that are confined between and bonded to two rigid bodies. In one case an injected fluid invades the layer in finger-like protrusions at the layer's perimeter, a solid analogue of Saffman-Taylor viscous fingering. In a second case, separation of the rigid bodies (with maintained adhesion to the layer) leads air to the formation of similar fingers at the layer's perimeter. In both cases the finger formation is reversible: if the fluid is removed or the separation reduced, the fingers vanish. In this talk I will discuss a theoretical model for such elastic fingers that shows that the origin of the fingers is large-strain geometric non-linearity in the elasticity of soft solids. Our simplified elastic model unifies the two types of fingering and accurately estimates the thresholds and wavelengths of the fingers.

  17. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  18. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes.

    PubMed

    Guais, Adeline; Siegrist, Sylvie; Solhonne, Brigitte; Jouault, Hélène; Guellaën, Georges; Bulle, Frédérique

    2006-06-01

    In Drosophila, the RING finger protein d-Goliath was originally identified as a transcription factor involved in the embryo mesoderm formation [Bouchard, M.L., Cote, S., 1993. The Drosophila melanogaster developmental gene g1 encodes a variant zinc-finger-motif protein. Gene 125, 205-209]. In mouse, the m-Goliath mRNA level was shown to be increased in growth factor withdrawal-induced apoptosis of myeloid cells [Baker, S.J., Reddy, E.P., 2000. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1. Gene 248, 33-40]. Due to its putative function of transcription factor in apoptosis, we cloned the human cDNA for h-Goliath and characterized the expression of the protein in blood and bone marrow cells. The human protein of 419 aa (44 kDa) contains a protease-associated domain, a transmembrane domain and a RING-H2 motif. This structure classifies h-Goliath as a new member of a human family of ubiquitin ligases with GRAIL (gene related to anergy in lymphocytes) as founder. This E3 ligase controls the development of T cell clonal anergy by ubiquitination [Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L., 2003. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547]. In vitro ubiquitination studies support the E3 ubiquitin ligase activity of h-Goliath. In human, the protein is expressed under 3 isoforms, a major one at 28 kDa and two others at 46 and 55 kDa. These proteins come from a common precursor (44 kDa) as we observed using in vitro transcription-translation. Using immunohistochemistry on blood or bone marrow smears, of healthy or leukemia samples, we found that the protein expression was restricted to the cytoplasm of progenitors and fully differentiated leukocyte populations. We did not observe any modification of h-Goliath expression or localization in leukemia. In these cells

  19. Which Fingers Should We Perform Two-Finger Chest Compression Technique with When Performing Cardiopulmonary Resuscitation on an Infant in Cardiac Arrest?

    PubMed

    Kim, Young Sinn; Oh, Je Hyeok; Kim, Chan Woong; Kim, Sung Eun; Lee, Dong Hoon; Hong, Jun Young

    2016-06-01

    This study compared the effectiveness two-finger chest compression technique (TFCC) performed using the right vs. left hand and the index-middle vs. middle-ring fingers. Four different finger/hand combinations were tested randomly in 30 healthcare providers performing TFCC (Test 1: the right index-middle fingers; Test 2: the left index-middle fingers; Test 3: the right middle-ring fingers; Test 4: the left middle-ring fingers) using two cross-over trials. The "patient" was a 3-month-old-infant-sized manikin. Each experiment consisted of cardiopulmonary resuscitation (CPR) consisting of 2 minutes of 30:2 compression: ventilation performed by one rescuer on a manikin lying on the floor as if in cardiac arrest. Ventilations were performed using the mouth-to-mouth method. Compression and ventilation data were collected during the tests. The mean compression depth (MCD) was significantly greater in TFCC performed with the index-middle fingers than with the middle-ring fingers regardless of the hand (95% confidence intervals; right hand: 37.8-40.2 vs. 35.2-38.6 mm, P = 0.002; left hand: 36.9-39.2 vs. 35.5-38.1 mm, P = 0.003). A deeper MCD was achieved with the index-middle fingers of the right versus the left hand (P = 0.004). The ratio of sufficiently deep compressions showed the same patterns. There were no significant differences in the other data. The best performance of TFCC in simulated 30:2 compression: ventilation CPR performed by one rescuer on an infant in cardiac arrest lying on the floor was obtained using the index-middle fingers of the right hand. Clinical Trial Registry at the Clinical Research Information Service (KCT0001515). PMID:27247512

  20. Which Fingers Should We Perform Two-Finger Chest Compression Technique with When Performing Cardiopulmonary Resuscitation on an Infant in Cardiac Arrest?

    PubMed Central

    2016-01-01

    This study compared the effectiveness two-finger chest compression technique (TFCC) performed using the right vs. left hand and the index-middle vs. middle-ring fingers. Four different finger/hand combinations were tested randomly in 30 healthcare providers performing TFCC (Test 1: the right index-middle fingers; Test 2: the left index-middle fingers; Test 3: the right middle-ring fingers; Test 4: the left middle-ring fingers) using two cross-over trials. The “patient” was a 3-month-old-infant-sized manikin. Each experiment consisted of cardiopulmonary resuscitation (CPR) consisting of 2 minutes of 30:2 compression: ventilation performed by one rescuer on a manikin lying on the floor as if in cardiac arrest. Ventilations were performed using the mouth-to-mouth method. Compression and ventilation data were collected during the tests. The mean compression depth (MCD) was significantly greater in TFCC performed with the index-middle fingers than with the middle-ring fingers regardless of the hand (95% confidence intervals; right hand: 37.8–40.2 vs. 35.2–38.6 mm, P = 0.002; left hand: 36.9–39.2 vs. 35.5–38.1 mm, P = 0.003). A deeper MCD was achieved with the index-middle fingers of the right versus the left hand (P = 0.004). The ratio of sufficiently deep compressions showed the same patterns. There were no significant differences in the other data. The best performance of TFCC in simulated 30:2 compression: ventilation CPR performed by one rescuer on an infant in cardiac arrest lying on the floor was obtained using the index-middle fingers of the right hand. Clinical Trial Registry at the Clinical Research Information Service (KCT0001515). PMID:27247512

  1. Response to reflected-force feedback to fingers in teleoperations

    NASA Technical Reports Server (NTRS)

    Sutter, P. H.; Iatridis, J. C.; Thakor, N. V.

    1989-01-01

    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues.

  2. Osseointegrated finger prostheses.

    PubMed

    Doppen, P; Solomons, M; Kritzinger, S

    2009-02-01

    Amputation of a digit can lead to functional and psychological problems and patients can benefit from digital prostheses. Unfortunately, standard prostheses are often unstable, particularly when fitted over short amputation stumps. Prosthesis fixation by osseointegration is widely used in oral and extraoral applications and may help avoid the problem of instability. This paper reports the results of four patients with five finger amputations who were treated with osseointegrated implants to attach finger prostheses. One implant failed to osseointegrate and the procedure was abandoned. Three patients were successfully treated to completion of three finger prostheses and are extremely satisfied with their outcomes, both cosmetically and functionally, with osseoperception reported by all three patients. PMID:19091736

  3. Trigger Finger (Stenosing Tenosynovitis)

    MedlinePlus

    ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ...

  4. Multi-fingered robotic hand

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  5. Structure of the HHARI Catalytic Domain Shows Glimpses of a HECT E3 Ligase

    PubMed Central

    Spratt, Donald E.; Mercier, Pascal; Shaw, Gary S.

    2013-01-01

    The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases. PMID:24058416

  6. Rapid functional plasticity of the somatosensory cortex after finger amputation.

    PubMed

    Weiss, T; Miltner, W H; Huonker, R; Friedel, R; Schmidt, I; Taub, E

    2000-09-01

    Recent research indicates that areas of the primary somatosensory (SI) and primary motor cortex show massive cortical reorganization after amputation of the upper arm, forearm or fingers. Most of these studies were carried out months or several years after amputation. In the present study, we describe cortical reorganization of areas in the SI of a patient who underwent amputation of the traumatized middle and ring fingers of his right hand 10 days before cortical magnetic source imaging data were obtained. Somatosensory-evoked magnetic fields (SEF) to mechanical stimuli to the finger tips were recorded and single moving dipoles were calculated using a realistic volume conductor model. Results reveal that the dipoles representing the second and fifth fingers of the affected hand were closer together than the comparable dipoles of the unaffected hand. Our findings demonstrate that neural cell assemblies in SI which formerly represented the right middle and ring fingers of this amputee became reorganized and invaded by neighbouring cell assemblies of the index and little finger of the same hand. These results indicate that functional plasticity occurs within a period of 10 days after amputation. PMID:11037286

  7. Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana.

    PubMed

    Min, Ji-Hee; Ju, Hyun-Woo; Yang, Kwang-Yeol; Chung, Jung-Sung; Cho, Baik-Ho; Kim, Cheol Soo

    2014-04-01

    Protein ubiquitination is one of the major regulatory processes used by eukaryotic cells. The ubiquitin E3 ligase acts as a main determinant of substrate specificity. However, the precise roles of E3 ligase in plants to drought stress are poorly understood. In this study, a gourd family (Lagenaria siceraria) ortholog of Arabidopsis thaliana RING Zinc Finger 1 (AtRZF1) gene, designated LsRZF1, was identified and characterized. LsRZF1 was reduced by abscisic acid (ABA), osmotic stress, and drought conditions. Compared to wild type, transgenic Arabidopsis plants ectopic expressing LsRZF1 were hypersensitive to ABA and osmotic stress during early seedling development, indicating that LsRZF1 negatively regulates drought-mediated control of early seedling development. Moreover, the ectopic expression of the LsRZF1 gene was very influential in drought sensitive parameters including proline content, water loss, and the expression of dehydration stress-related genes. Furthermore, ubiquitin E3 ligase activity and genetic data indicate that AtRZF1 and LsRZF1 function in similar pathway to control proline metabolism in Arabidopsis under drought condition. Together, these results suggest that the E3 ligase LsRZF1 is an important regulator of water deficit stress during early seedling development. PMID:24525351

  8. Three-Fingered Robot Hand

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.; Salisbury, J. K.

    1984-01-01

    Mechanical joints and tendons resemble human hand. Robot hand has three "human-like" fingers. "Thumb" at top. Rounded tips of fingers covered with resilient material provides high friction for griping. Hand potential as prosthesis for humans.

  9. Repair of webbed fingers - slideshow

    MedlinePlus

    ... gov/ency/presentations/100096.htm Repair of webbed fingers - series—Normal anatomy To use the sharing features ... Health Solutions, Ebix, Inc. Related MedlinePlus Health Topics Finger Injuries and Disorders A.D.A.M., Inc. ...

  10. Spiral viscous fingering.

    NASA Astrophysics Data System (ADS)

    Nagatsu, Yuichiro; Hayashi, Atsushi; Kato, Yoshihito; Tada, Yutaka

    2006-11-01

    When a less-viscous fluid displaces a more-viscous fluid in a radial Hele-Shaw cell, viscous fingering pattern is believed to develop in a radial direction. We performed experiments on viscous fingering in a radial Hele-Shaw cell when a polymer solution, a sodium polyacrylate (SPA) solution is used as the more-viscous fluid and the trivalent iron (Fe^3+) solution is as the less-viscous fluid. The experiment was done by varying the concentration of Fe^3+, cFe3+. We have found that viscous fingering pattern develops spirally when cFe3+ is larger than a threshold value, while the pattern develops in a radial direction for small cFe3+. We confirmed from different experiments that an instantaneous chemical reaction takes place between SPA solution and Fe^3+ solution. The chemical reaction produces precipitation and significantly reduces the viscosity of the SPA solution. The quantity of the precipitation is increased with cFe3+. We will make a discussion on the relationship between the formation of spiral viscous fingering and the chemical reaction taking place between the two fluids.

  11. Finger Counting and (2D:4D) Digit Ratio in Spatial-Numerical Association.

    PubMed

    Fabbri, Marco; Natale, Vincenzo

    2016-01-01

    It is reported that a canonical and cultural finger counting habit influences the spatial-numerical association. The digit ratio (the ratio between the lengths of the index and ring fingers as a putative indicator of prenatal androgen exposure) also plays an effect on space-number representation, reflecting a stronger left-to-right number representation in people with a short index finger and longer ring finger (i.e., 2D:4D ratio). It is unknown whether the finger counting habit and digit ratio have an effect on spatial-numerical association independently from each other or whether they interact with each other. In Study 1, the digit ratio and finger counting mapping were recorded in right handers. The participants performed number-to-position, digit string bisection, and physical line bisection tasks. In the number-to-position task, a finger counting effect was found, as well as a significant interaction between factors. A digit ratio effect was observed in the digit string bisection task. In Study 2, digit ratio and finger counting mapping were recorded in right and left handers. The results showed that the finger counting habit influenced the spatial biases in both numerical tasks. A significant interaction between finger counting and digit ratio was found in both numerical tasks when only the left hand was considered. The results are discussed considering the embodied nature of the spatial-numerical association. PMID:26562848

  12. HAX1 regulates E3 ubiquitin ligase activity of cIAPs by promoting their dimerization.

    PubMed

    Choi, Jin Sun; Park, Byoung Chul; Chi, Seung Wook; Bae, Kwang-Hee; Kim, Sunhong; Cho, Sayeon; Son, Woo-Chan; Myung, Pyung Keun; Kim, Jeong-Hoon; Park, Sung Goo

    2014-10-30

    HS-1-associated protein X-1 (HAX1) is a multi-functional protein which was first identified as a Hematopoietic cell specific Lyn Substrate 1 (HS1)-binding protein. Although the roles of HAX1 in apoptosis have been unraveled and HAX1 has been proposed to be involved in several diseases, additional roles of HAX1 are still being identified. Here, we demonstrated that HAX1 directly interacted with cellular Inhibitor of Apoptosis Proteins (cIAPs), ubiquitin E3 ligases which regulate the abundance of cellular proteins, via ubiquitin-dependent proteasomal degradation. We showed that HAX1 promotes auto-ubiquitination and degradation of cIAPs by facilitating the intermolecular homodimerization of RING finger domain. Moreover, HAX1 regulates the non-canonical Nuclear Factor-κB (NF-κB) signaling pathway by modulating the stability of NF-κB-Inducing Kinase (NIK), which is one of the substrates of cIAPs. Taken together, these results unveil a novel role of HAX1 in the non-canonical NF-κB pathway, and provide an important clue that HAX1 is a potential therapeutic target for the treatment of cancer. PMID:25275296

  13. The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass.

    PubMed

    Rom, Oren; Reznick, Abraham Z

    2016-09-01

    The ubiquitin-proteasome system (UPS) is the main regulatory mechanism of protein degradation in skeletal muscle. The ubiquitin-ligase enzymes (E3s) have a central role in determining the selectivity and specificity of the UPS. Since their identification in 2001, the muscle specific E3s, muscle RING finger-1 (MuRF-1) and muscle atrophy F-box (MAFbx), have been shown to be implicated in the regulation of skeletal muscle atrophy in various pathological and physiological conditions. This review aims to explore the involvement of MuRF-1 and MAFbx in catabolism of skeletal muscle during various pathologies, such as cancer cachexia, sarcopenia of aging, chronic kidney disease (CKD), diabetes, and chronic obstructive pulmonary disease (COPD). In addition, the effects of various lifestyle and modifiable factors (e.g. nutrition, exercise, cigarette smoking, and alcohol) on MuRF-1 and MAFbx regulation will be discussed. Finally, evidence of potential strategies to protect against skeletal muscle wasting through inhibition of MuRF-1 and MAFbx expression will be explored. PMID:26738803

  14. E3 ubiquitin ligase RFWD2 controls lung branching through protein-level regulation of ETV transcription factors.

    PubMed

    Zhang, Yan; Yokoyama, Shigetoshi; Herriges, John C; Zhang, Zhen; Young, Randee E; Verheyden, Jamie M; Sun, Xin

    2016-07-01

    The mammalian lung is an elaborate branching organ, and it forms following a highly stereotypical morphogenesis program. It is well established that precise control at the transcript level is a key genetic underpinning of lung branching. In comparison, little is known about how regulation at the protein level may play a role. Ring finger and WD domain 2 (RFWD2, also termed COP1) is an E3 ubiquitin ligase that modifies specific target proteins, priming their degradation via the ubiquitin proteasome system. RFWD2 is known to function in the adult in pathogenic processes such as tumorigenesis. Here, we show that prenatal inactivation of Rfwd2 gene in the lung epithelium led to a striking halt in branching morphogenesis shortly after secondary branch formation. This defect is accompanied by distalization of the lung epithelium while growth and cellular differentiation still occurred. In the mutant lung, two E26 transformation-specific (ETS) transcription factors essential for normal lung branching, ETS translocation variant 4 (ETV4) and ETV5, were up-regulated at the protein level, but not at the transcript level. Introduction of Etv loss-of-function alleles into the Rfwd2 mutant background attenuated the branching phenotype, suggesting that RFWD2 functions, at least in part, through degrading ETV proteins. Because a number of E3 ligases are known to target factors important for lung development, our findings provide a preview of protein-level regulatory network essential for lung branching morphogenesis. PMID:27335464

  15. Finger synergies during multi-finger cyclic production of moment of force

    PubMed Central

    Zhang, Wei; Zatsiorsky, Vladimir M.

    2010-01-01

    We investigated multi-finger synergies stabilizing the total moment of force and the total force when the subjects produced a quick cyclic change in the total moment of force. The seated subjects performed the task with the fingers of the dominant arm while paced by the metronome at 1.33 Hz. They were required to produce a rhythmic, sine-like change in the total pronation–supination moment of force computed with respect to the midpoint between the middle and ring fingers. The framework of the uncontrolled manifold hypothesis was used to compute indices of stabilization of the total moment and of the total force across 20 cycles. Variance of the total moment showed a cyclic pattern with peaks close to the peak rate of the moment change. Variance of the total force was maximal close to peak moment into supination. Higher magnitudes of the moment directed against the required moment direction (antagonist moment) were produced by individual fingers during supination efforts as compared to pronation efforts. Indices of multi-finger synergies showed across-trials stabilization of the total moment over the whole cycle but not of the total force. These indices were smaller during supination efforts. We conclude that the central nervous system facilitates multi-finger synergies stabilizing the total rotational action across a variety of tasks. Synergies stabilizing the total force are not seen in tasks that do not explicitly require accurate force control. Pronation efforts are performed more efficiently and with better stabilization of the action. PMID:16944107

  16. Safe Finger Tourniquet--Ideas.

    PubMed

    Wei, Lin-Gwei; Chen, Chieh-Feng; Hwang, Chun-Yuan; Chang, Chiung-Wen; Chiu, Wen-Kuan; Li, Chun-Chang; Wang, Hsian-Jenn

    2016-03-01

    Tourniquets are often needed for optimized phalangeal surgeries. However, few surgeons forget to remove them and caused ischemic injuries. We have a modified method to create a safe finger tourniquet for short duration finger surgeries, which can avoid such tragedy. It is done by donning a glove, cutting the tip of the glove over the finger of interest, and rolling the glove finger to the base. From 2010 to 2013, approximately 54 patients underwent digital surgical procedures with our safe finger tourniquet. Because the glove cannot be forgotten to be removed, the tourniquet must be released and removed. This is a simple and efficient way to apply a safe finger tourniquet by using hand rubber glove for a short-term bloodless finger surgery and can achieve an excellent surgical result. PMID:26855166

  17. RNF123 has an E3 ligase-independent function in RIG-I-like receptor-mediated antiviral signaling.

    PubMed

    Wang, Shuai; Yang, Yong-Kang; Chen, Tao; Zhang, Heng; Yang, Wei-Wei; Song, Sheng-Sheng; Zhai, Zhong-He; Chen, Dan-Ying

    2016-08-01

    Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are cytoplasmic sensors crucial for recognizing different species of viral RNAs, which triggers the production of type I interferons (IFNs) and inflammatory cytokines. Here, we identify RING finger protein 123 (RNF123) as a negative regulator of RIG-I and MDA5. Overexpression of RNF123 inhibits IFN-β production triggered by Sendai virus (SeV) and encephalomyocarditis picornavirus (EMCV). Knockdown or knockout of endogenous RNF123 potentiates IFN-β production triggered by SeV and EMCV, but not by the sensor of DNA viruses cGAS RNF123 associates with RIG-I and MDA5 in both endogenous and exogenous cases in a viral infection-inducible manner. The SPRY and coiled-coil, but not the RING, domains of RNF123 are required for the inhibitory function. RNF123 interacts with the N-terminal CARD domains of RIG-I/MDA5 and competes with the downstream adaptor VISA/MAVS/IPS-1/Cardif for RIG-I/MDA5 CARD binding. These findings suggest that RNF123 functions as a novel inhibitor of innate antiviral signaling mediated by RIG-I and MDA5, a function that does not depend on its E3 ligase activity. PMID:27312109

  18. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry

    2014-03-01

    Preface: a personal view of planetary rings; 1. Introduction: the allure of the ringed planets; 2. Studies of planetary rings 1610-2013; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Uranus' rings and moons; 13. Neptune's partial rings; 14. Jupiter's ring-moon system after Galileo and New Horizons; 15. Ring photometry; 16. Dusty rings; 17. Concluding remarks; Afterword; Glossary; References; Index.

  19. Palm to Finger Ulnar Sensory Nerve Conduction

    PubMed Central

    Davidowich, Eduardo; Orsini, Marco; Pupe, Camila; Pessoa, Bruno; Bittar, Caroline; Pires, Karina Lebeis; Bruno, Carlos; Coutinho, Bruno Mattos; de Souza, Olivia Gameiro; Ribeiro, Pedro; Velasques, Bruna; Bittencourt, Juliana; Teixeira, Silmar; Bastos, Victor Hugo

    2015-01-01

    Ulnar neuropathy at the wrist (UNW) is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN) in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC) of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way) and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV) ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW. PMID:26788268

  20. Finger Forces in Clarinet Playing

    PubMed Central

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player

  1. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  2. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  3. A ring burn--electric or contact?

    PubMed

    Attalla, M F; el-Ekiabi, S; Al-Baker, A

    1990-02-01

    A circumferential band of deep burn affecting the ring finger sustained by a car electrician is presented. Although it was caused by short circuiting the car battery by a metal spanner and the ring he was wearing, the injury was purely a contact burn. PMID:2322399

  4. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.

    2011-07-01

    Preface; 1. Introduction: the allure of ringed planets; 2. Studies of planetary rings 1610-2004; 3. Diversity of planetary rings; 4. Individual ring particles and their collisions; 5. Large-scale ring evolution; 6. Moons confine and sculpt rings; 7. Explaining ring phenomena; 8. N-Body simulations; 9. Stochastic models; 10. Age and evolution of rings; 11. Saturn's mysterious F ring; 12. Neptune's partial rings; 13. Jupiter's ring-moon system after Galileo; 14. Ring photometry; 15. Dusty rings; 16. Cassini observations; 17. Summary: the big questions; Glossary; References; Index.

  5. Gert Finger Becomes Emeritus Physicist

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Lucuix, C.; Péron, M.

    2016-03-01

    Gert Finger has retired after almost 33 years service and he has been made the first Emeritus Physicist at ESO. An appreciation of some of his many achievements in the development of infrared instrumentation and detector controllers is given. A retirement party for Gert Finger was held in February 2016.

  6. Identification and preliminary characterization of a protein motif related to the zinc finger.

    PubMed Central

    Lovering, R; Hanson, I M; Borden, K L; Martin, S; O'Reilly, N J; Evan, G I; Rahman, D; Pappin, D J; Trowsdale, J; Freemont, P S

    1993-01-01

    We have identified a protein motif, related to the zinc finger, which defines a newly discovered family of proteins. The motif was found in the sequence of the human RING1 gene, which is proximal to the major histocompatibility complex region on chromosome six. We propose naming this motif the "RING finger" and it is found in 27 proteins, all of which have putative DNA binding functions. We have synthesized a peptide corresponding to the RING1 motif and examined a number of properties, including metal and DNA binding. We provide evidence to support the suggestion that the RING finger motif is the DNA binding domain of this newly defined family of proteins. Images Fig. 1 Fig. 4 PMID:7681583

  7. Finger Forecasting: A Pointer to Athletic Prowess in Women--A Preliminary Investigation by an Undergraduate Biology Class

    ERIC Educational Resources Information Center

    Latourelle, Sandra M.; Elwess, Nancy L.; Elwess, Jennifer M.

    2008-01-01

    With all the technology today, the authors were surprised to read a recent British study that found a connection between the length of a woman's index (2D) and ring (4D) fingers to her athletic ability. Upon further investigation they found that many studies have examined the relationship between the length of the index finger (2D) to the ring…

  8. DELLA Proteins and Their Interacting RING Finger Proteins Repress Gibberellin Responses by Binding to the Promoters of a Subset of Gibberellin-Responsive Genes in Arabidopsis[C][W

    PubMed Central

    Park, Jeongmoo; Nguyen, Khoa Thi; Park, Eunae; Jeon, Jong-Seong; Choi, Giltsu

    2013-01-01

    DELLA proteins, consisting of GA INSENSITIVE, REPRESSOR OF GA1-3, RGA-LIKE1 (RGL1), RGL2, and RGL3, are central repressors of gibberellin (GA) responses, but their molecular functions are not fully understood. We isolated four DELLA-interacting RING domain proteins, previously designated as BOTRYTIS SUSCEPTIBLE1 INTERACTOR (BOI), BOI-RELATED GENE1 (BRG1), BRG2, and BRG3 (collectively referred to as BOIs). Single mutants of each BOI gene failed to significantly alter GA responses, but the boi quadruple mutant (boiQ) showed a higher seed germination frequency in the presence of paclobutrazol, precocious juvenile-to-adult phase transition, and early flowering, all of which are consistent with enhanced GA signaling. By contrast, BOI overexpression lines displayed phenotypes consistent with reduced GA signaling. Analysis of a gai-1 boiQ pentuple mutant further indicated that the GAI protein requires BOIs to inhibit a subset of GA responses. At the molecular level, BOIs did not significantly alter the stability of a DELLA protein. Instead, BOI and DELLA proteins are targeted to the promoters of a subset of GA-responsive genes and repress their expression. Taken together, our results indicate that the DELLA and BOI proteins inhibit GA responses by interacting with each other, binding to the same promoters of GA-responsive genes, and repressing these genes. PMID:23482857

  9. Finger-Circumference-Measuring Device

    NASA Technical Reports Server (NTRS)

    Le, Suy

    1995-01-01

    Easy-to-use device quickly measures circumference of finger (including thumb) on human hand. Includes polytetrafluoroethylene band 1/8 in. wide, bent into loop and attached to tab that slides on scale graduated in millimeters. Sliding tab preloaded with constant-force tension spring, which pulls tab toward closure of loop. Designed to facilitate measurements at various points along fingers to obtain data for studies of volumetric changes of fingers in microgravity. Also used in normal Earth gravity studies of growth and in assessment of diseases like arthritis.

  10. Fingering Instabilities in Dewetting Nanofluids

    NASA Astrophysics Data System (ADS)

    Pauliac-Vaujour, E.; Stannard, A.; Martin, C. P.; Blunt, M. O.; Notingher, I.; Moriarty, P. J.; Vancea, I.; Thiele, U.

    2008-05-01

    The growth of fingering patterns in dewetting nanofluids (colloidal solutions of thiol-passivated gold nanoparticles) has been followed in real time using contrast-enhanced video microscopy. The fingering instability on which we focus here arises from evaporatively driven nucleation and growth in a nanoscopically thin precursor solvent film behind the macroscopic contact line. We find that well-developed isotropic fingering structures only form for a narrow range of experimental parameters. Numerical simulations, based on a modification of the Monte Carlo approach introduced by Rabani et al. [Nature (London)NATUAS0028-0836 426, 271 (2003)10.1038/nature02087], reproduce the patterns we observe experimentally.

  11. Fingering instabilities in dewetting nanofluids.

    PubMed

    Pauliac-Vaujour, E; Stannard, A; Martin, C P; Blunt, M O; Notingher, I; Moriarty, P J; Vancea, I; Thiele, U

    2008-05-01

    The growth of fingering patterns in dewetting nanofluids (colloidal solutions of thiol-passivated gold nanoparticles) has been followed in real time using contrast-enhanced video microscopy. The fingering instability on which we focus here arises from evaporatively driven nucleation and growth in a nanoscopically thin precursor solvent film behind the macroscopic contact line. We find that well-developed isotropic fingering structures only form for a narrow range of experimental parameters. Numerical simulations, based on a modification of the Monte Carlo approach introduced by Rabani et al. [Nature (London) 426, 271 (2003)10.1038/nature02087], reproduce the patterns we observe experimentally. PMID:18518311

  12. Finger Forces in Clarinet Playing.

    PubMed

    Hofmann, Alex; Goebl, Werner

    2016-01-01

    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low-high; tempo: slow-fast, dynamics: soft-loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low-high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (F mean ) and peak force (F max ) were calculated. The overall finger forces were low (F mean = 1.17 N, F max = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (F mean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (F mean = 0.54 N). Such sensor instruments provide useful insights into player

  13. Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy.

    PubMed

    Olaso-Gonzalez, Gloria; Ferrando, Beatriz; Derbre, Frederic; Salvador-Pascual, Andrea; Cabo, Helena; Pareja-Galeano, Helios; Sabater-Pastor, Frederic; Gomez-Cabrera, Mari Carmen; Vina, Jose

    2014-10-01

    Muscle atrophy is linked to reactive oxygen species (ROS) production during hindlimb-unloading due, at least in part, to the activation of xanthine oxidase (XO). The major aim of our study was to determine the mechanism by which ROS cause muscle atrophy and its possible prevention by allopurinol, a well-known inhibitor of XO widely used in clinical practice, and indomethacin, a nonsteroidal anti-inflammatory drug. We studied the activation of p38 MAP Kinase and NF-?B pathways, and the expression of two E3 ubiquitin ligases involved in proteolysis, the Muscle atrophy F-Box (MAFb) and Muscle RING Finger-1 (MuRF-1). Male Wistar rats (3 mold) conditioned by 14 days of hindlimb unloading (n=18), with or without the treatment, were compared with freely ambulating controls (n=18). After the experimental intervention, soleus muscles were removed, weighted and analyzed to determine oxidative stress and inflammatory parameters. We found that hindlimb unloading induced a significant increase in XO activity in plasma (39%, p=0.001) and in the protein expression of CuZnSOD and Catalase in skeletal muscle. Inhibitionof XO partially prevented protein carbonylation, both in plasma and in soleus muscle, in the unloaded animals. The most relevant new fact reported is that allopurinol prevents soleus muscle atrophy by ~20% after hindlimb unloading. Combining allopurinol and indomethacin we found a further prevention in the atrophy process. This is mediated by the inhibition of the p38 MAPK-MAFbx and NF-?B -MuRF-1 pathways. Our data point out the potential benefit of allopurinol and indomethacin administration for bedridden, astronauts, sarcopenic and cachexic patients. PMID:26461377

  14. Ubiquitylation of Rad51d Mediated by E3 Ligase Rnf138 Promotes the Homologous Recombination Repair Pathway

    PubMed Central

    Han, Deqiang; Liang, Junbo; Lu, Yalan; Xu, Longchang; Miao, Shiying; Lu, Lin-Yu; Song, Wei; Wang, Linfang

    2016-01-01

    Ubiquitylation has an important role as a signal transducer that regulates protein function, subcellular localization, or stability during the DNA damage response. In this study, we show that Ring domain E3 ubiquitin ligases RNF138 is recruited to DNA damage site quickly. And the recruitment is mediated through its Zinc finger domains. We further confirm that RNF138 is phosphorylated by ATM at Ser124. However, the phosphorylation was dispensable for recruitment to the DNA damage site. Our findings also indicate that RAD51 assembly at DSB sites following irradiation is dramatically affected in RNF138-deficient cells. Hence, RNF138 is likely involved in regulating homologous recombination repair pathway. Consistently, efficiency of homologous recombination decreased observably in RNF138-depleted cells. In addition, RNF138-deficient cell is hypersensitive to DNA damage insults, such as IR and MMS. And the comet assay confirmed that RNF138 directly participated in DNA damage repair. Moreover, we find that RAD51D directly interacted with RNF138. And the recruitment of RAD51D to DNA damage site is delayed and unstable in RNF138-depleted cells. Taken together, these results suggest that RNF138 promotes the homologous recombination repair pathway. PMID:27195665

  15. Structure-Odor Relationships of (E)-3-Alkenoic Acids, (E)-3-Alken-1-ols, and (E)-3-Alkenals.

    PubMed

    Lorber, Katja; Buettner, Andrea

    2015-08-01

    (E)-3-Unsaturated volatile acids, alcohols, and aldehydes are commonly found as odorants or pheromones in foods and other natural sources, playing a vital role in not only the attractiveness of foods but also chemo-communication in the animal kingdom. However, a systematic elucidation of their aroma properties, especially for humans, has not been carried out until today. To close this gap, the odor thresholds in air and odor qualities of homologous series of (E)-3-alkenoic acids, (E)-3-alken-1-ols, and (E)-3-alkenals were determined by gas chromatography-olfactometry. In the series of (E)-3-alkenoic acids the odor quality changed successively from sweaty via plastic-like to sweaty and waxy. On the other hand, the odor qualities in the series of (E)-3-alken-1-ols and (E)-3-alkenals changed from grassy, green to an overall citrus-like, fresh, soapy, and coriander-like odor with increasing chain length. With regard to their odor potencies, the lowest thresholds in air were found for (E)-3-heptenoic acid, (E)-3-hexenoic acid, and (E)-3-hexenal. PMID:26165743

  16. Neural correlates of finger gnosis.

    PubMed

    Rusconi, Elena; Tamè, Luigi; Furlan, Michele; Haggard, Patrick; Demarchi, Gianpaolo; Adriani, Michela; Ferrari, Paolo; Braun, Christoph; Schwarzbach, Jens

    2014-07-01

    Neuropsychological studies have described patients with a selective impairment of finger identification in association with posterior parietal lesions. However, evidence of the role of these areas in finger gnosis from studies of the healthy human brain is still scarce. Here we used functional magnetic resonance imaging to identify the brain network engaged in a novel finger gnosis task, the intermanual in-between task (IIBT), in healthy participants. Several brain regions exhibited a stronger blood oxygenation level-dependent (BOLD) response in IIBT than in a control task that did not explicitly rely on finger gnosis but used identical stimuli and motor responses as the IIBT. The IIBT involved stronger signal in the left inferior parietal lobule (IPL), bilateral precuneus (PCN), bilateral premotor cortex, and left inferior frontal gyrus. In all regions, stimulation of nonhomologous fingers of the two hands elicited higher BOLD signal than stimulation of homologous fingers. Only in the left anteromedial IPL (a-mIPL) and left PCN did signal strength decrease parametrically from nonhomology, through partial homology, to total homology with stimulation delivered synchronously to the two hands. With asynchronous stimulation, the signal was stronger in the left a-mIPL than in any other region, possibly indicating retention of task-relevant information. We suggest that the left PCN may contribute a supporting visuospatial representation via its functional connection to the right PCN. The a-mIPL may instead provide the core substrate of an explicit bilateral body structure representation for the fingers that when disrupted can produce the typical symptoms of finger agnosia. PMID:24990921

  17. “Ubiquitylation: mechanism and functions“ Review series: RBR E3-ligases at work

    PubMed Central

    Smit, Judith J; Sixma, Titia K

    2014-01-01

    The RING-in-between-RING (RBR) E3s are a curious family of ubiquitin E3-ligases, whose mechanism of action is unusual in several ways. Their activities are auto-inhibited, causing a requirement for activation by protein-protein interactions or posttranslational modifications. They catalyse ubiquitin conjugation by a concerted RING/HECT-like mechanism in which the RING1 domain facilitates E2-discharge to directly form a thioester intermediate with a cysteine in RING2. This short-lived, HECT-like intermediate then modifies the target. Uniquely, the RBR ligase HOIP makes use of this mechanism to target the ubiquitin amino-terminus, by presenting the target ubiquitin for modification using its distinctive LDD region. PMID:24469331

  18. Multi-finger interaction during involuntary and voluntary single finger force changes

    PubMed Central

    Martin, J.R.; Zatsiorsky, V.M.; Latash, M.L.

    2011-01-01

    Two types of finger interaction are characterized by positive co-variation (enslaving) or negative co-variation (error compensation) of finger forces. Enslaving reflects mechanical and neural connections among fingers, while error compensation results from synergic control of fingers to stabilize their net output. Involuntary and voluntary force changes by a finger were used to explore these patterns. We hypothesized that synergic mechanisms will dominate during involuntary force changes, while enslaving will dominate during voluntary finger force changes. Subjects pressed with all four fingers to match a target force that was 10% of their maximum voluntary contraction (MVC). One of the fingers was unexpectedly raised 5.0 mm at a speed of 30.0 mm/s. During finger raising the subject was instructed “not to intervene voluntarily”. After the finger was passively lifted and a new steady-state achieved, subjects pressed down with the lifted finger, producing a pulse of force voluntarily. The data were analyzed in terms of finger forces and finger modes (hypothetical commands to fingers reflecting their intended involvement). The target finger showed an increase in force during both phases. In the involuntary phase, the target finger force changes ranged between 10.71 ± 1.89% MVC (I-finger) and 16.60 ± 2.26% MVC (L-finger). Generally, non-target fingers displayed a force decrease with a maximum amplitude of −1.49 ± 0.43% MVC (L-finger). Thus, during the involuntary phase, error compensation was observed – non-lifted fingers showed a decrease in force (as well as in mode magnitude). During the voluntary phase, enslaving was observed – non-target fingers showed an increase in force and only minor changes in mode magnitude. The average change in force of non-target fingers ranged from 21.83 ± 4.47% MVC for R-finger (M-finger task) to 0.71 ± 1.10 % MVC for L-finger (I-finger task). The average change in mode of non-target fingers was between −7.34 ± 19

  19. HECT E3s and human disease

    PubMed Central

    Scheffner, Martin; Staub, Olivier

    2007-01-01

    In a simplified view, members of the HECT E3 family have a modular structure consisting of the C-terminal HECT domain, which is catalytically involved in the attachment of ubiquitin to substrate proteins, and N-terminal extensions of variable length and sequence that mediate the substrate specificity of the respective HECT E3. Although the physiologically relevant substrates of most HECT E3s have remained elusive, it is becoming increasingly clear that HECT E3s play an important role in sporadic and hereditary human diseases including cancer, cardiovascular (Liddle's syndrome) and neurological (Angelman syndrome) disorders, and/or in disease-relevant processes including bone homeostasis, immune response and retroviral budding. Thus, molecular approaches to target the activity of distinct HECT E3s, regulators thereof, and/or of HECT E3 substrates could prove valuable in the treatment of the respective diseases. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047743

  20. Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia

    PubMed Central

    Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart

    2015-01-01

    Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433

  1. Planetary rings

    SciTech Connect

    Greenberg, R.; Brahic, A.

    1984-01-01

    Among the topics discussed are the development history of planetary ring research, the view of planetary rings in astronomy and cosmology over the period 1600-1900, the characteristics of the ring systems of Saturn and Uranus, the ethereal rings of Jupiter and Saturn, dust-magnetosphere interactions, the effects of radiation forces on dust particles, the collisional interactions and physical nature of ring particles, transport effects due to particle erosion mechanisms, and collision-induced transport processes in planetary rings. Also discussed are planetary ring waves, ring particle dynamics in resonances, the dynamics of narrow rings, the origin and evolution of planetary rings, the solar nebula and planetary disk, future studies of the planetary rings by space probes, ground-based observatories and earth-orbiting satellites, and unsolved problems in planetary ring dynamics.

  2. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject

    NASA Astrophysics Data System (ADS)

    Hotson, Guy; McMullen, David P.; Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.

    2016-04-01

    Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.

  3. Fluid mixing from viscous fingering.

    PubMed

    Jha, Birendra; Cueto-Felgueroso, Luis; Juanes, Ruben

    2011-05-13

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or viscous fingering, provides a powerful mechanism to increase fluid-fluid interfacial area and enhance mixing. Here we describe the dissipative structure of miscible viscous fingering, and propose a two-equation model for the scalar variance and its dissipation rate. Our analysis predicts the optimum range of viscosity contrasts that, for a given Péclet number, maximizes interfacial area and minimizes mixing time. In the spirit of turbulence modeling, the proposed two-equation model permits upscaling dissipation due to fingering at unresolved scales. PMID:21668165

  4. Ball-joint grounding ring

    NASA Technical Reports Server (NTRS)

    Aperlo, P. J. A.; Buck, P. A.; Weldon, V. A.

    1981-01-01

    In ball and socket joint where electrical insulator such as polytetrafluoroethylene is used as line to minimize friction, good electrical contact across joint may be needed for lightning protection or to prevent static-charge build-up. Electrical contact is maintained by ring of spring-loaded fingers mounted in socket. It may be useful in industry for cranes, trailers, and other applications requiring ball and socket joint.

  5. Replantation (Finger, Hand, or Arm)

    MedlinePlus

    ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ... Fireworks Safety Lawnmower Safety Snowblower safety Pumpkin Carving Gardening Safety Turkey Carving Removing a Ring Español Artritis ...

  6. Mesofluidic controlled robotic or prosthetic finger

    SciTech Connect

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  7. Ret finger protein mediates Pax7-induced ubiquitination of MyoD in skeletal muscle atrophy.

    PubMed

    Joung, Hosouk; Eom, Gwang Hyeon; Choe, Nakwon; Lee, Hye Mi; Ko, Jeong-Hyeon; Kwon, Duk-Hwa; Nam, Yoon Seok; Min, Hyunki; Shin, Sera; Kook, Jeewon; Cho, Young Kuk; Kim, Jeong Chul; Seo, Sang Beom; Baik, Yung Hong; Nam, Kwang-Il; Kook, Hyun

    2014-10-01

    Skeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD. Muscle injury induced by sciatic nerve transection up-regulated RFP and RFP physically interacted with both Pax7 and MyoD. RFP and Pax7 synergistically reduced the protein amounts of MyoD but not the mRNA. RFP-induced reduction of MyoD protein was blocked by proteasome inhibitors. The Pax7-induced reduction MyoD was attenuated by RFP siRNA and by MG132, a proteasome inhibitor. RFPΔR, an RFP construct that lacks the RING domain, failed to reduce MyoD amounts. RFP ubiquitinated MyoD, but RFPΔR failed to do so. Forced expression of RFP, but not RFPΔR, enhanced Pax7-induced ubiquitination of MyoD, whereas RFP siRNA blocked the ubiquitination. Sciatic nerve injury-induced muscle atrophy as well the reduction in MyoD was attenuated in RFP knockout mice. Taken together, our results show that RFP works as a novel E3 ligase in the Pax7-mediated degradation of MyoD in response to skeletal muscle atrophy. PMID:25025573

  8. Saturn's rings

    NASA Technical Reports Server (NTRS)

    2000-01-01

    When seen from the unlit side, the rings of Saturn present a much different appearance from that familiar to telescopic observers. Relatively opaque areas like the B Ring turn black, while lightly populated zones, such as the C Ring and the Cassini Division, prove to excellent diffuse transmitters of sunlight. The A Ring, with intermediate opacity, is at an intermediate level of brightness.

  9. Cullin E3 Ligases and Their Rewiring by Viral Factors

    PubMed Central

    Mahon, Cathal; Krogan, Nevan J.; Craik, Charles S.; Pick, Elah

    2014-01-01

    The ability of viruses to subvert host pathways is central in disease pathogenesis. Over the past decade, a critical role for the Ubiquitin Proteasome System (UPS) in counteracting host immune factors during viral infection has emerged. This counteraction is commonly achieved by the expression of viral proteins capable of sequestering host ubiquitin E3 ligases and their regulators. In particular, many viruses hijack members of the Cullin-RING E3 Ligase (CRL) family. Viruses interact in many ways with CRLs in order to impact their ligase activity; one key recurring interaction involves re-directing CRL complexes to degrade host targets that are otherwise not degraded within host cells. Removal of host immune factors by this mechanism creates a more amenable cellular environment for viral propagation. To date, a small number of target host factors have been identified, many of which are degraded via a CRL-proteasome pathway. Substantial effort within the field is ongoing to uncover the identities of further host proteins targeted in this fashion and the underlying mechanisms driving their turnover by the UPS. Elucidation of these targets and mechanisms will provide appealing anti-viral therapeutic opportunities. This review is focused on the many methods used by viruses to perturb host CRLs, focusing on substrate sequestration and viral regulation of E3 activity. PMID:25314029

  10. Long-finger pollicization for macrodactyly of the thumb and index finger.

    PubMed

    Donohue, Kenneth W; Zlotolow, Dan A; Kozin, Scott H

    2014-01-01

    Pollicization of the long finger is rarely performed, and previously described for treating traumatic thumb and index finger loss. Because the long finger lacks the independence of motion and muscular attachments of the index finger, pollicization of the long finger requires modifications of the technique. We present the case of a 3-year-old girl with progressive macrodactyly of the thumb and index finger associated with a lipofibromatous hamartoma of the median nerve. The involved digits were severely enlarged, stiff, and nonfunctional. The child was treated with first and second ray resection followed by long-finger pollicization. Surgical pearls and pitfalls are discussed. PMID:24919138

  11. From viscous fingering to bulk elastic fingering in soft materials

    NASA Astrophysics Data System (ADS)

    Saintyves, Baudouin; Biggins, John; Wei, Zhiyan; Mora, Serge; Dauchot, Olivier; Mahadevan, L.; Bouchaud, Elisabeth

    2014-03-01

    Systematic experiments have been performed in purely elastic polyacrylamide gels in Hele-Shaw cells. We have shown that a bulk fingering instability arises in the highly deformable confined elastomers. It shares some similarities with the famous Saffman-Taylor instability, but a systematic study shows that surface tension is not relevant. This instability is sub-critical, with a clear hysteretic behavior. Our experimental observations have been compared very favorably to theoretical and finite element simulations results. In particular, the instability wavelength and the critical front advance have been shown to be proportional to the distance between the two glass plates constituting the cell. We have also shown that in Maxwell viscoelastic fluids, one crosses over continuously from a viscous to an elastic fingering instability.

  12. Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Cuzzi, J. N.

    2014-12-01

    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  13. Mechanical model of a single tendon finger

    NASA Astrophysics Data System (ADS)

    Rossi, Cesare; Savino, Sergio

    2013-10-01

    The mechanical model of a single tendon three phalanxes finger is presented. By means of the model both kinematic and dynamical behavior of the finger itself can be studied. This finger is a part of a more complex mechanical system that consists in a four finger grasping device for robots or in a five finger human hand prosthesis. A first prototype has been realized in our department in order to verify the real behavior of the model. Some results of both kinematic and dynamical behavior are presented.

  14. Surgical Repair with External Fixation of Epiphyseal Fractures of the Proximal Phalanges of Three Fingers: A Case Report.

    PubMed

    Morisawa, Yasushi; Takayama, Shinichiro; Sato, Kazuki

    2015-10-01

    A 13-year-old girl sustained epiphyseal fractures of the proximal phalanges of the left index, middle, and ring fingers. Though manual reduction of the 3 fingers was possible, it was difficult to maintain the reduction due to severe instability of the middle and ring fingers, and closed reduction with external fixation was performed. At 4 years post-injury, the patient had no impairment of daily activities. The use of external fixation (1) causes no injury to the epiphyseal cartilage, (2) enables accurate reduction and maintenance of reduction, (3) is technically easier than pinning, (4) enables earlier range of motion (ROM) exercises of the proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints of the externally fixated and other fingers, and (5) allows repeated fine adjustments after reduction. External fixation is an option for the treatment of children with highly unstable epiphyseal fractures of the proximal phalanges. PMID:26388013

  15. Identification of a Protein Network Interacting with TdRF1, a Wheat RING Ubiquitin Ligase with a Protective Role against Cellular Dehydration1[C][W

    PubMed Central

    Guerra, Davide; Mastrangelo, Anna Maria; Lopez-Torrejon, Gema; Marzin, Stephan; Schweizer, Patrick; Stanca, Antonio Michele; del Pozo, Juan Carlos; Cattivelli, Luigi; Mazzucotelli, Elisabetta

    2012-01-01

    Plants exploit ubiquitination to modulate the proteome with the final aim to ensure environmental adaptation and developmental plasticity. Ubiquitination targets are specifically driven to degradation through the action of E3 ubiquitin ligases. Genetic analyses have indicated wide functions of ubiquitination in plant life; nevertheless, despite the large number of predicted E3s, only a few of them have been characterized so far, and only a few ubiquitination targets are known. In this work, we characterized durum wheat (Triticum durum) RING Finger1 (TdRF1) as a durum wheat nuclear ubiquitin ligase. Moreover, its barley (Hordeum vulgare) homolog was shown to protect cells from dehydration stress. A protein network interacting with TdRF1 has been defined. The transcription factor WHEAT BEL1-TYPE HOMEODOMAIN1 (WBLH1) was degraded in a TdRF1-dependent manner through the 26S proteasome in vivo, the mitogen-activated protein kinase TdWNK5 [for Triticum durum WITH NO LYSINE (K)5] was able to phosphorylate TdRF1 in vitro, and the RING-finger protein WHEAT VIVIPAROUS-INTERACTING PROTEIN2 (WVIP2) was shown to have a strong E3 ligase activity. The genes coding for the TdRF1 interactors were all responsive to cold and/or dehydration stress, and a negative regulative function in dehydration tolerance was observed for the barley homolog of WVIP2. A role in the control of plant development was previously known, or predictable based on homology, for wheat BEL1-type homeodomain1(WBLH1). Thus, TdRF1 E3 ligase might act regulating the response to abiotic stress and remodeling plant development in response to environmental constraints. PMID:22167118

  16. Impact of Finger Type in Fingerprint Authentication

    NASA Astrophysics Data System (ADS)

    Gafurov, Davrondzhon; Bours, Patrick; Yang, Bian; Busch, Christoph

    Nowadays fingerprint verification system is the most widespread and accepted biometric technology that explores various features of the human fingers for this purpose. In general, every normal person has 10 fingers with different size. Although it is claimed that recognition performance with little fingers can be less accurate compared to other finger types, to our best knowledge, this has not been investigated yet. This paper presents our study on the topic of influence of the finger type into fingerprint recognition performance. For analysis we employ two fingerprint verification software packages (one public and one commercial). We conduct test on GUC100 multi sensor fingerprint database which contains fingerprint images of all 10 fingers from 100 subjects. Our analysis indeed confirms that performance with small fingers is less accurate than performance with the others fingers of the hand. It also appears that best performance is being obtained with thumb or index fingers. For example, performance deterioration from the best finger (i.e. index or thumb) to the worst fingers (i.e. small ones) can be in the range of 184%-1352%.

  17. Asymptomatic Papulo-nodules Localized to One Finger

    PubMed Central

    Rambhia, Kinjal D; Khopkar, Uday S

    2015-01-01

    Subcutaneous or deep granuloma annulare is a benign asymptomatic condition characterized by firm asymptomatic nodules in deep subcutaneous tissues that may be associated with intradermal lesions. A 53-year-old female presented with asymptomatic skin-colored, firm nodules over the right ring finger. Histopathology revealed a palisading granuloma with central degenerated collagen and mucin deposition in the dermis suggestive of granuloma annulare. Isolated and unilateral involvement of a single digit with clusters of nodules of subcutaneous granuloma annulare (GA) in an adult is rare and differentiation from its simulator rheumatoid nodule is essential. PMID:26538728

  18. Does finger sense predict addition performance?

    PubMed

    Newman, Sharlene D

    2016-05-01

    The impact of fingers on numerical and mathematical cognition has received a great deal of attention recently. However, the precise role that fingers play in numerical cognition is unknown. The current study explores the relationship between finger sense, arithmetic and general cognitive ability. Seventy-six children between the ages of 5 and 12 participated in the study. The results of stepwise multiple regression analyses demonstrated that while general cognitive ability including language processing was a predictor of addition performance, finger sense was not. The impact of age on the relationship between finger sense, and addition was further examined. The participants were separated into two groups based on age. The results showed that finger gnosia score impacted addition performance in the older group but not the younger group. These results appear to support the hypothesis that fingers provide a scaffold for calculation and that if that scaffold is not properly built, it has continued differential consequences to mathematical cognition. PMID:26993292

  19. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  20. Neptune's rings

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This 591-second exposure of the rings of Neptune were taken with the clear filter by the Voyager 2 wide-angle camera. The two main rings are clearly visible and appear complete over the region imaged. Also visible in this image is the inner faint ring and the faint band which extends smoothly from the ring roughly halfway between the two bright rings. Both of these newly discovered rings are broad and much fainter than the two narrow rings. The bright glare is due to over-exposure of the crescent on Neptune. Numerous bright stars are evident in the background. Both bright rings have material throughout their entire orbit, and are therefore continuous. The Voyager Mission is conducted by JPL for NASA's Office of Space Science and Applications.

  1. Planetary Rings

    NASA Astrophysics Data System (ADS)

    Gordon, M. K.; Araki, S.; Black, G. J.; Bosh, A. S.; Brahic, A.; Brooks, S. M.; Charnoz, S.; Colwell, J. E.; Cuzzi, J. N.; Dones, L.; Durisen, R. H.; Esposito, L. W.; Ferrari, C.; Festou, M.; French, R. G.; Giuliatti-Winter, S. M.; Graps, A. L.; Hamilton, D. P.; Horanyi, M.; Karjalainen, R. M.; Krivov, A. V.; Krueger, H.; Larson, S. M.; Levison, H. F.; Lewis, M. C.; Lissauer, J. J.; Murray, C. D.; Namouni, F.; Nicholson, P. D.; Olkin, C. B.; Poulet, F.; Rappaport, N. J.; Salo, H. J.; Schmidt, J.; Showalter, M. R.; Spahn, F.; Spilker, L. J.; Srama, R.; Stewart, G. R.; Yanamandra-Fisher, P.

    2002-08-01

    The past two decades have witnessed dramatic changes in our view and understanding of planetary rings. We now know that each of the giant planets in the Solar System possesses a complex and unique ring system. Recent studies have identified complex gravitational interactions between the rings and their retinues of attendant satellites. Among the four known ring systems, we see elegant examples of Lindblad and corotation resonances (first invoked in the context of galactic disks), electromagnetic resonances, spiral density waves and bending waves, narrow ringlets which exhibit internal modes due to collective instabilities, sharp-edged gaps maintained via tidal torques from embedded moonlets, and tenuous dust belts created by meteoroid impact onto, or collisions between, parent bodies. Yet, as far as we have come, our understanding is far from complete. The fundamental questions confronting ring scientists at the beginning of the twenty-first century are those regarding the origin, age and evolution of the various ring systems, in the broadest context. Understanding the origin and age requires us to know the current ring properties, and to understand the dominant evolutionary processes and how they influence ring properties. Here we discuss a prioritized list of the key questions, the answers to which would provide the greatest improvement in our understanding of planetary rings. We then outline the initiatives, missions, and other supporting activities needed to address those questions, and recommend priorities for the coming decade in planetary ring science.

  2. Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size.

    PubMed

    Aguilar-Pereyra, J Felipe; Castillo-Castaneda, Eduardo

    2016-01-01

    Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user. PMID:27524880

  3. Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size

    PubMed Central

    Castillo-Castaneda, Eduardo

    2016-01-01

    Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user. PMID:27524880

  4. OUTFLOWS FROM EVOLVED STARS: THE RAPIDLY CHANGING FINGERS OF CRL 618

    SciTech Connect

    Balick, Bruce; Huarte-Espinosa, Martin; Frank, Adam; Gomez, Thomas; Alcolea, Javier; Corradi, Romano L. M.; Vinkovic, Dejan E-mail: martinHE@pas.rochester.edu E-mail: gomezt@astro.as.utexas.edu E-mail: rcorradi@iac.es

    2013-07-20

    Our ultimate goal is to probe the nature of the collimator of the outflows in the pre-planetary nebula CRL 618. CRL 618 is uniquely suited for this purpose owing to its multiple, bright, and carefully studied finger-shaped outflows east and west of its nucleus. We compare new Hubble Space Telescope images to images in the same filters observed as much as 11 yr ago to uncover large proper motions and surface brightness changes in its multiple finger-shaped outflows. The expansion age of the ensemble of fingers is close to 100 yr. We find strong brightness variations at the fingertips during the past decade. Deep IR images reveal a multiple ring-like structure of the surrounding medium into which the outflows propagate and interact. Tightly constrained three-dimensional hydrodynamic models link the properties of the fingers to their possible formation histories. We incorporate previously published complementary information to discern whether each of the fingers of CRL 618 are the results of steady, collimated outflows or a brief ejection event that launched a set of bullets about a century ago. Finally, we argue on various physical grounds that fingers of CRL 618 are likely to be the result of a spray of clumps ejected at the nucleus of CRL 618 since any mechanism that form a sustained set of unaligned jets is unprecedented.

  5. Current status of ultrasonography of the finger

    PubMed Central

    2016-01-01

    The recent development of advanced high-resolution transducers has enabled the fast, easy, and dynamic ultrasonographic evaluation of small, superficial structures such as the finger. In order to best exploit these advances, it is important to understand the normal anatomy and the basic pathologies of the finger, as exemplified by the following conditions involving the dorsal, volar, and lateral sections of the finger: sagittal band injuries, mallet finger, and Boutonnière deformity (dorsal aspect); flexor tendon tears, trigger finger, and volar plate injuries (volar aspect); gamekeeper’s thumb (Stener lesions) and other collateral ligament tears (lateral aspect); and other lesions. This review provides a basis for understanding the ultrasonography of the finger and will therefore be useful for radiologists. PMID:26753604

  6. On the fly finger knuckle print authentication

    NASA Astrophysics Data System (ADS)

    Abe, Narishige; Shinzaki, Takashi

    2014-05-01

    Finger knuckle print authentication has been researched not only as a supplemental authentication modality to fingerprint recognition but also as a method for logging into a PC or entering a building. However, in previous works, some specific devices were necessary to capture a finger knuckle print and users had to keep their fingers perfectly still to capture their finger knuckle. In this paper, we propose a new on the fly finger knuckle print authentication system using a general web camera. In our proposed authentication system, users can input their finger knuckle prints without needing their hand to remain motionless during image capture. We also evaluate the authentication accuracy of the proposed system, achieving an 7% EER under best conditions.

  7. Prosthetic Hand With Two Gripping Fingers

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell B.; Vest, Thomas W.; Carden, James R.

    1993-01-01

    Prosthetic hand developed for amputee who retains significant portion of forearm. Outer end of device is end effector including two fingers, one moved by rotating remaining part of forearm about its longitudinal axis. Main body of end effector is end member supporting fingers, roller bearing assembly, and rack-and-pinion mechanism. Advantage of rack-and-pinion mechanism enables user to open or close gap between fingers with precision and force.

  8. Piezoelectric Actuators On A Cold Finger

    NASA Technical Reports Server (NTRS)

    Kuo, Chin-Po; Garba, John A.; Glaser, Robert J.

    1995-01-01

    Developmental system for active suppression of vibrations of cold finger includes three piezoelectric actuators bonded to outer surface. Actuators used to suppress longitudinal and lateral vibrations of upper end of cold finger by applying opposing vibrations. Cold finger in question is part of a cryogenic system associated with an infrared imaging detector. When fully developed, system would be feedback sensor/control/actuator system automatically adapting to changing vibrational environment and suppresses pressure-induced vibrations by imposing compensatory vibrations via actuators.

  9. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation.

    PubMed

    Lechtenberg, Bernhard C; Rajput, Akhil; Sanishvili, Ruslan; Dobaczewska, Małgorzata K; Ware, Carl F; Mace, Peter D; Riedl, Stefan J

    2016-01-28

    Ubiquitination is a central process affecting all facets of cellular signalling and function. A critical step in ubiquitination is the transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to a substrate or a growing ubiquitin chain, which is mediated by E3 ubiquitin ligases. RING-type E3 ligases typically facilitate the transfer of ubiquitin from the E2 directly to the substrate. The RING-between-RING (RBR) family of RING-type E3 ligases, however, breaks this paradigm by forming a covalent intermediate with ubiquitin similarly to HECT-type E3 ligases. The RBR family includes Parkin and HOIP, the central catalytic factor of the LUBAC (linear ubiquitin chain assembly complex). While structural insights into the RBR E3 ligases Parkin and HHARI in their overall auto-inhibited forms are available, no structures exist of intact fully active RBR E3 ligases or any of their complexes. Thus, the RBR mechanism of action has remained largely unknown. Here we present the first structure, to our knowledge, of the fully active human HOIP RBR in its transfer complex with an E2~ubiquitin conjugate, which elucidates the intricate nature of RBR E3 ligases. The active HOIP RBR adopts a conformation markedly different from that of auto-inhibited RBRs. HOIP RBR binds the E2~ubiquitin conjugate in an elongated fashion, with the E2 and E3 catalytic centres ideally aligned for ubiquitin transfer, which structurally both requires and enables a HECT-like mechanism. In addition, three distinct helix-IBR-fold motifs inherent to RBRs form ubiquitin-binding regions that engage the activated ubiquitin of the E2~ubiquitin conjugate and, surprisingly, an additional regulatory ubiquitin molecule. The features uncovered reveal critical states of the HOIP RBR E3 ligase cycle, and comparison with Parkin and HHARI suggests a general mechanism for RBR E3 ligases. PMID:26789245

  10. Dual Function of Phosphoubiquitin in E3 Activation of Parkin.

    PubMed

    Walinda, Erik; Morimoto, Daichi; Sugase, Kenji; Shirakawa, Masahiro

    2016-08-01

    Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin. PMID:27284007