Science.gov

Sample records for riparian forest woody

  1. Perspectives on screening winter-flood-tolerant woody species in the riparian protection forests of the three gorges reservoir.

    PubMed

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  2. Perspectives on Screening Winter-Flood-Tolerant Woody Species in the Riparian Protection Forests of the Three Gorges Reservoir

    PubMed Central

    Yang, Fan; Wang, Yong; Chan, Zhulong

    2014-01-01

    The establishment of riparian protection forests in the Three Gorges Reservoir (TGR) is an ideal measure to cope with the eco-environmental problems of the water-level fluctuation zone (WLFZ). Thus, the information for screening winter-flood-tolerant woody plant species is useful for the recovery and re-establishment of the riparian protection forests in the TGR WLFZ. Therefore, we discussed the possibilities of constructing and popularizing riparian protection forests in the TGR WLFZ from several aspects, including the woody plant species distribution in the WLFZ, the survival rate analyses of suitable candidate woody species under controlled flooding conditions, the survival rate investigation of some woody plant species planted in the TGR WLFZ, and the physiological responses of some woody plant species during the recovery stage after winter floods. The results of woody species investigation showed that most woody plant species that existed as annual seedlings in the TGR WLFZ are not suitable candidates for the riparian protection forests. However, arbor species (e.g., Salix matsudana, Populus×canadensis, Morus alba, Pterocarya stenoptera, Taxodium ascendens, and Metasequoia glyptostroboides) and shrub species (e.g., Salix variegata, Distylium chinensis, Lycium chinense, Myricaria laxiflora, and Rosa multiflora) might be considered suitable candidates for the riparian protection forests in the TGR WLFZ by survival rate analyses under controlled winter flooding conditions, and survival rate investigations of woody plant species planted in the TGR WLFZ, respectively. Physiological analyses showed that P.×canadensis, M. alba, L. chinense, and S. variegata could develop specific self-repairing mechanisms to stimulate biomass accumulation and carbohydrate synthesis via the increases in chlorophyll pigments and photosynthesis during recovery after winter floods. Our results suggested these woody plant species could endure the winter flooding stress and recover well

  3. Response of a depleted sagebrush steppe riparian system to grazing control and woody plantings. Forest Service research paper

    SciTech Connect

    Clary, W.P.; Shaw, N.L.; Dudley, J.G.; Saab, V.A.; Kinney, J.W.

    1996-12-01

    To find out if a depleted riparian system in the sagebrush steppe of eastern Oregon would respond quickly to improved management, five management treatments were applied for 7 years, ranging from ungrazed to heavily grazed treatments, including, in some cases, planting of woody species. While the results varied, all treatments were too limited to significantly restore the damaged areas within the 7-year span. Although some improvements were made in woody plant densities, little meaningful change occurred in the frequencies of herbaceous wetland plants, densities of small wildlife, or stream channel morphology. We concluded the restoration would take many years, possibly decades, without increased revegetation efforts and continued reductions in grazing in this riparian system damaged over 150 years.

  4. Fire and grazing influences on rates of riparian woody plant expansion along grassland streams.

    PubMed

    Veach, Allison M; Dodds, Walter K; Skibbe, Adam

    2014-01-01

    Grasslands are threatened globally due to the expansion of woody plants. The few remaining headwater streams within tallgrass prairies are becoming more like typical forested streams due to rapid conversion of riparian zones from grassy to wooded. Forestation can alter stream hydrology and biogeochemistry. We estimated the rate of riparian woody plant expansion within a 30 m buffer zone surrounding the stream bed across whole watersheds at Konza Prairie Biological Station over 25 years from aerial photographs. Watersheds varied with respect to experimentally-controlled fire and bison grazing. Fire frequency, presence or absence of grazing bison, and the historical presence of woody vegetation prior to the study time period (a proxy for proximity of propagule sources) were used as independent variables to predict the rate of riparian woody plant expansion between 1985 and 2010. Water yield was estimated across these years for a subset of watersheds. Riparian woody encroachment rates increased as burning became less frequent than every two years. However, a higher fire frequency (1-2 years) did not reverse riparian woody encroachment regardless of whether woody vegetation was present or not before burning regimes were initiated. Although riparian woody vegetation cover increased over time, annual total precipitation and average annual temperature were variable. So, water yield over 4 watersheds under differing burn frequencies was quite variable and with no statistically significant detected temporal trends. Overall, burning regimes with a frequency of every 1-2 years will slow the conversion of tallgrass prairie stream ecosystems to forested ones, yet over long time periods, riparian woody plant encroachment may not be prevented by fire alone, regardless of fire frequency. PMID:25192194

  5. Fire and Grazing Influences on Rates of Riparian Woody Plant Expansion along Grassland Streams

    PubMed Central

    Veach, Allison M.; Dodds, Walter K.; Skibbe, Adam

    2014-01-01

    Grasslands are threatened globally due to the expansion of woody plants. The few remaining headwater streams within tallgrass prairies are becoming more like typical forested streams due to rapid conversion of riparian zones from grassy to wooded. Forestation can alter stream hydrology and biogeochemistry. We estimated the rate of riparian woody plant expansion within a 30 m buffer zone surrounding the stream bed across whole watersheds at Konza Prairie Biological Station over 25 years from aerial photographs. Watersheds varied with respect to experimentally-controlled fire and bison grazing. Fire frequency, presence or absence of grazing bison, and the historical presence of woody vegetation prior to the study time period (a proxy for proximity of propagule sources) were used as independent variables to predict the rate of riparian woody plant expansion between 1985 and 2010. Water yield was estimated across these years for a subset of watersheds. Riparian woody encroachment rates increased as burning became less frequent than every two years. However, a higher fire frequency (1–2 years) did not reverse riparian woody encroachment regardless of whether woody vegetation was present or not before burning regimes were initiated. Although riparian woody vegetation cover increased over time, annual total precipitation and average annual temperature were variable. So, water yield over 4 watersheds under differing burn frequencies was quite variable and with no statistically significant detected temporal trends. Overall, burning regimes with a frequency of every 1–2 years will slow the conversion of tallgrass prairie stream ecosystems to forested ones, yet over long time periods, riparian woody plant encroachment may not be prevented by fire alone, regardless of fire frequency. PMID:25192194

  6. Does stream flow structure woody riparian vegetation in subtropical catchments?

    PubMed

    James, Cassandra S; Mackay, Stephen J; Arthington, Angela H; Capon, Samantha J; Barnes, Anna; Pearson, Ben

    2016-08-01

    The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA - Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals. There were differences among flow classes for riparian species richness, total abundance, and abundance of regenerating native trees and shrubs. There were also significant class differences in the occurrence of three common tree species, and 21 indicator species (mostly native taxa) further distinguished the vegetation characteristics of each flow class. We investigated the influence of key drivers of riparian vegetation structure (climate, depth to water table, stream-specific power, substrate type, degree of hydrologic alteration, and land use) on riparian vegetation. Patterns were explained largely by climate, particularly annual rainfall and temperature. Strong covarying drivers (hydrology and climate) prevented us from isolating the independent influences of these drivers on riparian assemblage structure. The prevalence of species considered typically rheophytic in some flow classes implies a more substantial role for flow in these classes but needs further testing. No relationships were found between land use and riparian vegetation composition and structure. This study demonstrates the relevance of flow classification to the structure of riparian vegetation in a subtropical landscape, and the influence of covarying drivers on riparian patterns. Management of environmental flows to influence riparian vegetation assemblages would likely have most potential in sites dominated by rheophytic species where hydrological influences override other controls. In contrast, where vegetation assemblages are

  7. Woody riparian vegetation of Great Basin National Park. Interim report

    SciTech Connect

    Douglas, C.L.; Smith, S.D.; Murray, K.J.; Landau, F.H.; Sala, A.

    1994-07-01

    The community composition and population structure of the woody riparian vegetation in Great Basin National Park are described. Community analyses were accomplished by sampling 229 plots placed in a systematic random fashion along elevational gradients of 8 major stream systems (Baker, Big Wash, Lehman, Pine, Pole, Shingle, Snake, and Strawberry Creeks) in the Park using the releve method. Stand demographics were determined for the four dominant tree species in the Park, based on absolute stem counts at 15 sites along 6 major watersheds. Elevational ranges of the dominant tree and shrub species along 8 major streams were determined via transect analysis and systematic reconnaissance efforts. TWINSPAN (two-way indicator analysis) indentified 4 primary species groups and 8 stand groups in the Park. Because of the homogeneity of riparian zones, both presence and abundance of species were important parameters in determining species groups. Although species such as Populus tremuloides (aspen), Abies concolor (white fir) and Rosa woodsii (Woods rose) are very common throughout the Park, they are particularly abundant at higher, upper intermediate, and lower intermediate elevations.

  8. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    PubMed

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long

  9. Ecohydrological Impacts of Woody Phreatophyte Invasion Within a Semiarid Riparian Environment

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Huxman, T. E.; Williams, D. G.; Goodrich, D. C.

    2005-12-01

    Along the Upper San Pedro River in southeastern Arizona deep-rooted woody phreatophytes such as the non-native Tamarix ramosissima (salt cedar) and the native Prosopis velutina (velvet mesquite) are expanding their range, but we have little understanding about how this change in vegetation composition will change the cycling of water and nutrients in these riparian ecosystems. We compared water and carbon dioxide fluxes over a grassland, a grassland-shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody plant encroachment on important ecosystem processes. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with woody plant encroachment. The dominant grass or shrub at all sites accessed groundwater to some degree, but groundwater use increased with woody plant density. Greater access to groundwater for the deeper-rooted woody plants apparently decouples ecosystem evapotranspiration from gross ecosystem production (GEP) with respect to precipitation. The woody plants were better able to use the stable groundwater source, which increased net carbon dioxide gain during the dry periods by maintaining plant function. However, this enhanced plant activity leads to substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. These initial data suggest that the ability of the woody plants to better exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody plant density.

  10. Woody riparian vegetation near selected streamgages in the western United States

    USGS Publications Warehouse

    Auble, Gregor T.; Friedman, Jonathan M.; Shafroth, Patrick B.; Merigliano, Michael F.; Scott, Michael L.

    2012-01-01

    Areal cover and occupancy of woody riparian species near 456 streamgages in the western United States were obtained from site visits during the growing seasons of 1996-2002. We made concomitant estimates of grazing intensity, channel stabilization and incision, gradient, sediment particle size, and nearby planting of Russian olive. The purpose of this publication is to describe the data set and make it available to other investigators in an electronic format.

  11. Spatial-structural analysis of leafless woody riparian vegetation for hydraulic considerations

    NASA Astrophysics Data System (ADS)

    Weissteiner, Clemens; Jalonen, Johanna; Järvelä, Juha; Rauch, Hans Peter

    2013-04-01

    Woody riparian vegetation is a vital element of riverine environments. On one hand woody riparian vegetation has to be taken into account from a civil engineering point of view due to boundary shear stress and vegetation drag. On the other hand it has to be considered from a river ecological point of view due to shadowing effects and as a source of organic material for aquatic habitats. In hydrodynamic and hydro-ecological studies the effects of woody riparian vegetation on flow patterns are usually investigated on a very detailed level. On the contrary vegetation elements and their spatial patterns are generally analysed and discussed on the basis of an integral approach measuring for example basal diameters, heights and projected plant areas. For a better understanding of the influence of woody riparian vegetation on turbulent flow and on river ecology, it is essential to record and analyse plant data sets on the same level of quality as for hydrodynamic or hydro-ecologic purposes. As a result of the same scale of the analysis it is possible to incorporate riparian vegetation as a sub-model in the hydraulic analysis. For plant structural components, such as branches on different topological levels it is crucial to record plant geometrical parameters describing the habitus of the plant on branch level. An exact 3D geometrical model of real plants allows for an extraction of various spatial-structural plant parameters. In addition, allometric relationships help to summarize and describe plant traits of riparian vegetation. This paper focuses on the spatial-structural composition of leafless riparia woddy vegetation. Structural and spatial analyses determine detailed geometric properties of the structural components of the plants. Geometrical and topological parameters were recorded with an electro-magnetic scanning device. In total, 23 plants (willows, alders and birches) were analysed in the study. Data were recorded on branch level, which allowed for the

  12. Hiawatha National Forest Riparian Inventory: A Case Study

    NASA Astrophysics Data System (ADS)

    Abood, S. A.

    2014-12-01

    Riparian areas are dynamic, transitional ecotones between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Riparian areas offers wildlife habitat and stream water quality, offers bank stability and protects against erosions, provides aesthetics and recreational value, and other numerous valuable ecosystem functions. Quantifying and delineating riparian areas is an essential step in riparian monitoring, riparian management/planning and policy decisions, and in preserving its valuable ecological functions. Previous approaches to riparian areas mapping have primarily utilized fixed width buffers. However, these methodologies only take the watercourse into consideration and ignore critical geomorphology, associated vegetation and soil characteristics. Other approaches utilize remote sensing technologies such as aerial photos interpretation or satellite imagery riparian vegetation classification. Such techniques requires expert knowledge, high spatial resolution data, and expensive when mapping riparian areas on a landscape scale. The goal of this study is to develop a cost effective robust workflow to consistently map the geographic extent and composition of riparian areas within the Hiawatha National Forest boundary utilizing the Riparian Buffer Delineation Model (RBDM) v3.0 and open source geospatial data. This approach recognizes the dynamic and transitional natures of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process and the results would suggests incorporating functional variable width riparian mapping within watershed management planning to improve protection and restoration of valuable riparian functionality and biodiversity.

  13. Establishment of woody riparian vegetation in relation to annual patterns of streamflow, Bill Williams River, Arizona

    USGS Publications Warehouse

    Shafroth, P.B.; Auble, G.T.; Stromberg, J.C.; Patten, D.T.

    1998-01-01

    Previous studies have revealed the close coupling of components of annual streamflow hydrographs and the germination and establishment of Populus species. Key hydrograph components include the timing and magnitude of flood peaks, the rate of decline of the recession limb, and the magnitude of base flows. In this paper, we retrospectively examine establishment of four woody riparian species along the Bill Williams River, Arizona, USA, in the context of annual patterns of streamflow for the years 1993-1995. The four species examined were the native Populus fremontii, Salix gooddingii, and Baccharis salicifolia and the exotic Tamarix ramosissima. We modeled locations suitable for germination of each species along eight study transects by combining historic discharge data, calculated stage-discharge relationships, and seed-dispersal timing observations. This germination model was a highly significant predictor of seedling establishment. Where germination was predicted to occur, we compared values of several environmental variables in quadrats where we observed successful establishment with quadrats where establishment was unsuccessful. The basal area of mature woody vegetation, the maximum annual depth to ground water, and the maximum rate of water-table decline were the variables that best discriminated between quadrats with and without seedlings. The results of this study suggest that the basic components of models that relate establishment of Populus spp. to annual patterns of streamflow may also be applicable to other woody riparian species. Reach-to-reach variation in stage-discharge relationships can influence model parameters, however, and should be considered if results such as ours are to be used in efforts to prescribe reservoir releases to promote establishment of native riparian vegetation.

  14. Headwater riparian forest-floor invertebrate communities associated with alternative forest management practices.

    PubMed

    Rykken, Jessica J; Moldenke, Andrew R; Olson, Deanna H

    2007-06-01

    Headwater streams and their riparian zones are a common, yet poorly understood, component of Pacific Northwest, USA, landscapes. We describe the ecological importance of headwater stream riparian zones as habitat for forest-floor invertebrate communities and assess how alternative management strategies for riparian zones may impact these communities. We compared community composition of forest-floor invertebrates at increasing distances along trans-riparian (stream edge to upslope) transects in mature forests, clearcuts, and riparian buffers of approximately 30-m width with upslope clearcuts. Invertebrates were collected using pitfall traps in five replicate blocks of three treatments each in the Willamette National Forest, Oregon, USA. We measured microclimate and microhabitat variables at pitfall locations. Despite strong elevation and block effects on community composition, community analyses revealed a distinct "riparian" invertebrate community within 1 m of the stream edge in mature forest treatments, which was strongly related to cool, humid microclimate conditions. Invertebrate community composition in buffer treatments was far more similar to that of mature forests than to clearcuts; a pattern mirrored by microclimate. These results suggest that, within our study sites, forest-floor invertebrate distributions are strongly associated with microclimate and that riparian buffers of approximately 30-m width do provide habitat for many riparian and forest species. Riparian reserves may serve as effective forest refugia and/or dispersal corridors for invertebrates and other taxa, and their incorporation into watershed management plans likely will contribute to meeting persistence and connectivity objectives. PMID:17555226

  15. A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.

    2008-12-01

    On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest

  16. AN INDICATOR OF POTENTIAL STREAM WOOD CONTRIBUTION FOR RIPARIAN FORESTS

    EPA Science Inventory

    In northwestern Oregon a key function of riparian forests is to provide wood to the stream network. This function is a prominent feature of Federal and State forest practices in the region. Thus, defining indicators which are associated with this function are important for desi...

  17. Water use sources of desert riparian Populus euphratica forests.

    PubMed

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies. PMID:24816539

  18. PREDICTIONS OF STREAM WOOD RECRUITMENT FROM RIPARIAN FORESTS: EFFECTS OF DATA RESOLUTION

    EPA Science Inventory

    We evaluate whether different levels of detail of riparian forest characterizations result in different predictions of stream wood recruitment from riparian forests in northwestern Oregon. If less detailed information provides the same estimate of this function as more detailed i...

  19. Ground water nitrate removal in subsoil of forested and mowed riparian buffer zones

    SciTech Connect

    Addy, K.L.; Gold, A.J.; Groffman, P.M.; Jacinthe, P.A.

    1999-05-01

    The authors studied two similar riparian sites in southern New England and examined ground water nitrate (NO{sub 3}{sup {minus}}-N) removal in the subsurface of mowed (i.e., herbaceous) vs. forested (i.e., woody) vegetation. Each site consisted of poorly drained, fine to medium sands and contained adjacent areas of mowed and forested vegetation. They dosed mesocosms with bromide and {sup 15}N labeled NO{sub 3}{sup {minus}}-N amended ground water to simulate the shallow ground water NO{sub 3}{sup {minus}}-N dynamics of riparian buffers zones. Mesocosms were composed of undisturbed, horizontal soil cores extracted from seasonally saturated subsoil. The authors observed substantial ground water NO{sub 3}{sup {minus}}-N removal and denitrification at all locations. Ground water NO{sub 3}{sup {minus}}-N removal rates were significantly correlated with carbon-enriched patches of organic matter. This correlation supports previous work that patches function as hotspots of microbial activity in the subsoil. Within each site, they found no significant difference in ground water NO{sub 3}{sup {minus}}-N removal rates in the subsoil of forested and mowed areas and they noted tree roots throughout the subsoil of the mowed areas. They found that ground water NO{sub 3}{sup {minus}}-N removal rates differed significantly between similar sites. They caution against ascribing specific ground water NO{sub 3}{sup {minus}}-N removal rates to different riparian aboveground vegetation types without recognizing the importance of site differences, e.g., water table dynamics, land use legacy and adjacent vegetation. Riparian zones composed of a mix of forested and mowed vegetation, common in agroforestry and suburban land uses, may remove substantial amounts of ground water NO{sub 3}{sup {minus}}-N.

  20. RIPARIAN FOREST INDICATORS OF POTENTIAL FUTURE STREAM CONDITION

    EPA Science Inventory

    Large wood in streams can play an extraordinarily important role in influencing the physical structure of streams and in providing habitat for aquatic organisms. Since wood is continually lost from streams, predicting the future input of wood to streams from riparian forests is c...

  1. EVALUATION OF METRIC PRECISION FOR A RIPARIAN FOREST SURVEY

    EPA Science Inventory

    This paper evaluates the performance of a protocol to monitor riparian forests in western Oregon based on the quality of the data obtained from a recent field survey. Precision and accuracy are the criteria used to determine the quality of 19 field metrics. The field survey con...

  2. Abundance of Woody Riparian Species in the Western USA in Relation to Phenology, Climate, and Flow Regime

    NASA Astrophysics Data System (ADS)

    Auble, G. T.; Friedman, J. M.; Scott, M. L.; Shafroth, P. B.; Merigliano, M. M.; Freehling, M. D.; Evans, R. E.; Griffin, E. R.

    2004-12-01

    We randomly selected 475 long-term U.S. Geological Survey stream gaging stations in 17 western states to relate the presence and abundance of woody species to environmental factors. Along a 1.3-km reach near each station we measured the cover of all species on a list of the 44 most abundant large woody riparian species in the region. We used logistic regression to fit the response of four abundant species to growing degree days and mean precipitation. Then we related relative abundance of these 4 species to timing of the flood peak in sites where the likelihood of occurrence was greater than 0.5. The exotics Tamarix ramosissima (saltcedar) and Elaeagnus angustifolia (Russian-olive) are now the third and fourth most frequently occurring large woody riparian species in the western U.S. and the second and fifth most abundant. In climatically suitable areas, species differences in reproductive phenology produce different relations of abundance to flow regime. Because of its limited period of seed release and viability in early summer, cottonwood (Populus deltoides) is disadvantaged where floods occur in the spring or fall. Abundances of saltcedar, because of its long period of seed release; Russian-olive, because of seed dormancy; and Salix exigua, because of the importance of vegetative spread, are much less sensitive to flood timing.

  3. Establishment of woody riparian species from natural seedfall at a former gravel pit

    USGS Publications Warehouse

    Roelle, J.E.; Gladwin, D.N.

    1999-01-01

    Establishment of native riparian communities through natural seedfall may be a viable reclamation alternative at some alluvial sand and gravel mines where water level can be controlled in the abandoned pit. We experimented with this approach at a pit in Fort Collins, Colorado, where a drain culvert equipped with a screw gate allows water levels to be manipulated. From 1994 to 1996 we conducted a series of annual drawdowns during the period of natural seedfall of Populus deltoides subsp. monilifera (plains cottonwood), Salix amygdaloides (peachleaf willow), and S. exigua (sand-bar willow), thus providing the bare, moist substrate conducive to establishment of these species. Establishment was highly variable from year to year; in the fall following establishment, frequency of occurrence on 0.5-m2 sample plots ranged from 8.6% to 50.6% for cottonwood, 15.9% to 22.0% for peachleaf willow, and 21.7% to 50.0% for sandbar willow. Mean densities, however, were comparable to those reported for other locations. Concurrent establishment of the undesirable exotic Tamarix ramosissima (saltcedar) was a problem, but we were able to eradicate most saltcedar seedlings by reflooding the lower elevations of the annual drawdown zones each fall. At the end of the 3-year period, at least one of the three native woody species survived on 41.1% of the plots, while saltcedar was present on only 6.1%. In addition to the potential for establishing valuable native habitats, adaptations of the techniques described may require less earth moving than other reclamation approaches.

  4. Avian communities in riparian forests of different widths in Maryland and Delaware

    USGS Publications Warehouse

    Keller, C.M.E.; Robbins, C.S.; Hatfield, J.S.

    1993-01-01

    In agricultural landscapes, much of the remaining forest is in linear tracts along streams. These riparian forests provide habitat for forest birds, but their use by forest interior birds may depend on forest width. We conducted point-count surveys of birds in riparian forests on the Eastern shore of Maryland and Delaware to assess whether the presence of any species was dependent on corridor width. We surveyed 117 corridors that ranged from 25- to 800-m wide. Several area-sensitive neotropical migrants were encountered more frequently in wider riparian forests, and probabilities of occurrence increased most rapidly between 25 and 100 m. Based on these surveys, we recommend that riparian forests be at least 100-m wide to provide some nesting habitat for area-sensitive species. Wider riparian forests would be preferable and should be preserved.

  5. The interplay of sedimentation and carbon accretion in riparian forests

    NASA Astrophysics Data System (ADS)

    Rieger, Isaak; Lang, Friederike; Kowarik, Ingo; Cierjacks, Arne

    2014-06-01

    Sediment trapping and organic carbon (OC) accretion in soil are crucial ecosystem services of floodplain forests. However, interactions between the two processes have scarcely been analyzed at the ecosystem level. This study aimed at quantifying OC accretion parameters (CAP, including sedimentation rate, OC concentration, OC accretion) over roughly the last 50 years on both sides of a dike in a Danubian floodplain forest in Austria. Additionally, we determined soil OC stocks (0-100 cm in depth) and modeled both CAP and OC stocks in relation to environmental parameters. Overall, mean sedimentation rate and OC accretion of the riparian forest were 0.8 cm y- 1 and 3.3 t OC ha- 1 y- 1 and significantly higher in flooded riparian forest (FRF; 1.0 cm y- 1 and 4.1 t OC ha- 1 y- 1) than in diked riparian forest (DRF; 0.3 cm y- 1 and 1.5 t OC ha- 1 y- 1). In contrast, mean OC concentration (0.05 t OC m- 3) and OC stocks (238 t OC ha- 1) were significantly higher in the DRF than in FRF (0.05 vs. 0.04 t OC m- 3 and 286 vs. 201 t OC ha- 1). Modeling revealed tree species, fluctuation of groundwater table, and the distance to the river as valuable indicators for OC accretion rate. The OC concentration and distance to the river were positively and sedimentation negatively correlated with OC stock. The dike was consistently ruled out as a significant predictor variable. Consequently, differences among FRF and DRF seem to be related rather to longer term processes during the last centuries than directly to the dike. Our findings highlight the relevance of sediment quality (i.e., OC concentration) for building up long-term soil OC stocks, whereas sediment quantity is the main driver of recent OC accretion rates.

  6. Floodplain Stabilization by Woody Riparian Vegetation During an Extreme Flood Along Headwater Tributaries of East Plum Creek, Colorado.

    NASA Astrophysics Data System (ADS)

    Griffin, E. R.; Smith, J. D.

    2001-12-01

    Dense woody riparian vegetation acts to reduce flow velocities and boundary shear stresses on floodplain surfaces during large overbank flow events. Throughout the semi-arid west, woody riparian vegetation has been progressively thinned as the result of land use practices, such as grazing, and extensive reduction in beaver populations. Where woody vegetation is sparse, the floodplain surface is vulnerable to high rates of erosion during overbank flows. Unraveling of a floodplain surface occurs when flow is sufficiently deep and fast enough to erode the surface. Once erosion begins, it proceeds rapidly, leading to transformation from a narrow, single-threaded stream to a much wider, braided stream, as occurred along most of the mainstem of East Plum Creek, Colorado, during an extreme flood on June 16, 1965. Effects of this flood along headwater tributaries of East Plum Creek were documented in large scale (about 1:2,500) aerial photographs taken two days after the flood. The photographs along with available map information and field examination clearly show overbank flows were deep (on the order of 3 meters), yet the floodplain remained intact at sites with dense shrubs (sandbar willow). Two days after the flood, the shrubs were still lying bent over by the flood flow, and their canopy sizes and densities could be measured from the photographs. Within a 1.5-km reach, the downstream sequence of sites examined included: 1) locations where the floodplain surface and vegetation remained intact; 2) a location with less dense woody vegetation where the floodplain surface had just begun to erode; 3) locations with minimal woody vegetation, where the entire floodplain surface had begun to erode but a new channel had not yet formed; and 4) locations where erosion had caused a new, much wider channel to form and almost all pre-flood woody vegetation was removed. Estimates of pre-flood vegetation types and densities were made at each of these four sites. Boundary shear

  7. Riparian corridors enhance movement of a forest specialist bird in fragmented tropical forest

    PubMed Central

    Gillies, Cameron S.; St. Clair, Colleen Cassady

    2008-01-01

    Riparian corridors and fencerows are hypothesized to increase the persistence of forest animals in fragmented landscapes by facilitating movement among suitable habitat patches. This function may be critically important for forest birds, which have declined dramatically in fragmented habitats. Unfortunately, direct evidence of corridor use has been difficult to collect at landscape scales and this limits support for corridors in conservation planning. Using telemetry and handheld GPS units, we examined the movement of forest birds by translocating territorial individuals of barred antshrikes (Thamnophilus doliatus; a forest specialist) and rufous-naped wrens (Campylorhynchus rufinucha; a forest generalist) 0.7–1.9 km from their territories in the highly fragmented tropical dry forest of Costa Rica. In each translocation, the directly intervening habitat comprised 1 of 3 treatments: forested riparian corridor, linear living fencerow, or open pasture. Antshrikes returned faster and with greater success in riparian corridors relative to pasture treatments. This species also traveled more directly in riparian corridor treatments, detoured to use forested routes in the other 2 treatments, and did not use fencerows even when they led directly to their home territories. By contrast, wrens were more likely to use fencerows when returning, and return time and success were equivalent among the 3 treatments. Both species crossed fewer gaps in tree cover during riparian corridor treatments than in fencerow or pasture treatments. We conclude that antshrikes, which may be representative of other forest specialists, use forested corridors for movement in this landscape and that fencerows are avoided as movement conduits. PMID:19017794

  8. MODELING VARIABLE-WIDTH RIPARIAN BUFFERS, WITH AN APPLICATION TO WOODY DEBRIS RECRUITMENT

    EPA Science Inventory

    Effective management of riparian areas in watersheds requires that reach-scale knowlege of riparian functioning be carefully "scaled up" to provide models for entire stream networks. Weller et al. (1998: Ecological Applications 8, 1156-1169) describe a useful heuristic model for...

  9. Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon

    USGS Publications Warehouse

    Gomez, D.M.; Anthony, R.G.

    1996-01-01

    We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.

  10. Evaluation of metric precision for a riparian forest survey.

    PubMed

    Barker, Jerry R; Bollman, Michael; Ringold, Paul L; Sackinger, Jennifer; Cline, Steven P

    2002-04-01

    This article evaluates the performance of a protocol to monitor riparian forests in western Oregon, United States based on the quality of the data obtained from a field survey. Precision is the criteria used to determine the quality of 19 field and 6 derived metrics. The derived metrics were calculated from the field data. The survey consisted of 110 riparian sites on public and private lands that were sampled during the summers of 1996 and 1997. In order to calculate metric precision, some of the field plots were re-measured. Metric precision was defined in terms of the coefficient of variability (CV) and standard deviation and then compared with a pre-defined data quality objective (DQO). A metric was considered precise if the CV met or exceeded the DQO. The geomorphology metrics were not precise while the forest stand inventory metrics and forest cover metrics, with some exceptions, were precise. The precision for many of the field and derived metrics compared favorably with the level of precision for similar metrics reported in the literature. Recommendations are made to improve the precision for some metrics and they include changing the way precision is calculated, re-defining the field protocol, or improving field training. PMID:15900665

  11. Woody biomass resource of Louisiana, 1991. Forest Service resource bulletin

    SciTech Connect

    Rosson, J.F.

    1993-09-01

    Data from the 1991 Louisiana forest survey were used to derive fresh and dry biomass estimates for all trees, on timberland, greater than 1.0 inch in diameter at breast height (d.b.h.). There are 470.0 million fresh tons in softwood species and 757.5 million fresh tons in hardwood species. The woody biomass resource averages 45.9 and 61.9 tons per acre for softwoods and hardwoods where they occur, respectively. Most of this biomass is in the stem portion of the trees--85 percent for softwoods and 75 percent for hardwoods. Nonindustrial private landowners hold 58 and 69 percent of the total softwood and hardwood biomass resource, respectively.

  12. Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems

    EPA Science Inventory

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...

  13. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil.

    PubMed

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species' specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  14. Inundation and Fire Shape the Structure of Riparian Forests in the Pantanal, Brazil

    PubMed Central

    Arruda, Wellinton de Sá; Oldeland, Jens; Paranhos Filho, Antonio Conceição; Pott, Arnildo; Cunha, Nicolay L.; Ishii, Iria Hiromi; Damasceno-Junior, Geraldo Alves

    2016-01-01

    Inundation and fire can affect the structure of riparian vegetation in wetlands. Our aim was to verify if there are differences in richness, abundance, basal area, composition and topographic preference of woody species in riparian forests related to the fire history, flooding duration, or the interaction between both. The study was conducted in the riparian forests of the Paraguay River some of which were burned three times between 2001 and 2011. We sampled trees with a girth of at least 5 cm at breast height in 150 5 × 10 m plots (79 burned and 71 unburned). We also measured height of the flood mark and estimated the flooding duration of each plot. We performed Generalized Linear Mixed Models to verify differences in richness, basal area, and abundance of individuals associated to interaction of fire and inundation. We used an analysis of similarity (ANOSIM) and indicator species analysis to identify differences in composition of species and the association with burned and unburned area according to different levels of inundation. Finally, we used a hierarchical set of Generalized Linear Models (GLM), the so-called HOF models, to analyse each species’ specific response to inundation based on topography and to determine their preferred optimal topographic position for both burned as well as unburned areas. Richness was positively associated with elevation only in burned areas while abundance was negatively influenced by inundation only in burned areas. Basal area was negatively associated with time of inundation independent of fire history. There were 15 species which were significant indicators for at least one combination of the studied factors. We found nine species in burned areas and 15 in unburned areas, with response curves in HOF models along the inundation gradient. From these, five species shifted their optimal position along the inundation gradient in burned areas. The interaction of fire and inundation did not appear to affect the basal area, but it

  15. Importance of riparian forests in urban watersheds contingent on sediment and hydrologic regimes

    USGS Publications Warehouse

    Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Meyer, J.L.; Ensign, W.E.

    2006-01-01

    Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1?65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and ?sensitive? species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity.

  16. Importance of Coarse Woody Debris to Avian Communities in Loblolly Pine Forests

    SciTech Connect

    Lohr, S.M.; Gauthreaux, S.A.; Kilgo, J.C.

    2001-06-14

    Investigates the importance of standing and down coarse woody debris to bird communities in loblolly pine forests, researchers compared breeding and nonbreeding responses of birds among two coarse woody debris removal and control treatments. Quantification of vegetation layers to determine their effects on the experimental outcome coarse woody debris removal had no effect on the nonbreeding bird community. Most breeding and nonbreeding species used habitats with sparse midstory and well-developed understory, where as sparse canopy cover and dense midstory were important to some nonbreeding species. Snag and down coarse woody debris practices that maintain a dense understory, sparse midstory and canopy will create favorable breeding habitat.

  17. Forest transpiration from sap flux density measurements in a Southeastern Coastal Plain riparian buffer system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  18. Interplay of riparian forest and groundwater in the hillslope hydrology of Sudanian West Africa (northern Benin)

    NASA Astrophysics Data System (ADS)

    Richard, A.; Galle, S.; Descloitres, M.; Cohard, J.-M.; Vandervaere, J.-P.; Séguis, L.; Peugeot, C.

    2013-12-01

    Forests are thought to play an important role in the regional dynamics of the West African monsoon, through their capacity to extract water from a permanent and deep groundwater table to the atmosphere even during the dry season. It should be the case for riparian forests too, as these streambank forests are key landscape elements in Sudanian West Africa. The interplay of riparian forest and groundwater in the local hydrodynamics was investigated, by quantifying their contribution to the water balance. Field observations from a comprehensively instrumented hillslope in northern Benin were used. Particular attention was paid to measurements of actual evapotranspiration, soil water and deep groundwater levels. A vertical 2-D hydrological modelling approach using the Hydrus software was used as a testing tool to understand the interactions between the riparian area and the groundwater. The model was calibrated and evaluated using a multi-criteria approach (reference simulation). A virtual experiment, including three other simulations, was designed (no forest, no groundwater, neither forest nor groundwater). The model correctly simulated the hydrodynamics of the hillslope regarding vadose zone dynamics, deep groundwater fluctuation and actual evapotranspiration dynamics. The virtual experiment showed that the riparian forest transpiration depleted the deep groundwater table level and disconnected it from the river, which is consistent with the observations. The riparian forest and the deep groundwater table actually form an interacting transpiration system: the high transpiration rate in the riparian area was shown to be due to the existence of the water table, supplied by downslope lateral water flows within the hillslope soil layer. The simulated riparian transpiration rate was practically steady all year long, around 7.6 mm d-1. This rate lies within high-end values of similar study results. The riparian forest as simulated here contributes to 37% of the annual

  19. Managing coarse woody debris in forests of the Rocky Mountains. Forest Service research paper

    SciTech Connect

    Graham, R.T.; Harvey, A.E.; Jurgensen, M.F.; Jain, T.B.; Tonn, J.R.

    1994-09-01

    Recommendations for managing coarse woody debris after timber harvest were developed for 14 habitat types, ranging from ponderosa pine (Pinus ponderosa) habitat types of Arizona to subalpine fir (Abis lasiocarpa) habitat types of western Montana. Ectomycorrhizae were used as a bioindicator of health, productive forest soils. Undisturbed stands were studied to determine the optimum amounts of organic material for ectomycorrhizal activity. The management recommendations are intentionally conservative to ensure that enough organic matter is left after timber harvest to maintain long-term forest productivity.

  20. Riparian forest disturbances by a mountain flood - the influence of floated wood

    NASA Astrophysics Data System (ADS)

    Johnson, Sherri L.; Swanson, Frederick J.; Grant, Gordon E.; Wondzell, Steven M.

    2000-10-01

    Large floods can have major impacts on riparian forests. Here we examine the variability and spatial distribution of riparian forest responses along eight third- to fifth-order streams following a large flood (100 year recurrence interval) in the Cascade Mountain Range of Oregon. We categorized disturbance intensity (physical force) exerted on riparian trees during floods into three classes: (i) purely fluvial (high water flow only); (ii) fluvial supplemented by dispersed pieces of floating wood (uncongested wood transport); (iii) fluvial with movement of batches of wood (congested wood transport). These types of material transport and associated classes of disturbance intensity resulted in a gradient of biotic responses of disturbance severity ranging from standing riparian trees inundated by high water, to trees toppled but still partially rooted, to complete removal of trees. High within-stream and among-stream responses were influenced by pre-flood stream and riparian conditions as well as flood dynamics, especially the availability of individual pieces or congested batches of wood.Fluvial disturbance alone toppled fewer riparian trees than in reaches where floodwaters transported substantial amounts of wood. Debris flows delivered additional wood and sediment to parts of reaches of four of these study streams; riparian trees were removed and toppled for up to 1·5 km downstream of the debris flow tributary channel. Congested wood transport resulted in higher frequency of toppled trees and greater deposition of new wood levees along channel margins. The condition of the landscape at the time of a major flood strongly influenced responses of riparian forests. Recent and historic land-use practices, as well as the time since the previous large flood, influenced not only the structure and age of the riparian forests, but also the availability of agents of disturbance, such as large pieces of floating wood, that contribute to disturbance of riparian forests during

  1. Effects of sedimentation on soil nutrient dynamics in riparian forests.

    PubMed

    Lockaby, B G; Governo, R; Schilling, E; Cavalcanti, G; Hartsfield, C

    2005-01-01

    The influence of sedimentation rates on biogeochemistry of riparian forests was studied near ephemeral streams at Fort Benning, GA. Upper reaches of seven ephemeral streams had received varying rates of sedimentation stemming from erosion along unpaved roadways at the military installation. Two reference catchments were also included in the study. Decomposition of foliar litter, microbial C and N, N mineralization, and arthropod populations were compared within and among catchments. Rates of sedimentation over the past 25 yr ranged from 0 in references to 4.0 cm yr(-1). Decomposition rates declined exponentially with sedimentation rates as low as 0.20 to 0.32 cm yr(-1) and appeared to reach an equilibrium at a sedimentation rate of 0.5 cm yr(-1). Nitrogen mineralization and microbial C and N followed the same trend. Sedimentation had no discernible effect on arthropod populations. These data suggest that biogeochemical cycles may be altered by sedimentation rates that commonly occur in some floodplain forests. PMID:15647569

  2. Sediment dynamics in restored riparian forest with different widths and agricultural surroundings

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel

    2016-04-01

    The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an

  3. The affect of a clearcut environment on woody debris respiration rate dynamics, Harvard Forest, Massachusetts

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M. K.; Williams, C. L.

    2011-12-01

    At an ecosystem scale, the distribution of carbon is largely a function of stand development and disturbance processes. Clearcut logging remains a common practice both in the United States and globally and typically results in elevated storage of carbon in onsite woody debris and detritus. The residence time and decomposition rate of this woody debris and detritus will affect the rate of CO2 efflux to the atmosphere and thus affect the long term consequences of such disturbances on carbon flux and storage. The removal of a forest canopy also affects a site's microclimate including the albedo, air temperature, air humidity, as well as soil temperature and moisture, many of the same factors that affect the rate of woody debris decomposition. Thus it could be expected that differences in woody debris characteristics (e.g. size, abundance, state of decay), as well as differences in microclimate, between mature and recently clearcut forest sites, would result in differences in piece and site-level woody debris decomposition rates. Although woody debris stocks post-harvest have been well characterized, few studies have explored post-disturbance woody debris respiration rates, which directly measures carbon emissions from woody debris, distinguishing decomposition from mass loss due to fragmentation or leaching. This study addressed the question: does a clearcut environment in a temperate forest affect the rate of decomposition of coarse woody debris? The rate of respiration of downed spruce logs were repeatedly measured in-situ using an LI-6250 gas analyzer in Harvard Forest, Petersham, Massachusetts. Treatments included clear-cut, shaded clear-cut, mature spruce stand, and transfer (from clearcut to spruce stand). Gas analyzer measurements were accompanied by measurements of log temperature and percent water, soil temperature, moisture and pH, as well as light levels, air temperature and humidity to determine dominant drivers of respiration rates.

  4. Structure Measurements of Leaf and Woody Components of Forests with Dual-Wavelength Lidar Scanning Data

    NASA Astrophysics Data System (ADS)

    Strahler, A. H.; Li, Z.; Schaaf, C.; Howe, G.; Martel, J.; Hewawasam, K.; Douglas, E. S.; Chakrabarti, S.; Cook, T.; Paynter, I.; Saenz, E. J.; Wang, Z.; Woodcock, C. E.; Jupp, D. L. B.; Schaefer, M.; Newnham, G.

    2014-12-01

    Forest structure plays a critical role in the exchange of energy, carbon and water between land and atmosphere and nutrient cycle. We can provide detailed forest structure measurements of leaf and woody components with the Dual Wavelength Echidna® Lidar (DWEL), which acquires full-waveform scans at both near-infrared (NIR, 1064 nm) and shortwave infrared (SWIR, 1548 nm) wavelengths from simultaneous laser pulses. We collected DWEL scans at a broadleaf forest stand and a conifer forest stand at Harvard Forest in June 2014. Power returned from leaves is much lower than from woody materials such as trunks and branches at the SWIR wavelength due to the liquid water absorption by leaves, whereas returned power at the NIR wavelength is similar from both leaves and woody materials. We threshold a normalized difference index (NDI), defined as the difference between returned power at the two wavelengths divided by their sum, to classify each return pulse as a leaf or trunk/branch hit. We obtain leaf area index (LAI), woody area index (WAI) and vertical profiles of leaf and woody components directly from classified lidar hits without empirical wood-to-total ratios as are commonly used in optical methods of LAI estimation. Tree heights, diameter at breast height (DBH), and stem count density are the other forest structure parameters estimated from our DWEL scans. The separation of leaf and woody components in tandem with fine-scale forest structure measurements will benefit studies on carbon allocation of forest ecosystems and improve our understanding of the effects of forest structure on ecosystem functions. This research is supported by NSF grant, MRI-0923389

  5. Importance of riparian forests in urban catchments contingent on sediment and hydrologic regimes

    USGS Publications Warehouse

    Roy, A.H.; Freeman, Mary C.; Freeman, B.J.; Wenger, S.J.; Meyer, J.L.; Ensign, W.E.

    2006-01-01

    Forested riparian corridors are thought to minimize impacts of landscape disturbance on stream ecosystems; yet, the effectiveness of streamside forests in mitigating disturbance in urbanizing catchments is unknown. We expected that riparian forests would provide minimal benefits for fish assemblages in streams that are highly impaired by sediment or hydrologic alteration. We tested this hypothesis in 30 small streams along a gradient of urban disturbance (1-65% urban land cover). Species expected to be sensitive to disturbance (i.e., fluvial specialists and "sensitive" species that respond negatively to urbanization) were best predicted by models including percent forest cover in the riparian corridor and a principal components axis describing sediment disturbance. Only sites with coarse bed sediment and low bed mobility (vs. sites with high amounts of fine sediment) had increased richness and abundances of sensitive species with higher percent riparian forests, supporting our hypothesis that response to riparian forests is contingent on the sediment regime. Abundances of Etheostoma scotti, the federally threatened Cherokee darter, were best predicted by models with single variables representing stormflow (r2 = 0.34) and sediment (r2 = 0.23) conditions. Lentic-tolerant species richness and abundance responded only to a variable representing prolonged duration of low-flow conditions. For these species, hydrologic alteration overwhelmed any influence of riparian forests on stream biota. These results suggest that, at a minimum, catchment management strategies must simultaneously address hydrologic, sediment, and riparian disturbance in order to protect all aspects of fish assemblage integrity. ?? 2006 Springer Science+Business Media, Inc.

  6. PATTERNS OF TREE DOMINANCE IN CONIFEROUS RIPARIAN FORESTS

    EPA Science Inventory

    This research quantified patterns of riparian tree dominance in western Oregon, USA and then compared the observed patterns with the expected patterns defined from the literature. Research was conducted at 110 riparian sites located on private and public lands. The field sites we...

  7. Geostatistical modeling of riparian forest microclimate and its implications for sampling

    USGS Publications Warehouse

    Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.

    2011-01-01

    Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.

  8. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    PubMed

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem. PMID:20411737

  9. Factors affecting songbird nest survival in riparian forests in a Midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R., III; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55DS95 m) and three wide (400DS530 m) riparian forests with adjacent grasslandDSshrub buffer strips and in three narrow and three wide riparian forests without adjacent grasslandDSshrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for areas sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance

  10. Factors affecting songbird nest survival in riparian forests in a midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R., III; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55-95 m) and three wide (400-530 m) riparian forests with adjacent grassland-shrub buffer strips and in three narrow and three wide riparian forests without adjacent grassland-shrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most-supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for area-sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance juvenile

  11. Regulating riparian forests for aquatic productivity in the Pacific Northwest, USA: addressing a paradox.

    PubMed

    Newton, Michael; Ice, George

    2016-01-01

    Forested riparian buffers isolate streams from the influence of harvesting operations that can lead to water temperature increases. Only forest cover between the sun and stream limits stream warming, but that cover also reduces in-stream photosynthesis, aquatic insect production, and fish productivity. Water temperature increases that occur as streams flow through canopy openings decrease rapidly downstream, in as little as 150 m. Limiting management options in riparian forests restricts maintenance and optimization of various buffer contributions to beneficial uses, including forest products, fish, and their food supply. Some riparian disturbance, especially along cold streams, appears to benefit fish productivity. Options for enhancing environmental investments in buffers should include flexibility in application of water quality standards to address the general biological needs of fish and temporary nature of clearing induced warming. Local prescriptions for optimizing riparian buffers and practices that address long-term habitat needs deserve attention. Options and incentives are needed to entice landowners to actively manage for desirable riparian forest conditions. PMID:26611633

  12. Toward a woody plant list for Antigua and Barbuda: Past and present. Forest Service general technical report

    SciTech Connect

    Francis, J.; Rivera, C.; Figureroa, J.

    1994-06-01

    Beginning in the 17th century, the forest lands of Antigua and Barbuda were cleared for agriculture, burned, cut over, and grazed severely. A survey by personnel of the USDA Forest Service, International Institute of Tropical Forestry and previous surveys were used to assemble lists of native and exotic woody plants. A large majority of the original woody flora still grows on both islands.

  13. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    USGS Publications Warehouse

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  14. Simulating impacts of Woody Biomass Harvesting on North Temperate Forest Carbon and Nitrogen Cycling and Storage

    NASA Astrophysics Data System (ADS)

    Hua, D.; Desai, A. R.; Bolstad, P.; Cook, B. D.; Scheller, R.

    2012-12-01

    Woody biomass harvesting is a common feature of forest management given its importance to society for acquisition of pulp and paper, lumber, and wood-based biofuel. Harvest affects many aspects of the forest environment such as biodiversity, soil nutrient quality, physical properties of soil, water quality, wildlife habitat, and climate feedbacks. In this study, we applied a modified CENTURY model to the Willow Creek, Wisconsin Ameriflux site for simulation of the impacts of woody biomass removal on forest carbon and nitrogen storage. Woody biomass harvesting scenarios with different harvesting types, interval, tree species, and soil properties were designed and tested in the model to explore the impact of harvesting on forest productivity, soil and biomass carbon and nitrogen storage, and net carbon exchange between terrestrial ecosystem and the atmosphere. Comparisons of the impacts among harvesting scenarios indicate that woody biomass harvesting significantly alters long-term net soil carbon and nitrogen storage as well as carbon exchange between terrestrial ecosystem and the atmosphere. The simulation results also provide a framework for incorporating carbon management into sustainable forest management practices.

  15. Woody biomass production lags stem-girth increase by over one month in coniferous forests.

    PubMed

    Cuny, Henri E; Rathgeber, Cyrille B K; Frank, David; Fonti, Patrick; Mäkinen, Harri; Prislan, Peter; Rossi, Sergio; Del Castillo, Edurne Martinez; Campelo, Filipe; Vavrčík, Hanuš; Camarero, Jesus Julio; Bryukhanova, Marina V; Jyske, Tuula; Gričar, Jožica; Gryc, Vladimír; De Luis, Martin; Vieira, Joana; Čufar, Katarina; Kirdyanov, Alexander V; Oberhuber, Walter; Treml, Vaclav; Huang, Jian-Guo; Li, Xiaoxia; Swidrak, Irene; Deslauriers, Annie; Liang, Eryuan; Nöjd, Pekka; Gruber, Andreas; Nabais, Cristina; Morin, Hubert; Krause, Cornelia; King, Gregory; Fournier, Meriem

    2015-01-01

    Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future. PMID:27251531

  16. Effects of fireplace use on forest vegetation and amount of woody debris in suburban forests in northwestern Switzerland.

    PubMed

    Hegetschweiler, K Tessa; van Loon, Nicole; Ryser, Annette; Rusterholz, Hans-Peter; Baur, Bruno

    2009-02-01

    Urban forests are popular recreation areas in Europe. Several of these temperate broad-leaved forests also have a high conservation value due to sustainable management over many centuries. Recreational activities, particularly the use of fireplaces, can cause extensive damage to soil, ground vegetation, shrubs, and trees. Firewood collection depletes woody debris, leading to a loss of habitat for specialized organisms. We examined the effects of fireplace use on forest vegetation and the amount of woody debris by comparing disturbed and control plots in suburban forests in northwestern Switzerland. At frequently used fireplaces, we found reduced species densities in the ground vegetation and shrub layer and changes in plant species composition due to human trampling within an area of 150-200 m(2). Picnicking and grilling also reduced the height and changed the age structure of shrubs and young trees. The amount of woody debris was lower in disturbed plots than in control plots. Pieces of wood with a diameter of 0.6-7.6 cm were preferentially collected by fireplace users. The reduction in woody debris volume extended up to a distance of 16 m from the fire ring, covering an area of 800 m(2) at each picnic site. In order to preserve the ecological integrity of urban forests and to maintain their attractiveness as important recreation areas, we suggest depositing logging residues to be used as firewood and to restrict visitor movements near picnic sites. PMID:18773236

  17. Analyzing riparian forest cover changes along the Firniz River in the Mediterranean City of Kahramanmaras in Turkey.

    PubMed

    Akay, Abdullah E; Sivrikaya, Fatih; Gulci, Sercan

    2014-05-01

    Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas. PMID:24338054

  18. Distribution, recruitment, and geomorphic significance of large woody debris in an alluvial forest stream: Tonghi Creek, southeastern Australia

    NASA Astrophysics Data System (ADS)

    Webb, Ashley A.; Erskine, Wayne D.

    2003-03-01

    The complex yet poorly understood interactions between riparian vegetation, large woody debris and fluvial geomorphology in an anthropogenically undisturbed reach of an alluvial, sand-bed forest stream in SE Australia have been determined. Riparian vegetation exhibits lateral and vertical zonation of understorey and overstorey species. The dominant riparian tree species, Tristaniopsis laurina (water gum), grows within the channel and on the floodplain within one channel width of the stream. Larger Eucalyptus species only grow on the highest parts of the floodplain and on a low Pleistocene river terrace. A complete large woody debris (LWD) census conducted in the 715-m-long study reach revealed that water gum comprises 17.6% of the total LWD loading, which, at 576 m 3 ha -1, is high for a stream with a catchment area of 187 km 2. Although most LWD has a small diameter (0.1-0.3 m), the greatest contribution to the total volume of LWD is by pieces with a diameter between 0.3 and 0.7 m. A high proportion of LWD (10.4%) has a blockage ratio greater than 10%. The spatial distribution of LWD is random both longitudinally and within individual meander bends. Dominant recruitment processes of LWD vary by species. T. laurina trees are recruited to the channel by minor bank erosion and senescence, while the Eucalyptus species are predominantly recruited from the highest parts of the floodplain/low-river terrace by episodic windthrow during large storms. Multiple radiocarbon dates of outer wood of immobile LWD indicate a maximum residence time of 240±40 years BP for T. laurina timber. The high loading of LWD combined with the extensive root systems of riparian vegetation stabilize Tonghi Creek. Log steps form natural wooden drop-structures with a mean height of 29 mm that were responsible for 20.5% of the total head loss under base flow conditions ( Q=0.08 m 3 s -1). Large woody debris is buried in the bed at depths of up to 2.3 m and is responsible for an estimated 49% of

  19. The width of riparian habitats for understory birds in an Amazonian forest.

    PubMed

    Bueno, Anderson Saldanha; Bruno, Renato Saragoça; Pimentel, Tania Pena; Sanaiotti, Tânia Margarete; Magnusson, William Ernest

    2012-03-01

    Riparian habitats are important for the maintenance of regional biodiversity. Many studies have compared bird distributions between riparian and non-riparian habitats but have not established how wide riparian habitats used by birds are, as measured by distance from the nearest stream. We investigated the distribution of understory birds along gradients of distance from streams, soil clay content, and slope in a central Amazonian forest, by mist-netting birds three times in 45 plots. We used nonmetric multidimensional scaling (NMDS) to reduce the dimensionality of species quantitative (abundance) and qualitative (presence-absence) composition to one multivariate axis. Estimates of the width of riparian habitats as indicated by understory birds depended on the community attribute considered, measuring 90 m for species quantitative composition and 140 m for species qualitative composition. Species distributions were correlated with clay content but were independent of slope, while distance from streams was positively correlated with clay content but independent of slope. Clay content affects plant species composition, which in turn, may influence bird species composition. However, distribution patterns of birds in relation to distance from streams are consistent among studies carried out in many different temperate and tropical regions, indicating an effect of distance from streams itself. Protection of riparian habitats is one of the most widely used conservation strategies, and Brazilian environmental legislation mandates the protection of a 30 m wide strip of riparian vegetation on either side of small streams. We show that the protected strip should be much wider and recommend strategies to place other forms of land protection contiguous with riparian areas so that Brazilian environmental legislation better fulfills its role of protecting biodiversity associated with riparian habitats. PMID:22611867

  20. Woody biomass resource of east Texas, 1992. Forest Service Resource Bulletin

    SciTech Connect

    Rosson, J.F.

    1993-09-01

    Data from the most recent east Texas forest survey were used to derive estimates of wood and bark biomass by counties. The information is important to resource managers, legislators, policymakers, and procurement specialists in regard to the extent, location, and potential availability of the woody biomass resource in the State. Wood and bark biomass estimates for all trees on timberland are summarized in the report. The resource is described by dimension (size), forest type, ownership, species, stand attributes, and tree merchantability class.

  1. Stream-grade variation and riparian- forest ecology along Passage Creek, Virginia.

    USGS Publications Warehouse

    Hupp, C.R.

    1982-01-01

    Passage Creek flows on relatively nonresistant shales, then cuts through a gorge underlain by resistant sandstone. In the gorge, the stream gradient steepens, the size of bed material increases, a braided channel forms, and riparian-forest composition and growth form changes relative to areas outside the gorge. Effects of flooding are intensified within the gorge and revealed in the pattern and deformation of streamside vegetation. Increased stream gradient within the gorge provides for high stream power and coarse sediment deposition relative to the flood plain outside the gorge. A more diverse upland forest grows on the flood plain in the gorge. The riparian forest in the gorge may be an example of a nonequilibrium forest, resulting from periodic disturbance by destructive floods.-from Author

  2. Object-based class modelling for multi-scale riparian forest habitat mapping

    NASA Astrophysics Data System (ADS)

    Strasser, Thomas; Lang, Stefan

    2015-05-01

    Object-based class modelling allows for mapping complex, hierarchical habitat systems. The riparian zone, including forests, represents such a complex ecosystem. Forests within riparian zones are biologically high productive and characterized by a rich biodiversity; thus considered of high community interest with an imperative to be protected and regularly monitored. Satellite earth observation (EO) provides tools for capturing the current state of forest habitats such as forest composition including intermixture of non-native tree species. Here we present a semi-automated object based image analysis (OBIA) approach for the mapping of riparian forests by applying class modelling of habitats based on the European Nature Information System (EUNIS) habitat classifications and the European Habitats Directive (HabDir) Annex 1. A very high resolution (VHR) WorldView-2 satellite image provided the required spatial and spectral details for a multi-scale image segmentation and rule-base composition to generate a six-level hierarchical representation of riparian forest habitats. Thereby habitats were hierarchically represented within an image object hierarchy as forest stands, stands of homogenous tree species and single trees represented by sunlit tree crowns. 522 EUNIS level 3 (EUNIS-3) habitat patches with a mean patch size (MPS) of 12,349.64 m2 were modelled from 938 forest stand patches (MPS = 6868.20 m2) and 43,742 tree stand patches (MPS = 140.79 m2). The delineation quality of the modelled EUNIS-3 habitats (focal level) was quantitatively assessed to an expert-based visual interpretation showing a mean deviation of 11.71%.

  3. Impacts of stream flow and climate variability on native and invasive woody species in a riparian ecosystem of a semi-arid region of the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.; Huddle, J.

    2012-04-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains (United States) have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought, have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. The study utilizes tree ring analysis of annual growth rates and stable isotope ratios of 13C and 18O to determine 1) the response P. deltoides and invasive J. virginiana and E. angustifulia have to climate variation and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Preliminary results have shown that P. deltoids annual growth rate (using basal area increment growth) continually declined over the last 40 yrs, while that of E. angustifolia steadily increased. Growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors than E. angustifolia. Ecological and hydrological significance of the results will be presented.

  4. Woody biomass resource of Arkansas, 1988. Forest Service resource bulletin

    SciTech Connect

    Rosson, J.F.

    1993-04-01

    Data from the most recent Arkansas forest survey were used to derive estimates of wood and bark biomass by counties. Wood and bark biomass estimates for all trees on timberland are summarized in the report. The resource is described by dimension (size), forest type, ownership, species, stand attributes, and tree merchantability class. Also, estimates pertaining to timberland acreage were included.

  5. Flows for floodplain forests: a successful riparian restoration

    USGS Publications Warehouse

    Rood, Stewart B.; Gourley, Chad R.; Ammon, Elisabeth M.; Heki, Lisa G.; Klotz, Jonathan R.; Morrison, Michael L.; Mosley, Dan; Scoppettone, Gayton G.; Swanson, Sherman; Wagner, Paul L.

    2003-01-01

    Throughout the 20th century, the Truckee River that flows from Lake Tahoe into the Nevada desert was progressively dammed and dewatered, which led to the collapse of its aquatic and riparian ecosystems. The federal designation of the endemic cui-ui sucker (Chasmistes cujus) as endangered prompted a restoration program in the 1980s aimed at increasing spring flows to permit fish spawning. These flows did promote cui-ui reproduction, as well as an unanticipated benefit, the extensive seedling recruitment of Fremont cottonwood (Populus fremontii) and sandbar willow (Salix exigua). Recruitment was scattered in 1983 but extensive in 1987, when the hydrograph satisfied the riparian recruitment box model that had been developed for other rivers. That model was subsequently applied to develop flow prescriptions that were implemented from 1995 through 2000 and enabled further seedling establishment. The woodland recovery produced broad ecosystem benefits, as evidenced by the return by 1998 of 10 of 19 riparian bird species whose populations had been locally extirpated or had declined severely between 1868 and 1980. The dramatic partial recovery along this severely degraded desert river offers promise that the use of instream flow regulation can promote ecosystem restoration along other dammed rivers worldwide.

  6. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    NASA Astrophysics Data System (ADS)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  7. Assessing Extension's Ability to Promote Family Forests as a Woody Biomass Feedstock in the Northeast United States

    ERIC Educational Resources Information Center

    Germain, Rene' H.; Ghosh, Chandrani

    2013-01-01

    The study reported here surveyed Extension educators' awareness and knowledge of woody biomass energy and assessed their desire and ability to reach out to family forest owners-a critical feedstock source. The results indicate Extension educators are aware of the potential of woody biomass to serve as a renewable source of energy. Respondents…

  8. Fate of Herbicides and Their Degradation Products Entering a Forested Riparian Buffer Following Herbicides Application to an Adjacent Corn Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of two herbicides, atrazine and metolachlor, were followed as they entered and moved through a forested riparian wetland located in the mid-Atlantic coastal plain of Maryland. The herbicides were applied as pre-emergent treatments to a 20-ha corn field directly upgradient of the riparian w...

  9. Surface Water and Groundwater Nitrogen Dynamics in a Well Drained Riparian Forest within a Poorly Drained Agricultural Landscape

    EPA Science Inventory

    The effectiveness of riparian zones in mitigating nutrients in ground and surface water depends on the climate, management and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparian forest to buffer a ri...

  10. Biological and Physical Drivers of Coarse Woody Debris Respiration Following Moderate Forest Disturbance

    NASA Astrophysics Data System (ADS)

    Schmid, A. V.; Franklin, R. B.; Vogel, C. S.; Liebman, E.; Curtis, P.; Gough, C. M.

    2014-12-01

    Forest disturbances that cause plant mortality alter the net carbon (C) balance by increasing heterotrophic respiration associated with coarse woody debris (CWD) decomposition. Whether a forest transitions from a C sink to source following disturbance is largely a function of the quantity of additional CWD produced and the rate of woody debris decomposition. Coarse woody debris temperature, moisture, and microbial community composition are known to drive rates of heterotrophic respiration, but rarely have these factors been studied together across a gradient of wood decay and over time following disturbance. We used a large-scale experimental disturbance, in which early successional aspen (Populus spp.) and birch (Betula papyrifera) were killed via stem girdling within a 39 ha area, to study the effects of moderate disturbance on the forest C cycle. We quantified changes over time in CWD mass for a decade, before and after disturbance. We then conducted point measurements of CWD respiration, temperature and moisture, and quantified extracellular enzyme activity of enzymes associated with wood decomposition for five classes varying in extent of decay and standing woody debris. Process and inventory data are being used to estimate ecosystem CO2 efflux from CWD, which we will contrast with net ecosystem production (NEP) determined from long-term eddy covariance measurements of net CO2 exchange between the forest and atmosphere at the University of Michigan Biological Station (US-UMd) Ameriflux site. Our results will improve ecosystem model predictions of CWD respiration by incorporating both physical factors, such as temperature and wood moisture content, and biological factors, such as extracellular enzymatic activity of different functional types of decomposers.

  11. BIODIVERSITY MANAGEMENT APPROACHES FOR STREAM-RIPARIAN AREAS: PERSPECTIVES FOR PACIFIC NORTHWEST HEADWATER FORESTS, MICROCLIMATES, AND AMPHIBIANS

    EPA Science Inventory

    Stream-riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is...

  12. A composite indicator for assessing habitat quality of riparian forests derived from Earth observation data

    NASA Astrophysics Data System (ADS)

    Riedler, Barbara; Pernkopf, Lena; Strasser, Thomas; Lang, Stefan; Smith, Geoff

    2015-05-01

    Riparian forests are precious, complex habitats fostering high biodiversity where effective monitoring of habitat quality is particularly important. We present a composite indicator, referred to as Riparian Forest composite Indicator: focus on Structure (RFI_S), for the assessment of habitat quality and identification of 'hot-spot' areas where conservation actions need to be taken. The RFI_S is composed of seven indicators derived from very high resolution (VHR) satellite imagery and LiDAR data, calculated on patch level. These indicators assess four important attributes of riparian forest quality: (1) tree species composition, (2) vertical forest structure, (3) horizontal forest structure and (4) water regime. For the aggregation of the RFI_S, two different weighting schemes, expert-based and statistical weighting, are applied. Forest patches with high cumulative RFI_S values represent patches of good habitat quality. These patches are primarily found along water bodies, reflecting the importance of water bodies for the structural complexity, an optimum water regime and tree species composition. For forest patches of low habitat quality the RFI_S helps to design suitable measures to improve habitat quality status through its decomposability into the underlying indicators. A sensitivity analysis to test the robustness of the RFI_S shows that the indicator variance in terrain roughness has the strongest influence on the composite indicator. Finally, a comparison with an existing expert-based map on conservation status reveals the potential of a complementary quantitative assessment of habitat quality in the study site. We hence conclude that the RFI_S has a high capability to support sustainable forest management complementing regularly gathered in situ data.

  13. Tree mortality, canopy turnover, and woody detritus in old cove forests of the southern Appalachians

    USGS Publications Warehouse

    Busing, R.T.

    2005-01-01

    A long-term study of tree mortality, canopy turnover, and coarse woody detritus inputs was conducted in cove forests of the Great Smoky Mountains, Tennessee, USA. Seven old-growth stands were studied over a 10-yr period using 0.6-1.0 ha plots. Annual mortality of trees >10 cm dbh was 0.5-1.4% among stands (mean 0.7%), The highest mortality rate among canopy trees was exhibited by trees >80 cm dbh. An increase in mortality rate with canopy tree size was evident for two (Tsuga canadensis and Acer saccharum) of the three most abundant species in the forest. The increase in mortality with tree size had implications for canopy turnover and detritus input. Gap disturbance frequency was estimated at 0.008-0.019 forest area/yr, giving a return interval of ???130 yr or less. Standing death was the most common mode of mortality (59%). Annual rates of snag formation were 1.4 snags/ha for trees >10 cm dbh and 0.4 snags/ha for trees >50 cm dbh. The density of large snags (>50 cm dbh) was 5 snags/ha. Snags accounted for 8% of the total standing tree basal area and 23% of the coarse woody detritus mass (total of 48 Mg/ ha). The mean annual rate of coarse woody detritus input was 3.0 Mg/ha. A decay rate constant was estimated at 0.07, yielding a detritus half-life of 10 yr. Although mean mortality rates and canopy turnover in old cove forests were moderate in comparison with other old forests of eastern North America, input and accumulation of coarse woody detritus were high for the region. This resulted, in part, from the relatively large sizes attained by canopy trees and the fact that larger trees tended to suffer higher mortality. In comparison to forests worldwide, rates of mortality, canopy gap formation, and decay of coarse woody detritus were intermediate.

  14. Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002-06

    USGS Publications Warehouse

    Landon, Matthew K.; Rus, David L.; Dietsch, Benjamin J.; Johnson, Michaela R.; Eggemeyer, Kathleen D.

    2009-01-01

    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable

  15. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    SciTech Connect

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  16. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    PubMed

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  17. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    USGS Publications Warehouse

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  18. Different spatial organisation strategies of woody plant species in a montane cloud forest

    NASA Astrophysics Data System (ADS)

    Ledo, Alicia; Montes, Fernando; Condés, Sonia

    2012-01-01

    The coexistence of a high number of species in the forest is a central issue in tropical ecology. In this paper, we aim to characterise the spatial pattern of woody species in an Andean montane cloud forest to determine whether differences exist among the species in terms of spatial organization and if so, whether these differences are related to the life-form, primary dispersal mode, shade tolerance or the diameter distribution of the species. For this purpose, we analysed the spatial pattern of each species as well as the spatial relationships between young and adult individuals. Almost all the analysed species showed a cluster pattern, followed by a random pattern at larger distances. The cluster size is more evident for the young trees whereas adult trees tended to be more randomly distributed. The shade-tolerant species showed greater distances of aggregation than gap or medium-shade-tolerant species. Species primarily dispersed by wind and small birds showed larger distances of aggregation than species dispersed by mammals or big birds. All the under-story woody plants showed a notable cluster pattern, whereas canopy trees showed a variety of spatial patterns, with clustering at small scales being the most frequent. In the case of emergent trees, association was found between young and adult individuals on a large scale. Positive associations between young and adult individuals predominate at small scales for medium and shade tolerant species and at larger scales for bird-dispersed species whereas negative spatial associations at smaller scales were found for shade tolerant species and wind dispersed species. Our study confirms that conspecific organization varies among the woody plants in the analysed forest, and that the spatial pattern of woody plants is partially linked to shade tolerance, primary dispersal mode and life form of the species.

  19. Stream Community Structure: An Analysis of Riparian Forest Buffer Restoration in the Chesapeake Bay Watershed

    NASA Astrophysics Data System (ADS)

    Orzetti, L. L.; Jones, R. C.

    2005-05-01

    Forested riparian buffer zones have been proposed as an important aid in curtailing upland sources of pollution before they reach stream surface waters, and enhancing habitat for stream organisms. Our objective was to test the efficacy of restored forest riparian buffers along streams in the Chesapeake Bay watershed by examining the stream macrobenthic community structure. To test our hypothesis, we collected riffle benthic and water samples, and performed habitat evaluations at 30 stream sites in the mid-Atlantic Piedmont, ranging in buffer age from 0 to greater than 50 years of age. Results showed that habitat, water quality, and benthic macroinvertebrate metrics improved with age of restored buffer. Habitat scores were driven mostly by instream substrate availability and width and age of riparian buffer zones. Water quality parameters varied within buffer age groups depending age of surrounding forest vegetation. Benthic invertebrate taxa richness, % EPT, % Plecoptera, % Ephemeroptera, and the FBI all improved with age of buffer zone. Instream habitat quality was the greatest driver of benthic macroinvertebrate community diversity and health, and appeared to plateau within 10-15 years of restoration with noticeable improvements occurring within 5-10 years post restoration.

  20. Impacts of Stream Flow and Climate Variability on Native and Invasive Woody Species in a Riparian Ecosystem of a Semi-Arid Region of the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.

    2012-12-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains, US have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic and biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. Tree ring analysis of annual growth rates were used to determine 1) the responses P. deltoides and invasive J. virginiana and E. angustifulia to climate variability and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Results show a dependency of growth for P. deltoides on the previous year summer temperature, and a less significant correlation to annual stream flow. J. virginiana showed the highest correlation to annual stream flow, as well as some dependency on the previous growing season precipitation. While the growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors, E. angustifolia displayed the lowest mean basal area growth and deviation from the growth. E

  1. Reclamation of coppice forests in order to increase the potential of woody biomass in Serbia

    NASA Astrophysics Data System (ADS)

    Bjelanovic, I.; Krstic, M.

    2012-04-01

    Biomass makes 63% of the total renewable energy potential of Serbia. Here, the biomass from forests together with wood processing industry waste represent the second most important renewable source for energy production. The Action Plan for Biomass of Serbia (2010) shows that the technically exploitable biomass in the Republic of Serbia amounts annually 2.7 Mtoe. Here, the woody biomass (fuelwood, forest residue, wood processing industry residue, wood from trees outside the forest) accounts for 1.0 Mtoe while the rest originates from agricultural sources. According to the national forest inventory (2008), forest cover in Serbia accounts for 29% of the country area, having standing volume of 362.5 mil. m3 and annual increment of 9.1 mil. m3. More than half is state-owned and the rest 47% is in the private ownership. Coppice forests dominate in the forest stock (65%). According to Glavonjić (2010), northeastern and southwestern Serbia are the regions with greatest spatial forest distribution. The general forest condition is characterised by insufficient production volume, unsatisfactory stock density and forest cover, high percentage of degraded forests, unfavorable age structure, unfavorable health condition and weeded areas. Herewith, the basic measures for the improvement of forest fund (Forestry Development Strategy for Serbia, 2006) represent conversion of coppice forests, increase of forest cover and productivity of forest ecosystems by the ecologically, economically and socially acceptable methods. The actions include reclamation of degraded forests, re- and afforestation activities on abandoned agricultural, degraded and other treeless lands. The average standing volume of high forests is 254 m3·ha-1 with an annual increment of 5.5 m3·ha-1. On the contrary, coppice forests dispose 124 m3·ha-1 of standing volume, having an annual increment of 3.1 m3·ha-1. Here, estimated losses from coppice forests amount up to 3.5 mil. m3 wood annually. These data

  2. Effect of long-term understory prescribed burning on standing and down dead woody material in dry upland oak forests

    USGS Publications Warehouse

    Polo, John A.; Hallgren, S.W.; Leslie,, David M., Jr.

    2013-01-01

    Dead woody material, long ignored or viewed as a nuisance for forest management, has gained appreciation for its many roles in the forest including wildlife habitat, nutrient storage and cycling, energy for trophic webs, protection of soil, fuel for fire and carbon storage. The growing interest in managing dead woody material has created strong demand for greater understanding of factors controlling amounts and turnover. Prescribed burning, an important management tool, may have strong effects of dead woody material given fire’s capacity to create and consume dead woody material. We determined effects of long-term understory prescribed burning on standing and down woody material in upland oak forests in south-central North America. We hypothesized that as frequency of fire increased in these stands the amount of deadwood would decrease and the fine woody material would decrease more rapidly than coarse woody material. The study was conducted in forests dominated by post oak (Quercus stellata) and blackjack oak (Quercus marilandica) in wildlife management areas where understory prescribed burning had been practiced for over 20 years and the range of burn frequencies was 0 (unburned) fires per decade (FPD) to 4.6 FPD. The amount of deadwood was low compared with more productive forests in southeastern North America. The biomass (24.7 Mg ha-1) and carbon stocks (11.7 Mg ha-1) were distributed among standing dead (22%), coarse woody debris (CWD, dia. > 7.5 cm., 12%), fine woody debris (FWD, dia. < 7.5 cm., 23%), and forest floor (43%). There was no evidence that understory prescribed burning influenced the amount and size distribution of standing and down dead woody material. There were two explanations for the lack of a detectable effect. First, a high incidence of severe weather including ice storms and strong winds that produce large amounts of deadwood intermittently in an irregular pattern across the landscape may preclude detecting a strong effect of understory

  3. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    PubMed

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

  4. Woody Species Diversity in Forest Plantations in a Mountainous Region of Beijing, China: Effects of Sampling Scale and Species Selection

    PubMed Central

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation. PMID:25545860

  5. Methane and Carbon Dioxide Fluxes from Stems, Soils, and Coarse Woody Debris in a Temperate Forest

    NASA Astrophysics Data System (ADS)

    Warner, D. L.; Villarreal, S.; McWilliams, K.; Inamdar, S. P.; Vargas, R.

    2015-12-01

    Quantifying the magnitude and variability of greenhouse gas fluxes from different terrestrial carbon pools is necessary for enhancing understanding of terrestrial carbon cycling. While much more is known about variability CO2 fluxes, we have little information on how CH4 fluxes vary across multiple carbon pools within terrestrial ecosystems. We measured fluxes of CH4 and CO2 from living tree stems, soils, and coarse woody debris within a temperate forested watershed during the growing season (May-November). Fluxes of both CH4 and CO2 were significantly different among carbon pools. Living tree stems were weak sources of both CH4 and CO2 with seasonal means (± 1 SD) of 0.08 ± 0.19 nmol CH4 m-2 s-1 and 1.16 ± 1.21 μmol CO2 m-2 s-1. Soils were sinks of CH4 and sources of CO2 with seasonal means (± 1 SD) of -2.00 ± 1.41 nmol CH4 m-2 s-1 and 3.07 ± 2.10 μmol CO2 m-2 s-1. Fluxes of CH4 and CO2 from coarse woody debris were largely variable relative to the other pools with seasonal means (± 1 SD) of -0.21 ± 0.76 nmol CH4 m-2 s-1 and 2.61 ± 2.50 μmol CO2m-2 s-1. Gas fluxes varied significantly (p < 0.05) between sampling sites for both living stems and coarse woody debris, but not for soils. For living stems, this variability was explained by differences in tree species, where N. sylvatica had largest seasonal mean flux of CH4 and L. tulipifera had the largest seasonal mean flux of CO2. For woody debris sites, the variability was explained wood density, with dense, fresh wood acting as CH4 sources, and less dense, decayed wood acting as CH4 sinks. Our results show homogeneity in soil CH4 and CO2 fluxes, but a large heterogeneity in fluxes from tree stems and coarse woody debris. These results provide insights on how forest management strategies could influence greenhouse gas emissions from forested watersheds.

  6. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    PubMed

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. PMID:26160662

  7. Assessing the Utility of Green LiDAR for Characterizing Forest Canopy Structure and Stream Bathymetry in Riparian Zones.

    NASA Astrophysics Data System (ADS)

    Moskal, L. M.; Richardson, J.

    2014-12-01

    Forested riparian zones serve many ecosystem functions from species habitat through stream shading and large woody debris recruitment, to improvements in water quality. Moreover, stream depth and bathymetry in forested environments is difficult and costly to measure in the field, but critically important for stream-dwelling organisms. Green (bathymetric) LiDAR (G-L) can be used to characterize stream bathymetry, but little is known of its ability to accurately characterize stream bathymetry in narrow (width less than 5 m), heavily forested streams. Canopy characterization with green LiDAR is also poorly understood. We compared canopy and digital elevation models (DEMs) derived from green and near-infrared LiDAR (NIR-L) to field measurements in a narrow, forested stream in Oregon, USA, as well as comparing the two canopy models and DEMs to each other along the length of the stream and to estimates of leaf area index. We observed that the canopy models from the G-L are lower in accuracy compared to NIR-L canopy models. Canopy height models from the G-L were up to 26% less accurate in dense stands, compared to the NIR-L accuracy of 94%. We attribute these errors in part to the lower quality of DEMs generated from the G-L as compared to the NIR-L DEMs. As for bathymetry, the G-L DEM was 0.05 cm higher in elevation than the field measured stream elevation, while the NIR-L ground model was 0.17mm higher. The elevation difference tended to increase with stream depth for both types of LiDAR-derived DEMs, but stream depth only explained a small portion of the variability (coefficient of determination equals 0.09 for NIR-L DEM and 0.05 for G-L DEM). Our results suggest that G-L may be limited in accurately characterizing the bathymetry of narrow streams in heavily forested environments due to difficulty penetrating canopy and interactions with complex topography.

  8. Seeing the Forest through the Trees: Citizen Scientists Provide Critical Data to Refine Aboveground Carbon Estimates in Restored Riparian Forests

    NASA Astrophysics Data System (ADS)

    Viers, J. H.

    2013-12-01

    Integrating citizen scientists into ecological informatics research can be difficult due to limited opportunities for meaningful engagement given vast data streams. This is particularly true for analysis of remotely sensed data, which are increasingly being used to quantify ecosystem services over space and time, and to understand how land uses deliver differing values to humans and thus inform choices about future human actions. Carbon storage and sequestration are such ecosystem services, and recent environmental policy advances in California (i.e., AB 32) have resulted in a nascent carbon market that is helping fuel the restoration of riparian forests in agricultural landscapes. Methods to inventory and monitor aboveground carbon for market accounting are increasingly relying on hyperspatial remotely sensed data, particularly the use of light detection and ranging (LiDAR) technologies, to estimate biomass. Because airborne discrete return LiDAR can inexpensively capture vegetation structural differences at high spatial resolution (< 1 m) over large areas (> 1000 ha), its use is rapidly increasing, resulting in vast stores of point cloud and derived surface raster data. While established algorithms can quantify forest canopy structure efficiently, the highly complex nature of native riparian forests can result in highly uncertain estimates of biomass due to differences in composition (e.g., species richness, age class) and structure (e.g., stem density). This study presents the comparative results of standing carbon estimates refined with field data collected by citizen scientists at three different sites, each capturing a range of agricultural, remnant forest, and restored forest cover types. These citizen science data resolve uncertainty in composition and structure, and improve allometric scaling models of biomass and thus estimates of aboveground carbon. Results indicate that agricultural land and horticulturally restored riparian forests store similar

  9. Use of Course Woody Debris by Cotton Mouse (Peromyscus gossypinus)in a Southeastern Pine Forest

    SciTech Connect

    T.S. McCay

    1999-03-22

    Course woody debris may be an important resource for many small mammals by providing protection and food sources. The author tracked cotton mice movements via radiotelemetry and powder in managed loblolly pine forests. Most day refuges for mice were associated with debris, including rotting stumps (69%), upturned root boles (14%) and under fallen logs (9%). Stumps used were more larger and more highly decomposed. Night time telemetry indicated that mice movements were more closely associated with the logs. Rooting stumps are an important resource for cotton mice.

  10. Accumulation and connectivity of coarse woody debris in partial harvest and unmanaged relict forests.

    PubMed

    Morrissey, Robert C; Jenkins, Michael A; Saunders, Michael R

    2014-01-01

    When a tree dies, it continues to play an important ecological role within forests. Coarse woody debris (CWD), including standing deadwood (SDW) and downed deadwood (DDW), is an important functional component of forest ecosystems, particularly for many dispersal-limited saproxylic taxa and for metapopulation dynamics across landscapes. Processes, such as natural disturbance or management, modify forest composition and structure, thereby influencing CWD abundance and distribution. Many studies have compared older forests to forests managed with even-aged silvicultural systems and observed a prolonged period of low CWD occurrence after harvesting. With fine-scale spatial data, our study compares the long-term impacts of light partial harvesting on the CWD structure of eastern deciduous hardwood forests. We mapped and inventoried DDW and SDW using variable radius plots based on a 10 m × 10 m grid throughout an unmanaged, structurally-complex relict forest and two nearby forests that were partially harvested over 46 years ago. The relict stand had significantly larger individual pieces and higher accumulations of DDW and SDW than both of the partially harvested stands. Connectivity of CWD was much higher in the relict stand, which had fewer, larger patches. Larger pieces and higher proportion of decay-resistant species (e.g. Quercus spp.) in the relict forest resulted in slower decomposition, greater accumulation and increased connectivity of CWD. Partial harvests, such that occur with selection forestry, are generally considered less disruptive of ecosystem services, but this study highlights the long-term impacts of even light partial harvests on CWD stocks and distribution. When planning harvesting events, forest managers should also consider alternative methods to ensure the sustainability of deadwood resources and function. PMID:25409459

  11. Accumulation and Connectivity of Coarse Woody Debris in Partial Harvest and Unmanaged Relict Forests

    PubMed Central

    Morrissey, Robert C.; Jenkins, Michael A.; Saunders, Michael R.

    2014-01-01

    When a tree dies, it continues to play an important ecological role within forests. Coarse woody debris (CWD), including standing deadwood (SDW) and downed deadwood (DDW), is an important functional component of forest ecosystems, particularly for many dispersal-limited saproxylic taxa and for metapopulation dynamics across landscapes. Processes, such as natural disturbance or management, modify forest composition and structure, thereby influencing CWD abundance and distribution. Many studies have compared older forests to forests managed with even-aged silvicultural systems and observed a prolonged period of low CWD occurrence after harvesting. With fine-scale spatial data, our study compares the long-term impacts of light partial harvesting on the CWD structure of eastern deciduous hardwood forests. We mapped and inventoried DDW and SDW using variable radius plots based on a 10 m×10 m grid throughout an unmanaged, structurally-complex relict forest and two nearby forests that were partially harvested over 46 years ago. The relict stand had significantly larger individual pieces and higher accumulations of DDW and SDW than both of the partially harvested stands. Connectivity of CWD was much higher in the relict stand, which had fewer, larger patches. Larger pieces and higher proportion of decay-resistant species (e.g. Quercus spp.) in the relict forest resulted in slower decomposition, greater accumulation and increased connectivity of CWD. Partial harvests, such that occur with selection forestry, are generally considered less disruptive of ecosystem services, but this study highlights the long-term impacts of even light partial harvests on CWD stocks and distribution. When planning harvesting events, forest managers should also consider alternative methods to ensure the sustainability of deadwood resources and function. PMID:25409459

  12. Measuring and Monitoring HydroBiogeochemical Flux in a Forested Riparian Floodplain of the Missouri Ozarks

    NASA Astrophysics Data System (ADS)

    Chinnasamy, P.; Hubbart, J. A.

    2009-12-01

    Forested riparian buffers play a vital role in protecting riparian ecosystems from natural and anthropogenic disturbances. Quantifying effective reach and catchment scale buffer designs is critical to achieve economic and riparian wetland natural resource sustainability. Advances in management of riparian wetlands require innovative reach-scale experimental studies and subsequent improvements in riparian modeling. Riparian recommended best management practices (BMPs) in Missouri (MO) have not been validated. Studies are therefore warranted to describe subsurface interactions between the stream, hyporheic zone (HZ), and adjoining riparian wetland/floodplain. Within the HZ groundwater discharge through highly permeable Karst geology can dramatically affect water quality. The following research is on-going in the Baskett Research and Education Area (BREA), a 9.17 km2 preserved wildland watershed located 8 km east of Ashland, in the Ozark border region of south-central MO. The climate at BREA is generally described as warm, humid, and continental, with mean January and August temperatures of -2.4 °C and 24.5 °C, respectively, and 1,022 mm mean annual precipitation. Limestone geology of Ordovician and Mississippian age underlies the BREA with dominant soils of Weller silt loam and Clinkenbeard clay loam. Vegetation at the BREA consists of northern and southern division oak dominated hickory forests. BREA offers a distinct opportunity to study wildland watershed processes to validate contemporary best management practices (BMP) in MO. To quantify hydrobiogeochemical flux, spatial and temporal (3 water years) variability in stream water temperatures, key nutrients (NO3, P, K, NH3) and hyporheic exchange are being monitored. Key hydrologic variables approaching a mass balance, plus groundwater monitoring (via piezometric arrays) are being studied. Results (beginning summer and fall 2009) will provide the necessary information to quantify the relationships between

  13. Riparian forest as a management tool for moderating future thermal conditions of lowland temperate streams

    NASA Astrophysics Data System (ADS)

    Kristensen, P. B.; Kristensen, E. A.; Riis, T.; Baisner, A. J.; Larsen, S. E.; Verdonschot, P. F. M.; Baattrup-Pedersen, A.

    2013-05-01

    Predictions of the future climate infer that stream water temperatures may increase in temperate lowland areas and that streams without riparian forest will be particularly prone to elevated stream water temperature. Planting of riparian forest is a potential mitigation measure to reduce water temperatures for the benefit of stream organisms. However, no studies have yet determined the length of a forested reach required to obtain a significant temperature decrease. To investigate this we measured the temperature in five small Danish lowland streams from June 2010 to July 2011, all showing a sharp transition between an upstream open reach and a downstream forested reach. In all stream reaches we also measured canopy cover and a range of physical variables characterizing the streams reaches. This allowed us to analyse differences in mean daily temperature and amplitude per month among forested and open sections as well as to study annual temperature regimes and the influence of physical conditions on temperature changes. Stream water temperature in the open reaches was affected by heating, and in July we observed an increase in temperature over the entire length of the investigated reaches, reaching temperatures higher than the incipient lethal limit for brown trout. Along the forest reaches a significant decrease in July temperatures was recorded immediately (100 m) when the stream moved into the forested area. In three of our study streams the temperature continued to decrease the longer the stream entered into the forested reach, and the temperature decline did not reach a plateau. The temperature increases along the open reaches were accompanied by stronger daily temperature variation; however, when the streams entered into the forest, the range in daily variation decreased. Multiple regression analysis of the combined effects on stream water temperature of canopy cover, Width/Depth ratio, discharge, current velocity and water temperature revealed that canopy

  14. Reach-scale effects of riparian forest cover on urban stream ecosystems

    USGS Publications Warehouse

    Roy, A.H.; Faust, C.L.; Freeman, Mary C.; Meyer, J.L.

    2005-01-01

    We compared habitat and biota between paired open and forested reaches within five small streams (basin area 10?20 km2) in suburban catchments (9%?49% urban land cover) in the Piedmont of Georgia, USA. Stream reaches with open canopies were narrower than forested reaches (4.1 versus 5.0 m, respectively). There were no differences in habitat diversity (variation in velocity, depth, or bed particle size) between open and forested reaches. However, absence of local forest cover corresponded to decreased large wood and increased algal chlorophyll a standing crop biomass. These differences in basal food resources translated into higher densities of fishes in open (9.0 individuals?m?2) versus forested (4.9 individuals?m?2) reaches, primarily attributed to higher densities of the herbivore Campostoma oligolepis. Densities of terrestrial invertebrate inputs were higher in open reaches; however, trends suggested higher biomass of terrestrial inputs in forested reaches and a corresponding higher density of terrestrial prey consumed by water column feeding fishes. Reach-scale biotic integrity (macroinvertebrates, salamanders, and fishes) was largely unaffected by differences in canopy cover. In urbanizing areas where catchment land cover drives habitat and biotic quality, management practices that rely exclusively on forested riparian areas for stream protection are unlikely to be effective at maintaining ecosystem integrity.

  15. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  16. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests

    PubMed Central

    Balch, Jennifer K.; Massad, Tara J.; Brando, Paulo M.; Nepstad, Daniel C.; Curran, Lisa M.

    2013-01-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4–13.2 stems m−2), but after 6 years, increased mortality and decreased regeneration—primarily of seedlings—led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred—almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  17. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests.

    PubMed

    Balch, Jennifer K; Massad, Tara J; Brando, Paulo M; Nepstad, Daniel C; Curran, Lisa M

    2013-06-01

    Anthropogenic understorey fires affect large areas of tropical forest, yet their effects on woody plant regeneration post-fire remain poorly understood. We examined the effects of repeated experimental fires on woody stem (less than 1 cm at base) mortality, recruitment, species diversity, community similarity and regeneration mode (seed versus sprout) in Mato Grosso, Brazil. From 2004 to 2010, forest plots (50 ha) were burned twice (B2) or five times (B5), and compared with an unburned control (B0). Stem density recovered within a year after the first burn (initial density: 12.4-13.2 stems m(-2)), but after 6 years, increased mortality and decreased regeneration--primarily of seedlings--led to a 63 per cent and 85 per cent reduction in stem density in B2 and B5, respectively. Seedlings and sprouts across plots in 2010 displayed remarkable community similarity owing to shared abundant species. Although the dominant surviving species were similar across plots, a major increase in sprouting occurred--almost three- and fourfold greater in B2 and B5 than in B0. In B5, 29 species disappeared and were replaced by 11 new species often present along fragmented forest edges. By 2010, the annual burn regime created substantial divergence between the seedling community and the initial adult tree community (greater than or equal to 20 cm dbh). Increased droughts and continued anthropogenic ignitions associated with frontier land uses may promote high-frequency fire regimes that may substantially alter regeneration and therefore successional processes. PMID:23610167

  18. Low thermal tolerances of stream amphibians in the Pacific Northwest: Implications for riparian and forest management

    USGS Publications Warehouse

    Bury, R.B.

    2008-01-01

    Temperature has a profound effect on survival and ecology of amphibians. In the Pacific Northwest, timber harvest is known to increase peak stream temperatures to 24??C or higher, which has potential to negatively impact cold-water stream amphibians. I determined the Critical Thermal Maxima (CT max) for two salamanders that are endemic to the Pacific Northwest. Rhyacotriton variegatus larvae acclimated at 10??C had mean CTmax of 26.7 ?? 0.7 SD??C and adults acclimated at 11??C had mean CT max of 27.9 ?? 1.1??C. These were among the lowest known values for any amphibian. Values were significantly higher for larval Dicamptodon tenebrosus acclimated at 14??C (x = 29.1 ?? 0.2??C). Although the smallest R. variegatus had some of the lowest values, size of larvae and adults did not influence CTmax in this species. Current forest practices retain riparian buffers along larger fish-bearing streams; however, such buffers along smaller headwaters and non-fish bearing streams may provide favorable habitat conditions for coldwater-associated species in the Pacific Northwest. The current study lends further evidence to the need for protection of Northwest stream amphibians from environmental perturbations. Forest guidelines that include riparian buffer zones and configurations of upland stands should be developed, while monitoring amphibian responses to determine their success. ?? 2008 Brill Academic Publishers.

  19. Mapping aboveground woody biomass using forest inventory, remote sensing and geostatistical techniques.

    PubMed

    Yadav, Bechu K V; Nandy, S

    2015-05-01

    Mapping forest biomass is fundamental for estimating CO₂ emissions, and planning and monitoring of forests and ecosystem productivity. The present study attempted to map aboveground woody biomass (AGWB) integrating forest inventory, remote sensing and geostatistical techniques, viz., direct radiometric relationships (DRR), k-nearest neighbours (k-NN) and cokriging (CoK) and to evaluate their accuracy. A part of the Timli Forest Range of Kalsi Soil and Water Conservation Division, Uttarakhand, India was selected for the present study. Stratified random sampling was used to collect biophysical data from 36 sample plots of 0.1 ha (31.62 m × 31.62 m) size. Species-specific volumetric equations were used for calculating volume and multiplied by specific gravity to get biomass. Three forest-type density classes, viz. 10-40, 40-70 and >70% of Shorea robusta forest and four non-forest classes were delineated using on-screen visual interpretation of IRS P6 LISS-III data of December 2012. The volume in different strata of forest-type density ranged from 189.84 to 484.36 m(3) ha(-1). The total growing stock of the forest was found to be 2,024,652.88 m(3). The AGWB ranged from 143 to 421 Mgha(-1). Spectral bands and vegetation indices were used as independent variables and biomass as dependent variable for DRR, k-NN and CoK. After validation and comparison, k-NN method of Mahalanobis distance (root mean square error (RMSE) = 42.25 Mgha(-1)) was found to be the best method followed by fuzzy distance and Euclidean distance with RMSE of 44.23 and 45.13 Mgha(-1) respectively. DRR was found to be the least accurate method with RMSE of 67.17 Mgha(-1). The study highlighted the potential of integrating of forest inventory, remote sensing and geostatistical techniques for forest biomass mapping. PMID:25930205

  20. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests.

    PubMed

    Lloret, F; Lobo, A; Estevan, H; Maisongrande, P; Vayreda, J; Terradas, J

    2007-09-01

    The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in

  1. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds.

    PubMed

    Elgar, Amelia T; Freebody, Kylie; Pohlman, Catherine L; Shoo, Luke P; Catterall, Carla P

    2014-01-01

    Combating the legacy of deforestation on tropical biodiversity requires the conversion to forest of large areas of established pasture, where barriers to native plant regeneration include competition with pasture grasses and poor propagule supply (seed availability). In addition, initial woody plants that colonise pasture are often invasive, non-native species whose ecological roles and management in the context of forest regeneration are contested. In a restoration experiment at two 0.64 ha sites we quantified the response of native woody vegetation recruitment to (1) release from competition with introduced pasture grasses, and (2) local facilitation of frugivore-assisted seed dispersal provided by scattered woody plants and artificial bird perches. Herbicide pasture grass suppression during 20 months caused a significant but modest increase in density of native woody seedlings, together with abundant co-recruitment of the prominent non-native pioneer wild tobacco (Solanum mauritianum). Recruitment of native species was further enhanced by local structure in herbicide-treated areas, being consistently greater under live trees and dead non-native shrubs (herbicide-treated) than in open areas, and intermediate under bird perches. Native seedling recruitment comprised 28 species across 0.25 ha sampled but was dominated by two rainforest pioneers (Homalanthus novoguineensis, Polyscias murrayi). These early results are consistent with the expected increase in woody vegetation recruitment in response to release from competitive and dispersive barriers to rainforest regeneration. The findings highlight the need for a pragmatic consideration of the ecological roles of woody weeds and the potential roles of "new forests" more broadly in accelerating succession of humid tropical forest across large areas of retired agricultural land. PMID:24904602

  2. CO2 Flux from Coarse Woody Debris from a Tropical Forest at the FLONA Tapajos, Brazil

    NASA Astrophysics Data System (ADS)

    Silva, H.; Crill, P.; Keller, M.

    2004-12-01

    The release of carbon dioxide (CO2) from tropical forests has a strong effect on the global carbon cycle due to fast turnover rates of organic matter than for other biomes. Despite its importance coarse woody debris (CWD) pools have been overlooked for estimates of carbon balance and especially in tropical forests where few studies have been conducted. Measurements were made on CWD in areas of undisturbed tropical forests and areas under selective logging. CO2 emissions from CWD averaged 1.95 \\pm 1.95 \\mu mol CO2 m2 Wood surf^{-1}$ s^{-1} for undisturbed forests and 2.61 ± 1.44 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1} for selective logging areas. For selective logging areas, a chronosequence study was established to follow up the five years of logging. Three wood species were sorted due differences in density to be studied and observe differences in CO_{2} efflux. Andiroba (Carapa guianensis) showed a average flux of 3.15 ± 3.2 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1}, tauari (Couratari stellata) with 2.88 ± 2.03 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1} and macaranduba (Manilkara huberi) with an average flux of 1.69 ± 1.6 μmol CO_{2} m^{2} Wood _{surf}-1 s^{-1}. An area of undisturbed forest was studied to quantify the efflux of CO_{2} in natural conditions. CO_{2} emissions from CWD were of 3.76 Mg C ha^{-1} y{-1} in logged areas and 1.43 Mg C ha^{-1} y{-1} for undisturbed forests. Wood water content and wood decay classes (year of logging) were some of the factors studied on controlling of CO_{2}$ efflux from CWD.

  3. Climate and local geomorphic interactions drive patterns of riparian forest decline along a Mediterranean Basin river

    NASA Astrophysics Data System (ADS)

    Stella, John C.; Riddle, Jess; Piégay, Hervé; Gagnage, Matthieu; Trémélo, Marie-Laure

    2013-11-01

    discharge, and this will increase both chronic and acute water shortage for riparian trees. This study shows that drought-prone riparian forests are vulnerable to hydrogeomorphological changes, but the severity of impacts is conditioned by interactions between drivers at different scales, including regional climate variability, reach-based geomorphic alteration, and local lithological controls.

  4. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  5. Coarse Woody Debris and Ecosystem Carbon Dynamics in a North Temperate Forest

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Vogel, C. S.; Nagal, L.; Kazanski, C.; Flower, C.; Curtis, P. S.

    2006-12-01

    Many aspen-dominated forests in the upper Great Lakes region of North America are past maturity and beginning to decline. As trees senesce in these aging forests, coarse woody debris (CWD) is expected to be increasingly important to the ecosystem carbon (C) balance. We used a biometric approach to quantify C mass and the annual respiratory C loss from CWD and other major ecosystem components for a typical mature deciduous forest in northern lower Michigan, USA. Coarse woody debris mass (2.2 Mg C ha-1) was less than that of soils (104.1 Mg C ha-1) and boles (71.7 Mg C ha-1), but similar to that of leaves (1.8 Mg C ha-1). CWD respiration (RCWD) increased with increasing temperature and water content. Higher RCWD in more decayed wood was due to greater water absorption and, consequently, higher water content rather than to a greater temperature sensitivity of respiration ( Q10). The Q10 of RCWD ranged from 2.20 to 2.57 and varied inconsistently with decay status. Daily RCWD varied seasonally in response to temperature and water content, increasing rapidly following snow melt in early April and peaking at 0.17 g C m-2 d-1 in early June. Daily RCWD in the early growing season (day 130-200) was 13 % greater than during the late growing season (day 201-279) since CWD water content was 69 % higher even though temperature was 1.5°C cooler. Annual CWD respiration (FCWD, 0.21 Mg C ha-1 yr-1) was 12 % of bole respiration, 8 % of leaf respiration, and 2 % of soil respiration. Compared to the 1.53 Mg C ha-1 yr-1 average annual C storage by our forest, FCWD is a small, but substantial flux that is expected to increase over the next several decades. We show how concurrent increases in CWD production and temperature in the near future may temporarily reduce regional forest C storage.

  6. Comparing riparian forest processes on large rivers to inform floodplain management and restoration

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Piegay, H.; Gruel, C.; Riddle, J.; Raepple, B.

    2014-12-01

    In populous, water-limited regions, humans have profoundly altered the river and floodplain environment to satisfy society's demands for water, power, navigation and safety. River management also profoundly alters riparian forests, which respond to changes in disturbance regimes and sediment dynamics. In this study, we compare forest and floodplain development along two of the most heavily modified rivers in mediterranean-climate regions, the middle Sacramento (California, USA) and the lower Rhône (SE France). The Sacramento was dammed in 1942 and is now managed for irrigation, hydropower and flood control. The Rhône channel was engineered for navigation prior to 1900, and since then has been dammed and diverted at 18 sites for hydropower and irrigation. We conducted extensive forest inventories and sampled fine sediment depth in regulated reaches within both systems, and compared pre- versus post-dam patterns of deposition and linked forest development. We sampled 441 plots (500 m2 each) along 160 km of the Sacramento, and 88 plots (1256 m2) stratified by management epoch (pre-river engineering, pre-dam, post-dam) along 160 km of the Rhône. On the Sacramento, forest composition showed shifting tree species dominance across a chronosequence of aerial photo dates over 110 years. The transition from willow to cottonwood (Populus) occurred within 20 years, and the transition to mixed forest started after 50-60 years. On the Rhône, the pre- versus post-dam surfaces at each site had distinct geomorphic and floristic characteristics. Floodplain areas that emerged and were forested in the pre-dam period were at higher elevation, and supported 30-50% more basal area, 20-30% more vine cover, and greater plant species diversity than those that emerged in the post-dam period. The shift from Populus dominance to other species began approximately a decade earlier on the Rhône compared to the Sacramento. Both rivers showed a strong understory presence on young floodplains

  7. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest

    USGS Publications Warehouse

    Busing, R.T.; Fujimori, T.

    2005-01-01

    We examined aboveground biomass dynamics, aboveground net primary production (ANPP), and woody detritus input in an old Sequoia sempervirens stand over a three-decade period. Our estimates of aboveground biomass ranged from 3300 to 5800 Mg ha-1. Stem biomass estimates ranged from 3000 to 5200 Mg ha-1. Stem biomass declined 7% over the study interval. Biomass dynamics were patchy, with marked declines in recent tree-fall patches <0.05 ha in size. Larger tree-fall patches approaching 0.2 ha in size were observed outside the study plot. Our estimates of ANPP ranged from 6 to 14 Mg ha -1yr-1. Estimates of 7 to 10 Mg ha-1yr -1 were considered to be relatively accurate. Thus, our estimates based on long-term data corroborated the findings of earlier short-term studies. ANPP of old, pure stands of Sequoia was not above average for temperate forests. Even though production was potentially high on a per stem basis, it was moderate at the stand level. We obtained values of 797 m3 ha -1 and 262 Mg ha-1 for coarse woody detritus volume and mass, respectively. Fine woody detritus volume and mass were estimated at 16 m3 ha-1 and 5 Mg ha-1, respectively. Standing dead trees (or snags) comprised 7% of the total coarse detritus volume and 8% of the total mass. Coarse detritus input averaged 5.7 to 6.9 Mg ha -1yr-1. Assuming steady-state input and pool of coarse detritus, we obtained a decay rate constant of 0.022 to 0.026. The old-growth stand of Sequoia studied had extremely high biomass, but ANPP was moderate and the amount of woody detritus was not exceptionally large. Biomass accretion and loss were not rapid in this stand partly because of the slow population dynamics and low canopy turnover rate of Sequoia at the old-growth stage. Nomenclature: Hickman (1993). ?? Springer 2005.

  8. Distribution of invasive and native riparian woody plants across the western USA in relation to climate, river flow, floodplain geometry and patterns of introduction

    USGS Publications Warehouse

    Ryan McShane; Daniel Auerbach; Friedman, Jonathan M.; Auble, Gregor T.; Shafroth, Patrick B.; Michael Merigliano; Scott, Michael L.; N. Leroy Poff

    2015-01-01

    Management of riparian plant invasions across the landscape requires understanding the combined influence of climate, hydrology, geologic constraints and patterns of introduction. We measured abundance of nine riparian woody taxa at 456 stream gages across the western USA. We constructed conditional inference recursive binary partitioning models to discriminate the influence of eleven environmental variables on plant occurrence and abundance, focusing on the two most abundant non-native taxa, Tamarix spp. and Elaeagnus angustifolia, and their native competitor Populus deltoides. River reaches in this study were distributed along a composite gradient from cooler, wetter higher-elevation reaches with higher stream power and earlier snowmelt flood peaks to warmer, drier lower-elevation reaches with lower power and later peaks. Plant distributions were strongly related to climate, hydrologic and geomorphic factors, and introduction history. The strongest associations were with temperature and then precipitation. Among hydrologic and geomorphic variables, stream power, peak flow timing and 10-yr flood magnitude had stronger associations than did peak flow predictability, low-flow magnitude, mean annual flow and channel confinement. Nearby intentional planting of Elaeagnus was the best predictor of its occurrence, but planting of Tamarix was rare. Higher temperatures were associated with greater abundance of Tamarix relative to P. deltoides, and greater abundance of P. deltoides relative toElaeagnus. Populus deltoides abundance was more strongly related to peak flow timing than was that of Elaeagnus or Tamarix. Higher stream power and larger 10-yr floods were associated with greater abundance of P. deltoides and Tamarix relative to Elaeagnus. Therefore, increases in temperature could increase abundance of Tamarix and decrease that of Elaeagnus relative to P. deltoides, changes in peak flow timing caused by climate change or dam operations could

  9. Surface water and groundwater nitrogen dynamics in a well drained riparian forest within a poorly drained agricultural landscape.

    PubMed

    Davis, Jennifer H; Griffith, Stephen M; Wigington, Parker J

    2011-01-01

    The effectiveness of riparian zones in mitigating nutrient in ground and surface water depends on the climate, management, and hydrogeomorphology of a site. The purpose of this study was to determine the efficacy of a well drained, mixed-deciduous riparian forest to buffer a river from N originating from a poorly drained grass seed cropping system. The study site was adjacent to the Calapooia River in the Willamette Valley, Oregon. Water was found to move from the rapid drainage of swale surface water. During winter hydrological events, the riparian forest also received river water. Low nitrate (NO3-) concentrations (0.2-0.4 mg NO3- -NL(-1)) in the shallow groundwater of the cropping system were associated with low rates of mineralization and nitrification (33 kg N ha(-1) yr(-1)) and high grass seed crop uptake of N (155 kg N ha(-1) yr(-1)). The riparian forest soil had higher rates of mineralization (117 kg N ha(-1) yr(-1)) that produced quantities of soil N that were within the range of literature values for plant uptake, leading to relatively low concentrations of shallow groundwater NO3 (0.6-1.8 mg NO3- -NL(-1)). The swale that dissected the cropping system and riparian area was found to have the highest rates of denitrification and to contribute dissolved organic C to the river. Given the dynamic nature of the hydrology of the Calapooia River study site, data suggest that the riparian forest plays a role not only in reducing export of NO3- from the cropping system to the river but also in processing nutrients from river water. PMID:21520758

  10. Demographic responses of shrews to removal of coarse woody debris in a managed pine forest.

    SciTech Connect

    McCay, Timothy, S.; Komoroski, Mark, J.

    2004-01-01

    McCay, T.S., and M.J. Komoroski. 2004. Demographic responses of shrews to removal of coarse woody debris in a managed pine forest. For. Ecol., and Mgt. 189:387-395. We trapped shrews at six 9.3 ha plots from which logs ý 10 cm diameter (coarse woody debris; CWD) had been manually removed and six control plots inmanaged loblolly pine (Pinus taeda) forests of the southeastern coastal plain, USA. Trapping was conducted seasonally between autumn 1997 and summer 2001. Capture rates of Cryptotis parva were lower at plots from which CWD was removed than at control plots (P ¡ 0ý011) and declined at all plots over the study period (P ¡ 0ý001). Capture rates of Blarina carolinensis (P ¡ 0ý129) and Sorex longirostris (P ¡ 0ý432) did not differ between removal and control plots, but declined over the study period (P ¡ 0ý001). Age distributions of B. carolinensis differed between removal and control plots (P ¡ 0ý048) with a smaller proportion of individuals in young age categories at removal plots. Sensitivity of Cryptotis to the removal of CWD may have been due to its sociality or low population density at the study area. A reduction in the abundance of young B. carolinensis after removal of CWD may reflect reduced reproduction and immigration of older individuals from outside the plot. Effect of removal of CWD on populations of these shrews was relatively weak compared to strong seasonal and multi-year variation in abundance. However, weak treatment effects may have been partly due to low ambient levels of CWD at control plots.

  11. SWAT-REMM Linked Approach for Estimating Water Quality Benefits of Riparian Forest Buffers in the Little River Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian forest buffers (RFBs) have considerable potential for improving water quality by filtering pollutants as they are transported from upland areas to streams. Insight into the benefits of the RFBs can be gained through appropriate computer simulation of the process. The Soil and Water Assessm...

  12. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds

    PubMed Central

    Elgar, Amelia T.; Freebody, Kylie; Pohlman, Catherine L.; Shoo, Luke P.; Catterall, Carla P.

    2014-01-01

    Combating the legacy of deforestation on tropical biodiversity requires the conversion to forest of large areas of established pasture, where barriers to native plant regeneration include competition with pasture grasses and poor propagule supply (seed availability). In addition, initial woody plants that colonise pasture are often invasive, non-native species whose ecological roles and management in the context of forest regeneration are contested. In a restoration experiment at two 0.64 ha sites we quantified the response of native woody vegetation recruitment to (1) release from competition with introduced pasture grasses, and (2) local facilitation of frugivore-assisted seed dispersal provided by scattered woody plants and artificial bird perches. Herbicide pasture grass suppression during 20 months caused a significant but modest increase in density of native woody seedlings, together with abundant co-recruitment of the prominent non-native pioneer wild tobacco (Solanum mauritianum). Recruitment of native species was further enhanced by local structure in herbicide-treated areas, being consistently greater under live trees and dead non-native shrubs (herbicide-treated) than in open areas, and intermediate under bird perches. Native seedling recruitment comprised 28 species across 0.25 ha sampled but was dominated by two rainforest pioneers (Homalanthus novoguineensis, Polyscias murrayi). These early results are consistent with the expected increase in woody vegetation recruitment in response to release from competitive and dispersive barriers to rainforest regeneration. The findings highlight the need for a pragmatic consideration of the ecological roles of woody weeds and the potential roles of “new forests” more broadly in accelerating succession of humid tropical forest across large areas of retired agricultural land. PMID:24904602

  13. Delineating forested river habitats and riparian floodplain hydrology with LiDAR

    NASA Astrophysics Data System (ADS)

    Vondrasek, Chris

    Rivers and the riparian forest corridor comprise a valuable freshwater ecosystem that has been altered by human activities including timber management, road building, and other land conversions. The habitats of river dependent species in the Pacific Northwest, in particular salmon have often been degraded by these activities. Many salmon runs have become threatened with extinction and have been Endangered Species Act listed. New conservation planning and policies have developed around protecting freshwater habitats and restoring more natural river processes. In WA State, timber landowners, officials from State and Federal agencies, Native tribes, and other stakeholders developed Forest Practice rules and codified a Habitat Conservation Plan with dual goals of providing regulatory surety for timber land owners and helping to recover the threatened salmon runs in forested watersheds. Conserving critical stream ecological functions and potential fish habitats throughout watersheds while managing and regulating timber harvest across the State requires accurate and up-to-date delineation and mapping of channels, tributaries, and off-channel wetlands. Monitoring the effectiveness of protection efforts is necessary but can also be difficult. Agency staff and resources are limited for both day-to-day implementation of Forest Practice rules and adaptive management. The goal of this research has been to develop efficient and accessible methods to delineate wetlands, side-channels, tributaries, and pools and backwaters created by large log jams in forested watersheds. It was also essential to use publicly available LiDAR data and to model these waters at ecologically meaningful flows. I tested a hydraulic model at a 2-year and 50-year flows, and a relative height above river surface model and compared them. I completed two additional remote sensing investigations to correlate channel movement and the locations of off-channel wetlands: an analysis of historical aerial imagery

  14. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    USGS Publications Warehouse

    Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.

    2014-01-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

  15. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    NASA Astrophysics Data System (ADS)

    Russell, M. B.; Woodall, C. W.; D'Amato, A. W.; Fraver, S.; Bradford, J. B.

    2014-11-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.

  16. Technical Note: Linking climate change and downed woody debris decomposition across forests of the eastern United States

    NASA Astrophysics Data System (ADS)

    Russell, M. B.; Woodall, C. W.; D'Amato, A. W.; Fraver, S.; Bradford, J. B.

    2014-06-01

    Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Long-term forest carbon (C) storage is determined by the balance between C fixation into biomass through photosynthesis and C release via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics, in addition to a traditional emphasis on live tree demographics.

  17. Simulation results of aboveground woody biomass and leaf litterfall for African tropical forest with a global terrestrial model

    NASA Astrophysics Data System (ADS)

    De Weirdt, Marjolein; Maignan, Fabienne; Peylin, Philippe; Poulter, Benjamin; Moreau, Inès; Ciais, Philippe; Defourny, Pierre; Steppe, Kathy; Verbeeck, Hans

    2014-05-01

    The response of tropical forest vegetation to global climate change could be central to predictions of future levels of atmospheric carbon dioxide. Tropical forests are believed to annually process approximately six times as much carbon via photosynthesis and respiration as humans emit from fossil fuel use. Of all tropical forests worldwide, the role of African tropical forest is not very well known and both the quantity as well as the dynamics of tropical forest carbon stocks and fluxes are very poorly quantified components of the global carbon cycle. Furthermore, African tropical forest spatial carbon stocks patterns as measured in the field are not as well represented by the global biogeochemical models as they are for temperate forests. In this study, a first simulation for the African tropical forest with the process based global terrestrial ecosystem model ORCHIDEE was done. In this work, ORCHIDEE included deep soils, seasonal leaf litterfall and phosphorus availability mechanisms for tropical evergreen forests included. The ORCHIDEE model run outputs are evaluated against reported field inventories, investigating seasonal variations in leaf litterfall and spatial variation in aboveground woody biomass. A comparison between modeled and measured leaf litterfall was made at a semi-deciduous Equatorial rainforest site in the Republic of Congo at the Biosphere reserve Dimonika south of Gabon. Also, simulated woody aboveground biomass was compared against site-level field inventories and satellite-based estimates based on a combination of MODIS imagery with field inventory data from Uganda, DRC and Cameroon. First comparison results seem promising and show that the radiation driven leaf litterfall model results correspond well with the field inventories and that the mean of the modelled aboveground woody biomass matches the available field inventory observations but there is still a need for more ground data to evaluate the model outcome over a large region like

  18. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system.

    PubMed

    Michez, Adrien; Piégay, Hervé; Lisein, Jonathan; Claessens, Hugues; Lejeune, Philippe

    2016-03-01

    Riparian forests are critically endangered many anthropogenic pressures and natural hazards. The importance of riparian zones has been acknowledged by European Directives, involving multi-scale monitoring. The use of this very-high-resolution and hyperspatial imagery in a multi-temporal approach is an emerging topic. The trend is reinforced by the recent and rapid growth of the use of the unmanned aerial system (UAS), which has prompted the development of innovative methodology. Our study proposes a methodological framework to explore how a set of multi-temporal images acquired during a vegetative period can differentiate some of the deciduous riparian forest species and their health conditions. More specifically, the developed approach intends to identify, through a process of variable selection, which variables derived from UAS imagery and which scale of image analysis are the most relevant to our objectives.The methodological framework is applied to two study sites to describe the riparian forest through two fundamental characteristics: the species composition and the health condition. These characteristics were selected not only because of their use as proxies for the riparian zone ecological integrity but also because of their use for river management.The comparison of various scales of image analysis identified the smallest object-based image analysis (OBIA) objects (ca. 1 m(2)) as the most relevant scale. Variables derived from spectral information (bands ratios) were identified as the most appropriate, followed by variables related to the vertical structure of the forest. Classification results show good overall accuracies for the species composition of the riparian forest (five classes, 79.5 and 84.1% for site 1 and site 2). The classification scenario regarding the health condition of the black alders of the site 1 performed the best (90.6%).The quality of the classification models developed with a UAS-based, cost-effective, and semi-automatic approach

  19. Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Lupon, A.; Ribot, M.; Sabater, F.; Martí, E.

    2015-03-01

    Headwater streams are recipients of water sources draining through terrestrial ecosystems. At the same time, stream biota can transform and retain nutrients dissolved in stream water. Yet studies considering simultaneously these two sources of variation in stream nutrient chemistry are rare. To fill this gap of knowledge, we analyzed stream water and riparian groundwater concentrations and fluxes as well as in-stream net uptake rates for nitrate (NO3-), ammonium (NH4+), and soluble reactive phosphorus (SRP) along a 3.7 km reach on an annual basis. Chloride concentrations (used as conservative tracer) indicated a strong hydrological connection at the riparian-stream interface. However, stream and riparian groundwater nutrient concentrations showed a moderate to null correlation, suggesting high in-stream biogeochemical processing. In-stream net nutrient uptake (Fsw) was highly variable across contiguous segments and over time, but its temporal variation was not related to the vegetative period of the riparian forest. For NH4+, the occurrence of Fsw > 0 μg N m-1 s-1 (gross uptake > release) was high along the reach, while for NO3-, the occurrence of Fsw < 0 μg N m-1 s-1 (gross uptake < release) increased along the reach. Within segments and dates, Fsw, whether negative or positive, accounted for a median of 6, 18, and 20% of the inputs of NO3-, NH4+, and SRP, respectively. Whole-reach mass balance calculations indicated that in-stream net uptake reduced stream NH4+ flux up to 90%, while the stream acted mostly as a source of NO3- and SRP. During the dormant period, concentrations decreased along the reach for NO3-, but increased for NH4+ and SRP. During the vegetative period, NH4+ decreased, SRP increased, and NO3- showed a U-shaped pattern along the reach. These longitudinal trends resulted from the combination of hydrological mixing with terrestrial inputs and in-stream nutrient processing. Therefore, the assessment of these two sources of variation in stream

  20. Monitoring design for riparian forests in the Pacific northwest. Research plan

    SciTech Connect

    Ringold, P.L.; Barker, J.; Bollman, M.; Bradshaw, G.; Carson, W.

    1997-12-01

    The goal of this project is to recommend a broadly-acceptale efficient and effective methodology for characterizing streamside riparian attributes in forested settings at the site grain for regional monitoring. The authors consider monitoring design in the context of three interacting constraints: ecological functions, capabilities of technologies, and user needs. The focus is on fine grained remote methods. Comparison between candidate selected monitoring systems provides for an initial formulation of a monitoring design. A series of evaluations of these initial formulations provides for an initial recommendation. With the state`s interest in the status of coastal fishes, and the programmatic interest of EPA`s Western Ecology Division, the areas selected for study are in the Oregon coastal province and the Willamette basin.

  1. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    USGS Publications Warehouse

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests. ?? 2007 Springer Science+Business Media, LLC.

  2. Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants.

    PubMed

    Helmisaari, H-S; Salemaa, M; Derome, J; Kiikkilä, O; Uhlig, C; Nieminen, T M

    2007-01-01

    The main aim of this study was to determine how the application of a mulch cover (a mixture of household biocompost and woodchips) onto heavy metal-polluted forest soil affects (i) long-term survival and growth of planted dwarf shrubs and tree seedlings and (ii) natural revegetation. Native woody plants (Pinus sylvestris, Betula pubescens, Empetrum nigrum, and Arctostaphylos uva-ursi) were planted in mulch pockets on mulch-covered and uncovered plots in summer 1996 in a highly polluted Scots pine stand in southwest Finland. Spreading a mulch layer on the soil surface was essential for the recolonization of natural vegetation and increased dwarf shrub survival, partly through protection against drought. Despite initial mortality, transplant establishment was relatively successful during the following 10 yr. Tree species had higher survival rates, but the dwarf shrubs covered a larger area of the soil surface during the experiment. Especially E. nigrum and P. sylvestris proved to be suitable for revegetating heavy metal-polluted and degraded forests. Natural recolonization of pioneer species (e.g., Epilobium angustifolium, Taraxacum coll., and grasses) and tree seedlings (P. sylvestris, Betula sp., and Salix sp.) was strongly enhanced on the mulched plots, whereas there was no natural vegetation on the untreated plots. These results indicate that a heavy metal-polluted site can be ecologically remediated without having to remove the soil. Household compost and woodchips are low-cost mulching materials that are suitable for restoring heavy metal-polluted soil. PMID:17596623

  3. Study on Woody Species Diversity in the Chestnut (Castanea sativa L.) Forests, Guilan, Iran

    NASA Astrophysics Data System (ADS)

    Poorbabaei, Hassan; Faghir, Marzia B.

    2008-01-01

    The purpose of this research was to study diversity of woody species in the Sweet chestnut (Castanea sativa L.) forests, Guilan, north of Iran. These forests are located in the Shafaroud and Emamzadeh Ebrahim regions. The Emamzadeh Ebrahim region is consisted of Visroud, Kishkhaleh, Askeh Koh, Male Lab, Doroudkhan, Galeroudkhan, Siahmazgy and Mali Anbar sites. Sampling was done in a selective manner in each site with a plot area of 50 m×50 m for tree and shrub layers and a circle 1000 m2 for tree saplings. In each plot, all trees ⩾10 cm in diameter at breast height (DBH) were identified and the DBH was measured, and shrub and tree sapling species were identified and recorded. In total, 68 sampling plots were taken using GPS device in the two regions. The results revealed that the mean richness, Simpson's index, Hill's N2, Shannon Wiener's function and N1 were higher in the Shafaroud region than other sites in tree, shrub and tree sapling layers. The highest and lowest mean values of evenness were obtained in the Kishkhaleh and Askekoh sites, respectively in tree layer, and similarly were in the Askekoh and Visroud in the shrub layer. The highest and lowest mean values of evenness were obtained in the Male Lab and Askeh Koh, respectively in the tree sapling layer.

  4. Composition, complexity, and tree mortality in riparian forests in the central Western Cascades of Oregon

    USGS Publications Warehouse

    Acker, Steve A.; Gregory, S.V.; Lienkaemper, G.; McKee, W.A.; Swanson, F.J.; Miller, S.D.

    2003-01-01

    Riparian forests contribute to the diversity and function of both terrestrial and aquatic ecosystems. To assess some of these contributions, we compared tree composition, stand complexity, and temporal patterns of tree mortality on permanent plots in seven mature and old-growth stands representing upland forests and forests along low- and mid-order streams in the Western Cascade Range of Oregon. We also assessed recruitment of large wood into stream channels due to tree mortality, both by direct measurement and by estimation from tree mortality and location data. Stands differed in composition due to both stream order and successional stage. Stands on mid-order streams had high abundance of hardwood trees and/or Thuja plicata. Stand complexity (variability in tree diameters, tree life-form diversity, and tree species diversity), was high in stands on mid-order streams and in the upland, old-growth stand. Tree mortality was exceptionally high in six of the seven stands in 1996, the year in which the largest flood during the study occurred. However, only in the one stand on an unconstrained reach of a mid-order stream was mortality primarily due to flooding. Estimated recruitment of wood was much higher from the stand on the unconstrained reach than from the other stands on mid-order streams, suggesting that unconstrained reaches may be important for efforts to maintain or restore large wood in streams.

  5. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    PubMed

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink. PMID:12549558

  6. Riparian reserves within oil palm plantations conserve logged forest leaf litter ant communities and maintain associated scavenging rates

    PubMed Central

    Gray, Claudia L; Lewis, Owen T; Chung, Arthur Y C; Fayle, Tom M

    2015-01-01

    The expansion of oil palm plantations at the expense of tropical forests is causing declines in many species and altering ecosystem functions. Maintaining forest-dependent species and processes in these landscapes may therefore limit the negative impacts of this economically important industry. Protecting riparian vegetation may be one such opportunity; forest buffer strips are commonly protected for hydrological reasons, but can also conserve functionally important taxa and the processes they support. We surveyed leaf litter ant communities within oil palm-dominated landscapes in Sabah, Malaysia, using protein baits. As the scavenging activity of ants influences important ecological characteristics such as nutrient cycling and soil structure, we quantified species-specific rates of bait removal to examine how this process may change across land uses and establish which changes in community structure underlie observed shifts in activity. Riparian reserves had similar ant species richness, community composition and scavenging rates to nearby continuous logged forest. Reserve width and vegetation structure did not affect ant species richness significantly. However, the number of foraging individuals decreased with increasing reserve width, and scavenging rate increased with vegetation complexity. Oil palm ant communities were characterized by significantly lower species richness than logged forest and riparian reserves and also by altered community composition and reduced scavenging rates. Reduced scavenging activity in oil palm was not explained by a reduction in ant species richness, nor by replacement of forest ant species by those with lower per species scavenging rates. There was also no significant effect of land use on the scavenging activity of the forest species that persisted in oil palm. Rather, changes in scavenging activity were best explained by a reduction in the mean rate of bait removal per individual ant across all species in the community

  7. Effects of termite activities on coarse woody debris decomposition in an intact lowland mixed dipterocarp forest of Brunei Darussalam

    NASA Astrophysics Data System (ADS)

    Lee, Sohye; Kim, Seungjun; Roh, Yujin; Abu Salim, Kamariah; Lee, Woo-Kyun; Davies, Stuart; Son, Yowhan

    2016-04-01

    Tropical forests have been considered important ecosystems in terms of carbon cycle and climate change, because they sequester carbon more than any other terrestrial ecosystems. In addition, coarse woody debris is one of the main carbon storages, accounting for 10 ‑ 40% of the tropical forest carbon. Carbon in coarse woody debris is released by various activities of organisms, and particularly termite's feeding activities are known to be main process in tropical forests. Therefore, investigating the effects of termite activities on coarse woody debris decomposition is important to understanding carbon cycles of tropical forests. This study was conducted in an intact lowland mixed dipterocarp forest (MDF) of Brunei Darussalam, and three main MDF tree species (Dillenia beccariana, Macaranga bancana, and Elateriospermum tapos) were selected. Coarse woody debris samples of both 10 cm diameter and length were prepared, and half of samples were covered twice with nylon net (mesh size 1.5 mm × 1.5 mm) to prevent termite's approach. Three 2 m × 11 m permanent plots were installed in January, 2015 and eighteen samples per plot (3 species × 2 treatments × 3 repetitions) were placed at the soil surface. Weights of each sample were recorded at initial time, and weighed again in August, 2015. On average, uncovered and covered samples lost 18.9 % and 3.3 % of their initial weights, respectively. Weight loss percentage was highest in uncovered samples of M. bancana (23.9 %), and lowest in covered samples of E. tapos (7.8 %). Two-way ANOVA showed that tree species and termite exclusion treatment had statistically significant effects on coarse woody debris decomposition (P = 0.0001). The effect of species and termite exclusion treatment interaction was also statistically significant (P = 0.0001). The result reveals that termite activities promote the coarse woody debris decomposition and they influence differently along the wood species. However, many samples of D. beccariana

  8. Woody invasions of urban trails and the changing face of urban forests in the great plains, USA

    USGS Publications Warehouse

    Nemec, K.T.; Allen, C.R.; Alai, A.; Clements, G.; Kessler, A.C.; Kinsell, T.; Major, A.; Stephen, B.J.

    2011-01-01

    Corridors such as roads and trails can facilitate invasions by non-native plant species. The open, disturbed habitat associated with corridors provides favorable growing conditions for many non-native plant species. Bike trails are a corridor system common to many urban areas that have not been studied for their potential role in plant invasions. We sampled five linear segments of urban forest along bike trails in Lincoln, Nebraska to assess the invasion of woody non-native species relative to corridors and to assess the composition of these urban forests. The most abundant plant species were generally native species, but five non-native species were also present: white mulberry (Morus alba), common buckthorn (Rhamnus cathartica), tree-of-heaven (Ailanthus altissima), honeysuckle (Lonicera spp.) and elm (Ulmus spp.). The distribution of two of the woody species sampled, common buckthorn and honeysuckle, significantly decreased with increasing distance from a source patch of vegetation (P = 0.031 and 0.030). These linear habitats are being invaded by non-native tree and shrub species, which may change the structure of these urban forest corridors. If non-native woody plant species become abundant in the future, they may homogenize the plant community and reduce native biodiversity in these areas. ?? 2011 American Midland Naturalist.

  9. Estimation of aboveground woody biomass using HJ-1 and Radarsat-2 data for deciduous forests in Daxing'anling, China

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yang, Le; Liu, Qinhuo; Li, Jing

    2014-11-01

    Accurate estimation of forest aboveground biomass is important for global carbon budgets and ecosystem change studies. Most algorithms for regional or global aboveground biomass estimation using optical and microwave remote sensing data are based on empirical regression and non-parametric training methods, which require large amount of ground measurements for training and are lacking of explicit interaction mechanisms between electromagnetic wave and vegetation. In this study, we proposed an optical/microwave synergy method based on a coherent polarimetric SAR model to estimate woody biomass. The study area is sparse deciduous forest dominated by birch with understory of shrubs and herbs in Daxing'anling, China. HJ-1, Radarsat-2 images, and field LAI were collected during May to August in 2013, tree biophysical parameters were measured at the field campaign during August to September in 2012. The effects of understory and wet ground were evaluated by introducing the NDVI derived from HJ-1 image and rain rate. Field measured LAI was used as an input to the SAR model to define the scattering and attenuation of the green canopy to the total backscatter. Finally, an logarithmic equation between the backscatter coefficient of direct forest scattering mechanism and woody biomass was generated (R2=0.582). The retrieval results were validated with the ground biomass measurements (RMSE=29.01ton/ha). The results indicated the synergy of optical and microwave remote sensing data based on SAR model has the potential to improve the accuracy of woody biomass estimation.

  10. Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon.

    PubMed

    Ledesma, José L J; Futter, Martyn N; Laudon, Hjalmar; Evans, Christopher D; Köhler, Stephan J

    2016-08-01

    In boreal forest catchments, solute transfer to streams is controlled by hydrological and biogeochemical processes occurring in the riparian zone (RZ). However, RZs are spatially heterogeneous and information about solute chemistry is typically limited. This is problematic when making inferences about stream chemistry. Hypothetically, the strength of links between riparian and stream chemistry is time-scale dependent. Using a ten-year (2003-2012) dataset from a northern Swedish catchment, we evaluated the suitability of RZ data to infer stream dynamics at different time scales. We focus on the role of the RZ versus upslope soils in controlling sulfate (SO4(2)(-)) and dissolved organic carbon (DOC). A priori, declines in acid deposition and redox-mediated SO4(2)(-) pulses control sulfur (S) fluxes and pool dynamics, which in turn affect dissolved organic carbon (DOC). We found that the catchment is currently a net source of S, presumably due to release of the S pool accumulated during the acidification period. In both, RZ and stream, SO4(2-) concentrations are declining over time, whereas DOC is increasing. No temporal trends in SO4(2-) and DOC were observed in upslope mineral soils. SO4(2-) explained the variation of DOC in stream and RZ, but not in upslope mineral soil. Moreover, as SO4(2-) decreased with time, temporal variability of DOC increased. These observations indicate that: (1) SO4(2-) is still an important driver of DOC trends in boreal catchments and (2) RZ processes control stream SO4(2-) and subsequently DOC independently of upslope soils. These phenomena are likely occurring in many regions recovering from acidification. Because water flows through a heterogeneous mosaic of RZs before entering the stream, upscaling information from limited RZ data to the catchment level is problematic at short-time scales. However, for long-term trends and annual dynamics, the same data can provide reasonable representations of riparian processes and support

  11. β-Diversity of Functional Groups of Woody Plants in a Tropical Dry Forest in Yucatan

    PubMed Central

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity –possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  12. Novel plant communities limit the effects of a managed flood to restore riparian forests along a large regulated river

    USGS Publications Warehouse

    Cooper, D.J.; Andersen, D.C.

    2012-01-01

    Dam releases used to create downstream flows that mimic historic floods in timing, peak magnitude and recession rate are touted as key tools for restoring riparian vegetation on large regulated rivers. We analysed a flood on the 5th-order Green River below Flaming Gorge Dam, Colorado, in a broad alluvial valley where Fremont cottonwood riparian forests have senesced and little recruitment has occurred since dam completion in 1962. The stable post dam flow regime triggered the development of novel riparian communities with dense herbaceous plant cover. We monitored cottonwood recruitment on landforms inundated by a managed flood equal in magnitude and timing to the average pre-dam flood. To understand the potential for using managed floods as a riparian restoration tool, we implemented a controlled and replicated experiment to test the effects of artificially modified ground layer vegetation on cottonwood seedling establishment. Treatments to remove herbaceous vegetation and create bare ground included herbicide application (H), ploughing (P), and herbicide plus ploughing (H+P). Treatment improved seedling establishment. Initial seedling densities on treated areas were as much as 1200% higher than on neighbouring control (C) areas, but varied over three orders of magnitude among the five locations where manipulations were replicated. Only two replicates showed the expected seedling density rank of (H+P)>P>H>C. Few seedlings established in control plots and none survived 1 year. Seedling density was strongly affected by seed rain density. Herbivory affected growth and survivorship of recruits, and few survived nine growing seasons. Our results suggest that the novel plant communities are ecologically and geomorphically resistant to change. Managed flooding alone, using flows equal to the pre-dam mean annual peak flood, is an ineffective riparian restoration tool where such ecosystem states are present and floods cannot create new habitat for seedling establishment

  13. Carbon of Woody Debris in Plateau-type Karst Evergreen and Deciduous Broad-leaved Mixed Forest of Central Guizhou Province

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ni, J.; Liu, L.; Guo, C.

    2014-12-01

    Woody debris (WD) is an essential structural and functional component of forest ecosystems, and plays very significant roles for the biogeochemical cycling of carbon and nutrients. Coarse woody debris (CWD) is considered to be the major part in forest WD and it is primarily composed of logs, snags, stumps and large branches, while fine woody debris (FWD) mainly consists of small twigs. Composition, spatial distribution and carbon storage of WD have been studied in plateau-type karst evergreen and deciduous broad-leaved mixed forest in Tianlong Mountain of central Guizhou Province. Results showed that the carbon storage of WD in karst forests was less than non-karst forests. The major components of WD were fallen trees and snags with 10-20 cm in diameter. Fallen trees and snags with diameter greater than 20 cm were the smallest part of WD. The situation of WD in this region reflects the structural characteristics of WD in mid-late stage of plateau-type karst evergreen and deciduous broad-leaved mixed forest succession. The potential contribution of WD to the regional carbon cycle, and its relationship with climate change were finally discussed. The WD (especially CWD) plays an important role in the carbon cycle of karst forest. Forest WD production and decay rates may partially depend on climatic conditions, the accumulation of CWD and FWD carbon stocks in forests may be correlated with climate. Key words: woody debris, karst forests, carbon storage, spatial distribution, CWD, FWD.

  14. Water quality functions of riparian forest buffers in Chesapeake bay watersheds

    USGS Publications Warehouse

    Lowrance, R.; Altier, L.S.; Newbold, J.D.; Schnabel, R.R.; Groffman, P.M.; Denver, J.M.; Correll, D.L.; Gilliam, J.W.; Robinson, J.L.; Brinsfield, R.B.; Staver, K.W.; Lucas, W.; Todd, A.H.

    1997-01-01

    Maryland, Virginia, and Pennsylvania, USA, have agreed to reduce nutrient loadings to Chesapeake Bay by 40% by the year 2000. This requires control of nonpoint sources of nutrients much of which comes from agriculture. Riparian forest buffer systems (RFBS) provide effective control of nonpoint source (NPS) pollution in some types of agricultural watersheds. Control of NPS pollution is dependent on the type of pollutant and the hydrologic connection between pollution sources, the RFBS, and the stream. Water quality improvements are most likely in areas of where most of the excess precipitation moves across, in, or near the root zone of the RFBS. In areas such as the Inner Coastal Plain and Piedmont watersheds with thin soils RFBS should retain 50%-90% of the total loading of nitrate in shallow groundwater sediment in surface runoff and total N in born surface runoff and groundwater. Retention of phosphorus is generally much less. In regions with deeper soils and/or greater regional groundwater recharge (such as parts of the Piedmont and the Valley and Ridge), RFBS water quality improvements are probably much less. The expected levels of pollutant control by RFBS are identified for each of nine physiographic provinces of the Chesapeake Bay Watershed. Issues related to of establishment sustainability, and management are also discussed.

  15. Abundance and Morphological Effects of Large Woody Debris in Forested Basins of Southern Andes

    NASA Astrophysics Data System (ADS)

    Andreoli, A.; Comiti, F.; Lenzi, M. A.

    2006-12-01

    The Southern Andes mountain range represents an ideal location for studying large woody debris (LWD) in streams draining forested basins thanks to the presence of both pristine and managed woodland, and to the general low level of human alteration of stream corridors. However, no published investigations have been performed so far in such a large region. The investigated sites of this research are three basins (9-13 km2 drainage area, third-order channels) covered by Nothofagus forests: two of them are located in the Southern Chilean Andes (the Tres Arroyos in the Malalcahuello National Reserve and the Rio Toro within the Malleco Natural Reserve) and one basin lies in the Argentinean Tierra del Fuego (the Buena Esperanza basin, near the city of Ushuaia). Measured LWD were all wood pieces larger than 10 cm in diameter and 1 m in length, both in the active channel and in the adjacent active floodplain. Pieces forming log jams were all measured and the geometrical dimensions of jams were taken. Jam type was defined based on Abbe and Montgomery (2003) classification. Sediment stored behind log-steps and valley jams was evaluated approximating the sediment accumulated to a solid wedge whose geometrical dimensions were measured. Additional information relative to each LWD piece were recorded during the field survey: type (log, rootwad, log with rootwads attached), orientation to flow, origin (floated, bank erosion, landslide, natural mortality, harvest residuals) and position (log-step, in-channel, channel-bridging, channel margins, bankfull edge). In the Tres Arroyos, the average LWD volume stored within the bankfull channel is 710 m3 ha-1. The average number of pieces is 1,004 per hectare of bankfull channel area. Log-steps represent about 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1,600 m3 of sediment (assuming a porosity of 20%) is stored in the main channel

  16. Multi-scale Modeling of Energy Balance Fluxes in a Dense Tamarisk Riparian Forest

    NASA Astrophysics Data System (ADS)

    Neale, C. M.; Santos, C. A.; Watts, D.; Osterberg, J.; Hipps, L. E.; Sritharan, S. I.

    2008-12-01

    Remote sensing of energy balance fluxes has become operationally more viable over the last 10 years with the development of more robust multi-layer models and the availability of quasi-real time satellite imagery from most sensors. Riparian corridors in semi-arid and arid areas present a challenge to satellite based techniques for estimating evapotranspiration due to issues of scale and pixel resolution, especially when using the thermal infrared bands. This paper will present energy balance measurement and modeling results over a Salt Cedar (Tamarix Ramosissima) forest in the Cibola National Wildlife Refuge along the Colorado River south of Blythe, CA. The research site encompasses a 600 hectare area populated by mostly Tamarisk stands of varying density. Three Bowen ratio systems are installed on tall towers within varying densities of forest cover in the upwind footprint and growing under varying depths to the water table. An additional eddy covariance tower is installed alongside a Bowen ratio system on one of the towers. Flux data has been gathered continuously since early 2007. In the summer of 2007, a Scintec large aperture scintillometer was installed between two of the towers over 1 km apart and has been working continuously along with the flux towers. Two intensive field campaigns were organized in June 2007 and May 2008 to coincide with LANDSAT TM5, MODIS and ASTER overpasses. High resolution multispectral and thermal imagery was acquired at the same time with the USU airborne system to provide information for the up- scaling of the energy balance fluxes from tower to satellite scales. The paper will present comparisons between the different energy balance measuring techniques under the highly advective conditions of the experimental site, concentrating on the scintillometer data. Preliminary results of remotely sensed modeling of the fluxes at different scales and model complexity will also be presented.

  17. Soil Quality under Riparian Forest at Different Stages of Ecological Succession and Cultivated with Sugarcane

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Gabriel; Casagrande, José Carlos; Colato, Alexandre; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2014-05-01

    This work aimed at evaluating the quality of the soil through its chemical, physical and microbiological attributes, using additive pondered model, as well as studying the characteristics of the linear method of combination of data, figures of merit (FoMs), the process of assigning weights and standard score functions, using measurements collected in three areas (two riparian forests and a commercial crop of sugarcane) in two soil types (Oxisol and Podzol) located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. The soil was sampled in the depths of 0-0.2 and 0.2-0.4m, and was determined some of its chemical attributes (nutrient content and organic matter, cationic exchange capacity - CEC, etc.), physical (particle size distribution, density and porosity) and microbiological (microbial biomass and basal respiration). Two models were built, one containing two hierarchical levels of FoMs (Mod1), and another containing three levels (Mod2), in order to try to isolate FoMs highly correlated from each other within a top-level FoM. At FoMs of Mod1 were assigned various combinations of weights, and those of Mod2 were assigned weights from three methods, distribution from fixed value, classification and pair-wise comparison. In the Mod1, in virtually all combinations of weights used, values of Soil Quality Index (SQI) were superior in older forests, while the most recent forest presented the lowest SQI, for both types of soil. The variation of SQI values obtained from the sets of weights used also differed between the combinations tested, with the set of values of the ancient forest showing smaller amplitude. It could also be observed that the sets of values of Oxisol showed higher SQI and lower amplitude in relation to that of Podzol. It was observed that these facts are due mainly to the soil organic matter content (MO), which differs between the vegetations and soil types, and influences many parameters used in the model. Thus, in the structures where MO had

  18. Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest

    NASA Astrophysics Data System (ADS)

    Montti, Lía; Campanello, Paula I.; Goldstein, Guillermo

    2011-07-01

    Chusquea ramosissima is a semelparous woody bamboo growing in the understory of the semideciduous Atlantic Forest that increases in abundance after disturbance and consequently has profound effects on vegetation dynamics. Flowering and death of C. ramosissima may open a window of opportunity leaving space vacant for the recruitment of tree seedlings. We describe the flowering pattern and seedling demography of this species at different spatio-temporal scales between the years 2001 and 2009, and evaluate if tree seedling abundance of canopy species increased after the flowering event. At a landscape scale, flowering sites were interspersed with sites that did not flower. At a local scale, the flowering extended over 5 years, with flowering and non-flowering culms intermingled, also in small patches (i.e., 4 m 2). Seeds germinated soon after flowering and die-back. Four successive seedling cohorts were studied. Mortality rate was high during the first 4 months after seedling emergence but several fast-growing seedlings were able to become established successfully. At the end of the study, 10%-20% of the initial number of bamboo seedlings in each cohort survived. Seedling abundance of tree canopy species was similar in flowering and non-flowering sites. C. ramosissima was able to re-colonize and perpetuate in sites it previously occupied. The coexistence of flowering and non-flowering culms at different spatio-temporal scales and clonal growth by rhizomes, together with the successful bamboo seedlings establishment, enhanced bamboo persistence in gaps and disturbed sites. Flowering and death of C. ramosissima did not facilitate seedling growth of canopy tree species.

  19. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  20. Large Woody Debris Input and Its Influence on Channel Structure in Agricultural Lands of Southeast Brazil

    NASA Astrophysics Data System (ADS)

    Paula, Felipe Rossetti De; Ferraz, Silvio Frosini De Barros; Gerhard, Pedro; Vettorazzi, Carlos Alberto; Ferreira, Anderson

    2011-10-01

    Riparian forests are important for the structure and functioning of stream ecosystems, providing structural components such as large woody debris (LWD). Changes in these forests will cause modifications in the LWD input to streams, affecting their structure. In order to assess the influence of riparian forests changes in LWD supply, 15 catchments (third and fourth order) with riparian forests at different conservation levels were selected for sampling. In each catchment we quantified the abundance, volume and diameter of LWD in stream channels; the number, area and volume of pools formed by LWD and basal area and tree diameter of riparian forest. We found that riparian forests were at a secondary successional stage with predominantly young trees (diameter at breast height <10 cm) in all studied streams. Results showed that basal area and diameter of riparian forest differed between the stream groups (forested and non-forested), but tree density did not differ between groups. Differences were also observed in LWD abundance, volume, frequency of LWD pools with subunits and area and volume of LWD pools. LWD diameter, LWD that form pools diameter and frequency of LWD pools without subunits did not differ between stream groups. Regression analyses showed that LWD abundance and volume, and frequency of LWD pools (with and without subunits) were positively related with the proportion of riparian forest. LWD diameter was not correlated to riparian tree diameter. The frequency of LWD pools was correlated to the abundance and volume of LWD, but characteristics of these pools (area and volume) were not correlated to the diameter of LWD that formed the pools. These results show that alterations in riparian forest cause modifications in the LWD abundance and volume in the stream channel, affecting mainly the structural complexity of these ecosystems (reduction in the number and structural characteristics of LWD pools). Our results also demonstrate that riparian forest

  1. Woody encroachment and forest degradation in sub-Saharan Africa's woodlands and savannas 1982–2006

    PubMed Central

    Mitchard, Edward T. A.; Flintrop, Clara M.

    2013-01-01

    We review the literature and find 16 studies from across Africa's savannas and woodlands where woody encroachment dominates. These small-scale studies are supplemented by an analysis of long-term continent-wide satellite data, specifically the Normalized Difference Vegetation Index (NDVI) time series from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset. Using dry-season data to separate the tree and grass signals, we find 4.0% of non-rainforest woody vegetation in sub-Saharan Africa (excluding West Africa) significantly increased in NDVI from 1982 to 2006, whereas 3.52% decreased. The increases in NDVI were found predominantly to the north of the Congo Basin, with decreases concentrated in the Miombo woodland belt. We hypothesize that areas of increasing dry-season NDVI are undergoing woody encroachment, but the coarse resolution of the study and uncertain relationship between NDVI and woody cover mean that the results should be interpreted with caution; certainly, these results do not contradict studies finding widespread deforestation throughout the continent. However, woody encroachment could be widespread, and warrants further investigation as it has important consequences for the global carbon cycle and land–climate interactions. PMID:23878342

  2. Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage.

    PubMed

    Lobón-Cerviá, J; Mazzoni, R; Rezende, C F

    2016-07-01

    The effects of riparian forest removal on a neotropical stream fish assemblage were assessed in the Mata Atlântica. Fish assemblage structure and fish feeding patterns were quantified at three sites along a pristine-to-deforested gradient in a Serra do Mar stream: (1) a pristine site fully covered by canopy with no light penetration and transparent waters, (2) an intermediate site with partially removed forest and (3) a fully removed forest site with no canopy and full light penetration where siltation and turbid waters predominate. Fish assemblage structure, fish densities and their feeding patterns differed widely among sites. Whilst the same five fish species occurred at the three sites, forest removal favoured the occurrence of sediment-tolerant iliophagous benthic species at the deforested site. At the pristine site, invertebrate prey predominated in water column fish diet and feeding overlap among species was low. Severe shifts in the feeding patterns were noticed in both deforested sites. Invertebrates were replaced by detritus, organic matter and algae at both sites and feeding overlap increased markedly. The overwhelming feeding adaptability of these neotropical fishes appeared capable of buffering the deleterious effects of forest removal on stream quality in terms of increased light penetration, siltation and water turbidity. Forest cutting in this Mata Atlântica stream clearly caused strong functional changes associated with forest clearance through important modifications in the assemblage organization and trophic patterns of the main species, but did not eliminate species. PMID:27220656

  3. Variability in Response of Instream Habitat, and Fish and Macroinvertebrate Assemblages, to Riparian Forest Harvest in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Atuke, D. M.; Schlesser, N. J.; Vondracek, B.; Newman, R. M.

    2005-05-01

    We are evaluating the effects of high and low levels of riparian forest harvest, along eight, northern Minnesota streams, on fish and macroinvertebrate assemblages and instream habitat. The study is part of a larger project that includes water quality, vegetation and bird monitoring. Our design pairs streams with a high residual basal area (RBA) and a low RBA treatment. At each stream, control plots with no harvest and no riparian harvest were established and stream reaches were sampled downstream, within and upstream of all plots. Preharvest (2003) and postharvest (2004) data were collected from each stream and compared at the reach level. Fish were collected in one pass with a backpack electroshocker. Benthic macroinvertebrates were assessed following the US EPA family-level composited, multi-habitat rapid bioassessment protocol. Stream habitat was evaluated with a Quantitative Habitat Evaluation Index (QHEI) modified from the Minnesota Pollution Control Agency's habitat assessment protocol. Initial results indicate substantial variability in flow among sites, a significant variation (p<0.05) between years in QHEI and IBI scores, and differences within and between sites in macroinvertebrate species composition and abundance (species richness and %EPT). Continued monitoring will be required to assess the effects of riparian harvest.

  4. Benthic invertebrate community structure is influenced by forest succession after clearcut logging in southeastern Alaska

    USGS Publications Warehouse

    Hernandez, O.; Merritt, R.W.; Wipfli, M.S.

    2005-01-01

    To assess the effects of timber harvesting on headwater streams in upland forests, benthic community structure was contrasted among four dominant forest management types (old growth, red alder-dominated young growth, conifer-dominated young growth, clearcut) and instream habitats (woody debris, cobble, gravel) in southeastern Alaska. Benthos in streams of previously harvested areas resulted in increased richness, densities and biomass relative to old growth types, particularly in young growth stands with a red alder-dominated riparian canopy. Woody debris and gravel habitats supported a combination of higher densities and biomass of invertebrates than cobble habitats. In addition, woody debris also supported a richer and more diverse invertebrate fauna than either cobble or gravel substrates. Maintaining both a woody debris source and a red alder component in regenerating riparian forests following timber harvesting should support greater invertebrate densities and diversity following clearcutting. ?? Springer 2005.

  5. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment.

    SciTech Connect

    McCay Timothy, S.; Hanula, James, L.; Loeb, Susan, C.; Lohr, Steven, M.; McMinn, James, W.; Wright-Miley. Bret, D.

    2002-08-01

    McCay, Timothy S., James L. Hanula, Susan C. Loeb, Steven M. Lohr, James W. McMinn, and Bret D. Wright-Miley. 2002. The role of coarse woody debris in southeastern pine forests; preliminary results from a large-scale experiment. 135-144. In: Proceedings of the symposium on the ecology and management of dead wood in western forests. 1999 November 2-4; Reno, NV. Gen. Tech. Rep. PSW-GTR-181. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture 949 p. ABSTRACT: We initiated a long-term experiment involving manipulation of coarse woody debris (CWD) at the Savannah River National Environmental Research Park in the upper Coastal Plain of South Carolina. Each of four 9.3-ha plots in each of four blocks was subject to one of the following treatments: removal of all snags and fallen logs, removal of fallen logs only, felling and girdling to simulate a catastrophic pulse of CWD, and control. Removal treatments were applied in 1996, and the felling or snag-creation treatment will be applied in 2000-2001. Monitoring of invertebrate, herptile, avian, and mammalian assemblages and CWD dynamics began immediately after CWD removal and continues through the present. Removal treatments resulted in a fivefold to tenfold reduction in CWD abundance. To date, significant differences among treatments have only been detected for a few animal taxa. However, preliminary results underscore the benefits of large-scale experiments. This experiment allowed unambiguous tests of hypotheses regarding the effect of CWD abundance on fauna. Coupled with studies of habitat use and trophic interactions, the experimental approach may result in stronger inferences regarding the function of CWD than results obtained through natural history observation or uncontrolled correlative studies.

  6. Modeling the effects of anadromous fish nitrogen on the carbon balance of riparian forests in central Idaho

    NASA Astrophysics Data System (ADS)

    Noble Stuen, A. J.; Kavanagh, K.; Wheeler, T.

    2010-12-01

    Wild anadromous fish such as Pacific Chinook salmon (Oncorynchus tshawytscha) and steelhead (Oncorhyncus mykiss) were once abundant in Idaho, where they deposited their carcasses, rich in marine-derived nutrients (MDN), in the tributaries of the Columbia River. Anadromous fish are believed to have been a historically important nutrient source to the relatively nutrient-poor inland ecosystems of central Idaho, but no longer reach many inland watersheds due to presence of dams. This study investigates the multi-decadal cumulative effect of presence versus absence of anadromous fish nitrogen on net ecosystem exchange (NEE), or net carbon uptake, of riparian forests along historically salmon-bearing streams in the North Fork Boise River watershed, Idaho, in the context of a changing climate. The ecosystem process model BIOME-BGC is used to develop a representative forest ecosystem and predict the impact of decades of addition and continuing absence of MDN on NEE and net primary production (NPP). The study has 2 objectives: 1) to determine whether BIOME-BGC can reasonably simulate the riparian forests of central Idaho. A potentially confounding factor is the complex terrain of the region, particularly regarding soil water: water accumulation in valley bottoms and their riparian zones may lead to discrepancies in soil moisture and productivity of the riparian forest and of the simulations. The model is parameterized using local ecophysiology and site data and validated using field measurements of leaf area and soil moisture. Objective 2): to determine the effects on forest carbon balance and productivity of the presence or ongoing absence of anadromous-fish derived nitrogen. The forest simulation developed in objective 1 is run under two scenarios into the mid-20th century; one continuing without any supplemental nitrogen and one with nitrogen added in levels consistent with estimates of historical deposition by anadromous fish. Both scenarios incorporate warming due to

  7. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    USGS Publications Warehouse

    Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, C.D.

    2009-01-01

    Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland-forest continuum. The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest

  8. Structural and compositional controls on transpiration in 40- and 450-year-old riparian forests in western Oregon, USA.

    PubMed

    Moore, Georgianne W; Bond, Barbara J; Jones, Julia A; Phillips, Nathan; Meinzer, Federick C

    2004-05-01

    Large areas of forests in the Pacific Northwest are being transformed to younger forests, yet little is known about the impact this may have on hydrological cycles. Previous work suggests that old trees use less water per unit leaf area or sapwood area than young mature trees of the same species in similar environments. Do old forests, therefore, use less water than young mature forests in similar environments, or are there other structural or compositional components in the forests that compensate for tree-level differences? We investigated the impacts of tree age, species composition and sapwood basal area on stand-level transpiration in adjacent watersheds at the H.J. Andrews Forest in the western Cascades of Oregon, one containing a young, mature (about 40 years since disturbance) conifer forest and the other an old growth (about 450 years since disturbance) forest. Sap flow measurements were used to evaluate the degree to which differences in age and species composition affect water use. Stand sapwood basal area was evaluated based on a vegetation survey for species, basal area and sapwood basal area in the riparian area of two watersheds. A simple scaling exercise derived from estimated differences in water use as a result of differences in age, species composition and stand sapwood area was used to estimate transpiration from late June through October within the entire riparian area of these watersheds. Transpiration was higher in the young stand because of greater sap flux density (sap flow per unit sapwood area) by age class and species, and greater total stand sapwood area. During the measurement period, mean daily sap flux density was 2.30 times higher in young compared with old Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees. Sap flux density was 1.41 times higher in young red alder (Alnus rubra Bong.) compared with young P. menziesii trees, and was 1.45 times higher in old P. menziesii compared with old western hemlock (Tsuga heterophylla (Raf

  9. Hydrological controls on denitrification in riparian zone of forested headwater catchment: Soil physical properties make difference in reduced environment

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Watanabe, Y.; Oda, T.; Osaka, K.

    2010-12-01

    Riparian zone near stream plays important roles to control the solute discharge from hillslope to stream. Supply of inorganic nitrogen as an essential nutrient of aquatic primary producers is generally regulated by hydrological and biogeochemical processes such as denitrification in this unique landscape unit in headwaters. To elucidate how the denitrification is controlled by hydrological properties of riparian groundwater aquifer, we investigated two similar scaled forested headwater catchments with different soil physical properties in Japan. The Kiryu- Matsuzawa catchment (KEW, 0.6 ha) has weathered granitic bedrock, and its soils in riparian zones are sandy, while the Fukuroyama-sawa catchment (FEW, 1.1 ha) has Tertiary sedimentary bedrock, and has clayey soils. Concentrations, δ15N and δ18O of NO3- in soil water, groundwater and streamwater were monitored during 2007 - 2009. Enrichment in δ15N-NO3- was found in the perennial groundwater bodies both in KEW and FEW, indicating active denitrification occurred (Fig 1). In the same time, however, increase in δ18O-NO3- of KEW groundwater was unclear, while that of FEW was found clearly indicating the denitrification under a closed system without significant dissolved O2 (DO) and new NO3- supply. It was also suggested that the denitrification in the KEW groundwater occurred under condition with relatively high DO, and new NO3- recharge by lateral groundwater movement. These differences were explainable by hydrological features of soils holding groundwater: The mean residence time (MRT) of the groundwater in FEW was estimated as three times longer (>1000 days) than that in KEW (<300 days). Moreover, this difference in MRT of groundwater aquifer is essentially caused by difference in the soil water retention characteristics between sandy soil in KEW and clayey soil in FEW. Those indicated the possibility that the difference of soil physical properties can be reflected strongly on inorganic nitrogen discharge from

  10. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: I. WATERSHED-SCALE MODEL DEVELOPMENT

    EPA Science Inventory

    To simulate stream temperatures on a watershed scale, shading dynamics of topography and riparian vegetation must be computed for estimating the amount of solar radiation that is actually absorbed by water for each stream reach. A series of computational procedures identifying th...

  11. River management impacts on riparian forest vegetation along the Middle Rio Grande: 1935-2014

    NASA Astrophysics Data System (ADS)

    Petrakis, Roy E.

    Riparian ecosystems of the southwestern United States are highly valuable to both the ecological and human communities which surround them. Over the past century, they have been subject to shifting management practices to maximize human use, control, ecosystem service, and conservation. This creates a complex relationship between water policy, management, and the natural ecosystem necessitating research on spatial and temporal dynamics of riparian vegetation. The San Acacia Reach of the Middle Rio Grande, a 60 mile stretch from the San Acacia Diversion Dam to San Marcial, has experienced multiple management and river flow fluctuations over the past 80 years, resulting in threats to riparian and aquatic ecosystems. This research was completed through the use and analysis of multi-source remote sensing data, GIS, and a review of the on-the-ground management decisions to better understand how the location and composition of the riparian vegetation has been affected by these shifting practices. This research focused on four phases, each highlighting different management practices and river flow patterns during the last 80-years. Each of these periods provides a unique opportunity to observe a direct relationship between river management and riparian land cover response and change. Overall, management practices reduced surface river flows and limited overbank flooding and resulted in changes in the composition, density, and spatial patterns of the vegetation, including increased non-native vegetation growth. Restoration efforts over the past few decades have begun to reduce the presence of non-native species. Despite these changes, this ecosystem was shown to be extremely resilient in maintaining its function/service throughout the entire study time frame.

  12. Pesticides in shallow ground water in the forested wetland riparian area of the Beasley Lake Watershed, Mississippi, USA, 2001-2005

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the movement of pesticides into shallow ground water in a Mississippi Delta forested natural wetland riparian area in the Beasley Lake watershed (Sunflower County, Mississippi, USA). Four well sites were established, each with depths of 0.6, 1.5, 3.0, and 4.6 m (2’, 5’, 10’, and 15’, re...

  13. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    PubMed Central

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  14. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on

  15. Amphibian and reptile community response to coarse woody debris manipulations in upland loblolly pine (Pinus taeda) forests.

    SciTech Connect

    Owens, Audrey, K.; Moseley, Kurtis, R.; McCay, Timothy, S.; Castleberry, Steven, B .; Kilgo, John, C.; Ford, W., Mark

    2008-07-01

    Coarse woody debris (CWD) has been identified as a key microhabitat component for groups that are moisture and temperature sensitive such as amphibians and reptiles. However, few experimental manipulations have quantitatively assessed amphibian and reptile response to varying CWD volumes within forested environments. We assessed amphibian and reptile response to large-scale, CWD manipulation within managed loblolly pine stands in the southeastern Coastal Plain of the United States from 1998 to 2005. Our study consisted of two treatment phases: Phase I treatments included downed CWD removal (removal of all downed CWD), all CWD removal (removal of all downed and standing CWD), pre-treatment snag, and control; Phase II treatments included downed CWD addition (downed CWD volume increased 5-fold), snag addition (standing CWD volume increased 10-fold), all CWD removal (all CWD removed), and control. Amphibian and anuran capture rates were greater in control than all CWD removal plots during study Phase I. In Phase II, reptile diversity and richness were greater in downed CWD addition and all CWD removal than snag addition treatments. Capture rate of Rana sphenocephala was greater in all CWD removal treatment than downed CWD addition treatment. The dominant amphibian and snake species captured are adapted to burrowing in sandy soil or taking refuge under leaf litter. Amphibian and reptile species endemic to upland southeastern Coastal Plain pine forests may not have evolved to rely on CWD because the humid climate and short fire return interval have resulted in historically low volumes of CWD.

  16. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    USGS Publications Warehouse

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  17. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California, forests

    USGS Publications Warehouse

    McGinnis, T.W.; Shook, C.D.; Keeley, J.E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  18. Long-term reproductive behaviour of woody plants across seven Bornean forest types in the Gunung Palung National Park (Indonesia): suprannual synchrony, temporal productivity and fruiting diversity.

    PubMed

    Cannon, Charles H; Curran, Lisa M; Marshall, Andrew J; Leighton, Mark

    2007-10-01

    For 68 months, we observed the reproductive behaviour of 7288 woody plants (172 figs, 1457 climbers and 5659 trees) spanning major soil and elevational gradients. Two 2-3 month community-wide supra-annual fruiting events were synchronized across five forest types, coinciding with ENSO events. At least 27 genera in 24 families restricted their reproduction to these events, which involved a substantial proportion of tree diversity (> 80% of phylogenetic diversity). During these events, mean reproductive levels (8.5%) represented an almost four-fold increase compared with other months. These patterns indicate a strong behavioural advantage to this unusual reproductive behaviour. Montane forest experienced a single, separate fruiting peak while the peat swamp forest did not participate. Excluding these events, no temporal reproductive pattern was detectable, at either the landscape or forest type. These phenological patterns have major implications for the conservation of frugivore communities, with montane and swamp forests acting as 'keystone' forests. PMID:17845296

  19. Riparian litter inputs to streams in the central Oregon Coast Range

    USGS Publications Warehouse

    Hart, Stephanie K.; Hibbs, David E.; Perakis, Steven S.

    2013-01-01

    Riparian-zone vegetation can influence terrestrial and aquatic food webs through variation in the amount, timing, and nutritional content of leaf and other litter inputs. We investigated how riparian-forest community composition, understory density, and lateral slope shaped vertical and lateral litter inputs to 16 streams in the Oregon Coast Range. Riparian forests dominated by deciduous red alder delivered greater annual vertical litter inputs to streams (504 g m−2 y−1) than did riparian forests dominated by coniferous Douglas-fir (394 g m−2 y−1). Deciduous forests also contributed greater lateral litter inputs per meter of stream bank on one side (109 g m−1 y−1) than did coniferous forests (63 g m−1 y−1). Total litter inputs from deciduous forests exceeded those from coniferous forests most strongly in November, coincident with an autumn peak in litter inputs. Lateral litter inputs contributed most to total inputs during winter in both forest types. Annual lateral litter movement increased with slope at deciduous sites, but only in spring/summer months at coniferous sites. Neither experimental removal of understory vegetation nor installation of mesh fences to block downslope litter movement affected lateral litter inputs to streams, suggesting that ground litter moves <5 m downslope annually. N concentrations of several litter fractions were higher at deciduous sites and, when combined with greater litter amounts, yielded twice as much total litter N flux to streams in deciduous than coniferous sites. The presence of red alder in riparian forests along many small streams of the deeply incised and highly dendritic basins of the Oregon Coast Range enhances total fluxes and seasonality of litter delivery to both terrestrial and aquatic food webs in this region and complements the shade and large woody debris provided by large coniferous trees.

  20. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    EPA Science Inventory

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  1. Isotopologue ratios of N2O and N2 measurements underpin the importance of denitrification in differently N-loaded riparian alder forests.

    PubMed

    Mander, Ulo; Well, Reinhard; Weymann, Daniel; Soosaar, Kaido; Maddison, Martin; Kanal, Arno; Lõhmus, Krista; Truu, Jaak; Augustin, Jürgen; Tournebize, Julien

    2014-10-21

    Known as biogeochemical hotspots in landscapes, riparian buffer zones exhibit considerable potential concerning mitigation of groundwater contaminants such as nitrate, but may in return enhance the risk for indirect N2O emission. Here we aim to assess and to compare two riparian gray alder forests in terms of gaseous N2O and N2 fluxes and dissolved N2O, N2, and NO3(-) in the near-surface groundwater. We further determine for the first time isotopologue ratios of N2O dissolved in the riparian groundwater in order to support our assumption that it mainly originated from denitrification. The study sites, both situated in Estonia, northeastern Europe, receive contrasting N loads from adjacent uphill arable land. Whereas N2O emissions were rather small at both sites, average gaseous N2-to-N2O ratios inferred from closed-chamber measurements and He-O laboratory incubations were almost four times smaller for the heavily loaded site. In contrast, groundwater parameters were less variable among sites and between landscape positions. Campaign-based average (15)N site preferences of N2O (SP) in riparian groundwater ranged between 11 and 44 ‰. Besides the strong prevalence of N2 emission over N2O fluxes and the correlation pattern between isotopologue and water quality data, this comparatively large range highlights the importance of denitrification and N2O reduction in both riparian gray alder stands. PMID:25264900

  2. δ15N patterns of Douglas-fir and red alder riparian forests in the Oregon Coast Range

    USGS Publications Warehouse

    Scott, E.E.; Perakis, S.S.; Hibbs, D.E.

    2008-01-01

    We used naturally occurring stable isotopes of N to compare N dynamics in near-stream and upslope environments along riparian catenas in N-fixing red alder (Alnus rubra) and Douglas-fir (Pseudotsuga menziesii) forests in the Coast Range of western Oregon. Based on the existing literature, we expected soil δ15N to be enriched closer to streams owing to inputs of isotopically heavy, marine-derived N by spawning salmon, higher rates of denitrification near the stream, or both. However, it has been unclear what effect red alder might have on soil δ15N patterns near streams. We found a consistent −1‰ δ15N signature in red alder foliage, and δ15N of total N in soils under red alder averaged 2.2‰ along sampling transects extending 20 m upslope from the stream. Surprisingly, δ15N of total N in soil under Douglas-fir was progressively depleted nearer to streams, opposite from the pattern expected from N losses by denitrification or N inputs from anadromous salmon. Instead, δ15N of total N in soil under Douglas-fir converged toward soil δ15N values typical of red alder sites. We consider that the historic presence of red alder may have contributed a legacy of lower soil δ15N nearer to streams on sites that are currently dominated by young Douglas-fir forest.

  3. Multi-Scale Drivers of Riparian Forest Decline Along a Mediterranean-Climate River

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Riddle, J.; Piégay, H.; Gagnage, M.; Trémolo, M.

    2010-12-01

    Variation in water availability is a major driver of ecological communities and ecosystem health in riverine and riparian ecosystems, particularly in Mediterranean and other semi-arid regions. Competition for water resources from humans has stressed these ecosystems worldwide, and population growth, land use and climate change threaten to further impair already vulnerable ecological communities. In riparian zones, there is a need to develop tools to measure these impacts on the key biological and physical processes that sustain ecosystem health and potential recovery. We used dendrochronology of Populus nigra, a riparian tree that is vulnerable to changes in local hydrology, to analyze ecosystem response following gravel mining along the Drôme River, a Mediterranean-climate stream in southern France. We cored trees (N=55) at seven floodplain sites, measured ring widths, and calculated site-based indices of growth to compare the severity and timing of local growth decline along the river. Results indicate that tree growth has declined at some sites coincident with documented channel incision, and that patterns of low growth and crown dieback are consistent with stress due to reduced water supply. Sites varied significantly in recent tree growth rate (F6,34=3.55, p<0.01) and this was not due to tree age, individual size at an early age, or stand density. The site-based, age-corrected index of recent radial growth varied 5-fold between sites (range 0.5±0.08 to 2.3±0.60 unitless growth index, mean 1±SE). Growth index was negatively correlated with proportion of dead crown (r = -0.71), though the relationship was non-linear, with low growth for the three sites that experienced the greatest crown dieback. Regime Shift Detection analysis of site chronologies showed significant sustained growth decline (p<0.05) at four sites after 1980, following the period of intensive instream mining downstream. Site growth declines were not simultaneous, however, nor sequenced in a

  4. Shade Trading: An Emerging Riparian Forest-Based Payment for Ecosystem Services Market in Oregon, USA

    NASA Astrophysics Data System (ADS)

    Guillozet, Kathleen

    2015-10-01

    This paper describes the regulatory and compliance context for Oregon's emerging ecosystem services (ES) market in riparian shade to meet water quality obligations. In Oregon's market as with many other ES programs, contracts and other regulatory documents not only delimit the obligations and liabilities of different parties, but also constitute a primary mechanism through which ES service delivery is measured. Through a review of compliance criteria I find that under Oregon's shade trades, permittees are held to a number of input-based criteria, which essentially affirm that parties comply with predetermined practices and procedures, and one `pseudo output based' criterion, in which ES delivery is estimated through a model. The case presented in the paper critically engages with the challenges of measuring ES and in assessing the outcomes of ES projects. It places these challenges as interrelated and proposes that market designers, policymakers, and other stakeholders should consider explicit efficacy, efficiency, and equity targets.

  5. Shade Trading: An Emerging Riparian Forest-Based Payment for Ecosystem Services Market in Oregon, USA.

    PubMed

    Guillozet, Kathleen

    2015-10-01

    This paper describes the regulatory and compliance context for Oregon's emerging ecosystem services (ES) market in riparian shade to meet water quality obligations. In Oregon's market as with many other ES programs, contracts and other regulatory documents not only delimit the obligations and liabilities of different parties, but also constitute a primary mechanism through which ES service delivery is measured. Through a review of compliance criteria I find that under Oregon's shade trades, permittees are held to a number of input-based criteria, which essentially affirm that parties comply with predetermined practices and procedures, and one 'pseudo output based' criterion, in which ES delivery is estimated through a model. The case presented in the paper critically engages with the challenges of measuring ES and in assessing the outcomes of ES projects. It places these challenges as interrelated and proposes that market designers, policymakers, and other stakeholders should consider explicit efficacy, efficiency, and equity targets. PMID:26099569

  6. Woody biomass resource of major tree taxa for the Midsouth states. Forest Service Resource Bulletin

    SciTech Connect

    Rosson, J.F.

    1992-02-01

    Data from the most recent State forest surveys were used to derive estimates of wood and bark biomass for the Midsouth region. For clarification of these data, appendix 1 defines relevant terms. Species that occurred in the Midsouth sample are listed in appendix 2. Appendix 3 tables 1 through 3 describe the Midsouth timberland area by State. Tables 4 through 48 describe the biomass resource by species group (4-6), ownership class (7-12), forest type (13-18), tree class (19-30), diameter class (31-36), basal area class (37-42), and height class (43-48). See the list of tables for a more detailed description of table content. Appendix 4 figures 1 through 7 describe the extent of biomass resource by yield class.

  7. Elevational change in woody tissue CO2 efflux in a tropical mountain rain forest in southern Ecuador.

    PubMed

    Zach, Alexandra; Horna, Viviana; Leuschner, Christoph

    2008-01-01

    Much uncertainty exists about the magnitude of woody tissue respiration and its environmental control in highly diverse tropical moist forests. In a tropical mountain rain forest in southern Ecuador, we measured the apparent diurnal gas exchange of stems and coarse roots (diameter 1-4 cm) of trees from representative families along an elevational transect with plots at 1050, 1890 and 3050 m a.s.l. Mean air temperatures were 20.8, 17.2 and 10.6 degrees C, respectively. Stem and root CO(2) efflux of 13 to 21 trees per stand from dominant families were investigated with an open gas exchange system while stand microclimate was continuously monitored. Substantial variation in respiratory activity among and within species was found at all sites. Mean daily CO(2) release rates from stems declined 6.6-fold from 1.38 micromol m(-2) s(-1) at 1050 m to 0.21 micromol m(-2) s(-1) at 3050 m. Mean daily CO(2) release from coarse roots decreased from 0.35 to 0.20 micromol m(-2) s(-1) with altitude, but the differences were not significant. There was, thus, a remarkable shift from a high ratio of stem to coarse root respiration rates at the lowest elevation to an apparent equivalence of stem and coarse root CO(2) efflux rates at the highest elevation. We conclude that stem respiration, but not root respiration, greatly decreases with elevation in this transect, coinciding with a substantial decrease in relative stem diameter increment and a large increase in fine and coarse root biomass production with elevation. PMID:17938115

  8. Riparian Vegetation Influence on Stream Channel Dimensions: Key Driving Mechanisms and Their Timescales

    NASA Astrophysics Data System (ADS)

    McBride, M.; Hession, W.; Rizzo, D. M.; Thompson, D. M.

    2006-05-01

    Combined results from field-based investigations and flume experiments demonstrated key mechanisms driving channel widening following the reforestation of riparian zones in small streams. Riparian reforestation is a common occurrence either due to restoration efforts, intended to improve water quality, temperature regimes, and in-stream physical habitat or due to passive reforestation that is common when agricultural land uses decline. Previous studies have documented the influence of riparian vegetation on channel size, but driving mechanisms and the timescales at which they operate have not been evaluated. Field-based investigations were conducted in the Sleepers River basin in northeastern Vermont to revisit streams that were previously surveyed in the 1960s. We measured channel dimensions, large woody debris (LWD), and steam velocities in reaches with non-forested and forested riparian vegetation, in reaches currently in transition between vegetation types, and reaches with no change in riparian vegetation over the last 40 years. Flume experiments were performed with a 1:5 scale, fixed-bed model of a tributary to Sleepers River. Two types of riparian vegetation scenarios were simulated: 1) forested, with rigid, wooden dowels; and 2) non-forested, with synthetic grass carpeting. Three-dimensional velocities were measured during flume runs to determine turbulent kinetic energy (TKE) during overbank flows. Results showed that stream reaches with recently reforested vegetation have widened since the mid 1960s, but are not as wide as reaches with older riparian forests. LWD was more abundant in reaches with older riparian forests than in reaches with younger forests; however, scour around LWD did not appear to be a significant driving mechanism for channel widening. Velocity and TKE measurements from the prototype stream and the flume model indicate that TKE was significantly elevated in reforested reaches. Given that bed and bank erosion can be amplified in flows

  9. Estimating aboveground biomass of broadleaved woody plants in the understory of Florida Keys pine forests

    USGS Publications Warehouse

    Sah, J.P.; Ross, M.S.; Koptur, S.; Snyder, J.R.

    2004-01-01

    Species-specific allometric equations that provide estimates of biomass from measured plant attributes are currently unavailable for shrubs common to South Florida pine rocklands, where fire plays an important part in shaping the structure and function of ecosystems. We developed equations to estimate total aboveground biomass and fine fuel of 10 common hardwood species in the shrub layer of pine forests of the lower Florida Keys. Many equations that related biomass categories to crown area and height were significant (p < 0.05), but the form and variables comprising the best model varied among species. We applied the best-fit regression models to structural information from the shrub stratum in 18 plots on Big Pine Key, the most extensive pine forest in the Keys. Estimates based on species-specific equations indicated clearly that total aboveground shrub biomass and shrub fine fuel increased with time since last fire, but the relationships were non-linear. The relative proportion of biomass constituted by the major species also varied with stand age. Estimates based on mixed-species regressions differed slightly from estimates based on species-specific models, but the former could provide useful approximations in similar forests where species-specific regressions are not yet available. ?? 2004 Elsevier B.V. All rights reserved.

  10. Decomposition of New Woody Inputs as a Dry Tropical Forest Regenerates

    NASA Astrophysics Data System (ADS)

    Schilling, J. S.; Powers, J. S.; Ayres, A.; Kaffenberger, J. T.

    2015-12-01

    Modeling deadwood dynamics is limited by our empirical understanding of decomposition patterns and drivers. This gap is significant in dry tropical forests (and in the tropics, broadly) where forest regeneration is a management priority but where decision-making lacks resources. Our goal was to track decomposition and its biological drivers in tree boles added to the forest floor of a regenerating dry forest. We cut and then placed logs (~18 cm dia) of eight representative tree species in ground contact at two different sites (n=8, per site). We tracked density loss and element import/export in both sapwood and heartwood each 6 months over two years. We measured initial and final lignin, structural carbohydrates, nitrogen, and extractives. We also quantified insect gallery volumes, and used two residue 'signatures' to determine dominant fungal rot type: 1) dilute alkali solubility (DAS) and lignin:glucan loss. By year 2, mean density losses in sapwood were 11.6 - 44.4% among tree species, excluding one species that decomposed completely. The best predictor of density loss in sapwood was initial pH, but the correlation was negative rather than positive, as has been reported in temperate systems. Decay was consistently more advanced in sapwood than in heartwood, and although extractives were as high as 16.4% in heartwood, trait-density loss correlations were insignificant. Insects contributed little at this stage to density loss (<3%), and both lignin:glucan loss and DAS confirmed that white rot fungi dominated decomposition. Although element import dynamics broadly resembled those from temperate studies (e.g., Ca gain, P, K loss), there was high spatial variability. This perhaps related to zone line (spalting) complexity, suggesting intense competition among fungi colonizing small territories within the wood. Estimated CO2 fluxes from the test logs ranged from ~25 to 75% of the annual fluxes from litter fall at these sites. Collectively, these results implicate wood

  11. Riparian responses to extreme climate and land-use change scenarios.

    PubMed

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems. PMID:27341115

  12. Headwater Stream Temperature Response to Forest Harvesting in Coastal British Columbia, Canada: Influences of Riparian Buffer Width, Channel Morphology and Weather

    NASA Astrophysics Data System (ADS)

    Moore, R.; Gomi, T.; Dhakal, A.

    2003-12-01

    Forest harvesting can influence stream temperature regimes, and the potentially deleterious impacts of higher temperatures on salmonids and other species have generated significant debate. One common approach to protecting streams is to leave a riparian buffer to provide shade. However, little information has been collected on the effectiveness of different buffer widths. We report the results of a 6-year field experiment to evaluate the effects of different riparian buffer widths on stream and riparian ecosystems, including stream temperature response, in headwater streams in coastal British Columbia. The experiment included 13 streams, with at least three being assigned to each of four treatments, including no harvesting (80 yr-old second growth conifer riparian forest), clear-cut harvesting with 10 m and 30 m riparian buffers, and clear-cut harvesting with no buffer. Regression analysis was used to calibrate the pre-harvest data for each treatment stream with one of the control streams, to provide a basis for estimating post-harvest treatment effects. Autoregressive and heteroskedastic errors were included in the regression model, because stream temperature exhibited serial correlation and the error variance increased with stream temperature. Temperature response was substantial in the clearcut treatments with no buffers, with maximum temperatures increasing by up to 8 degrees C. The magnitude of temperature response amongst the no-buffer treatments varied with channel morphology, particularly in relation to bank shading and stream depth. The treatment effect for daily maximum water temperature increased with decreasing flow and increasing maximum air temperature on the current day, and also exhibited significant autocorrelation, indicating that the sequence of daily weather conditions can influence the magnitude of temperature response.

  13. Recent Changes in the Riparian Forest of a Large Regulated Mediterranean River: Implications for Management

    NASA Astrophysics Data System (ADS)

    González, Eduardo; González-Sanchis, María; Cabezas, Álvaro; Comín, Francisco A.; Muller, Etienne

    2010-04-01

    The structure of the floodplain forests of the Middle Ebro River (NE Spain) was examined at patch and landscape scales along a three-step chronosequence defined according to the extent of flow regulation-induced hydrogeomorphic changes, with the ultimate purpose of producing baseline information to guide through management and restoration plans. At patch scale, a total of 6,891 stems within 39 plots were registered for species, diameter and health status. The stem density, size class distribution, canopy dieback and mortality were further compared by means of non-parametric tests. At landscape scale, the temporal evolution of the area occupied by forest stands of different ages in the floodplain along the chronosequence was evaluated using four sets of aerial photographs dated in 1927, 1957, 1981 and 2003. The within-patch structure of pioneer forests (<25-30 years old) was characterized by dense and healthy populations of pioneer species ( Populus nigra, Salix alba and Tamarix spp.), but the area occupied by these forest types has progressively decreased (up to 37%) since the intensification of river regulation (ca. 1957). In contrast, non-pioneer forests (>25-30 years old) were characterized by declining and sparse P. nigra- S. alba- Tamarix spp. stands, where late-seral species such as Ulmus minor and Fraxinus angustifolia were frequent, but only as small-size stems. At landscape scale, these type of senescent forests have doubled their surface after river regulation was intensified. Populus alba only appeared in the oldest plots recorded (colonized before 1957), suggesting sexual regeneration failure during the last five decades, but usually as healthy and dense stands. Based on these findings, measures principally aimed at recovering some hydrogeomorphic dynamism are recommended to guarantee the self-sustainability of the floodplain forest ecosystem.

  14. Repeated prescribed fires decrease stocks and change attributes of coarse woody debris in a temperate eucalypt forest.

    PubMed

    Aponte, Cristina; Tolhurst, Kevin G; Bennett, Lauren T

    2014-07-01

    Previous studies have found negligible effects of single prescribed fires on coarse woody debris (CWD), but the cumulative effects of repeated low-intensity prescribed fires are unknown. This represents a knowledge gap for environmental management because repeated prescribed fires are a key tool for mitigating wildfire risk, and because CWD is recognized as critical to forest biodiversity and functioning. We examined the effects of repeated low-intensity prescribed fires on the attributes and stocks of (fallen) CWD in a mixed-species eucalypt forest of temperate Australia. Prescribed fire treatments were a factorial combination of two seasons (Autumn, Spring) and two frequencies (three yearly High, 10 yearly Low), were replicated over five study areas, and involved two to seven low-intensity fires over 27 years. Charring due to prescribed fires variously changed carbon and nitrogen concentrations and C to N ratios of CWD pieces depending on decay class, but did not affect mean wood density. CWD biomass and C and N stocks were significantly less in Fire than Control treatments. Decreases in total CWD C stocks of -8 Mg/ha in Fire treatments were not balanced by minor increases in pyrogenic (char) C (-0.3 Mg/ha). Effects of prescribed fire frequency and season included significantly less C and N stocks in rotten CWD in High than Low frequency treatments, and in the largest CWD pieces in Autumn than Spring treatments. Our study demonstrates that repeated low-intensity prescribed fires have the potential to significantly decrease CWD stocks, in pieces of all sizes and particularly decayed pieces, and to change CWD chemical attributes. CWD is at best a minor stock of pyrogenic C under such fire regimes. These findings suggest a potential trade-off in the management of temperate eucalypt forests between sustained reduction of wildfire risk, and the consequences of decreased CWD C stocks, and of changes in CWD as a habitat and biogeochemical substrate. Nonetheless

  15. Quantifying Forested Riparian Buffer Ability to Ameliorate Stream Temperature in a Missouri Ozark Border Stream of the Central U.S

    NASA Astrophysics Data System (ADS)

    Bulliner, E. A.; Hubbart, J. A.

    2009-12-01

    Riparian buffers play an important role in modulating stream water quality, including temperature. There is a need to better understand riparian form and function to validate and improve contemporary management practices. Further studies are warranted to characterize energy attenuation by forested riparian canopy layers that normally buffer stream temperature, particularly in the central hardwood forest regions of the United States where relationships between canopy density and stream temperature are unknown. To quantify these complex processes, two intensively instrumented hydroclimate stations were installed along two stream reaches of a riparian stream in central Missouri, USA in the winter of 2008. Hydroclimate stations are located along stream reaches oriented in both cardinal directions, which will allow interpolation of results to other orientations. Each station consists of an array of instrumentation that senses the flux of water and energy into and out of the riparian zone. Reference data are supplied from a nearby flux tower (US DOE) located on top of a forested ridge. The study sites are located within a University of Missouri preserved wildland area on the border of the southern Missouri’s Ozark region, an ecologically distinct region in the central United States. Limestone underlies the study area, resulting in a distinct semi-Karst hydrologic system. Vegetation forms a complex, multi-layered canopy extending from the stream edge through the riparian zone and into surrounding hills. Climate is classified as humid continental, with approximate average annual temperature and precipitation of 13.2°C and 970mm, respectively. Preliminary results (summer 2009 data) indicate incoming short-wave radiation is 24.9% higher at the N-S oriented stream reach relative to the E-W oriented reach. Maximum incoming short wave radiation during the period was 64.5% lower at the N-S reach relative to E-W reach. Average air temperature for the E-W reach was 0.3°C lower

  16. Runoff water quality from a sierran upland forest, transition ecotone, and riparian wet meadow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High concentrations of inorganic N, P, and S have been reported in overland and litter interflow within forested uplands of the Tahoe basin and surrounding watersheds. In this study we compared runoff nutrient concentration and load as well as soil nutrient fluxes at three watershed locations; an up...

  17. Simulation of Management Effect on Runoff and Sediment Transport in Riparian Forest Buffers by APEX Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrologic/water quality models are increasingly used to explore management and policy alternatives for managing water quality and quantity from intensive silvicultural practices with Best Management Practices (BMPs) in forested watersheds due to the limited number of studies and the cost of conduct...

  18. Riparian Zone Analysis for Forest Land Cover for the Conterminous US

    EPA Science Inventory

    One data layer describing the amount of forest land cover contained within a buffer area extending 30 meters to each side of all streams contained within the basin (Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit Code (HUC)) and from the edge of water bodies such as la...

  19. Incorporating Climate Change and Exotic Species into Forecasts of Riparian Forest Distribution

    PubMed Central

    Ikeda, Dana H.; Grady, Kevin C.; Shuster, Stephen M.; Whitham, Thomas G.

    2014-01-01

    We examined the impact climate change (CC) will have on the availability of climatically suitable habitat for three native and one exotic riparian species. Due to its increasing prevalence in arid regions throughout the western US, we predicted that an exotic species, Tamarix, would have the greatest increase in suitable habitat relative to native counterparts under CC. We used an ecological niche model to predict range shifts of Populus fremontii, Salix gooddingii, Salix exigua and Tamarix, from present day to 2080s, under five general circulation models and one climate change scenario (A1B). Four major findings emerged. 1) Contrary to our original hypothesis, P. fremontii is projected to have the greatest increase in suitable habitat under CC, followed closely by Tamarix. 2) Of the native species, S. gooddingii and S. exigua showed the greatest loss in predicted suitable habitat due to CC. 3) Nearly 80 percent of future P. fremontii and Salix habitat is predicted to be affected by either CC or Tamarix by the 2080s. 4) By the 2080s, 20 percent of S. gooddingii habitat is projected to be affected by both Tamarix and CC concurrently, followed by S. exigua (19 percent) and P. fremontii (13 percent). In summary, while climate change alone will negatively impact both native willow species, Tamarix is likely to affect a larger portion of all three native species' distributions. We discuss these and other results in the context of prioritizing restoration and conservation efforts to optimize future productivity and biodiversity. As we are accounting for only direct effects of CC and Tamarix on native habitat, we present a possible hierarchy of effects- from the direct to the indirect- and discuss the potential for the indirect to outweigh the direct effects. Our results highlight the need to account for simultaneous challenges in the face of CC. PMID:25216285

  20. Woody vegetation cover monitoring with multi-temporal Landsat data and Random Forests: the case of the Northwest Province (South Africa)

    NASA Astrophysics Data System (ADS)

    Symeonakis, Elias; Higginbottom, Thomas; Petroulaki, Kyriaki

    2016-04-01

    Land degradation and desertification (LDD) are serious global threats to humans and the environment. Globally, 10-20% of drylands and 24% of the world's productive lands are potentially degraded, which affects 1.5 billion people and reduces GDP by €3.4 billion. In Africa, LDD processes affect up to a third of savannahs, leading to a decline in the ecosystem services provided to some of the continent's poorest and most vulnerable communities. Indirectly, LDD can be monitored using relevant indicators. The encroachment of woody plants into grasslands, and the subsequent conversion of savannahs and open woodlands into shrublands, has attracted a lot of attention over the last decades and has been identified as an indicator of LDD. According to some assessments, bush encroachment has rendered 1.1 million ha of South African savanna unusable, threatens another 27 million ha (~17% of the country), and has reduced the grazing capacity throughout the region by up to 50%. Mapping woody cover encroachment over large areas can only be effectively achieved using remote sensing data and techniques. The longest continuously operating Earth-observation program, the Landsat series, is now freely-available as an atmospherically corrected, cloud masked surface reflectance product. The availability and length of the Landsat archive is thus an unparalleled Earth-observation resource, particularly for long-term change detection and monitoring. Here, we map and monitor woody vegetation cover in the Northwest Province of South Africa, a mosaic of 12 Landsat scenes that expands over more than 100,000km2. We employ a multi-temporal approach with dry-season TM, ETM+ and OLI data from 15 epochs between 1989 to 2015. We use 0.5m-pixel colour aerial photography to collect >15,000 samples for training and validating a Random Forest model to map woody cover, grasses, crops, urban and bare areas. High classification accuracies are achieved, especially so for the two cover types indirectly

  1. Surface Layer Flux Processes During Cloud Intermittency and Advection above a Middle Rio Grande Riparian Forest, New Mexico

    NASA Astrophysics Data System (ADS)

    Cleverly, J. R.; Prueger, J.; Cooper, D. I.; Hipps, L.; Eichinger, W.

    2002-12-01

    An intensive field campaign was undertaken to bring together state-of-the-art methodologies for investigating surface layer physical characteristics over a desert riparian forest. Three-dimensional sonic eddy covariance (3SEC), LIDAR, SODAR, Radiosonde, one-dimensional propeller eddy covariance (1PEC), heat dissipation sap flux, and leaf gas exchange were simultaneously in use 13 -- 21 June 1999 at Bosque del Apache National Wildlife Refuge (NWR) in New Mexico. A one hour period of intense advection was identified by /line{v} >> 0 and /line{u} = 0, indicating that wind direction was transverse to the riparian corridor. The period of highest /line{v} was 1400 h on 20 June; this hour experienced intermittent cloud cover and enhanced mesoscale forcing of surface fluxes. High-frequency (20 Hz) time series of u, v, w, q, θ , and T were collected for spectral, cospectral, and wavelet analyses. These time series analyses illustrate scales at which processes co-occur. At high frequencies (> 0.015 Hz), /line{T' q'} > 0, and (KH)/ (KW) = 1. At low frequencies, however, /line{T' q'} < 0, and (KH)/(KW) !=q 1. Under these transient conditions, frequencies below 0.015 Hz are associated with advection. While power cospectra are useful in associating processes at certain frequencies, further analysis must be performed to determine whether such examples of aphasia are localized to transient events or constant through time. Continuous wavelet transformation (CWT) sacrifices localization in frequency space for localization in time. Mother wavelets were evaluated, and Daubechies order 10 wavelet was found to reduce red noise and leakage near the spectral gap. The spectral gap is a frequency domain between synoptic and turbulent scales. Low frequency turbulent structures near the spectral gap in the time series of /line{T' q'}, /line{w' T'}, and /line{w' q'} followed a perturbation--relaxation pattern to cloud cover. Further cloud cover in the same hour did not produce the low

  2. Scaling up and error analysis of transpiration for Populus euphratica in a desert riparian forest

    NASA Astrophysics Data System (ADS)

    Si, J.; Li, W.; Feng, Q.

    2013-12-01

    Water consumption information of the forest stand is the most important factor for regional water resources management. However, water consumption of individual trees are usually measured based on the limited sample trees , so, it is an important issue how to realize eventual scaling up of data from a series of sample trees to entire stand. Estimation of sap flow flux density (Fd) and stand sapwood area (AS-stand) are among the most critical factors for determining forest stand transpiration using sap flow measurement. To estimate Fd, the various links in sap flow technology have great impact on the measurement of sap flow, to estimate AS-stand, an appropriate indirect technique for measuring each tree sapwood area (AS-tree) is required, because it is impossible to measure the AS-tree of all trees in a forest stand. In this study, Fd was measured in 2 mature P. euphratic trees at several radial depths, 0~10, 10~30mm, using sap flow sensors with the heat ratio method, the relationship model between AS-tree and stem diameter (DBH), growth model of AS-tree were established, using investigative original data of DBH, tree-age, and AS-tree. The results revealed that it can achieve scaling up of transpiration from sample trees to entire forest stand using AS-tree and Fd, however, the transpiration of forest stand (E) will be overvalued by 12.6% if using Fd of 0~10mm, and it will be underestimated by 25.3% if using Fd of 10~30mm, it implied that major uncertainties in mean stand Fd estimations are caused by radial variations in Fd. E will be obviously overvalued when the AS-stand is constant, this result imply that it is the key to improve the prediction accuracy that how to simulate the AS-stand changes in the day scale; They also showed that the potential errors in transpiration with a sample size of approximately ≥30 were almost stable for P.euphrtica, this suggests that to make an allometric equation it might be necessary to sample at least 30 trees.

  3. Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference

    PubMed Central

    2016-01-01

    A widely accepted hypothesis in invasion ecology is that invasive species have higher survival through the early stages of establishment than do non-invasive species. In this study we explore the hypothesis that the sexual reproductive success of the invasive trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. is higher than that of the native Fraxinus angustifolia Vahl., all three species coexisting within the riparian forests of Central Spain. We compared different stages of the early life cycle, namely seed rain, seed infestation by insects, seed removal by local fauna, seed germination under optimal conditions and seedling abundance between the two invasive trees and the native, in order to assess their sexual reproductive success. The exotic species did not differ from the native reference (all three species displaying high seed rain and undergoing seed losses up to 50% due to seed removal by the local fauna). Even if the exotic R. pseudoacacia showed a high percentage of empty and insect-parasited seeds along with a low seedling emergence and the exotic A. altissima was the species with more viable seeds and of higher germinability, no differences were found regarding these variables when comparing them with the native F. angustifolia. Unsuitable conditions might have hampered either seedling emergence and survival, as seedling abundance in the field was lower than expected in all species -especially in R. pseudoacacia-. Our results rather suggest that the sexual reproductive success was not higher in the exotic trees than in the native reference, but studies focusing on long-term recruitment would help to shed light on this issue. PMID:27529695

  4. Comparing the Sexual Reproductive Success of Two Exotic Trees Invading Spanish Riparian Forests vs. a Native Reference.

    PubMed

    Cabra-Rivas, Isabel; Castro-Díez, Pilar

    2016-01-01

    A widely accepted hypothesis in invasion ecology is that invasive species have higher survival through the early stages of establishment than do non-invasive species. In this study we explore the hypothesis that the sexual reproductive success of the invasive trees Ailanthus altissima (Mill.) Swingle and Robinia pseudoacacia L. is higher than that of the native Fraxinus angustifolia Vahl., all three species coexisting within the riparian forests of Central Spain. We compared different stages of the early life cycle, namely seed rain, seed infestation by insects, seed removal by local fauna, seed germination under optimal conditions and seedling abundance between the two invasive trees and the native, in order to assess their sexual reproductive success. The exotic species did not differ from the native reference (all three species displaying high seed rain and undergoing seed losses up to 50% due to seed removal by the local fauna). Even if the exotic R. pseudoacacia showed a high percentage of empty and insect-parasited seeds along with a low seedling emergence and the exotic A. altissima was the species with more viable seeds and of higher germinability, no differences were found regarding these variables when comparing them with the native F. angustifolia. Unsuitable conditions might have hampered either seedling emergence and survival, as seedling abundance in the field was lower than expected in all species -especially in R. pseudoacacia-. Our results rather suggest that the sexual reproductive success was not higher in the exotic trees than in the native reference, but studies focusing on long-term recruitment would help to shed light on this issue. PMID:27529695

  5. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    USGS Publications Warehouse

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by

  6. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    PubMed Central

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-01-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15–20 days and an intensity of 25–30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0–5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311–320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290

  7. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    NASA Astrophysics Data System (ADS)

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-10-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15-20 days and an intensity of 25-30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0-5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311-320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world.

  8. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas.

    PubMed

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-01-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15-20 days and an intensity of 25-30 m(3)/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0-5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311-320 million m(3) in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290

  9. The Effects of Coarse Woody Debris and Vegetation Structure on Avian Communities of Southeastern Loblolly Pine (Pinus taeda) Forests

    SciTech Connect

    Lohr, S.M.

    1999-09-01

    Avian community richness and abundance were compared among several treatments in which coarse woody debris was manipulated. Treatments included a control, all dead wood removed less than four inches, and all down wood less than four inches removed. Avian communities were compared during the winter and spring nesting periods. In general, no differences in community parameters were detected during the winter months. However, during the spring nesting season several species of cavity nesting species like woodpeckers were significantly reduced where all snags were removed. Diversity was highest on the control. In addition, the woody debris appeared to benefit several ground nesting species such as the Carolina wren.

  10. Assessing the impact of riparian processes on streambank erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil water dynamics within a streambank and riparian vegetation greatly affect streambank erosion. The integrated computer models CONCEPTS and REMM, which were developed to simulate stream channel morphology and riparian ecosystem function, were previously used to study the effectiveness of woody a...

  11. Push-pull tests to determine in-situ nitrogen processing in groundwaters of a tropical riparian forest, Luquillo Mountains, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Brereton, R. L.

    2012-12-01

    Riparian zones are biogeochemical hot spots known to control the flux of dissolved nitrogen (N) from groundwater to surface waters by providing favorable conditions for N removal and retention. In many watersheds with agricultural or urban inputs, N enters groundwater after being leached from soils in the form of nitrate, which is then removed from solution by denitrification in the anoxic riparian groundwater. Certain tropical forested watersheds, however, display spatial patterns in groundwater N chemistry that cannot be explained by simple denitrification. High ammonium concentrations (>0.5 mg/L), in comparison to other reference watersheds, exist in groundwaters directly adjacent to streams carrying little or no ammonium. The N speciation is accompanied by dramatic shifts in redox conditions from hillslope to riparian zone to stream. A valuable ecosystem service is being provided by these tropical ecosystems but that service has not been adequately described by science. What is the source and fate of this ammonium? The push-pull test is a recently developed method to determine in-situ reaction rates by the addition of reactive substrates and a conservative tracer to groundwater, followed by an incubation period and sampling over time. In the Rio Icacos watershed in the Luquillo Experimental Forest of Puerto Rico, push-pull tests were conducted to determine the reaction pathways of ammonium production and consumption. Shallow groundwater wells (1-4 m below soil surface) in a riparian zone of a tributary the Rio Icacos were tested in two locations: immediately adjacent to the stream and at the topographic break between the hillslope and the floodplain. 10 L "push" solutions with ammonium, nitrate, or both and a chloride or bromide tracer were added and incubated over a 20-40 hr period (depending on the hydraulic conductivity of the individual well). Initial results were consistent with coupled nitrification-denitrification occurring at both the hillslope

  12. Multi-Temporal Land Cover Analysis in the Mid-Willamette Basin, Oregon: Assessment of Riparian Forest Canopy Using Landsat Thematic Mapper Data

    NASA Astrophysics Data System (ADS)

    Stanley, R. J.; Taylor, S. B.

    2010-12-01

    The 11,500 sq. mi. Willamette Basin is home to 70% of Oregon’s population and is associated with an extensive post-settlement history of land cover modification. Existing assessments estimate that between 30 and 44% of riparian zones have been subject to anthropogenic disturbances, which in turn have negatively impacted TMDL levels for temperature and sediment loading (Oregon DEQ, 2009). As such, riparian forest restoration is cited as one of the primary management objectives needed to improve habitat quality. This study involves a regional multi-temporal land cover analysis utilizing Landsat Thematic Mapper (TM) satellite imagery and supervised image classification to document changes in canopy cover (Landsat acquisition years 2000 and 2009). The rectangular study site is oriented north-south and extends from Yamhill to Eugene, occupying a 3,133 sq. mi. footprint that captures the dynamic landuse interface between urban centers, lowland riparian habitats, and Oregon Coast Range forests. Landsat 5 TM data for the study site were acquired via the USGS Global Visualization Viewer with multispectral imagery including 6 reflected bands suited for quantifying broad-scale land cover regimes, including vegetation. Classification training sites for water, forest, and agricultural land-cover categories were selected to accurately represent within-class spectral variability. A supervised classification scheme was employed to compare training signatures against the six reflective bands in each image year. A maximum likelihood algorithm was utilized to delineate land-cover classes with overlapping spectral signatures. Other processing techniques included radiometric normalization of brightness values, and derivation of NDVI and Tasseled Cap vegetative indices. Final classification accuracy was assessed by randomly assigning 100 spatially distributed point samples per class and comparing each to available ground truth. Two distinct landuse domains were delineated within the

  13. Postfire logging in riparian areas.

    PubMed

    Reeves, Gordon H; Bisson, Peter A; Rieman, Bruce E; Benda, Lee E

    2006-08-01

    We reviewed the behavior of wildfire in riparian zones, primarily in the western United States, and the potential ecological consequences of postfire logging. Fire behavior in riparian zones is complex, but many aquatic and riparian organisms exhibit a suite of adaptations that allow relatively rapid recovery after fire. Unless constrained by other factors, fish tend to rebound relatively quickly, usually within a decade after a wildfire. Additionally, fire and subsequent erosion events contribute wood and coarse sediment that can create and maintain productive aquatic habitats over time. The potential effects of postfire logging in riparian areas depend on the landscape context and disturbance history of a site; however available evidence suggests two key management implications: (1) fire in riparian areas creates conditions that may not require intervention to sustain the long-term productivity of the aquatic network and (2) protection of burned riparian areas gives priority to what is left rather than what is removed. Research is needed to determine how postfire logging in riparian areas has affected the spread of invasive species and the vulnerability of upland forests to insect and disease outbreaks and how postfire logging will affect the frequency and behavior of future fires. The effectiveness of using postfire logging to restore desired riparian structure and function is therefore unproven, but such projects are gaining interest with the departure of forest conditions from those that existed prior to timber harvest, fire suppression, and climate change. In the absence of reliable information about the potential consequence of postfire timber harvest, we conclude that providing postfire riparian zones with the same environmental protections they received before they burned isjustified ecologically Without a commitment to monitor management experiments, the effects of postfire riparian logging will remain unknown and highly contentious. PMID:16922216

  14. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon

    PubMed Central

    2014-01-01

    Background Riparian forests provide ecosystem services that are essential for human well-being. The Pepital River is the main water supply for Alcântara (Brazil) and its forests are disappearing. This is affecting water volume and distribution in the region. Promoting forest restoration is imperative. In deprived regions, restoration success depends on the integration of ecology, livelihoods and traditional knowledge (TEK). In this study, an interdisciplinary research framework is proposed to design riparian forest restoration strategies based on ecological data, TEK and social needs. Methods This study takes place in a region presenting a complex history of human relocation and land tenure. Local populations from seven villages were surveyed to document livelihood (including ‘free-listing’ of agricultural crops and homegarden tree species). Additionally, their perceptions toward environmental changes were explored through semi-structured interviews (n = 79). Ethnobotanical information on forest species and their uses were assessed by local-specialists (n = 19). Remnants of conserved forests were surveyed to access ecological information on tree species (three plots of 1,000 m2). Results included descriptive statistics, frequency and Smith’s index of salience of the free-list results. Results The local population depends primarily on slash-and-burn subsistence agriculture to meet their needs. Interviewees showed a strong empirical knowledge about the environmental problems of the river, and of their causes, consequences and potential solutions. Twenty-four tree species (dbh > 10 cm) were found at the reference sites. Tree density averaged 510 individuals per hectare (stdv = 91.6); and 12 species were considered the most abundant (density > 10ind/ha). There was a strong consensus among plant-specialists about the most important trees. The species lists from reference sites and plant-specialists presented an important convergence

  15. Nitrous Oxide Emissions from Riparian Forest Buffers, Warm-Season and Cool-Season Grass Filters, and Crop Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing denitrification rates in riparian buffers may be trading the problem of nonpoint source (NPS) pollution of surface waters for atmospheric deterioration and increased global warming potential because denitrification produces nitrous oxide (N2O), a greenhouse gas also involved in stratosphe...

  16. Surface water and groundwater nitrogen dynamics in a well drained riparian forest within a poorly drainged agricultural landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian ecosystems, through their unique position in the agricultural landscape and ability to influence nutrient cycles, can potentially reduce nutrient loading to surface and ground waters. The primary purpose of this study was to determine the efficacy of a well-drained, mixed-deciduous riparia...

  17. Riparian forest effects on nitrogen export to an agricultural stream inferred from experimental data and a model

    EPA Science Inventory

    The effects of riparian vegetation on the reduction of agricultural nitrogen export to streams have been well described experimentally, but a clear understanding of process-level hydrological and biogeochemical controls can be difficult to ascertain from data alone. We apply a ne...

  18. Equations for estimating biomass of herbaceous and woody vegetation in early-successional southern Appalachian pine-hardwood forests. Forest Service research note

    SciTech Connect

    Elliott, K.J.; Clinton, B.D.

    1993-03-31

    Allometric equations were developed to predict aboveground dry weight of herbaceous and woody species on prescribe-burned sites in the Southern Appalachians. Best-fit least-square regression models were developed using diameter, height, or both, as the independent variables and dry weight as the dependent variable. Coefficients of determination for the selected total biomass models ranged from 0.620 to 0.992 for herbaceous species and from 0.698 to 0.999 for the wood species. Equations for foliage biomass generally had lower coefficients of determination than did equations for either stem or total biomass of woody species.

  19. Avian Diversity and Feeding Guilds in a Secondary Forest, an Oil Palm Plantation and a Paddy Field in Riparian Areas of the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-01-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon’s diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds. PMID:24575217

  20. Regional framework of early growth response for loblolly pine relative to herbaceous, woody, and complete competition control: The comproject. Forest Service general technical report

    SciTech Connect

    Miller, J.H.; Zutter, B.R.; Zedaker, S.M.; Edwards, M.B.; Newbold, R.A.

    1995-09-01

    A common study design has been installed at 13 locations throughout the Southeastern United States to track the growth of loblolly pine (Pinus taeda L.) plantations established with four different competition control treatments: no control (only chopping-burning), woody control for 5 years, herbaceous control for 4 years, and total control after site preparation. This regionwide investigation is known as the competition Omission Monitoring Project, a coordinated study with the Auburn University Silvicultural Herbicide Cooperative (Study HB-4F). Data summaries for each location are presented for loblolly pine growth and competition intensities for the first 8 years. Approximately 10,000 loblolly pine seedlings have been measured annually. Responses from this network of studies should be useful in assessing and reporting relative growth of loblolly pines for other studies and operational plantings. These data sets should also be useful for the future forest growth modeling efforts.

  1. Study of floristic diversity and the structural dynamics of some species providers of non woody forest products in the vegetable formations of the Centre East of Burkina Faso.

    PubMed

    Ky, J M K; Gnoula, C; Zerbo, P; Simpore, J; Nikiema, J B; Canini, A; Millogo-Rasolodimby, J

    2009-07-15

    The goal of this study is to contribute to a better knowledge of certain species providing Non Woody Forest Products (NWFP) in the Centre East of Burkina Faso. This study aims to determine the state of the resources in Vitellaria paradoxa, Balanites aegyptiaca, Tamarindus indica and Lannea microcarpa. For this purpose, an inventory of the vegetation was carried out in circular pieces of land of 1250 m2, as a sample of the zone of work, based on the chart of occupation of the grounds. We are identified 158 species comprising 90 genera and 47 families. Those species represent more than 90% of the trees from which various parts are used in food, traditional pharmacopeia and the craft industry. We also showed that because of the strong anthropisation of the zone, the bad pedoclimatic conditions and the permanent bush fires, the regeneration and growth of Vitellaria paradoxa, Balanites aegyptiaca, Tamarindus indica and Lannea microcarpa are disturbed. PMID:19947178

  2. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    USGS Publications Warehouse

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  3. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited

  4. [Woody plant species composition and community structure in residual fragments of broad-leaved Korean pine mixed forests in Changbai Mountains area].

    PubMed

    Song, Hou-Juan; Ye, Ji; Shi, Shuai; Zhang, Zhao-Chen; Kuang, Xu; Xing, Ding-Liang; Yuan, Zuo-Qiang; Lin, Fei; Wang, Xu-Gao; Hao, Zhan-Qing

    2014-05-01

    The broad-leaved Korean pine mixed forest represents the typical vegetation type of the eastern mountain area in Northeast China. However, due to the interference of human activities, the natural broad-leaved Korean pine forest only distributes in some residual fragments with unequal areas in Changbai Mountains and Small Hinggan Mountains. To compare and analyze the similarities and differences of broad-leaved Korean pine mixed forests in the different areas, we established six forest plots following the field protocol of the 50 hm2 forest plot in Panama (Barro Colorado Island, BCI) in 2012 in Changbai Mountain National Nature Reserve in Jilin Province and the eastern mountain area in Liaoning Province. All free-standing plant species with DBH (diameter at breast height) > or = 1 cm were mapped, tagged and identified to species. The results showed that there were 69 woody species in the six plots, comprising 42 genera and24 families. Aceraceae was the most species-rich family in all six plots. Most species belonged to the plant type of North Temperate Zone, with a minor subtropical plant species component. The statistics of species abundance, basal area, mean DBH, and importance value showed that there were obviously dominant species in each community. The DBH distribution of all individuals showed a reversed "J" type. However, the percentage of individuals in small size-class and large size-class varied in the six communities, which indicated that these communities were at different successional stages. Ranked by the importance value, the DBH distribution of the top three species in the six plots showed four distribution types: reversed "J" distribution, reversed "L" distribution, unimodal distribution, and partial peak distribution. Spatial distribution patterns of the main species in the six plots changed differently with species and size-class, and the distribution patterns of the same species varied in the different plots. PMID:25129921

  5. Riparian buffer transpiration and watershed scale impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  6. Riparian vegetation structure under desertification scenarios

    NASA Astrophysics Data System (ADS)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  7. Implications of the results of colonization experiments for designing riparian restoration projects adjacent to agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many headwater streams and their riparian habitats in the Midwestern United States have been modified for agricultural drainage. Agricultural drainage often results in reductions of physical habitat diversity, shifts from woody to herbaceous riparian vegetation, and the loss of riparian habitat. T...

  8. Edaphic, salinity, and stand structural trends in chronosequences of native and non-native dominated riparian forests along the Colorado River, USA

    USGS Publications Warehouse

    Merritt, David M.; Shafroth, Patrick B.

    2012-01-01

    Tamarix spp. are introduced shrubs that have become among the most abundant woody plants growing along western North American rivers. We sought to empirically test the long-held belief that Tamarix actively displaces native species through elevating soil salinity via salt exudation. We measured chemical and physical attributes of soils (e.g., salinity, major cations and anions, texture), litter cover and depth, and stand structure along chronosequences dominated by Tamarix and those dominated by native riparian species (Populus or Salix) along the upper and lower Colorado River in Colorado and Arizona/California, USA. We tested four hypotheses: (1) the rate of salt accumulation in soils is faster in Tamarix-dominated stands than stands dominated by native species, (2) the concentration of salts in the soil is higher in mature stands dominated by Tamarix compared to native stands, (3) soil salinity is a function of Tamarix abundance, and (4) available nutrients are more concentrated in native-dominated stands compared to Tamarix-dominated stands. We found that salt concentration increases at a faster rate in Tamarix-dominated stands along the relatively free-flowing upper Colorado but not along the heavily-regulated lower Colorado. Concentrations of ions that are known to be preferentially exuded by Tamarix (e.g., B, Na, and Cl) were higher in Tamarix stands than in native stands. Soil salt concentrations in older Tamarix stands along the upper Colorado were sufficiently high to inhibit germination, establishment, or growth of some native species. On the lower Colorado, salinity was very high in all stands and is likely due to factors associated with floodplain development and the hydrologic effects of river regulation, such as reduced overbank flooding, evaporation of shallow ground water, higher salt concentrations in surface and ground water due to agricultural practices, and higher salt concentrations in fine-textured sediments derived from naturally saline

  9. Fluctuating asymmetry and wing size of Argia tinctipennis Selys (Zygoptera: Coenagrionidae) in relation to riparian forest preservation status.

    PubMed

    Pinto, N S; Juen, L; Cabette, H S R; De Marco, P

    2012-06-01

    Effects of riparian vegetation removal on body size and wing fluctuating asymmetry (FA) of Argia tinctipennis Selys (Odonata: Coenagrionidae) were studied in the River Suiá-Miçú basin, which is part of the Xingu basin in Brazilian Amazonia. A total of 70 specimens (n = 33 from preserved and n = 37 from degraded areas) was measured. Five wing measures of each wing (totalizing ten measured characters) were taken. Preserved and degraded points presented non-overlapped variations of a Habitat Integrity Index, supporting the environmental differentiation between these two categories. FA increases in degraded areas approximately four times for the width between the nodus and proximal portion of the pterostigma of forewings (FW), two times for the width of the wing in the region of nodus of FW, and approximately 1.7 times for the number of postnodal cells of FW. The increase is almost five times for the width between the nodus and the proximal portion of the pterostigma of hind wings (HW), three times for the number of postnodal cells of HW, and approximately 1.6 times the width between quadrangle and nodus of HW. Individuals of preserved sites were nearly 3.3% larger than for degraded sites, based on mean hind wing length. Our results supports that the development of A. tinctipennis in degraded areas is affected by riparian vegetation removal and may reflect in wing FA variations. Consequently, these FA measures may be a useful tool for bioassessment using Odonata insects as a model. PMID:23950041

  10. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, Northwest China.

    PubMed

    Li, Wei; Yu, TengFei; Li, XiaoYan; Zhao, ChunYan

    2015-10-01

    Hysteresis, related to tree sap flow and associated environmental variables, plays a critical ecological role in the comprehensive understanding of forest water use dynamics. Nevertheless, only limited researches related to this unique ecological phenomenon have been conducted to date in desert riparian forests under extreme arid regions. Populus euphratica Oliv sap flow velocity (VS) was measured during the 2012 growing season using the heat ratio method, at the same time as environmental variables, such as photosynthetically active radiation (PAR), vapor pressure deficit (VPD), and leaf water potential. We found clockwise patterns of hysteresis between VS and VPD but anticlockwise patterns between VS and PAR. Pronounced hysteretic VS lag time, a function of PAR and VPD, was approximately 1.0~1.5 and -0.5 h, respectively. Hysteresis was primarily caused by the biophysical declining in canopy conductance. Sigmoid response of VS to synthetic meteorological variables was enhanced by approximately 56 % after hysteresis calibration to sunny days. Consequently, hysteresis can be seen as a protection mechanism for plants to avoid the overlapping of peak VS and environmental variables. Furthermore, the consistent presence of hysteresis suggested that estimating of plant water use in large temporal and spatial models may require certain provisions to different VS responses to variables between morning and afternoon and between seasons. PMID:27624743

  11. Riparian indicators of flow frequency in a tropical montane stream network

    NASA Astrophysics Data System (ADS)

    Pike, Andrew S.; Scatena, Frederick N.

    2010-03-01

    SummaryMany field indicators have been used to approximate the magnitude and frequency of flows in a variety of streams and rivers, yet due to a scarcity of long-term flow records in tropical mountain streams, little to no work has been done to establish such relationships between field features and the flow regime in these environments. Furthermore, the transition between the active channel of a river and the adjacent flood zone (i.e. bankfull) is an important geomorphologic and ecological boundary, but is rarely identifiable in steep mountain channels that lack alluvial flood plains. This study (a) quantifies relationships between field indicators and flow frequency in alluvial and steepland channels in a tropical mountain stream network and (b) identifies a reference active channel boundary in these channels, based on statistically defined combinations of riparian features, that corresponds to the same flow frequency of the bankfull stage and the effective discharge in adjacent alluvial channels. The relative elevation of transitions in riparian vegetation, soil, and substrate characteristics were first surveyed at nine stream gages in and around the Luquillo Experimental Forest in Northeastern Puerto Rico. The corresponding discharge, flow frequency, and recurrence intervals associated with these features was then determined from long-term 15-min discharge records and a partial duration series analysis. Survey data indicate that mosses and short grasses dominate at a stage often inundated by sub-effective flows. Herbaceous vegetation is associated with intermediate discharges that correspond to the threshold for sediment mobilization. Near-channel woody shrubs and trees establish at elevations along the channel margin inundated by a less frequent discharge that is coincident with the effective discharge of bed load sediment transport. Our data demonstrate that in alluvial channels in the study, both the bankfull stage (as marked by a flood plain) and the

  12. The contrasting nature of woody plant species in different neotropical forest biomes reflects differences in ecological stability.

    PubMed

    Pennington, R Toby; Lavin, Matt

    2016-04-01

    25 I. 25 II. 26 III. 27 IV. 27 V. 28 VI. 32 VII. 33 VIII. 34 35 References 35 SUMMARY: A fundamental premise of this review is that distinctive phylogenetic and biogeographic patterns in clades endemic to different major biomes illuminate the evolutionary process. In seasonally dry tropical forests (SDTFs), phylogenies are geographically structured and multiple individuals representing single species coalesce. This pattern of monophyletic species, coupled with their old species stem ages, is indicative of maintenance of small effective population sizes over evolutionary timescales, which suggests that SDTF is difficult to immigrate into because of persistent resident lineages adapted to a stable, seasonally dry ecology. By contrast, lack of coalescence in conspecific accessions of abundant and often widespread species is more frequent in rain forests and is likely to reflect large effective population sizes maintained over huge areas by effective seed and pollen flow. Species nonmonophyly, young species stem ages and lack of geographical structure in rain forest phylogenies may reflect more widespread disturbance by drought and landscape evolution causing resident mortality that opens up greater opportunities for immigration and speciation. We recommend full species sampling and inclusion of multiple accessions representing individual species in phylogenies to highlight nonmonophyletic species, which we predict will be frequent in rain forest and savanna, and which represent excellent case studies of incipient speciation. PMID:26558891

  13. Use of standardized visual assessments of riparian and stream condition to manage riparian bird habitat in eastern Oregon.

    PubMed

    Cooke, Hilary A; Zack, Steve

    2009-07-01

    The importance of riparian vegetation to support stream function and provide riparian bird habitat in semiarid landscapes suggests that standardized assessment tools that include vegetation criteria to evaluate stream health could also be used to assess habitat conditions for riparian-dependent birds. We first evaluated the ability of two visual assessments of woody vegetation in the riparian zone (corridor width and height) to describe variation in the obligate riparian bird ensemble along 19 streams in eastern Oregon. Overall species richness and the abundances of three species all correlated significantly with both, but width was more important than height. We then examined the utility of the riparian zone criteria in three standardized and commonly used rapid visual riparian assessment protocols--the USDI BLM Proper Functioning Condition (PFC) assessment, the USDA NRCS Stream Visual Assessment Protocol (SVAP), and the U.S. EPA Habitat Assessment Field Data Sheet (HAFDS)--to assess potential riparian bird habitat. Based on the degree of correlation of bird species richness with assessment ratings, we found that PFC does not assess obligate riparian bird habitat condition, SVAP provides a coarse estimate, and HAFDS provides the best assessment. We recommend quantitative measures of woody vegetation for all assessments and that all protocols incorporate woody vegetation height. Given that rapid assessments may be the only source of information for thousands of kilometers of streams in the western United States, incorporating simple vegetation measurements is a critical step in evaluating the status of riparian bird habitat and provides a tool for tracking changes in vegetation condition resulting from management decisions. PMID:18574622

  14. Use of Standardized Visual Assessments of Riparian and Stream Condition to Manage Riparian Bird Habitat in Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Cooke, Hilary A.; Zack, Steve

    2009-07-01

    The importance of riparian vegetation to support stream function and provide riparian bird habitat in semiarid landscapes suggests that standardized assessment tools that include vegetation criteria to evaluate stream health could also be used to assess habitat conditions for riparian-dependent birds. We first evaluated the ability of two visual assessments of woody vegetation in the riparian zone (corridor width and height) to describe variation in the obligate riparian bird ensemble along 19 streams in eastern Oregon. Overall species richness and the abundances of three species all correlated significantly with both, but width was more important than height. We then examined the utility of the riparian zone criteria in three standardized and commonly used rapid visual riparian assessment protocols—the USDI BLM Proper Functioning Condition (PFC) assessment, the USDA NRCS Stream Visual Assessment Protocol (SVAP), and the U.S. EPA Habitat Assessment Field Data Sheet (HAFDS)—to assess potential riparian bird habitat. Based on the degree of correlation of bird species richness with assessment ratings, we found that PFC does not assess obligate riparian bird habitat condition, SVAP provides a coarse estimate, and HAFDS provides the best assessment. We recommend quantitative measures of woody vegetation for all assessments and that all protocols incorporate woody vegetation height. Given that rapid assessments may be the only source of information for thousands of kilometers of streams in the western United States, incorporating simple vegetation measurements is a critical step in evaluating the status of riparian bird habitat and provides a tool for tracking changes in vegetation condition resulting from management decisions.

  15. Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots.

    PubMed

    Pei, Nancai; Erickson, David L; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G; Zhang, Jin-Long; Jones, Frank A; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum, Shawn; Bourg, Norman A; Parker, John D; Zimmerman, Jess K; McShea, William J; Lopez, Ida C; Sun, I-Fang; Davies, Stuart J; Ma, Keping; Kress, W John

    2015-01-01

    To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities. PMID:26456472

  16. Closely-related taxa influence woody species discrimination via DNA barcoding: evidence from global forest dynamics plots

    PubMed Central

    Pei, Nancai; Erickson, David L.; Chen, Bufeng; Ge, Xuejun; Mi, Xiangcheng; Swenson, Nathan G.; Zhang, Jin-Long; Jones, Frank A.; Huang, Chun-Lin; Ye, Wanhui; Hao, Zhanqing; Hsieh, Chang-Fu; Lum, Shawn; Bourg, Norman A.; Parker, John D.; Zimmerman, Jess K.; McShea, William J.; Lopez, Ida C.; Sun, I-Fang; Davies, Stuart J.; Ma, Keping; Kress, W. John

    2015-01-01

    To determine how well DNA barcodes from the chloroplast region perform in forest dynamics plots (FDPs) from global CTFS-ForestGEO network, we analyzed DNA barcoding sequences of 1277 plant species from a wide phylogenetic range (3 FDPs in tropics, 5 in subtropics and 5 in temperate zone) and compared the rates of species discrimination (RSD). We quantified RSD by two DNA barcode combinations (rbcL + matK and rbcL + matK + trnH-psbA) using a monophyly-based method (GARLI). We defined two indexes of closely-related taxa (Gm/Gt and S/G ratios) and correlated these ratios with RSD. The combination of rbcL + matK averagely discriminated 88.65%, 83.84% and 72.51% at the local, regional and global scales, respectively. An additional locus trnH-psbA increased RSD by 2.87%, 1.49% and 3.58% correspondingly. RSD varied along a latitudinal gradient and were negatively correlated with ratios of closely-related taxa. Successes of species discrimination generally depend on scales in global FDPs. We suggested that the combination of rbcL + matK + trnH-psbA is currently applicable for DNA barcoding-based phylogenetic studies on forest communities. PMID:26456472

  17. Passive restoration potential of riparian areas invaded by giant reed (Arundo donax) in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed (Arundo donax L.) is a rhizomatous woody non-native grass that has invaded much of the riparian areas of the southwest. By forming thick impenetrable swaths along riverbanks and waterways, giant reed has driven riparian ecosystem decline and displaced native biodiversity. It’s document...

  18. Using Airborne Lidar to Predict Leaf Area Index in Cottonwood Trees and Refine Riparian Water Use Estimates 1877

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of riparian forest structure is important for developing a better understanding of how riparian forest ecosystems function. Additionally, estimation of riparian forest structural attributes, such as Leaf Area Index (LAI), is an important step in identifying the amount of water use in ...

  19. Human uses of forested watersheds and riparian corridors: hazard mitigation as an ecosystem service, with examples from Panama, Puerto Rico, and Venezuela

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.

    2015-12-01

    Humans have long favored settlement along rivers for access to water supply for drinking and agriculture, for transport corridors, and for food sources. Additionally, settlement in or near montane forests include benefits such as food sources, wood supply, esthetic values, and high quality water resources derived from watersheds where upstream human disturbance and environmental degradation is generally reduced. However, the advantages afforded by these riparian and montane settings pose episodic risks for communities located there as floods, landslides, and wildfires cause loss of life, destroy infrastructure, and damage or destroy crops. A basic understanding of flood probability and magnitude as well as hillslope stability by residents in these environments can mitigate these risks. Early humans presumably developed some degree of knowledge about these risks by means of their long periods of occupation in these environments and their observations of seasonal and storm rainfall patterns and river discharge, which became more refined as agriculture developed over the past 10,000 years. Modern global urbanization, particularly in regions of rapid economic growth, has resulted in much of this "organic" knowledge being lost, as rural populations move into megacities, many of which encroach on floodplains and mountain fronts. Moreover, the most likely occupants of these hazardous locations are often economically constrained, increasing their vulnerabity. Effective stewardship of river floodplains and upstream montane forests yields a key ecosystem service, which in addition to the well-known services, ie. water, hydroelectric energy, etc., provides a risk mitigation service, by reducing hazard and vulnerability. Puerto Rico, Panama, and Venezuela illustrate a range of practices and results, providing useful examples for planners and land use managers.

  20. Relationship between the Decomposition Process of Coarse Woody Debris and Fungal Community Structure as Detected by High-Throughput Sequencing in a Deciduous Broad-Leaved Forest in Japan

    PubMed Central

    Yamashita, Satoshi; Masuya, Hayato; Abe, Shin; Masaki, Takashi; Okabe, Kimiko

    2015-01-01

    We examined the relationship between the community structure of wood-decaying fungi, detected by high-throughput sequencing, and the decomposition rate using 13 years of data from a forest dynamics plot. For molecular analysis and wood density measurements, drill dust samples were collected from logs and stumps of Fagus and Quercus in the plot. Regression using a negative exponential model between wood density and time since death revealed that the decomposition rate of Fagus was greater than that of Quercus. The residual between the expected value obtained from the regression curve and the observed wood density was used as a decomposition rate index. Principal component analysis showed that the fungal community compositions of both Fagus and Quercus changed with time since death. Principal component analysis axis scores were used as an index of fungal community composition. A structural equation model for each wood genus was used to assess the effect of fungal community structure traits on the decomposition rate and how the fungal community structure was determined by the traits of coarse woody debris. Results of the structural equation model suggested that the decomposition rate of Fagus was affected by two fungal community composition components: one that was affected by time since death and another that was not affected by the traits of coarse woody debris. In contrast, the decomposition rate of Quercus was not affected by coarse woody debris traits or fungal community structure. These findings suggest that, in the case of Fagus coarse woody debris, the fungal community structure is related to the decomposition process of its host substrate. Because fungal community structure is affected partly by the decay stage and wood density of its substrate, these factors influence each other. Further research on interactive effects is needed to improve our understanding of the relationship between fungal community structure and the woody debris decomposition process

  1. Emission of the Greenhouse Gas Nitrous Oxide (N2O) from Riparian Forest Buffers, Warm-Season and Cool-Season Grass Filters and Crop Fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification is recognized as the major mechanism for reducing nitrate in riparian buffers coping with non-point source pollution (NPS) of surface water bodies. However, there are still questions about the quantity and products of denitrification that different kinds of riparian buffer vegetatio...

  2. Controls on denitrification in riparian soils in headwater catchments of a hardwood forest in the Catskill Mountains, U.S.A.

    USGS Publications Warehouse

    Ashby, J.A.; Bowden, W.B.; Murdoch, Peter S.

    1998-01-01

    Denitrification in riparian soils is thought to be an important factor that reduces hydrologic export of nitrate from forested and agricultural catchments. A 2-y study to identify the soil factors most closely associated with denitrification in riparian soils in headwater catchments within the Catskill Mountains of New York, included field surveys of surface and subsurface denitrification rates, and an amendment experiment to assess the relative effects of increases in available carbon and substrate NO-/3 on denitrification rates. Denitrification rates were measured by acetylene inhibition during incubation of intact soil cores from eight soil types representing a range of drainage classes. Soil cores were analyzed for organic matter, total P, extractable NO-/3-N and NH+/4-N, organic N, pH, moisture, porosity, and water-filled pore space, to determine which of these factors were most closely associated with denitrification. The distribution of denitrification rates found during the field surveys was highly skewed, with many low or zero values and few high values. Denitrification rates were positively associated with high soil organic matter, total P, and water-filled pore space, and were highest in seep (poorly-drained) soils, toeslope (seasonally-drained) soils, and stream-edge (poorly- to moderately well-drained) soils in which these three soil characteristics were typically high. Denitrification rates in these wet locations were also positively associated with soil NH+/4-N concentration and pH, but not with NO-/3-N concentration, suggesting that the rate of NO-/3 supply (via nitrification or hydrologic transport) was more important than the instantaneous concentration of NO-/3-N in the soils. The amendment experiment indicated that denitrification in soil types studied was most responsive to added glucose alone or with NO-/3. Thus, in these soils, a combination of slow rates of NO-/3 supply and low available carbon appears to limit denitrification. Annual

  3. Riparian Ficus Tree Communities: The Distribution and Abundance of Riparian Fig Trees in Northern Thailand

    PubMed Central

    Pothasin, Pornwiwan; Compton, Stephen G.; Wangpakapattanawong, Prasit

    2014-01-01

    Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010–2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance. PMID:25310189

  4. A 70-year perspective on tropical forest regeneration.

    PubMed

    Abbas, Sawaid; Nichol, Janet E; Fischer, Gunter A

    2016-02-15

    Forested areas of the world decreased by 129 million hectare during the past quarter-century, and only 35 % of remainder is primary forest. Secondary forests are therefore relatively more important for biodiversity conservation, catchment protection, climate control, and the ecological services they provide. Many governments expend large resources on afforestation projects, which may not be supported by objective data on rates and pathways of natural succession in secondary forest. This paper describes a 70-year succession of tropical forest in Hong Kong under different management regimes including afforestation programs, frequent fire, and fire protection. From complete destruction of its forest during the Second World War, forest has established rapidly in areas where a shrub cover was able to colonize. The practice of afforestation as a nursery stage on degraded hillsides, for establishment of forest seedlings by natural invasion is not supported by the evidence, as when the native Pinus massoniana plantations were eliminated by disease during the 1970s, no forest or woody species were seen in the areas affected. In fact there was a reversion to grassland, which persisted there for almost three decades, until recent shrub invasion. The fastest period of forest regeneration, at 10.9% annually between 1989 and 2001, occurred when shrubland edge was greatest and forest was able to colonize across interfluves between linear-shaped riparian shrublands in valley bottoms. After 2001, succession to forest was slower, at 7.8% annually, as forest patches consolidated and edge habitats reduced. Effective forest management policies could include seeding of native shrubs extending linearly from established forest, to maximize edge length between woody species and grasslands, and planting of late successional species in areas where forest pioneers are in decline. PMID:26674683

  5. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. PMID:27534953

  6. Effect of Severe Winter Cold on the Photosynthetic Potentials of Three Co-occurring Evergreen Woody Species in a Mediterranean Forest, Catalonia (Spain)

    NASA Astrophysics Data System (ADS)

    Sperlich, Dominik; Gracia, Carlos; Peñuelas, Josep; Sabaté, Santi

    2013-04-01

    Evergreen tree species in the Mediterranean region have to cope with a wide range of environmental stress conditions from summer drought to winter cold. The winter period can lead to photoinhibition due to a combination of high solar irradiances and chilling temperatures which can reduce the light saturation point. However, Mediterranean winter mildness can lead periodically to favourable environmental conditions above the threshold for positive carbon balance benefitting evergreen woody species in contrast to winter deciduous species. The advantage of being able to photosynthesis all year round with a significant fraction in the winter month is compensating for the lower photosynthetic potentials during spring and summer in comparison to deciduous species. In this work, we investigated the physiological behaviour of three evergreen tree species (Quercus ilex, Pinus halepensis, Arbutus undeo) co-occurring in a natural and mature Mediterranean forest after a period of mild winter conditions and their response to a sudden period of intense cold weather. Therefore, we examined in each period the photosynthetic potentials by estimating the maximum carboxylation rate (Vcmax) and the maximum electron transport rate (Jmax) through gas exchange measurements. The results indicate that all species exhibited extraordinary high photosynthetic potentials during the first period of measurement as a response to the mild conditions. However, the sudden cold period affected negatively the photosynthetic potentials of Quercus ilex and A. unedo with reduction ranging between 37 to 45 %, whereas they were observed to be only insignificantly reduced in Pinus halepensis. Our results can be explained by previous classifications into photoinhibition-avoiding (P. halpensis) and photoinhibition-tolerant (Q. ilex, A. undeo) species on the basis of their susceptibility to dynamic photoinhibition (Martinez Ferri 2000). Photoinhibition tolerant species are characterised with a more dynamic

  7. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  8. Effects of Stream and Elevation Resolution on Riparian Metrics and Restoration Identification

    EPA Science Inventory

    Even though riparian areas attenuate nutrients and sediments from agricultural runoff at the field scale, best management practices and locations for restoring riparian areas should be determined at watershed scales. Riparian metrics (e.g., percent forest within 100m of stream)...

  9. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA.

    PubMed

    Tagwireyi, Paradzayi; Sullivan, S Mažeika P

    2015-01-01

    Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick's Index [DM]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods. PMID

  10. Riverine Landscape Patch Heterogeneity Drives Riparian Ant Assemblages in the Scioto River Basin, USA

    PubMed Central

    Tagwireyi, Paradzayi; Sullivan, S. Mažeika P.

    2015-01-01

    Although the principles of landscape ecology are increasingly extended to include riverine landscapes, explicit applications are few. We investigated associations between patch heterogeneity and riparian ant assemblages at 12 riverine landscapes of the Scioto River, Ohio, USA, that represent urban/developed, agricultural, and mixed (primarily forested, but also wetland, grassland/fallow, and exurban) land-use settings. Using remotely-sensed and ground-collected data, we delineated riverine landscape patch types (crop, grass/herbaceous, gravel, lawn, mudflat, open water, shrub, swamp, and woody vegetation), computed patch metrics (area, density, edge, richness, and shape), and conducted coordinated sampling of surface-active Formicidae assemblages. Ant density and species richness was lower in agricultural riverine landscapes than at mixed or developed reaches (measured using S [total number of species], but not using Menhinick’s Index [DM]), whereas ant diversity (using the Berger-Park Index [DBP]) was highest in agricultural reaches. We found no differences in ant density, richness, or diversity among internal riverine landscape patches. However, certain characteristics of patches influenced ant communities. Patch shape and density were significant predictors of richness (S: R2 = 0.72; DM: R2=0.57). Patch area, edge, and shape emerged as important predictors of DBP (R2 = 0.62) whereas patch area, edge, and density were strongly related to ant density (R2 = 0.65). Non-metric multidimensional scaling and analysis of similarities distinguished ant assemblage composition in grass and swamp patches from crop, gravel, lawn, and shrub as well as ant assemblages in woody vegetation patches from crop, lawn, and gravel (stress = 0.18, R2 = 0.64). These findings lend insight into the utility of landscape ecology to river science by providing evidence that spatial habitat patterns within riverine landscapes can influence assemblage characteristics of riparian arthropods

  11. Conceptual Assessment Framework for Forested Wetland Restoration: The Pen Branch Experience. Restoration of a Severely Impacted Riparian Wetland System - The Pen Branch Project

    SciTech Connect

    Kolka, R.; Nelson, E.A.; Trettin, C.C.

    2000-10-01

    Development of an assessment framework and indicators can be used to evaluate effectiveness of wetland restoration. Example of these include index of biotic integrity and the hydrogeomorphic method. Both approaches provide qualitative ranks. We propose a new method based on the EPA wetland research program. Similar to other methods, indexes are compared to reference communities; however, the comparisons are quantitative. In this paper we discuss the results of our framework using the Pen Branch riparian wetland system as an example.

  12. Reduced riparian zone width compromises aquatic macroinvertebrate communities in streams of southern Brazil.

    PubMed

    Moraes, Aline Bianca; Wilhelm, Andréia Emília; Boelter, Thaíse; Stenert, Cristina; Schulz, Uwe H; Maltchik, Leonardo

    2014-11-01

    Recent changes in Brazilian legislation reduced the width of riparian forest buffer needed to be preserved in private properties from 30 to 15 m or less. The consequences of these modifications can be dramatic, mainly because riparian buffer width is an important parameter for riparian forest structure and functioning. Our study assessed whether (1) macroinvertebrate family richness and Ephemeroptera, Plecoptera, and Trichoptera (EPT) family richness decrease with reduced riparian buffer width; (2) taxonomic composition and functional feeding group (FFG) composition of macroinvertebrates vary with a reduced riparian buffer width; and (3) reduced riparian buffer width similarly influence the macroinvertebrate community in different stream substrates. We selected three fragments with different riparian buffer widths (>40, <30, and <15 m) in three streams (fourth and fifth orders) in the Sinos River watershed, southern Brazil. Our results show that on all substrate types, reducing the width of the riparian buffer altered neither the macroinvertebrate richness nor EPT richness. However, EPT richness was greater in the substrates stone and gravel than leaf litter, independent of riparian buffer width. There was a significant difference in macroinvertebrate composition among riparian buffer widths. The macroinvertebrate composition and FFG differed among substrates, independent of riparian buffer width. This study showed that riparian buffer widths <15 m altered the macroinvertebrate community. A width greater than 15 m is necessary to maintain the composition and trophic conditions of macroinvertebrate families similar to those found in reference states of conservation. PMID:25052327

  13. Quantifying Riparian Evapotranspiration 1918

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-disciplinary group of government scientists and university researchers has been working to better understand the hydrological functioning of riparian systems in the Southwest. Perhaps the most socially-relevant facet of this research has been the quantification of riparian evapotranspiratio...

  14. Riparian influences on stream fish assemblage structure in urbanizing streams

    USGS Publications Warehouse

    Roy, A.H.; Freeman, B.J.; Freeman, Mary C.

    2007-01-01

    We assessed the influence of land cover at multiple spatial extents on fish assemblage integrity, and the degree to which riparian forests can mitigate the negative effects of catchment urbanization on stream fish assemblages. Riparian cover (urban, forest, and agriculture) was determined within 30 m buffers at longitudinal distances of 200 m, 1 km, and the entire network upstream of 59 non-nested fish sampling locations. Catchment and riparian land cover within the upstream network were highly correlated, so we were unable to distinguish between those variables. Most fish assemblage variables were related to % forest and % urban land cover, with the strongest relations at the largest spatial extent of land cover (catchment), followed by riparian land cover in the 1-km and 200-m reach, respectively. For fish variables related to urban land cover in the catchment, we asked whether the influence of riparian land cover on fish assemblages was dependent on the amount of urban development in the catchment. Several fish assemblage metrics (endemic richness, endemic:cosmopolitan abundance, insectivorous cyprinid richness and abundance, and fluvial specialist richness) were all best predicted by single variable models with % urban land cover. However, endemic:cosmopolitan richness, cosmopolitan abundance, and lentic tolerant abundance were related to % forest cover in the 1-km stream reach, but only in streams that had <15% catchment urban land cover. In these cases, catchment urbanization overwhelmed the potential mitigating effects of riparian forests on stream fishes. Together, these results suggest that catchment land cover is an important driver of fish assemblages in urbanizing catchments, and riparian forests are important but not sufficient for protecting stream ecosystems from the impacts of high levels of urbanization.

  15. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    NASA Astrophysics Data System (ADS)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  16. Sustainable cropping systems using cover crops, native species field borders and riparian buffers for environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will focus on the application of sustainable management practices for no-till cultivation using cover crops, native species field borders, and fast growing woody species integrated in vegetative strips and riparian buffers. An ongoing field project at the Bradford Research and Exte...

  17. Influence of Herbaceous Riparian Buffers on Channelized Headwater Streams in Central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous riparian buffers are a widely used conservation practice in the United States for reducing nutrient, pesticide, and sediment loadings in agricultural streams. The importance of forested riparian buffers for headwater streams has been documented, but the ecological impacts of herbaceous ri...

  18. Large woody debris mobility and accumulation by an extreme flood - an example from the Dyje River, Czech Republic

    NASA Astrophysics Data System (ADS)

    Macka, Zdenek; Krejci, Lukas

    2010-05-01

    Large woody debris (LWD) in the form of logs, branches and their fragments play an important geomorphic and ecological role in forested watersheds. Especially when organized in accumulations and jams, LWD have been found to change hydraulic, morphological, sedimentary and biological characteristics of fluvial ecosystems. Our study focuses on LWD jams distribution and properties within the 44 km long forested reach of the Dyje River in south-eastern Czech Republic. The study reach is located between two large water reservoirs and the flow is regulated showing significant daily fluctuation of discharges due to water releases for power generation. River flows in the deeply incised meandering valley with the narrow and patchy floodplain. In 2002, and especially 2006 large volumes of LWD have been transported by river and the water reservoir downstream was congested with wood. Peak discharge of 2006 flood equalled 306 m3.s-1 which was estimated as 500 year flood. The flood caused significant mobility and redistribution of woody debris as in aquatic, so in riparian segment of the river corridor. The high rate of LWD transport is favoured by large bankfull channel width which exceeds the average tree height. LWD jams were defined as aggregations of three or more wood pieces with diameter ≥ 0.1 m and length ≥ 1 m. We surveyed LWD jams in 62 river reaches, which have been located at meander apexes, inflections and intermediate positions; the length of the reaches was 200 m. The overall number of registered LWD jams was 200. Majority of jams consist of solely allochthonous (transported) wood pieces (65 %), some jams are combination of large key trees and trapped transported pieces (29%), and only small proportion are jams formed by locally uprooted trees (12,6%). Number of wood pieces varies greatly from 3 to 98, the most common being the interval 5 - 10 pieces per jam. Spatial distribution of jams is longitudinally and transversally irregular within the river corridor

  19. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    NASA Astrophysics Data System (ADS)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  20. Using Mechanistic Studies to Model Riparian Tree Establishment Under Environmental Flow Scenarios on Regulated Rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Battles, J. J.; McBride, J. R.; Orr, B. K.

    2007-12-01

    In the Central Valley of California, pioneer cottonwood and willow species dominate the near-river forests. Historically, seedling recruitment for these disturbance-adapted species coincided with spring floods. Changes in flow timing and magnitude due to river regulation have decreased the success of seedling cohorts and contributed to the decline of these riparian tree populations. In order to address gaps in our understanding of these species and potential restoration strategies, we field-calibrated a conceptual model of seedling recruitment for the dominant pioneer woody species, Populus fremontii, Salix gooddingii, and S. exigua. We conducted experiments to identify seedling desiccation thresholds and seed longevity, used field studies to measure seedling competition and seasonal seed release patterns, and modeled interannual differences in dispersal timing using a degree-day model. These studies were integrated into a recruitment model that generates annual estimates of seedling density and bank elevation based on inputs of seasonal river discharge, seed dispersal timing, and seedling mortality from desiccation. The model predictions successfully captured interannual and species-level patterns in recruitment observed independently throughout a 20-km reach of the lower Tuolumne River from 2002-04. The model correctly predicted that seedling densities were highest in 2004 and lowest in 2003, and that S. exigua recruitment would be less extensive than for the two tree species. This work shows promise as both a quantitative approach linking hydrology, climate and plant community dynamics, and as a process-based framework for guiding flow releases and other management actions to restore riparian tree population along Central Valley rivers.

  1. Carbon storage of headwater riparian zones in an agricultural landscape

    PubMed Central

    2012-01-01

    Background In agricultural regions, streamside forests have been reduced in age and extent, or removed entirely to maximize arable cropland. Restoring and reforesting such riparian zones to mature forest, particularly along headwater streams (which constitute 90% of stream network length) would both increase carbon storage and improve water quality. Age and management-related cover/condition classes of headwater stream networks can be used to rapidly inventory carbon storage and sequestration potential if carbon storage capacity of conditions classes and their relative distribution on the landscape are known. Results Based on the distribution of riparian zone cover/condition classes in sampled headwater reaches, current and potential carbon storage was extrapolated to the remainder of the North Carolina Coastal Plain stream network. Carbon stored in headwater riparian reaches is only about 40% of its potential capacity, based on 242 MgC/ha stored in sampled mature riparian forest (forest > 50 y old). The carbon deficit along 57,700 km headwater Coastal Plain streams is equivalent to about 25TgC in 30-m-wide riparian buffer zones and 50 TgC in 60-m-wide buffer zones. Conclusions Estimating carbon storage in recognizable age-and cover-related condition classes provides a rapid way to better inventory current carbon storage, estimate storage capacity, and calculate the potential for additional storage. In light of the particular importance of buffer zones in headwater reaches in agricultural landscapes in ameliorating nutrient and sediment input to streams, encouraging the restoration of riparian zones to mature forest along headwater reaches worldwide has the potential to not only improve water quality, but also simultaneously reduce atmospheric CO2. PMID:22333213

  2. Riparian Zones and the Role of Hyporheic Exchange in the Carbon Budget of a Small, Forested, Headwater Stream, Western Oregon, USA.

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-Rikert, H.; Dosch, N.; Haggerty, R.

    2014-12-01

    Recent estimates have identified streams as important conduits in the global carbon budget. Stream waters are typically super-saturated with CO2. This CO2 is assumed to come from carbon fixed in the upland terrestrial environment and then transported to the stream via soil water or groundwater. Evasion of CO2 occurs at the stream surface, which usually comprises less than 2% of the watershed area, yet this flux might account for as much as 30% of the net ecosystem exchange in a watershed. This view does not consider the role of hyporheic exchange, despite the fact that hyporheic exchange fluxes can be very large in headwater streams, which drain the majority of the landscape. Using continuously recording probes, we show that pCO2 averages 890 ppmv in stream water and 7,680 ppmv in hyporheic water in a 96-ha watershed. Independent estimates show that stream water turn-over lengths through the hyporheic zone are less than 100 m at baseflow, which suggests that stream water is continuously recharged with CO2 every time it is cycled through the hyporheic zone. We monitored DIC and DOC in a co-located well network and show that DOC decreases, and DIC increases, with travel time through the hyporheic zone. However, respiration of stream-source DOC can only account for approximately 10% of the increase in DIC. Previous hydrologic studies suggest that lateral inputs of soil water or groundwater are limited within this study reach, so the large increases in DIC must come from particulate organic matter buried in the hyporheic zone and from the overlying soil. These measurements suggest that riparian zones supply, via hyporheic exchange, a disproportionately large fraction of carbon to headwater streams and may therefore play an outsized role in the global carbon cycle.

  3. Gilliam County Riparian Buffers; 2003-2004 Annual Reports.

    SciTech Connect

    Coiner, Josh

    2004-06-01

    Interest appears to be at an all-time high for riparian conservation programs in Gilliam County. With the recently added Herbaceous Buffer and the already established CREP program interest is booming. However, more and more people are turning towards the herbaceous buffer because of expense. The riparian forest buffer is becoming too expensive. Even with the excellent cost share and incentives landowners are having trouble with Farm Service Agency's payment limitation. Because of this payment limitation landowners are not receiving their full rental and incentive payments, usually in year one. This has cooled the installation of riparian forest buffers and peaked interest in the CP-29 (Herbaceous Buffer for Wildlife). Either way, riparian lands are being enhanced and water quality is being improved. Year three should be very similar to the accomplishments of year 2. There has already been several projects proposed that may or may not be approved during year 3. I am currently working on three projects that are all over 2.5 miles long on each side and total anywhere from 60 to 250 acres in size. Along with these three projects there at least seven small projects being proposed. Four of those projects are riparian forest buffers and the remaining are herbaceous buffers.

  4. Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    NASA Astrophysics Data System (ADS)

    Lloyd, J.; Domingues, T. F.; Schrodt, F.; Ishida, F. Y.; Feldpausch, T. R.; Saiz, G.; Quesada, C. A.; Schwarz, M.; Torello-Raventos, M.; Gilpin, M.; Marimon, B. S.; Marimon-Junior, B. H.; Ratter, J. A.; Grace, J.; Nardoto, G. B.; Veenendaal, E.; Arroyo, L.; Villarroel, D.; Killeen, T. J.; Steininger, M.; Phillips, O. L.

    2015-11-01

    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m a-1, savanna soils had consistently lower exchangeable cation concentrations and higher C / N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests - in combination with some newly conceptualised interacting effects of PA and θP also presented here - a critical role for potassium as a modulator of tropical vegetation structure and function.

  5. Gasification of Woody Biomass.

    PubMed

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges. PMID:26247289

  6. Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.

    2010-01-01

    Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.

  7. Riparian buffer zones as pesticide filters of no-till crops.

    PubMed

    Aguiar, Terencio R; Bortolozo, F R; Hansel, F A; Rasera, K; Ferreira, M T

    2015-07-01

    Several studies have pointed to the potential benefits of riparian vegetation as buffer zones for agricultural and industrial pollutants harmful to aquatic ecosystems. However, other studies have called into question its use as an ecological filter, questioning the widths and conditions for which they are effective as a filter. In this work, we have investigated the buffering capacity of the riparian one to retain pesticides in the water-saturated zone, on 27 sites composed by riparian buffer zones with different vegetation structure (woody, shrubs, or grass vegetation) and width (12, 36, and 60 m). Five pesticides were analyzed. The effectiveness of the filtering was largely influenced by the width and vegetation type of the buffer zone. In general, decreasing pesticide removal followed in this order wood > shrubs > grass. The 60 m woody buffer zone was the most effective in the removal of all the pesticides. Only atrazine was detected in this case (0.3 μg L(-1)). Furthermore, a linear correlation (R (2) > 0.97) was observed in their removal for all compounds and buffer zones studied. Thus, preserving the woody vegetation in the riparian zone is important for watershed management and groundwater quality in the no-tillage system in temperate climate. PMID:25744820

  8. Comparison of riparian plant communities under four land management systems in southwestern Wisconsin

    USGS Publications Warehouse

    Paine, L.K.; Ribic, C.A.

    2002-01-01

    Riparian plant community composition is influenced by moisture, erosion, original native plant communities, and current and past land use. This study compared riparian plant communities under four types of management: woody buffer strip, grassy buffer strip, rotational grazing, and continuous grazing. Study sites were located along spring-fed streams in the unglaciated region of southwestern Wisconsin, USA. At each site, plant community surveys were conducted using a point transect method. Among the treatments, woody buffer strips, rotationally grazed and continuously grazed riparian areas had greater plant species richness than grassy buffer strips, and woody buffer strips had the greatest native plant species richness. Reed canary grass (Phalaris arundinacea L.) was prevalent in grassy buffer strips (44% of all observations), common in woody buffer strips (15%), and rare in sites that were rotationally or continuously grazed (3 and 5%, respectively). Pasture sites had greater proportions of native grasses and grass relatives and moderate levels of overall native species richness. Considered a water quality best management practice, well-managed rotational grazing may be a reasonable alternative to buffer strips which can contribute to protection and enhancement of native vegetation biodiversity. ?? 2002 Elsevier Science B.V. All rights reserved.

  9. Riparian vegetation and water yield: A synthesis

    NASA Astrophysics Data System (ADS)

    Salemi, Luiz Felippe; Groppo, Juliano Daniel; Trevisan, Rodrigo; Marcos de Moraes, Jorge; de Paula Lima, Walter; Martinelli, Luiz Antonio

    2012-08-01

    SummaryForested riparian zones perform numerous ecosystem functions, including the following: storing and fixing carbon; serving as wildlife habitats and ecological corridors; stabilizing streambanks; providing shade, organic matter, and food for streams and their biota; retaining sediments and filtering chemicals applied on cultivated/agricultural sites on upslope regions of the catchments. In this paper, we report a synthesis of a different feature of this type of vegetation, which is its effect on water yield. By synthesizing results from studies that used (i) the nested catchment and (ii) the paired catchment approaches, we show that riparian forests decrease water yield on a daily to annual basis. In terms of the treated area increases on average were 1.32 ± 0.85 mm day-1 and 483 ± 309 mm yr-1, respectively; n = 9. Similarly, riparian forest plantation or regeneration promoted reduced water yield (on average 1.25 ± 0.34 mm day-1 and 456 ± 125 mm yr-1 on daily and annual basis, respectively, when prorated to the catchment area subjected to treatment; n = 5). Although there are substantially fewer paired catchment studies assessing the effect of this vegetation type compared to classical paired catchment studies that manipulate the entire vegetation of small catchments, our results indicate the same trend. Despite the occurrence of many current restoration programs, measurements of the effect on water yield under natural forest restoration conditions are still lacking. We hope that presenting these gaps will encourage the scientific community to enhance the number of observations in these situations as well as produce more data from tropical regions.

  10. Stereophotogrammetry in studies of riparian vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Hortobagyi, Borbala; Vautier, Franck; Corenblit, Dov; Steiger, Johannes

    2014-05-01

    Riparian vegetation responds to hydrogeomorphic disturbances and also controls sediment deposition and erosion. Spatio-temporal riparian vegetation dynamics within fluvial corridors have been quantified in many studies using aerial photographs and GIS. However, this approach does not allow the consideration of woody vegetation growth rates (i.e. vertical dimension) which are fundamental when studying feedbacks between the processes of fluvial landform construction and vegetation establishment and succession. We built 3D photogrammetric models of vegetation height based on aerial argentic and digital photographs from sites of the Allier and Garonne Rivers (France). The models were realized at two different spatial scales and with two different methods. The "large" scale corresponds to the reach of the river corridor on the Allier river (photograph taken in 2009) and the "small" scale to river bars of the Allier (photographs taken in 2002, 2009) and Garonne Rivers (photographs taken in 2000, 2002, 2006 and 2010). At the corridor scale, we generated vegetation height models using an automatic procedure. This method is fast but can only be used with digital photographs. At the bar scale, we constructed the models manually using a 3D visualization on the screen. This technique showed good results for digital and also argentic photographs but is very time-consuming. A diachronic study was performed in order to investigate vegetation succession by distinguishing three different classes according to the vegetation height: herbs (<1 m), shrubs (1-4 m) or trees (>4 m). Both methods, i.e. automatic and manual, were employed to study the evolution of the three vegetation classes and the recruitment of new vegetation patches. A comparison was conducted between the vegetation height given by models (automatic and manual) and the vegetation height measured in the field. The manually produced models (small scale) were of a precision of 0.5-1 m, allowing the quantification of woody