Science.gov

Sample records for ring galaxy ngc

  1. The ringed X-galaxy NGC 7020

    NASA Technical Reports Server (NTRS)

    Buta, Ronald

    1990-01-01

    The southern SO (sup +) galaxy NGC 7020 presents an unusual morphology: it includes a very regular outer ring which is completely detached and which envelops an inner ring/lens zone with a hexagon surrounding an X shape. The outer ring has a high contrast compared to those usually observed in barred galaxies, yet NGC 7020 is not obviously barred. The morphology of this galaxy poses an interesting puzzle in that the hexagonal/X zone is not a typical type of feature to find in the interior of such a regular ring. Instead, the zone bears a striking resemblance to the edge-on galaxy IC 4767, recently studied by Whitmore and Bell (1988 = WB88) and dubbed by them as the X-galaxy because its inner regions appear to be crossed by two distinct enhancements lined at plus or minus 22 deg with respect to the major axis. The observation of a similar phenomenon in NGC 7020 is interesting because of the suggestion by WB88 that X structures could be related to accretion of matter associated with a merger or tidal encounter between an SO and a small satellite galaxy. If this interpretation is correct for NGC 7020, then it has important implications for the nature of the outer ring. An alternative interpretation is that the inner hexagonal/X zone is a region where resonant periodic orbits in a weak bi-symmetric potential perturbation are influencing the morphology more strongly than might be expected. A brief summary of a more extensive paper (Buta 1990c = B90c) and a few other details concerning this interesting galaxy are given.

  2. CHANDRA OBSERVATIONS OF THE COLLISIONAL RING GALAXY NGC 922

    SciTech Connect

    Prestwich, A. H.; Galache, J. L.; Zezas, A.; Linden, T.; Kalogera, V.; Roberts, T. P.; Kilgard, R.; Wolter, A.; Trinchieri, G.

    2012-03-10

    In this paper, we report on Chandra observations of the starburst galaxy NGC 922. NGC 922 is a drop-through ring galaxy with an expanding ring of star formation, similar in many respects to the Cartwheel galaxy. The Cartwheel galaxy is famous for hosting 12 ultraluminous X-ray sources (ULXs), most of which are in the star-forming ring. This is the largest number of ULXs seen in a single system and has led to speculation that the low metallicity of the Cartwheel (0.3 Z{sub Sun }) may optimize the conditions for ULX formation. In contrast, NGC 922 has metallicity near solar. The Chandra observations reveal a population of bright X-ray sources, including seven ULXs. The number of ULXs in NGC 922 and the Cartwheel scales with the star formation rate: we do not find any evidence for an excess of sources in the Cartwheel. Simulations of the binary population in these galaxies suggest that the ULX population in both systems is dominated by systems with strong wind accretion from supergiant donors onto direct-collapse black holes. The simulations correctly predict the ratio of the number of sources in NGC 922 and the Cartwheel. Thus, it would appear that the metallicity of the Cartwheel is not low enough to see a difference in the ULX population compared to NGC 922.

  3. Face on Barred and Ringed Spiral Galaxy NGC 3351

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the face on barred and ringed spiral galaxy NGC 3351 (M95). The morphological appearance of a galaxy can change dramatically between visual and ultraviolet wavelengths. In the case of M95, the nucleus and bar dominate the visual image. In the ultraviolet, the bar is not even visible and the ring and spiral arms dominate.

  4. The polar-ring galaxies NGC 2685 and NGC 3808B (VV 300)

    NASA Technical Reports Server (NTRS)

    Reshetnikov, V. P.; Yakovleva, V. A.

    1990-01-01

    Polar-ring galaxies (PRG) are among the most interesting examples of interaction between galaxies. A PRG is a galaxy with an elongated main body surrounded by a ring (or a disk) of stars, gas, and dust rotating in a near-polar plane (Schweizer, Whitmore, and Rubin, 1983). Accretion of matter by a massive lenticular galaxy from either intergalactic medium or a companion galaxy is usually considered as an explanation of the observed structure of PRG. In the latter case there are two possibilities: capture and merging of a neighbor galaxy, and accretion of mass from a companion galaxy during a close encounter. Two PRG formation scenarios just mentioned are illustrated here by the results of our observations of the peculiar galaxies NGC 2685 and NGC 3808B.

  5. Observational study of the candidate polar-ring galaxies NGC 304 and NGC 7625

    NASA Astrophysics Data System (ADS)

    Karataeva, G. M.; Kuznetsov, A. N.

    2008-09-01

    We present the results of our photometric ( BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = -20m.81 for NGC 304 and M B = -19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s-1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 mathcal{M}_ odot . The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices ( B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors ( B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.

  6. NGC 3081 - Surface photometry and kinematics of a classic resonance ring barred galaxy

    NASA Astrophysics Data System (ADS)

    Buta, R.; Purcell, Guy B.

    1998-02-01

    This paper presents a detailed photometric and kinematic study of the well-known Seyfert 2 galaxy NGC 3081, one of the best examples of a resonance ring barred galaxy in the sky. Improved optical images compared to previous studies reveal that NGC 3081 is a classic R1R'2 galaxy, a type that shows a distinctive outer ring/pseudoring pattern at large radii that can be linked to orbit families at the outer Lindblad resonance (OLR). Together with an exceptionally strong inner ring and a blue nuclear ring, NGC 3081 has the rare distinction of having all four of the main types of resonance rings that have been predicted by test-particle models of barred spirals. NIR imaging of NGC 3081 reveals clear old rings connected to the inner ring and the R1 outer ring. Objective comparison of the B- and H-band positions of the inner ring indicates no significant difference in shape, major-axis position angle, or major-axis radius between the two passbands, in spite of the different stellar populations each band emphasizes. Imaging Fabry-Perot interferometry provides an intriguing picture of star formation in the galaxy and of the dynamics of the system. H-alpha emission is strong in the inner ring and is confined to a bounded elliptical annulus of diffuse emission whose ellipticity increases from the inner edge to the outer edge. A few H II regions are connected to the strong R1-type outer ring, particularly just off the major axis of the inner ring where 'dimples', typical of the R1 morphology, are found.

  7. THE STAR CLUSTER POPULATION OF THE COLLISIONAL RING GALAXY NGC 922

    SciTech Connect

    Pellerin, Anne; Meurer, Gerhardt R.; Bekki, Kenji; Elmegreen, Debra M.; Wong, O. Ivy; Knezek, Patricia M. E-mail: Gerhardt.Meurer@icrar.org E-mail: elmegreen@vassar.edu E-mail: knezek@noao.edu

    2010-04-15

    We present a detailed study of the star cluster population detected in the galaxy NGC 922, one of the closest collisional ring galaxies known to date, using Hubble Space Telescope/Wide Field Planetary Camera 2 UBVI photometry, population synthesis models, and N-body/smoothed particle hydrodynamics simulations. We find that 69% of the clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong H{alpha} emission. The cluster luminosity function slope of 2.1-2.3 for NGC 922 is in agreement with those of young clusters in nearby galaxies. Models of the cluster age distribution match the observations best when cluster disruption is considered. We also find clusters with ages (>50 Myr) and masses (>10{sup 5} M {sub sun}) that are excellent progenitors for faint fuzzy clusters. The images also show a tidal plume pointing toward the companion. Its stellar age from our analysis is consistent with pre-existing stars that were stripped off during the passage of the companion. Finally, a comparison of the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS field indicates very similar masses and sizes, suggesting similar origins.

  8. The Hubble Heritage Image of the Polar-Ring Galaxy NGC 4650A

    NASA Astrophysics Data System (ADS)

    Kinney, A. L.; Gallagher, J.; Matthews, L.; Sparke, L.; Bond, H. E.; Christian, C. A.; English, J.; Frattare, L.; Hamilton, F.; Levay, Z.; Noll, K.; Hubble Heritage Team

    1999-05-01

    The Hubble Heritage Project has the aim of providing the public with pictorially striking images of celestial objects obtained with the Hubble Space Telescope. As part of the Heritage Project, we have used HST to obtain a multi-color image of the peculiar galaxy NGC 4650A. This was the first Heritage observation for which the public joined in the target selection. NGC 4650A was chosen in the winter of 1998-99 from among several candidate objects by over 8,000 members of the public, who used the Heritage web site (heritage.stsci.edu) to register their votes. The WFPC2 observations were obtained in April 1999, in the wide B (F450W), wide V (F606W), and I (F814W) bands. The resulting full-color image will be presented at the AAS meeting and on our web site, and the actual data frames are available publicly in the HST archive for use by interested scientists. NGC 4650A, located at a distance of about 40 Mpc, is the best-known and most spectacular example of the rare class of ``polar-ring'' galaxies. These objects are probably the remnants of collisions, in which the debris from a disrupted, gas-rich smaller galaxy has gone into orbit around a larger galaxy. The HST image of NGC 4650A shows a rotating, almost edge-on inner disk of old red stars, around which orbits a younger ring of dust, gas, and stars, in a plane that is nearly perpendicular to that of the old disk. Numerous young blue star clusters reveal that active star formation is occurring within the polar ring, triggered by the collision process. Polar rings are particularly useful for probing the distribution of dark matter in galactic halos.

  9. NGC 7217: A Spheroid-dominated, Early-Type Resonance Ring Spiral Galaxy

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.; Wakamatsu, K.; Sofue, Y.; Tomita, A.

    1995-09-01

    NGC 7217 is a well-known northern spiral galaxy which is characterized by flocculent spiral structure and a series of three optical ringlike zones: a nuclear ring 21" in diameter, a weak inner ring 63" in diameter, and a striking outer ring 2'.6 in diameter. The rings all have nearly the same shape and position angle in projection. The appearance of the galaxy suggests that it may be more axisymmetric than the typical spiral galaxy, since there is little evidence for the presence of a bar, oval, or stellar density wave. This makes the origin of the ring features uncertain. In an effort to understand this kind of ringed galaxy, which is by no means typical, we have obtained multicolor CCD BVRI images, accurate surface photometry, mappings of the CO and H I gas distributions, and rotational velocities from Hα and H I spectral line data. Our deep surface photometry has revealed an important feature of NGC 7217 that was missed in previous studies: The region occupied by the rings of the galaxy is surrounded by an extensive, nearly circular luminous halo. This halo cannot be merely an extension of the disk component because it is much rounder than the inner regions. Instead, we believe the light represents either the outer regions of the bulge or a separate stellar halo component. We are able to successfully model the luminosity profile in terms of an r114 "spheroid" and an exponential disk with a spheroid-to-total disk (including rings) luminosity ratio of 2.3-2.4. This makes NGC 7217 one of the most spheroid-dominated spirals known, and the finding has important implications for the recent discovery by Merrifield and Kuijken of a significant population of counter-rotating stars in the galaxy. Although the spiral structure of NGC 7217 is flocculent in blue light, there is a definite two-armed stellar spiral in the region of the outer ring. This ring includes about 4.4% of the total blue luminosity and is the locus of most of the recent star formation in the galaxy

  10. Compact stellar systems in the polar ring galaxies NGC 4650A and NGC 3808B: Clues to polar disk formation

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Georgiev, Iskren Y.; Puzia, Thomas H.; Goudfrooij, Paul; Arnaboldi, Magda

    2016-01-01

    Context. Polar ring galaxies (PRGs) are composed of two kinematically distinct and nearly orthogonal components, a host galaxy (HG) and a polar ring/disk (PR). The HG usually contains an older stellar population than the PR. The suggested formation channel of PRGs is still poorly constrained. Suggested options are merger, gas accretion, tidal interaction, or a combination of both. Aims: To constrain the formation scenario of PRGs, we study the compact stellar systems (CSSs) in two PRGs at different evolutionary stages: NGC 4650A with well-defined PR, and NGC 3808 B, which is in the process of PR formation. Methods: We use archival HST/WFPC2 imaging in the F450W, F555W, or F606W and F814W filters. Extensive completeness tests, PSF-fitting techniques, and color selection criteria are used to select cluster candidates. Photometric analysis of the CSSs was performed to determine their ages and masses using stellar population models at a fixed metallicity. Results: Both PRGs contain young CSSs (<1 Gyr) with masses of up to 5 × 106M⊙, mostly located in the PR and along the tidal debris. The most massive CSSs may be progenitors of metal-rich globular clusters or ultra compact dwarf (UCD) galaxies. We identify one such young UCD candidate, NGC 3808 B-8, and measure its size of reff = 25.23+1.43-2.01 pc. We reconstruct the star formation history of the two PRGs and find strong peaks in the star formation rate (SFR, ≃200 M⊙/yr) in NGC 3808 B, while NGC 4650 A shows milder (declining) star formation (SFR< 10 M⊙/yr). This difference may support different evolutionary paths between these PRGs. Conclusions: The spatial distribution, masses, and peak star formation epoch of the clusters in NGC 3808 suggest for a tidally triggered star formation. Incompleteness at old ages prevents us from probing the SFR at earlier epochs of NGC 4650 A, where we observe the fading tail of CSS formation. This also impedes us from testing the formation scenarios of this PRG.

  11. Identification of an Extensive Luminous Halo Around the Ringed Spiral Galaxy NGC 7217

    NASA Astrophysics Data System (ADS)

    Buta, R.; van Driel, W.; Braine, J.; Combes, F.

    1993-12-01

    The isolated spiral galaxy NGC 7217 is characterized by flocculent spiral structure and three optical ring-like zones: a stellar nuclear ring, a weak inner pseudoring, and a bright patchy outer ring. The rings all have nearly the same shape and position angle in projection. To understand this kind of ringed galaxy, we have obtained deep CCD BVRI surface photometry and mapping of the CO and HI gas distributions and kinematics. Our images reveal something that was missed in previous studies: a large, nearly round halo of light extending far beyond the outer ring. We interpret this as bulge light which comes back to dominate the luminosity distribution at large radii. Ellipse fits to isophotes out to 240('') radius reveal a minimum axis ratio of 0.83 just outside the outer ring at 90('') , and then a rise to 0.96 at about 140('') . The luminosity profiles are well-fitted by a combined r({1/) 4} bulge and exponential disk model. In all filters, the bulge dominates at all radii, and the bulge-to-total disk ratio is about 2.3 (B). If the minimum axis ratio of 0.83 approximates the apparent flattening of the disk, then NGC 7217 is remarkably axisymmetric. Nevertheless, the I-band image reveals a tightly-wrapped, two-armed spiral pattern in the outer ring region. The outer ring includes 4.5% of the total B luminosity and is the locus of most of the recent star formation in the galaxy; it is also where the HI gas is concentrated. An additional noteworthy feature is a circumnuclear dust ring 1.2 kpc in diameter. Other dust lanes are seen only on the near side of the galaxy. The rings of NGC 7217 could be resonances with a very weak internal perturbation. We are attempting to simulate the structure using the I-band light distribution to help define the potential. But most interesting is the recent discovery of a substantial population of counter-rotating stars in the galaxy (Kuijken 1993, PASP, 105, 1016). One possible explanation for these stars is that the bulge is more

  12. Polarimetric imaging of the polar ring galaxy NGC 660 - evidence for dust outside the stellar disk

    NASA Astrophysics Data System (ADS)

    Alton, P. B.; Stockdale, D. P.; Scarrott, S. M.; Wolstencroft, R. D.

    2000-05-01

    Optical imaging polarimetry has been carried out for the polar ring, starburst galaxy NGC 660. This galaxy has a highly inclined, severely tidally-disturbed disk which is surrounded by a gas-rich, polar ring. We detect scattered light from a large part of the halo and this is attributable to dust grains residing up to =~ 2.5 kpc from the stellar disk. There is evidence from emission-line imaging carried out in the past, that NGC 660 is host to an energetic outflow of hot gas along the minor axis (a `superwind'). Our results indicate that dust grains are entrained in this same outflow. Polarization due to scattering, however, is also present at positions away from the minor axis suggesting that grains may also be displaced from the stellar disk by tidal forces exerted during galactic collisions. Where the polar ring occludes the stellar disk we observe polarization due to magnetically aligned, dichroic grains. By comparing the recorded polarization with the associated optical extinction we infer that the magnetic field in the ring has a lower (but still comparable) strength to the magnetic field in the Milky Way. We also derive a dust-to-gas ratio for the ring and this is about a factor of 2-3 lower than in the solar neighbourhood (but close to the value measured in some nearby spirals). If the ring comprises the remnants of the `interloper' which collided with NGC 660, we expect that the ruptured galaxy was a massive, metal-rich spiral.

  13. The NGC 1614 interacting galaxy. Molecular gas feeding a "ring of fire"

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Beswick, R. J.; Gallagher, J. S.

    2013-05-01

    Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2-1) emission using the Submillimeter Array (SMA). We compare our 12CO (2-1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region. The most intense 12CO emission occurs in a partial ring with ~230 pc radius around the center of NGC 1614, with an extension to the northwest into the dust lane that contains diffuse molecular gas. We resolve ten giant molecular associations (GMAs) in the ring, which has an integrated molecular mass of ~8 × 108 M⊙. Our interferometric observations filter out a large part of the 12CO (1-0) emission mapped at shorter spacings, indicating that most of the molecular gas is diffuse and that GMAs only exist near and within the circumnuclear ring. The molecular ring is uneven with most of the mass on the western side, which also contains GMAs extending into a pronounced tidal dust lane. The spatial and kinematic patterns in our data suggest that the northwest extension of the ring is a cosmic umbilical cord that is feeding molecular gas associated with the dust lane and tidal debris into the nuclear ring, which contains the bulk of the starburst activity. The astrophysical process for producing a ring structure for the final resting place of accreted gas in NGC 1614 is not fully understood, but the presence of numerous GMAs suggests an orbit-crowding or resonance phenomenon. There is some evidence that

  14. Two-dimensional Spectroscopy in the Circumnuclear Region of the Seyfert 1 Ring Galaxy NGC 985

    NASA Astrophysics Data System (ADS)

    Arribas, S.; Mediavilla, E.; del Burgo, C.; García-Lorenzo, B.

    1999-02-01

    We present two-dimensional optical spectroscopy of the central region (9.4"×12.2") of the Seyfert 1 ring galaxy NGC 985 obtained with an optical fiber system (two-dimensional Fiber ISIS System). The 95 spectra presented here include the Hβ-[O III] λλ4959, 5007 emission lines and the Mg I b absorption lines, which permit the study of the distribution and kinematics of the ionized gas and the stars in two dimensions. In agreement with the results of other authors, the continuum maps show the presence of two maxima: the bright Seyfert 1 nucleus and a second nucleus located about 3.7" to the northwest. These observations confirm that this second nucleus is an extragalactic object at the same redshift as that of NGC 985. These observations indicate an anisotropic distribution of the ionized gas around the Seyfert nucleus. Despite this, the velocity field of the ionized gas shows a rather regular pattern, its general kinematic properties being similar to those found in other unperturbed spiral Seyfert galaxies. Many of the spectra in the region between the Seyfert and the secondary nucleus have asymmetric and relatively broad [O III] emission-line profiles. The kinematic center of the stellar velocity field is located in the neighborhood of the Seyfert nucleus, suggesting that this nucleus is related to the main stellar component. Therefore, these observations support the hypothesis that NGC 985 is the result of a two-galaxy collision in which the intruder (elliptical or spheroidal) galaxy would be what is now the secondary nucleus, while the Seyfert activity is associated with the nucleus of the primary disk galaxy. In spite of the strong disruption that defines the large-scale morphology of NGC 985, the stellar and ionized gas kinematics do not appear significantly perturbed in the circumnuclear region.

  15. Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Dennefeld, M.; Materne, J.

    1980-09-01

    Among the 338 exotic, intriguing and/or fascinating objects contained in Arp's catalogue of peculiar galaxies, two, Arp 146 and 147, are calling special attention as a presumably separate class of objects displaying closed rings with almost empty interior. It is difficult to find out when, historically speaking, attention was called first to this type of object as a peculiar class, but certainly ga1axies with rings were widely found and recognized in the early sixties, ul}der others by Vorontsov-Velyaminov (1960), Sandage (1961) in the Hubble Atlas or de Vaucouleurs (1964) in the first reference catalogue of ga1axies. The most recent estimates by Arp and Madore (1977) from a search on about 200 Schmidt plates covering 7,000 square degrees give 3.6 per cent of ring galaxies among 2,784 peculiar galaxies found. However, despite the mythological perfection associated with a circle, some ordering is necessary before trying to understand the nature of such objects. This is particularly true because a large fraction of those galaxies with rings are probably normal spiral galaxies of type RS or S(r) as defined by de Vaucouleurs, where the spiral arms are simply "closing the circle". A good example of such "ordinary" galaxy is NGC 3081 in the Hubble Atlas .

  16. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  17. Ultraviolet Signposts of Resonant Dynamics in the Starburst-ringed SAB Galaxy M94 (NGC 4736)

    NASA Astrophysics Data System (ADS)

    Waller, William H.; Fanelli, Michael N.; Keel, William C.; Bohlin, Ralph; Collins, Nicholas R.; Madore, Barry F.; Marcum, Pamela M.; Neff, Susan G.; O'Connell, Robert W.; Offenberg, Joel D.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    2001-03-01

    The dynamic orchestration of star-birth activity in the starburst-ringed galaxy M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (UIT; far-ultraviolet [FUV] band), Hubble Space Telescope (HST; near-ultraviolet [NUV] band), Kitt Peak 0.9 m telescope (Hα, R, and I bands), and Palomar 5 m telescope (B band), along with spectra from the International Ultraviolet Explorer (IUE) and the Lick 1 m telescope. The wide-field UIT image shows FUV emission from (1) an elongated nucleus, (2) a diffuse inner disk, where Hα is observed in absorption, (3) a bright inner ring of H II regions at the perimeter of the inner disk (R=48"=1.1 kpc), and (4) two 500 pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R=130"=2.9 kpc). The HST Faint Object Camera image resolves the NUV emission from the nuclear region into a bright core and a faint 20" long ``minibar'' at a position angle of 30°. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates a ~107-108 yr old stellar population from low-level star-birth activity blended with some LINER activity. Analysis of the Hα-, FUV-, NUV-, B-, R-, and I-band emissions, along with other observed tracers of stars and gas in M94, indicates that most of the star formation is being orchestrated via ring-bar dynamics, involving the nuclear minibar, inner ring, oval disk, and outer ring. The inner starburst ring and bisymmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of ~1.5 provides an important precedent in this regard.

  18. PHYSICAL PROPERTIES OF THE CIRCUMNUCLEAR STARBURST RING IN THE BARRED GALAXY NGC 1097

    SciTech Connect

    Hsieh, Pei-Ying; Matsushita, Satoki; Ho, Paul T. P.; Wu, Ya-Lin; Liu, Guilin; Oi, Nagisa

    2011-08-01

    We report high-resolution {sup 12}CO(J = 2-1), {sup 13}CO(J = 2-1), and {sup 12}CO(J = 3-2) imaging of the Seyfert 1/starburst ring galaxy NGC 1097 with the Submillimeter Array for the purpose of studying the physical and kinematic properties of the 1 kpc circumnuclear starburst ring. Individual star clusters as detected in the Hubble Space Telescope map of Pa{alpha} line emission have been used to determine the star formation rate (SFR), and are compared with the properties of the molecular gas. The molecular ring has been resolved into individual clumps at the giant molecular cloud association (GMA) scale of 200-300 pc in all three CO lines. The intersection between the dust lanes and the starburst ring, which is associated with the orbit-crowding region, is resolved into two physically/kinematically distinct features in the 1.''5 x 1.''0 (105 x 70 pc) {sup 12}CO(J = 2-1) map. The clumps associated with the dust lanes have broader line widths, higher surface gas densities, and lower SFRs, while the narrow line clumps associated with the starburst ring have opposite characteristics. A Toomre-Q value lower than unity at the radius of the ring suggests that the molecular ring is gravitationally unstable to fragmentation at GMA scale. The line widths and surface density of the gas mass of the clumps show an azimuthal variation related to the large-scale dynamics. The SFR, on the other hand, is not significantly affected by the dynamics, but has a correlation with the intensity ratio of {sup 12}CO (J = 3-2) and {sup 12}CO(J = 2-1), which traces the denser gas associated with star formation. Our resolved CO map, especially in the orbit-crowding region, observationally demonstrates for the first time that the physical/kinematic properties of GMAs are affected by the large-scale bar-potential dynamics in NGC 1097.

  19. The far-infrared morphology of the double-ringed galaxy NGC 4736 (M94) - A ring surrounding an extended nucleus

    NASA Technical Reports Server (NTRS)

    Smith, Beverly J.; Lester, D. F.; Harvey, P. M.; Pogge, R. W.

    1991-01-01

    High spatial resolution 100-micron observations of the central region of the double-ringed spiral galaxy NGC 4736 (M94) were obtained using the Kuiper Airborne Observatory. The data show a strong central peak with secondary peaks at the radius of the inner ring (50 arcsec = 1.6 kpc). The nuclear emission is extended at 100 microns, with a radius of 15 arcsec (500 pc). The far-infrared morphology is similar to that of the molecular gas, while the H I distribution shows a pronounced central depression. Since most of the hydrogen gas in the inner regions of NGC 4736 is in molecular form, it is concluded that the far-infrared emission from NGC 4736 arises mainly from dust associated with molecular gas. The H-alpha distribution differs dramatically from the far-infrared and molecular gas distributions. The ring dominates the H-alpha emission, while the total 100-micron ring emission is only slightly larger than that of the nucleus, yielding an L(FIR)/L(H-alpha) for the nucleus about 100 times that of the ring. The bolometric luminosity of the stars in the inner 1 kpc of NGC 4736 is sufficient to power the far-infrared from this region, which suggests that a significant fraction of the far-infrared emission in the nuclear region of NGC 4736 is powered by non-OB stars rather than by star formation.

  20. The Rings Survey. I. Hα and H I Velocity Maps of Galaxy NGC 2280

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl J.; Williams, T. B.; Spekkens, Kristine; Lee-Waddell, K.; Kuzio de Naray, Rachel; Sellwood, J. A.

    2015-03-01

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry-Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280. Based in part on observations obtained with the Southern African Large Telescope (SALT) program 2011-3-RU-003.

  1. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  2. Starburst Galaxy NGC 3310

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists using NASA's Hubble Space Telescope are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings.

    This month's Hubble Heritage image showcases the galaxy NGC 3310. It is one of several starburst galaxies, which are hotbeds of star formation, being studied by Dr. Gerhardt Meurer and a team of scientists at Johns Hopkins University, Laurel, Md.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://heritage.stsci.edu and http://oposite.stsci.edu/pubinfo/pr/2001/26 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Most galaxies form new stars at a fairly slow rate, but starburst galaxies blaze with extremely active star formation. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue and older stars redder, the colors relate to their ages.

    NGC 3310 is forming clusters of new stars at a prodigious rate. The new image shows several hundred star clusters, visible as the bright blue, diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy.

    The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more than one hundred million years. This suggests that the starburst 'turned on' more than 100 million years ago. It may have been triggered when NGC 3310 collided with a companion galaxy.

    These observations may change astronomers' view of starbursts. Starbursts were once

  3. Galaxy NGC5474

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  4. NGC 3124: A Resonance Ring Disk Galaxy with a Skewed Bar

    NASA Astrophysics Data System (ADS)

    Treuthardt, P.; Seigar, M. S.; Salo, H.; Kennefick, D.; Kennefick, J.; Lacy, C. H. S.

    2014-03-01

    NGC 3124 is a highly regular SB(r)bc galaxy harboring a skewed bar that appears to be a very open spiral, counter-winding relative to the outer spiral arms. We investigate whether such bar morphology can be due to secular processes or if a more violent interaction is necessary. We find that the dust morphology observed in the bar region has the same sense of winding as the outer spiral arms. We also find that the gas kinematics are consistent across the galaxy. Finally, we attempt to recreate the observed stellar morphology by simulating the behavior of a large number of stellar test particles in a rigidly rotating gravitational potential. We are able to reproduce the skewed stellar bar but find that it is transient in nature. This evidence is a strong indication that secular processes are responsible for this unusual bar morphology.

  5. Ring Around a Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).

  6. Distribution of Molecules in the Circumnuclear Disk and Surrounding Starburst Ring in the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, S.; Nakajima, T.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We report distributions of several molecular transitions including shock and dust related species (13CO and C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with ALMA. The central ˜1' (˜4.3 kpc) of this galaxy was observed in the 100 GHz region with an angular resolution of ˜4" x 2" (290 pc x 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. We report a classification of molecular distributions into three main categories. Organic molecules such as CH3CN are found to be concentrated in the circumnuclear disk. In the starburst ring, the intensity of methanol at each clumpy region is not consistent with that of 13CO.

  7. Pseudobulges in the Disk Galaxies NGC 7690 and NGC 4593

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Cornell, Mark E.; Block, David L.; Knapen, Johan H.; Allard, Emma L.

    2006-05-01

    We present Ks-band surface photometry of NGC 7690 (Hubble type Sab) and NGC 4593 (SBb). We find that, in both galaxies, a major part of the ``bulge'' is as flat as the disk and has approximately the same color as the inner disk. In other words, the ``bulges'' of these galaxies have disklike properties. We conclude that these are examples of ``pseudobulges,'' that is, products of secular dynamical evolution. Nonaxisymmetries such as bars and oval disks transport disk gas toward the center. There star formation builds dense stellar components that look like-and often are mistaken for-merger-built bulges, but that were constructed slowly out of disk material. These pseudobulges can most easily be recognized when, as in the present galaxies, they retain disklike properties. NGC 7690 and NGC 4593 therefore contribute to the growing evidence that secular processes help to shape galaxies. NGC 4593 contains a nuclear ring of dust that is morphologically similar to nuclear rings of star formation that are seen in many barred and oval galaxies. The nuclear dust ring is connected to nearly radial dust lanes in the galaxy's bar. Such dust lanes are a signature of gas inflow. We suggest that gas is currently accumulating in the dust ring and hypothesize that the gas ring will starburst in the future. The observations of NGC 4593 therefore suggest that major starburst events that contribute to pseudobulge growth can be episodic. Based on observations made with the Anglo-Australian Telescope. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The observations of NGC 7690 are associated with program IDs 7331 (NICMOS: M. Stiavelli) and 6359 (WFPC2: M. Stiavelli). The observations of NGC 4593 are associated with program IDs 7330 (NICMOS: J. Mulchaey), and 5479

  8. Magnetic fields in ring galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Mikhailov, E.; Silchenko, O.; Sokoloff, D.; Horellou, C.; Beck, R.

    2016-07-01

    Context. Many galaxies contain magnetic fields supported by galactic dynamo action. The investigation of these magnetic fields can be helpful for understanding galactic evolution; however, nothing definitive is known about magnetic fields in ring galaxies. Aims: Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. Methods: We use tested methods for modelling α-Ω galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Results: Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513, where the ring counter-rotates with respect to the disc. Strong shear in the region between the disc and the ring is associated with unusually strong dynamo drivers in such counter-rotators. The effect of the strong drivers is found to be unexpectedly moderate. With counter-rotation in the disc, a generic model shows that a steady mixed parity magnetic configuration that is unknown for classical spiral galaxies, may be excited, although we do not specifically model NGC 4513. Conclusions: We deduce that ring galaxies constitute a morphological class of galaxies in which identification of large-scale magnetic fields from observations of polarized radio emission, as well as dynamo modelling, may be possible. Such studies have the potential to throw additional light on the physical nature of rings, their lifetimes, and evolution.

  9. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  10. Galaxy NGC 1850

    NASA Technical Reports Server (NTRS)

    1999-01-01

    By spying on a neighboring galaxy, NASA's Hubble Space Telescope has captured an image of a young, globular-like star cluster -- a type of object unknown in our Milky Way Galaxy.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/25 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The double cluster NGC 1850 lies in a neighboring satellite galaxy, the Large Magellanic Cloud. It has two relatively young components. The main, globular-like cluster is in the center. A smaller cluster is seen below and to the right, composed of extremely hot, blue stars and fainter red T-Tauri stars. The main cluster is about 50 million years old; the smaller one is 4 million years old.

    A filigree pattern of diffuse gas surrounds NGC 1850. Scientists believe the pattern formed millions of years ago when massive stars in the main cluster exploded as supernovas.

    Hubble can observe a range of star types in NGC 1850, including the faint, low-mass T-Tauri stars, which are difficult to distinguish with ground-based telescopes. Hubble's fine angular resolution can pick out these stars, even in other galaxies. Massive stars of the OB type emit large amounts of energetic ultraviolet radiation, which is absorbed by the Earth's atmosphere. From Hubble's position above the atmosphere, it can detect this ultraviolet light.

    NGC 1850, the brightest star cluster in the Large Magellanic Cloud, is in the southern constellation of Dorado, called the Goldfish or the Swordfish. This image was created from five archival exposures taken by the Wide Field Planetary Camera 2 between April 3, 1994 and February 6, 1996. More information about the Hubble Space Telescope is online at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore

  11. Galaxy NGC 4013

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An amazing 'edge-on' view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image, available at http://www.jpl.nasa.gov/pictures/wfpc , reveals in great detail huge clouds of dust and gas extending along and above the galaxy's main disk.

    The image was taken by Hubble's Wide Field and Planetary Camera 2, which was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The galaxy, called NGC 4013, lies in the direction of the constellation Ursa Major. If we could see it pole-on, it would look like a nearly circular pinwheel. In this Hubble image, NGC 4013 is seen edge-on, from our vantage point. Because the galaxy is larger than Hubble's field of view, the image shows only a little more than half the object, but with unprecedented detail.

    Dark clouds of interstellar dust stand out, since they absorb the light of background stars. Most of the clouds lie in the galaxy's plane and form the dark band, about 500 light years thick, that appears to cut the galaxy in two from upper right to lower left. Scientists believe that new stars form in dark interstellar clouds. NGC 4013 shows several examples of these stellar kindergartens near the center of the image, in front of the dark band along the galaxy's equator. One extremely bright star near the upper left corner is merely a nearby foreground star that lies in our Milky Way and happened to be in the line of sight.

    This new picture was constructed from Hubble images taken in January 2000 by Dr. J. Christopher Howk of Johns Hopkins University, Baltimore, Md., and Dr. Blair D. Savage of the University of Wisconsin-Madison. Images taken through three different filters have been combined into a color composite covering the region of the galaxy nucleus (behind the bright foreground star at the upper left) and extending along one edge of the galaxy to the lower right.

    The Space Telescope Science Institute, Baltimore, Md., manages space

  12. Galaxy NGC 1512

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A rainbow of colors is captured in the center of a magnificent barred spiral galaxy, as witnessed by the three cameras of NASA's Hubble Space Telescope.

    The color-composite image of the galaxy NGC 1512 was created from seven images taken with the JPL-designed and built Wide Field and Planetary Camera 2 (WFPC-2), along with the Faint Object Camera and the Near Infrared Camera and Multi-Object Spectrometer. Hubble's unique vantage point high above the atmosphere allows astronomers to see objects over a broad range of wavelengths from the ultraviolet to the infrared and to detect differences in the regions around newly born stars.

    The new image is online at http://oposite.stsci.edu/pubinfo/pr/2001/16 and http://www.jpl.nasa.gov/images/wfpc .

    The image reveals a stunning 2,400 light-year-wide circle of infant star clusters in the center of NGC 1512. Located 30 million light-years away in the southern constellation of Horologium, NGC 1512 is a neighbor of our Milky Way galaxy.

    With the Hubble data, a team of Israeli and American astronomers performed one of the broadest, most detailed studies ever of such star-forming regions. Results will appear in the June issue of the Astronomical Journal. The team includes Dr. Dan Maoz, Tel-Aviv University, Israel and Columbia University, New York, N.Y.; Dr. Aaron J. Barth, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Dr. Luis C. Ho, The Observatories of the Carnegie Institution of Washington; Dr. Amiel Sternberg, Tel-Aviv University, Israel; and Dr. Alexei V. Filippenko, University of California, Berkeley.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international

  13. COOL DUST IN THE OUTER RING OF NGC 1291

    SciTech Connect

    Hinz, J. L.; Engelbracht, C. W.; Skibba, R.; Montiel, E.; Crocker, A.; Calzetti, D.; Donovan Meyer, J.; Sandstrom, K.; Walter, F.; Groves, B.; Meidt, S. E.; Johnson, B. D.; Hunt, L.; Aniano, G.; Draine, B.; Murphy, E. J.; Armus, L.; Dale, D. A.; Galametz, M.; Kennicutt, R. C.; and others

    2012-09-01

    We examine Herschel Space Observatory images of one nearby prototypical outer ring galaxy, NGC 1291, and show that the ring becomes more prominent at wavelengths longer than 160 {mu}m. The mass of cool dust in the ring dominates the total dust mass of the galaxy, accounting for at least 70% of it. The temperature of the emitting dust in the ring (T = 19.5 {+-} 0.3 K) is cooler than that of the inner galaxy (T = 25.7 {+-} 0.7 K). We discuss several explanations for the difference in dust temperature, including age and density differences in the stellar populations of the ring versus the bulge.

  14. Magnetic Fields in Barred Spiral Galaxies: NGC 2442 & NGC 7552

    NASA Astrophysics Data System (ADS)

    Ehle, M.; Harnett, J. I.; Beck, R.; Haynes, R. F.; Gray, A.

    2002-12-01

    We report on the total and polarised radio continuum emission of the southern barred galaxies NGC 2442 and NGC 7552 observed with the ATCA at λ6 cm (cf. Harnett et al. 2002). These galaxies form part of a sample of 20 barred galaxies mapped at several wavelengths with the ATCA and VLA (Beck et al. 2002) to study the role of magnetic fields in the bar with respect to the gas flow and star formation.

  15. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of

  16. Magnetic Fields in the Barred Galaxies NGC 1097 and NGC 1365

    NASA Astrophysics Data System (ADS)

    Shoutenkov, V.; Beck, R.; Shukurov, A.; Sokoloff, D.

    New polarization observations of the barred galaxies NGC 1097 and NGC 1365 have been made with the VLA at 6.2 and 3.5 cm. At both frequencies, NGC 1097 shows a strip of depolarization along the bar where the magnetic field is deflected by almost 90 degrees. Beck et al. (Nature, Vol. 397, p. 324) interpreted this strip as the location of a shear shock front which does not coincide with the dust lanes. Similar depolarized strips, also shifted from the dust lanes, are seen in NGC 1365. However, the magnetic field in this galaxy reveals a much smoother change in orientation than in NGC1097. Furthermore, high-resolution images of central ring in NGC 1097 have been obtained. The total power image shows individual blobs which correspond to magnetic field concentrations, not to star-formation regions in the ring. The magnetic field in the ring has a complex structure with a dominant spiral component. This may lead to mass inflow towards the active nucleus.

  17. LENTICULAR GALAXIES AT THE OUTSKIRTS OF THE LEO II GROUP: NGC 3599 AND NGC 3626

    SciTech Connect

    Sil'chenko, O. K.; Shulga, A. P.; Moiseev, A. V. E-mail: alina.shulga@gmail.co

    2010-11-15

    We have studied unbarred S0 galaxies, NGC 3599 and NGC 3626, the members of the X-ray bright group Leo II, by means of three-dimensional spectroscopy, long-slit spectroscopy, and imaging, with the aim of identifying the epoch and mechanisms of their transformation from spirals. Both galaxies have appeared to bear complex features obviously resulting from minor merging: decoupled gas kinematics, nuclear star-forming rings, and multi-tiered oval large-scale stellar disks. The weak emission line nucleus of NGC 3599 bears all signs of Seyfert activity, according to the line-ratio diagnostics of the gas excitation mechanism. We conclude that the transformation of these lenticular galaxies took place about 1-2 Gyr ago, through gravitational mechanisms unrelated to the hot intragroup medium of Leo II.

  18. A tidally distorted dwarf galaxy near NGC 4449.

    PubMed

    Rich, R M; Collins, M L M; Black, C M; Longstaff, F A; Koch, A; Benson, A; Reitzel, D B

    2012-02-01

    NGC 4449 is a nearby Magellanic irregular starburst galaxy with a B-band absolute magnitude of -18 and a prominent, massive, intermediate-age nucleus at a distance from Earth of 3.8 megaparsecs (ref. 3). It is wreathed in an extraordinary neutral hydrogen (H I) complex, which includes rings, shells and a counter-rotating core, spanning ∼90 kiloparsecs (kpc; refs 1, 4). NGC 4449 is relatively isolated, although an interaction with its nearest known companion--the galaxy DDO 125, some 40 kpc to the south--has been proposed as being responsible for the complexity of its H I structure. Here we report the presence of a dwarf galaxy companion to NGC 4449, namely NGC 4449B. This companion has a V-band absolute magnitude of -13.4 and a half-light radius of 2.7 kpc, with a full extent of around 8 kpc. It is in a transient stage of tidal disruption, similar to that of the Sagittarius dwarf near the Milky Way. NGC 4449B exhibits a striking S-shaped morphology that has been predicted for disrupting galaxies but has hitherto been seen only in a dissolving globular cluster. We also detect an additional arc or disk ripple embedded in a two-component stellar halo, including a component extending twice as far as previously known, to about 20 kpc from the galaxy's centre. PMID:22318602

  19. MASSIVE BLACK HOLES IN GALAXIES NGC 3377, NGC 3379 AND NGC 4486B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The three galaxies above are believed to contain central, supermassive black holes. The galaxy NGC 4486B (lower-left) shows a double nucleus (lower-right). The images of NGC 3377 and NGC 4486B are 2.7 arcseconds on a side, and for NGC 3379 the size is 5.4 arcseconds; the lower-right is a blow-up of the central 0.5 arcseconds of NGC 4486B. Credit: Karl Gebhardt (University of Michigan) and Tod Lauer (NOAO)

  20. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    SciTech Connect

    Monje, R. R.; Lis, D. C.; Phillips, T. G.; Lord, S.; Falgarone, E.; Güsten, R.

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  1. Hydrogen Fluoride toward Luminous Nearby Galaxies: NGC 253 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Monje, R. R.; Lord, S.; Falgarone, E.; Lis, D. C.; Neufeld, D. A.; Phillips, T. G.; Güsten, R.

    2014-04-01

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H2)out ~ 1 × 107 M ⊙ and an outflow rate as large as dot M ~6.4 M ⊙ yr-1. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of <=1.2 M ⊙ yr-1, inside an inner radius of <=200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  2. Mapping the HI Neighborhood Around Starburst Dwarf Galaxies NGC 1569, NGC 4214 and NGC 4163

    NASA Astrophysics Data System (ADS)

    Johnson, Megan C.; LITTLE THINGS Team

    2013-01-01

    Dwarf galaxies are believed to be the building blocks of larger galaxies. However, there are some studies that indicate the dwarf galaxies observed in the nearby universe may have formed later, after the most massive galaxies coalesced. Dwarf galaxy formation and evolution is important for our understanding of cosmology. If dwarf galaxies mimic their more massive counterparts, then starburst dwarfs may be present day merger remnants and provide information on the building block hypothesis. The origins of starburst dwarf irregular galaxies of the Magellanic type (dIm) are not well known. The role of interactions and mergers as mechanisms to create these systems has been hypothesized, but not well studied. We present deep HI maps around three starburst dwarf galaxies NGC 1569, NGC 4214 and NGC 4163. The purpose of these maps is to determine if there are tenuous HI structures around these objects that would indicate a recent interaction or merger. We detect HI filamentary structures that may be connected with NGC 1569 thereby indicating a recent interaction with nearby dwarf irregular UGCA 92. However, our map of NGC 4163 and NGC 4214 does not show any tenuous HI at our 5σ sensitivity limit of 1 x 10^18 for a 25 km/s line width.

  3. Molecular Gas Kinematics and Line Diagnostics in Early-type Galaxies: NGC 4710 & NGC 5866

    NASA Astrophysics Data System (ADS)

    Topal, Selçuk; Bureau, Martin; Davis, Timothy A.; Krips, Melanie; Young, Lisa M.; Crocker, Alison F.

    2016-09-01

    We present interferometric observations of CO lines (12CO(1-0, 2-1) and 13CO(1-0, 2-1)) and dense gas tracers (HCN(1-0), HCO+(1-0), HNC(1-0) and HNCO(4-3)) in two nearby edge-on barred lenticular galaxies, NGC 4710 and NGC 5866, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of each kinematic component's integrated line intensities as a function of projected position, and third we model these line ratios using a non-local thermodynamic equilibrium radiative transfer code. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter, optically thinner and with a larger dense gas fraction than that in the inner rings, suggesting more dense clumps immersed in a hotter more diffuse molecular medium. This is consistent with evidence that the physical conditions in the nuclear discs are similar to those in photo-dissociation regions. A similar picture emerges when comparing the observed molecular line ratios with those of other galaxy types. The physical conditions of the molecular gas in the nuclear discs of NGC 4710 and NGC 5866 thus appear intermediate between those of spiral galaxies and starbursts, while the star formation in their inner rings is even milder.

  4. Near-infrared continuum and 3.3 micrometer(s) polycyclic aromatic hydrocarbon imaging of the starburst ring in the type 1 Seyfert galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Mazzarella, J. M.; Voit, G. M.; Soifer, B. T.; Matthews, K.; Graham, J. R.; Armus, L.; Shupe, D.

    1994-01-01

    High resolution near-infrared images of the type 1 Seyfert galaxy NGC 7469 have been obtained to probe its dusty nuclear environment. Direct J, H, and K images are relatively featureless, but residual images created by subtracting a smooth model based on best-fitting elliptical isophotes reveal a tight inner spiral whose high surface-brightness portions correspond to a previously detected 3 sec (1 kpc) diameter ring of radio continuum emission. The inner infrared spiral arms extended approximately equal to 4 sec NW and SE from the nucleus, and the NW arm joins up with large-scale spiral structure visible in the R band. The residual images also show a bar-like structure aligned with the brightest infrared/radio hotspots at PA approximately equal to 50 deg. Three infrared hotspots are detected which align remarkably well with 6 cm radio continuum sources. The near-infrared ring and the hotspots are visible in the residual images, and in a high-resolution direct K-band image restored to an effective resolution of 0.65 sec (FWHM) using the Richardson-Lucy algorithm. The infrared hotspots have luminosities of nuL(sub nu) (2.2 micrometer(s)) approximately equal to 10(exp 8) solar luminosity (M(sub k) approximately equal to -16 mag), suggesting they are either giant H II regions or individual supernovae. The two brightest regions may be associated with enhanced star formation triggered by orbit crowding of gas where spiral arms emerge from an inner bar. Narrowband (delta lambda/lambda approximately 1.5%) imaging in the 3.28 micrometer(s) dust emission feature and surrounding continuum confirms the 3 sec diameter 3.28 micrometer(s) emission region detected previously using multiaperture photometry. The extended polycyclic aromatic hydrocarbon (PAH) emission is slightly elongated and aligned with published 1O III1 line emission and 12.5 micrometer(s) continuum emission, apparently tracing the starburst. The presence of approximately equal to 25% of the total 3.28 micrometer

  5. ASCA observation of three bright early-type galaxies: NGC 4472, NGC 4406, and NGC 4636

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Mushotzky, Richard; Tsuru, Takeshi; Fabian, Andrew C.; Fukazawa, Yasushi; Loewenstein, Michael; Makishima, Kazuo; Matsumoto, Hironori; Matsushita, Kyoko; Mihara, Tatehiro

    1994-01-01

    We report Advanced Satellite for Cosmology and Astrophysics (ASCA) 0.3-10 keV and X-ray observations of three early type galaxies, NGC 4472, NGC 4406, and NGC 4636. The extended mission in these galaxies is well described by thin thermal eimssion from hot gas. The gas temperature is 0.92 +/- 0.02 keV for NGC 4472, 0.79 +/- 0.01 keV for NGC 4406, and 0.73 +/- 0.02 keV for NGC 4636. The metal abundance for NGC 4472, NGC 4406, and NGC 4636 are, under the assumption of solar ratios, 0.63 +/- 0.15, 0.45 +/- 0.10, and 0.38 +/- 0.07, respectively. Detailed analysis has allowed determination of the abundances of oxygen, silicon, sulfur, and iron. The observed abundances are consistent with the solar ratios. For NGC 4472 and NGC 4406 we also determined the mean temperature of the gas producing the Si lines from the ratio of the Si H to He-like lines and find it to be consistent with the continuum temperature. The X-ray temperature is in good agreement with the observed optical velocity dispersion, stellar density profile, and gas density profile. Our data indicates that the supernova rate should be less than one fifth of the nominal rate in early type galaxies. We derive the mass of these systems within fixed angular scales and find that M/L greater than 40, confirming that elliptical galaxies are dark matter dominated at large radii.

  6. Turbulence in the harassed galaxy NGC4254

    NASA Astrophysics Data System (ADS)

    Dutta, Prasun; Begum, Ayesha; Bharadwaj, Somnath; Chengalur, Jayaram N.

    2010-06-01

    Galaxy harassment is an important mechanism for the morphological evolution of galaxies in clusters. The spiral galaxy NGC4254 in the Virgo cluster is believed to be a harassed galaxy. We have analysed the power spectrum of HI emission fluctuations from NGC4254 to investigate whether it carries any imprint of galaxy harassment. The power spectrum, as determined using the 16 central channels which contain most of the HI emission, is found to be well fitted by a power law P(U) = AUα with α = -1.7 +/- 0.2 at length-scales 1.7 to 8.4kpc. This is similar to other normal spiral galaxies which have a slope of ~ -1.5 and is interpreted as arising from two-dimensional turbulence at length-scales larger than the galaxy's scaleheight. NGC4254 is hence yet another example of a spiral galaxy that exhibits scale-invariant density fluctuations out to length-scales comparable to the diameter of the HI disc. While a large variety of possible energy sources like protostellar winds, supernovae, shocks, etc. have been proposed to produce turbulence, it is still to be seen whether these are effective on length-scales comparable to that of the entire HI disc. On separately analysing the HI power spectrum in different parts of NGC4254, we find that the outer parts have a different slope (α = -2.0 +/- 0.3) compared to the central part of the galaxy (α = -1.5 +/- 0.2). Such a change in slope is not seen in other, undisturbed galaxies. We suggest that, in addition to changing the overall morphology, galaxy harassment also affects the fine scale structure of the interstellar medium, causing the power spectrum to have a steeper slope in the outer parts.

  7. Spectropolarimetry of the rings in NGC6543

    NASA Astrophysics Data System (ADS)

    Schwarz, H.; Bendersky, C.; Corradi, R.

    2005-12-01

    Planetary nebula NGC6543 has a complex structure with a central hot bubble showing both point- and plane symmetry, and a large outer halo that is likely interacting with the local ISM. Between these two structures the HST has revealed a series of a least nine regularly spaced concentric circular rings that are faint and have low contrast. The origin of these rings, which have also been found in other PNe, is not clear. We have taken long-slit spectropolarimetry of these rings using ISIS on the 4.2 meter William Hershel Telescope. Due to the faintness of the rings, only the \\[OIII\\] 500.7nm line had sufficient SN to be of use. We determined the polarization degree and angle in various positions in the core, rings, and outer halo of NGC6543. Only the rings showed significant polarization at 4-5% in a symmetric pattern centered on the central star of the PN, making dust scattering in the rings the likely polarigenic mechanism. Our observations did not have sufficient spectral resolution to distiguish between the two main classes of models that attempt to explain these rings.

  8. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  9. Noncircular outer disks in unbarred S0 galaxies: NGC 502 and NGC 5485

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.

    2016-03-01

    Highly noncircular outer stellar disks have been detected in two SA0 (unbarred) galaxies by comparing the spectroscopic data on the rotation of stars and the photometric data on the shape and orientation of isophotes. In NGC 502, the oval distortion of the disk is manifested in the shape of the inner and outer elliptical rings occupying wide radial zones between the bulge and the disk and at the outer disk edge; such a structure can be a consequence of the so-called "dry minor merger," multiple cannibalization of gas-free satellites. In NGC 5485, the stellar kinematics is absolutely unrelated to the orientation of isophotes in the disk region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.

  10. Hyperactive galaxy NGC 7673 [heic0205

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Hyperactive galaxy NGC 7673 hi-res Size hi-res: 116 kb Credits: European Space Agency & Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison) Hyperactive galaxy NGC 7673 The disturbed spiral galaxy NGC 7673 is ablaze with the light from millions of new stars. Each of its infant giant blue star clusters shines 100 times as brightly in the ultraviolet as similar immense star clusters in our own Galaxy. Scientists studying this object have two pressing questions: "What has triggered this enormous burst of star formation and how will this galaxy evolve in the future?" Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image, to the left and right of NGC 7673. These galaxies are further away and so appear redder, due to their higher redshift, an effect caused by the expansion of the Universe. The youngest blue stars in NGC 7673 are blazing with intense ultraviolet radiation. Each star cluster radiates 100 times more ultraviolet light than the famous Tarantula Nebula (30 Doradus), the largest star-forming region known in the local group of galaxies. Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image

  11. Warped Disks and Inclined Rings around Galaxies

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.

    2006-11-01

    Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.

  12. Warped Disks and Inclined Rings around Galaxies

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano; Sackett, Penny D.; Briggs, Franklin H.

    1991-05-01

    Preface; Acknowledgements; Workshop participants; Group photograph; 1. The intergalactic HI supply F. Briggs; 2. Neutral gas infall into NGC 628 J. Kamphuis and F. Briggs; 3. VLA HI observations of the radio galaxy Centaurus A J. M. van der Hulst, J. H. van Gorkom, A. D. Haschick and A. D. Tubbs; 4. A geometric model for the dust-band of Centaurus A R. A. Nicholson, K. Taylor and J. Bland; 5. The circumgalactic ring of gas in Leo S. E. Schneider; 6. Using gas kinematics to measure M/L in elliptical galaxies T. de Zeeuw; 7. Velocity fields of disks in triaxial potentials P. J. Teuben; 8. Modeling the atomic gas in NGC 4278 J. F. Lees; 9. A few statistics from the catalog of polar-ring galaxies B. C. Whitmore; 10. Dynamics of polar rings L. S. Sparke; 11. Mergers and the structure of disk galaxies L. Hernquist; 12. Formation of polar rings H.-W. Rix and N. Katz; 13. Gas-dynamical models of settling disks D. Christodoulou and J. E. Tohline; 14. Evolutionary processes affecting galactic accretion disks T. Steiman-Cameron; 15. Particle simulations of polar rings T. Quinn; 16. A bending instability in prolate stellar systems D. Merritt; 17. The Milky Way: lopsided or barred? K. Kuijken; 18. Merger origin of starburst galaxies L. Hernquist; 19. Warped and flaring HI disks A. Bosma; 20. Behaviour of warps in extended disks F. Briggs and J. Kamphuis; 21. Observational constraints for the explanation of warps E. Battaner, E. Florido, M.-L. Sanchez-Saavedra and M. Prieto; 22. Warps in S0s: observations versus theories G. Galletta; 23. Warps and bulges J. Pitesky; 24. Time evolution of galactic warps P. Hofner and L. S. Sparke; 25. Are warps normal modes? S. Casertano; 26. Disk warping in a slewing potential E. C. Ostriker; 27. Concluding discussion Moderator: K. C. Freeman; Name index; Object index; Subject index.

  13. HYDRODYNAMICAL SIMULATIONS OF THE BARRED SPIRAL GALAXY NGC 1097

    SciTech Connect

    Lin, Lien-Hsuan; Wang, Hsiang-Hsu; Hsieh, Pei-Ying; Taam, Ronald E.; Yang, Chao-Chin; Yen, David C. C.

    2013-07-01

    NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ring extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable, which is consistent with the observation in Hsieh et al. Our simulations show that the gas inflow rate is 0.17 M{sub Sun} yr{sup -1} into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.

  14. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from

  15. Stellar subsystems of the galaxy NGC 1313

    NASA Astrophysics Data System (ADS)

    Tikhonov, N. A.; Galazutdinova, O. A.

    2016-07-01

    Based on archival Hubble Space Telescope (HST) ACS/WFC images, we have performed stellar photometry for eight fields of the spiral galaxy NGC 1313 and its satellite, the low-mass Sph/Irr galaxy AM0319-662. Stars of various ages have been identified on the constructed Hertzsprung-Russell diagrams: young supergiants, middle-aged stars, and old stars (red giants); their apparent distributions over the body of the galaxy are presented. The red supergiants and giants have been divided into groups with larger and smaller color indices, corresponding to a difference in stellar metallicity. These groups of stars are shown to have different spatial distributions and to belong to two galaxies, NGC1313 itself and the disrupted satellite. We have determined the distance to NGC 1313, D = 3.88 ± 0.07 Mpc, by the TRGB method from six fields. Our photometry of 2014 HST images has revealed an emerged charge transfer inefficiency on the ACS/WFC CCDs, which manifests itself as a dependence of the photometry of stars on their coordinates on the CCD.

  16. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Not so long ago, the real nature of the "spiral nebulae", spiral-shaped objects observed in the sky through telescopes, was still unknown. This long-standing issue was finally settled in 1924 when the famous American astronomer Edwin Hubble provided conclusive evidence that they are located outside our own galaxy and are in fact "island universes" of their own. Nowadays, we know that the Milky Way is just one of billions of galaxies in the Universe. They come in vastly different shapes - spiral, elliptical, irregular - and many of them are simply beautiful, especially the spiral ones. Astronomers Mark Neeser from the Universitäts-Sternwarte München (Germany) and Peter Barthel from the Kapteyn Institute in Groningen (The Netherlands) were clearly not insensitive to this when they obtained images of three beautiful spiral galaxies with ESO's Very Large Telescope (VLT). They did this in twilight during the early morning when they had to stop their normal observing programme, searching for very distant and faint quasars. The resulting colour images ( ESO PR Photos 33a-c/03 ) were produced by combining several CCD images in three different wavebands from the FORS multi-mode instruments. The three galaxies are known as NGC 613, NGC 1792 and NGC 3627 . They are characterized by strong far-infrared, as well as radio emission, indicative of substantial ongoing star-formation activity. Indeed, these images all display prominent dust as well as features related to young stars, clear signs of intensive star-formation. NGC 613 ESO PR Photo 33a/03 ESO PR Photo 33a/03 [Preview - JPEG: 470 x 400 pix - 25k] [Normal - JPEG: 939 x 800 pix - 416k] [Full Res - JPEG: 2702 x 2301 pix - 3.4M] PR Photo 33a/03 of the barred spiral galaxy NGC 613 was obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively) on December 16-18, 2001. It is a composite of three exposures in different wavebands, cf. the technical note below. The full-resolution version

  17. A ring galaxy in Canes Venatici and related ring galaxies

    SciTech Connect

    Wakamatsu, Ken-ichi; Nishida, M.T. Kobe Women's University )

    1991-04-01

    A spectroscopic observation was made of a ring-shaped object in Canes Venatici. A bright knot at the edge of the ring has a recession velocity of 10,960 + or - 30 km/s and so is confirmed as an extragalactic object. It shows no sign of nuclear activity but appears to be an H II region of intermediate excitation class. The linear diameter of the ring is 14.2 + or - 0.8 kpc, a typical size for ring galaxies. Recession velocities of several other ring galaxies are also given. 24 refs.

  18. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    SciTech Connect

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L. E-mail: jlwind@astro.indiana.edu

    2012-10-01

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to help characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.

  19. Photometric study of the peculiar galaxy NGC 2685

    SciTech Connect

    Gagen-Torn, V.A.; Popov, I.I.; Iakovleva, V.A.

    1984-04-01

    The results are given of detailed UBV photometry of the peculiar galaxy NGC 2685 based on 10 negatives obtained with the 2.6-m telescope of the Biurakan Observatory. Consideration of all the available observational data (photometric, spectroscopic, and polarization) suggests that NGC 2685 is a pair of colliding galaxies. 18 references.

  20. Corrugated velocity pattern in spiral galaxies: NGC 278, NGC 1058, NGC 2500 and UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2011-11-01

    We report the detection in Hα emission of a radial corrugation pattern in the vertical velocity field of a sample of nearby face-on, spiral galaxies. We obtain long-slit spectra with the double arm ISIS spectrograph, attached to the 4.2 m William Herschel Telescope. The existence of corrugations has been already reported, e.g. Alfaro et al. (2001), Matthews & Uson (2008). Corrugations are closely link, as cause/effect, to the large scale star formation processes: density waves, tidal interactions, galactic bores, collisions of high velocity clouds with disk, etc. Which mechanism is the origin of disk corrugations is still an open problem. In this work not only the existence of radial and azimuthal corrugations are clearly observed, we report a first systematic study on the velocity corrugations in a sample of nearly face-on spiral galaxies. NGC 278 and NGC 1058 show a similar behavior to NGC 5427 (Alfaro et al. 2001), with a clear displacement between the velocities and emission line peaks. Where the approaching velocity peaks occur in the convex border of the arms, and the receding maxima are located behind the Hα emission maxima, in the concave side. This kinematical behavior is similar to the one expected in a galactic bore generated by the interaction of a spiral density wave with a thick gaseous disk. NGC 2500 and UGC 3574 do not show so clear this last relation between the velocity and emission line peaks, a possible cause should a fainter and discontinuous Hα emission. Oddly, these two pairs of galaxies also differ between them in their ionization mechanism features obtained from diagnostic diagrams.

  1. A GMRT study of Seyfert galaxies NGC 4235 and NGC 4594: evidence of episodic activity?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Ananda, Hota

    2016-06-01

    Low-frequency observations at 325 and 610 MHz have been carried out for two `radio-loud' Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a `relic' radio lobe, most likely from a previous episode of active galactic nucleus (AGN) activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the CLUMPYDREAM code predicts star formation rates (SFRs) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13-0.23 M⊙ yr-1 compared to the required SFR of ˜2.0-2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN powered. SED modelling supports the `true' type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  2. On the formation of ring galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Jiang, Ing-Guey

    2011-08-01

    The formation scenario of ring galaxies is addressed in this paper. We focus on the P-type ring galaxies presented in Madore, Nelson & Petrillo (2009), particularly on the axis-symmetric ones. Our simulations show that a ring can form through the collision of disc and dwarf galaxies, and the locations, widths, and density contrasts of the ring are well determined. We find that a ring galaxy such as AM 2302-322 can be produced by this collision scenario.

  3. NGC 4314 - a Galaxy Dynamicist's Playground

    NASA Astrophysics Data System (ADS)

    Benedict, G. F.; Howell, D. A.; Jorgensen, I.; Smith, B. J.; Kenney, J. D. P.

    2000-05-01

    Every morphological feature of NGC 4314 (see http://oposite.stsci.edu/pubinfo/pr/1998/21/ ) is a consequence of stellar or gas dynamics. Past studies have presented photometric evidence for a number of Lindblad Resonances (Benedict et al. 1992. AJ, 103, 757) and have established the dynamics of molecular gas associated with a 20 arcsec diameter nuclear ring (Benedict, Smith, & Kenney 1996, AJ, 112, 1318). Present day star formation is found nowhere but in this ring. UBVIH-alpha photometry with Hubble Space Telescope WFPC-2 has provided a means to estimate the ages of star clusters associated with the nuclear ring and for two fainter blue arcs just exterior to the ring. Our chronology suggests that the present epoch of star formation has lasted 20My and that the arcs derive from a similar episode that occurred 150My ago. We still lack a satisfactory explanation for the shape and placement of the blue arcs. Future studies (dynamical modeling and integral field spectroscopy of H-alpha emission) may allow us to distinguish between a shrinking ring and spiral pattern driven by a nuclear bar. Benedict thanks the HST Astrometry Science Team (W. H. Jefferys, P.I., O. G. Franz, W. van Altena, R. Duncombe, P. J. Shelus, L. W. Fredrick, and P. D. Hemenway) for their support and encouragement. This research was supported by NASA Grant NAG5-1603 from Goddard Spaceflight Center.

  4. Heating and cooling of the neutral ISM in the NGC 4736 circumnuclear ring

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Armus, L.; Beirao, P.; Sandstrom, K.; Groves, B.; Schinnerer, E.; Draine, B. T.; Smith, J. D.; Galametz, M.; Wolfire, M.; Croxall, K.; Dale, D.; Herrera Camus, R.; Calzetti, D.; Kennicutt, R. C.

    2015-03-01

    The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the "pearls-on-a-string" and "popcorn" paradigms. In this paper, we use new Herschel/PACS observations, obtained as part of the KINGFISH open time key program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC 4736. By comparing spatially resolved estimates of the stellar far-ultraviolet flux available for heating, with the gas and dust cooling derived from the far-infrared continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC 4736.

  5. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, M. Carmen; Alfaro, Emilio J.; Pérez, Enrique

    2015-12-01

    We address the study of the H α vertical velocity field in a sample of four nearly face-on galaxies using long-slit spectroscopy taken with the Intermediate dispersion Spectrograph and Imaging System (ISIS), attached to the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of 1 kpc. The gas is mainly ionized by high-energy photons: only in some locations of NGC 278 and NGC 1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC 278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disc encounters a spiral density perturbation. The results obtained show that it is difficult to explain the H α large-scale velocity field without the presence of a magnetized, thick galactic disc. Larger samples and spatial covering of the galaxy discs are needed to provide further insight into this problem.

  6. FISICA observations of the starburst galaxy, NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Raines, S. N.; Gruel, N.; Elston, R.; Guzman, R.; Julian, J.; Boreman, G.; Glenn, P. E.; Hull-Allen, C. G.; Hoffman, J.; Rodgers, M.; Thompson, K.; Flint, S.; Comstock, L.; Myrick, B.

    2006-06-01

    Using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) we obtained observations of the dwarf starburst galaxy NGC 1569. We present our JH band spectra, particularly noting the existence of extended emission in Paschen β and He I.

  7. A Stellar Tidal Stream Around the Whale Galaxy, NGC 4631

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; D'Onghia, Elena; Chonis, Taylor S.; Beaton, Rachael L.; Teuwen, Karel; GaBany, R. Jay; Grebel, Eva K.; Morales, Gustavo

    2015-10-01

    We report the discovery of a giant stellar tidal stream in the halo of NGC 4631, a nearby edge-on spiral galaxy interacting with the spiral NGC 4656, in deep images taken with a 40 cm aperture robotic telescope. The stream has two components: a bridge-like feature extending between NGC 4631 and NGC 4656 (streamSE) and an overdensity with extended features on the opposite side of the NGC 4631 disk (streamNW). Together, these features extend more than 85 kpc in projection. The orientation of streamSE relative to the orientations of NGC 4631 and NGC 4656 is not consistent with an origin from an interaction between these two spirals, and is more likely debris from a satellite encounter. The stellar tidal features can be qualitatively reproduced in an N-body model of the tidal disruption of a single, massive dwarf satellite on a moderately eccentric orbit (e = 0.6) around NGC 4631 over ˜3.5 Gyr. Both modeling and inferences from the morphology of the streams indicate these are not associated with the complex HI tidal features observed between both spirals, which likely originate from a more recent, gas-rich accretion event. The structure of streamNW suggests that it may contain the progenitor of the stream, in agreement with the N-body model. However, we cannot exclude other possibilities such as the satellite dwarf galaxy NGC 4627 being the progenitor based on these data. In addition, streamNW is roughly aligned with two very faint dwarf spheroidal candidates. The system of dwarf galaxies and the tidal stream around NGC 4631 can provide an additional interesting case for exploring the anisotropy distribution of satellite galaxies recently reported around Local Group spiral galaxies by means of future follow-up observations.

  8. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  9. The evolutionary history of the interacting Galaxy system NGC 7714/7715 (Arp 284)

    NASA Technical Reports Server (NTRS)

    Smith, Beverly J.; Wallin, John F.

    1992-01-01

    The distribution and kinematics of atomic hydrogen in an interacting galaxy pair are studied to develop a model of its formation and assess its implications. H I gas peaks, bridges, and tails for NGC 7714/7715 (Arp 284) are identified with the VLA observations, and the velocity field appears to indicate that of an inclined rotating disk. A parabolic off-center collision is modeled for two disk galaxies with different masses, and formation scenario leads to results consistent with the observations. The point of closest approach occurred 1.1 x 10 exp 8 years ago, and the inclination angle for NGC 7714 is given at around 30 deg. This ring galaxy's lack of star formation is attributed to the large impact parameter associated with the parabolic off-center collision considered for Arp 284. Star formation and the initial mass function of the interacting galaxy pair are studied to assess the age and composition of the objects.

  10. Spokes in ring galaxies

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars; Weil, Melinda L.

    1993-01-01

    We examine the response of self-gravitating primary galaxies consisting of dark matter halos and disks containing both stars and gas to collisions with less massive companions. The primaries were constructed using a technique which makes it possible to realize multi-component systems that are stable and virtually in precise equilibrium. A total of 65,536 particles were employed to represent the primary and 4096 to represent the companion. Half the particles in the primary comprise its halo and the other half its disk. Gas makes up 10 percent of the disk mass and is represented by 8192 of the disk particles. A system of units is used where the gravitational constant, total disk mass, and disk exponential scale length are unity. The primary motivation of the present study is to determine whether effects associated with dissipation and self-gravity can account for the unusual morphology of the Cartwheel galaxy.

  11. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    SciTech Connect

    Binney, J.J.; Davies, R.L.; Illingworth, G.D. Oxford Univ. National Optical Astronomy Observatories, Tucson, AZ California Univ., Santa Cruz )

    1990-09-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure. 48 refs.

  12. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    NASA Technical Reports Server (NTRS)

    Binney, J. J.; Davies, Roger L.; Illingworth, Garth D.

    1990-01-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure.

  13. Spitzer Observations of Two Early-Type Spiral Galaxies with Dust Rings

    NASA Astrophysics Data System (ADS)

    Bendo, G. J.; Armus, L.; Calzetti, D.; Dale, D. A.; Draine, B. T.; Engelbracht, C. W.; Gordon, K. D.; Grauer, A.; Helou, G.; Hollenbach, D. J.; Jarrett, T. H.; Joseph, R. D.; Kennicutt, R. C.; Kewley, L. J.; Leitherer, C.; Li, A.; Malhotra, S.; Meyer, M.; Murphy, E. J.; Regan, M. W.; Rieke, G. H.; Rieke, M. J.; Roussel, H.; Sheth, K.; Smith, J. D. T.; Thornley, M. D.; Walter, F.

    2004-12-01

    We present Spitzer images of the SB0/a galaxy NGC 1291 and the SAa galaxy NGC 4594. Both galaxies contain dust rings that can be used for studying the relation between dust emission and star formation activity. At 24 microns, the nuclei of both galaxies are the brightest sources in the galaxies, and dust emission from the rings is relatively weak. At 160 microns, however, the dust rings are more prominent sources; in NGC 4594, the dust ring is the source of virtually all of the 160 micron emission. We discuss whether the 160 micron emission from the rings is related to star formation activity or to heating by older stellar populations, and we examine the relation between dust and PAH emission. For NGC 4594, we also present submillimeter data that show that the nucleus dominates the 850 micron emission. These results demonstate that the 850 micron emission cannot come from the same dust that dominates the 160 micron emission. We examine the possible mechanisms that could be generating the 850 micron emission as well as the implications for dust models and galaxy spectral energy distribution templates.

  14. The Multi-Talented Elliptical Galaxy NGC1052

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy

    2004-09-01

    We propose to observe the nearby elliptical galaxy NGC1052 for 60 ksec with Chandra to address a variety of issues. First, we will study the interaction between the hot X-ray gas and radio jets/lobes present in this galaxy. A previous short (2 ksec) Chandra observation indicated extended soft emission at the location of the radio emission. Second, NGC1052 is the prototypical LINER galaxy, and this Chandra observation will constrain competing spectral models for the origin of LINER X-ray emission. Finally, we will constrain the X-ray binary--globular cluster connection in elliptical galaxies. NGC1052 contains a large number of globular clusters per unit light, and will be quite useful for determining if all X-ray binaries are formed within globular clusters.

  15. High Resolution Radio Imaging of the Merging Galaxies NGC3256 and NGC4194

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Campion, S. D.; Ulvestad, J. S.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present new 6cm and 4cm radio continuum images of the central regions of the merging galaxy systems NGC3256 and NGC4194. NGC3256 is imaged with a resolution of approx. 1 in. or approx. 190pc; NGC4194 is imaged with a resolution of approx. 0.3 in. or approx. 50pc. In both systems, we detect numerous compact radio sources embedded in more diffuse radio emission. We detect 65 compact sources in NGC3256 at 6cm and we detect 46 compact sources in NGC4194, both to a limiting luminosity of approx. 5 x 10(exp 18) W/ Hz or approx. 5 times the luminosity of Cas A. Most of the compact radio sources are loosely associated with active star forming regions but not with specific optical emission sources. Several compact radio sources in NGC3256 are near positions of compact X-ray sources detected by Lira et al.. In both NGC3256 and NGC4194, we are able to measure reliable spectral indices for the stronger sources. We find in NGC3256 approx. 20% have nominally flat radio spectral indices (indicating they are dominated by thermal radio emission from HII regions) while approx. 80% have nominally steep spectral indices (indicating they are dominated by nonthermal emission from supernova remnants). In NGC4194, half the compact radio sources have flat spectral indices and half have steep indices. For the flat-spectrum sources, we estimate the number of young massive stars and the associated ionized gas masses. For the steep-spectrum sources, we estimate supernova rates. We compare these results with those from other well-studied merging galaxy systems. We gratefully acknowledge use of the NRAO Very Large Array (VLA) and the VLA Archive. NRAO is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  16. Ionized gas and planetary nebulae in the bulge of the blue S0 galaxy NGC 5102

    NASA Technical Reports Server (NTRS)

    Mcmillan, Russet; Ciardullo, Robin; Jacoby, George H.

    1994-01-01

    We present the results of an investigation into the morphology and dynamics of ionized gas in the bulge of the gas-rich S0 galaxy NGC 5102. We show that the bulge of NGC 5102 contains a ring of ionized gas, approximately 1.3 kpc in diameter, which is centered well away from the nucleus. Through spectroscopy and (O III) lambda-5007 imaging, we show that the gas is excited by a low-velocity shock, which varies from approximately 50 to approximately 70 km/s along the ring. Fabry-Perot images in H-alpha confirm that the gas is moving slowly, and suggest that the structure is a supershell, approximately 10(exp 7) yr old. This age is significantly younger than the galaxy's nuclear starburst, which is approximately 2 x 10(exp 8) yr old. We also use our (O III) lambda-5007 images to identify planetary nebulae (PNs) in the bulge and inner disk of NGC 5102. Using the planetary nebula luminosity function, we derive a distance modulus to the galaxy of (m - M)(sub 0) = 27.47(sup +0.18)(sub -0.27), or 3.1(sup +0.3)(sub -0.4) Mpc, confirming its membership in the NGC 5128 group. Our derived value of 47.2(sup +12.2)(sub -9.2) x 10(exp -9) for the bolometric luminosity-specific PN density, alpha(sub 2.5), is higher than that observed for the bulge of M31 or the giant ellipticals of the Virgo Cluster, but not significantly different from that found for the small, normal ellipticals NGC 3377 or M32. The high value for alpha(sub 2.5) suggests that virtually all of NGC 5102's stars will someday evolve through the planetary nebula stage.

  17. Ionized gas and planetary nebulae in the bulge of the blue S0 galaxy NGC 5102

    NASA Astrophysics Data System (ADS)

    McMillan, R.; Ciardullo, R.; Jacoby, G. H.

    1994-11-01

    We present the results of an investigation into the morphology and dynamics of ionized gas in the bulge of the gas-rich S0 galaxy NGC 5102. We show that the bulge of NGC 5102 contains a ring of ionized gas, approximately 1.3 kpc in diameter, which is centered well away from the nucleus. Through spectroscopy and (O III) lambda-5007 imaging, we show that the gas is excited by a low-velocity shock, which varies from approximately 50 to approximately 70 km/s along the ring. Fabry-Perot images in H-alpha confirm that the gas is moving slowly, and suggest that the structure is a supershell, approximately 107 yr old. This age is significantly younger than the galaxy's nuclear starburst, which is approximately 2 x 108 yr old. We also use our (O III) lambda-5007 images to identify planetary nebulae (PNs) in the bulge and inner disk of NGC 5102. Using the planetary nebula luminosity function, we derive a distance modulus to the galaxy of (m - M)0 = 27.47+0.18-0.27, or 3.1+0.3-0.4 Mpc, confirming its membership in the NGC 5128 group. Our derived value of 47.2+12.2-9.2 x 10-9 for the bolometric luminosity-specific PN density, alpha2.5, is higher than that observed for the bulge of M31 or the giant ellipticals of the Virgo Cluster, but not significantly different from that found for the small, normal ellipticals NGC 3377 or M32. The high value for alpha2.5 suggests that virtually all of NGC 5102's stars will someday evolve through the planetary nebula stage.

  18. CCD imagery of the S0 galaxies NGC 3990 and NGC 3998

    SciTech Connect

    Welch, G.A.; Welch, D.M.K.; Dupuy, D.L. Virginia Military Institute, Lexington )

    1991-01-01

    The structure and colors of NGC 3990 and NGC 3998 are investigated using BR CCD imagery. Fits of bulge-disk models of the galaxies indicate that both disks are somewhat brighter and more compact than typical S0 galaxies in the Virgo and Fornax clusters. Although the two galaxies are separated by only about 3.5 arcmin, none of the obvious signs of gravitational interaction are seen. The colors of both galaxies are normal; the disk of NGC 3998 is somewhat bluer than its bulge. The search has failed to reveal the interstellar dust predicted from the neutral hydrogen observations of NGC 3998. The dust that is seen appears to be mixed with ionized gas which occupies the center of this galaxy and may be the same material seen at longer wavelengths by the IRAS experiment. Its low abundance relative to the neutral gas is consistent with the idea that the ISM was contributed by a gas-rich dwarf galaxy in a destructive merger. 31 refs.

  19. Ionized Gas Observation Toward a Nearby Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Nakanishi, K.; Sorai, K.; Nakai, N.; Kuno, N.; Matsubayashi, K.; Sugai, H.; Takano, S.; Kohno, K.; Nakajima, T.

    2015-12-01

    ALMA observation of a hydrogen recombination emission line toward NGC 253 was performed. NGC 253 is a prototypical starburst galaxy in the nearby universe. The recombination line was clearly detected in the central region of NGC 253 with a spatial resolution of few dozens of parsecs at the galaxy. The line and thermal free-free continuum emission show quite similar spatial distribution, and this fact shows the recombination line certainly traces ionized gas formed by young massive stars. Estimated electron temperature (6500-9000K) from the data are similar to those of Galactic HII regions. The recombination line has large velocity width at the center of the galaxy, and the velocity structure is quite different from that of molecular emission line.

  20. Star formation in the Magellanic irregular galaxy NGC 4449

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Hunter, Deidre A.; Telesco, C. M.; Decher, R.; Harper, D. A.

    1987-01-01

    New NIR and FIR maps and J = 1-0 CO spectroscopy of the Magellanic irregular galaxy NGC 4449 are presented. The brighter 150-micron emission is concentrated along the central visual ridge of the galaxy, although there is lower intensity extended emission throughout the visible extent of the object. The maximum FIR emission is coincident, within the uncertainties, with the visual and NIR maxima, identified as the galactic nucleus. It is estimated that the IR luminosity of the 1-kpc-diameter central region in NGC 4449 is comparable to that for a similar-sized region at the center of the Galaxy. A large fraction of the 150-micron emission may arise from warm dust distributed throughout the galaxy and heated by the diffuse radiation field. Active star formation follows the NIR emission in part of the galaxy, but no coincidence is found in another region.

  1. Star-formation in the central kpc of the starburst/LINER galaxy NGC 1614

    NASA Astrophysics Data System (ADS)

    Olsson, E.; Aalto, S.; Thomasson, M.; Beswick, R.

    2010-04-01

    Aims: The aim is to investigate the star-formation and LINER (low ionization nuclear emission line region) activity within the central kiloparsec of the galaxy NGC 1614. In this paper the radio continuum morphology, which provides a tracer of both nuclear and star-formation activity, and the distribution and dynamics of the cold molecular and atomic gas feeding this activity, are studied. In particular, the nature of an R ≈ 300 pc nuclear ring of star-formation and its relationship to the LINER activity in NGC 1614 is addressed. Methods: A high angular resolution, multi-wavelength study of the LINER galaxy NGC 1614 has been performed. Deep observations of the CO 1-0 spectral line were performed using the Owens Valley Radio Observatory (OVRO). These data have been complemented by extensive multi-frequency radio continuum and Hi absorption observations using the Very Large Array (VLA) and Multi-Element Radio Linked Interferometer Network (MERLIN). Results: Toward the center of NGC 1614, we have detected a ring of radio continuum emission with a radius of 300 pc. This ring is coincident with previous radio and Paα observations. The dynamical mass of the ring based on Hi absorption is 3.1 × 109 M⊙. The peak of the integrated CO 1-0 emission is shifted by 1” to the north-west of the ring center. An upper limit to the molecular gas mass in the ring region is ~1.7 × 109 M⊙. Inside the ring, there is a north to south elongated 1.4 GHz radio continuum feature, with a nuclear peak. This peak is also seen in the 5 GHz radio continuum and in the CO. Conclusions: We suggest that the R = 300 pc star forming ring represents the radius of a dynamical resonance - as an alternative to the scenario that the starburst is propagating outwards from the center into a molecular ring. The ring-like appearance is probably part of a spiral structure. Substantial amounts of molecular gas have passed the radius of the ring and reached the nuclear region. The nuclear peak seen in 5

  2. The Globular Cluster System of the Spiral Galaxy NGC 7814

    NASA Astrophysics Data System (ADS)

    Rhode, Katherine L.; Zepf, Stephen E.

    2003-11-01

    We present the results of a wide-field photometric study of the globular cluster (GC) system of the edge-on Sab spiral NGC 7814. This is the first spiral to be fully analyzed from our survey of the GC systems of a large sample of galaxies beyond the Local Group. NGC 7814 is of particular interest because a previous study estimated that it has 500-1000 GCs, giving it the largest specific frequency (SN) known for a spiral. Understanding this galaxy's GC system is important in terms of our understanding of the GC populations of spirals in general and has implications for the formation of massive galaxies. We observed the galaxy in BVR filters with the WIYN 3.5 m telescope and used image classification and three-color photometry to select GC candidates. We also analyzed archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 images of NGC 7814, both to help quantify the contamination level of the WIYN GC candidate list and to detect GCs in the inner part of the galaxy halo. Combining HST data with high-quality ground-based images allows us to trace the entire radial extent of this galaxy's GC system and determine the total number of GCs directly through observation. We find that rather than being an especially high-SN spiral, NGC 7814 has <~200 GCs and SN~1, making it comparable to the two most well-studied spiral galaxies, the Milky Way and M31. We explore the implications of these results for models of the formation of galaxies and their GC systems. The initial results from our survey suggest that the GC systems of typical elliptical galaxies can be accounted for by the merger of two or more spirals, but that for highly luminous elliptical galaxies, additional physical processes may be needed.

  3. How does star formation proceed in the circumnuclear starburst ring of NGC 6951?

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Schinnerer, E.; Emsellem, E.; Hunt, L. K.; McDermid, R. M.; Liu, G.

    2013-03-01

    Gas inflowing along stellar bars is often stalled at the location of circumnuclear rings, which form an effective reservoir for massive star formation and thus shape the central regions of galaxies. However, how exactly star formation proceeds within these circumnuclear starburst rings is the subject of debate. Two main scenarios for this process have been put forward. In the first, the onset of star formation is regulated by the total amount of gas present in the ring with star forming starting, once a mass threshold has been reached, in "random" positions within the ring like "popcorn". In the second, star formation primarily takes place near the locations where the gas enters the ring. This scenario has been dubbed "pearls-on-a-string". Here we combine new optical IFU data covering the full stellar bar with existing multiwavelength data to study the 580 pc radius circumnuclear starburst ring in detail in the nearby spiral galaxy NGC 6951. Using Hubble Space Telescope (HST) archival data together with SAURON and OASIS IFU data, we derive the ages and stellar masses of star clusters, as well as the total stellar content of the central region. Adding information on the molecular gas distribution, stellar and gaseous dynamics, and extinction, we find that the circumnuclear ring in NGC 6951 is ~1-1.5 Gyr old and has been forming stars for most of that time. We see evidence for preferred sites of star formation within the ring, consistent with the "pearls-on-a-string" scenario, when focusing on the youngest stellar populations. The ring's longevity means that this signature is washed out when older stellar populations are included in the analysis. Tables 4 and 5 are available in electronic form at http://www.aanda.orgOASIS maps and SAURON cube are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A81

  4. A BRIGHT RING OF STAR BIRTH AROUND A GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    n image from NASA's Hubble Space Telescope reveals clusters of infant stars that formed in a ring around the core of the barred-spiral galaxy NGC 4314. This stellar nursery, whose inhabitants were created within the past 5 million years, is the only place in the entire galaxy where new stars are being born. The Hubble image is being presented today (June 11) at the American Astronomical Society meeting in San Diego, Calif. This close-up view by Hubble also shows other interesting details in the galaxy's core: dust lanes, a smaller bar of stars, dust and gas embedded in the stellar ring, and an extra pair of spiral arms packed with young stars. These details make the center resemble a miniature version of a spiral galaxy. While it is not unusual to have dust lanes and rings of gas in the centers of galaxies, it is uncommon to have spiral arms full of young stars in the cores. NGC 4314 is one of the nearest (only 40 million light-years away in the constellation Coma Berenices) examples of a galaxy with a ring of infant stars close to the core. This stellar ring - whose radius is 1,000 light-years - is a great laboratory to study star formation in galaxies. The left-hand image, taken in February 1996 by the 30-inch telescope Prime Focus Camera at the McDonald Observatory in Texas, shows the entire galaxy, including the bar of stars bisecting the core and the outer spiral arms, which begin near the ends of this bar. The box around the galaxy's core pinpoints the focus of the Hubble image. The right-hand image shows Hubble's close-up view of the galaxy's core, taken in December 1995 by the Wide Field and Planetary Camera 2. The bluish-purple clumps that form the ring are the clusters of infant stars. Two dark, wispy lanes of dust and a pair of blue spiral arms are just outside the star-forming ring. The lanes of dust are being shepherded into the ring by the longer, primary stellar bar seen in the ground-based (left-hand) image. The gas is trapped inside the ring

  5. Shocked magnetic fields in the perturbed galaxies NGC 3627 and NGC 4254

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Soida, M.; Urbanik, M.; Beck, R.

    Normal spiral galaxies usually show magnetic fields well aligned with spiral arms. However, recently Beck et al. (1999, Nature 397, 324) discovered a sudden magnetic field jump in the barred spiral NGC~1097 associated (but not coincident) with the bar-driven shock. To study such phenomena in detail we performed a VLA study at 8.44~GHz and 4.85~GHz of two perturbed galaxies: the tidally interacting NGC~3627 and the wind-swept NGC~4254. NGC~3627 shows a sudden jump of magnetic field direction close to a heavy dust lane in the western arm. However, contrary to predictions of the density wave shock models, the magnetic "shock" is displaced by about 1~kpc upstream from the dust lane. In the eastern arm, the magnetic field ignores the region of strong gas compression, running across the heavy dust lane at a high angle. Such behaviour was never seen before in spiral galaxies. NGC~4254 shows a bright narrow polarized ridge along its southern edge, suggestive for a shock caused by the intergalactic wind. However, against classical shock models the magnetic field shows a shock-like, sudden deviation along the line perpendicular to the ridge. Strong gradients of Faraday rotation in this region imply a complex, three dimensional magnetic field twisting.

  6. Stellar Population Synthesis of the Elliptical Galaxy NGC 4649

    NASA Astrophysics Data System (ADS)

    Chun, Mun-Suk; Gim, Moon-Whan; Sohn, Young-Jong

    2001-12-01

    We investigated population of the elliptical galaxy NGC 4649 using the spectral synthesis technique based on the linear program in the spectral regions between 3160Å to 10800Å. We used the spectral data of stars obtained by Gunn & Stryker (1983), and the integrated spectrum of NGC 4649 observed by Bertola et al. (1982). Among four models with different main sequence turn-off points, G8-K0V main sequence turn-off model is best fitted to the integrated spectrum of NGC 4649. We also found that super metal rich K giants are needed to describe the absorption lines in the long wavelength regions of integrated spectrum of NGC 4649. The mass to absolute light ratio obtained from the spectral synthesis is ~20 similar to those calculated dynamically.

  7. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  8. Interstellar absorption lines in the galaxy NGC 1705

    SciTech Connect

    York, D.G.; Caulet, A.; Rybski, P.M.; Gallagher, J.S.; Blades, J.C. Lowell Observatory, Flagstaff, AZ Space Telescope Science Institute, Baltimore, MD )

    1990-03-01

    The possibility is considered, and shown to be plausible, that the strong C IV and Si IV absorption lines in low-resolution ultraviolet spectra of gas-rich dwarf galaxies are primarily interstellar, not stellar as has been supposed. The argument is based on analogies with H II regions in the Local Group, on low-resolution equivalent width measurements of gas-rich dwarf galaxies from the literature and on high-resolution UV spectra of NGC 1705. 48 refs.

  9. Interstellar absorption lines in the galaxy NGC 1705

    NASA Technical Reports Server (NTRS)

    York, Donald G.; Caulet, Adeline; Rybski, Paul M.; Gallagher, John S.; Blades, J. Chris

    1990-01-01

    The possibility is considered, and shown to be plausible, that the strong C IV and Si IV absorption lines in low-resolution ultraviolet spectra of gas-rich dwarf galaxies are primarily interstellar, not stellar as has been supposed. The argument is based on analogies with H II regions in the Local Group, on low-resolution equivalent width measurements of gas-rich dwarf galaxies from the literature and on high-resolution UV spectra of NGC 1705.

  10. Observational effects of interaction in the Seyfert galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Pronik, I. I.; Metik, L.

    1990-01-01

    Some pecularities of the circummucleus of the Seyfert galaxy NGC 7469 were revealed, plausibly caused by interaction with the satellite IC 5283 and a starlike detail, situated on the edge of the west spiral branch 14 seconds from the nucleus. Shock excited H II regions were noted in the part of NGC 7469 turned toward the satellite IC 5283. The galaxy's central radio structure (lambda approx. 6 cm) stretches in the direction toward the satellite IC 5283 and the starlike detail. The spectum and color index of the starlike detail suggest that it is a cluster of early type stars (M sub V = -19 sup m) and dust clouds (A sub V = 3 sup m), in NGC 7469.

  11. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  12. The infrared emission from the elliptical galaxy NGC 1052

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.

    1982-01-01

    Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.

  13. Dwarf galaxies in the halo of NGC 891

    SciTech Connect

    Schulz, Earl

    2014-07-20

    We report the results of a survey of the region within 40 arcmin of NGC 891, a nearby nearly perfectly edge-on spiral galaxy. Candidate 'non-stars' with diameters greater than 15 arcsec were selected from the GSC 2.3.2 catalog and cross-comparison of observations in several bands using archived GALEX, DSS2, WISE, and Two Micron All Sky Survey images identified contaminating stars, artifacts, and background galaxies, all of which were excluded. The resulting 71 galaxies, many of which were previously uncataloged, comprise a size-limited survey of the region. A majority of the galaxies are in the background of NGC 891 and are for the most part members of the A347 cluster at a distance of about 75 Mpc. The new finds approximately double the known membership of A347, previously thought to be relatively sparse. We identify a total of seven dwarf galaxies, most of which are new discoveries. The newly discovered dwarf galaxies are dim and gas-poor and may be associated with the previously observed arcs of red giant branch halo stars in the halo and the prominent H I filament and the lopsided features in the disk of NGC 891. Several of the dwarfs show signs of disruption, consistent with being remnants of an ancient collision.

  14. Dwarf Galaxies in the Halo of NGC 891

    NASA Astrophysics Data System (ADS)

    Schulz, Earl

    2014-07-01

    We report the results of a survey of the region within 40 arcmin of NGC 891, a nearby nearly perfectly edge-on spiral galaxy. Candidate "non-stars" with diameters greater than 15 arcsec were selected from the GSC 2.3.2 catalog and cross-comparison of observations in several bands using archived GALEX, DSS2, WISE, and Two Micron All Sky Survey images identified contaminating stars, artifacts, and background galaxies, all of which were excluded. The resulting 71 galaxies, many of which were previously uncataloged, comprise a size-limited survey of the region. A majority of the galaxies are in the background of NGC 891 and are for the most part members of the A347 cluster at a distance of about 75 Mpc. The new finds approximately double the known membership of A347, previously thought to be relatively sparse. We identify a total of seven dwarf galaxies, most of which are new discoveries. The newly discovered dwarf galaxies are dim and gas-poor and may be associated with the previously observed arcs of red giant branch halo stars in the halo and the prominent H I filament and the lopsided features in the disk of NGC 891. Several of the dwarfs show signs of disruption, consistent with being remnants of an ancient collision.

  15. THE ARECIBO GALAXY ENVIRONMENT SURVEY. III. OBSERVATIONS TOWARD THE GALAXY PAIR NGC 7332/7339 AND THE ISOLATED GALAXY NGC 1156

    SciTech Connect

    Minchin, R. F.; Momjian, E.; Auld, R.; Davies, J. I.; Smith, M. W. L.; Taylor, R.; Valls-Gabaud, D.; Van Driel, W.; Karachentsev, I. D.; Henning, P. A.; O'Neil, K. L.

    2010-10-15

    Two 5 deg{sup 2} regions around the NGC 7332/9 galaxy pair and the isolated galaxy NGC 1156 have been mapped in the 21 cm line of neutral hydrogen (H I) with the Arecibo L-band Feed Array out to a redshift of {approx}0.065 ({approx}20,000 km s{sup -1}) as part of the Arecibo Galaxy Environment Survey. One of the aims of this survey is to investigate the environment of galaxies by identifying dwarf companions and interaction remnants; both of these areas provide the potential for such discoveries. The neutral hydrogen observations were complemented by optical and radio follow-up observations with a number of telescopes. A total of 87 galaxies were found, of which 39 (45%) were previously cataloged and 15 (17%) have prior redshifts. Two dwarf galaxies have been discovered in the NGC 7332 group and a single dwarf galaxy in the vicinity of NGC 1156. A parallel optical search of the area revealed one further possible dwarf galaxy near NGC 7332.

  16. The optical morphology of the kinematically peculiar galaxy NGC 4826

    NASA Astrophysics Data System (ADS)

    Walterbos, R. A. M.; Braun, R.; Kennicutt, R. C., Jr.

    1994-01-01

    We present charge coupled device (CCD) BVI photometry of the galaxy NGC 4826, the Evil- or Black-Eye galaxy, which was recently found to have two counter-rotating gas disks. We study the extinction in the inner gas disk, which gives NGC 4826 its nickname, and find that this disk can be coplanar or close to coplanar with the stellar disk and still cause the strong absorption that is seen on one side of the galaxy. We try to constrain the orientation of the outer gas disk by looking for a small overall asymmetry in the light distribution which would be present if there is dust in this disk, and if it is significantly tilted with respect to the main body of the galaxy. The test shows that the light distribution does not preclude the outer gas disk from being coplanar with the stellar disk as well. NGC 4826 has a small bulge, with a bulge to total light ratio of 0.17 in B. We confirm that this galaxy is indeed a spiral, with a perfect exponential disk down to 27 mag/sq arcsec in B. The close to coplanar orientation of the gas disks is one aspect which is in good agreement with what is expected on the basis of a merger model for the counter-rotating gas. The rotation direction of the inner gas disk with respect to the stars, however, is not. In addition, the existence of a well defined exponential disk probably implies that if a merger did occur it must have been between a gas-rich dwarf and a spiral, not between two equal mass spirals. The stellar spiral arms of NGC 4826 are trailing over part of the disk and leading in the outer disk. Recent numerical calculations by Byrd et al. for NGC 4622 suggest that long lasting leading arms could be formed by a close retrograde passage of a small companion. In this scenario, the outer counter-rotating gas disk in NGC 4826 might be the tidally stripped gas from the dwarf. However, in NGC 4826 the outer arms are leading, while it appears that in NGC 4622 the inner arms are leading. A realistic N-body/hydro simulation of a dwarf

  17. Non-circular motion estimation of the grand-design spiral galaxy NGC 628

    NASA Astrophysics Data System (ADS)

    Colombo, D.

    2013-09-01

    I present a harmonic decomposition analysis of the grand-design spiral galaxy NGC 628 using the H I data from The H I Nearby Galaxy Survey (THINGS), Walter et al., Astron. J. 136, 2563 (2008). The harmonic decomposition analysis allows the estimation of the peculiar motion magnitude of the galaxy not counted in the rotation of the disk. The rotation curve is obtained through a tilted ring analysis and reaches a maximum velocity not higher than 200 km s-1. The residual from the velocity field shows a morphology shift from a m = 1 to a m = 3 feature at R = 120", typical of two spiral arms perturbation of the potential. The non-circular motion have a magnitude of ~10 km s-1, in agreement with previous studies of similar Hubble type galaxies.

  18. Environment of Seyfert 2 galaxies: the group of galaxies around NGC5252.

    NASA Astrophysics Data System (ADS)

    Freudling, W.; Prieto, M. Almudena

    1996-02-01

    The relatively large neutral hydrogen contents and enhanced density of companion galaxies around Seyfert 2 galaxies suggests that tidal interaction could play a major role in the evolution of Seyfert 2 galaxies. Recent observations of the distribution of neutral hydrogen in the active S0 galaxy NGC5252 have shown a disturbed morphology which suggests that the HI in this galaxy could have been acquired through interaction with neighboring galaxies (Prieto & Freudling 1993 and 1995). We have searched for other HI rich galaxies within a radius of 25 arcmin and a redshift range of +/-600km/s around the center location and redshift of NGC5252. A total of five galaxies were found, four of them are cataloged galaxies with no previous redshifts available. These five galaxies were mapped with the VLA in order to search for signs of recent tidal interactions. The maps and derived HI parameters are presented and compared to the one of NGC5252, the sixth member of the group. Two of the galaxies (UGC 8635) are an interacting pair. No signs of other recent interactions were found. Using the Arecibo telescope, we also searched for intergalactic neutral hydrogen between the group members as another potential source of gas for NGC5252. Upper limits on intergroup gas are given for three positions. The lack of evidence for interaction among the galaxies could be interpreted in two different ways. Either interaction occurred in the distant past and triggered activity in this galaxy over a long period of time. Alternatively, factors other than the gas supply might be responsible for the observation that Seyfert 2 galaxies tend to be surrounded by a region of enhanced galaxy density.

  19. Circumnuclear molecular gas in megamaser disk galaxies NGC 4388 and NGC 1194

    SciTech Connect

    Greene, Jenny E.; Seth, Anil; Lyubenova, Mariya; Van de Ven, Glenn; Läsker, Ronald; Walsh, Jonelle

    2014-06-20

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-parsec scales. We present NIR IFU data with a resolution of ∼50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ∼100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for noncircular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100 parsec scales aligned with the megamaser disk. In contrast, the high ionization lines and Brγ trace outflow along the 100 parsec-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Brγ have consistent properties between the two galaxies.

  20. MERGING COLD FRONTS IN THE GALAXY PAIR NGC 7619 AND NGC 7626

    SciTech Connect

    Randall, S. W.; Jones, C.; Kraft, R.; Forman, W. R.; O'Sullivan, E.

    2009-05-10

    We present results from Chandra observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly antiparallel, suggesting that these galaxies are falling toward one another in the plane of the sky. The detection of merger cold fronts in each of the two dominant member galaxies implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a preexisting {approx}1 keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the three-dimensional velocities from the cold fronts and, using the observed radial velocities of the galaxies, show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of {approx}1190 km s{sup -1}. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is most likely currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, consisting of a core with two symmetric jets, and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and possibly an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure encountered by the forward jet.

  1. The multifrequency spectrum of the starburst galaxy NGC 2782

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bregman, J. N.; Huggins, P. J.; Glassgold, A. E.; Cohen, R. D.

    1984-01-01

    The nuclear region of NGC 2782 has been observed at radio, millimeter, infrared, optical, ultraviolet, and X-ray frequencies to understand the ionization source that gives rise to the narrow emission lines. The continuum is probably caused by a normal galactic population plus considerable numbers of young stars and warm dust. In the ultraviolet and optical spectra, which are powerful diagnostics, no strong lines are detected in the 1200 A-3200 A region aside from L-alpha, and the optical emission lines cover only a narrow ionization range. The line and continuum properties suggest that NGC 2782 is a starburst galaxy, in which young stars photoionize the surrounding gas.

  2. Testing MOND gravity in the shell galaxy NGC 3923

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Jungwiert, B.; Jílková, L.; Ebrová, I.; Bartošková, K.; Křížek, M.

    2013-11-01

    Context. The elliptical galaxy NGC 3923 is surrounded by numerous stellar shells that are concentric arcs centered on the Galactic core. They are very likely a result of a minor merger and they consist of stars in nearly radial orbits. For a given potential, the shell radii at a given time after the merger can be calculated and compared to observations. The MOdified Newtonian Dynamics (MOND) is a theory that aims to solve the missing mass problem by modifying the laws of classical dynamics in the limit of small accelerations. Hernquist & Quinn (1987, ApJ, 312, 1) claimed that the shell distribution of NGC 3923 contradicted MOND, but Milgrom (1988, ApJ, 332, 86) found several substantial insufficiencies in their work. Aims: We test whether the observed shell distribution in NGC 3923 is consistent with MOND using the current observational knowledge of the shell number and positions and of the host galaxy surface brightness profile, which supersede the data available in the 1980s when the last (and negative) tests of MOND viability were performed on NGC 3923. Methods: Using the 3.6 μm bandpass image of NGC 3923 from the Spitzer space telescope we construct the mass profile of the galaxy. The evolution of shell radii in MOND is then computed using analytical formulae. We use 27 currently observed shells and allow for their multi-generation formation, unlike the Hernquist & Quinn one-generation model that used the 18 shells known at the time. Results: Our model reproduces the observed shell radii with a maximum deviation of ~5% for 25 out of 27 known shells while keeping a reasonable formation scenario. A multi-generation nature of the shell system, resulting from successive passages of the surviving core of the tidally disrupted dwarf galaxy, is one of key ingredients of our scenario supported by the extreme shell radial range. The 25 reproduced shells are interpreted as belonging to three generations.

  3. Intrinsic shapes of elliptical galaxy: NGC 1052 using modified prior

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Arun; Chakraborty, D. K.

    Determination of intrinsic shapes of the individual elliptical galaxies using photometry is an important problem because the number of galaxies with good photometry is many more than those with good kinematics. We determine the intrinsic shapes of the light distribution of elliptical galaxies by combining the profiles of photometric data from the literature with triaxial models. We use ensembles of models so that the shape estimates are largely model independent. We follow the methodology as described in Statler (1994) which is modified to suit our requirements. We find that short to long axial ratios at very small radii and at very large radii, and the absolute value of the triaxiality difference are the best constrained shape parameters. Using a flat prior, the shapes of elliptical galaxies are reported by Chakraborty et al (2008) and Singh & Chakraborty (2009). The flat prior of 20 galaxies are superimposed over EAC-Ph other to obtain the distribution. This distribution is regarded as a prior (a modified prior) and shapes of 20 galaxies are again recalculated by using such modified prior. We determine the intrinsic shapes of the elliptical galaxy NGC 1052 using modified prior should be more reliable. These results are compared with the previous estimates which are determined by using flat prior. The plot shows the intrinsic shapes of the NGC 1052 as a function of (q0,q∞) for two dimensional shapes and (q0,q∞, |Td|) for three dimensional shapes, where q0 and q∞(=q) are the short to long axial ratios at small and at large radii and |Td| is the absolute values of the triaxiality difference, defined as |Td|= |T∞ - T0|. The probability is shown in the dark gray region: darker is the region higher is the probability. We find that the galaxy NGC 1052 is flatter inside and flatter outside.

  4. The Arecibo Galaxy Environment Survey: Observations towards the NGC 7817/7798 Galaxy Pair

    NASA Astrophysics Data System (ADS)

    Harrison, Amanda; Robert Minchin

    2016-01-01

    The Arecibo Galaxy Environment Survey (AGES) examines the environment of neutral hydrogen gas in the interstellar medium. AGES uses the 305m Arecibo Radio Telescope and the Arecibo L-Band Feed Array to create a deep field neutral hydrogen survey which we used to detect galaxies in an area five square degrees around the galaxy pair NGC 7817/7798. By finding and investigating hydrogen rich galaxies we hope to gain a better understanding of how the environment affects galaxy evolution. H1 line profiles were made for the detected H1 emission and ten galaxies which had the characteristic double-horned feature were found. NGC 7798 was not detected, but NGC 7817 and the other galaxies were cross-identified in NASA/IPAC Extragalactic Database as well as in Sloan Digital Sky Survey to obtain optical data. Out of the ten, two of the sources were uncatalogued. We analyzed the hydrogen spectra and aperture photometry to learn about the characteristics of these galaxies such as their heliocentric velocity, flux, and mass of the neutral hydrogen. Furthermore, we graphed the Tully-Fisher and the Baryonic Tully-Fisher of the ten sources and found that most followed the relation. One that is the biggest outlier is suspected be a galaxy cluster while other outliers may be caused by ram pressure stripping deforming the galaxy.

  5. A survey of satellite galaxies around NGC 4258

    SciTech Connect

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 × 10{sup 12} M {sub ☉} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u–r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  6. Kinematics in the Interacting, Star-Forming Galaxies NGC 3395/3396 and NGC 3991/3994/3995

    NASA Technical Reports Server (NTRS)

    Weistrop, Donna; Nelson, Charles H.

    1999-01-01

    It has been suggested that induced star formation is more sensitive to galaxy dynamics than to local phenomena and that enhanced star formation is found in galaxies with disturbed velocity structures. We are studying the stellar populations of several UV-bright, interacting galaxies to try to understand the detailed star formation process in these systems. We present preliminary results of an investigation of the kinematics of star-forming regions in the interacting systems NGC 3395/3396 and NGC 3991/3994/3995. Regions of powerful star formation are observed throughout these galaxies. The observatation will be used to investigate rotation curves in the galaxies and motion in the tidal tails.

  7. The Isolated Interacting Galaxy Pair NGC 5426/27 (Arp 271)

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, I.; Rosado, M.; Amram, P.; Dultzin-Hacyan, D.; Bernal, A.; Salo, H.; Laurikainen, E.; Cruz-González, I.; Le Coarer, E.

    2001-03-01

    The isolated interacting galaxy pair NGC 5426/27 (Arp 271) was observed using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. We found a small bar-like structure in NGC 5426 and a severely distorted velocity field for NGC 5427. A range of possible masses was computed for each galaxy.

  8. The Catalog of Southern Ringed Galaxies

    NASA Astrophysics Data System (ADS)

    Buta, R.

    1995-01-01

    The Catalog of Southern Ringed Galaxies (CSRG) is a comprehensive compilation of diameters, axis ratios, relative bar position angles, and morphologies of inner and outer rings, pseudorings, and lenses in 3692 galaxies south of declination -17 deg. The purpose of the catalog is to evaluate the idea that these ring phenomena are related to orbital resonances with a bar or oval in galaxy potentials. The catalog is based on visual inspection of most of the 606 fields of the Science Research Council (SRC) IIIa-J southern sky survey, with the ESO-B, ESO-R, and Palomar Sky surveys used as auxiliaries when needed for overexposed core regions. The catalog is most complete for SRC fields 1-303 (mostly south of declination -42 deg). In addition to ringed galaxies, a list of 859 mostly nonringed galaxies intended for comparison with other catalogs is provided. Other findings from the CSRG that are not based on statistics are the identification of intrinsic bar/ring misalignment; bars which underfill inner rings; dimpling of R'1 pseudorings; pointy, rectangular, or hexagonal inner or outer ring shapes; a peculiar polar-ring-related system; and other extreme examples of spiral structure and ring morphology.

  9. NGC 4102: HIGH-RESOLUTION INFRARED OBSERVATIONS OF A NUCLEAR STARBURST RING

    SciTech Connect

    Beck, Sara C.; Lacy, John H.; Turner, Jean L.

    2010-10-20

    The composite galaxy NGC 4102 hosts a LINER nucleus and a starburst. We mapped NGC 4102 in the 12.8 {mu}m line of [Ne II], using the echelon spectrometer TEXES on the NASA IRTF, to obtain a data cube with 1.''5 spatial, and 25 km s{sup -1} spectral, resolution. Combining near-infrared, radio, and the [Ne II] data shows that the extinction to the starburst is substantial, more than 2 mag at the K band, and that the neon abundance is less than half solar. We find that the star formation in the nuclear region is confined to a rotating ring or disk of 4.''3 ({approx}300 pc) diameter, inside the inner Lindblad resonance. This region is an intense concentration of mass, with a dynamical mass {approx}3 x 10{sup 9} M{sub sun}, and of star formation. The young stars in the ring produce the [Ne II] flux reported by Spitzer for the entire galaxy. The mysterious blue component of line emission detected in the near-infrared is also seen in [Ne II]; it is not a normal active galactic nucleus outflow.

  10. XMM-NEWTON OBSERVATIONS OF LUMINOUS SOURCES IN NEARBY GALAXIES NGC 4395, NGC 4736, AND NGC 4258

    SciTech Connect

    Akyuz, A.; Avdan, H.; Kayaci, S.; Ozel, M. E.; Sonbas, E.; Balman, S.

    2013-03-15

    We present the results of a study of non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A total of 75 X-ray sources have been detected within the D{sub 25} regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. Eleven of them are found to show short-term (less than 80 ks) variation while eight of them show long-term variation within factors of {approx}2-5 during a time interval of {approx}2-12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary systems. One source that has properties different from others was suspected to be a supernova remnant, and our follow-up optical observation confirmed this. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several ultraluminous X-ray sources, X-ray binaries, transients together with a super soft source, and a background active galactic nucleus candidate.

  11. GIANT GALAXIES, DWARFS, AND DEBRIS SURVEY. I. DWARF GALAXIES AND TIDAL FEATURES AROUND NGC 7331

    SciTech Connect

    Ludwig, Johannes; Pasquali, Anna; Grebel, Eva K.; Gallagher, John S. III

    2012-12-01

    The Giant GAlaxies, Dwarfs, and Debris Survey (GGADDS) concentrates on the nearby universe to study how galaxies have interacted in groups of different morphology, density, and richness. In these groups, we select the dominant spiral galaxy and search its surroundings for dwarf galaxies and tidal interactions. This paper presents the first results from deep wide-field imaging of NGC 7331, where we detect only four low-luminosity candidate dwarf companions and a stellar stream that may be evidence of a past tidal interaction. The dwarf galaxy candidates have surface brightnesses of {mu}{sub r} Almost-Equal-To 23-25 mag arcsec{sup -2} with (g - r){sub 0} colors of 0.57-0.75 mag in the Sloan Digital Sky Survey filter system, consistent with their being dwarf spheroidal (dSph) galaxies. A faint stellar stream structure on the western edge of NGC 7331 has {mu}{sub g} Almost-Equal-To 27 mag arcsec{sup -2} and a relatively blue color of (g - r){sub 0} = 0.15 mag. If it is tidal debris, then this stream could have formed from a rare type of interaction between NGC 7331 and a dwarf irregular or transition-type dwarf galaxy. We compare the structure and local environments of NGC 7331 to those of other nearby giant spirals in small galaxy groups. NGC 7331 has a much lower ({approx}2%) stellar mass in the form of early-type satellites than found for M31 and lacks the presence of nearby companions like luminous dwarf elliptical galaxies or the Magellanic Clouds. However, our detection of a few dSph candidates suggests that it is not deficient in low-luminosity satellites.

  12. EXTREMELY RAPID STAR CLUSTER DISRUPTION IN HIGH-SHEAR CIRCUMNUCLEAR STARBURST RINGS: THE UNUSUAL CASE OF NGC 7742

    SciTech Connect

    De Grijs, Richard; Anders, Peter E-mail: anders@pku.edu.cn

    2012-10-10

    All known mass distributions of recently formed star cluster populations resemble a 'universal' power-law function. Here we assess the impact of the extremely disruptive environment in NGC 7742's circumnuclear starburst ring on the early evolution of the galaxy's high-mass ({approx}10{sup 5}-10{sup 7} M{sub Sun }) star cluster population. Surprisingly, and contrary to expectations, at all ages-including the youngest, {approx}< 15 Myr-the cluster mass functions are robustly and verifiably represented by lognormal distributions that resemble those commonly found only for old, evolved globular cluster systems in the local universe. This suggests that the high-shear conditions in the NGC 7742 starburst ring may significantly speed up dynamical star cluster destruction. This enhanced mass-dependent disruption rate at very young ages might be caused by a combination of the starburst ring's high density and the shear caused by the counterrotating gas disk.

  13. NGC 4550 - A laboratory for testing galaxy formation

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Franx, Marijn; Fisher, David; Illingworth, Garth

    1992-01-01

    The kinematic and photometric structure of the two components of the E7/S0 galaxy NGC 4550 are evaluated quantitatively to determine the system's morphology. Attention is given to whether the data indicate a rotating bulge with a counterrotating disk or a pair of counterstreaming disks, and formation scenarios are discussed in the light of the findings. The data examined include long-slit spectroscopy with evidence of bimodality in the line-of-sight velocity distribution. Two photometrically inseparable counterstreaming disk components are identified and their velocities given. The structure and the formation scenarios given point to the feasibility of absorption of external material by galaxy disks without extreme heating. The possibility of detecting stellar counterrotation in S0 disks is discussed based on the study of NGC 4550.

  14. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  15. MODELING DUST AND STARLIGHT IN GALAXIES OBSERVED BY SPITZER AND HERSCHEL: NGC 628 AND NGC 6946

    SciTech Connect

    Aniano, G.; Draine, B. T.; Calzetti, D.; Crocker, A.; Dale, D. A.; Engelbracht, C. W.; Gordon, K. D.; Hunt, L. K.; Kennicutt, R. C.; Galametz, M.; Krause, O.; Rix, H.-W.; Sandstrom, K.; Walter, F.; Leroy, A. K.; Roussel, H.; Sauvage, M.; Bolatto, A. D.; Donovan Meyer, J. E-mail: draine@astro.princeton.edu; and others

    2012-09-10

    We characterize the dust in NGC 628 and NGC 6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6 {mu}m to 500 {mu}m, dust models are strongly constrained. Using the Draine and Li dust model (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082 {+-} 0.0017 for NGC 628, and 0.0063 {+-} 0.0009 for NGC 6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor of three) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) 'delta function' component. We find no evidence for significant masses of cold dust (T {approx}< 12 K). Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70, and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.

  16. Dynamics of the Polar Disk Galaxy NGC 4650A

    NASA Astrophysics Data System (ADS)

    Napolitano, N. R.; Iodice, E.; Arnaboldi, M.

    2014-05-01

    We present the dark matter distribution around the polar disk galaxy NGC 4650A. We use extended H I data along the polar disk and long slit kinematics along the spheroid and constrain the dark matter halo scales along the two directions under equilibrium assumptions and a Navarro-Frank-White profile. The different scale lengths along the two axes show that the the dark halo has an axis ratio c/a≃0.5 in agreement with expectations from cosmological simulations.

  17. Origin of cosmic rays in the spiral galaxy NGC 3310

    SciTech Connect

    Duric, N.

    1984-01-01

    The problem of cosmic ray production in the spiral galaxy NGC 3310 is addressed by analyzing and comparing optical and radio continuum data. Tentative results indicate that on global scales relativistic electrons may be produced in the shock front associated with the density wave while on local scales extreme population I objects may be producing them. It is inferred that the same conclusions apply to all cosmic rays produced in the disk. 9 references.

  18. ISM Parameters in the Normal Galaxy NGC 5713

    NASA Technical Reports Server (NTRS)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; Rubin, R. H.; Stacey, G. J.; Thronson, H. A., Jr.; Werner, M. W.

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  19. Kinematics and stellar population of the lenticular galaxy NGC 4124

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Sil'chenko, O. K.; Katkov, I. Yu.; Dodonov, S. N.

    2013-01-01

    Results of spectroscopic and photometric studies for the locally isolated lenticular galaxy NGC 4124 are presented. A model of the mass distribution consistent with photometric data has been constructed on the basis of a kinematic analysis. In this model, the halo mass within the optical radius is almost half the diskmass. The disk is shown to be in a dynamical state close to amarginally stable one. This rules out dynamical disk heating for the galaxy through a strong external action or a merger with a massive system. However, the presence of a gaseous disk inclined to the main plane of the galaxy in the central kiloparsec region suggests probable cannibalization of a small satellite that also produced a late starburst in the central region. This is confirmed by the younger mean age (˜2 Gyr) of the stellar population in the galaxy's central region than the disk age (5-7 Gyr).

  20. XMM-Newton observation of the interacting galaxies NGC 1512 and NGC 1510

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Kavanagh, P. J.; Sasaki, M.; Koribalski, B. S.

    2014-06-01

    Context. The galaxy NGC 1512 is interacting with the smaller galaxy NGC 1510 and shows a peculiar morphology, characterised by two extended arms immersed in an HI disc whose size is about four times larger than the optical diameter of NGC 1512. Aims: For the first time we performed a deep X-ray observation of the galaxies NGC 1512 and NGC 1510 with XMM-Newton to gain information on the population of X-ray sources and diffuse emission in a system of interacting galaxies. Methods: We identified and classified the sources detected in the XMM-Newton field of view by means of spectral analysis, hardness-ratios calculated with a Bayesian method, X-ray variability, and cross-correlations with catalogues in optical, infrared, and radio wavelengths. We also made use of archival Swift (X-ray) and Australia Telescope Compact Array (radio) data to better constrain the nature of the sources detected with XMM-Newton. Results: We detected 106 sources in the energy range of 0.2-12 keV, out of which 15 are located within the D25 regions of NGC 1512 and NGC 1510 and at least six sources coincide with the extended arms. We identified and classified six background objects and six foreground stars. We discussed the nature of a source within the D25 ellipse of NGC 1512, whose properties indicate a quasi-stellar object or an intermediate ultra-luminous X-ray source. Taking into account the contribution of low-mass X-ray binaries and active galactic nuclei, the number of high-mass X-ray binaries detected within the D25 region of NGC 1512 is consistent with the star formation rate obtained in previous works based on radio, infrared optical, and UV wavelengths. We detected diffuse X-ray emission from the interior region of NGC 1512 with a plasma temperature of kT = 0.68 (0.31-0.87) keV and a 0.3-10 keV X-ray luminosity of 1.3 × 1038 erg s-1, after correcting for unresolved discrete sources. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and

  1. Star Formation Models for the Dwarf Galaxies NGC 2915 and NGC 1705

    NASA Astrophysics Data System (ADS)

    Elson, E. C.; de Blok, W. J. G.; Kraan-Korteweg, R. C.

    2012-01-01

    Crucial to a quantitative understanding of galaxy evolution are the properties of the interstellar medium that regulate galactic-scale star formation activity. We present here the results of a suite of star formation models applied to the nearby blue compact dwarf galaxies NGC 2915 and NGC 1705. Each of these galaxies has a stellar disk embedded in a much larger, essentially starless H I disk. These atypical stellar morphologies allow for rigorous tests of star formation models that examine the effects on star formation of the H I, stellar, and dark matter mass components, as well as the kinematics of the gaseous and stellar disks. We use far-ultraviolet and 24 μm images from the Galaxy Evolution Explorer and the Spitzer Infrared Nearby Galaxies Survey, respectively, to map the spatial distribution of the total star formation rate surface density within each galaxy. New high-resolution H I line observations obtained with the Australia Telescope Compact Array are used to study the distribution and dynamics of each galaxy's neutral interstellar medium. The standard Toomre Q parameter is unable to distinguish between active and non-active star-forming regions, predicting the H I disks of the dwarfs to be sub-critical. Two-fluid instability models incorporating the stellar and dark matter components of each galaxy, in addition to the gaseous component, yield unstable portions of the inner disk. Finally, a formalization in which the H I kinematics are characterized by the rotational shear of the gas produces models that very accurately match the observations. This suggests the time available for perturbations to collapse in the presence of rotational shear to be an important factor governing galactic-scale star formation.

  2. STAR FORMATION MODELS FOR THE DWARF GALAXIES NGC 2915 AND NGC 1705

    SciTech Connect

    Elson, E. C.; De Blok, W. J. G.; Kraan-Korteweg, R. C.

    2012-01-15

    Crucial to a quantitative understanding of galaxy evolution are the properties of the interstellar medium that regulate galactic-scale star formation activity. We present here the results of a suite of star formation models applied to the nearby blue compact dwarf galaxies NGC 2915 and NGC 1705. Each of these galaxies has a stellar disk embedded in a much larger, essentially starless H I disk. These atypical stellar morphologies allow for rigorous tests of star formation models that examine the effects on star formation of the H I, stellar, and dark matter mass components, as well as the kinematics of the gaseous and stellar disks. We use far-ultraviolet and 24 {mu}m images from the Galaxy Evolution Explorer and the Spitzer Infrared Nearby Galaxies Survey, respectively, to map the spatial distribution of the total star formation rate surface density within each galaxy. New high-resolution H I line observations obtained with the Australia Telescope Compact Array are used to study the distribution and dynamics of each galaxy's neutral interstellar medium. The standard Toomre Q parameter is unable to distinguish between active and non-active star-forming regions, predicting the H I disks of the dwarfs to be sub-critical. Two-fluid instability models incorporating the stellar and dark matter components of each galaxy, in addition to the gaseous component, yield unstable portions of the inner disk. Finally, a formalization in which the H I kinematics are characterized by the rotational shear of the gas produces models that very accurately match the observations. This suggests the time available for perturbations to collapse in the presence of rotational shear to be an important factor governing galactic-scale star formation.

  3. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  4. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  5. Bipolar Nuclear Outflow from the Seyfert 1 Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Wrobel, J. M.

    1994-12-01

    The S0/Sa galaxy NGC 5548 hosts a Seyfert 1 nucleus. Echo mapping of its broad optical-line-emitting region yields a radial extent R <~ 20 light days = (1)/(60) pc, or 70 h microarcseonds for H_0 = 100 h km s(-1) Mpc(-1) (Peterson 1993). Using data from larger radii, what boundary conditions can be imposed on the geometry and velocity field of the broad line region? R <~ 1400 h(-1) pc: Bipolar radio continuum lobes straddle a central radio component in NGC 5548. These lobes, which emit optically-thin synchrotron radiation with a 4-cm power of 10(21) h(-2) W Hz(-1) , trace bipolar outflow from the nucleus (Wilson & Ulvestad 1982; Wrobel 1994). R <~ 720 h(-1) pc: The radio lobes of NGC 5548 share the elongation position angle of the [OIII] narrow-line gas, with the broadest known line widths occuring NW of the nucleus at these radii (Wilson et al. 1989). This hints that some narrow-line gas receives additional mechanical energy from the bipolar outflow feeding the radio lobes, a situation analogous to the narrow-line superbubble in NGC 3079 (Veilleux et al. 1994). R <~ 10 h(-1) pc: Blueshifted absorption in the broad CIV lines proves that some gas is flowing out of the nucleus of NGC 5548, with observed speeds of 1200 km s(-1) relative to systemic (Shull & Sachs 1993). This absorption line outflow may have, or be able to achieve, a bipolar shape via the disk-focusing scheme proposed for NGC 3079 (Duric & Seaquist 1988; Veilleux et al. 1994).

  6. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  7. H I Studies of the Sculptor Group Galaxies. III - NGC 55

    NASA Astrophysics Data System (ADS)

    Puche, Daniel; Carignan, Claude; Wainscoat, Richard J.

    1995-07-01

    A VLA HI map was made of NGC 55. In this study, there is a continuum map (ngc0055.con), an HI data cube (ngc0055.cub), and moment maps (ngc0055.m0 = total HI, ngc0055.m1 = velocity field, and ngc0055.m2 = second moment). These maps have been used in an extensive dynamical and kinematical study of the Sculptor Group galaxies. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  8. NGC 404: A REJUVENATED LENTICULAR GALAXY ON A MERGER-INDUCED, BLUEWARD EXCURSION INTO THE GREEN VALLEY

    SciTech Connect

    Thilker, David A.; Bianchi, Luciana; Schiminovich, David; Gil de Paz, Armando; Wyder, Ted; Barlow, Tom; Conrow, Tim; Forster, Karl; Friedman, Peter; Martin, Chris; Morrissey, Patrick; Small, Todd; Rich, R. Michael; Yi, Sukyoung; Neff, Susan

    2010-05-01

    We have discovered recent star formation in the outermost portion ((1-4) x R {sub 25}) of the nearby lenticular (S0) galaxy NGC 404 using Galaxy Evolution Explorer UV imaging. FUV-bright sources are strongly concentrated within the galaxy's H I ring (formed by a merger event according to del RIo et al.), even though the average gas density is dynamically subcritical. Archival Hubble Space Telescope imaging reveals resolved upper main-sequence stars and conclusively demonstrates that the UV light originates from recent star formation activity. We present FUV, NUV radial surface brightness profiles, and integrated magnitudes for NGC 404. Within the ring, the average star formation rate (SFR) surface density ({Sigma}{sub SFR}) is {approx}2.2 x 10{sup -5} M {sub sun} yr{sup -1} kpc{sup -2}. Of the total FUV flux, 70% comes from the H I ring which is forming stars at a rate of 2.5 x 10{sup -3} M {sub sun} yr{sup -1}. The gas consumption timescale, assuming a constant SFR and no gas recycling, is several times the age of the universe. In the context of the UV-optical galaxy color-magnitude diagram, the presence of the star-forming H I ring places NGC 404 in the green valley separating the red and blue sequences. The rejuvenated lenticular galaxy has experienced a merger-induced, disk-building excursion away from the red sequence toward bluer colors, where it may evolve quiescently or (if appropriately triggered) experience a burst capable of placing it on the blue/star-forming sequence for up to {approx}1 Gyr. The green valley galaxy population is heterogeneous, with most systems transitioning from blue to red but others evolving in the opposite sense due to acquisition of fresh gas through various channels.

  9. Soft X-ray observations of the interacting galaxies NGC 1808 and NGC 1792

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Hartner, Gisela D.; Junkes, Norbert

    1994-01-01

    The soft X-ray emission from both galaxies NGC 1808 and NGC 1792, which we investigated using the ROSAT HRI and Position Sensitive Proportional Counter (PSPC), comes most probably from X-ray binaries and/or from hot ionized gas in powerful supernovae and supernova remnants. The distribution of the soft X-ray emission in NGC 1808, which is very well correlated with the distribution of 'radio knots' in the central starburst, suggests that hot gas dominates the emission in the ROSAT band. This is consistent with the results of PSPC observations by Junkes et al. The total soft X-ray luminosity in the ROSAT band of NGC 1808 of 1.2 x 10(exp 41) ergs/s is relatively high compared with other nearby starburst galaxies. Soft X-ray emission of diffuse hot ionized gas that is associated with the outflow traced by the conspicuous dust filaments protruding from the plane has been detected. Its luminosity in the ROSAT band is greater than or equal to 3 x 10(exp 39) ergs/s, i.e., several percent of the total soft X-ray luminosity. Thus, NGC 1808 is another example for a 'superwind' galaxy. The soft X-ray radiation from NGC 1792 is more likely to be dominated by a population of high-mass X-ray binaries or young powerful supernovae which are associated with the high-level star formation going on in the very prominent H II regions along its spiral arms, with possibly an additional contribution of diffuse hot ionized gas. The soft X-ray luminosities of individual sources lie in the range of 5 x 10(exp 38) to 2.7 x 10(exp 39) ergs/s, thus exceeding by far the Eddington luminosity of an accreting neutron star. The peaks of some of these soft X-ray luminous sources are offset with respect to the H II regions by a few hundred parsecs. Accordingly, if the soft X-ray sources should originate from the H II regions, their relative velocities with respect to the ambient medium have to be as high as approximately 100 km/s.

  10. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  11. The distance to the giant elliptical galaxy NGC 5128

    NASA Astrophysics Data System (ADS)

    Rejkuba, M.

    2004-01-01

    The distance to NGC 5128, the central galaxy of the Centaurus group and the nearest giant elliptical to us, has been determined using two independent distance indicators: the Mira period-luminosity (PL) relation and the luminosity of the tip of the red giant branch (RGB). The data were taken at two different locations in the halo of NGC 5128 with the ISAAC near-IR array on ESO VLT. From more than 20 hours of observations with ISAAC a very deep Ks-band luminosity function was constructed. The tip of the RGB is detected at Ks=21.24 ± 0.05 mag. Using an empirical calibration of the K-band RGB tip magnitude, and assuming a mean metallicity of [M/ H]=-0.4 dex and reddening of E(B-V)=0.11, a distance modulus of NGC 5128 of (m-M)0=27.87 ± 0.16 was derived. The comparison of the H-band RGB tip magnitude in NGC 5128 and the Galactic Bulge implies a distance modulus of NGC 5128 of (m-M)0=27.9 ± 0.2 in good agreement with the K-band RGB tip measurement. The inner halo field has larger photometric errors, brighter completeness limits and a larger number of blends. Thus the RGB tip feature is not as sharp as in the outer halo field. The population of stars above the tip of the RGB amounts to 2176 stars in the outer halo field (Field 1) and 6072 stars in the inner halo field (Field 2). The large majority of these sources belong to the asymptotic giant branch (AGB) population in NGC 5128 with numerous long period variables. Mira variables were used to determine the distance of NGC 5128 from a period-luminosity relation calibrated using the Hipparcos parallaxes and LMC Mira period-luminosity relation in the K-band. This is the first Mira period-luminosity relation outside the Local Group. A distance modulus of 27.96 ± 0.11 was derived, adopting the LMC distance modulus of 18.50 ± 0.04. The mean of the two methods yields a distance modulus to NGC 5128 of 27.92 ± 0.19 corresponding to D=3.84 ± 0.35 Mpc. Based on observations collected at the European Southern Observatory

  12. A multi-wavelength view of the central kiloparsec region in the luminous infrared galaxy NGC 1614

    SciTech Connect

    Herrero-Illana, Rubén; Pérez-Torres, Miguel Á.; Alberdi, Antxon; Hernández-García, Lorena; Alonso-Herrero, Almudena; Colina, Luis; Efstathiou, Andreas; Miralles-Caballero, Daniel; Väisänen, Petri; Packham, Christopher C.; Rajpaul, Vinesh; Zijlstra, Albert A.

    2014-05-10

    The Luminous Infrared Galaxy NGC 1614 hosts a prominent circumnuclear ring of star formation. However, the nature of the dominant emitting mechanism in its central ∼100 pc is still under debate. We present sub-arcsecond angular resolution radio, mid-infrared, Paα, optical, and X-ray observations of NGC 1614, aimed at studying in detail both the circumnuclear ring and the nuclear region. The 8.4 GHz continuum emission traced by the Very Large Array and the Gemini/T-ReCS 8.7 μm emission, as well as the Paα line emission, show remarkable morphological similarities within the star-forming ring, suggesting that the underlying emission mechanisms are tightly related. We used a Hubble Space Telescope/NICMOS Paα map of similar resolution to our radio maps to disentangle the thermal free-free and non-thermal synchrotron radio emission, from which we obtained the intrinsic synchrotron power law for each individual region within the central kiloparsec of NGC 1614. The radio ring surrounds a relatively faint, steep-spectrum source at the very center of the galaxy, suggesting that the central source is not powered by an active galactic nucleus (AGN), but rather by a compact (r ≲ 90 pc) starburst (SB). Chandra X-ray data also show that the central kiloparsec region is dominated by SB activity, without requiring the existence of an AGN. We also used publicly available infrared data to model-fit the spectral energy distribution of both the SB ring and a putative AGN in NGC 1614. In summary, we conclude that there is no need to invoke an AGN to explain the observed bolometric properties of the galaxy.

  13. Mid-infrared dust in two nearby radio galaxies, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36)

    NASA Astrophysics Data System (ADS)

    Duah Asabere, B.; Horellou, C.; Jarrett, T. H.; Winkler, H.

    2016-07-01

    Context. Most radio galaxies are hosted by giant gas-poor ellipticals, but some contain significant amounts of dust, which is likely to be of external origin. Aims: In order to characterize the mid-IR properties of two of the most nearby and brightest merger-remnant radio galaxies of the Southern hemisphere, NGC 1316 (Fornax A) and NGC 612 (PKS 0131-36), we used observations with the Wide-field Infrared Survey Explorer (WISE) at wavelengths of 3.4, 4.6, 12 and 22 μm and Spitzer mid-infrared spectra. Methods: By applying a resolution-enhancement technique, new WISE images were produced at angular resolutions ranging from 2.̋6 to 5.̋5. Global measurements were performed in the four WISE bands, and stellar masses and star-formation rates were estimated using published scaling relations. Two methods were used to uncover the distribution of dust, one relying on two-dimensional fits to the 3.4 μm images to model the starlight, and the other one using a simple scaling and subtraction of the 3.4 μm images to estimate the stellar continuum contribution to the emission in the 12 and 22 μm bands. Results: The two galaxies differ markedly in their mid-IR properties. The 3.4 μm brightness distribution can be well represented by the superposition of two Sérsic models in NGC 1316 and by a Sérsic model and an exponential disk in NGC 612. The WISE colors of NGC 1316 are typical of those of early-type galaxies; those of NGC 612 are in the range found for star-forming galaxies. From the 22 μm luminosity, we infer a star-formation rate of ~0.7 M⊙ yr-1 in NGC 1316 and ~7 M⊙ yr-1 in NGC 612. Spitzer spectroscopy shows that the 7.7-to-11.3 μm PAH line ratio is significantly lower in NGC 1316 than in NGC 612. The WISE images reveal resolved emission from dust in the central 1'-2' of the galaxies. In NGC 1316, the extra-nuclear emission coincides with two dusty regions NW and SE of the nucleus seen in extinction in optical images and where molecular gas is known to reside

  14. Interacting binary galaxies. III - Observations of NGC 1587/1588 and NGC 7236/7237

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Hoessel, John G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum.

  15. Interacting binary galaxies. III. Observations of NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.; Hoessel, J.G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum. 62 references.

  16. Cepheid Variables in the Maser-host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Macri, Lucas M.

    2015-06-01

    We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey gri bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical gri Period-Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

  17. Far-infrared observations of Circinus and NGC 4945 galaxies

    NASA Technical Reports Server (NTRS)

    Bisht, R. S.; Ghosh, S. K.; Iyengar, K. V. K.; Rengarajan, T. N.; Tandon, S. N.; Verma, R. P.

    1990-01-01

    Circinus and NGC 4945 are two galaxies luminous in the infrared and are characterized by compact non thermal radio nuclei, deep silicate absorption features and unusually strong water vapor maser luminosities. Moorwood and Glass (1984) have observed these galaxies extensively in the 1 to 20 micron range. In the far-infrared, observations up to 100 microns are available from the Infrared Astronomy Satellite (IRAS). In order to study the cool dust component of these galaxies, researchers observed them at 150 microns using the Tata Institute of Fundamental Research (TIFR) 100 cm balloon-borne telescope. Here, they report observations along with deconvolved maps at 50 and 100 microns obtained from the Chopped Photometric Channel (CPC) on board IRAS.

  18. The Discovery of Globular Clusters in the Protospiral Galaxy NGC 2915: Implications for Hierarchical Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt R.; Blakeslee, J. P.; Sirianni, M.; Ford, H. C.; Illingworth, G. D.; Benítez, N.; Clampin, M.; Menanteau, F.; Tran, H. D.; Kimble, R. A.; Hartig, G. F.; Ardila, D. R.; Bartko, F.; Bouwens, R. J.; Broadhurst, T. J.; Brown, R. A.; Burrows, C. J.; Cheng, E. S.; Cross, N. J. G.; Feldman, P. D.; Golimowski, D. A.; Gronwall, C.; Infante, L.; Krist, J. E.; Lesser, M. P.; Martel, A. R.; Miley, G. K.; Postman, M.; Rosati, P.; Sparks, W. B.; Tsvetanov, Z. I.; White, R. L.; Zheng, W.

    2003-12-01

    We have discovered three globular clusters beyond the Holmberg radius in Hubble Space Telescope Advanced Camera for Surveys images of the gas-rich dark matter-dominated blue compact dwarf galaxy NGC 2915. The clusters, all of which start to resolve into stars, have MV606=-8.9 to -9.8 mag, significantly brighter than the peak of the luminosity function of Milky Way globular clusters. Their colors suggest a metallicity [Fe/H]~-1.9 dex, typical of metal-poor Galactic globular clusters. The specific frequency of clusters is at a minimum normal, compared to spiral galaxies. However, since only a small portion of the system has been surveyed, it is more likely that the luminosity and mass normalized cluster content is higher, like that seen in elliptical galaxies and galaxy clusters. This suggests that NGC 2915 resembles a key phase in the early hierarchical assembly of galaxies-the epoch when much of the old stellar population has formed but little of the stellar disk. Depending on the subsequent interaction history, such systems could go on to build up larger elliptical galaxies, evolve into normal spirals, or in rare circumstances remain suspended in their development to become systems like NGC 2915.

  19. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    SciTech Connect

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Minezaki, T.; Siverd, R. J.; Bord, D. J.; and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  20. A spectroscopic analysis of the starburst galaxies NGC 3395 and NGC 3396

    NASA Astrophysics Data System (ADS)

    Plaks, Kenneth

    2003-11-01

    We have obtained ultraviolet and visible wavelength spectra of 31 bright star forming knots in the interacting galaxies NGC 3395 and NGC 3396 using the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope. The knots are possible super star clusters on the order of ˜100 pc diameter with measured metallicities on the order of 0.5 0.6 Z⊙ . The spectra are consistent with a massive production of hot young stars in a starburst. Ages of the starburst knots were calculated using several diagnostics from the Leitherer et al. Starburst 99 code (SB99) using an Initial Mass Function (IMF) with a power law coefficient α = 2.35 and an upper mass limit of 100 M⊙ . We modeled our star forming knots as instantaneous starbursts with the measured metallicity and we obtained consistent and reasonable estimates of the starburst age. The UV-brightest knots are ˜5 Myr old in both galaxies. We found no age gradient in the galaxies implying the starburst does not propagate across the galaxy but rather occurs simultaneously everywhere. The data are also consistent with the interpretation that the starburst is not only happening more or less simultaneously within each galaxy, it is also occurring simultaneously in both galaxies. If true, the fact that it is occurring simultaneously in both galaxies gives credence to the interaction being the source of the star formation in line with current theory. While our starforming knots were spatially resolved, at high redshift one cannot resolve individual knots and instead has to rely on spatially unresolved spectra. To assess the representativeness of these spectra of the underlying structure, we simulated the spectra one would observe by defining the entire portion of each galaxy observed as an unresolved knot. We found the metallicities for the unresolved knots were very representative of the resolved knots that made them up. We also found that the ages we derived for the unresolved knots were representative of the

  1. Excess Submillimeter Emission in the Starburst Galaxy NGC 3310?

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Papadopoulos, P. P.; Xilouris, M.; Kuno, N.; Lisenfeld, U.

    2011-10-01

    We present a new observational study of the gas and dust properties in the starburst galaxy NGC 3310, whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies (Zhu et al. 2009). One of our major findings is that the dust emission spectrum in NGC 3310 shows a pronounced submillimeter “excess”. We tried to fit this excess by a cold dust component but very low temperatures were required (Tc ˜ 5-11 K) with a correspondingly low gas-to-dust mass ratio of 5-43. We furthermore show that it is not possible to maintain the large quantities of dust required at these low temperatures in this starburst galaxy. Instead, we conclude that the dust properties need to be different from Galactic dust in order to fit the submillimeter “excess”. We show that the dust spectral energy distribution can be fitted by an enhanced abundance of very small grains and discuss different alternatives.

  2. Observations of CO in the Magellanic irregular galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    Heithausen, Andreas; Dettmar, Ralf-Juergen

    1990-01-01

    The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 10(exp 7) solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.

  3. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  4. THE MAGNETIC FIELD OF THE IRREGULAR GALAXY NGC 4214

    SciTech Connect

    Kepley, Amanda A.; Zweibel, Ellen G.; Wilcots, Eric M.; Johnson, Kelsey E.; Robishaw, Timothy E-mail: zweibel@astro.wisc.edu E-mail: kej7a@virginia.edu

    2011-08-01

    We examine the magnetic field in NGC 4214, a nearby irregular galaxy, using multi-wavelength radio continuum polarization data from the Very Large Array. We find that the global radio continuum spectrum shows signs that free-free absorption and/or synchrotron losses may be important. The 3 cm radio continuum morphology is similar to that of the H{alpha} while the 20 cm emission is more diffuse. We estimate that 50% of the radio continuum emission in the center of the galaxy is thermal. Our estimate of the magnetic field strength is 30 {+-} 9.5 {mu}G in the center and 10 {+-} 3 {mu}G at the edges. We find that the hot gas, magnetic, and the gravitational pressures are all the same order of magnitude. Inside the central star-forming regions, we find that the thermal and turbulent pressures of the H II regions dominate the pressure balance. We do not detect any significant polarization on size scales greater than 200 pc. We place an upper limit of 8 {mu}G on the uniform field strength in this galaxy. We suggest that the diffuse synchrotron region, seen to the north of the main body of emission at 20 cm, is elongated due to a uniform magnetic field with a maximum field strength of 7.6 {mu}G. We find that, while the shear in NGC 4214 is comparable to that of the Milky Way, the supernova rate is half that of the Milky Way and suggest that the star formation episode in NGC 4214 needs additional time to build up enough turbulence to drive an {alpha}-{omega} dynamo.

  5. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    NASA Astrophysics Data System (ADS)

    2004-11-01

    Star formation is one of the most basic phenomena in the Universe. Inside stars, primordial material from the Big Bang is processed into heavier elements that we observe today. In the extended atmospheres of certain types of stars, these elements combine into more complex systems like molecules and dust grains, the building blocks for new planets, stars and galaxies and, ultimately, for life. Violent star-forming processes let otherwise dull galaxies shine in the darkness of deep space and make them visible to us over large distances. Star formation begins with the collapse of the densest parts of interstellar clouds, regions that are characterized by comparatively high concentration of molecular gas and dust like the Orion complex (ESO PR Photo 20/04) and the Galactic Centre region (ESO Press Release 26/03). Since this gas and dust are products of earlier star formation, there must have been an early epoch when they did not yet exist. But how did the first stars then form? Indeed, to describe and explain "primordial star formation" - without molecular gas and dust - is a major challenge in modern Astrophysics. A particular class of relatively small galaxies, known as "Blue Dwarf Galaxies", possibly provide nearby and contemporary examples of what may have occurred in the early Universe during the formation of the first stars. These galaxies are poor in dust and heavier elements. They contain interstellar clouds which, in some cases, appear to be quite similar to those primordial clouds from which the first stars were formed. And yet, despite the relative lack of the dust and molecular gas that form the basic ingredients for star formation as we know it from the Milky Way, those Blue Dwarf Galaxies sometimes harbour very active star-forming regions. Thus, by studying those areas, we may hope to better understand the star-forming processes in the early Universe. Very active star formation in NGC 5253 NGC 5253 is one of the nearest of the known Blue Dwarf Galaxies

  6. Stellar counter-rotation in lenticular galaxy NGC 448

    NASA Astrophysics Data System (ADS)

    Katkov, Ivan Yu.; Sil'chenko, Olga K.; Chilingarian, Igor V.; Uklein, Roman I.; Egorov, Oleg V.

    2016-09-01

    The counter-rotation phenomenon in disc galaxies directly indicates a complex galaxy assembly history which is crucial for our understanding of galaxy physics. Here, we present the complex data analysis for a lenticular galaxy NGC 448, which has been recently suspected to host a counter-rotating stellar component. We collected deep long-slit spectroscopic observations using the Russian 6-m telescope and performed the photometric decomposition of Sloan Digital Sky Survey archival images. We exploited (i) a non-parametric approach in order to recover stellar line-of-sight velocity distributions and (ii) a parametric spectral decomposition technique in order to disentangle stellar population properties of both main and counter-rotating stellar discs. Our spectral decomposition stays in perfect agreement with the photometric analysis. The counter-rotating component contributes ≈30 per cent to the total galaxy light. We estimated its stellar mass to be 9.0^{+2.7}_{-1.8}× 109 M_{⊙}. The radial scalelength of counter-rotating disc is ≈3 times smaller than that of the main disc. Both discs harbour old stars but the counter-rotating components reveal a detectable negative age gradient that might suggest an extended inside-out formation during 3…4 Gyr. The counter-rotating disc hosts more metal-rich stars and possesses a shallower metallicity gradient with respect to the main disc. Our findings rule out cosmological filaments as a source of external accretion which is considered as a potential mechanism of the counter-rotating component formation in NGC 448, and favour the satellite merger event with the consequent slow gas accretion.

  7. The Warm Absorber of the Seyfert Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Krongold, Y.; Elvis, M.; Nicastro, F.; Binette, L.; Brickhouse, N.

    2008-04-01

    We present a spectral analysis of the X-ray Chandraof the Seyfert 1 Galaxy NGC 5548. The warm absorber present in this object was modeled with the code PHASE. We detected two different outflow velocity systems in this source. One of the absorbing systems has outflow velocity of -1091+/-63 km s(-1) and the other of -568+/-49 km s(-1) . Each system required two absorption components with different ionization level to fit the observed features. Each velocity system may consist of a multi-phase medium.

  8. PHOTODISSOCIATION CHEMISTRY FOOTPRINTS IN THE STARBURST GALAXY NGC 253

    SciTech Connect

    MartIn, Sergio; MartIn-Pintado, J.; Viti, S.

    2009-12-01

    UV radiation from massive stars is thought to be the dominant heating mechanism of the nuclear interstellar medium (ISM) in the late stages of evolution of starburst galaxies, creating large photodissociation regions (PDRs) and driving a very specific chemistry. We report the first detection of PDR molecular tracers, namely HOC{sup +} and CO{sup +}, and also confirm the detection of the PDR tracer HCO toward the starburst galaxy NGC 253, claimed to be mainly dominated by shock heating and in an earlier stage of evolution than M 82, the prototypical extragalactic PDR. Our CO{sup +} detection suffers from significant blending to a group of transitions of {sup 13}CH{sub 3}OH, tentatively detected for the first time in the extragalactic ISM. These species are efficiently formed in the highly UV-irradiated outer layers of molecular clouds, as observed in the late stage nuclear starburst in M 82. The molecular abundance ratios we derive for these molecules are very similar to those found in M 82. This strongly supports the idea that these molecules are tracing the PDR component associated with the starburst in the nuclear region of NGC 253. The presence of large abundances of PDR molecules in the ISM of NGC 253, which is dominated by shock chemistry, clearly illustrates the potential of chemical complexity studies to establish the evolutionary state of starbursts in galaxies. A comparison with the predictions of chemical models for PDRs shows that the observed molecular ratios are tracing the outer layers of UV-illuminated clouds up to two magnitudes of visual extinction. We combine the column densities of PDR tracers reported in this paper with those of easily photodissociated species, such as HNCO, to derive the fraction of material in the well-shielded core relative to the UV-pervaded envelopes. Chemical models, which include grain formation and photodissociation of HNCO, support the scenario of a photo-dominated chemistry as an explanation to the abundances of the

  9. Hydrodynamic models of the Cartwheel ring galaxy

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Higdon, James L.

    1993-01-01

    A series of increasingly sophisticated models of the Cartwheel ring galaxy is studied in order to test the collisional model for the galaxy formation and examine the star formation processes in this unique environment, using new data acquired in the last decade. The simulations provided some possible answers to a number of questions about the Cartwheel. First, an explanation for the wide spacing between inner and outer rings is suggested by the simple epicyclic kinematics within the dark matter-dominated potential implied by H I rotation curve. These models and the kinematic model of Struck-Marcell and Lotan (1990) also predict that the outer ring should be relatively weak, while the second inner ring should be stronger, with a dense orbit-crossing region of significant width bounded by sharp, caustic edges. The collisional model is given support by the agreement between the observations and the morphological and kinematic properties of the numerical simulations presented.

  10. Exploring the mass assembly of the early-type disc galaxy NGC 3115 with MUSE

    NASA Astrophysics Data System (ADS)

    Guérou, A.; Emsellem, E.; Krajnović, D.; McDermid, R. M.; Contini, T.; Weilbacher, P. M.

    2016-07-01

    We present MUSE integral field spectroscopic data of the S0 galaxy NGC 3115 obtained during the instrument commissioning at the ESO Very Large Telescope (VLT). We analyse the galaxy stellar kinematics and stellar populations and present two-dimensional maps of their associated quantities. We thus illustrate the capacity of MUSE to map extra-galactic sources to large radii in an efficient manner, i.e. ~4 Re, and provide relevant constraints on its mass assembly. We probe the well-known set of substructures of NGC 3115 (nuclear disc, stellar rings, outer kpc-scale stellar disc, and spheroid) and show their individual associated signatures in the MUSE stellar kinematics and stellar populations maps. In particular, we confirm that NGC 3115 has a thin fast-rotating stellar disc embedded in a fast-rotating spheroid, and that these two structures show clear differences in their stellar age and metallicity properties. We emphasise an observed correlation between the radial stellar velocity, V, and the Gauss-Hermite moment, h3, which creates a butterfly shape in the central 15'' of the h3 map. We further detect the previously reported weak spiral- and ring-like structures, and find evidence that these features can be associated with regions of younger mean stellar ages. We provide tentative evidence for the presence of a bar, although the V-h3 correlation can be reproduced by a simple axisymmetric dynamical model. Finally, we present a reconstruction of the two-dimensional star formation history of NGC 3115 and find that most of its current stellar mass was formed at early epochs (>12 Gyr ago), while star formation continued in the outer (kpc-scale) stellar disc until recently. Since z ~2 and within ~4 Re, we suggest that NGC 3115 has been mainly shaped by secular processes. The images of the derived parameters in FITS format and the reduced datacube are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  11. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  12. The flaring Hi disk of the nearby spiral galaxy NGC 2683

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Nehlig, F.; Ibata, R.

    2016-02-01

    New deep VLA D array Hi observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model Hi data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80°; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination between 10 kpc ≤ R ≤ 20 kpc (decreasing by 10°); (iv) an exponential flare that rises from 0.5 kpc at R = 9 kpc to 4 kpc at R = 15 kpc, stays constant until R = 22 kpc, and decreases its height for R> 22 kpc; and (v) a low surface-density gas ring with a vertical offset of 1.3 kpc. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the optical and thin gas disk. Under the assumption of vertical hydrostatic equilibrium we derive the vertical velocity dispersion of the gas. The high turbulent velocity dispersion in the flare can be explained by energy injection by (i) supernovae; (ii) magneto-rotational instabilities; (iii) interstellar medium stirring by dark matter substructure; or (iv) external gas accretion. The existence of the complex large-scale warping and asymmetries favors external gas accretion as one of the major energy sources that drives turbulence in the outer gas disk. We propose a scenario where this external accretion leads to turbulent adiabatic compression that enhances the turbulent velocity dispersion and might quench star formation in the outer gas disk of NGC

  13. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from

  14. ACA [CI] observations of the starburst galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Krips, M.; Martín, S.; Sakamoto, K.; Aalto, S.; Bisbas, T. G.; Bolatto, A. D.; Downes, D.; Eckart, A.; Feruglio, Ch.; García-Burillo, S.; Geach, J.; Greve, T. R.; König, S.; Matsushita, S.; Neri, R.; Offner, S.; Peck, A. B.; Viti, S.; Wagg, J.

    2016-07-01

    Context. Carbon monoxide (CO) is widely used as a tracer of the molecular gas in almost all types of environments. However, several shortcomings of CO complicate usaging it as H2 tracer, such as its optical depth effects, the dependence of its abundance on metallicity, or its susceptibility to dissociation in highly irradiated regions. Neutral carbon emission has been proposed to overcome some of these shortcomings and hence to help revealing the limits of CO as a measure of the molecular gas. Aims: We aim to study the general characteristics of the spatially and spectrally resolved carbon line emission in a variety of extragalactic sources and evaluate its potential as complementary H2 tracer to CO. Methods: We used the Atacama Compact Array to map the [CI](3P1-3P0) line emission in the nearby starburst galaxy NGC 253 at unprecedented angular resolution (~3''). This is the first well-resolved interferometric [CI] map of an extragalactic source. Results: We have detected the [CI] line emission at high significance levels along the central disk of NGC 253 and its edges where expanding shells have previously been found in CO. Globally, the distribution of the [CI] line emission strongly resembles that of CO, confirming the results of previous Galactic surveys that [CI] traces the same molecular gas as CO. However, we also identify a significant increase of [CI] line emission with respect to CO in (some of) the outflow or shocked regions of NGC 253, namely the bipolar outflow emerging from the nucleus. A first-order estimate of the [CI] column densities indicates abundances of [CI] that are very similar to the abundance of CO in NGC 253. Interestingly, we find that the [CI] line is marginally optically thick within the disk. Conclusions: The enhancement of the [CI]/CO line ratios (~0.4-0.6) with respect to Galactic values (≤0.1), especially in the shocked regions of NGC 253, clearly indicates that mechanical perturbation such as shocks and the strong radiation

  15. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Thomas Tam, Pak-Hin E-mail: phtam@phys.nthu.edu.tw

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  16. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    NASA Astrophysics Data System (ADS)

    McNamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-09-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium should be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  17. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  18. A supernova distance to the anchor galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Polshaw, J.; Kotak, R.; Chambers, K. C.; Smartt, S. J.; Taubenberger, S.; Kromer, M.; Gall, E. E. E.; Hillebrandt, W.; Huber, M.; Smith, K. W.; Wainscoat, R. J.

    2015-08-01

    The fortuitous occurrence of a type II-Plateau (IIP) supernova, SN 2014bc, in a galaxy for which distance estimates from a number of primary distance indicators are available provides a means with which to cross-calibrate the standardised candle method (SCM) for type IIP SNe. By applying calibrations from the literature we find distance estimates in line with the most precise measurement to NGC 4258 based on the Keplerian motion of masers (7.6 ± 0.23 Mpc), albeit with significant scatter. We provide an alternative local SCM calibration by only considering type IIP SNe that have occurred in galaxies for which a Cepheid distance estimate is available. We find a considerable reduction in scatter (σI = 0.16 mag), but note that the current sample size is limited. Applying this calibration, we estimate a distance to NGC 4258 of 7.08 ± 0.86 Mpc. Appendix A is available in electronic form at http://www.aanda.org

  19. Globular Cluster Systems in Brightest Cluster Galaxies. II. NGC 6166

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Whitmore, Bradley C.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry

    2016-01-01

    We present new deep photometry of the globular cluster system (GCS) around NGC 6166, the central supergiant galaxy in Abell 2199. Hubble Space Telescope data from the Advanced Camera for Surveys and WFC3 cameras in F475W and F814W are used to determine the spatial distribution of the GCS, its metallicity distribution function (MDF), and the dependence of the MDF on galactocentric radius and on GC luminosity. The MDF is extremely broad, with the classic red and blue subpopulations heavily overlapped, but a double-Gaussian model can still formally match the MDF closely. The spatial distribution follows a Sérsic-like profile detectably to a projected radius of at least Rgc = 250 kpc. To that radius, the total number of clusters in the system is NGC = 39000 ± 2000, the global specific frequency is SN = 11.2 ± 0.6, and 57% of the total are blue, metal-poor clusters. The GCS may fade smoothly into the intracluster medium (ICM) of A2199; we see no clear transition from the core of the galaxy to the cD halo or the ICM. The radial distribution, projected ellipticity, and mean metallicity of the red (metal-richer) clusters match the halo light extremely well for {R}{gc}≳ 15 {{kpc}}, both of them varying as {σ }{MRGC}∼ {σ }{light}∼ {R}-1.8. By comparison, the blue (metal-poor) GC component has a much shallower falloff {σ }{MPGC}∼ {R}-1.0 and a more nearly spherical distribution. This strong difference in their density distributions produces a net metallicity gradient in the GCS as a whole that is primarily generated by the population gradient. With NGC 6166 we appear to be penetrating into a regime of high enough galaxy mass and rich enough environment that the bimodal two-phase description of GC formation is no longer as clear or effective as it has been in smaller galaxies.

  20. AN IONIZATION CONE IN THE DWARF STARBURST GALAXY NGC 5253

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael; Martin, Crystal L.

    2011-11-01

    There are few observational constraints on how the escape of ionizing photons from starburst galaxies depends on galactic parameters. Here we report on the first major detection of an ionization cone in NGC 5253, a nearby starburst galaxy. This high-excitation feature is identified by mapping the emission-line ratios in the galaxy using [S III] {lambda}9069, [S II] {lambda}6716, and H{alpha} narrowband images from the Maryland-Magellan Tunable Filter at Las Campanas Observatory. The ionization cone appears optically thin, which suggests the escape of ionizing photons. The cone morphology is narrow with an estimated solid angle covering just 3% of 4{pi} steradians, and the young, massive clusters of the nuclear starburst can easily generate the radiation required to ionize the cone. Although less likely, we cannot rule out the possibility of an obscured active galactic nucleus source. An echelle spectrum along the minor axis shows complex kinematics that are consistent with outflow activity. The narrow morphology of the ionization cone supports the scenario that an orientation bias contributes to the difficulty in detecting Lyman continuum emission from starbursts and Lyman break galaxies.

  1. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ∼ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (∼100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ∼ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (∼107 M ⊙) core. Two systemic velocities, 998 km s‑1 for the CND and 964 km s‑1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s‑1 kpc‑1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}∼ 0.2 in the case of optically thin CO (1–0) emission in the outflow, suggesting low efficiency of star formation quenching.

  2. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  3. The complex nature of the Seyfert galaxy NGC 7592

    NASA Technical Reports Server (NTRS)

    Rafanelli, Piero; Marziani, Paolo

    1990-01-01

    Long slit spectra of NGC 7592 were taken on Sep. 26 to 30, 1989 at the 1.52 cm European Southern Observatory (ESO) telescope, equipped with a Boller and Chivens spectrograph and an RCA High Resolution charge coupled device (CCD) camera. The problem of the nature of Region C is addressed at first. C shows an heliocentric radial velocity very similar to that of Regions A and B. Moreover, the arm departing from C is most probably a tidal tail, because its extension is large and its orientation is peculiar. The high H alpha luminosity of C is typical of a starburst nucleus. These facts argue in favor of C being the nucleus of a third galactic component (southern component S) physically interacting with the SE component of NGC 7592. The directions of the velocity vectors in various regions of NGC 7592 are marked. It is noteworthy that the SE component rotates clockwise, if the radial velocity difference delta v sub r from its nucleus B is due to rotation. Under the same assumption for the delta v sub r = v sub r-v sub r, A, the NW component seems to rotate counterclockwise. Thus, the gas in the regions where the two galactic bodies are in contact moves in the same way, suggesting that a prograde encounter is occurring. It is known (e.g., Toomre and Toomre, 1972) that prograde encounters have the most disruptive effects on the interacting galaxies, leading to the formation of tidal tails. The interpretation of the wing of the NW component in terms of a tidal tail thus appears very likely. A similar situation holds for the interaction between SE and S too, where S rotates counterclockwise. The interpretation of the arm departing from C as a tidal tail is supported also in this case. The difference in radial velocity between A and B (delta v sub r approx. equal - 40 km s(exp-1)) and the morphology of NGC 7592 suggests that the NW component is beyond the SE one and is approaching it. The most heavily reddened regions (E(B - V) approx. equals 0.7, derived from the H alpha

  4. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING S0 GALAXY NGC 5195 (M51B)

    SciTech Connect

    Lee, Joon Hyeop; Kim, Sang Chul; Ree, Chang Hee; Kim, Minjin; Jeong, Hyunjin; Lee, Jong Chul; Kyeong, Jaemann E-mail: sckim@kasi.re.kr E-mail: mkim@kasi.re.kr E-mail: jclee@kasi.re.kr

    2012-08-01

    We report the properties of the interacting S0 galaxy NGC 5195 (M51B), revealed in a pixel analysis using the Hubble Space Telescope/Advanced Camera for Surveys images in the F435W, F555W, and F814W (BVI) bands. We analyze the pixel color-magnitude diagram (pCMD) of NGC 5195, focusing on the properties of its red and blue pixel sequences and the difference from the pCMD of NGC 5194 (M51A; the spiral galaxy interacting with NGC 5195). The red pixel sequence of NGC 5195 is redder than that of NGC 5194, which corresponds to the difference in the dust optical depth of 2 < {Delta}{tau}{sub V} < 4 at fixed age and metallicity. The blue pixel sequence of NGC 5195 is very weak and spatially corresponds to the tidal bridge between the two interacting galaxies. This implies that the blue pixel sequence is not an ordinary feature in the pCMD of an early-type galaxy, but that it is a transient feature of star formation caused by the galaxy-galaxy interaction. We also find a difference in the shapes of the red pixel sequences on the pixel color-color diagrams (pCCDs) of NGC 5194 and NGC 5195. We investigate the spatial distributions of the pCCD-based pixel stellar populations. The young population fraction in the tidal bridge area is larger than that in other areas by a factor >15. Along the tidal bridge, young populations seem to be clumped particularly at the middle point of the bridge. On the other hand, the dusty population shows a relatively wide distribution between the tidal bridge and the center of NGC 5195.

  5. The near-infrared structure of the barred galaxy NGC 253 from VISTA⋆

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Arnaboldi, M.; Rejkuba, M.; Neeser, M. J.; Greggio, L.; Gonzalez, O. A.; Irwin, M.; Emerson, J. P.

    2014-07-01

    Context. The presence of a bar affects the distribution and dynamics of a stellar disk at all scales, from a fraction of a kpc in the inner central region to tens of kpc at the disk's edge. The quantitative study of the disk response to a bar can be hampered by the presence of dust, which is common in late type spirals. Aims: We want to quantify the structures in the stellar disk of the barred Sc galaxy NGC 253 located in the Sculptor group, at 3.47 Mpc distance. Methods: We use J and Ks band images acquired with the VISTA telescope as part of the Science Verification. The wide field of view and the high angular resolution of this survey facility allow the mapping of the large and small scale structure of the stellar disk in NGC 253. We use unsharp masking and two dimensional modelling of the smooth light distribution in the disk to identify and measure the sub-structures induced by the bar in the stellar disk of NGC 253. We build azimuthally-averaged profiles in the J and Ks bands to measure the radial surface brightness profile of the central bulge, bar and disk. Results: Moving outward from the galaxy center, we find a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring with 2.9 kpc radius, and spiral arms in the outer disk. From the Ks image we obtain a new measure of the de-projected length of the bar of 2.5 kpc. The bar's strength, as derived from the curvature of the dust lanes in the J-Ks image, is typical of weak bars with Δα = 25 degree/kpc. From the de-projected length of the bar, we establish the co-rotation radius (RCR = 3 kpc) and bar pattern speed (Ωb = 61.3 km s-1 kpc-1), which provides the connection between the high frequency structures in the disk and the orbital resonances induced by the bar. The nuclear ring is located at the Inner Lindblad resonance. The second ring (at 2.9 kpc) does not have a resonant origin, but it could be a merger remnant or a transient structure formed during an intermediate stage of the bar

  6. Discovery of new dwarf galaxies around NGC4631 with Subaru/Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Tanaka, Mikito; Komiyama, Yutaka; Chiba, Masashi

    2015-08-01

    We have been carrying out archaeological surveys of nearby galaxies using the Hyper Suprime-Cam (HSC) on the prime focus of the 8.2m Subaru telescope in order to understand an universal formation scenario of galactic halos, based on wide-field observations of the Local Group galaxies and the Local Volume galaxies. HSC consists of 104 effective 2048 x 4096 CCDs with a scale of 0.17 arcsec per pixel and covers a circular field of view with 1.5 degree in diameter. Especially, it is important to understand the variety of morphology of galactic halos through a detailed comparison of structures already found in the Local Group galaxies with structures recently detected in the Local Volume galaxies. In this conference, we report the discovery of new classical dwarf galaxies in the outskirts of NGC4631, which is a nearby edge-on Local Volume spiral galaxy interacting with the spiral NGC4656, using Subaru/HSC. We have confirmed dwarf galaxies detected by Karachentsev+14 and have newly found 8 uncatalogued dwarf galaxies based on visual inspection. We have measured physical parameters of these dwarf galaxies, such as a total magnitude, a half-light radius and a surface brightness profile described by a sersic parameter, based on our i-band HSC image. Furthermore, we show spatial distribution of blue young stars of each dwarf galaxy and comparisons with UV sources from GALEX. The relation between total absolute magnitude and half-light radius of dwarf galaxies of the NGC4631 group suggests that these dwarf galaxies with brighter total luminosity probably tend to be more extending. Finally, we conclude that provided that the luminosity to half-light radius relation of dwarf galaxies in the NGC4631 group is the same as that observed in the Local Group, the dwarf galaxy system of the NGC4631 group may have formed through the same manner as that of the Local Group.

  7. Diffuse Ionized Gas inside the Dwarf Irregular Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Peimbert, A.

    2007-05-01

    We have studied the differences between the diffuse ionized gas (DIG) and the H II regions along a slit position in the local dwarf irregular galaxy NGC 6822. The slit position passes through the two most prominent H II regions: Hubble V and Hubble X. Important differences have been found in the excitation, ionization, and [N II] λ6584/Hα and [S II] λ6717/Hα line ratios between the DIG and the H II locations. Moreover, the values of all the line ratios are not similar to those in the DIG locations of spiral galaxies but are very similar to the values in other irregular galaxies, such as IC 10. We also determined the rate of recombination using the He I λ5875 line. Finally, we obtained a picture of the ionization sources of the DIG. We consider that the leakage of photons from the H II regions might explain most of the line ratios, except [N II]/Hα, which might be explained by turbulence. Based on observations collected at the European Southern Observatory, Chile, proposal 69.C-0203(A).

  8. DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:

  9. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  10. The VIRUS-P Exploration of Nearby Galaxies (VENGA): Radial Gas Inflow and Shock Excitation in NGC 1042

    NASA Astrophysics Data System (ADS)

    Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim

    2016-06-01

    NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100–300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ˜ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ˜ 1.1+/- 0.3× {10}-3 {M}ȯ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (˜ 1.4× {10}-5 {M}ȯ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}ȯ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.

  11. The VIRUS-P Exploration of Nearby Galaxies (VENGA): Radial Gas Inflow and Shock Excitation in NGC 1042

    NASA Astrophysics Data System (ADS)

    Luo, Rongxin; Hao, Lei; Blanc, Guillermo A.; Jogee, Shardha; van den Bosch, Remco C. E.; Weinzirl, Tim

    2016-06-01

    NGC 1042 is a late-type bulgeless disk galaxy that hosts low-luminosity active galactic nuclei (AGNs) coincident with a massive nuclear star cluster. In this paper, we present the integral field spectroscopy studies of this galaxy, based on the data obtained with the Mitchell spectrograph on the 2.7 m Harlan J. Smith telescope. In the central 100–300 pc region of NGC 1042, we find a circumnuclear ring structure of gas with enhanced ionization, which we suggest is mainly induced by shocks. Combining this with the harmonic decomposition analysis of the velocity field of the ionized gas, we propose that the shocked gas is the result of gas inflow driven by the inner spiral arms. The inflow velocity is ∼ 32+/- 10 {km} {{{s}}}-1, and the estimated mass-inflow rate is ∼ 1.1+/- 0.3× {10}-3 {M}ȯ {{yr}}-1. The mass-inflow rate is about one hundred times the black hole’s mass-accretion rate (∼ 1.4× {10}-5 {M}ȯ {{yr}}-1) and slightly larger than the star-formation rate in the nuclear star cluster (7.94× {10}-4 {M}ȯ {{yr}}-1), implying that the inflow material is enough to feed both the AGN activity and star formation in the nuclear star cluster. Our study highlights that secular evolution can be important in late-type unbarred galaxies like NGC 1042.

  12. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic

  13. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  14. Molecular content of polar-ring galaxies

    NASA Astrophysics Data System (ADS)

    Combes, F.; Moiseev, A.; Reshetnikov, V.

    2013-06-01

    We have searched for CO lines in a sample of 21 new morphologically determined polar-ring galaxies (of which nine are kinematically confirmed), obtained from a wide search in the Galaxy Zoo project by Moiseev and collaborators. Polar-ring galaxies (PRGs) are a unique class of objects, tracing special episodes in the galaxy mass assembly: they can be formed through galaxy interaction and merging, but also through accretion from cosmic filaments. Furthermore, they enable the study of dark matter haloes in three dimensions. The polar ring itself is a sub-system rich in gas, where molecular gas is expected, and new stars are formed. Among the sample of 21 PRGs, we have detected five CO-rich systems, that can now be followed up with higher spatial resolution. Their average molecular mass is 9.4 × 109M⊙, and their average gas fraction is 27% of their baryonic mass, with a range from 15 to 43%, implying that they have just accreted a large amount of gas. The position of the detected objects in the velocity-magnitude diagram is offset from the Tully-Fisher relation of normal spirals, as was already found for PRGs. This work is part of our multi-wavelength project to determine the detailed morphology and dynamics of PRGs, test through numerical models their formation scenario, and deduce their dark matter content and 3D-shape. Based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Spectra of detections are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (ftp://130.79.128.5">130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/554/A11

  15. Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226?

    NASA Astrophysics Data System (ADS)

    Appleton, P. N.; Mundell, C.; Bitsakis, T.; Lacy, M.; Alatalo, K.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-12-01

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar "Green Valley" elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 107 M ⊙ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ~0.04 M ⊙ yr-1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ~20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical "green" colors via the resurgence of star formation in a "red and dead" galaxy. This form of "cold accretion" from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation.

  16. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-08-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert-2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed of a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert-2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909 ± 4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001, and 0.54-0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between a spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8-2 × 1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  17. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-04-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert 2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed by a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert 2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909±4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well-fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001 years, and 0.54 - 0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between an spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8 - 2 ×1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  18. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    SciTech Connect

    Cooper, Andrew P.; Martinez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.

    2011-12-10

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  19. The Formation of Shell Galaxies Similar to NGC 7600 in the Cold Dark Matter Cosmogony

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew P.; Martínez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.; GaBany, R. Jay

    2011-12-01

    We present new deep observations of "shell" structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  20. Near-infrared spectrophotometry of four Seyfert 1 galaxies and NGC 1275

    NASA Technical Reports Server (NTRS)

    Rudy, R. J.; Jones, B.; Levan, P. D.; Puetter, R. C.; Smith, H. E.; Willner, S. P.; Tokunaga, A. T.

    1982-01-01

    Low-resolution spectrophotometry from 2 to 4 microns is reported for the four Seyfert 1 galaxies Mrk 335, 3C 120, Mrk 509, NGC 7469, and the peculiar emission-line galaxy NGC 1275. The spectrum of NGC 7469 exhibits a strong 3.3-micron dust feature, indicating a thermal origin for the bulk of its considerable nonstellar infrared emission. NGC 1275 has a large stellar contribution to its infrared flux at wavelengths shortward of 3 microns. The spectrum from 3 to 4 microns fits a power law which fits the 10-micron and 20-micron broad bands, as well. A thermal model which can explain the spectrum of NGC 1275 is discussed. Mrk 335 displays a complex spectrum suggestive of thermal dust emission. 3C 120 and Mrk 509 have nonstellar infrared emission shortward of 2 microns, but the data are ambiguous as to whether this emission is thermal or nonthermal in origin.

  1. Detection of CO (J=1-0) in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Wiklind, Tommy; Rydbeck, Gustaf

    1987-01-01

    The detection of CO (J = 1-0) emission in the dwarf elliptical galaxy NGC 185 is reported. The presence of massive molecular clouds in this early-type galaxy supports the idea of recent or ongoing stellar formation indicated by the population of blue stars in the center. The CO was detected in two positions in the galaxy, the center, and a prominent dustcloud. The emission profile has two peaks, roughly centered around the systemic velocity. It is found that NGC 185 is overluminous in blue light for its CO luminosity compared with Sc galaxies. This might indicate a higher star-formation efficiency for NGC 185 than for the late-type galaxies.

  2. VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-20

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of T{sub vib} {approx} 230 K between the vibrational ground and excited (v{sub 2} = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v{sub 2} = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO{sup +}, H{sup 13}CN, HC{sup 15}N, CS, N{sub 2}H{sup +}, and HC{sub 3}N at {lambda} {approx} 1 mm. Their relative intensities may also be affected by the infrared pumping.

  3. Submillimeter H2O Megamasers in NGC 4945 and the Circinus Galaxy

    NASA Astrophysics Data System (ADS)

    Pesce, D. W.; Braatz, J. A.; Impellizzeri, C. M. V.

    2016-08-01

    We present 321 GHz observations of five active galactic nuclei (AGNs) from ALMA Cycle 0 archival data: NGC 5793, NGC 1068, NGC 1386, NGC 4945, and the Circinus galaxy. Submillimeter maser emission is detected for the first time toward NGC 4945, and we present a new analysis of the submillimeter maser system in Circinus. None of the other three galaxies show maser emission, although we have detected and imaged the continuum from every galaxy. Both NGC 4945 and Circinus are known to host strong (≳10 Jy) 22 GHz megamaser emission, and VLBI observations have shown that the masers reside in the innermost ∼1 pc of the galaxies. The peak flux densities of the 321 GHz masers in both systems are substantially weaker (by a factor of ∼100) than what is observed at 22 GHz, although the corresponding isotropic luminosities are more closely matched (within a factor of ∼10) between the two transitions. We compare the submillimeter spectra presented here to the known 22 GHz spectra in both galaxies, and we argue that while both transitions originate from the gaseous environment near the AGNs, not all sites are in common. In Circinus, the spectral structure of the 321 GHz masers indicates that they may trace the accretion disk at radii interior to the 22 GHz masers. The continuum emission in NGC 4945 and NGC 5793 shows a spatial distribution indicative of an origin in the galactic disks (likely thermal dust emission), while for the other three galaxies the emission is centrally concentrated and likely originates from the nucleus.

  4. Submillimeter H2O Megamasers in NGC 4945 and the Circinus Galaxy

    NASA Astrophysics Data System (ADS)

    Pesce, D. W.; Braatz, J. A.; Impellizzeri, C. M. V.

    2016-08-01

    We present 321 GHz observations of five active galactic nuclei (AGNs) from ALMA Cycle 0 archival data: NGC 5793, NGC 1068, NGC 1386, NGC 4945, and the Circinus galaxy. Submillimeter maser emission is detected for the first time toward NGC 4945, and we present a new analysis of the submillimeter maser system in Circinus. None of the other three galaxies show maser emission, although we have detected and imaged the continuum from every galaxy. Both NGC 4945 and Circinus are known to host strong (≳10 Jy) 22 GHz megamaser emission, and VLBI observations have shown that the masers reside in the innermost ˜1 pc of the galaxies. The peak flux densities of the 321 GHz masers in both systems are substantially weaker (by a factor of ˜100) than what is observed at 22 GHz, although the corresponding isotropic luminosities are more closely matched (within a factor of ˜10) between the two transitions. We compare the submillimeter spectra presented here to the known 22 GHz spectra in both galaxies, and we argue that while both transitions originate from the gaseous environment near the AGNs, not all sites are in common. In Circinus, the spectral structure of the 321 GHz masers indicates that they may trace the accretion disk at radii interior to the 22 GHz masers. The continuum emission in NGC 4945 and NGC 5793 shows a spatial distribution indicative of an origin in the galactic disks (likely thermal dust emission), while for the other three galaxies the emission is centrally concentrated and likely originates from the nucleus.

  5. Spitzer and JCMT Observations of the Active Galactic Nucleus in the Sombrero Galaxy (NGC 4594)

    NASA Astrophysics Data System (ADS)

    Bendo, George J.; Buckalew, Brent A.; Dale, Daniel A.; Draine, Bruce T.; Joseph, Robert D.; Kennicutt, Robert C., Jr.; Sheth, Kartik; Smith, John-David T.; Walter, Fabian; Calzetti, Daniela; Cannon, John M.; Engelbracht, Charles W.; Gordon, Karl D.; Helou, George; Hollenbach, David; Murphy, Eric J.; Roussel, Hélène

    2006-07-01

    We present Spitzer 3.6-160 μm images, Spitzer mid-infrared spectra, and JCMT SCUBA 850 μm images of the Sombrero Galaxy (NGC 4594), an Sa galaxy with a 109 Msolar low-luminosity active galactic nucleus (AGN). The brightest infrared sources in the galaxy are the nucleus and the dust ring. The spectral energy distribution of the AGN demonstrates that, while the environment around the AGN is a prominent source of mid-infrared emission, it is a relatively weak source of far-infrared emission, as had been inferred for AGNs in previous research. The weak nuclear 160 μm emission and the negligible polycyclic aromatic hydrocarbon emission from the nucleus also implies that the nucleus is a site of only weak star formation activity and the nucleus contains relatively little cool interstellar gas needed to fuel such activity. We propose that this galaxy may be representative of a subset of low-ionization nuclear emission region galaxies that are in a quiescent AGN phase because of the lack of gas needed to fuel circumnuclear star formation and Seyfert-like AGN activity. Surprisingly, the AGN is the predominant source of 850 μm emission. We examine the possible emission mechanisms that could give rise to the 850 μm emission and find that neither thermal dust emission, CO line emission, bremsstrahlung emission, nor the synchrotron emission observed at radio wavelengths can adequately explain the measured 850 μm flux density by themselves. The remaining possibilities for the source of the 850 μm emission include a combination of known emission mechanisms, synchrotron emission that is self-absorbed at wavelengths longer than 850 μm, or unidentified spectral lines in the 850 μm band.

  6. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  7. Counter-rotating gaseous disks in the 'Evil Eye' galaxy NGC4826

    NASA Astrophysics Data System (ADS)

    Braun, Robert; Walterbos, Rene A. M.; Kennicutt, Robert C., Jr.

    1992-12-01

    The discovery of two counterrotating gaseous disks in the otherwise normal early-type spiral NGC4826 is reported. This is the most disklike galaxy in which any kinematic substructure has yet been found. This discovery raises the possibility that even spiral galaxies may have undergone a significant degree of structural evolution due to mergers.

  8. NGC 2276: a remarkable galaxy with a large number of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Wolter, Anna; Esposito, Paolo; Mapelli, Michela; Pizzolato, Fabio; Ripamonti, Emanuele

    2015-03-01

    The starbusting, nearby (D = 32.9 Mpc) spiral (Sc) galaxy NGC 2276 belongs to the sparse group dominated by the elliptical galaxy NGC 2300. NGC 2276 is a remarkable galaxy, as it displays a disturbed morphology at many wavelengths. This is possibly due to gravitational interaction with the central elliptical galaxy of the group. Previous ROSAT and XMM-Newton observations resulted in the detection of extended hot gas emission and of a single very bright (˜1041 erg s-1) ultraluminous X-ray source (ULX) candidate. Here, we report on a study of the X-ray sources of NGC 2276 based on Chandra data taken in 2004. Chandra was able to resolve 16 sources, 8 of which are ULXs, and to reveal that the previous ULX candidate is actually composed of a few distinct objects. We construct the luminosity function of NGC 2276, which can be interpreted as dominated by high-mass X-ray binaries, and estimate the star formation rate (SFR) to be ˜5-15 M⊙ yr-1, consistent with the values derived from optical and infrared observations. By means of numerical simulations, we show that both ram pressure and viscous transfer effects are necessary to produce the distorted morphology and the high SFR observed in NGC 2276, while tidal interaction have a marginal effect.

  9. To be or not to be oblate: the shape of the dark matter halo in polar ring galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Moiseev, A. V.; Khoperskov, A. V.; Saburova, A. S.

    2014-07-01

    With the aim of determining the spatial distribution of the dark matter halo, we investigate two polar ring galaxies, NGC 4262 and SPRC-7. For both galaxies, the stellar kinematics data for the central galaxy were obtained from optical spectroscopy at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. Information about polar gaseous components was taken from optical three-dimensional spectroscopic observations of ionized gas (for SPRC-7) and from H I radio observations (for NGC 4262). SPRC-7 is a system with a relative angle δ = 73° towards the central galaxy and quite a massive stellar-gaseous polar component. Meanwhile, NGC 4262 is a classic polar case with δ = 88°, where the polar ring mainly consists of neutral gas with a negligible stellar contribution to the mass. Thus, we are dealing with two different systems, and the results are also diverse. The observed properties of both galaxies were compared with the results of self-consistent simulations of velocity fields of the polar component along with the rotation curve of the central lenticular galaxy. For SPRC-7, we have found a slightly flattened halo towards the polar plane with the axial ratio c/a ≃ 1.7 ± 0.2 for the isothermal halo model and c/a ≃ 1.5 ± 0.2 for the NFW model. NGC 4262 is more unusual, because the shape of the dark matter distribution varies strongly with radius. That is, the dark matter halo is flattened in the vicinity of the galactic disc (c/a ≈ 0.4 ± 0.1), but it is prolate far beyond the central galaxy (c/a ≈ 1.7 for the isothermal halo model and c/a ≈ 2.3 for the NFW model).

  10. A GIANT STAR FACTORY IN NEIGHBORING GALAXY NGC 6822

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun. These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and is considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius. The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators. This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001. Credits: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University) and L. Bianchi (Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy) NOTE TO EDITORS: For additional information, please contact C. R. O'Dell, Vanderbilt University, Physics and Astronomy Dept., Box 1807 Station B, Nashville, TN 37235, (phone) 615-343-1779, (fax) 615-343-7263, (e-mail) cr.odell@vanderbilt.edu or Luciana Bianchi, Johns Hopkins

  11. Extended Red Emission in the Evil Eye Galaxy (NGC 4826)

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2002-04-01

    NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually

  12. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  13. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  14. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    SciTech Connect

    Johnson, Megan

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.

  15. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David; Dolphin, Andrew; Skillman, Evan D. E-mail: jd@astro.washington.edu E-mail: dolphin@raytheon.com

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  16. What produces the extended LINER-type emission in the NUGA galaxy NGC 5850?

    NASA Astrophysics Data System (ADS)

    Bremer, M.; Scharwächter, J.; Eckart, A.; Valencia-S., M.; Zuther, J.; Combes, F.; Garcia-Burillo, S.; Fischer, S.

    2013-10-01

    Context. The role of low ionization nuclear emission region (LINER) galaxies within the picture of active galactic nuclei (AGN) has been controversial. It is still not clear whether they host an AGN in a low accretion mode or whether they are not active at all but are instead dominated by alternative ionization mechanisms, namely shocks, winds/outflows, or photoionization by a post-asymptotic giant branch (p-AGB) stellar population. The detection of extended LINER-like emission was often taken as evidence of ionization by stellar components, but this has not been undisputed. Aims: Using optical spectroscopy, we examine the possible ionization mechanisms responsible for the extended LINER-like emission in the central ~4 kpc of NGC 5850. Methods: We performed integral field spectroscopic observations using VIMOS at the VLT, which provides spatially-resolved spectra for the gas emission and the stellar continuum. We subtract the underlying stellar continuum from the galaxy spectra and fit the emission lines. With these methods, we derive and analyze emission line and kinematic maps. Emission line ratio maps are examined by means of diagnostic diagrams. Results: The central few kpc of NGC 5850 are dominated by extended LINER-like emission. The emission-line ratios that are sensitive to the ionization parameter increase with radial distance to the nucleus. The LINER-like region is surrounded by emission that is classed as "composite" in terms of diagnostic diagrams. Two star-forming (SF) regions are present in the 21″ × 19″ field of view. One of them is located approximately in the ring, surrounding the kinematically decoupled core. The second one is close to the nucleus and is the origin of a region of decreased emission line ratios oriented radially outwards. We find the interstellar gas to have a complex kinematic morphology and to have areas of steep velocity gradients. Conclusions: The extended LINER-like emission in NGC 5850 is dominated by ionization from

  17. NICMOS FINDS A GOLDEN RING AT THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The revived Near Infrared Camera and Multi-Object Spectrometer (NICMOS) aboard NASA's Hubble Space Telescope has pierced the dusty disk of the 'edge-on' galaxy NGC 4013 and peered all the way to the galactic core. To the surprise of astronomers, NICMOS found a brilliant band-like structure, that may be a ring of newly formed stars [yellow band in middle photo] seen edge-on. In the visible-light view of the galaxy [top photo], the star-forming ring cannot be seen because it is embedded in dust. The most prominent feature in the visible-light image -- taken by the Wide Field and Planetary Camera 2 (WFPC2) -- is the thin, dark band of gas and dust, which is about 500 light-years thick. NICMOS enables the Hubble telescope to see in near-infrared wavelengths of light, so that it can penetrate the dust that obscures the inner hub of the galaxy. The ring-like structure spied by NICMOS encircles the core and is about 720 light-years wide, which is the typical size of most star-forming rings found in disk galaxies. The small ring is churning out stars at a torrid pace. The Milky Way Galaxy, for example, is more than 10,000 times larger than the ring. If the Milky Way produced stars at the same rate, it would be making 1,000 times more stars a year. The human eye cannot see infrared light, so colors have been assigned to correspond with near-infrared wavelengths. The blue light represents shorter near-infrared wavelengths and the red light corresponds to longer wavelengths. The ring-like structure is seen more clearly in the photo at bottom. This picture, taken with a filter sensitive to hydrogen, shows the glow of stars and gas. Astronomers used this information to calculate the rate of star formation in the ring-like structure. The extremely bright star near the center of each picture is a nearby foreground star belonging to our own Milky Way. Rings of developing stars are common in barred spiral galaxies, which have 'bars' of stars and gas slicing across their disks. The

  18. VLA Discovers Giant Rings Around Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    2006-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA

  19. Rapid x-ray variability from the Seyfert 1 galaxy NGC 4051

    SciTech Connect

    Marshall, F.E.; Holt, S.S.; Mushotzky, R.F.; Becker, R.H.

    1983-06-15

    Strong variable x-ray emission from the nearby low-luminosity Seyfert 1 galaxy NGC 4051 has been discovered during observations with the imaging proportional counter (IPC) of the Einstein Observatory. During one 2304 s observation, the x-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 s was seen during another 968 s observation. We present evidence that the x-ray spectrum of NGC 4051 is unusually soft compared with Seyfert 1 galaxies or OSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretion models.

  20. The `shook up' galaxy NGC 3079: the complex interplay between H I, activity and environment

    NASA Astrophysics Data System (ADS)

    Shafi, N.; Oosterloo, T. A.; Morganti, R.; Colafrancesco, S.; Booth, R.

    2015-12-01

    We present deep neutral hydrogen (H I) observations of the starburst/Seyfert galaxy NGC 3079 and its environment, obtained with the Westerbork Synthesis Radio Telescope. Our observations reveal previously unknown components, both in H I emission and in absorption, that show that NGC 3079 is going through a hectic phase in its evolution. The H I disc appears much more extended than previously observed and is morphologically and kinematically lopsided on all scales with evidence for strong non-circular motions in the central regions. Our data reveal prominent gas streams encircling the entire galaxy suggesting strong interaction with its neighbours. A 33 kpc long H I bridge is detected between NGC 3079 and MCG 9-17-9, likely caused by ram-pressure stripping of MGC 9-17-9 by the halo of hot gas of NGC 3079. The cometary H I tail of the companion NGC 3073, earlier discovered by Irwin et al., extends about twice as long in our data, while a shorter, second tail is also found. This tail is likely caused by ram-pressure stripping by the strong, starburst-driven wind coming from NGC 3079. We also detect, in absorption, a nuclear H I outflow extending to velocities well outside what expected for gravitational motion. This is likely an atomic counterpart of the well-studied outflow of ionized gas present in this galaxy. This may indicate that also large amounts of cold gas are blown out of NGC 3079 by the starburst/AGN. Our estimates of the jet energy and kinetic power suggest that both the AGN and the starburst in NGC 3079 are powerful enough to drive the atomic outflow.

  1. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing

  2. The isolated interacting galaxy pair NGC 5426/27 (Arp 271)

    NASA Astrophysics Data System (ADS)

    Fuentes-Carrera, I.; Rosado, M.; Amram, P.; Dultzin-Hacyan, D.; Cruz-González, I.; Salo, H.; Laurikainen, E.; Bernal, A.; Ambrocio-Cruz, P.; Le Coarer, E.

    2004-02-01

    We present Hα observations of the isolated interacting galaxy pair NGC 5426/27 using the scanning Fabry-Perot interferometer PUMA. The velocity field, various kinematical parameters and rotation curve for each galaxy were derived. The FWHM map and the residual velocities map were also computed to study the role of non-circular motions of the gas. Most of these motions can be associated with the presence of spiral arms and structure such as central bars. We found a small bar-like structure in NGC 5426, a distorted velocity field for NGC 5427 and a bridge-like feature between both galaxies which seems to be associated with NGC 5426. Using the observed rotation curves, a range of possible masses was computed for each galaxy. These were compared with the orbital mass of the pair derived from the relative motion of the participants. The rotation curve of each galaxy was also used to fit different mass distribution models considering the most common theoretical dark halo models. An analysis of the interaction process is presented and a possible 3D scenario for this encounter is also suggested. Table 1 is only available in electronic form at http://www.edpsciences.org

  3. Midlife Crises in Dwarf Galaxies in the NGC 5353/4 Group

    NASA Astrophysics Data System (ADS)

    Tully, R. Brent; Trentham, Neil

    2008-04-01

    This third paper in a series about the dwarf galaxy populations in groups within the Local Supercluster concerns the intermediate mass (2.1 × 1013 M sun) NGC 5353/4 Group with a core dominated by S0 systems and a periphery of mostly spiral systems. Dwarf galaxies are strongly concentrated toward the core. The mass-to-light ratio M/LR = 105 M sun/L sun is a factor of 3 lower than for the two groups studied earlier in the series. The properties of the group suggest it is much less dynamically evolved than those two groups of early-type galaxies. By comparison, the NGC 5353/4 Group lacks superluminous systems but has a large fraction of intermediate-luminosity galaxies; or equivalently, a luminosity function with a flatter faint-end slope. The luminosity function for the NGC 5353/4 Group should steepen as the intermediate-luminosity galaxies merge. Evidence for the ongoing collapse of the group is provided by the unusually large incidence of star-formation activity in small galaxies with early morphological types. The pattern in the distribution of galaxies with activity suggests a succession of infall events. Residual gas in dwarfs that enter the group is used up in sputtering events. The resolution of midlife crises is exhaustion.

  4. The SLUGGS survey: chromodynamical modelling of the lenticular galaxy NGC 1023

    NASA Astrophysics Data System (ADS)

    Cortesi, Arianna; Chies-Santos, Ana L.; Pota, Vincenzo; Foster, Caroline; Coccato, Lodovico; Mendes de Oliveira, Claudia; Forbes, Duncan A.; Merrifield, Michael M.; Bamford, Steven P.; Romanowsky, Aaron J.; Brodie, Jean P.; Kartha, Sreeja S.; Alabi, Adebusola B.; Proctor, Robert N.; Almeida, Andres

    2016-03-01

    Globular clusters (GCs) can be considered discrete, long-lived, dynamical tracers that retain crucial information about the assembly history of their parent galaxy. In this paper, we present a new catalogue of GC velocities and colours for the lenticular galaxy NGC 1023, we study their kinematics and spatial distribution, in comparison with the underlying stellar kinematics and surface brightness profile, and we test a new method for studying GC properties. Specifically, we decompose the galaxy light into its spheroid (assumed to represent the bulge+halo components) and disc components and use it to assign to each GC a probability of belonging to one of the two components. Then we model the galaxy kinematics, assuming a disc and spheroidal component, using planetary nebulae and integrated stellar light. We use this kinematic model and the probability previously obtained from the photometry to recalculate for each GC its likelihood of being associated with the disc, the spheroid, or neither. We find that the reddest GCs are likely to be associated with the disc, as found for faint fuzzies in this same galaxy, suggesting that the disc of this S0 galaxy originated at z ≃ 2. The majority of blue GCs are found likely to be associated with the spheroidal (hot) component. The method also allows us to identify objects that are unlikely to be in equilibrium with the system. In NGC 1023 some of the rejected GCs form a substructure in phase space that is connected with NGC 1023 companion galaxy.

  5. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  6. The IR properties of ringed galaxies and the IRAS database

    NASA Technical Reports Server (NTRS)

    Buta, Ronald J.; Crocker, Deborah A.

    1993-01-01

    Our study of the Infrared Astronomy Satellite (IRAS) properties of ringed galaxies has been largely successful. We have identified what we think is the probable cause of the differences in the IRAS properties among non-interacting barred galaxies as the pattern speed of the bar. The key to identifying this parameter has been our focusing the study on outer-ringed galaxies where we know precisely what is present in the central regions (from available BVI CCD images in our library of images). The theory is that outer rings, through their morphology and other characteristics, can be identified with the outer Lindblad resonance, one of the major resonances in galaxy structure. Using a library of n-body simulations for comparison, we can reliably infer both low and high pattern speed galaxies from the appearance of outer rings and the existence of other ring features. It is clear that in some barred galaxies, the bar pattern speed is high enough to avoid an inner Lindblad resonance, hence such objects do not contain nuclear or circumnuclear star formation. The IRAS observations are most sensitive to nuclear star formation in early-type barred galaxies, and will thus select those barred galaxies where the pattern speed is low enough to allow an inner Lindblad resonance to exist. High pattern speed barred galaxies therefore weaken the correlation between bars and infrared excess. This finding helps to reconcile the inconsistent results found between different studies on the correlation between bars and far-IR emission.

  7. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind

    NASA Astrophysics Data System (ADS)

    Warren, Steven R.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Veilleux, S.; Ostriker, E. C.; Ott, J.; Zwaan, M.; Fisher, D. B.; Weiss, A.; Rosolowsky, E.; Hodge, J.

    2014-01-01

    We present Atacama Large (Sub)Millimeter Array (ALMA) CO (J=1-0) observations of the nearby, nuclear starburst galaxy NGC 253. NGC 253 is host to a "superwind" emanating from the central ~200 pc. Galaxy superwinds are thought to help shape the galactic mass function, play a critical role in galaxy evolution, and pollute the intergalactic medium with heavy metals. Detailed studies of nearby systems frequently focus on the warm or hot phases of the wind, visible in X-ray or Halpha emission. However, most of the mass in the outflowing material is thought to be in the form of neutral atomic and molecular gas. We use the observed CO luminosities and velocities to estimate the mass, mass loss rate, and energetics of the molecular wind. We compute an outflow mass of M_mo 6.6x10^6 Msun. The observed projected velocities of the CO filaments range from ~30-60 km s^-1 resulting in a mass loss rate of ~9 Msun yr^-1. The nuclear region of NGC 253 has a star formation rate of ~3 Msun yr^-1 resulting in a mass loading parameter 1-3. It is not immediately clear if the outflowing gas will escape the halo or eventually rain back onto the disk. What is clear is that NGC 253 will exhaust its nuclear star forming gas in ~60-120 Myr at its current mass loss rate, cementing the superwind as an important contributor in the evolution of NGC 253.

  8. The inner regions of the spiral galaxy NGC 3310 - Evidence for galactic cannibalism

    NASA Astrophysics Data System (ADS)

    Balick, B.; Heckman, T.

    1981-03-01

    High resolution optical and radio images of the inner regions of NGC 3310 are presented. Subtle but important differences exist in the distributions of the stellar continuum on the one hand and the ionized gas and high energy particles on the other. These data and others suggest that a galaxy-galaxy collision has lead to a major disruption in the inner regions which has not yet fully relaxed even at radii of 0.5-1 kpc where the relaxation time scales are only 10 to the power 7.8 yr. An encounter in which an Irr 1 galaxy is being cannibalized by NGC 3110 provides a scenario for the recent history of the galaxy which is in accord with published observations.

  9. AM 2217-490: A polar ring galaxy under construction

    NASA Astrophysics Data System (ADS)

    Freitas-Lemes, P.; Rodrigues, I.; Faúndez-Abans, M.; Dors, O.

    2014-10-01

    This work is part of a series of case studies of Polar Ring Galaxies (PRGs) (see also Posters GAL-1: 163, GAL-2: 178). A PRG is formed by an early type host galaxy (e.g. lenticular or elliptical), surrounded by a ring of gas and stars orbiting approximately at the polar plane of the host galaxy. AM2217-490 is an interesting case of PRG in formation, with a still asymmetrical ring that surrounds the host galaxy. Apparently, this bluish structure (characteristic of the rings of PRGs), is not yet in equilibrium with the host galaxy. This study is based on spectra on the range 6250-7250 Å obtained with the CTIO 1.5 m telescope - Chile. From them, we measure a heliocentric radial velocity of 9152± 18 km/s. The value of the ionization parameter (log U = -3.5) is similar to that in interacting galaxies (Freitas-Lemes et al. 2013, submitted to MNRAS; and Krabbe et al. 2013, MNRAS Accepted), and lower than that of isolated ones. The electron density shows little variation along the major axis of the host galaxy, and a mean value typical of interacting galaxies. Diagnostic diagrams show that the nuclear region harbors an AGN, following a trend among polar ring galaxies. The low-resolution images of the SDSS show no tails or bridges connecting the galaxy to other objects, however, in a radius of 5 arcmin there are three other galaxies with similar speeds, featuring a group. A plausible hypothesis is that one of these galaxies may have interacted with AM2217-490, donating material to form the ring.

  10. STAR FORMATION RATES IN RESOLVED GALAXIES: CALIBRATIONS WITH NEAR- AND FAR-INFRARED DATA FOR NGC 5055 AND NGC 6946

    SciTech Connect

    Li Yiming; Crocker, Alison F.; Calzetti, Daniela; Wilson, Christine D.; Kennicutt, Robert C.; Galametz, M.; Murphy, Eric J.; Brandl, Bernhard R.; Groves, B.; Draine, B. T.; Johnson, B. D.; Armus, L.; Gordon, K. D.; Croxall, K.; Dale, D. A.; Engelbracht, C. W.; Hinz, J.; Hao, C.-N.; Helou, G.; Hunt, L. K.; and others

    2013-05-10

    We use the near-infrared Br{gamma} hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the Herschel/PACS 70 {mu}m emission as a SFR tracer for sub-galactic regions in external galaxies. Br{gamma} offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival Canada-France-Hawaii Telescope Br{gamma} and Ks images of two nearby galaxies: NGC 5055 and NGC 6946, which are also part of the Herschel program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Br{gamma} emission to derive the SFR(70) calibration for H II regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70 {mu}m emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed H{alpha} with the 70 {mu}m emission, also for use in H II regions. We briefly analyze the PACS 100 and 160 {mu}m maps and find that longer wavelengths are not as good SFR indicators as 70 {mu}m, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination.

  11. The 0.3-30 keV spectra of Powerful Starburst Galaxies: NuSTAR and Chandra observations ofNGC 3256 and NGC 3310

    NASA Astrophysics Data System (ADS)

    Tyler, Joshua; Lehmer, Bret; Hornschemeier, Ann E.; Yukita, Mihoko; Wik, Daniel R.; Ptak, Andrew; Stern, Daniel; Harrison, Fiona; Maccarone, Tom; Zezas, Andreas; Antoniou, Vallia; NuSTAR Starburst Team

    2015-01-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies: NGC 3256 and NGC 3310. The NuSTAR galaxy-wide spectra of both galaxies follow steep power law distributions, similar to the spectra of bright individual ultra-luminous X-ray sources (ULXs) that have been studied by NuSTAR. The X-ray emission from both galaxies is spatially resolved by Chandra, which indicates that hot gas dominates the E < 1 - 3 keV emission, while ULXs make up a majority of the emission at E > 1-3 keV. Using new and archival Chandra data we found that both galaxies have candidate AGNs coincident with nuclear regions. However, the steep NuSTAR spectra of both galaxies restricts these candidates to be low luminosity AGN, and a non-AGN nature cannot be ruled out. We find the average 0.3 -30 keV SFR-normalized spectra of NGC 3256 and NGC 3310, combined with equivalent measurements for M83 and NGC 253, show sharpening power-law slopes at energies above 3 - 6 keV due to ULX populations. Our observations therefore constrain the average spectral shape of an unbiased population of ULXs to be similar to the super-Eddington accreting ULXs that have been studied by NuSTAR. We also find that for NGC 3310, there is a factor of 5 times excess X-ray emission, due to an overabundance of ULXs in the galaxy compared to typical galaxies. We argue that the excess is due to the relatively low metallicity of the young stellar population in the galaxy.

  12. UBVRI simultaneous observations of the nucleus of Seyfert galaxy NGC 5548 in 1993-1999

    NASA Astrophysics Data System (ADS)

    Merkulova, N. I.

    2002-05-01

    An ongoing program on photometric and spectral monitoring of some bright Seyfert galaxies has been carried out at the Crimean Astrophysical Observatory since 1989. Results of photometric observations of NGC 5548 obtained with the 1.25 m telescope are reported in this paper; it focuses on the analysis of intranight variations. During 44 observational nights in 1993-1999 in each spectral band of the Johnson UBVRI system, 672 measurements have been performed simultaneously through the round aperture (diameter 15\\arcsec) using differential photometry techniques. The estimated accuracy of each measurement is about 0.01 mag. The peak amplitude R_max = Fmax /Fmin = 2.99 for the whole light curve was observed in the U band, while the minimum amplitude Fmax /Fmin =1.37 occurred in the I band during the full observation period. UBVRI observations and good sampled data of international monitoring campaigns of NGC 5548, were used to calculate Structure Functions. A comparison is made of the characteristics of the long and short time scale variations of NGC 5548 with those of NGC 4151, NGC 7469 and NGC 1275. In order to examine the intranight variations of the nucleus of NGC 5548, standard deviations (SD) of the nightly averaged flux F, and a measure of intranight variability - SD/F were calculated for each night. Using this parameter, a probability characteristics is introduced, and duty cycles (the fraction of time when the galaxy is variable), characterizing the efficiency of the central energy source, were evaluated. It is concluded that intranight variability is really transient in character and manifests itself with different probabilities for different galaxies.

  13. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  14. MAXI/GSC detection of the historically brightest flares from the Sy2 galaxy NGC 2992

    NASA Astrophysics Data System (ADS)

    Negoro, H.; Ueno, S.; Tomida, H.; Nakahira, S.; Ishikawa, M.; Nakagawa, Y. E.; Sugawara, Y.; Mihara, T.; Sugizaki, M.; Serino, M.; Iwakiri, W.; Shidatsu, M.; Sugimoto, J.; Takagi, T.; Matsuoka, M.; Kawai, N.; Isobe, N.; Sugita, S.; Yoshii, T.; Tachibana, Y.; Ono, Y.; Fujiwara, T.; Yoshida, A.; Sakamoto, T.; Kawakubo, Y.; Kitaoka, Y.; Tsunemi, H.; Shomura, R.; Nakajima, M.; Tanaka, K.; Masumitsu, T.; Kawase, T.; Ueda, Y.; Kawamuro, T.; Hori, T.; Tanimoto, A.; Tsuboi, Y.; Nakamura, Y.; Sasaki, R.; Yamauchi, M.; Furuya, K.; Yamaoka, K.

    2016-06-01

    At 10:02 UT on 2016 June 2, the MAXI/GSC nova-alert system (Negoro et al. 2016, PASJ, 68, SP1, A1) triggered on faint X-ray enhancement positionally consistent with a nearby Seyfert 1.9 galaxy NGC 2992.

  15. Radio continuum observations of the quasar-galaxy pair 3C 232-NGC 3067

    NASA Technical Reports Server (NTRS)

    Haxthausen, Eric; Carilli, Chris; Vangorkom, Jacqueline H.

    1990-01-01

    The quasar-galaxy pair 3C 232-NGC 3067 is well known to show absorption by gas associated with the foreground galaxy against the background quasar (see Stocke et al. this volume). Observations by Carilli, van Gorkom, and Stocke (Nature 338, 134, 1989) found that the absorbing gas is located in a long tail of gas which extends from the galaxy toward the quasar and beyond (in projection). Though the HI observations of NGC 3067 indicate that the galaxy has been severely disturbed, there is no obvious candidate in the field which could cause such a disturbance, leading to the conclusion that the system has undergone a recent merger. The radio continuum observations of this system were designed to study the nature of this highly disturbed galaxy. New continuum observations confirm the notion that NGC 3067 is a highly disturbed system, and, in particular, the notion that the western half of the galaxy extends only 1/2 as far in radius as the eastern half. This disturbance must have occurred recently, since the galactic rotation would smooth out the observed asymmetry in about 10(exp 8) years. Researchers are left with the problem that there are no obvious candidates which could have caused such a disturbance.

  16. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  17. Red giants in the outer halo of the elliptical galaxy NGC 5128/Centaurus A

    NASA Astrophysics Data System (ADS)

    Bird, Sarah A.; Flynn, Chris; Harris, William E.; Valtonen, Mauri

    2015-03-01

    We used VIMOS on VLT to perform V and I band imaging of the outermost halo of NGC 5128/Centaurus A ((m - M)0 = 27.91±0.08), 65 kpc from the galaxy's center and along the major axis. The stellar population has been resolved to I0 ≈ 27 with a 50% completeness limit of I0 = 24.7, well below the tip of the red-giant branch (TRGB), which is seen at I0 ≈ 23.9. The surface density of NGC 5128 halo stars in our fields was sufficiently low that dim, unresolved background galaxies were a major contaminant in the source counts. We isolated a clean sample of red-giant-branch (RGB) stars extending to ≈0.8 mag below the TRGB through conservative magnitude and color cuts, to remove the (predominantly blue) unresolved background galaxies. We derived stellar metallicities from colors of the stars via isochrones and measured the density falloff of the halo as a function of metallicity by combining our observations with HST imaging taken of NGC 5128 halo fields closer to the galaxy center. We found both metal-rich and metal-poor stellar populations and found that the falloff of the two follows the same de Vaucouleurs' law profiles from ≈8 kpc out to ≈70 kpc. The metallicity distribution function (MDF) and the density falloff agree with the results of two recent studies of similar outermost halo fields in NGC 5128. We found no evidence of a "transition" in the radial profile of the halo, in which the metal-rich halo density would drop rapidly, leaving the underlying metal-poor halo to dominate by default out to greater radial extent, as has been seen in the outer halo of two other large galaxies. If NGC 5128 has such a transition, it must lie at larger galactocentric distances.

  18. Globular cluster scale sizes in giant galaxies: orbital anisotropy and tidally underfilling clusters in M87, NGC 1399 and NGC 5128

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Sills, Alison; Harris, William E.; Gómez, Matías; Paolillo, Maurizio; Woodley, Kristin A.; Puzia, Thomas H.

    2016-08-01

    We investigate the shallow increase in globular cluster half-light radii with projected galactocentric distance Rgc observed in the giant galaxies M87, NGC 1399, and NGC 5128. To model the trend in each galaxy, we explore the effects of orbital anisotropy and tidally underfilling clusters. While a strong degeneracy exists between the two parameters, we use kinematic studies to help constrain the distance Rβ beyond which cluster orbits become anisotropic, as well as the distance Rfα beyond which clusters are tidally underfilling. For M87 we find Rβ > 27 kpc and 20 < Rfα < 40 kpc and for NGC 1399 Rβ > 13 kpc and 10 < Rfα < 30 kpc. The connection of Rfα with each galaxy's mass profile indicates the relationship between size and Rgc may be imposed at formation, with only inner clusters being tidally affected. The best-fitting models suggest the dynamical histories of brightest cluster galaxies yield similar present-day distributions of cluster properties. For NGC 5128, the central giant in a small galaxy group, we find Rβ > 5 kpc and Rfα > 30 kpc. While we cannot rule out a dependence on Rgc, NGC 5128 is well fitted by a tidally filling cluster population with an isotropic distribution of orbits, suggesting it may have formed via an initial fast accretion phase. Perturbations from the surrounding environment may also affect a galaxy's orbital anisotropy profile, as outer clusters in M87 and NGC 1399 have primarily radial orbits while outer NGC 5128 clusters remain isotropic.

  19. Velocity dispersions in galaxies. I - The E7 galaxy NGC 7332.

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Chevalier, R. A.

    1972-01-01

    A coude spectrum of the E7 galaxy NGC 7332 with 0.9 A-resolution from 4186 to 4364 A was obtained with the Princeton SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 (plus or minus 20) km/sec with the best fit at G8 III. The dispersion appears to be constant within plus or minus 35 km/sec out to 1.4 kpc. After correction for projection, the rotation curve has a slope of 0.18 km/sec per pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 140 billion solar masses if the mass-to-light ratio is constant throughout the galaxy.

  20. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    SciTech Connect

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J.; Sanchez, S. F.

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  1. Multicolor CCD photometry of six lenticular and spiral galaxies. Structure of the galaxies

    NASA Astrophysics Data System (ADS)

    Gusev, A. S.

    2006-03-01

    The results of multicolor surface photometry of the S0 galaxies NGC 524, NGC 1138, and NGC 7280 and the spiral galaxies NGC 532, NGC 783, and NGC 1589 are reported. U BV RI observations were acquired with the 1.5-m telescope of the Maidanak Observatory (Uzbekistan), while JHK data were taken from the 2MASS catalog. The overall structure of the galaxies is analyzed and the galaxy images decomposed into bulge and disk components. The parameters of the galaxy components—rings, bars, spiral arms, and dust lanes—are determined. The bulge/disk decompositions based on averaged one-dimensional photometric profiles yield incorrect parameters for the bulges of the S0-Sa galaxies with bars and/or rings, whose inner regions are dominated by the radiation of the bulge.

  2. Stellar populations in local group dwarf elliptical galaxies. II - NGC 205

    NASA Technical Reports Server (NTRS)

    Mould, J.; Kristian, J.; Da Costa, G. S.

    1984-01-01

    NGC 205, a dwarf elliptical companion of M31, was studied using deep CCD photometry on the VRI system. Consideration is given to a comparison between the giant branch and the Galactic globular clusters, the degree of chemical enrichment in the outer parts of NGC 204, and the setting of constraints on the stellar population of NGC 205. Should the distance of the galaxy be that of M31, this field's stellar population is extremely old. If star formation in NGC 205 is a recurring phenomenon, it is confined to the interior of the galaxy. Should the stellar population of NGC 205 be as old as Galactic globular clusters, its distance modulus is 24.3 + or - 0.2. The giant branch location corresponds to a mean metallicity greater than or equal to -0.9 + or - 0.2, and a metallicity dispersion is determined to be sigma greater than or equal to 0.5 dex. Also noted is that the color distribution at a given luminosity appears to be positively skewed.

  3. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Heald, G. H.; Elstner, D.; Gallagher, J. S.

    2016-05-01

    Aims: It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. We also discuss whether NGC 2976 could serve as a potential source of the intergalactic magnetic field. Methods: For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey for which a rotation measure (RM) synthesis was performed. A new weighting scheme for the RM synthesis algorithm, consisting of including information about the quality of data in individual frequency channels, was proposed and investigated. Application of this new weighting to the simulated data, as well as to the observed data, results in an improvement of the signal-to-noise ratio in the Faraday depth space. Results: The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 μG) and ordered (3 μG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Conclusions: Tidal

  4. Globular clusters kinematics and dynamical models of the massive early-type galaxy NGC 1399

    NASA Astrophysics Data System (ADS)

    Samurović, S.

    2016-06-01

    We analyze the dynamical models of the massive early-type galaxy NGC 1399, the central galaxy of the Fornax cluster. We use the sample of 790 globular clusters as tracers of gravitational potential and we first extract the kinematics, which is then dynamically modeled. We find that the velocity dispersion remains high and approximately constant throughout the whole galaxy and that the departures from the Gaussian distribution of the orbits are not large. We use the spherical Jeans equation in both Newtonian and MOND approaches, assuming three cases of orbital anisotropies: we study isotropic, tangentially and radially anisotropic models in order to establish the best-fitting values of the mass-to-light ratios. We found that in the Newtonian approximation a significant amount of dark matter is needed and that Navarro-Frenk-White (NFW) model with a dark halo provides a satisfactory description of the kinematics of NGC 1399. We tested three MOND models (standard, simple and toy) and found that none of them can provide a fit of the velocity dispersion profile without the inclusion of dark matter. Finally, using our findings, we placed the galaxy NGC 1399 within the context of other observed early-type galaxies and discuss its location among them.

  5. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    SciTech Connect

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch; Roussel, H.; Sauvage, M.; Lebouteiller, V.; Madden, S.; Baes, M.; De Looze, I.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Clements, D. L.; Cooray, A.; Galametz, M.; and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  6. High-energy monitoring of Seyfert galaxies: the case of NGC 5548 and NGC 4593

    NASA Astrophysics Data System (ADS)

    Ursini, F.

    2015-07-01

    We discuss results of broad-band monitoring programs on the active galactic nuclei (AGNs) NGC 5548 and NGC 4593, focusing on the high-energy view with XMM, NuSTAR and INTEGRAL. NGC 5548 was the object of a successful multi-satellite campaign conducted from May 2013 to February 2014, during which the source appeared unusually obscured by a clumpy stream of ionized gas, causing strong absorption in the X-ray band and simultaneous deep, broad UV absorption troughs (Kaastra et al. 2014). A talk giving an overview of the campaign on NGC 5548 is also proposed at this conference (Cappi et al.). Concerning NGC 4593, it was the object of a monitoring program of 5 × 20 ks joint XMM/NuSTAR observations in January 2015, spaced by two days. In both cases, the availability of multiple, broad-band observations with a high signal-to-noise ratio allows us to disentangle the different spectral components present in the high-energy spectrum and properly study their variability. The use of realistic Comptonization models provides good constraints on the physical parameters of the hot corona responsible for the hard X-ray emission.

  7. Extended soft X-ray emission in Seyfert galaxies: ROSAT HRI observations of NGC 3516, NGC 4151, and Markarian 3

    NASA Technical Reports Server (NTRS)

    Morse, Jon A.; Wilson, Andrew S.; Elvis, Martin; Weaver, Kimberly A.

    1995-01-01

    We have used the ROSAT High Resolution Imager (HRI) to examine the distribution of soft X-rays in three nearby Seyfert galaxies with approximately 4 to 5 arcsecs FWHM spatial resolution. A feature of our analysis is an attempt to remove errors in the aspect solution using a method developed by one of us (J.M.). NGC 4151 shows resolved X-ray emission that is spatially correlated with the optical extended narrow-line region (ENLR), confirming the results obtained with the Einstein HRI by Elvis, Briel, & Henry. NGC 3516 is elongated along a position angle of approximately 40 to 220 deg, similar to the direction of the Z-shaped narrow-line region. MRK 3 is very faint in our HRI image and is probably spatially unresolved. We detect the faint X-ray source approximately 2 arcmins west of the MRK 3 nucleus previously found by Turner, Urry, & Mushotzky. We also detected the BL Lac object BL 1207 + 39 approximately 5 arcmins north-northwest of NGC 4151. This object appears spatially unresolved, but some excess X-ray emission may be observed in the azimuthally averaged radial brightness profile of BL 1207 + 39 between radii of 10 arcsecs and 30 arcsecs when compared to a calibration source. A much deeper image is necessary to confirm this result.

  8. Tracing of the chemical evolution of the massive elliptical galaxy NGC 3377 using a merger scenario

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T.

    2015-05-01

    Mergers are thought to play a significant role in the formation of galaxies in clusters. The chemical evolution of the halo of the massive elliptical galaxy NGC 3377, a member of the Leo cluster, is considered in the framework of such a merger scenario. An open chemical evolution model is set up to calculate the metallicity distributions of pre-merging fragments. The model assumes that pristine gas was accreted onto the fragments during their whole evolution before their merger. The metallicity distribution resulting from the overlay of a variable number of fragments is then compared to observational data for NGC 3377. It was found that the observed metallicity distribution function of this elliptical galaxy is reproduced by merging at least five fragments from two different groups, namely low-and high-metallicity fragments.

  9. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  10. The Araucaria Project: Near-Infrared Photometry of Cepheid Variables in the Sculptor Galaxy NGC 55

    NASA Astrophysics Data System (ADS)

    Gieren, Wolfgang; Pietrzyński, Grzegorz; Soszyński, Igor; Bresolin, Fabio; Kudritzki, Rolf-Peter; Storm, Jesper; Minniti, Dante

    2008-01-01

    We have obtained deep images in the near-infrared J and K filters of four fields in the Sculptor group spiral galaxy NGC 55 with the ESO VLT and ISAAC camera. For 40 long-period Cepheid variables in these fields, which were recently discovered by Pietrzyński et al., we have determined mean J and K magnitudes from observations at two epochs, and derived distance moduli from the observed period-luminosity (PL) relations in these bands. Using these values together with the previously measured distance moduli in the optical V and I bands, we have determined a total mean reddening of the NGC 55 Cepheids of E(B - V) = 0.127 +/- 0.019 mag, which is mostly produced inside NGC 55 itself. For the true distance modulus of the galaxy, our multiwavelength analysis yields a value of 26.434 +/- 0.037 mag (random error), corresponding to a distance of 1.94 +/- 0.03 Mpc. This value is tied to an adopted true Large Magellanic Cloud (LMC) distance modulus of 18.50 mag. The systematic uncertainty of our derived Cepheid distance to NGC 55 (apart from the uncertainty on the adopted LMC distance) is ±4%, with the main contribution likely to come from the effect of blending of some of the Cepheids with unresolved companion stars. The distance of NGC 55 derived from our multiwavelength Cepheid analysis agrees within the errors with the distance of NGC 300, strengthening the case for a physical association of these two Sculptor group galaxies. Based on observations obtained with the ESO VLT for Large Program 171.D-0004.

  11. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  12. The Local Group Dwarf Irregular Galaxy NGC 6822: new insight on its star formation history .

    NASA Astrophysics Data System (ADS)

    Fusco, F.; Buonanno, R.; Bono, G.; Cassisi, S.; Monelli, M.; Pietrinferni, A.; Hidalgo, S. L.; Aparicio, A.

    We present a new photometric analysis of the Local Group Dwarf Irregular Galaxy NGC 6822 based on archival Hubble Space Telescope Advanced Camera for Surveys images. The data correspond to three fields covering the south-east region of the galaxy; for each field F475W and F814W HST bands are available. For each field an accurate color magnitude diagram (F814W, F475W-F814W) has been obtained. Preliminary hints on the galaxy star formation history are presented based on the comparison with isochrones from "A Bag of Stellar Tracks and Isochrones" (BaSTI) database.

  13. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  14. Near-infrared properties of asymptotic giant branch stars in nearby dwarf elliptical galaxy NGC 205

    NASA Astrophysics Data System (ADS)

    Jung, M. Y.; Ko, J.; Kim, J.-W.; Chun, S.-H.; Kim, H.-I.; Sohn, Y.-J.

    2012-07-01

    Aims: We investigated the distribution of resolved asymptotic giant branch (AGB) stars over a much larger area than covered by previous near-infrared studies in the nearby dwarf elliptical galaxy NGC 205. Methods: Using data obtained with the WIRCam near-infrared imager of the CFHT, we selected the AGB stars in the JHKs color - magnitude diagrams, and separated the C stars from M-giant stars in the JHKs color - color diagram. Results: We identified 1,550 C stars in NGC 205 with a mean absolute magnitude of ⟨ MKs ⟩ = -7.49 ± 0.54, and colors of ⟨ (J - Ks)0 ⟩ = 1.81 ± 0.41 and ⟨ (H - Ks)0 ⟩ = 0.76 ± 0.24. The ratio of C stars to M-giant stars was estimated to be 0.15 ± 0.01 in NGC 205, and the local C/M ratios for the southern region are somewhat lower than those for the northern region. The (J - Ks) color distributions of AGB stars contain the main peak of the M-giant stars and the red tail of the C stars. A comparison of the theoretical isochrone models with the observed color distribution indicates that most of the bright M-giant stars in NGC 205 were formed at log (tyr) ~ 9.0-9.7. The logarithmic slope of the MKs luminosity function for M-giant stars was estimated to be 0.84 ± 0.01, which is comparable with dwarf elliptical galaxies NGC 147 and NGC 185. Furthermore, we found that the logarithmic slopes of the MKs luminosity function for C and M-giant stars are different to places, implying a different star formation history within NGC 205. The bolometric luminosity function for M-giant stars extends to Mbol = -6.0 mag, and that for C stars spans -5.6 < Mbol < -3.0. The bolometric luminosity function of C stars is unlikely to be a Gaussian distribution and the mean bolometric magnitude of C stars is estimated to be Mbol = -4.24 ± 0.55, which is consistent with our results for dwarf elliptical galaxies NGC 147 and NGC 185. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada

  15. The Mg II line profile in the Seyfert galaxy NGC 4151: A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T.

    1986-01-01

    The Mg II 2795, 2802A doublet in the Seyfert galaxy NGC 4151 was examined to search for velocity systems in absorption and emission. Evidence for a narrow, outflowing absorption system in Mg II having a velocity of +825 km/sec relative to the Sun, -165 km/sec relative to the systemic velocity of NGC 4151 is presented. This feature is not present in Ly alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines a model decomposition of the line profile is shown.

  16. The Mg II line profile in the Seyfert galaxy NGC 4151 - A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T. R.

    1987-01-01

    This paper examines the Mg II 2795-2802 A doublet in the Seyfert galaxy NGC 4151 at a higher resolution than has previously been used, searching for velocity systems in absorption and emission. Evidence is presented for a new, narrow, outflowing absorption system in Mg II having a velocity of 825 km/s relative to the sun, and -165 km/s relative to the systemic velocity of NGC 4151. This feature is not present in Ly-alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines, a model decomposition of the line profile is presented.

  17. Mapping the inner regions of the polar disk galaxy NGC 4650A with MUSE

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Coccato, L.; Combes, F.; de Zeeuw, T.; Arnaboldi, M.; Weilbacher, P. M.; Bacon, R.; Kuntschner, H.; Spavone, M.

    2015-11-01

    The polar disk galaxy NGC 4650A was observed during the commissioning of the Multi Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC 4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The stellar velocity field shows that there are two main directions of rotation, one along the host galaxy major axis (PA = 67 deg) and the other along the polar disk (PA = 160 deg). The host galaxy has, on average, the typical pattern of a rotating disk, with receding velocities on the SW side and approaching velocities on the NE side, and a velocity dispersion that remains constant at all radii (σstar ~ 50-60 km s-1). The polar disk shows a large amount of differential rotation from the centre up to the outer regions, reaching V ~ 100-120 km s-1 at R ~ 75 arcsec ~ 16 kpc. Inside the host galaxy, a velocity gradient is measured along the photometric minor axis. Close to the centre, for R ≤ 2 arcsec the velocity profile of the gas suggests a decoupled component and the velocity dispersion increases up to ~110 km s-1, while at larger distances it remains almost constant (σgas ~ 30-40 km s-1). The extended view of NGC 4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC 4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the

  18. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-08-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.

  19. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-06-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of {x}2 orbits. All roundish nuclear rings in our simulations settle in the range of {x}2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the {x}2 orbital family, i.e., round nuclear rings are allowed only in the radial range of {x}2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter {f}{ring} measured from the rotation curve. The gravitational torque on gas in high pattern speed models is larger, leading to a smaller ring size than in the low pattern speed models. Our result may have important implications for using nuclear rings to measure the parameters of real barred galaxies with 2D gas kinematics.

  20. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  1. Deep imaging of the shell elliptical galaxy NGC 3923 with MegaCam

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Cuillandre, J.-C.; Gwyn, S.; Ebrová, I.; Bartošková, K.; Jungwiert, B.; Jílková, L.

    2016-04-01

    Context. The elliptical galaxy NGC 3923 is known to be surrounded by a number of stellar shells, probable remnants of an accreted galaxy. Despite its uniqueness, the deepest images of its outskirts come from the 1980s. On the basis of the modified Newtonian dynamics (MOND), it has recently been predicted that a new shell lies in this region. Aims: We obtain the deepest image ever of the galaxy, map the tidal features in it, and search for the predicted shell. Methods: The image of the galaxy was taken by the MegaCam camera at the Canada-France-Hawaii Telescope in the g'-band. It reached the surface-brightness limit of 29 mag arcsec-2. In addition, we reanalyzed an archival HST image of the galaxy. Results: We detected up to 42 shells in NGC 3923. This is by far the highest number among all shell galaxies. We present the description of the shells and other tidal features in the galaxy. A probable progenitor of some of these features was discovered. The shell system likely originates from two or more progenitors. The predicted shell was not detected, but the new image revealed that the prediction was based on incorrect assumptions and poor data. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A77

  2. TRANSIENT LOW-MASS X-RAY BINARY POPULATIONS IN ELLIPTICAL GALAXIES NGC 3379 AND NGC 4278

    SciTech Connect

    Fragos, T.; Kalogera, V.; Willems, B. E-mail: vicky@northwestern.edu

    2009-09-10

    We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration, and recurrence time. We apply this prescription to the population synthesis models of field LMXBs presented by Fragos et al., and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources. We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Finally, our comparison suggests that transient LMXBs are very rare in globular clusters (GCs), and thus the number of identified transient LMXBs may be used as a tracer of the relative contribution of field and GC LMXB populations.

  3. Galaxy evolution in nearby galaxy groups - III. A GALEX view of NGC 5846, the largest group in the local universe

    NASA Astrophysics Data System (ADS)

    Marino, Antonietta; Mazzei, Paola; Rampazzo, Roberto; Bianchi, Luciana

    2016-06-01

    We explore the co-evolution of galaxies in nearby groups (Vhel ≤ 3000 km s-1) with a multiwavelength approach. We analyse GALEX far-UV (FUV) and near-UV (NUV) imaging, and Sloan Digital Sky Survey u, g, r, i, z data of groups spanning a large range of dynamical phases. We characterize the photometric properties of spectroscopically confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here, we focus on NGC 5846, the third most massive association of early-type galaxies (ETGs) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40 per cent are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r versus Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC 5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.

  4. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Astrophysics Data System (ADS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  5. An X-ray Study of the Nearby Massive Early-Type Galaxy NGC 4472

    NASA Astrophysics Data System (ADS)

    Kraft, Ralph; Forman, W. R.; Jones, C.; Nulsen, P. E. J.; Hardcastle, M. J.; Evans, D. A.; Raychaudhury, S.; Sivakoff, G.; Sarazin, C.; Murray, S. S.

    2009-09-01

    We present results from a deep archival XMM-Newton observation of the nearby massive early-type galaxy NGC 4472. This galaxy is in the early stages of merging with the Virgo cluster (1.35 Mpc from M87), and is the most optically luminous galaxy in the local Universe. Our earlier Chandra observations (Biller et al. 2004) showed a complex morphology in the X-ray emitting gas including cavities associated with twin radio lobes, a surface brightness discontinuity presumable due to an interaction with the Virgo cluster gas, and a filamentary arm similar to structures seen in M87. The deep XMM-Newton observation clearly demonstrates the existence of a ram pressure stripped tail anti-coincident to M87 and a surface brightness discontinuity, presumably the contact discontinuity between two moving fluids, between the core of NGC 4472 and the Virgo cluster gas. A temperature map of the NGC 4472 gas shows complex temperature variations in the core, perhaps indicative of non-azimuthally symmetric gas motions induced by the merger. Such motions have been predicted in various hydrodynamic simulations of galaxy/cluster mergers (Heinz et al. 2003). We also detect four filaments of cold gas in the temperature map extending roughly 25 kpc from the nucleus, one of which is coincident with the feature seen in the short Chandra observation. We discuss the implications of these results in terms of our understanding of group/cluster merger dynamics.

  6. Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Martínez-Delgado, David; Martin, Nicolas F.; Morales, Gustavo; Jennings, Zachary G.; GaBany, R. Jay; Brodie, Jean P.; Grebel, Eva K.; Schedler, Johannes; Sidonio, Michael

    2016-03-01

    We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and Rc-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ˜3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semimajor axis half-light radius of (2 ± 0.4) kpc. Star counts also yield a luminosity estimate of ˜2 × 106 L⊙,V (MV ˜ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ˜50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continuously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics. We also note the continued efficacy of small telescopes for making big discoveries.

  7. The young nuclear stellar disc in the SB0 galaxy NGC 1023

    NASA Astrophysics Data System (ADS)

    Corsini, E. M.; Morelli, L.; Pastorello, N.; Bontà, E. Dalla; Pizzella, A.; Portaluri, E.

    2016-04-01

    Small kinematically decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic centre, is rejected.

  8. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-04-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13″ × 6″ (1173 × 541 pc2) centered on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 Å to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100″ (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [OI], [NII], Hα, and [SII]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [OIII] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.

  9. The vertical disk structure of the edge-on spiral galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthorn, Jonathan; Cecil, G.; Tully, R. B.

    1993-01-01

    NGC 3079 is an edge-on SB(s)c galaxy at a redshift of 1225 km/s relative to the Local Group. Earlier researchers found a spectacular 'figure-eight' radio structure aligned along the minor axis of the galaxy, centered on the nucleus, and extending 3 kpc above and below the plane. The geometry of this structure and the evidence of unusually high nuclear gas velocities suggest that a wind-type outflow from the nucleus is taking place. The disk of NGC 3079 is also remarkable: it is extremely rich in H 2 regions and is the only unambiguous example of a galaxy outside M31 and our own Galaxy to exhibit 'Heiles-like' shells. Other researchers have also identified a nebulosity with a ragged X-shaped morphology formed by a system of lumpy filaments with individual lengths of 3 - 5 kpc. They suggest that this material is ambient halo gas entrained into the boundary layers of the nuclear outflow. The complex structure of the line emission in NGC 3079 makes this object an ideal target for an imaging spectroscopic study. The present paper reports the preliminary results of such a study.

  10. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-07-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13 × 6 arcsec2(1173 × 541 pc2) centred on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100 arcsec (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [O I], [N II], Hα, and [S II]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [O III] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.