Science.gov

Sample records for rising main sewers

  1. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers.

    PubMed

    Ganigué, Ramon; Yuan, Zhiguo

    2014-11-01

    Oxygen injection is a commonly used mitigation strategy for sulfide control in sewers. Methane, a potent greenhouse gas, is also produced in sewers. Oxygen injection may reduce methane generation/emission, but could potentially lead to N2O production due to the development of a nitrifying microbial community. The impact of oxygen dosing for sulfide control in sewers on CH4 and N2O production was assessed in this study in laboratory sewer reactors. Results showed that oxygen injection is able to reduce CH4 formation in sewers, although full control of CH4 was not achieved, likely due to partial oxygen penetration into sewer biofilm. The experimental results also revealed a nitrogen loss of around 5 mN/L. However, no significant N2O accumulation was detected. PMID:24975803

  2. Constructing and dismantling frameworks of disease etiology: the rise and fall of sewer gas in America, 1870-1910.

    PubMed Central

    An, Perry G.

    2004-01-01

    For roughly forty years, from 1870 to 1910, Americans recognized and feared gases emanating from sewers, believing that they were responsible for causing an array of diseases. Fears of sewer gas arose from deeper anxieties toward contact with decomposing organic matter and the vapors emitted from such refuse. These anxieties were exacerbated by the construction of sewers across the country during the mid-to-late-nineteenth century, which concentrated waste emanations and connected homes to one another. The result was the birth of sewer gas and the attribution of sickness and death to it, as well as the development of a host of plumbing devices and, especially, bathroom fixtures, to combat sewer gas. The rise of the germ theory, laboratory science, and belief in disease specificity, however, transformed the threat of sewer gas, eventually replacing it (and the larger fear of miasmas) with the threat of germs. The germ theory framework, by 1910, proved more suitable than the sewer gas framework in explaining disease causation; it is this suitability that often shapes the relationship between science and society. PMID:15829149

  3. State of Technology for Renewal of Sewer Force Mains

    EPA Science Inventory

    This paper presents the results of a review of the state of technology for renewal of force mains (EPA, 2010). The review identified several needs, including the need for rational and common design approaches for rehabilitation systems, quality assurance/quality control procedur...

  4. Gas pockets in a wastewater rising main: a case study.

    PubMed

    Pozos-Estrada, Oscar; Fuentes-Mariles, Oscar A; Pozos-Estrada, Adrian

    2012-01-01

    This paper presents a case study of an existing wastewater rising main (WWRM) in which an extreme transient event produced by simultaneous power failure of the pumps caused the rupture of a 1.2 m (48 in) prestressed concrete cylinder pipe (PCCP), causing an important leakage of sewage. The event and the methodology followed in order to validate the diagnostics of the failure are described. The detail study included in situ observation of the system, experimental investigation in a setup, hydraulic analysis, as well as details of the structural strength of the WWRM. After the extensive investigation and several simulations of fluid transients for different scenarios and flow conditions, it was found that stationary small gas pockets accumulated at high points of the WWRM were identified as the principal contributory factor of the failure. This case study serves as clear warning of the consequences of operating a WWRM with gas pockets at its high points. PMID:22949261

  5. Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology.

    PubMed

    Thai, Phong K; O'Brien, Jake; Jiang, Guangming; Gernjak, Wolfgang; Yuan, Zhiguo; Eaglesham, Geoff; Mueller, Jochen F

    2014-05-15

    Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains. PMID:24631876

  6. Remaining Sites Verification Package for the 100-C-9:1 Main Process Sewer Collection Line, Waste Site Reclassification Form 2004-012

    SciTech Connect

    L. M. Dittmer

    2007-06-11

    The 100-C-9:1 main process sewer pipeline, also known as the twin box culvert, was a dual reinforced process sewer that collected process effluent from the 183-C and 190-C water treatment facilities, discharging at the 132-C-2 Outfall. For remedial action purposes, the 100-C-9:1 waste site was subdivided into northern and southern sections. The 100-C-9:1 subsite has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  7. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Ni, Bing-Jie; Fan, Lu; Murthy, Sudhir; Tyson, Gene Q; Yuan, Zhiguo

    2015-05-01

    Nitrate dosing is widely used to control sulfide and methane formation in sewers. The impact of nitrate on sulfide and methane production by sewer biofilms in rising mains has been elucidated recently. However, little is known about the effect of nitrate on biologically active sewer sediment, which is substantially thicker than rising main biofilms (centimeters vs. hundreds of micrometers, respectively). In this study, we investigated the effect of nitrate addition to sewer sediment cultivated in lab-scale sewer sediment reactors. Batch test results showed that nitrate addition does not suppress sulfide production in sewer sediment, but it reduces sulfide accumulation through anoxic sulfide oxidation in the sediment and hence, also reduces sulfide accumulation in the bulk water. Microsensor measurement of sediment sulfide revealed the presence of sulfide oxidation and sulfide production zones with the interface dynamically regulated by the depth of nitrate penetration. In contrast, the methane production activity of sewer sediment was substantially reduced, likely due to the long-term inhibitory effects of nitrate on methanogens. Pore water measurements showed that methane production activity in the sediment zone with frequent nitrate exposure was completely suppressed, and consequently, the methane production zone re-established deeper in the sediment where nitrate penetration was infrequent. PMID:25727155

  8. Rise of the main meniscus in rectangular capillaries: Experiments and modeling.

    PubMed

    Wu, Pingkeng; Zhang, Hua; Nikolov, Alex; Wasan, Darsh

    2016-01-01

    The rise of the main meniscus in rectangular capillaries is important in interpreting the phenomenon of fluid flow in porous media. Despite many experimental studies reported in the literature, there is no universal model for the rise of the main meniscus in either rectangular or square capillaries. In this work, we present an extensive experimental study and modeling of the rise of the main meniscus in both square and rectangular capillaries. Experimental work was carried out using three different liquids (water, ethanol, and hexadecane) in borosilicate glass and plastic (polystyrene) capillaries to investigate the effect of the contact angle and capillary size on the equilibrium main meniscus height. A universal model (an extended two-wall model) based on the Laplace equation was developed to predict the equilibrium height of the main meniscus in rectangular capillaries. Results have shown that, in a wide range of capillary sizes and contact angles, the predicted equilibrium heights of the main meniscus are in good agreement with the experimentally measured values. PMID:26402778

  9. [Sewer gas induced myocardial toxicity].

    PubMed

    Antonelli, Dante; Sabanchiev, Avi; Rosner, Ehud; Turgeman, Yoav

    2014-07-01

    We report the case of a 19 year-old worker who collapsed after acute exposure to sewer gas. He rapidly developed cardiorespiratory failure with electrocardiographic, echocardiographic and laboratory findings of myocardial involvement. The mainstay of the therapy was mainly supportive treatment with a successful outcome. PMID:25189024

  10. Online dissolved methane and total dissolved sulfide measurement in sewers.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Fluggen, Markus; O'Halloran, Kelly; Murthy, Sudhir; Yuan, Zhiguo

    2015-01-01

    Recent studies using short-term manual sampling of sewage followed by off-line laboratory gas chromatography (GC) measurement have shown that a substantial amount of dissolved methane is produced in sewer systems. However, only limited data has been acquired to date due to the low frequency and short span of this method, which cannot capture the dynamic variations of in-sewer dissolved methane concentrations. In this study, a newly developed online measuring device was used to monitor dissolved methane concentrations at the end of a rising main sewer network, over two periods of three weeks each, in summer and early winter, respectively. This device uses an online gas-phase methane sensor to measure methane under equilibrium conditions after being stripped from the sewage. The data are then converted to liquid-phase methane concentrations according to Henry's Law. The detection limit and range are suitable for sewer application and can be adjusted by varying the ratio of liquid-to-gas phase volume settings. The measurement presented good linearity (R² > 0.95) during field application, when compared to off-line measurements. The overall data set showed a wide variation in dissolved methane concentration of 5-15 mg/L in summer and 3.5-12 mg/L in winter, resulting in a significant average daily production of 24.6 and 19.0 kg-CH₄/d, respectively, from the network with a daily average sewage flow of 2840 m³/day. The dissolved methane concentration demonstrated a clear diurnal pattern coinciding with flow and sulfide fluctuation, implying a relationship with the wastewater hydraulic retention time (HRT). The total dissolved sulfide (TDS) concentration in sewers can be determined simultaneously with the same principle. PMID:25462721

  11. Sea level rise and tidal power plants in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Pelling, Holly E.; Mattias Green, J. A.

    2013-06-01

    The response of the Bay of Fundy and Gulf of Maine to large-scale tidal power plants and future sea-level rise is investigated using an established numerical tidal model. Free stream tidal turbines were simulated within the Bay of Fundy by implementing an additional bed friction term, Kt. The present-day maximum tidal power output was determined to be 7.1 GW, and required Kt = 0.03. Extraction at this level would lead to large changes in the tidal amplitudes across the Gulf of Maine. With future SLR implemented, the energy available for extraction increases with 0.5-1 GW per m SLR. SLR simulations without tidal power extraction revealed that the response of the semidiurnal tides to SLR is highly dependent on how changes in sea level are implemented in the model. When extensive flood defenses are assumed at the present-day coast line, the response to SLR is far larger than when land is allowed to (permanently) flood. For example, within the Bay of Fundy itself, the M2 amplitude increases with nearly 0.12 m per m SLR without flooding, but it changes with only 0.03 m per m SLR with flooding. We suggest that this is due to the flooding of land cells changing the resonant properties of the basin.

  12. Remaining Sites Verification Package for the 100-F-26:12, 1.8-m (72-in.) Main Process Sewer Pipeline, Waste Site Reclassification Form 2007-034

    SciTech Connect

    J. M. Capron

    2008-04-29

    The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  13. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  14. Sewer Maintenance Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Outlined are practices and procedures that should be followed in order to protect and fully realize the benefits of sewer systems and also to maximize service and minimize inconveniences to the public. Written in practical terms, the manual is designed to be of immediate use to municipal employees and others involved in sewer maintenance…

  15. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.

    PubMed

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo

    2015-03-15

    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. PMID:25616115

  16. City sewer collectors biocorrosion

    NASA Astrophysics Data System (ADS)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  17. COMPUTER TOOLS FOR SANITARY SEWER SYSTEM CAPACITY ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems, causing poor performance of many sewer systems. RDII is the main cause of SSOs to customer basements, streets, or nearby streams and can a...

  18. SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...

  19. Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby receiving waters and can also ...

  20. DEVELOPMENT OF SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams. RDII can also cause se...

  1. SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  2. Review of Sewer Design Criteria and RDII Prediction Methods

    EPA Science Inventory

    Rainfall-derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...

  3. Future sea-level rise from Greenland's main outlet glaciers in a warming climate.

    PubMed

    Nick, Faezeh M; Vieli, Andreas; Andersen, Morten Langer; Joughin, Ian; Payne, Antony; Edwards, Tamsin L; Pattyn, Frank; van de Wal, Roderik S W

    2013-05-01

    Over the past decade, ice loss from the Greenland Ice Sheet increased as a result of both increased surface melting and ice discharge to the ocean. The latter is controlled by the acceleration of ice flow and subsequent thinning of fast-flowing marine-terminating outlet glaciers. Quantifying the future dynamic contribution of such glaciers to sea-level rise (SLR) remains a major challenge because outlet glacier dynamics are poorly understood. Here we present a glacier flow model that includes a fully dynamic treatment of marine termini. We use this model to simulate behaviour of four major marine-terminating outlet glaciers, which collectively drain about 22 per cent of the Greenland Ice Sheet. Using atmospheric and oceanic forcing from a mid-range future warming scenario that predicts warming by 2.8 degrees Celsius by 2100, we project a contribution of 19 to 30 millimetres to SLR from these glaciers by 2200. This contribution is largely (80 per cent) dynamic in origin and is caused by several episodic retreats past overdeepenings in outlet glacier troughs. After initial increases, however, dynamic losses from these four outlets remain relatively constant and contribute to SLR individually at rates of about 0.01 to 0.06 millimetres per year. These rates correspond to ice fluxes that are less than twice those of the late 1990s, well below previous upper bounds. For a more extreme future warming scenario (warming by 4.5 degrees Celsius by 2100), the projected losses increase by more than 50 per cent, producing a cumulative SLR of 29 to 49 millimetres by 2200. PMID:23657350

  4. The hazard of Sea Level Rise (SLR) in Greece: from scientific knowledge towards risk awareness of main actors

    NASA Astrophysics Data System (ADS)

    Dandoulaki, Miranda; Karymbalis, Efthimios; Yorgos, Melissourgos; Skordili, Sophia; Valkanou, Kanella

    2014-05-01

    A natural hazard that is expected to affect coastal areas in the near future is Sea-Level Rise (SLR) due to climate change. According to recent reports the eustatic sea-level rise caused by global warming will reach approximately 18-59 cm by the year 2100. Potential impacts of future sea-level rise include coastal erosion, frequent and intensified cyclonic activity and associated storm surge flooding that may affect the coastal zones, saltwater intrusion into groundwater aquifers, the inundation of ecologically significant wetlands, and threats to cultural and historical resources, as well as to infrastructure. The identification of sensitive sections of coasts and the assessment of potential impacts of SLR on these is therefore a fundamental, yet initial, step towards their protection. Greece has the most extensive coastline among all Mediterranean countries with most of the socio-economic activities concentrated along the coastal zone. Almost all big urban centres are coastal ones and the same stands for a great part of infrastructure (ports, airports, roads, electricity and telecommunications network etc). As a result, the impacts of a potential rise of the sea level are expected to seriously affect the entire country. The paper examines the vulnerability to SLR of coastal zones in Greece; however its main focus is how knowledge can lead to policy making and the protection of coastal areas. The main actors in respect to protection from SLR in Greece are identified and there is an attempt to pin point how the knowledge is communicated and shared between them. Barriers, bridges and gaps are detected as regards how information and knowledge lead to risk awareness and finally to the implementation of protection policies. A main finding of the paper is that SLR risk is far from becoming a policy priority in Greece, although steps are taken for addressing impacts attributed to SLR such as coastal erosion. In order to address this risk, there are many potential

  5. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia.

    PubMed

    Jiang, Guangming; Keating, Anthony; Corrie, Shaun; O'halloran, Kelly; Nguyen, Lam; Yuan, Zhiguo

    2013-09-01

    Intermittent dosing of free nitrous acid (FNA), with or without the simultaneous dosing of hydrogen peroxide, is a new strategy developed recently for the control of sulfide production in sewers. Six-month field trials have been carried out in a rising main sewer in Australia (150 mm in diameter and 1080 m in length) to evaluate the performance of the strategy that was previously demonstrated in laboratory studies. In each trial, FNA was dosed at a pumping station for a period of 8 or 24 h, some with simultaneous hydrogen peroxide dosing. The sulfide control effectiveness was monitored by measuring, on-line, the dissolved sulfide concentration at a downstream location of the pipeline (828 m from the pumping station) and the gaseous H2S concentration at the discharge manhole. Effective sulfide control was achieved in all nine consecutive trials, with sulfide production reduced by more than 80% in 10 days following each dose. Later trials achieved better control efficiency than the first few trials possibly due to the disrupting effects of FNA on sewer biofilms. This suggests that an initial strong dose (more chemical consumption) followed by maintenance dosing (less chemical consumption) could be a very cost-effective way to achieve consistent control efficiency. It was also found that heavy rainfall slowed the recovery of sulfide production after dosing, likely due to the dilution effects and reduced retention time. Overall, intermittent dose of FNA or FNA in combination with H2O2 was successfully demonstrated to be a cost-effective method for sulfide control in rising main sewers. PMID:23764584

  6. SANITARY SEWER CALCULATION

    SciTech Connect

    Roy D. Clark

    1995-01-13

    This analysis defines and evaluates the surface sanitary sewer system on the North Portal, and addresses the requirements for the collection of sanitary sewage from each of the proposed surface buildings. A sewage treatment system will be defined that meets the needs of the North Portal, conforms to the existing site conditions, and meets the needs of the state and local permitting agencies.

  7. SEWER PIPELINE PERFORMANCE INDICATORS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. In the United States, approximately 150 million people are served by about 19,000 municipal wastewater collection systems representing about 500,000 miles of sewer pipe (not including privately o...

  8. EXFILTRATION IN SEWER SYSTEMS

    EPA Science Inventory

    This study focused on the quantification of leakage of sanitary and industrial sewage from sanitary sewer pipes on a national basis. The method for estimating exfiltration amounts utilized groundwater talbe information to identify areas of the country where the hydraulic gradient...

  9. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  10. Poison-based commensal rodent control strategies in urban ecosystems: some evidence against sewer-baiting.

    PubMed

    Mughini Gras, Lapo; Patergnani, Matteo; Farina, Marco

    2012-03-01

    Sewers are historically considered the main reservoir for commensal rodents, posing threats to urban ecosystem health. Aboveground rodent signs are often assumed to give clues to high sewer infestation, which can chronically restock surface areas. Thus, current sewer-baiting programmes are mostly reactive, responding to increased surface infestation. Conversely, proactive sewer-baiting (regardless of infestation levels) is often disregarded because cost-effectiveness is not always addressed. We explored the extent to which the surface infestation is related to rodent feeding activity on sewer and surface baits by analysing a set of proactive bait records in Bologna city, Italy. Sewer bait intakes were significantly lower than surface ones, suggesting that proactive sewer-baiting is generally less effective. As surface infestation increased, probability of recording surface bait intake increased significantly but this was not reflected by increased sewer bait intake, suggesting that surface infestation is not always a reliable indicator of sewer infestation. This should discourage the use of reactive sewer-baiting as a routine strategy. Poison-based control programmes by themselves are scarcely predictable and strategically limited, and ideally they should be handled within an ecologically based integrated pest management approach for achieving satisfactory results. PMID:22395957

  11. COMBINED-SEWER OVERFLOW CONTROL AND TREATMENT

    EPA Science Inventory

    Combined-sewer overflow (CSO), along with sanitary-sewer overflow and stormwater are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater t...

  12. Inventory and protection of salt marshes from risks of sea-level rise at Acadia National Park, Maine

    USGS Publications Warehouse

    Dudley, Robert W.; Nielsen, Martha G.

    2011-01-01

    Recent U.S. Geological Survey (USGS) climate studies in the northeastern United States have shown substantial evidence of climate-related changes during the last 100 years, including earlier snowmelt runoff, decreasing occurrence of river ice, and decreasing winter snowpack. These studies related to climate change are being expanded to include investigation of coastal wetlands that might be at risk from sealevel rise. Coastal wetlands, particularly salt marshes, are important ecosystems that provide wildlife nursery and breeding habitat, migratory bird habitat, water quality enhancement, and shoreline erosion control. The USGS is investigating salt marshes in Acadia National Park with the goal of determining which salt marshes may be threatened by sea-level rise and which salt marshes may be able to adapt to sea-level rise by migrating into adjacent low-lying lands.

  13. A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in these systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and the resulting high flows...

  14. A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  15. HANDBOOK: SEWER SYSTEM INFRASTRUCTURE ANALYSIS AND REHABILITATION

    EPA Science Inventory

    Many of our Nation's sewer systems date back to the 19th Century when brick sewers were common. hese and more recent sewer systems can be expected to fail in time, but because they are placed underground, signs of accelerated deterioration and capacity limitations are not readily...

  16. Demonstration of Innovative Sewer System Inspection Technology SewerBatt

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...

  17. Quantitative assessment of the groundwater-sewer network interaction in Bucharest city (Romania)

    NASA Astrophysics Data System (ADS)

    Boukhemacha, M. A.; Diaconescu, A.; Bica, I.; Gogu, C. R.; Gaitanaru, D.

    2012-04-01

    Groundwater management in urban area must take account of every possible and relevant phenomena arising from the complex interaction between subsurface water, surface water, and urban infrastructure. In Bucharest, the need of the sewer system rehabilitation initiated a study of the interaction between groundwater and the sewer network. Recent conclusions show that the sewer network acts mainly like a drainage system for the groundwater. However, it could be easily proven that several sewer segments located mainly in the unsaturated zone contaminate the groundwater by leakage. The groundwater infiltration in the sewer conduits can cause the decrease of the groundwater level leading to structures instability problems as well as to the increase flow-rates of the sewer system. The last one affects seriously the wastewater treatment plants efficiency. The sewer network leakage cause groundwater pollution and locally could increase the groundwater level triggering buildings instability or other urban operational problems. The current study focuses on the consequences of sealing a part of the sewer system and so disturbing the existing groundwater behavior which may lead to serious consequences. In this framework, the analysis results of a groundwater flow model used to quantify the interaction between the groundwater and the sewer network are presented. The two-layers groundwater flow model simulating the Colentina and Mostistea overlaid sedimentary aquifers covers about 75 km2. Its conceptual model relies on a 3D geological model made by using 23 accurate geological cross-sections of the studied domain. The model set-up and its calibration are done using pumping tests data, groundwater hydraulic heads, and water levels of the sewer system. Infiltration rates into sewers are modeled by applying a modified form of Darcy's law that uses the notion of infiltration factor. This last encompasses the hydraulic conductivity of the clogging layer, the infiltration area and the

  18. Space-Derived Sewer Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The QuadraScan Longterm Flow Monitoring System is a second generation sewer monitor developed by American Digital Systems, Inc.'s founder Peter Petroff. Petroff, a former spacecraft instrumentation designer at Marshall Space Flight Center, used expertise based on principles acquired in Apollo and other NASA programs. QuadraScan borrows even more heavily from space technology, for example in its data acquisition and memory system derived from NASA satellites. "One-time" measurements are often plagued with substantial errors due to the flow of groundwater absorbed into the system. These system sizing errors stem from a basic informational deficiency: accurate, reliable data on how much water flows through a sewer system over a long period of time is very difficult to obtain. City officials are turning to "permanent," or long-term sewer monitoring systems. QuadraScan offers many advantages to city officials such as the early warning capability to effectively plan for city growth in order to avoid the crippling economic impact of bans on new sewer connections in effect in many cities today.

  19. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.

    PubMed

    Auguet, O; Pijuan, M; Batista, J; Borrego, C M; Gutierrez, O

    2015-10-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7±72.3 mg S-H2S liter(-1) day(-1)), whereas emissions of CH4 remained low (17.9±15.9 mg COD-CH4 liter(-1) day(-1)). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6±16.6 mg COD-CH4 liter(-1) day(-1)), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  20. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems

    PubMed Central

    Auguet, O.; Pijuan, M.; Batista, J.; Gutierrez, O.

    2015-01-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7 ± 72.3 mg S-H2S liter−1 day−1), whereas emissions of CH4 remained low (17.9 ± 15.9 mg COD-CH4 liter−1 day−1). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH4 liter−1 day−1), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  1. Identifiability analysis in conceptual sewer modelling.

    PubMed

    Kleidorfer, M; Leonhardt, G; Rauch, W

    2012-01-01

    For a sufficient calibration of an environmental model not only parameter sensitivity but also parameter identifiability is an important issue. In identifiability analysis it is possible to analyse whether changes in one parameter can be compensated by appropriate changes of the other ones within a given uncertainty range. Parameter identifiability is conditional to the information content of the calibration data and consequently conditional to a certain measurement layout (i.e. types of measurements, number and location of measurement sites, temporal resolution of measurements etc.). Hence the influence of number and location of measurement sites on the number of identifiable parameters can be investigated. In the present study identifiability analysis is applied to a conceptual model of a combined sewer system aiming to predict the combined sewer overflow emissions. Different measurement layouts are tested and it can be shown that only 13 of the most sensitive catchment areas (represented by the model parameter 'effective impervious area') can be identified when overflow measurements of the 20 highest overflows and the runoff to the waste water treatment plant are used for calibration. The main advantage of this method is very low computational costs as the number of required model runs equals the total number of model parameters. Hence, this method is a valuable tool when analysing large models with a long runtime and many parameters. PMID:22864432

  2. Remote infrared thermal sensing of sewer voids

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1995-05-01

    Many sewers in America's cities are more than 125 years old and are subject to structural failure. In one year alone, St. Louis, Missouri had 4,000 sewer collapses that carried an astronomical repair tag. When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along with it endangering public health and safety. The ideal situation would be to repair a sewer before such cave-ins occur, as emergency repairs are far more costly than preventive measures. The question addressed by this paper is how to detect unseen problem areas in sewer systems before collapses occur. At the present, progressive sewer administrations may use crawl crews or remote controlled video cameras to inspect sewers at suspected problem locations. This can be extremely costly, dangerous, and not very accurate, as a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Sewer districts and independent engineering firms have found infrared thermography, a nondestructive testing method, to be extremely accurate in finding sewer voids, and accompanying pipeline leaks, before they can cause expensive and dangerous problems. Infrared thermography is a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently.

  3. Corrosion and odor management in sewer systems.

    PubMed

    Jiang, Guangming; Sun, Jing; Sharma, Keshab R; Yuan, Zhiguo

    2015-06-01

    Sewers emit hydrogen sulfide and various volatile organic sulfur and carbon compounds, which require control and mitigation. In the last 5-10 years, extensive research was conducted to optimize existing sulfide abatement technologies based on newly developed in-depth understanding of the in-sewer processes. Recent advances have also led to low-cost novel solutions targeting sewer biofilms. Online control has been demonstrated to greatly reduce the chemical usage. Dynamic models for both the water, air and solid (concrete) phases have been developed and used for the planning and maintenance of sewer systems. Existing technologies primarily focused on 'hotspots' in sewers. Future research should aim to achieve network-wide corrosion and emission control and management of sewers as an integrated component of an urban water system. PMID:25827114

  4. SANITARY-SEWER OVERFLOW CONTROL STRATEGY

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensive...

  5. In-place rehabilitation of process sewers

    SciTech Connect

    Arles, K.R.; Faller, C.C.

    1996-07-01

    The majority of petrochemical manufacturing facilities have thousands of feet of existing underground gravity sewers that convey the site`s industrial wastes to treatment facilities. The integrity of these sewer systems is a serious concern to owners. A potential consequence of leaks is soil and groundwater contamination. Prior to 1992, only two options were available to remedy this situation. The sewer systems could be replaced with either a new dual-walled, monitored underground pipe system via direct bury, or with an above ground pumped system. In 1992, Engineering, in conjunction with several trenchless technology vendors, developed and demonstrated modified relining systems that can rehabilitate existing sewers and result in monitored dual-walled gravity sewer systems. These proven systems have since been enhanced, upgraded, and installed at two operating facilities. With thorough sewer investigation and assessments, industry now has viable, cost effective options to rehabilitate underground chemical process sewers. These upgraded sewer systems provide the environmental security of monitored dual-walled pipe, enhanced flow characteristics, and retain accessibility for maintenance and inspections.

  6. CONTROL OF SEWER OVERFLOWS BY POLYMER INJECTION

    EPA Science Inventory

    In the past, the operator of a sewage collection system has had three alternatives for dealing with overloaded sanitary sewers; ignoring them, diverting them to storm sewers and streams, or pumping to other locations. An EPA-sponsored research program entitled, 'Polymers for Sewe...

  7. MANAGEMENT AND CONTROL OF COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    The paper gives a basic overview of the U.S. government's involvements in developing countermeasures for the abatement of combined sewer overflow pollution. batement or prevention of pollution stormwater runoff and combined sewer overflows is one of the most challenging areas in ...

  8. Vacuum Flushing of Sewer Solids (Slides)

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  9. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  10. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  11. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  12. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median

  13. Infrared Thermal Sensing Of Sewer Voids

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1984-03-01

    The deterioration of sewer systems and their associated infrastructure is one of the most serious problems facing city, state, federal, and world authorities. As an example, three large sewer voids in the St. Louis Metropolitan area caused over $2,000,000 in repair costs in only one year. The detection of voids in and around underground sewer lines, as well as the detection of effluent leakages is necessary when determining the priority of structures for repair. At the present time sewer voids are sometimes detected by manual methods which are expensive, time consuming, and not extremely accurate. Most of the time, the void is not detected until the street caves in. Infrared thermography has been found to be capable of detecting voids around underground sewer systems because under certain conditions, temperature differentials exist between various types of materials, effluents, and cavities. This paper describes the problem of deteriorating sewer systems, the field tests used to detect sewer voids, the equipment used in the field tests, the theories used to design the tests, various complicating factors, and anticipated future refinements on the procedure.

  14. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.

    PubMed

    Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J

    2014-01-01

    Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented. PMID:24552736

  15. SEWER AND TANK SEDIMENT FLUSHING: CASE STUDIES

    EPA Science Inventory

    The objective of the report summarized here is to demonstrate that sewer system and storage tank flushing that reduces sediment deposition and accumulation is of prime importance to optimizing performance, maintaining structural integrity, and minimizing pollution of receiving wa...

  16. Handbook: Sewer system infrastructure analysis and rehabilitation

    SciTech Connect

    Not Available

    1991-10-01

    The Handbook provides guidance on the evaluation and rehabilitation of existing sewers. It presents information on typical problems, procedures and methods for rehabilitation, case study information, budgetary costs, advantages and disadvantages of rehabilitation techniques, and application of these techniques and materials/equipment used in rehabilitation. It also guides the reader in understanding the importance of, and ways for, conducting the sewer system evaluation and identifying the rehabilitation procedure that best suits a particular problem.

  17. The hydraulic capacity of deteriorating sewer systems.

    PubMed

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted. PMID:16477988

  18. Influence of characteristics on combined sewer performance.

    PubMed

    Möderl, M; Kleidorfer, M; Rauch, W

    2012-01-01

    Elements of combined sewer systems are among others sub-catchments, junctions, conduits and weirs with or without storage units. The spatial distribution and attributes of all these elements influence both system characteristics and sewer performance. Until today, little work has been done to analyse the influence of such characteristics in a case unspecific approach. In this study, 250 virtual combined sewer systems are analysed by defining groups of systems, which are representative for their different characteristics. The set was created with a further development of the case study generator (CSG), a tool for automatic generation of branched sewer systems. Combined sewer overflow and flooding is evaluated using performance indicators based on hydrodynamic simulations. The analysis of system characteristics, like those presented in this paper, helps researchers to understand coherences and aids practitioners in designing combined sewers. For instance, it was found that characteristics that have a positive influence on emission reduction frequently have a negative influence on flooding avoidance and vice versa. PMID:22797234

  19. State of Technology Report for Force Main Rehabilitation

    EPA Science Inventory

    Force mains that carry sewage flows under pressure represent a special set of challenges for sewer rehabilitation. Force mains represent about 7.5% of the wastewater system and they typically use materials that are not commonly used in gravity sewer systems. Ductile iron (DI), ...

  20. Impacts and managerial implications for sewer systems due to recent changes to inputs in domestic wastewater - A review.

    PubMed

    Mattsson, Jonathan; Hedström, Annelie; Ashley, Richard M; Viklander, Maria

    2015-09-15

    Ever since the advent of major sewer construction in the 1850s, the issue of increased solids deposition in sewers due to changes in domestic wastewater inputs has been frequently debated. Three recent changes considered here are the introduction of kitchen sink food waste disposers (FWDs); rising levels of inputs of fat, oil and grease (FOG); and the installation of low-flush toilets (LFTs). In this review these changes have been examined with regard to potential solids depositional impacts on sewer systems and the managerial implications. The review indicates that each of the changes has the potential to cause an increase in solids deposition in sewers and this is likely to be more pronounced for the upstream reaches of networks that serve fewer households than the downstream parts and for specific sewer features such as sags. The review has highlighted the importance of educational campaigns directed to the public to mitigate deposition as many of the observed problems have been linked to domestic behaviour in regard to FOGs, FWDs and toilet flushing. A standardized monitoring procedure of repeat sewer blockage locations can also be a means to identify depositional hot-spots. Interactions between the various changes in inputs in the studies reviewed here indicated an increased potential for blockage formation, but this would need to be further substantiated. As the precise nature of these changes in inputs have been found to be variable, depending on lifestyles and type of installation, the additional problems that may arise pose particular challenges to sewer operators and managers because of the difficulty in generalizing the nature of the changes, particularly where retrofitting projects in households are being considered. The three types of changes to inputs reviewed here highlight the need to consider whether or not more or less solid waste from households should be diverted into sewers. PMID:26182992

  1. SMALL DIAMETER GRAVITY SEWERS: AN ALTERNATIVE FOR UNSEWERED COMMUNITIES

    EPA Science Inventory

    The most recently introduced wastewater collection alternative for small unsewered communities is septic tank effluent drains or small diameter gravity sewers (SDGS). Unlike conventional sewers, SDGS only collect settled wastewater. Grit, grease and other troublesome solids which...

  2. Long-term impacts on sewers following food waste disposer installation in housing areas.

    PubMed

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking. PMID:25176297

  3. Hydrocarbon pollution fixed to combined sewer sediment: a case study in Paris.

    PubMed

    Rocher, Vincent; Garnaud, Stéphane; Moilleron, Régis; Chebbo, Ghassan

    2004-02-01

    Over a period of two years (2000-2001), sediment samples were extracted from 40 silt traps (STs) spread through the combined sewer system of Paris. All sediment samples were analysed for physico-chemical parameters (pH, organic matter content, grain size distribution), with total hydrocarbons (THs) and 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA. The two main objectives of the study were (1) to determine the hydrocarbon contamination levels in the sediments of the Paris combined sewer system and (2) to investigate the PAH fingerprints in order to assess their spatial variability and to elucidate the PAH origins. The results show that there is some important inter-site and intra-site variations in hydrocarbon contents. Despite this variability, TH and PAH contamination levels (50th percentile) in the Parisian sewer sediment are estimated at 530 and 18 microg g(-1), respectively. The investigation of the aromatic compound distributions in all of the 40 STs has underlined that there is, at the Paris sewer system scale, a homogeneous PAH background pollution. Moreover, the study of the PAH fingerprints, using specific ratios, suggests the predominance of a pyrolytic origin for those PAHs fixed to the sewer sediment. PMID:14637336

  4. Cause and effect oriented sewer degradation evaluation to support scheduled inspection planning.

    PubMed

    Fuchs-Hanusch, D; Günther, M; Möderl, M; Muschalla, D

    2015-01-01

    Managing the subsurface urban infrastructure, while facing limited budgets, is one of the main challenges wastewater utilities currently face. In this context targeted planning of inspection and maintenance measures plays a crucial role. This paper introduces a cause and effect oriented sewer degradation evaluation approach to support decisions on inspection frequencies and priorities. Therefore, the application of logistic regression models, to predict the probability of failure categories as an alternative to the prediction of sewer condition classes, was introduced. We assume that analysing the negative effects resulting from different failure categories in extension to a condition class-based planning approach offers new possibilities for targeted inspection planning. In addition, a cross validation process was described to allow for a more accurate prediction of sewer degradation. The described approach was applied to an Austrian sewer system. The results show that the failure category-based regression models perform better than the conventional condition class-oriented models. The results of the failure category predictions are presented with respect to negative effects the failure may have on the hydraulic performance of the system. Finally, suggestions are given for how this performance-oriented sewer section evaluation can support scheduled inspection planning. PMID:26398033

  5. Groundwater intrusion into leaky sewer systems.

    PubMed

    Wittenberg, H; Aksoy, H

    2010-01-01

    Vast volumes of groundwater are drained by urban sewer systems. This unwanted flow component intrudes into sewer systems through leaky joints or connected house drains. However, unlike urban storm drainage, it has a high seasonal variation corresponding to groundwater storage and long slow recessions similar to baseflow in rivers also fed by shallow groundwater exfiltrating into the surface waters. By applying the nonlinear reservoir algorithm as used for baseflow separation from total flow in a river, groundwater flow is separated from daily measured influents to treatment plants in Lower Saxony and Baden-Württemberg, Germany and in the Terkos Lake watershed near Istanbul, Turkey. While waste water flows vary only moderately within a year, separated intruded groundwater flows show recessions and seasonal variations correlated to baseflow in neighbouring rivers. It is possible to conclude that recession characteristics of treatment plant influents allow quantification and prediction of groundwater intrusion into sewer systems. PMID:20595758

  6. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  7. 40 CFR 35.2024 - Combined sewer overflows.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Combined sewer overflows. 35.2024... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2024 Combined sewer... from the State allotment for correction of combined sewer overflows provided that the project is on...

  8. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    EPA Science Inventory

    This paper overviews causes of combined-sewer deterioration and their heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer and combined-sewer overflow (CSO) storage-tank-flushing systems for removi...

  9. SEWER SEDIMENT AND CONTROL: A MANAGEMENT PRACTICES REFERENCES GUIDE

    EPA Science Inventory

    Sewer-solids sediment is one of major sources of pollutants in urban wet-weather flow (WWF) discharges that include combined-sewer overflow (CSO), separate sanitary-sewer overflow (SSO), and stormwater runoff. During low-flow, dry-weather periods, sanitary wastewater solids depo...

  10. SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX

    EPA Science Inventory

    Description: The Nation's sanitary-sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 SSO events per year. Becau...

  11. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    EPA Science Inventory

    This presentation overviews causes of sewer deterioration and heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer- and combined sewer overflow- (CSO-) storage-tank-flushing systems for removal of ...

  12. Dynamic online sewer modelling in Helsingborg.

    PubMed

    Hernebring, C; Jönsson, L E; Thorén, U B; Møller, A

    2002-01-01

    Within the last decade, the sewer system in Helsingborg, Sweden has been rehabilitated in many ways along with the reconstruction of the WWTP Oresundsverket in order to obtain a high degree of nitrogen and phosphorus removal. In that context a holistic view has been applied in order to optimise the corrective measures as seen from the effects in the receiving waters. A sewer catchment model has been used to evaluate several operation strategies and the effect of introducing RTC. Recently, a MOUSE ONLINE system was installed. In this phase the objective is to establish a stable communication with the SCADA system and to generate short-term flow forecasts. PMID:11936663

  13. Real-time sewer effluent monitoring system

    SciTech Connect

    Koopman, S.; Yamauchi, R.K.

    1990-12-01

    Lawrence Livermore National Laboratory has upgraded its early sewer monitoring system from the 1970's. LLNL must insure that its waste water is of a consistent and acceptable nature for the City of Livermore's community sewer system. The Sewer Monitor UpGrade system (SMUG) is now monitoring the Lab's sewer effluent. SMUG monitors the effluent for pH, flow rate, metals, and alpha, beta and gamma emitting isotopes. It turns on the appropriate alarms if present alarm levels are exceeded. The hardware consists of DEC Micro VAX II/GPX that has been repackaged by Nuclear Data Company as the Genie 9900 Data Acquisition and Display System. The gamma detector, three XRFAs, pH meter, and flow rate meter are commercially available. The metals sample cells are custom built at the Lab. The operating system is the VMS version 5.4. The application software is written in DEC's Fortran-77 and MACRO, and Nuclear Data software library. 3 refs., 3 figs.

  14. An Environmental Innovation: The Sewer Mouse

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the effort to clean up America's waters, there is a little-known complicating factor: because they leak, sewer systems in many American cities are causing rather than preventing pollution of rivers and lakes. Fixing the leaks is difficult because their locations are unknown. Maintenance crews can't tear up a whole city looking for cracks in the pipes; they must first determine which areas are most likely suspects. An aerospace spinoff is providing help in that regard. The problem starts with heavy rains. Rainwater naturally flows into the sewers from streets, but sewage systems are designed to accommodate it. However, they are not designed to handle the additional flow of "groundwater", rain absorbed by the earth which seeps into the sewers through leaks in pipes and sewer walls. After a storm, groundwater seepage can increase the waterflow to deluge proportions, with the result that sewage treatment plants are incapable of processing the swollen flow. When that happens the sluices must be opened, dumping raw sewage into rivers and lakes.

  15. Urban Runoff and Combined Sewer Overflow.

    ERIC Educational Resources Information Center

    Field, Richard; Gardner, Bradford B.

    1978-01-01

    Presents a literature review of wastewater treatment, covering publications of 1976-77. This review includes areas such as: (1) urban runoff quality and quantity; (2) urban hydrology; (3) management practices; and (4) combined sewer overflows. A list of 140 references is also presented. (HM)

  16. OPTIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution.An optimized combined-sewer-overflow (CSO) control system requires a manage...

  17. OPIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution. A strategy should be adopted to develop an optimized combined sewer overfl...

  18. Multistakeholder Evaluation of Condominial Sewer Services

    ERIC Educational Resources Information Center

    Nance, Earthea

    2005-01-01

    A multistakeholder evaluation procedure is presented to address the many challenges in evaluating the performance of condominial sewer projects in Brazil. Condominial sewerage is a promising appropriate technology that is coproduced by users and public agencies, but little is known about project performance. This article shows that…

  19. MANUAL: REAL TIME CONTROL OF COMBINED SEWERS

    EPA Science Inventory

    Managers, engineers, and operators of combined urban sewer systems are faced with difficult problems related to the operation and maintenance of their facilities. In addition to the issues related to the operation and upkeep of the system, many sewerage agencies are facing increa...

  20. Modelling total suspended solids, E. coli and carbamazepine, a tracer of wastewater contamination from combined sewer overflows

    NASA Astrophysics Data System (ADS)

    Pongmala, Khemngeun; Autixier, Laurène; Madoux-Humery, Anne-Sophie; Fuamba, Musandji; Galarneau, Martine; Sauvé, Sébastien; Prévost, Michèle; Dorner, Sarah

    2015-12-01

    Urban source water protection requires knowledge of sources of fecal contamination upstream of drinking water intakes. Combined and sanitary sewer overflows (CSOs and SSOs) are primary sources of microbiological contamination and wastewater micropollutants (WWMPs) in urban water supplies. To quantify the impact of sewer overflows, predictive simulation models are required and have not been widely applied for microbial contaminants such as fecal indicator bacteria and pathogens in urban drainage networks. The objective of this study was to apply a simulation model to estimate the dynamics of three contaminants in sewer overflows - total suspended solids, Escherichia coli (E. coli) and carbamazepine, a WWMP. A mixed combined and pseudo-sanitary drainage network in Québec, Canada was studied and modelled for a total of 7 events for which water quality data were available. Model results were significantly correlated with field water quality data. The model confirmed that the contributions of E. coli from runoff and sewer deposits were minor and their dominant source was from sewage. In contrast, the main sources of total suspended solids were stormwater runoff and sewer resuspension. Given that it is not present in stormwater, carbamazepine was found to be a useful stable tracer of sewage contributions to total contaminant loads and also provided an indication of the fraction of total suspended solids originating from sewer deposits because of its similar response to increasing flowrates.

  1. Effects Of Leaky Sewers On Groundwater Quality

    NASA Astrophysics Data System (ADS)

    Leschik, S.; Musolff, A.; Reinstorf, F.; Strauch, G.; Oswald, S. E.; Schirmer, M.

    2007-12-01

    The impact of urban areas on groundwater quality has become an emerging research field in hydrogeology. Urban subsurface infrastructures like sewer networks are often leaky, so untreated wastewater may enter the urban aquifer. The transport of wastewater into the groundwater is still not well understood under field conditions. In the research platform WASSER Leipzig (Water And Sewershed Study of Environmental Risk in Leipzig- Germany) the effects of leaky sewers on the groundwater quality are investigated. The research is focused on the occurrence and transport of so-called "xenobiotics" such as pharmaceuticals and personal care product additives. Xenobiotics may pose a threat on human health, but can also be considered a marker for an urban impact on water resources. A new test site was established in Leipzig to quantify mass fluxes of xenobiotics into the groundwater from a leaky sewer. Corresponding to the leaks which were detected by closed circuit television inspections, monitoring wells were installed up- and downstream of the sewer. Concentrations of eight xenobiotics (technical-nonylphenol, bisphenol-a, caffeine, galaxolide, tonalide, carbamazepine, phenazone, ethinylestradiol) obtained from first sampling programmes were found to be highly heterogeneous, but a relation between the position of the sampling points and the sewer could not be clearly identified. However, concentrations of sodium, chloride, potassium and nitrate increased significantly downstream of the sewer which may be due to wastewater exfiltration, since no other source is known on the water flowpath from the upstream to the downstream wells. Because of the highly heterogeneous spatial distribution of xenobiotics at the test site, a monitoring concept was developed comprising both high-resolution sampling and an integral approach to obtain representative average concentrations. Direct-push techniques were used to gain insight into the fine-scale spatial distribution of the target compounds

  2. Control of sulfide and methane production in anaerobic sewer systems by means of Downstream Nitrite Dosage.

    PubMed

    Auguet, Olga; Pijuan, Maite; Borrego, Carles M; Gutierrez, Oriol

    2016-04-15

    Bioproduction of hydrogen sulfide (H2S) and methane (CH4) under anaerobic conditions in sewer pipes causes detrimental effects on both sewer facilities and surrounding environment. Among the strategies used to mitigate the production of both compounds, the addition of nitrite (NO2(-)) has shown a greater long-term inhibitory effect compared with other oxidants such as nitrate or oxygen. The aim of this study was to determine the effectiveness of a new method, the Downstream Nitrite Dosage strategy (DNO2D), to control H2S and CH4 emissions in sewers. Treatment effectiveness was assessed on H2S and CH4 abatement on the effluent of a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer. The experiment was divided in three different periods: system setup (period 1), nitrite addition (period 2) and system recovery (period 3). Different process and molecular methods were combined to investigate the impact of NO2(-) addition on H2S and CH4 production. Results showed that H2S load was reduced completely during nitrite addition when compared to period 1 due to H2S oxidation but increased immediately after nitrite addition stopped. The H2S overproduction during recovery period was associated with the bacterial reduction of different sulfur species (elemental sulfur/thiosulfate/sulfite) accumulated within the sewer biofilm matrix. Oxidation of CH4 was also detected during period 2 but, contrary to sulfide production, re-establishment of methanogenesis was not immediate after stopping nitrite dosing. The analysis of bulk and active microbial communities along experimental treatment showed compositional changes that agreed with the observed dynamics of chemical processes. Results of this study show that DNO2D strategy could significantly reduce H2S and CH4 emissions from sewers during the addition period but also suggest that microbial agents involved in such processes show a high resilience towards chemical stressors, thus favoring the re

  3. Urban flood risk assessment using sewer flooding databases.

    PubMed

    Caradot, Nicolas; Granger, Damien; Chapgier, Jean; Cherqui, Frédéric; Chocat, Bernard

    2011-01-01

    Sustainable water management is a global challenge for the 21st century. One key aspect remains protection against urban flooding. The main objective is to ensure or maintain an adequate level of service for all inhabitants. However, level of service is still difficult to assess and the high-risk locations difficult to identify. In this article, we propose a methodology, which (i) allows water managers to measure the service provided by the urban drainage system with regard to protection against urban flooding; and (ii) helps stakeholders to determine effective strategies for improving the service provided. One key aspect of this work is to use a database of sewer flood event records to assess flood risk. Our methodology helps urban water managers to assess the risk of sewer flooding; this approach does not seek to predict flooding but rather to inform decision makers on the current level of risk and on actions which need to be taken to reduce the risk. This work is based on a comprehensive definition of risk, including territorial vulnerability and perceptions of urban water stakeholders. This paper presents the results and the methodological contributions from implementing the methodology on two case studies: the cities of Lyon and Mulhouse. PMID:22097068

  4. Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions.

    PubMed

    Jelic, Aleksandra; Rodriguez-Mozaz, Sara; Barceló, Damia; Gutierrez, Oriol

    2015-01-01

    The occurrence of 43 pharmaceuticals and 2 metabolites of ibuprofen was evaluated at the inlet and the outlet of a pressure sewer pipe in order to asses if in-sewer processes affect the pharmaceutical concentrations during their pass through the pipe. The target compounds were detected at concentrations ranging from low ng/L to a few μg/L, which are in the range commonly found in municipal wastewater of the studied area. The changes in concentrations between two sampling points were negligible for most compounds, i.e. from -10 to 10%. A higher decrease in concentrations (25-60 %) during the pass through the pipe was observed for diltiazem, citalopram, clarithromycin, bezafibrate and amlodipine. Negative removal was calculated for sulfamethoxazole (-66 ± 15%) and irbesartan (-58 ± 25%), which may be due to the conversion of conjugates back to their parent compounds in the sewer. The results show that microbial transformation of pharmaceuticals begins in sewer, albeit to different extents for different compounds. Therefore, the in-sewer transformation of pharmaceuticals should be assessed especially when their concentrations are used to estimate and refine the estimation of their per capita consumption in a catchment of interest in the sewage epidemiology approach. PMID:25462720

  5. Characterization of Washoff Behavior of In-Sewer Deposits in Combined Sewer Systems.

    PubMed

    Kim, WeonJae; Furumai, Hiroaki

    2016-06-01

    In-sewer deposits in combined sewer systems (CSSs) are closely related with the behavior of first foul flush and combined sewer overflows. The artificial flushing experiment separating the washoff of in-sewer deposits from the inflow of surface pollutants was carried out to simulate first foul flush in a CSS. The washoff behaviors of each pollutant including chemical pollutants, bacterial indicators, and enteric viruses were intensively investigated. By using several morphological analyses, some of which were suggested through this study, the characteristics of first foul flush were examined. As a result, the washoff behaviors of each pollutant were characterized according to their (i) event load ratios (ELRs), (ii) time-series concentration and load curves, (iii) concentration vs. flow rate curves, and (iv) dimensionless runoff concentrations (DRCs). The first foul flush patterns of each parameter were categorized into 3 typical groups: the strong-, partial-, and no first foul flush group. The order of these groups signifies their different physicochemical properties of in-sewer deposits in CSSs, their strength of first foul flush phenomena, and the washoff priority as well. PMID:27225785

  6. Estimating sewer leakage from continuous tracer experiments.

    PubMed

    Rieckermann, Jörg; Bares, Vojtech; Kracht, Oliver; Braun, Daniel; Gujer, Willi

    2007-05-01

    Direct measurements of sewer leakage with continuous dosing of tracers are often considered too imprecise for practical applications. However, no mathematical framework for data analysis is reported in literature. In this paper, we present an improved experimental design and data analysis procedure together with a comprehensive framework for uncertainty assessment. Test runs in a 700 m-long watertight sewer showed no significant bias and a very high precision of the methodology. The standard error in the results was assessed to 2.6% of the labeled flow with a simplified model. It could be reduced to 1.2% when a dynamic data analysis procedure was applied. The major error contribution was caused by transient transport phenomena, which suggests that careful choosing of the experimental time is more important than the choice of a very specific tracer substance. Although the method is not intended to replace traditional CCTV inspections, it can provide complementary information for rational rehabilitation planning. PMID:17363025

  7. A review of sulfide emissions in sewer networks: overall approach and systemic modelling.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2016-01-01

    The problems related to hydrogen sulfide in terms of deterioration of sewer networks, toxicity and odor nuisance have become very clear to the network stakeholders and the public. The hydraulic and (bio)chemical phenomena and parameters controlling sulfide formation, emission and their incidences in sewer networks are very complex. Recent research studies have been developed in gravity and pressure sewers and some transfer models have been published. Nevertheless, the models do not take into account all the physical phenomena influencing the emission process. After summing up the main scientific knowledge concerning the production, oxidation, transfer and emission processes, the present review includes: (i) a synthetic analysis of sulfide and hydrogen sulfide emission models in sewer networks, (ii) an estimation of their limit, (iii) perspectives to improve the modelling approach. It shows that sulfide formation and uptake models still need refinements especially for some phenomena such as liquid to gas mass transfer. Transfer models that have been published so far are purposely simplified and valid for simple systems. More efforts have to be undertaken in order to better understand the mechanisms and the dynamics of hydrogen sulfide production and emission in real conditions. PMID:27003062

  8. Measuring Flow Reductions in a Combined Sewer System using Green Infrastructure - abstract

    EPA Science Inventory

    In 2009, the Louisville and Jefferson County Metropolitan Sewer District (MSD) submitted an Integrated Overflow Abatement Plan (IOAP) addressing combined sewer overflows (CSOs) and sanitary sewer overflows. Many of the solutions involve gray infrastructure, such as large, end-of...

  9. Real-time control of sewer systems using turbidity measurements.

    PubMed

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available. PMID:22049758

  10. Transformation of AgCl nanoparticles in a sewer system--A field study.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Sinnet, Brian; Zuleeg, Steffen; Siegrist, Hansruedi; Burkhardt, Michael

    2015-12-01

    Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 μg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%). PMID:25582606

  11. Modelling the effects of on-site greywater reuse and low flush toilets on municipal sewer systems.

    PubMed

    Penn, R; Schütze, M; Friedler, E

    2013-01-15

    On-site greywater reuse (GWR) and installation of water-efficient toilets (WET) reduce urban freshwater demand. Research on GWR and WET has generally overlooked the effects that GWR may have on municipal sewer systems. This paper discusses and quantifies these effects. The effects of GWR and WET, positive and negative, were studied by modelling a representative urban sewer system. GWR scenarios were modelled and analysed using the SIMBA simulation system. The results show that, as expected, the flow, velocity and proportional depth decrease as GWR increases. Nevertheless, the reduction is not evenly distributed throughout the day but mainly occurs during the morning and evening peaks. Examination of the effects of reduced toilet flush volumes revealed that in some of the GWR scenarios flows, velocities and proportional depths in the sewer were reduced, while in other GWR scenarios discharge volumes, velocities and proportional depths did not change. Further, it is indicated that as a result of GWR and installation of WET, sewer blockage rates are not expected to increase significantly. The results support the option to construct new sewer systems with smaller pipe diameters. The analysis shows that as the penetration of GWR systems increase, and with the installation of WET, concentrations of pollutants also increase. In GWR scenarios (when toilet flush volume is not reduced) the increase in pollutant concentrations is lower than the proportional reduction of sewage flow. Moreover, the results show that the spatial distribution of houses reusing GW does not significantly affect the parameters examined. PMID:23220603

  12. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alterantives to sewerline rehabilitation for infiltration/inflow (I/I) and ...

  13. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensiv...

  14. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW

    EPA Science Inventory

    Wet-weather flow (WWF), including combined-sewer overflow (CSO, sanitary-sewer overflow, and stormwater (SW), is a significant contributor of microbial contamination to surface water and ground water. By using effective wastewater or SW disinfection, introduction of pathogen con...

  15. GATE AND VACUUM FLUSHING OF SEWER SEDIMENT: LABORATORY TESTING

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly-designed vacuum-flushing device in removing sediment from combined sewers and CSO storage tanks. A laboratory hydraulic flume was used to simulate a reach of sewer or storag...

  16. EVALUATION OF TRENCHLESS SEWER CONSTRUCTION AT SOUTH BETHANY BEACH, DELAWARE

    EPA Science Inventory

    The purpose of this project was to determine whether the trenchless method of sewer construction had inherent cost, safety and other advantages over conventional methods of sewer construction. Under similar site conditions, the trenchless method was more cost effective than conve...

  17. 40 CFR 35.927-4 - Sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer use ordinance. 35.927-4 Section... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.927-4 Sewer use ordinance. Each applicant for grant assistance for a step 2 or step 3 project...

  18. 7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND BUILDING F IN THE LEFT BACKGROUND. 8X10 black and white gelatin print. United States Coast Guard, Air Station Contract 1247, Sewer System. 1956. - U.S. Coast Guard Air Station San Francisco, 1020 North Access Road, San Francisco, San Francisco County, CA

  19. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... environmental factors. (b) A sewer system evaluation will generally be used to determine whether or not... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer system evaluation and rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND...

  20. INNOVATIVE METHODS FOR THE OPTIMIZATION OF GRAVITY STORM SEWER DESIGN

    EPA Science Inventory

    The purpose of this paper is to describe a new method for optimizing the design of urban storm sewer systems. Previous efforts to optimize gravity sewers have met with limited success because classical optimization methods require that the problem be well behaved, e.g. describ...

  1. SEWER SEDIMENT GATE AND VACUUM FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly designed vacuum-flushing device in removing sediments from combined sewers and CSO storage tanks. A laboratory hydraulic flune was used to simulate a reach of sewer or storag...

  2. Control Strategy for Storm-Generated Sanitary Sewer Overflows

    EPA Science Inventory

    This presentation covers a strategy for the abatement of pollution from sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alternatives to sewerline rehabilitation for infiltration/inflow (I/I) and associated ...

  3. Moon Rise

    NASA Video Gallery

    Aboard the International Space Station in May 2012, Expedition 31 astronaut Don Pettit opened the shutters covering the cupola observation windows in time to watch the moon rise. The time-lapse sce...

  4. Modelling the viability of heat recovery from combined sewers.

    PubMed

    Abdel-Aal, M; Smits, R; Mohamed, M; De Gussem, K; Schellart, A; Tait, S

    2014-01-01

    Modelling of wastewater temperatures along a sewer pipe using energy balance equations and assuming steady-state conditions was achieved. Modelling error was calculated, by comparing the predicted temperature drop to measured ones in three combined sewers, and was found to have an overall root mean squared error of 0.37 K. Downstream measured wastewater temperature was plotted against modelled values; their line gradients were found to be within the range of 0.9995-1.0012. The ultimate aim of the modelling is to assess the viability of recovering heat from sewer pipes. This is done by evaluating an appropriate location for a heat exchanger within a sewer network that can recover heat without impacting negatively on the downstream wastewater treatment plant (WWTP). Long sewers may prove to be more viable for heat recovery, as heat lost can be reclaimed before wastewater reaching the WWTP. PMID:25051477

  5. Prediction of sulphide build-up in filled sewer pipes.

    PubMed

    Alani, Amir M; Faramarzi, Asaad; Mahmoodian, Mojtaba; Tee, Kong Fah

    2014-08-01

    Millions of dollars are being spent worldwide on the repair and maintenance of sewer networks and wastewater treatment plants. The production and emission of hydrogen sulphide has been identified as a major cause of corrosion and odour problems in sewer networks. Accurate prediction of sulphide build-up in a sewer system helps engineers and asset managers to appropriately formulate strategies for optimal sewer management and reliability analysis. This paper presents a novel methodology to model and predict the sulphide build-up for steady state condition in filled sewer pipes. The proposed model is developed using a novel data-driven technique called evolutionary polynomial regression (EPR) and it involves the most effective parameters in the sulphide build-up problem. EPR is a hybrid technique, combining genetic algorithm and least square. It is shown that the proposed model can provide a better prediction for the sulphide build-up as compared with conventional models. PMID:24956763

  6. Water Quality of Combined Sewer Overflows, Stormwater, and Streams, Omaha, Nebraska, 2006-07

    USGS Publications Warehouse

    Vogel, Jason R.; Frankforter, Jill D.; Rus, David L.; Hobza, Christopher M.; Moser, Matthew T.

    2009-01-01

    criterion in all but four stream samples (266 of 270). Similarly, only 2 of 84 Missouri River samples had total phosphorus concentrations less than the proposed criterion. The proposed total nitrogen criterion for the Corn Belt and Northern Great Plains ecoregion was surpassed in 80 percent of the water samples collected from the stream sites. Samples with total nitrogen concentrations greater than the proposed criterion were most common at Papillion Creek and Big Papillion Creek sites, where the proposed criterion was surpassed in 90 and 96 percent of the samples collected, respectively. Elevated concentrations of total nitrogen were less common at the Missouri River sites, with 33 percent of the samples analyzed having concentrations that surpassed the proposed nutrient criterion for total nitrogen. The three constituents with measured concentrations greater than their respective health-based screening levels were nickel, zinc, and dichlorvos. Differences in water quality during the beginning, middle, and end of the combined sewer overflow discharge and the stream hydrograph rise, peak, and recession were investigated. Concentrations from the ending part of the combined sewer overflow hydrograph were significantly different than those from the beginning and middle parts for 3 and 11 constituents, respectively. No constituents were significantly different between the beginning and middle parts of the combined sewer overflow discharge hydrograph. For the stream site upstream from combined sewer overflow outfalls on Cole Creek, the constituents with geometric mean values for the hydrograph rise that were at least twice those for the values of the peak and recession were specific conductance, magnesium, nitrite, N,N-diethyl-meta-toluamide (DEET), methyl salicylate, p-cresol, and Escherichia coli. Similarly, the constituents where the hydrograph peak was at least twice that for the rise and recession at the upstream Cole Creek site were total suspended solids, silver, an

  7. Valuing information for sewer replacement decisions.

    PubMed

    van Riel, Wouter; Langeveld, Jeroen; Herder, Paulien; Clemens, François

    2016-01-01

    Decision-making for sewer asset management is partially based on intuition and often lacks explicit argumentation, hampering decision transparency and reproducibility. This is not to be preferred in light of public accountability and cost-effectiveness. It is unknown to what extent each decision criterion is appreciated by decision-makers. Further insight into this relative importance improves understanding of decision-making of sewer system managers. As such, a digital questionnaire (response ratio 43%), containing pairwise comparisons between 10 relevant information sources, was sent to all 407 municipalities in the Netherlands to analyse the relative importance and assess whether a shared frame of reasoning is present. Thurstone's law of comparative judgment was used for analysis, combined with several consistency tests. Results show that camera inspections were valued highest, while pipe age was considered least important. The respondents were pretty consistent per individual and also showed consistency as a group. This indicated a common framework of reasoning among the group. The feedback of the group showed, however, the respondents found it difficult to make general comparisons without having a context. This indicates decision-making in practice is more likely to be steered by other mechanisms than purely combining information sources. PMID:27533854

  8. U.S. EPA Issues Technical Guides and Computer Tools for Sewer Condition and Capacity Assessment

    EPA Science Inventory

    The nation's sanitary sewer infrastructure is aging, with some sewers more than100 years old. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events per year...

  9. Advances in Sewer Condition and Capacity Assessment – Development and Applications of EPA SSOAP Toolbox

    EPA Science Inventory

    In the United States, sanitary sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) ev...

  10. Factors That Influence Properties of FOG Deposits and Their Formation in Sewer Collection Systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages, which eventually lead to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer ...

  11. Reducing pathogens in combined sewer overflows using ozonation or UV irradiation.

    PubMed

    Tondera, Katharina; Klaer, Kassandra; Gebhardt, Jens; Wingender, Jost; Koch, Christoph; Horstkott, Marina; Strathmann, Martin; Jurzik, Lars; Hamza, Ibrahim Ahmed; Pinnekamp, Johannes

    2015-11-01

    Fecal contamination of water resources is a major public health concern in densely populated areas since these water bodies are used for drinking water production or recreational purposes. A main source of this contamination originates from combined sewer overflows (CSOs) in regions with combined sewer systems. Thus, the treatment of CSO discharges is urgent. In this study, we explored whether ozonation or UV irradiation can efficiently reduce pathogenic bacteria, viruses, and protozoan parasites in CSOs. Experiments were carried out in parallel settings at the outflow of a stormwater settling tank in the Ruhr area, Germany. The results showed that both techniques reduce most hygienically relevant bacteria, parasites and viruses. Under the conditions tested, ozonation yielded lower outflow values for the majority of the tested parameters. PMID:26431869

  12. Surface water sewer misconnections in England and Wales: Pollution sources and impacts.

    PubMed

    Ellis, J B; Butler, D

    2015-09-01

    In urban areas served by separate sewerage consisting of separate pipe systems it is not uncommon for misconnections to be made either accidentally or deliberately, whereby the wrong effluent is connected to the wrong sewer. The main focus of this problem has been on in-household appliances that are wrongly connected to separate surface water sewers, potentially leading to pollution of receiving waters and non-compliance with statutory water quality standards. This paper examines the available evidence to evaluate the potential scale, severity and cost of the problem in England and Wales in comparison to that reported from investigations in the United States. The particular difficulties associated with distinguishing specific sewage sources in the wastewater "cocktail" discharged at polluted surface water outfalls are reviewed. The deficiencies of existing legislation and enforcing compliance with respect to misconnections are also discussed and the pollution potential resulting from domestic misconnections is explored based on sampled data. PMID:25918897

  13. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  14. A sewer ventilation model applying conservation of momentum.

    PubMed

    Ward, M; Hamer, G; McDonald, A; Witherspoon, J; Loh, E; Parker, W

    2011-01-01

    The work presented herein was completed in an effort to characterize the forces influencing ventilation in gravity sewers and to develop a mathematical model, based on conservation of momentum, capable of accounting for friction at the headspace/pipe interface, drag at the air/water interface, and buoyancy caused by air density differences between a sewer headspace and ambient. Experiments were completed on two full scale sewer reaches in Australia. A carbon monoxide-based tracer technique was used to measure the ventilation rate within the sewer headspaces. Additionally, measurements of pressure, relative humidity, and temperature were measured in the ambient air and sewer headspace. The first location was a five kilometre long sewer outfall beginning at a wastewater treatment plant and terminating at the ocean. The second location was a large gravity sewer reach fitted with ventilation fans. At the first location the headspace was entirely sealed except for openings that were controlled during the experiments. In this situation forces acting on the headspace air manifested mostly as a pressure distribution within the reach, effectively eliminating friction at the pipe wall. At the second location, air was forced to move near the same velocity as the wastewater, effectively eliminating drag at the air/water interface. These experiments allowed individual terms of the momentum equation to be evaluated. Experimental results were compared to the proposed mathematical model. Conclusions regarding model accuracy are provided along with model application guidance and assumptions. PMID:22214094

  15. Use of sanitary sewers as wastewater pre-treatment systems

    SciTech Connect

    Warith, M.A.; Kennedy, K.; Reitsma, R.

    1998-12-31

    As wastewater travels through a sewer system it undergoes changes in composition. The changes in composition may be caused by chemical, physical and/or biological processes. At present engineers do not take into consideration the impacts of these processes on the wastewater quality when designing wastewater treatment systems. However, the impact of these processes on the chemical oxygen demand, biochemical oxygen demand, nitrogen and phosphorus content of the wastewater can be significant. In the case of the biological processes, microorganisms present in the water as it travels through the sewer system are similar to those found in an activated sludge process. Given that the microorganism population and the hydraulic retention time often resembles that of an activated sludge process, it would seem only reasonable to look further into the possibility of using sewers as wastewater treatment systems. Furthermore, the plug flow regime of a sanitary sewer is inherently beneficial in terms of wastewater treatment as it is not subject to short-circuiting. The first part of this paper provides a technical review of the processes which take place in a sewer system and the resulting degradation of some of the more significant substances found in wastewater. The contribution of both the suspended biomass and the attached biomass to the degradation of substrate is also examined. The second part of this paper examines the use of the Toxchem computer model to predict the processes which are taking place in the sewer under a variety of conditions. The goal being to determine the magnitude of the degradation of substrate and dissolved oxygen depletion in a sewer system. In obtaining a better understanding of the processes that are taking place in sewer systems, engineers will be able to more accurately predict the degradation of substrates in sanitary sewer systems. This will result in a reduction in the size of wastewater treatment facilities (WWTFs).

  16. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    NASA Astrophysics Data System (ADS)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    endmembers is basically sufficient to estimate the ratio of infiltrating water in the sewer. Uncertainties yet derive from varying amounts of local groundwater in the water supply mains. These will be substituted by additionally purchased lake water in the next experimental stage. 2) The experimental site Toraccia (suburb of Rome, Italy) obtains drinking water from the Peschiera springs group that is situated in the central Apennines chain about 90 km north east of Rome. This spring water is transported to Rome by an aqueduct. A first campaign revealed an average mains water δ18O value of -8,4 per mill and δ^2H value of -53 per mill. Potential sources of infiltration are occurrences of perched groundwater. These appear to be enriched compared to the drinking water about 2 to 3 per mill in the δ18O and 10 to 20 per mill in the δ^2H value, but show disadvantageous strong variations. 3) Investigations in the urban area of Lyon (France) benefit from the isotopic differences between underground waters originating from the two rivers Rhone and Saone and their associated alluvial aquifers. The oxygen isotope composition of the Rhone water is roughly 3 per mill lighter than that of the river Saone, due to the large differences in the mean altitude and topographic situation of their catchment basins. Considerable amounts of mains water are extracted by production wells in the Rhone aquifer. In consequence a usable difference in the oxygen isotope composition between wastewater and local groundwater of about 1.5 per mill is available for application studies in certain parts of the city.

  17. Transport of large solids in sewer pipes.

    PubMed

    Walski, Thomas; Edwards, Bryce; Helfer, Emil; Whitman, Brian E

    2009-07-01

    This paper presents a method for determining the conditions under which large solids (i.e., solids with a vertical dimension greater than the depth of water) are able to move in a pipe. Depending on the value of a dimensionless number [s(d/y) - 1], where s = specific gravity of the solids, d = water depth, and y = height of solids, motion will occur if a sufficient velocity (also reported as a Froude number or modified "solids" Froude number) is exceeded. Flume experiments were used to determine the coefficients to be used in the design. The velocity required to reach fluid movement was approximately 0.6 to 1.0 m/s (2 to 3 ft/s), which is consistent, although slightly higher than values generally used in conventional sewer design practice. However, it was demonstrated that increasing the pipe slope to achieve a higher velocity does not ensure that the solid will move. PMID:19691252

  18. Treatment shaft for combined sewer overflow detention.

    PubMed

    Wright, Steven J; Ghalib, Saad; Eloubaidy, Aziz

    2010-05-01

    A deep, large-diameter underground shaft to provide detention storage for combined sewer overflow control may be advantageous in urban environments, where space limitations require solutions with a small footprint. An underflow baffle wall is provided at the center of the treatment shaft to prevent short-circuiting of the flow. An additional objective is to maintain low headlosses through the structure. A physical model study was conducted to determine the effect of the bottom elevation of the baffle wall on the headloss and breakthrough curve for dye injected to the inflow. It was found that there is a considerable range of elevations for which the structure behaves acceptably in providing adequate contact time for disinfectant while maintaining small headlosses. PMID:20480764

  19. First flush in a combined sewer system.

    PubMed

    Barco, Janet; Papiri, Sergio; Stenstrom, Michael K

    2008-03-01

    Pollutant first flush was examined in an urban catchment with area of 12.7 ha and drained by a combined sewer system located in northern Italy. A total of 23 rainfall-runoff events were monitored and 281 samples were analyzed. The selected quality parameters were biochemical oxygen demand, chemical oxygen demand, suspended solids, settleable solids, total phosphorus, total nitrogen, ammonium nitrogen, lead, and zinc, specific conductivity and hydrocarbons. A subset of representative storms was selected for first flush analysis. The catchment presented a strong first flush for almost all storms and most constituents. The analysis shows that treating the maximum amount of the early part of the runoff is a better strategy than treating a constant flow rate. Best management practices that can treat or store the first runoff are favored in this kind of system for these water quality parameters. PMID:18191441

  20. Quantification and relative comparison of different types of uncertainties in sewer water quality modeling.

    PubMed

    Willems, Patrick

    2008-07-01

    Quantifiable sources of uncertainty have been identified for a case study of integrated modeling of a sewer system with a more downstream wastewater treatment plant and storage sedimentation tank. The different sources were classified in model input and model-structure-related uncertainties. They were quantified and propagated towards the uncertainty in the event-based prediction of sewer emissions (flow, and physico-chemical water quality concentrations and loads). Based on the concept of variance decomposition, the total prediction uncertainty was split into the contributions of the various uncertainty sources and the different submodels. Although the results strongly depend on the water quality variable considered, it is in most general terms concluded that the uncertainty contribution by the water quality submodels is an order of magnitude higher than that for the flow submodels. Future model improvement should therefore mainly focus on water quality data collection, which would reduce current problems of spurious model calibration and verification, but also of knowledge gaps in in-sewer processes. PMID:18554682

  1. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm sewers. That, under section 211(c) of the Act, the allowable project costs do not include costs...

  2. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm sewers. That, under section 211(c) of the Act, the allowable project costs do not include costs...

  3. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm sewers. That, under section 211(c) of the Act, the allowable project costs do not include costs...

  4. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm sewers. That, under section 211(c) of the Act, the allowable project costs do not include costs...

  5. 40 CFR 35.925-21 - Storm sewers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-21 Storm sewers. That, under section 211(c) of the Act, the allowable project costs do not include costs...

  6. COMBINED SEWER OVERFLOW CHARACTERISTICS FROM TREATMENT PLANT DATA

    EPA Science Inventory

    This research was undertaken to evaluate the adequacy of using a mass balance technique with daily municipal wastewater treatment plant data to determine combined sewer runoff and overflow characteristics. The bias and variability associated with the mass balance technique togeth...

  7. Sandia National Laboratories, California sewer system management plan.

    SciTech Connect

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  8. INTEGRATED CONTROL OF COMBINED SEWER REGULATORS USING WEATHER RADAR

    EPA Science Inventory

    Integrated operation was simulated of ten dynamic combined sewer regulators on a Montreal interceptor. Detailed review of digital recording weather radar capabilities indicated that it is potentially the best rainfall estimation means for accomplishing the runoff prediction that ...

  9. MANAGEMENT OF COMBINED SEWER OVERFLOW: RESEARCH PROGRAM CAPSTONE

    EPA Science Inventory

    Combined-sewer overflow (CSO) is a mixture of urban storm drainage, municipal-industrial wastewater, and subterranean infiltration. Untreated discharges of CSOs have caused substantial pollution impacts on the quality of receiving-water bodies. Problem constituents include visi...

  10. Urban runoff and combined sewer overflow. [Wastewater treatment

    SciTech Connect

    Moffa, P.E.; Freedman, S.D.; Owens, E.M.; Field, R.; Cibik, C.

    1982-06-01

    The control, treatment and management of urban runoff and sewer overflow are reviewed. Simplified modeling and monitoring techniques are used to characterize urban runoff and to assess control alternatives. (KRM)

  11. SANITARY SEWER SYSTEMS - DISCHARGES, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Sewer system discharges as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impa...

  12. SANITARY SEWER SYSTEMS - LAND APPLICATION AREAS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Sewer system land applications as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting a...

  13. FLOCCULATION-FLOTATION AIDS FOR TREATMENT OF COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    The objectives of this study were to investigate the flocculation/flotation characteristics of combined sewer overflow through laboratory and field testing. The concept involves the introduction of chemicals and buoyant flotation aids into the overflow and the subsequent cofloccu...

  14. MANAGEMENT OF COMBINED SEWER OVERFLOW RESEARCH PROGRAM CAPSTONE

    EPA Science Inventory


    Combined-sewer overflow (CSO) is a mixture of urban storm drainage, municipal-industrial wastewater, and subterranean infiltration. Untreated discharges of CSOs have caused substantial pollution impacts on the quality of receiving-water bodies. Problem constituents include ...

  15. Exposure to airborne endotoxins among sewer workers: an exploratory study.

    PubMed

    Duquenne, Philippe; Ambroise, Denis; Görner, Pierre; Clerc, Frédéric; Greff-Mirguet, Guylaine

    2014-04-01

    Exploratory bioaerosol sampling was performed in order to assess exposure to airborne endotoxins during sewer work. Personal samples were collected in underground sewer pipes using 37-mm closed-face cassettes containing fibreglass filters (CFC-FG method) or polycarbonate filters (CFC-PC method). Endotoxins were quantified using the limulus amoebocyte lysate assay. Concentrations of airborne endotoxins at sewer workplaces (16-420 EU m(-3)) were higher than those measured outside the sewer network (0.6-122 EU m(-3)). Sewer worker exposure to airborne endotoxins depended on the workplace and on the tasks. Exposure levels were the highest for tasks involving agitation of water and matter, especially for 'chamber cleanup' and 'pipes cleanup' with a high-pressure water jet. Airborne endotoxin levels at the workplace tended to be higher when CFC-FG was used as the sampling method rather than CFC-PC. The adjusted mean of the measured concentrations for CFC-PC represents 57% of the mean observed with CFC-FG. The number of samples collected in the descriptive study was too low for drawing definitive conclusions and further exposure investigations are needed. Therefore, our exploratory study provides new exposure data for the insufficiently documented sewer working environment and it would be useful for designing larger exposures studies. PMID:24470536

  16. Modelling of biofilters for ammonium reduction in combined sewer overflow.

    PubMed

    Henrichs, M; Welker, A; Uhl, M

    2009-01-01

    Biofiltration has proved to be a useful system to treat combined sewer overflow (CSO). The study presented uses numerical simulation to detect the critical operating conditions of the filter. The multi-component reactive transport module CW2D was used for the simulation study. Single-event simulations of lab-scale-column experiments with varying boundary conditions regarding the throttle outflow rate were carried out. For the calibration of the CW2D model measurement results of four experiments in two lab-scale columns were used. The model was validated by simulating four events of two further columns filled with the same filter material. These columns were operating with higher throttle outflow rates than the columns used for calibration. For ammonium (NH(4)-N) a good fit between measured and simulated data could be achieved. However, the comparison of simulated and measured effluent concentrations of nitrate (NO(3)-N) showed that there is a need for further investigations mainly due to the uncertainties in the degradation process during dry periods between the loadings. PMID:19657178

  17. 3D geological model developed to analyse the aquifer - sewer network interaction in Bucharest city

    NASA Astrophysics Data System (ADS)

    Serpescu, I.; Radu, E.; Gogu, R. G.; Priceputu, A.; Boukhemacha, M. A.; Bica, I.; Gaitanaru, D.

    2012-04-01

    Due to the fact that several important Bucharest city sewer segments drain the groundwater and provide high input flow-rates for the existing waste-water treatment plant, their rehabilitation is necessary. A hydrogeological model, currently under development, will permit to compute the groundwater-sewer network interaction allowing the simulation of distinct design solutions to prevent city disturbances. For groundwater modelling the geological model represents the fundament of understanding the aquifers system behaviour. In this respect a 3D accurate and detailed geological model, covering a region of about 75 km2 has been developed to identify its contact with the major collecting sewer conduit. The shallow aquifer stratum of quaternary formations called Colentina is made of gravels and sands. This unconfined aquifer can be found mainly in the Bucharest city region at depths up to 20 m. A clayey-marl layer is located between Colentina and a lower confined aquifer called Mostistea. This second one is located at depths between 25 m and 70 m and is made of fine and medium sands with gravel intercalations. It overlays on a very thick sequence (40 m to 150 m) of marl and clay layers with slim sandy intercalations. The geological model has been developed on the basis of a large number of geological and geotechnical boreholes. A set of 400 boreholes with depths between 5m to 200 m showing a detailed geological and lithological description stored in a geospatial database have been used. The geological analysis has been performed using a software platform that integrates the spatial database and a set of tools and methodologies developed in a GIS environment with the aim of facilitating the development of 3D geological models for sedimentary media. Taking into account the first 50 m in depth, 25 geological profiles have been interpreted on the basis of chronostratigraphycal, lithological, and sedimentological criteria to delineate the geological formations and assess

  18. Copernicus Rising

    NASA Astrophysics Data System (ADS)

    Rose, Michael A.

    2007-08-01

    Copernicus Rising began as a historical biography when it was first conceived, but as the writing progressed it quickly became a rather absurd play that took historical research and twisted it through the lens of my own wit, philosophy and personal affection for the characters. When working with historical figures--characters who existed in a very tangible way in our own history--the playwriting process opens a dialogue between different points in time and space. The difficulty lies in finding a unique and clear voice amongst the discordant personalities involved in this time and space overlap, both in the writing and production processes, in order to get to the heart of what the play is really all about. This thesis follows the journey of the play from its historical roots through the creation of an absurd journey both insides and outside time, space and the human mind. The first part of the thesis explains the beginnings of the concept and outlines much of the research and development that went into the play. The next part outlines the process of production and integrating the world on paper with that of moving bodies on stage. In the final part, post-production discussions and audience feedback sessions shape the play into the draft included in this thesis.

  19. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems.

    PubMed

    Montserrat, A; Bosch, Ll; Kiser, M A; Poch, M; Corominas, Ll

    2015-02-01

    Using low-cost sensors, data can be collected on the occurrence and duration of overflows in each combined sewer overflow (CSO) structure in a combined sewer system (CSS). The collection and analysis of real data can be used to assess, improve, and maintain CSSs in order to reduce the number and impact of overflows. The objective of this study was to develop a methodology to evaluate the performance of CSSs using low-cost monitoring. This methodology includes (1) assessing the capacity of a CSS using overflow duration and rain volume data, (2) characterizing the performance of CSO structures with statistics, (3) evaluating the compliance of a CSS with government guidelines, and (4) generating decision tree models to provide support to managers for making decisions about system maintenance. The methodology is demonstrated with a case study of a CSS in La Garriga, Spain. The rain volume breaking point from which CSO structures started to overflow ranged from 0.6 mm to 2.8 mm. The structures with the best and worst performance in terms of overflow (overflow probability, order, duration and CSO ranking) were characterized. Most of the obtained decision trees to predict overflows from rain data had accuracies ranging from 70% to 83%. The results obtained from the proposed methodology can greatly support managers and engineers dealing with real-world problems, improvements, and maintenance of CSSs. PMID:25461106

  20. Stratified Microbial Structure and Activity in Sulfide- and Methane-Producing Anaerobic Sewer Biofilms

    PubMed Central

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie

    2014-01-01

    Simultaneous production of sulfide and methane by anaerobic sewer biofilms has recently been observed, suggesting that sulfate-reducing bacteria (SRB) and methanogenic archaea (MA), microorganisms known to compete for the same substrates, can coexist in this environment. This study investigated the community structures and activities of SRB and MA in anaerobic sewer biofilms (average thickness of 800 μm) using a combination of microelectrode measurements, molecular techniques, and mathematical modeling. It was seen that sulfide was mainly produced in the outer layer of the biofilm, between the depths of 0 and 300 μm, which is in good agreement with the distribution of SRB population as revealed by cryosection-fluorescence in situ hybridization (FISH). SRB had a higher relative abundance of 20% on the surface layer, which decreased gradually to below 3% at a depth of 400 μm. In contrast, MA mainly inhabited the inner layer of the biofilm. Their relative abundances increased from 10% to 75% at depths of 200 μm and 700 μm, respectively, from the biofilm surface layer. High-throughput pyrosequencing of 16S rRNA amplicons showed that SRB in the biofilm were mainly affiliated with five genera, Desulfobulbus, Desulfomicrobium, Desulfovibrio, Desulfatiferula, and Desulforegula, while about 90% of the MA population belonged to the genus Methanosaeta. The spatial organizations of SRB and MA revealed by pyrosequencing were consistent with the FISH results. A biofilm model was constructed to simulate the SRB and MA distributions in the anaerobic sewer biofilm. The good fit between model predictions and the experimental data indicate that the coexistence and spatial structure of SRB and MA in the biofilm resulted from the microbial types and their metabolic transformations and interactions with substrates. PMID:25192994

  1. On-line monitoring of methane in sewer air

    PubMed Central

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  2. Sulfide elimination by intermittent nitrate dosing in sewer sediments.

    PubMed

    Liu, Yanchen; Wu, Chen; Zhou, Xiaohong; Zhu, David Z; Shi, Hanchang

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide) ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems. PMID:25597685

  3. Combined sewer overflow: A management study. Technical report

    SciTech Connect

    Reilly, A.

    1988-01-01

    This project is part of the National Network for Environmental Management Studies under the auspices of the Office of Cooperative Environmental Management of the U.S. Environmental Protection Agency. In many older cities in the U.S., the capacity of the combined sewer is exceeded on a daily basis due to both-wet weather storm surges and increased volumes of waste generated by new development. As a result, billions of gallons of untreated sewage are discharged on an annual basis into the nation's marine bays and estuaries in episodes called 'combined sewer overflow.' There are two primary reasons for the increasing frequency and severity of overflow episodes: the population of cities in coastal areas are growing at rates that far exceed the ability of the sewer infrastructure to accommodate them; the built-in inefficiencies of the original design of the combined sewer are being exploited by many municipalities to compensate for the increased volumes of sewage associated with the growth in population. Because each combined sewer, the area that it drains, and the receiving water into which it discharges constitutes a unique system, a management strategy should be site-specific. The document proposes a framework within which a site-specific and cost-effective management strategy may be formulated. By necessity, the emphasis is on providing tools and methods rather than explicit solutions.

  4. On-line monitoring of methane in sewer air

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  5. On-line monitoring of methane in sewer air.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  6. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    PubMed

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-01

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type. PMID:27390870

  7. REVIEW OF ALTERNATIVES FOR EVALUATION OF SEWER FLUSHING DORCHESTER AREA--BOSTON

    EPA Science Inventory

    Alternatives employing sewer flushing were developed for the Dorchester area of Boston and their cost effectiveness compared with the decentralized combined sewer overflow (CSO) storage/treatment and disinfection facilities proposed as Eastern Massachusetts Metropolitan Area (EMM...

  8. SSOAP - A USEPA Toolbox for Sanitary Sewer Overflow Analysis and Control Planning - Presentation

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) has identified a need to use proven methodologies to develop computer tools that help communities properly characterize rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems and develop sanitary sewer...

  9. Molecular survey of concrete sewer biofilm microbial communities.

    PubMed

    Santo Domingo, Jorge W; Revetta, Randy P; Iker, Brandon; Gomez-Alvarez, Vicente; Garcia, Jarissa; Sullivan, John; Weast, James

    2011-10-01

    The microbial composition of concrete biofilms within wastewater collection systems was studied using molecular assays. SSU rDNA clone libraries were generated from 16 concrete surfaces of manholes, a combined sewer overflow, and sections of a corroded sewer pipe. Of the 2457 sequences analyzed, α-, β-, γ-, and δ-Proteobacteria represented 15%, 22%, 11%, and 4% of the clones, respectively. β-Proteobacteria (47%) sequences were more abundant in the pipe crown than any of the other concrete surfaces. While 178 to 493 Operational Taxonomic Units (OTUs) were associated with the different concrete samples, only four sequences were shared among the different clone libraries. Bacteria implicated in concrete corrosion were found in the clone libraries while archaea, fungi, and several bacterial groups were also detected using group-specific assays. The results showed that concrete sewer biofilms are more diverse than previously reported. A more comprehensive molecular database will be needed to better study the dynamics of concrete biofilms. PMID:21981064

  10. Long-term pollution simulation in combined sewer networks.

    PubMed

    Masse, B; Zug, M; Tabuchi, J P; Tisserand, B

    2001-01-01

    This paper presents results of long term pollution simulations on the example of the sewerage system of Grand-Couronne. This modelling work is part of a study where objective is to develop a method to define the reference flow of a WWTP. The model HYDROWORKS DM has been successfully validated in hydraulics and pollution for the sewer network, for long time simulations. A conceptual model has been built to model the pollution in the tank at the outlet of the combined system. One synthetic year of rain has been used to simulate the working of the "up stream system" of the WWTP (combined sewer + tank + separate sewer + pre-treatments) and has been successfully validated by measurements of the 1998-1999 year. If this paper is focused on the "up stream system", the SIMBA/SIMBAD WWTP model has been successfully calibrated and validated too, and the combination represents a fully validated "Integrated Model" for the sewerage system. PMID:11385878

  11. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  12. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  13. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  14. Contaminant transport pathways between urban sewer networks and water supply wells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply wells and sanitary sewers are critical components of urban infrastructure, but sewer leakage threatens the quality of groundwater in sewered areas. Previous work by our group has documented the presence of human enteric viruses in deep public supply wells. Our current research uses such...

  15. Ocean waste disposal: Outfall sewers. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning design, construction, and environmental effects of outfall sewers. The citations discuss the impact of domestic sewage on aquatic ecosystems, and pollution control of outfall sewers. Monitoring of pollutants in outfall sewage and sludge, and modeling of outfall sewers are also included. (Contains 250 citations and includes a subject term index and title list.)

  16. Sewer rehabilitation. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-02-01

    The bibliography contains citations concerning the maintenance and rehabilitation of sewers. The citations discuss joint weatherization treatments, sewer grouts, and plastic sleeves for cover cracked pipes. Maintenance and rehabilitation programs in specific cities are also discussed. The citations also reference the economics of sewer repair. (Contains a minimum of 164 citations and includes a subject term index and title list.)

  17. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  18. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  19. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  20. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  1. COMPUTER MODEL ANALYSIS FOR CONTROL PLANNING OF SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150 million people and comprising about 800,000 km (500,000 mi) of municipally ...

  2. SEWER SYSTEM EVALUATION, REHABILITATION AND NEW CONSTRUCTION. A MANUAL OF PRACTICE

    EPA Science Inventory

    This Manual of Practice has been prepared for use by local authorities and consulting engineers for the investigation of sewer systems for infiltration/inflow. This Manual discusses three areas: sewer system evaluation, sewer rehabilitation, and design of new systems to minimize ...

  3. Idaho National Engineering Laboratory Sewer System Upgrade Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment for a proposed Sewer System Upgrade Project at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. The proposed action would consist of replacing or remodeling the existing sewage treatment plants at the Central Facilities Area, Test Reactor Area, and Containment Test Facility. Also, a new sewage testing laboratory would be constructed at the Central Facilities Area. Finally, the proposed action would include replacing, repairing, and/or adding sewer lines in areas where needed.

  4. PERFORMANCE OF OZONE AS A DISINFECTANT FOR COMBINED SEWER OVERFLOW

    EPA Science Inventory

    Disinfection of combined sewer overflow (CSO) minimizes the amount of disease-causing microorganisms (pathogens) released into receiving waters. Currently, the primary disinfecting agent used in the US for wastewater treatment is chlorine (Cl2); however, Cl2 produces problems in ...

  5. Demonstration of Innovative Sewer System Inspection Technology: SL-RAT

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  6. REAL TIME CONTROL OF SEWERS: US EPA MANUAL

    EPA Science Inventory

    The problem of sewage spills and local flooding has traditionally been addressed by large scale capital improvement programs that focus on construction alternatives such as sewer separation or construction of storage facilities. The cost of such projects is often high, especiall...

  7. EVALUATION OF URBAN RUNOFF AND COMBINED SEWER OVERFLOW MUTAGENICITY

    EPA Science Inventory

    The introduction of potential mutagens to the human environment may serve to increase the rate of contact with substances that contribute to cancer incidence in the general population. The primary purpose of this study was to evaluate combined sewer overflows and urban runoff for...

  8. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  9. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act... transportation and treatment for each defined source of infiltration/inflow. (b) A report shall summarize the... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer system evaluation survey....

  10. ASSESSMENT OF DISEASE RATES AMONG SEWER WORKERS IN COPENHAGEN, DENMARK

    EPA Science Inventory

    Sewer workers in Copenhagen, Denmark, have a higher death rate than the comparable male population. An alarmingly high proportion of the deaths occur within the year that employment terminates. Attempts to correlate the statistics with sick leave records or chemicals in the envir...

  11. DEMONSTRATE REAL TIME AUTOMATIC CONTROL OF COMBINED SEWER SYSTEMS

    EPA Science Inventory

    The primary objective of this study was to develop a real time automatic control model that could be used in connection with a combined sewer system to minimize overflows during storms. The model was applied to the North Shore Outfall Consolidation Project in San Francisco. This ...

  12. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  13. Sanitary sewer rehabilitation at Lawrence Livermore National Laboratory

    SciTech Connect

    Vellinger, R. J.; Burton, R.; Fritschy, B.

    1995-04-01

    The objectives of this paper are the following: to present LLNL`s collection system and innovative approach to sanitary sewer rehabilitation; share issues identified and lessons learned from over four (4) years of rehabilitation work; and discuss proposed system standards for ongoing maintenance and repair activities.

  14. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  15. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  16. Incorporating Storm Sewer Exfiltration into SWMM: Proof of Concept

    EPA Science Inventory

    This study evaluates the peak flow and volume reduction achieved by exfiltration from a perforated storm sewer in an urban catchment. There are three related objectives: [1] quantify peak flow and volume reduction; [2] demonstrate adaptability to climate change; and [3] evaluate ...

  17. LAWRENCE AVENUE UNDERFLOW SEWER SYSTEM: MONITORING AND EVALUATION

    EPA Science Inventory

    A new and bold concept in design of urban drainage systems was developed as a step forward in the solution of combined sewer overflow problems. A deep tunnel in bed rock about 200 to 250 feet (61 to 76 m) below the surface was designed and constructed for the Lawrence Avenue drai...

  18. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  19. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  20. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  1. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  2. 40 CFR 35.2130 - Sewer use ordinance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... binding document shall also require that all wastewater introduced into the treatment works not contain... selection of the most cost-effective alternative for wastewater treatment and sludge disposal. (Approved by... STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2130 Sewer use ordinance....

  3. Episode of toxic gas exposure in sewer workers.

    PubMed Central

    Watt, M M; Watt, S J; Seaton, A

    1997-01-01

    OBJECTIVES: Sewer workers are used to unpleasant smells, but may be required to investigate unusual ones. Twenty six men were involved in investigation of episodes of such a smell after neighbourhood complaints over several weeks. METHODS: Workers exposed to the smell were investigated by clinical follow up, lung function tests, and measurement of pituitary function. RESULTS: 14 of the 26 developed subacute symptoms including sore throat, cough, chest tightness, breathlessness, thirst, sweating, irritability, and loss of libido. Severity of symptoms seemed to be dose related. Minor symptoms resolved over several weeks but those more seriously affected have shown deteriorating respiratory symptoms and lung function and remain unable to work a year after the incident. In one, evidence of mild cranial diabetes insipidus was found. Analysis of gas from the sewer showed the presence of a mixture of thiols and sulphides, known to be highly odorous and not normally found in sewers. The source remains unknown. CONCLUSIONS: Several of these men seem to have developed delayed airways disease and disturbances of hypothalamic function. Such an outcome has not to our knowledge been described before. Despite the presence of the smell, standard safety gas detection equipment used to ensure the sewer was safe to enter failed to indicate the presence of a hazard. Protection against such incidents can only be provided by the use of positive pressure breathing apparatus. PMID:9166135

  4. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  5. FIELD TESTING OF PROTOTYPE ACOUSTIC EMISSION SEWER FLOWMETER

    EPA Science Inventory

    This investigation concerns verifying the operating principles of the acoustic emission flowmeter (U.S. Patent 3,958,458) in the natural environment of three different storm sewer field sites in Nassau County, New York. The flowmeter is a novel, passive, nonintrusive method that ...

  6. COTTAGE FARM COMBINED SEWER DETENTION AND CHLORINATION STATION, CAMBRIDGE, MASSACHUSETTS

    EPA Science Inventory

    The Cottage Farm Detention and Chlorination Station was placed in operation by the Metropolitan District Commission on April 29, 1971. The station, located in Cambridge, Massachusetts, diverts and treats combined sewage flows from the Charles River Valley sewer system (15,600 acr...

  7. SEWER INFILTRATION AND INFLOW CONTROL PRODUCT AND EQUIPMENT GUIDE

    EPA Science Inventory

    The report lists and discusses new and existing equipment, materials, and practices available to prevent the entry of unwanted water into the sewer system from infiltration and inflow, and thereby needlessly usurping the capacity of the sewerage system. The report has six section...

  8. COMBINED SEWER OVERFLOW SEDIMENT TRANSPORT MODEL: DOCUMENTATION AND EVALUATION

    EPA Science Inventory

    A modeling package for studying the movement and fate of combined sewer overflow (CSO) sediment in receiving waters is described. The package contains a linear, implicit, finite-difference flow model and an explicit, finite-difference sediment transport model. The sediment model ...

  9. EXFILTRATION IN SANITARY SEWER SYSTEMS IN THE U.S.

    EPA Science Inventory

    Many municipalities throughout the US have sewerage systems (separate and combined) that may experience exfiltration of untreated wastewater. This study was conducted to focus on the magnitude of the exfiltration problem from sewer pipes on a national basis. The method for estima...

  10. EXFILTRATION IN SEWER SYSTEMS: IS IT A NATIONAL PROBLEM?

    EPA Science Inventory

    Many municipalities throughout the US have sewerage systems (separate and combined) that may experience exfiltration of untreated wastewater. This study was conducted to focus on the magnitude of the exfiltration problem from sewer pipes on a national basis. The method for estima...

  11. 31. RECORD PLAN, METROPOLITAN SEWER, GENERAL PLAN OF PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. RECORD PLAN, METROPOLITAN SEWER, GENERAL PLAN OF PUMPING STATION GROUNDS, DEER ISLAND. METROPOLITAN SEWERAGE COMMISSION, JUNE 1896. Photocopy of image of aperture card 4977-1. Aperture cards and original drawings at Massachusetts Water Resources Authority Archives, Building 39, Charlestown Navy Yard, Boston, MA - Deer Island Pumping Station, Boston, Suffolk County, MA

  12. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  13. Particle velocity and sediment transport at the limit of deposition in sewers.

    PubMed

    Ota, J J; Perrusquía, G S

    2013-01-01

    This paper focuses on the sediment particle while it is transported at the limit of deposition in storm sewers, i.e. as bed load at the limit of concentration that leads to sediment deposition. Although many empirical sediment transport equations are known in the literature, there is only limited knowledge concerning particle velocity. Sediment particle and sphere velocity measurements were carried out in two pipe channels and these results led to the development of a semi-theoretical equation for sediment transport at the limit of deposition in sewers. Even in the transport process without deposition, sediment movement is slower than water velocity and depends on the angle of repose of sediment with a diameter d on the roughness k of the pipe channel. Instead of classical dimensionless bed shear stress ψ, a modified dimensionless bed shear stress ψ (d/k)(2/3) was suggested, based on the angle of repose and this parameter was proved to be significant for quantifying the transport capacity. The main purpose of this article is to emphasize the importance of careful observation of experiments. Not only number of tests, but physical understanding are essential for better empirical equations. PMID:23416585

  14. Sulfide and methane production in sewer sediments: Field survey and model evaluation.

    PubMed

    Liu, Yiwen; Tugtas, A Evren; Sharma, Keshab R; Ni, Bing-Jie; Yuan, Zhiguo

    2016-02-01

    Sewer sediment processes have been reported to significantly contribute to overall sulfide and methane production in sewers, at a scale comparable to that of sewer biofilms. The physiochemical and biological characteristics of sewer sediments are heterogeneous; however, the variability of in-sediments sulfide and methane production rates among sewers has not been assessed to date. In this study, five sewer sediment samples were collected from two cities in Australia with different climatic conditions. Batch assays were conducted to determine the rates of sulfate reduction and methane production under different flow velocity (shear stress) conditions as well as under completely mixed conditions. The tests showed substantial and variable sulfate reduction and methane production activities among different sediments. Sulfate reduction and methane production from sewer sediments were confirmed to be areal processes, and were dependent on flow velocity/shear stress. Despite of the varying characteristics and reactions kinetics, the sulfate reduction and methane production processes in all sediments could be well described by a one-dimensional sewer sediment model recently developed based on results obtained from a laboratory sewer sediment reactor. Model simulations indicated that the in-situ contribution of sewer sediment emissions could be estimated without the requirement of measuring the specific sediment characteristics or the sediment depths. PMID:26650449

  15. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie; Yuan, Zhiguo

    2015-02-01

    Methanethiol (MT) is considered one of the predominant odorants in sewer systems. Therefore, understanding MT transformation in sewers is essential to sewer odor assessment and abatement. In this study, we investigated the degradation of MT in laboratory anaerobic sewers. Experiments were carried out in seven anaerobic sewer reactors with biofilms at different stages of development. MT degradation was found to be strongly dependent on the methanogenic activity of sewer biofilms. The MT degradation rate accelerated with the increase of methanogenic activity of sewer biofilms, resulting in MT accumulation (i.e. net production) in sewer reactors with relatively low methanogenic activities, and MT removal in reactors with higher methanogenic activities. A Monod-type kinetic expression was developed to describe MT degradation kinetics in anaerobic sewers, in which the maximum degradation rate was modeled as a function of the maximum methane production rate through a power function. It was also found that MT concentration had a linear relationship with acetate concentration, which may be used for preliminary assessment of MT presence in anaerobic sewers. PMID:25437340

  16. Impacts of Sewer Leaks on Surrounding Groundwater and Surface Water Quality in Singapore

    NASA Astrophysics Data System (ADS)

    Ly, D.; Chui, T. M.

    2011-12-01

    Underground sewers deteriorate over time resulting in cracks and joint defects. Sewage thus leaks out of the sewers and contaminates the surrounding groundwater. Singapore does not directly use groundwater as a water supply. However, contaminated groundwater flows into the drains nearby through weep holes, and subsequently enters water supply reservoirs. This study examines the impacts of sewage leaks on surrounding groundwater and surface water quality by modeling the interactions between leaky sewers, groundwater and drains. It first explores the representations of important yet challenging boundary conditions, namely weep holes and leaky sewers, so that their fluxes vary realistically with water pressure throughout a simulation. It then simulates groundwater flow and contaminant transport from leaky sewers to nearby drains over a period of ten years. It further rehabilitates the sewers and models the attenuation of contamination plume for another ten years. The results of this project contribute to the modeling and understanding of the potential impacts of sewer leaks on surrounding groundwater and surface water quality. For example, groundwater quality changes with hydrologic conditions, and it is highest during heavy rainfall and times of high water table because of the low leakage and high dilution rates. Water quality fluctuates daily or even hourly in the vicinity of the sewers, but is more stable in the flow through the weep holes into the drains. Overall, this study benefits the sewer leak monitoring and sewer rehabilitation in many urban areas worldwide.

  17. Contemporary sea level rise.

    PubMed

    Cazenave, Anny; Llovel, William

    2010-01-01

    Measuring sea level change and understanding its causes has considerably improved in the recent years, essentially because new in situ and remote sensing observations have become available. Here we report on most recent results on contemporary sea level rise. We first present sea level observations from tide gauges over the twentieth century and from satellite altimetry since the early 1990s. We next discuss the most recent progress made in quantifying the processes causing sea level change on timescales ranging from years to decades, i.e., thermal expansion of the oceans, land ice mass loss, and land water-storage change. We show that for the 1993-2007 time span, the sum of climate-related contributions (2.85 +/- 0.35 mm year(-1)) is only slightly less than altimetry-based sea level rise (3.3 +/- 0.4 mm year(-1)): approximately 30% of the observed rate of rise is due to ocean thermal expansion and approximately 55% results from land ice melt. Recent acceleration in glacier melting and ice mass loss from the ice sheets increases the latter contribution up to 80% for the past five years. We also review the main causes of regional variability in sea level trends: The dominant contribution results from nonuniform changes in ocean thermal expansion. PMID:21141661

  18. Melting Ice, Rising Seas

    NASA Video Gallery

    Sea level rise is an indicator that our planet is warming. Much of the world's population lives on or near the coast, and rising seas are something worth watching. Sea level can rise for two reason...

  19. Quality of local control for simple sewer networks

    NASA Astrophysics Data System (ADS)

    Kolechkina, Alla; van Nooijen, Ronald

    2016-04-01

    Combined sewer networks, where both foul water and storm water are transported through the same system, tend to develop into complex networks due to expansion of towns and villages. The transport capacity of these systems is always limited, so occasional controlled spills into surface water, combined sewer overflows (CSO), are part of the normal operating procedure. Occasionally the ideas and rules present in the original design are not respected when the system is extended to cover a larger area. One way to deal with this problem is to implement central control. Another is to add pipes and hardware to bring the extended system into line with the original rules and ideas. We show that for a design rule often followed in the Netherlands, local control does quite well as long as the rule is respected and there are no large variations in precipitation intensity over the area covered by the system.

  20. A software-based sensor for combined sewer overflows.

    PubMed

    Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W

    2012-01-01

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow. PMID:22864433

  1. Airflow in Gravity Sewers - Determination of Wastewater Drag Coefficient.

    PubMed

    Bentzen, Thomas Ruby; Østertoft, Kristian Kilsgaard; Vollertsen, Jes; Fuglsang, Emil Dietz; Nielsen, Asbjørn Haaning

    2016-03-01

    Several experiments have been conducted in order to improve the understanding of the wastewater drag and the wall frictional force acting on the headspace air in gravity sewers. The aim of the study is to improve the data basis for a numerical model of natural sewer ventilation. The results of the study shows that by integrating the top/side wall shear stresses the log-law models for the air velocity distribution along the unwetted perimeter resulted in a good agreement with the friction forces calculated by use of the Colebrook-White formula for hydraulic smooth pipes. Secondly, the water surface drags were found by log-law models of the velocity distribution in turbulent flows to fit velocity profiles measured from the water surface and by integrating the water surface drags along the wetted perimeter, mean water surface drags were found and a measure of the water surface drag coefficient was found. PMID:26931535

  2. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems.

    PubMed

    Risch, Eva; Gutierrez, Oriol; Roux, Philippe; Boutin, Catherine; Corominas, Lluís

    2015-06-15

    This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS. PMID:25839834

  3. Model adaptation in a central controller for a sewer system

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Kolechkina, Alla; Mol, Bart

    2013-04-01

    For small sewer systems that combine foul water and storm water sewer functions in flat terrain, central control of the sewer system may have problems during dry weather. These systems are a combination of local gravity flow networks connected by pumps. Under those conditions the level in the wet well (local storage at the pumping station) should be kept below the entrance pipe but above the top of the intake of the pump. The pumps are dimensioned to cope with the combined flow of foul water and precipitation run off so their capacity is relatively large when compared wityh the volume available in the wet well. Under local control this is not a major problem because the effective controller time step is very short. For central control the control time step can become a problem. Especially when there is uncertainty about the relation between level and volume in the wet well. In this paper we describe a way to dynamically adapt the level to volume relation based on dry weather behaviour. This is important because a better estimate of this volume will reduce the number of on/off cycles for the pumps. It will also allow detection and correction for changes in pump performance due to aging.

  4. Different approaches for modelling of sewer caused urban flooding.

    PubMed

    Obermayer, A; Guenthert, F W; Angermair, G; Tandler, R; Braunschmidt, S; Milojevic, N

    2010-01-01

    The correct prediction of flooding in urban areas is an important challenge to secure the values and fulfil public regulations. Traditional sewer simulations deliver the basic information for a rudimental flood protection, but the interaction between sewer and surface runoff can only be considered by a bi-directional modelling. Therefore detailed information about the relevant structures on the surface is necessary, which can partially be delivered by airborne laser scan data. This data have to be refined to get as detailed information about the endangered areas as possible. But the plenitude of information leads to high requirements on computer capacity and performance. This paper shows different approaches to predict the sewer caused flooding in urban areas. The approaches have been checked on two testing areas in Germany and the developed tool will be implemented in a commercial software system soon. This approaches, which partially base on each other, make a stepwise refinement of the model and narrowing of the affected areas possible. The developed algorithms to thin the digital terrain model and the well proven method to parallelize the calculation on more than one processing units secure an effective calculating process. PMID:21045347

  5. Investigation of sewer exfiltration using integral pumping tests and wastewater indicators

    NASA Astrophysics Data System (ADS)

    Leschik, Sebastian; Musolff, Andreas; Martienssen, Marion; Krieg, Ronald; Bayer-Raich, Marti; Reinstorf, Frido; Strauch, Gerhard; Schirmer, Mario

    2009-11-01

    Leaky sewers affect urban groundwater by the exfiltration of untreated wastewater. However, the impact of sewer exfiltration on the groundwater is poorly understood. Most studies on sewer exfiltration focus on water exfiltration, but not on the impact on groundwater quality. In this paper we present a new monitoring approach to estimate mass flow rates Mex of different wastewater indicators (WWIs) from leaky sewers by applying integral pumping tests (IPTs). The problem of detecting and assessing heterogeneous concentrations in the vicinity of leaky sewers can be overcome with the IPT approach by the investigation of large groundwater volumes up- and downstream of leaky sewers. The increase in concentrations downstream of a leaky sewer section can be used to calculate Mex with a numerical groundwater model. The new monitoring approach was first applied using four IPT wells in Leipzig (Germany). Over a pumping period of five days we sampled five inorganic WWIs: B , Cl -, K +, NO 3-, NH 4+ and three xenobiotics: bisphenol-a, caffeine and tonalide. The resulting concentration-time series indicated an influence of wastewater at one IPT well downstream of the leaky sewer. We defined ranges of Mex by implementing the uncertainty of chemical analyses. The results showed a Mex of 0-10.9 g m - 1 d - 1 . The combination of Mex with wastewater concentrations from the target sewer yielded an exfiltration rate Qex of 28.0-63.9 L m - 1 d - 1 for the conservative ion Cl -. Most non-conservative WWIs showed reduced mass flow rates in the groundwater downstream of the leaky sewer that indicate a mass depletion during their passage from the sewer to the pumping well. Application of the IPT methodology at other field sites is possible. The IPT monitoring approach provides reliable Mex values that can help to assess the impact of leaky sewers on groundwater.

  6. Impact of water source management practices in residential areas on sewer networks - a review.

    PubMed

    Marleni, N; Gray, S; Sharma, A; Burn, S; Muttil, N

    2012-01-01

    Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified. PMID:22277221

  7. Design and performance evaluation of a simplified dynamic model for combined sewer overflows in pumped sewer systems

    NASA Astrophysics Data System (ADS)

    van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François

    2016-07-01

    Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.

  8. Localization of groundwater infiltration in the combined sewers of Brussels by stable isotopes measurements (δ18O, δD) by Cavity Ring Down Spectroscopy.

    NASA Astrophysics Data System (ADS)

    De Bondt, Kevin; Claeys, Philippe

    2014-05-01

    In the last 20 years research has been conducted to quantify the infiltration of groundwater into the sewers. This groundwater, called parasitic water, increases the volume of waste-water to be treated and consequently the cost of this treatment. Moreover, in the case of combined sewer systems, the parasitic water also limits the sewer capacity and indirectly increases the risks of combined sewer overflows and floods. The infiltration of groundwater occurs trough cracks, sewer collapses and from direct connections with old springs. Different methods quantify the intrusion of parasitic water. Among these, the use of the stable isotopes of water (δ18O & δD) shows good result in catchments or cities close to Mountainous regions (example from Lyon, Zurich), where isotopic signals vary significantly because of continental and altitude effects. However many cities, such as Brussels, are located in more oceanic settings and theoretically offer less potential for the application of the stable isotopes method. In the case of Brussels, river-water from the Meuse is used to produce domestic-water. The catchment of this river extends into the Ardennes, which are affected by slightly different climatic conditions. δ18O & δD analyzes of groundwater from the main aquifer (Ledo-Paniselian-Brusselian) and domestic-water from the Callois reservoir fed by the Meuse River show sufficient isotopic differences in the south of Brussels, but only during the summer. The discrimination potential is better with δD than with δ18O. The improvement of δD measurements (precision, costs,...) brought by Cavity Ring Down Spectroscopy largely contributes to the potential of using stable isotopes method to trace water in Brussels. The first campaigns in the sewers also show a little enrichment (in heavy isotopes) of the waste-water in comparison with the reservoir waters and tap waters. This increases the potential of the method but constrains the sampling to pure waste-water in sewer segments

  9. PPCPs wet weather mobilization in a combined sewer in NW Spain.

    PubMed

    Del Río, Héctor; Suárez, Joaquín; Puertas, Jerónimo; Ures, Pablo

    2013-04-01

    An intense campaign was carried out over a 14 month period to characterize concentrations and loads of 7 well-known Pharmaceuticals and Personal Care Products (PPCPs), during dry and wet weather conditions, in an urban combined catchment in the northwest of Spain, a geographical zone with an average annual rainfall over 1500 mm. The main objective was to gather more in-depth knowledge of the mobilization of these "micropollutants" in an urban combined sewer and the possible pressures on water receiving bodies due to combined sewer overflows (CSOs). Hydrographs and pollutographs of these substances in dry weather flows (DWF), on weekdays and weekends, and wet weather flows (WWF) during 10 rain events have been characterized to obtain data that are sufficiently representative for statistical analysis. The research findings show that there is a considerable mobilization of these substances during rain events, mainly in the first part of the hydrographs, especially HHCB galaxolide, ibuprofen and paracetamol with maximum concentrations of 9.76, 8.51 and 5.71 μg/L respectively, whereas these concentrations in dry weather only reached 2.57, 2.11 and 0.72 μg/L respectively. There is a good correlation between the degree of mobilization in wet weather flows and the percentage of dry weather particulate phase of each studied substance, indicating that such mobilization may be associated with adsorption on the sediments deposited on the collectors during the antecedent dry period. These results are in good agreement with removal in conventional WWTP, especially for compounds that tend to adsorb onto sewage sludge. PMID:23425796

  10. Remote Infrared Thermal Sensing of Sewer Voids, Four-Year Update

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1988-01-01

    When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along for the ride. These collapses endanger public health and safety. Repairing a sewer before such a cave-in is obviously the preferred method. Emergency repairs cost far more than prevention measures - often millions of dollars more. Many combined sewers in the St. Louis area, as in many of America's cities, are more than 125 years old and are subject to structural failure. In 1981 alone, St. Louis had 4,000 sewer collapses and an astronomical repair bill. These and similar problems have been described as "a crisis of national proportions. The question addressed by this paper is how to detect unseen problem areas in sewer systems before they give way. At the present, progressive sewer administrations may use crawl crews to inspect sewers when problems are suspected. This can be extremely costly and dangerous, and a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Infrared Thermography has been found by sewer districts and independent evaluation engineering firms to be an extremely accurate method of finding sewer voids, before they can cause expensive and dangerous problems. This technique uses a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently. This paper reviews our initial paper presented to The International Society for Optical Engineering in October of 1983 and presents an update of our experience, both successes and failures, in several large-scale void detection projects. Infrared Thermographic techniques of non-destructive testing will have major implications for cities and for the engineering profession because it promises to make the crisis of infrastructure repair and rehabilitation more manageable. Intelligent, systematic use of this relatively low cost void detection method, Infrared Thermography, may revolutionize the way sewer

  11. Quality Assurance and Quality Control Practices for Rehabilitation of Sewer and Water Mains

    EPA Science Inventory

    As part of the US Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, several areas of research are being pursued, including a review of quality assurance and quality control (QA/QC) practices and acceptance testing during the installation of reha...

  12. Quality Assurance and Quality Control Practices For Rehabilitation of Sewer and Water Mains

    EPA Science Inventory

    As part of the US Environmental Protection Agency (EPA)’s Aging Water Infrastructure Research Program, several areas of research are being pursued including a review of quality assurance and quality control (QA/QC) practices and acceptance testing during the installation of rehab...

  13. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Systems: Utilizing a Distributed Lag Model

    EPA Science Inventory

    Combined sewer systems collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These combined sewer over...

  14. SEWER-SEDIMENT CONTROL: OVERVIEW OF AN EPA WET-WEATHER FLOW RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents a historical overview of the sewer sediment control projects conducted by the Wet-Weather Flow Research Program of the USEPA. Research presented includes studies of the causes of sewer solids deposition and development/evaluation of control methods that can pr...

  15. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in developing ...

  16. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - slides

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and is currently one of the top national water program priorities. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox to assist communities in developing S...

  17. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox - abstract

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency developed the Sanitary Sewer Overflow Analysis a...

  18. Understanding the Spatial Formation and Accumulation of Fats, Oils & Grease Deposits in the Sewer Collection System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially...

  19. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer use ordinance and evaluation... GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The...

  20. Flood Grouting for Infiltration Reduction on Private Side Sewers (WERF Report INFR5R11)

    EPA Science Inventory

    The sewers in Seattle’s Broadview neighborhood, built in the 1950s, experience significant inflow and infiltration. Intense wet weather events have resulted in sewer overflows into private residences and the environment and previous work indicates that the majority of this excess...

  1. SEWER AND TANK SEDIMENT FLUSHING: CASE STUDIES (EPA/600/R-98/157)

    EPA Science Inventory

    Past studies have identified urban combined sewer overflow (CSO) and stormwater runoff as major contributors to the degradation of many urban lakes, streams, and rivers. Sewage solids deposited in combined sewer (CS) systems during dry weather are major contributors to the CSO-po...

  2. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  3. Update on the Status of Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. However, occasional unintentional discharges of raw sewage from municipal sanitary sewers – called sanitary sewe...

  4. SEWER SEDIMENT CONTROL: AN OVERVIEW OF THE EPA WET WEATHER FLOW (WWF) RESEARCH PROGRAM

    EPA Science Inventory

    This paper presents an overview of EPA WWF Research Program projects related to causes of sewer solids deposition and control methods that can prevent accumulation of sewer sediments. In particular, discussion will focus on the relationship of wastewater characteristics to flow ...

  5. Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination

    EPA Science Inventory

    This paper outlines a life-cycle cost analysis comparing a green (rain gardens) and gray (tunnels) infrastructure combination to a gray-only option to control combined sewer overflow in the Turkey Creek Combined Sewer Overflow Basin, in Kansas City, MO. The plan area of this Bas...

  6. Focused Field Investigations for Sewer Condition Assessment with EPA SSOAP Toolbox

    EPA Science Inventory

    The Nation’s sanitary sewer infrastructure is aging, and it is currently one of the top national water program priorities, and is one of the top priorities of the U.S. Conference of Mayors. The U.S. Environmental Protection Agency (EPA) developed the Sanitary Sewer Overflow Anal...

  7. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  8. Evidence for fat, oil and grease (FOG) deposit formation mechanisms in sewer lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of hardened and insoluble fats, oil, and grease (FOG) deposits in sewer lines is a major cause of line blockages leading to sanitary sewer overflows (SSOs). Despite the central role that FOG deposits play in SSOs, little is known about the mechanisms of FOG deposit formation in sanitary...

  9. NATIONWIDE EVALUATION OF COMBINED SEWER OVERFLOWS AND URBAN STORMWATER DISCHARGES. VOLUME II. COST ASSESSMENT AND IMPACTS

    EPA Science Inventory

    A nationwide assessment has been made of the quantity and quality of urban storm flow emanating from combined sewers, storm sewers, and unsewered portions of all 248 urbanized areas and other urban areas in the United States. Available control alternatives and their associated co...

  10. Priority pollutants in wastewater and combined sewer overflow.

    PubMed

    Gasperi, Johnny; Garnaud, Stéphane; Rocher, Vincent; Moilleron, Régis

    2008-12-15

    Implementation of the European Water Framework Directive and its affiliated directives requires Member States to improve their understanding of priority pollutants (PPs) in urban areas and obviously within wastewater systems. As a direct consequence, this study is intended to furnish data on both PP occurrence and the significance of concentrations in wastewater during dry and wet periods within combined sewers. Various sampling sites within the Paris combined sewer network were selected; for each sample, a total of 66 determinants, including metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, organotins, volatile organic compounds, chlorobenzenes, phthalates and alkylphenols, were analysed. A broad range of PPs was observed in wastewater during dry as well as wet weather periods. Of the 66 elements investigated, 33 and 40 priority substances could be observed in raw sewage and wet weather effluent, respectively. As expected, a majority of metals were present in all samples, reflecting their ubiquitous nature. For both periods, chlorobenzenes and most of the pesticides always remained below the limit of quantification, while the majority of other organic pollutants assessed were identified within the microg l(-1) range. As highlighted by the larger number of substances detected in wet weather samples and the significance of their concentrations, runoff via atmospheric inputs and/or surface leaching was found to induce a wider range of PPs (n=40) and lead to higher concentrations of certain metals, PAHs, pesticides and other individual compounds. The data generated during this survey, which constitutes one of the first studies conducted in Europe to report concentrations for a variety of priority substances in wastewater within combined sewers, may be used in the future to identify PPs of potential significance for dry and wet weather periods and targeted for further investigation. PMID:18814902

  11. STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Kaehrle, William R.

    1986-01-01

    A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.

  12. Comparison of core sampling and visual inspection for assessment of concrete sewer pipe condition.

    PubMed

    Stanić, N; de Haan, C; Tirion, M; Langeveld, J G; Clemens, F H L R

    2013-01-01

    Sewer systems are costly to construct and even more costly to replace, requiring proper asset management. Sewer asset management relies to a large extent on available information. In sewer systems where pipe corrosion is the dominant failure mechanism, visual inspection by closed circuit television (CCTV) and core sampling are among the methods mostly applied to assess sewer pipe condition. This paper compares visual inspection and drill core analysis in order to enhance further understanding of the limitations and potentials of both methods. Both methods have been applied on a selected sewer reach in the city of The Hague, which was reportedly subject to pipe corrosion. Results show that both methods, visual inspection and core sampling, are associated with large uncertainties and that there is no obvious correlation between results of visual inspection and results of drill core analysis. PMID:23752377

  13. Prioritizing sewer rehabilitation projects using AHP-PROMETHEE II ranking method.

    PubMed

    Kessili, Abdelhak; Benmamar, Saadia

    2016-01-01

    The aim of this paper is to develop a methodology for the prioritization of sewer rehabilitation projects for Algiers (Algeria) sewer networks to support the National Sanitation Office in its challenge to make decisions on prioritization of sewer rehabilitation projects. The methodology applies multiple-criteria decision making. The study includes 47 projects (collectors) and 12 criteria to evaluate them. These criteria represent the different issues considered in the prioritization of the projects, which are structural, hydraulic, environmental, financial, social and technical. The analytic hierarchy process (AHP) is used to determine weights of the criteria and the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE II) method is used to obtain the final ranking of the projects. The model was verified using the sewer data of Algiers. The results have shown that the method can be used for prioritizing sewer rehabilitation projects. PMID:26819383

  14. Detention storage volume for combined sewer overflow into a river.

    PubMed

    Temprano, J; Tejero, I

    2002-06-01

    This article discusses the storage volume needed in a combined sewer system tank in order to preserve the water quality. There are a lot of design criteria which do not take into account the conditions of the receiving water, and as a result are inappropriate. A model was used to simulate the performance of a theoretical combined sewer system where a tank was located downstream. Results were obtained from the overflows produced by the rain recorded in Santander (Spain) for 11 years, with several combinations of storage volume and treatment capacity in the wastewater treatment plant. Quality criteria were also proposed for faecal coliforms, BOD, and total nitrogen to evaluate the effects from the overflows in the river water quality. Equations have been obtained which relate the number of overflows, the storage volume and the treatment plant capacity. The bacteriological pollution, quantified by means of faecal coliforms, was the analytical parameter which produced the most adverse effects in the river, so that more storage volume is needed (45 to 180 m3 ha(-1) net) than with other simulated pollutants (5 to 50 m3 ha(-1) net for BOD, and less than 4 m3 ha(-1) net for the total nitrogen). The increase in the treatment plant's capacity, from two to three times the flow in dry weather, reduces the impact on the river water in a more effective way, allowing a reduction of up to 65% in the number of overflows rather than increasing the storage volume. PMID:12118618

  15. Chromium and copper removed, wastewater can now go to sewer

    SciTech Connect

    Smith, L.W.; Toy, D.A.

    1987-06-01

    Alco Gravure faced a wastewater problem at its printing facility in Broadview, IL. Hexavalent chrome-bearing wastewater was generated during chrome plating and etching and acidic copper wastewater was produced during the plating of rotogravure printing rolls. The chromium and copper levels in the wastewater were too high to discharge to the municipal sewer. At the company's previous location, the wastewater had been stored in underground tanks and periodically removed by a hazardous waste treatment firm. Because the wastewater contained less than 1% heavy metals, volume reduction of the waste became an economic necessity when Alco moved to the Broadview site. A metals precipitation and removal system was chosen with the following equipments: oil/water separator, chrome reduction tank, neutralization tank, clarifier, filter press, and all associated instrumentation, metering pumps, valves, piping and mixers. The system was chosen after company personnel inspected a similar treatment system in a plating operation at a plant across the street from Alco. Since installation in the fall of 1984, the heavy metal treatment system has reduced the volume of waste to less than 1% of the initial wastewater volume. By treating the 99 + % of the aqueous waste for disposal to the municipal water treatment works, significant savings have been achieved in waste disposal costs. Effluent quality exceeds all standards established by the sewer district and by the EPA.

  16. Main features of meiosis

    SciTech Connect

    1993-12-31

    Chapter 17, outlines the main features of meiosis, beginning with its significance and proceeding through the meiotic stages. Meiosis is the most important modification of mitosis because it is the reduction division that gives rise to the haploid generation in the life cycle. 17 refs., 6 figs.

  17. The rising risks of rising tides

    SciTech Connect

    Hanson, H.; Lindh, G.

    1996-12-31

    The erosion of beaches, flooding of agricultural land, and intrusion of saltwater into coastal streams could become a reality if temperatures climb. Over the past century, sea levels have risen 4 to 6 inches. Now, the Intergovernmental panel on Climate Change (IPCC) predicts that sea levels will rise between 8 and 28 inches by 2070, say Hans Hanson, associate professor emeritus in the Department of Water Resources Engineering at the University of Lund in Sweden. Coastal communities, which harbor more than half the world`s population, are poorly equipped to combat the threat of encroaching waters. {open_quotes}Few public officials have developed comprehensive strategies to address the potential consequences of sea-level rise,{close_quotes} the authors say. In response to the lack of long-term strategies to address the potential consequences of sea-level rise,{close_quotes} the authors say. In response to the lack of long-term strategies, the IPCC has recommended that coastal nations implement coastal-zone management plans by 2000. {open_quotes}Low-lying islands and high-use, developed coastal areas... face an urgent need to develop strategies for coping with sea-level rise,{close_quotes} the authors conclude.

  18. Factors that influence properties of FOG deposits and their formation in sewer collection systems.

    PubMed

    Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2014-02-01

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. PMID:24317022

  19. The use of multiple tracers to evaluate the impact of sewered and non-sewered development on coastal water quality in a rural area of Florida.

    PubMed

    Meeroff, Daniel E; Bloetscher, Frederick; Long, Sharon C; Bocca, Thais

    2014-05-01

    When onsite wastewater treatment and disposal systems (OSTDS) are not sited appropriately or installed properly, wastewater constituents can be a source of adverse environmental impacts to soil and groundwater, which can lead to potential public health risks. A paired monitoring design developed to compare water quality in sewered and non-sewered areas is presented here. It is suggested as a possible monitoring scheme for assessing the impact of sewer installation projects. As such, two sets of single-family, rural residential Florida neighborhoods were evaluated over a two-year period to gain insight into the effects of small-community use of OSTDS on coastal water quality. One set of two neighborhoods were connected to the sanitary sewer network and the other set of two were served exclusively by OSTDS. Water quality sampling was conducted at the paired sites during seasonal high water table (SHWT) and seasonal low water table (SLWT) events. Measured surface water quality during the SHWT showed indications of environmental impacts from OSTDS in terms of nutrients, microbial pathogen indicators, and other water quality measures, such as turbidity and conductivity. However, during the SLWT events, no obvious impacts attributable to OSTDS were detected. The water quality results indicate that OSTDS impacts may be measureable in rural areas. Other factors, such as microbial indicator survival and regrowth potential, may confound the understanding of water quality impacts of sewer projects. For example, the microbial indicators Escherichia coli and enterococci were found to persist over time and therefore did not always represent true comparisons of OSTDS and sewered areas between seasons. The timeframe for evaluating the effects of sewer projects may be longer than anticipated because of this survival and regrowth phenomenon. PMID:24961071

  20. MAINE POPULATION

    EPA Science Inventory

    MEPOP250 depicts Maine's 1950-1990 population data by town or Census in unorganized territories. Populations were compiled from US Census Bureau data where available or from Maine Municipal Information (mainly for older records). Unorganized towns with very low or zero pop...

  1. Acronical Risings and Settings

    NASA Astrophysics Data System (ADS)

    Hockey, Thomas A.

    2012-01-01

    A concept found in historical primary sources, and useful in contemporary historiography, is the acronical rising and setting of stars (or planets). Topocentric terms, they provide information about a star's relationship to the Sun and thus its visibility in the sky. Yet there remains ambiguity as to what these two phrases actually mean. "Acronical” is said to have come from the Greek akros ("point,” "summit,” or "extremity") and nux ("night"). While all sources agree that the word is originally Greek, there are alternate etymologies for it. A more serious difficulty with acronical rising and setting is that there are two competing definitions. One I call the Poetical Definition. Acronical rising (or setting) is one of the three Poetical Risings (or Settings) known to classicists. (The other two are cosmical rising/setting, discussed below, and the more familiar helical rising/setting.) The term "poetical" refers to these words use in classical poetry, e. g., that of Columella, Hesiod, Ovid, Pliny the Younger, and Virgil. The Poetical Definition of "acronical” usually is meant in this context. The Poetical Definition of "acronical” is as follows: When a star rises as the Sun sets, it rises acronically. When a star sets as the Sun sets, it sets acronically. In contrast with the Poetical Definition, there also is what I call the Astronomical Definition. The Astronomical Definition is somewhat more likely to appear in astronomical, mathematical, or navigational works. When the Astronomical Definition is recorded in dictionaries, it is often with the protasis "In astronomy, . . . ." The Astronomical Definition of "acronical” is as follows: When a star rises as the Sun sets, it rises acronically. When a star sets as the Sun rises, it sets acronically. I will attempt to sort this all out in my talk.

  2. Gamma and beta logging of underground sewer and process lines

    SciTech Connect

    Rangel, M.J.; Martz, D.E.; Langner, G.H. Jr.

    1989-11-01

    The GammaSnake can be useful for locating uranium mill tailings used as backfill for sewer lines or storm drains where the lines can be readily accessed from a cleanout access port or other opening. The time required to determine if contamination is present using the GammaSnake method is considerably less than when using the delta gamma or drilling methods. There is, also, less potential hazard to the equipment operators when using the GammaSnake method. The GammaSnake method is generally limited to a distance of 100 feet or less. Used with the MAC-51B line locator, the GammaSnake method can provide useful information without extensive drilling or surveying. 7 figs., 2 tabs.

  3. Parsimonious hydrological modeling of urban sewer and river catchments

    NASA Astrophysics Data System (ADS)

    Coutu, Sylvain; Del Giudice, Dario; Rossi, Luca; Barry, D. A.

    2012-09-01

    SummaryA parsimonious model of flow capable of simulating flow in natural/engineered catchments and at WWTP (Wastewater Treatment Plant) inlets was developed. The model considers three interacting, dynamic storages that account for transfer of water within the system. One storage describes the “flashy” response of impervious surfaces, another pervious areas and finally one storage describes subsurface flow. The sewerage pipe network is considered as an impervious surface and is thus included in the impervious surface storage. In addition, the model assumes that water discharged from several CSOs (combined sewer overflows) can be accounted for using a single, characteristic CSO. The model was calibrated on, and validated for, the Vidy Bay WWTP, which receives effluent from Lausanne, Switzerland (population about 200,000), as well as for an overlapping urban river basin. The results indicate that a relatively simple approach is suitable for predicting the responses of interacting engineered and natural hydrosystems.

  4. The evaluation of rainfall influence on combined sewer overflows characteristics: the Berlin case study.

    PubMed

    Sandoval, S; Torres, A; Pawlowsky-Reusing, E; Riechel, M; Caradot, N

    2013-01-01

    The present study aims to explore the relationship between rainfall variables and water quality/quantity characteristics of combined sewer overflows (CSOs), by the use of multivariate statistical methods and online measurements at a principal CSO outlet in Berlin (Germany). Canonical correlation results showed that the maximum and average rainfall intensities are the most influential variables to describe CSO water quantity and pollutant loads whereas the duration of the rainfall event and the rain depth seem to be the most influential variables to describe CSO pollutant concentrations. The analysis of partial least squares (PLS) regression models confirms the findings of the canonical correlation and highlights three main influences of rainfall on CSO characteristics: (i) CSO water quantity characteristics are mainly influenced by the maximal rainfall intensities, (ii) CSO pollutant concentrations were found to be mostly associated with duration of the rainfall and (iii) pollutant loads seemed to be principally influenced by dry weather duration before the rainfall event. The prediction quality of PLS models is rather low (R² < 0.6) but results can be useful to explore qualitatively the influence of rainfall on CSO characteristics. PMID:24355858

  5. TYPE A SERVICE AREAS IN THE SANITARY SEWER SYSTEMS, NEUSE RIVER WATERHSED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Type ``A' Sewer Systems as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impa...

  6. ENVIRONMENTAL FOOTPRINT OF PHARMACEUTICALS - THE SIGNIFICANCE OF FACTORS BEYOND DIRECT EXCRETION TO SEWERS

    EPA Science Inventory

    The combined excretion of active pharmaceutical ingredients (APIs) via urine and feces is considered the primary route by which APIs from human pharmaceuticals enter the environment. Disposal of unwanted, leftover medications by flushing into sewers has been considered a secondar...

  7. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas - slides

    EPA Science Inventory

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  8. TREATMENT PLANTS IN THE SANITARY SEWER SYSTEMS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital location and information of sewer treatment plants as mapped by individual system owners as required by contract. The data collected will facilitat...

  9. PIPE NETWORK FOR THE SANITARY SEWER SYSTEMS IN THE NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital sewer pipe network as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impact an...

  10. USING VISUAL PLUMES PREDICTIONS TO MODULATE COMBINED SEWER OVERFLOW (CSO) RATES

    EPA Science Inventory

    High concentrations of pathogens and toxic residues in creeks and rivers can pose risks to human health and ecological systems. Combined Sewer Overflows (CSOs) discharging into these watercourses often contribute significantly to elevating pollutant concentrations during wet weat...

  11. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas

    EPA Science Inventory

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  12. Condition Assessment of Wastewater Collection Systems Using the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    The Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox can serve as the foundation of wastewater collection system infrastructure research, among several applications, for analyzing monitored flow data to prioritize where to inspect, monitor, and to assess the performa...

  13. PUMPING STATIONS FOR THE SANITARY SEWER SYSTEMS IN THE NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital location and information of sewer pumps as mapped by individual system owners as required by contract. The data collected will facilitate planning,...

  14. TYPE P SERVICE AREAS IN THE SANITARY SEWER SYSTEMS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital ``P' Sewer System as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impact ana...

  15. MAINE AQUIFERS

    EPA Science Inventory

    AQFRS24 contains polygons of significant aquifers in Maine (glacial deposits that are a significant ground water resource) mapped at a scale 1:24,000. This statewide coverage was derived from aquifer boundaries delineated and digitized by the Maine Geological Survey from data com...

  16. Optimization of the central automatic control of a small Dutch sewer system

    NASA Astrophysics Data System (ADS)

    Kolechkina, A. G.; Hoes, O. A. C.

    2012-04-01

    A sewer control system was developed in the context of a subsidized project aiming at improvement of surface water quality by control of sewer systems and surface water systems. The project was coordinated by the local water board, "Waterschap Hollandse Delta". Other participants were Delft University of Technology, Deltares and the municipalities Strijen, Cromstrijen, Westmaas, Oud Beijerland and Piershil. As part of the project there were two pilot implementations where a central automatic controller was coupled to the existing SCADA system. For these two pilots the system is now operational. A Dutch urban area in the western part of the Netherlands is usually part of a polder, which is effectively an artificially drained catchment. The urban area itself is split into small subcatchments that manage runoff in different ways. In all cases a large fraction goes into the natural hydrological cycle, but, depending on the design of the local sewer system, a larger or smaller part finds its way into the sewer system. Proper control of this flow is necessary to control surface water quality and to avoid health risks from flow from the sewer into the streets. At each time step the controller switches pumps to distribute the remaining water in the system at the end of the time step over the different subcatchments. The distribution is created based on expert judgment of the relative vulnerability and subcatchment sewer system water quality. It is implemented in terms curves of total system stored volume versus subcatchment stored volume. We describe the process of the adaptation of a controller to two different sewer systems and the understanding of the artificial part of the catchment we gained during this process. In the process of adaptation the type of sewer system (combined foul water and storm water transport or separate foul water and storm water transport) played a major role.

  17. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage.

    PubMed

    Liang, Shuang; Zhang, Liang; Jiang, Feng

    2016-09-01

    Nitrate dosing is commonly used to control hydrogen sulfide production in sewer systems. However, quick rebound of the sulfide concentration after nitrate depletion has been observed and results in more serious odor and corrosion problem. To investigate the mechanism of sulfide regeneration in the nitrate-free period, a laboratory-scale sewer reactor was run for 30 days to simulate sulfide production and oxidation with intermittent nitrate addition. The results show that nitrate addition substantially reduced the sulfide concentration, but the produced elemental sulfur was then quickly reduced back to sulfide in nitrate-free periods. This induced more and more sulfide production in the sewer reactor. Elemental sulfur and polysulfide reductions were found in the sewage in nitrate-free periods, showing their contributions to the sulfide regeneration. Through batch tests, polysulfide was confirmed as the key intermediate for accelerating sulfur reduction during the nitrate-free period in the sewer. Sulfide production rates significantly increased by 65% and 59% in the presences of tetrasulfide and sulfur with sulfide, respectively, at the beginning of the test. While polysulfide formation was prevented by the ferrous chloride addition, the sulfur reduction rate remarkably decreased from 12.8 mgS/L-h to 1.8 mgS/L-h. This indicates that direct sulfur reduction was significantly slower than the indirect sulfur reduction via polysulfide; the latter process could be the cause for the quick rebound of the sulfide concentration in the sewer with intermittent nitrate dosing. Thus, the pathways of sulfur transformations in a sewer, both in the presence and absence of nitrate, were proposed. Microbial community analysis results reveal that some common sulfate-reducing bacteria (SRB) genera in sewer sediment were possible sulfur reducers. According to this finding, the effect and strategy of nitrate dosing for hydrogen sulfide control in sewers should be re-evaluated and re

  18. Rapid detection of sewer defects and blockages using acoustic-based instrumentation.

    PubMed

    Ali, M T Bin; Horoshenkov, K V; Tait, S J

    2011-01-01

    Sewer flooding incidents in the UK are being increasingly associated with the presence of blockages. Blockages are difficult to deal with as although there are locations where they are more likely to occur, they do occur intermittently. In order to manage sewer blockage pro-actively sewer managers need to be able to identify the location of blockages promptly. Traditional closed-circuit television (CCTV) inspection technologies are slow and relatively expensive so are not well suited to the rapid inspection of a network. This is needed if managers are to be able to address sewer blockages proactively. This paper reports on the development of an acoustic-based sensor. The sensor was tested in a full scale sewer pipe in the laboratory and it was shown that it is able to find blockages and identify structural aspects of a sewer pipe such as a manhole and lateral connection. Analysis of the received signal will locate a blockage and also provide information on its character. The measurement is very rapid and objective and so inspections can be carried out at much faster rates than using existing CCTV technologies. PMID:22335114

  19. Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions.

    PubMed

    Del Giudice, G; Padulano, R; Siciliano, D

    2016-01-01

    The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements. PMID:26901717

  20. Separate and combined sewer systems: a long-term modelling approach.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2009-01-01

    Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account. PMID:19657150

  1. A solvent-free approach to extract the lipid fraction from sewer grease for biodiesel production.

    PubMed

    Tu, Qingshi; Wang, Jingjing; Lu, Mingming; Brougham, Andrew; Lu, Ting

    2016-08-01

    Fats, oils and greases (FOG) are the number one cause of sewer pipe blockage and have been mostly disposed of as a waste until recently. This study investigated a low cost and environmentally friendly approach to extract the lipid fraction (fatty acids and glycerides for biodiesel production) from sewer grease (SG), i.e., FOGs obtained from wastewater treatment plants (WWTPs). The lipid fraction of the sewer grease was primarily in the form of free fatty acid (FFA), at 20.7wt%. An innovative solvent-free extraction approach was developed using waste cooking oil (WCO) to overcome the challenges of emulsion, impurities and high moisture content of the sewer grease. A 95% extraction yield of sewer grease was achieved under the optimum operating condition of 3.2:1 WCO-SG ratio (wt/wt), 70°C and 240min. In addition, the reusability of the WCO was also investigated. WCO can be used two to three times for sewer grease extraction with more than 90% extraction efficiency. PMID:27256783

  2. Characterization of microflora and transformation of organic matters in urban sewer system.

    PubMed

    Jin, Pengkang; Wang, Bin; Jiao, Ding; Sun, Guangxi; Wang, Baobao; Wang, Xiaochang C

    2015-11-01

    A study was conducted using a pilot sewer system consisting of 35 sequential sections, totalling 1200 m of gravity pipe. Urban sewage flowed into the sewer system at a constant flow rate until it reached physical and microbiological steady states. Microflora in the biofilm that attached to the inner surface along the pipe length were analysed. The organic compositions in both the liquid and gaseous phases of the sewer system were monitored. The results showed that typical fermentation bacteria, such as bacteroidetes and bacillus, were abundant in the system, indicating that the anoxic environment (DO = 0.3 mg/L) was suitable for fermentative bacterial growth. This resulted in a substantial reduction of the chemical oxygen demand (COD) along the pipe length and an increase of the biodegradable oxygen demand/chemical oxygen demand (BOD/COD) ratio from 0.68 at the beginning of the sewer system to 0.84 at the end of the sewer system; this was an indication of a transformation of organic matters from less-biodegradable to more-biodegradable products. Via molecular weight (MW) analysis, it was further identified that the larger organic molecules (MW > 10,000 Da) were transformed into products with smaller molecular weights. Regarding the fermentation products, the concentrations of the volatile fatty acids (VFAs) increased dramatically in the initial 600-m sections and then remained constant for the later sections except for the end section of the sewer; acetic acid was found to be the primary product of the VFAs. Gaseous carbon dioxide (CO2) and methane (CH4) were found to increase along the length of the sewer system, whereas the concentrations of ethanol, lactic acid, and hydrogen (H2) were high at the beginning of the sewer and then decreased in the rear sections of the sewer system. It could thus be concluded that in an urban wastewater sewer system, fermentative microflora could perform important roles in contributing to organic matter removal and

  3. Source tracking of leaky sewers: a novel approach combining fecal indicators in water and sediments.

    PubMed

    Guérineau, Hélène; Dorner, Sarah; Carrière, Annie; McQuaid, Natasha; Sauvé, Sébastien; Aboulfadl, Khadija; Hajj-Mohamad, Mariam; Prévost, Michèle

    2014-07-01

    In highly urbanized areas, surface water and groundwater are particularly vulnerable to sewer exfiltration. In this study, as an alternative to Microbial Source Tracking (MST) methods, we propose a new method combining microbial and chemical fecal indicators (Escherichia coli (E. coli)) and wastewater micropollutants (WWMPs) analysis both in water and sediment samples and under different meteorological conditions. To illustrate the use of this method, wastewater exfiltration and subsequent infiltration were identified and quantified by a three-year field study in an urban canal. The gradients of concentrations observed suggest that several sources of fecal contamination of varying intensity may be present along the canal, including feces from resident animal populations, contaminated surface run-off along the banks and under bridge crossings, release from contaminated banks, entrainment of contaminated sediments, and most importantly sewage exfiltration. Calculated exfiltration-infiltration volumes varied between 0.6 and 15.7 m(3)/d per kilometer during dry weather, and between 1.1 and 19.5 m(3)/d per kilometer during wet weather. WWMPs were mainly diluted and degraded below detection limits in water. E. coli remains the best exfiltration indicator given a large volume of dilution and a high abundance in the wastewater source. WWMPs are effective for detecting cumulated contamination in sediments from a small volume source and are particularly important because E. coli on its own does not allow source tracking. PMID:24735912

  4. Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow.

    PubMed

    Caucci, Serena; Karkman, Antti; Cacace, Damiano; Rybicki, Marcus; Timpel, Patrick; Voolaid, Veiko; Gurke, Robert; Virta, Marko; Berendonk, Thomas U

    2016-05-01

    To test the hypothesis of a seasonal relationship of antibiotic prescriptions for outpatients and the abundance of antibiotic resistance genes (ARGs) in the wastewater, we investigated the distribution of prescriptions and different ARGs in the Dresden sewer system and wastewater treatment plant during a two-year sampling campaign. Based on quantitative PCR (qPCR), our results show a clear seasonal pattern for relative ARGs abundances. The higher ARGs levels in autumn and winter coincide with the higher rates of overall antibiotic prescriptions. While no significant differences of relative abundances were observed before and after the wastewater treatment for most of the relative ARGs, the treatment clearly influenced the microbial community composition and abundance. This indicates that the ARGs are probably not part of the dominant bacterial taxa, which are mainly influenced by the wastewater treatment processes, or that plasmid carrying bacteria remain constant, while plasmid free bacteria decrease. An exception was vancomycin (vanA), showing higher relative abundance in treated wastewater. It is likely that a positive selection or community changes during wastewater treatment lead to an enrichment ofvanA. Our results demonstrate that in a medium-term study the combination of qPCR and next generation sequencing corroborated by drug-related health data is a suitable approach to characterize seasonal changes of ARGs in wastewater and treated wastewater. PMID:27073234

  5. Combined Sewer Overflows as a Source of Hormones to Surface Water

    NASA Astrophysics Data System (ADS)

    Phillips, P.; Chalmers, A.; Gray, J. L.; Foreman, W.; Kolpin, D. W.; Wall, G.; Esposito, K.

    2009-12-01

    Some sources of hormones to surface water, such as wastewater-treatment-plant (WWTP) effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflows (CSOs), are not well characterized. Flow-weighted composite samples of secondarily treated WWTP effluent and untreated sewage discharges from WWTP inflows and CSO discharges were collected during 12 storms and 6 non-storm conditions from November 2007-December 2008 at the main Burlington Vermont WWTP. Concentrations of many androgens and estrogens were highest in samples from untreated sewage, and lower in samples from treated sewage. For example, concentrations of estriol in CSO samples ranged from 5 to over 100 ng/L (nanograms per liter), but were generally less than 1 ng/L in treated sewage. Many androgens were detected in CSO discharge samples in concentrations ranging from 1 to over 1000 ng/L, but were not detected above 1 ng/L in treated samples. For many of the hormones, including androgens and estriol, CSO discharges comprised over half of the total load discharged by the WWTP, even though annual CSO discharge is less than 10% of the treated plant discharge. These results indicate that untreated discharges during CSO events can be a major source of some hormones and other wastewater compounds to the environment.

  6. MAINE HYDROGRAPHY

    EPA Science Inventory

    Hydronet_me24 and Hydropoly_me24 depict Maine's hydrography data, based on 8-digit hydrological unit codes (HUC's) at the 1:24,000 scale. Some New Hampshire and New Brunswick hydrography data are also included. The NHD hydrography data was compiled from previous ArcIn...

  7. MAINE WOODLOTS

    EPA Science Inventory

    MEOWN250 describes industrial, non-industrial, and public woodlot ownership in Maine at 1:250,000 scale. Industrial owners are those having at least one primary wood processing facility. Non-industrial owners are those with no primary wood processing facility. Public ownership...

  8. Maine Ingredients

    ERIC Educational Resources Information Center

    Waters, John K.

    2009-01-01

    This article features Maine Learning Technology Initiative (MLTI), the nation's first-ever statewide 1-to-1 laptop program which marks its seventh birthday by expanding into high schools, providing an occasion to celebrate--and to examine the components of its success. The plan to put laptops into the hands of every teacher and student in grades 7…

  9. Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems.

    PubMed

    Penn, Roni; Friedler, Eran; Ostfeld, Avi

    2013-10-01

    Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions. PMID:23932104

  10. A novel tracer method for estimating sewer exfiltration

    NASA Astrophysics Data System (ADS)

    Rieckermann, J.; Borsuk, M.; Reichert, P.; Gujer, W.

    2005-05-01

    A novel method is presented to estimate exfiltration from sewer systems using artificial tracers. The method relies upon use of an upstream indicator signal and a downstream reference signal to eliminate the dependence of exfiltration estimates on the accuracy of discharge measurement. An experimental design, a data analysis procedure, and an uncertainty assessment process are described and illustrated by a case study. In a 2-km reach of unknown condition, exfiltration was estimated at 9.9 +/- 2.7%. Uncertainty in this estimate was primarily due to the use of sodium chloride (NaCl) as the tracer substance. NaCl is measured using conductivity, which is present at nonnegligible levels in wastewater, thus confounding accurate identification of tracer peaks. As estimates of exfiltration should have as low a measurement error as possible, future development of the method will concentrate on improved experimental design and tracer selection. Although the method is not intended to replace traditional CCTV inspections, it can provide additional information to urban water managers for rational rehabilitation planning.

  11. A novel tracer method for estimating sewer exfiltration

    NASA Astrophysics Data System (ADS)

    Rieckermann, J.; Borsuk, M.; Reichert, P.; Gujer, W.

    2005-05-01

    A novel method is presented to estimate exfiltration from sewer systems using artificial tracers. The method relies upon use of an upstream indicator signal and a downstream reference signal to eliminate the dependence of exfiltration estimates on the accuracy of discharge measurement. An experimental design, a data analysis procedure, and an uncertainty assessment process are described and illustrated by a case study. In a 2-km reach of unknown condition, exfiltration was estimated at 9.9 ± 2.7%. Uncertainty in this estimate was primarily due to the use of sodium chloride (NaCl) as the tracer substance. NaCl is measured using conductivity, which is present at nonnegligible levels in wastewater, thus confounding accurate identification of tracer peaks. As estimates of exfiltration should have as low a measurement error as possible, future development of the method will concentrate on improved experimental design and tracer selection. Although the method is not intended to replace traditional CCTV inspections, it can provide additional information to urban water managers for rational rehabilitation planning.

  12. Risk assessment of radionuclide discharges to sanitary sewers

    SciTech Connect

    Galpin, F.L.; Merrell, G.; Rogers, V.C.

    1996-12-31

    This presentation describes the basic approach and conduct of a study of the possible risks and consequences of radionuclide discharges into a sewage treatment system. The study`s objective was to determine if there were any possible significant exposures to either WSSC workers or the public form the discharge of radioactive material into the sewer system. The conduct of this study included a review of applicable regulations, and a case study of some past contamination events. The evaluation of potential occupational exposures involved measurements in the collection system were selected based on their location relative to potential dischargers. Measurement points at the treatment works were selected at points where biosolids might accumulate. Both passive, (TLD) and active, (scintillation detector) measurements were made. A limited number of samples were taken and analyzed. Potential doses to the public were estimated based on the possible pathways to man. Due both to limited resources and other project constraints several assumptions and bounding calculations were necessary to meet the objective. Although the study concluded that there were no present significant health concerns, followup evaluations were recommended. 7 refs., 1 fig., 1 tab.

  13. Chemical pretreatment of combined sewer overflows for improved UV disinfection.

    PubMed

    Gibson, J; Farnood, R; Seto, P

    2016-01-01

    The aim of this research was to better understand chemical pre-treatment of combined sewer overflows (CSOs) for subsequent ultraviolet (UV) disinfection. Approximately 200 jar tests were completed. Alum (Al2(S04)3·12H2O) resulted in a higher UV light transmission (UVT), and equivalent total suspended solids (TSS) removal, than ferric chloride (FeCl3). An alum dose of 20 mg/L increased the UVT of the raw CSO from 30 to 60% after settling. The addition of 100 mg/L of alum maximized UVT reaching approximately 85%. Flocculation did not increase UVT. However, it did improve the removal of TSS. Cationic polymers worked quickly compared with metal coagulants, but only reached a UVT of 60%. A high positive charge density on the polymer improved the removal of turbidity when compared with low charge, but did not affect UVT. If the goal is to maximise UVT, a very high alum dose may be preferred. If the goal is to minimize coagulant dose with moderate UV performance, cationic polymer at approximately 3 mg/L is recommended. PMID:26819393

  14. Treatment of combined sewer overflows using ferrate (VI).

    PubMed

    Gandhi, Rohan; Ray, Ajay K; Sharma, Virender K; Nakhla, George

    2014-11-01

    This paper presents the results of a study conducted on the treatment of combined sewer overflows using ferrate (VI) [Fe (VI)]. At a Fe (VI) dose of 0.24 mg/L, total chemical oxygen demand (TCOD), soluble chemical oxygen demand (SCOD), total biochemical oxygen demand (TBOD5), soluble biochemical oxygen demand (SBOD5), total suspended solids (TSS), volatile suspended solids (VSS), total phosphorus (TP), total nitrogen (TN), and soluble TN removal efficiencies of 71, 75, 69, 68, 72, 83, 64, 38, and 36%, respectively, were achieved. Kinetic studies revealed that a contact time of only 15 minutes is sufficient to achieve secondary effluent criteria. An innovative technique of using primary sludge (PS) and thickened waste activated sludge as a source for the in situ synthesis of ferrate was developed. A comparative study of treatment efficiencies achieved by Fe (VI) generated from different sources was done. At 0.1 mg/L dose of Fe (VI) synthesized from PS, TCOD, SCOD, TSS, VSS, TP, and TN removal efficiencies of 60, 62, 63, 67, 30, and 25%, respectively, were achieved. PMID:25509525

  15. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  16. Remaining Sites Verification Package for the 100-B-14:1 Process Sewer, Waste Site Reclassification Form 2004-005

    SciTech Connect

    L. M. Dittmer

    2007-02-22

    The 100-B-14:1 subsite encompasses the former process sewer main associated with the 105-B Reactor Building, 108-B Chemical Pumphouse and Tritium Separation Facility, 184-B Boiler House and the 100-B water treatment facilities, as well as the feeder lines associated with the 108-B facility, formerly discharging to the 116-B-7 Outfall Structure. The subsite has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  17. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment

    NASA Astrophysics Data System (ADS)

    Andrés-Doménech, I.; Múnera, J. C.; Francés, F.; Marco, J. B.

    2010-05-01

    Since the Water Framework Directive (WFD) was passed in year 2000, the protection of water bodies in the EU must be understood in a completely different way. Regarding to combined sewer overflows (CSOs) from urban drainage networks, the WFD implies that CSOs cannot be accepted because of their intrinsic features, but must be assessed for their impact on the receiving water bodies in agreement with specific environmental aims. Consequently, both, the urban system and the receiving one must be jointly analysed to evaluate their impact. In this context, a coupled scheme is presented in this paper to assess the CSOs impact in a river system in Torrelavega (Spain). First, an urban model is developed to characterise statistically the CSOs frequency, volume and duration. The main feature of this first model is the fact of being event-based: the system is modelled with some built synthetic storms which cover adequately the probability range of the main rainfall descriptors, i.e., rainfall event volume and peak intensity. Thus, CSOs are characterised in terms of their occurrence probability. Secondly, a continuous and distributed basin model is built to assess the river response at different points in the river network. This model was calibrated initially on a daily scale and downscaled later to the hourly scale. The main objective of this second element of the scheme is to provide the most likely state of the receiving river when a CSO occurs. By combining results of both models, CSO and river flows are homogeneously characterised from a statistical point of view. Finally, results from both models were coupled to estimate the final concentration of some analysed pollutants (the biochemical oxygen demand, BOD, and the total ammonium, NH4+), in the river just after the spills.

  18. Coupling urban event-based and catchment continuous modelling for combined sewer overflow river impact assessment

    NASA Astrophysics Data System (ADS)

    Andrés-Doménech, I.; Múnera, J. C.; Francés, F.; Marco, J. B.

    2010-10-01

    Since Water Framework Directive (WFD) was passed in year 2000, the conservation of water bodies in the EU must be understood in a completely different way. Regarding to combined sewer overflows (CSOs) from urban drainage networks, the WFD implies that we cannot accept CSOs because of their intrinsic features, but they must be assessed for their impact on the receiving water bodies in agreement with specific environmental aims. Consequently, both, urban system and the receiving water body must be jointly analysed to evaluate the environmental impact generated on the latter. In this context, a coupled scheme is presented in this paper to assess the CSOs impact on a river system in Torrelavega (Spain). First, a urban model is developed to statistically characterise the CSOs frequency, volume and duration. The main feature of this first model is the fact of being event-based: the system is modelled with some built synthetic storms which cover adequately the probability range of the main rainfall descriptors, i.e., rainfall event volume and peak intensity. Thus, CSOs are characterised in terms of their occurrence probability. Secondly, a continuous and distributed basin model is built to assess river response at different points in the river network. This model was calibrated initially on a daily scale and downscaled later to hourly scale. The main objective of this second element of the scheme is to provide the most likely state of the receiving river when a CSO occurs. By combining results of both models, CSO and river flows are homogeneously characterised from a statistical point of view. Finally, results from both models were coupled to estimate the final concentration of some analysed pollutants (biochemical oxygen demand, BOD, and total ammonium, NH4+), within the river just after the spills.

  19. [Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge].

    PubMed

    Meng, Ying-ying; Feng, Cang; Li, Tian; Wang, Ling

    2009-12-01

    Dry-weather flow quantity and quality of three representative separate storm sewer systems in Shanghai-H, G, N were studied. Based on survey of operating status of the pumping stations as well as characteristics of the drainage systems, it was obtained that the interception sewage volumes per unit area in the three systems were 3610 m3/(km2 x d), 1550 m3/(km2 x d), 2970 m3/(km2 x d) respectively; the sanitary wastewater included accounted for 25%, 85% and 71% respectively; the interception volume of H was mainly composed of infiltrated underground water, so the dry-weather flow pollution was slighter, and the interception volumes of G, N were both mainly composed of sanitary wastewater, so the dry-weather which were flow pollution was relatively serious. The water characteristics of potential illicit discharge sources of dry-weather which were flow-grey water, black water and underground water were preliminarily explored, so that treating three parameters-LAS/ NH4+ -N, NH4+ -N/K, Mg/K as tracer parameters of grey water, black water and underground water was put forward. Moreover, the water characteristics of grey water and sanitary wastewater including black water were summarized: the feature of grey water was LAS/NH4+ -N > 0.2, NH4+ -N/K <1, and sanitary wastewater was LAS/NH4+ -N < 0.2, NH4+ -N/K >1. Based on the above, the applications of flow chart method and CMBM method in dry-weather flow detection of monitored storm systems were preliminarily discussed, and the results were basically same as that obtained in flow quantity and quality comprehensive analysis. The research results and methods can provide guidance for analysis and diagnosis of dry-weather flow sources and subsequent reconstruction projects in similar separate storm sewer systems at home. PMID:20187382

  20. Global sea level rise

    SciTech Connect

    Douglas, B.C. )

    1991-04-15

    Published values for the long-term, global mean sea level rise determined from tide gauge records exhibit considerable scatter, from about 1 mm to 3 mm/yr. This disparity is not attributable to instrument error; long-term trends computed at adjacent sites often agree to within a few tenths of a millimeter per year. Instead, the differing estimates of global sea level rise appear to be in large part due to authors' using data from gauges located at convergent tectonic plate boundaries, where changes of land elevation give fictitious sea level trends. In addition, virtually all gauges undergo subsidence or uplift due to postglacial rebound (PGR) from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling PGR by the ICE-3G model of Tushingham and Peltier (1991) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. The value for mean sea level rise obtained from a global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 is 1.8 mm/yr {plus minus} 0.1. This result provides confidence that carefully selected long tide gauge records measure the same underlying trend of sea level and that many old tide gauge records are of very high quality.

  1. Rising College Costs.

    ERIC Educational Resources Information Center

    USA Today, 1981

    1981-01-01

    Focuses on ways in which parents of school-age children can offset the rising costs of college, including encouraging students to get summer and part-time jobs, putting savings toward students' education in accounts in students' names to save taxes, investigating cooperative work/education plans, and investing in mutual funds. (DB)

  2. Biogenic acids produced on epoxy linings installed in sewer crown and tidal zones.

    PubMed

    Valix, M; Shanmugarajah, K

    2015-09-01

    In this study the biogenic acids generated by microbes on the surface of Bisphenol A epoxy mortar coupons were investigated for up to 30 months. The epoxy coupons were installed in six sewers in three city locations, Sydney, Melbourne and Perth. Coupons were installed in both the crown and the tidal zones of the sewers to capture the effect of location within the pipe on acid production. The coupons were retrieved approximately every 6 months to provide a dynamic analysis of the biogenic acid production. Our results reveal the colonisation of epoxy mortar by the more aggressive acidophilic bacteria occurred within six months to two years of their installation in the sewer pipes. Biogenic acid generation appear to occur homogeneously from the tidal zone to the crown of the sewer pipes. The reduction in the surface pH of the epoxy lining was supported by the successive growth of microbes beginning with fungi followed be neutrophilic and heterotrophic bacteria and finally by the acidophilic bacteria and the corresponding accumulation of organic and sulphuric acids attributed to these organisms. This study also revealed the potential inhibiting effects on the microbes induced by the accumulation of metabolic products on the epoxy surface. The accumulation of organic acids and H2S coincided with the growth and metabolism inhibition of fungi and acidophilic bacteria. These results provide insights into the microbial interaction and biogenic acids production that contribute to lining degradation and corrosion of concrete in sewer pipes. PMID:26005783

  3. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations

    PubMed Central

    Pennell, Kelly G.; Scammell, Madeleine Kangsen; McClean, Michael D.; Ames, Jennifer; Weldon, Brittany; Friguglietti, Leigh; Suuberg, Eric M.; Shen, Rui; Indeglia, Paul A.; Heiger-Bernays, Wendy J.

    2013-01-01

    The United States Environmental Protection Agency (USEPA) is finalizing its vapor intrusion guidelines. One of the important issues related to vapor intrusion is background concentrations of volatile organic chemicals (VOCs) in indoor air, typically attributed to consumer products and building materials. Background concentrations can exist even in the absence of vapor intrusion and are an important consideration when conducting site assessments. In addition, the development of accurate conceptual models that depict pathways for vapor entry into buildings is important during vapor intrusion site assessments. Sewer gas, either as a contributor to background concentrations or as part of the site conceptual model, is not routinely evaluated during vapor intrusion site assessments. The research described herein identifies an instance where vapors emanating directly from a sanitary sewer pipe within a residence were determined to be a source of tetrachloroethylene (PCE) detected in indoor air. Concentrations of PCE in the bathroom range from 2.1 to 190 ug/m3 and exceed typical indoor air concentrations by orders of magnitude resulting in human health risk classified as an “Imminent Hazard” condition. The results suggest that infiltration of sewer gas resulted in PCE concentrations in indoor air that were nearly two-orders of magnitude higher as compared to when infiltration of sewer gas was not known to be occurring. This previously understudied pathway whereby sewers serve as sources of PCE (and potentially other VOC) vapors is highlighted. Implications for vapor intrusion investigations are also discussed. PMID:23950637

  4. Spatial and temporal variability of bacterial communities within a combined sewer system.

    PubMed

    Jensen, Henriette Stokbro; Sekar, Raju; Shepherd, Will J; Osborn, Andrew M; Tait, Simon; Biggs, Catherine A

    2016-08-01

    This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities. PMID:27063341

  5. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.

    PubMed

    Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter

    2011-01-01

    Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found. PMID:21902021

  6. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage. PMID:26379202

  7. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    PubMed

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. PMID:24216228

  8. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas With and Without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003-2007

    EPA Science Inventory

    Background: Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff discharge into waterbodies potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme pre...

  9. Evaluating Cryptosporidium and Giardia concentrations in combined sewer overflow.

    PubMed

    Arnone, Russell D; Walling, Joyce Perdek

    2006-06-01

    Since the first identified Cryptosporidium outbreaks occurred in the 1980s and the massive 1993 Milwaukee, WI outbreak affected more than 400,000 people, the concern over the public health risks linked to protozoan pathogens Cryptosporidium and Giardia has grown. Cryptosporidium and Giardia, found in streams, rivers, groundwater, and soil, form hardy, disinfection-resistant oocysts and cysts. Both organisms are recognized causative agents of gastrointestinal illnesses linked to the consumption of contaminated surface or groundwater. This study, the first in a planned series to estimate the urban contribution to the total Cryptosporidium and Giardia receiving-water loads, focused on combined sewer overflow (CSO). CSOs are discharges of mixed untreated sewage and stormwater released directly into receiving waters during rainfall. This engineered relief is necessary to accommodate hydraulic strain when the combined rain and sanitary flows exceed the system capacity. Limited comprehensive data are available assessing the CSO discharge contribution as a source of these two pathogens. Works by States et al. and Gibson et al. each found Cryptosporidium and much greater Giardia concentrations in CSOs draining parts of Pittsburgh, PA. This project estimated the relative detection frequency and concentration of Cryptosporidium and Giardia in CSO. Analytical results were obtained using a modification of Method 1623, originally developed for much cleaner environmental samples. These data are useful for drinking water treatment plants located downstream of CSOs. It is also significant in determining the potential concentrations of parasites at treatment plant intakes and for assessing health risks for water contact and fishing activities. Commonly monitored indicator organisms (total coliform, fecal coliform, E. coli, Enterococcus, and fecal streptococcus), endospores, and selected physical and chemical parameters were analyzed to further describe the samples. CSO from urban

  10. Relationships between rainfall and Combined Sewer Overflow (CSO) occurrences

    NASA Astrophysics Data System (ADS)

    Mailhot, A.; Talbot, G.; Lavallée, B.

    2015-04-01

    Combined Sewer Overflow (CSO) has been recognized as a major environmental issue in many countries. In Canada, the proposed reinforcement of the CSO frequency regulations will result in new constraints on municipal development. Municipalities will have to demonstrate that new developments do not increase CSO frequency above a reference level based on historical CSO records. Governmental agencies will also have to define a framework to assess the impact of new developments on CSO frequency and the efficiency of the various proposed measures to maintain CSO frequency at its historic level. In such a context, it is important to correctly assess the average number of days with CSO and to define relationships between CSO frequency and rainfall characteristics. This paper investigates such relationships using available CSO and rainfall datasets for Quebec. CSO records for 4285 overflow structures (OS) were analyzed. A simple model based on rainfall thresholds was developed to forecast the occurrence of CSO on a given day based on daily rainfall values. The estimated probability of days with CSO have been used to estimate the rainfall threshold value at each OS by imposing that the probability of exceeding this rainfall value for a given day be equal to the estimated probability of days with CSO. The forecast skill of this model was assessed for 3437 OS using contingency tables. The statistical significance of the forecast skill could be assessed for 64.2% of these OS. The threshold model has demonstrated significant forecast skill for 91.3% of these OS confirming that for most OS a simple threshold model can be used to assess the occurrence of CSO.

  11. OVERVIEW OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S STORM AND COMBINED SEWER PROGRAM COLLECTION SYSTEM RESEARCH

    EPA Science Inventory

    A state-of-the-art and assessment of the USEPA's Storm and Combined Sewer Program collection system research pertaining to management alternatives for wet- and dry-weather wastewater transport and interception is presented. These include: maintenance; catchbasins; new sewer desig...

  12. Sulfide production and wastewater quality--investigations in a pilot plant pressure sewer.

    PubMed

    Tanaka, N; Hvitved-Jacobsen, T

    2001-01-01

    The relationship linking sulfide production rate and wastewater quality in terms of its biodegradability was studied using a pilot plant pressure sewer (inner diameter: 102 mm, length: 47 m). Furthermore, anaerobic transformations of wastewater organic matter were investigated. Wastewater characterization based on oxygen utilization rate (OUR) measurements and VFA analyses was employed. As wastewater quality parameters essential for the sulfide production, COD components and dissolved carbohydrate were focused on. Readily biodegradable substrate and fermentable, readily biodegradable substrate were better parameters than traditional dissolved COD for the prediction of sulfide production rates in a pressure sewer. From the results obtained, it was possible to integrate the sulfide production process with the transformation processes of wastewater organic matter in pressure sewers. PMID:11379124

  13. Coordinated management of combined sewer overflows by means of environmental decision support systems.

    PubMed

    Murla, Damian; Gutierrez, Oriol; Martinez, Montse; Suñer, David; Malgrat, Pere; Poch, Manel

    2016-04-15

    During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges. PMID:26820929

  14. Application of morphological segmentation to leaking defect detection in sewer pipelines.

    PubMed

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically identified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  15. Developments in a methodology for the design of engineered invert traps in combined sewer systems.

    PubMed

    Buxton, A; Tait, S; Stovin, V; Saul, A

    2002-01-01

    Sediments within sewers can have a significant effect on the operation of the sewer system and on the surrounding natural and urban environment. One possible method for the management of sewer sediments is the use of slotted invert traps. Although invert traps can be used to selectively trap only inorganic bedload material, little is known with regard to the design of these structures. This paper presents results from a laboratory investigation comparing the trapping performance of three slot size configurations of a laboratory-scale invert trap. The paper also presents comparative results from a two-dimensional computational model utilising stochastic particle tracking. This investigation shows that particle tracking consistently over-predicts sediment retention efficiencies observed within the laboratory model. PMID:11989888

  16. Hydraulic Modeling and Evolutionary Optimization for Enhanced Real-Time Decision Support of Combined Sewer Overflows

    NASA Astrophysics Data System (ADS)

    Zimmer, A. L.; Minsker, B. S.; Schmidt, A. R.; Ostfeld, A.

    2011-12-01

    Real-time mitigation of combined sewer overflows (CSOs) requires evaluation of multiple operational strategies during rapidly changing rainfall events. Simulation models for hydraulically complex systems can effectively provide decision support for short time intervals when coupled with efficient optimization. This work seeks to reduce CSOs for a test case roughly based on the North Branch of the Chicago Tunnel and Reservoir Plan (TARP), which is operated by the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC). The North Branch tunnel flows to a junction with the main TARP system. The Chicago combined sewer system alleviates potential CSOs by directing high interceptor flows through sluice gates and dropshafts to a deep tunnel. Decision variables to control CSOs consist of sluice gate positions that control water flow to the tunnel as well as a treatment plant pumping rate that lowers interceptor water levels. A physics-based numerical model is used to simulate the hydraulic effects of changes in the decision variables. The numerical model is step-wise steady and conserves water mass and momentum at each time step by iterating through a series of look-up tables. The look-up tables are constructed offline to avoid extensive real-time calculations, and describe conduit storage and water elevations as a function of flow. A genetic algorithm (GA) is used to minimize CSOs at each time interval within a moving horizon framework. Decision variables are coded at 15-minute increments and GA solutions are two hours in duration. At each 15-minute interval, the algorithm identifies a good solution for a two-hour rainfall forecast. Three GA modifications help reduce optimization time. The first adjustment reduces the search alphabet by eliminating sluice gate positions that do not influence overflow volume. The second GA retains knowledge of the best decision at the previous interval by shifting the genes in the best previous sequence to initialize search at

  17. REPORT ON COMPUTER TOOLS FOR PREDICTING RAINFALL DERIVED INFILTRATION/INFLOW IN SANITARY SEWER SYSTEMS AND SWMM MODELING FOR SSO CONTROL PLANNING

    EPA Science Inventory

    The Nation's sanitary-sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 SSO events per year. Because of concerns o...

  18. Critical review on the stability of illicit drugs in sewers and wastewater samples.

    PubMed

    McCall, Ann-Kathrin; Bade, Richard; Kinyua, Juliet; Lai, Foon Yin; Thai, Phong K; Covaci, Adrian; Bijlsma, Lubertus; van Nuijs, Alexander L N; Ort, Christoph

    2016-01-01

    Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps. PMID:26618807

  19. Statistical evaluation of a radar rainfall system for sewer system management

    NASA Astrophysics Data System (ADS)

    Vieux, B. E.; Vieux, J. E.

    2005-09-01

    Urban areas are faced with mounting demands for managing waste and stormwater for a cleaner environment. Rainfall information is a critical component in efficient management of urban drainage systems. A major water quality impact affecting receiving waterbodies is the discharge of untreated waste and stormwater during precipitation, termed wet weather flow. Elimination or reduction of wet weather flow in metropolitan sewer districts is a major goal of environmental protection agencies and often requires considerable capital improvements. Design of these improvements requires accurate rainfall data in conjunction with monitored wastewater flow data. Characterizing the hydrologic/hydraulic performance of the sewer using distant rain gauges can cause oversizing and wasted expenditures. Advanced technology has improved our ability to measure accurately rainfall over large areas. Weather radar, when combined with rain gauge measurements, provides detailed information concerning rainfall intensities over specific watersheds. Knowing how much rain fell over contributing areas during specific periods aids in characterizing inflow and infiltration to sanitary and combined sewers, calibration of sewer system models, and in operation of predictive real-time control measures. Described herein is the design of a system for managing rainfall information for sewer system management, along with statistical analysis of 60 events from a large metropolitan sewer district. Analysis of the lower quartile rainfall events indicates that the expected average difference is 25.61%. Upper quartile rainfall events have an expected average difference of 17.25%. Rain gauge and radar accumulations are compared and evaluated in relation to specific needs of an urban application. Overall, the events analyzed agree to within ± 8% based on the median average difference between gauge and radar.

  20. Fat, oil and grease deposits in sewers: characterisation of deposits and formation mechanisms.

    PubMed

    Williams, J B; Clarkson, C; Mant, C; Drinkwater, A; May, E

    2012-12-01

    Fat, oil and grease deposits (FOG) in sewers are a major problem and can cause sewer overflows, resulting in environmental damage and health risks. Often simplistically portrayed as cooling of fats, recent research has suggested that saponification may be involved in FOG formation. However there are still questions about the mechanisms effecting transformations in sewers and the role and source of metal cations involved in saponification. This study characterises FOG deposits from pumping stations, sewers and sewage works from different water hardness zones across the UK. The sites all had previous problems with FOG and most catchments contained catering and food preparation establishments. The FOG deposits were highly variable with moisture content ranging from 15 to 95% and oil content from 0 to 548 mg/g. Generally the pumping stations had lower moisture content and higher fat content, followed by the sewers then the sewage works. The water in contact with the FOG had high levels of oil (mean of about 800 mg/L) and this may indicate poor kitchen FOG management practices. FOG fatty acid profiles showed a transformation from unsaturated to saturated forms compared to typical cooking oils. This seems to relate to ageing in the sewer network or the mechanism of formation, as samples from pumping stations had higher proportions of C18:1 compared to C16. This may be due to microbial transformations by bacteria such as Clostridium sp. in a similar process to adipocere formation. There was an association between water hardness and increased Ca levels in FOG along with harder deposits and higher melting points. A link between FOG properties and water hardness has not been previously reported for field samples. This may also be due to microbial processes, such as biocalcification. By developing the understanding of these mechanisms it may be possible to more effectively control FOG deposits, especially when combined with promotion of behavioural change. PMID:23039918

  1. Combined-sewer overflow data and methods of sample collection for selected sites, Detroit, Michigan

    USGS Publications Warehouse

    Sweat, M.J.; Wolf, J.R.

    1997-01-01

    From October 1, 1994 through December 31, 1995, four combined-sewer discharging to the Detroit River in Detroit, Michigan were monitored to characterize storm-related water quantity and quality. Water velocity, stage, discharge, and precipitation were measured continuously and recorded at 5-minute intervals. Water-quality samples were collected at discrete times during each storm and analyzed for inorganic and organic pollutants. This report includes the sampling approach, field collection and processing techniques, and methods of chemical analysis, as well as a compilation of combined sewer discharge volumes, chemical data, and quality control data. These data may be used by resource managers and scientists (1) to describe temporal variation for pollutant concentrations in combined-sewage for various overflow events; (2) to describe spatial distribution of selected pollutants in the four combined-sewer overflows discharging to the Detroit River; (3) to calculate pollutant loads to the Detroit River from the four overflow sites for the monitored storm events; (4) to estimate pollutant loadings form other overflow sites; and, (5) to provide data and information which can be used to define appropriate management methods to reduce or eliminate untreated combined-sewer overflows. Selected combined-sewers were sampled between 30 and 82 times for inorganic pollutants, and between 14 and 22 times for organic pollutants, depending on the site. These samples represented between 8 and 17 storms during which one or more combined-sewers overflowed. The monitored pollutants included fecal coliform, fecal streptococci, and Escherichia coli; antimony, arsenic, beryllium, cadmium, hexavalent chromium, total chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, silver, thallium and zinc; and polychlorinated biphenyl congeners, volatile organic compounds, and polynuclear aromatic hydrocarbons. In general, metal and non-metal inorganic pollutants were detected at all

  2. Sewers as a source and sink of chlorinated-solvent groundwater contamination, Marine Corps Recruit Depot, Parris Island, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Lowery, M.A.; Landmeyer, J.E.

    2011-01-01

    Groundwater contamination by tetrachloroethene and its dechlorination products is present in two partially intermingled plumes in the surficial aquifer near a former dry-cleaning facility at Site 45, Marine Corps Recruit Depot, Parris Island, South Carolina. The northern plume originates from the vicinity of former above-ground storage tanks. Free-phase tetrachloroethene from activities in this area entered the groundwater. The southern plume originates at a nearby, new dry-cleaning facility, but probably was the result of contamination released to the aquifer from a leaking sanitary sewer line from the former dry-cleaning facility. Discharge of dissolved groundwater contamination is primarily to leaking storm sewers below the water table. The strong influence of sanitary sewers on source distribution and of storm sewers on plume orientation and discharge at this site indicates that groundwater-contamination investigators should consider the potential influence of sewer systems at their sites. ?? 2011, National Ground Water Association.

  3. Quantitative and qualitative assessment of the impact of climate change on a combined sewer overflow and its receiving water body.

    PubMed

    Bi, Eustache Gooré; Monette, Frédéric; Gachon, Philippe; Gaspéri, Johnny; Perrodin, Yves

    2015-08-01

    Projections from the Canadian Regional Climate Model (CRCM) for the southern part of the province of Québec, Canada, suggest an increase in extreme precipitation events for the 2050 horizon (2041-2070). The main goal of this study consisted in a quantitative and qualitative assessment of the impact of the 20 % increase in rainfall intensity that led, in the summer of 2013, to overflows in the "Rolland-Therrien" combined sewer system in the city of Longueuil, Canada. The PCSWMM 2013 model was used to assess the sensitivity of this overflow under current (2013) and future (2050) climate conditions. The simulated quantitative variables (peak flow, Q(CSO), and volume discharged, VD) served as the basis for deriving ecotoxicological risk indices and event fluxes (EFs) transported to the St. Lawrence (SL) River. Results highlighted 15 to 500% increases in VD and 13 to 148% increases in Q(CSO) by 2050 (compared to 2013), based on eight rainfall events measured from May to October. These results show that (i) the relationships between precipitation and combined sewer overflow variables are not linear and (ii) the design criteria for current hydraulic infrastructure must be revised to account for the impact of climate change (CC) arising from changes in precipitation regimes. EFs discharged into the SL River will be 2.24 times larger in the future than they are now (2013) due to large VDs resulting from CC. This will, in turn, lead to excessive inputs of total suspended solids (TSSs) and tracers for numerous urban pollutants (organic matter and nutrients, metals) into the receiving water body. Ecotoxicological risk indices will increase by more than 100% by 2050 compared to 2013. Given that substantial VDs are at play, and although CC scenarios have many sources of uncertainty, strategies to adapt this drainage network to the effects of CC will have to be developed. PMID:25869430

  4. Post-rehabilitation evaluation of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect

    Royal, D.

    1995-11-01

    We are updating a CH2M Hill study which found that the sanitary sewer system is sufficient to transport peak dry weather flow. However, under peak wet weather conditions, the system has insufficient capacity to transport the projected flows for existing and future development. This is due to the amount of infiltration/inflow (I/I) that enters the sewer system when it rains. Our goal is to examine the existing system to determine its adequacy to accommodate present and future peak flows, and also to further update and improve the CH2M Hill study. A set of alternatives was also developed to address deficiencies of the existing system.

  5. The semi-sewer river: hydraulic backwater effects and combined sewer overflow reverse flows in Central Brussels reduce deoxygenation impact further downstream.

    PubMed

    Le, H M; Petrovic, D; Verbanck, M A

    2014-01-01

    In 2011 and 2012 the dissolved oxygen content in the low-discharge river Zenne was monitored continuously, every 5 minutes, downstream of Brussels city centre, making it possible to document the complex mechanisms by which combined sewer overflow (CSO) spills affect both the hydraulics and the oxygen balance of the hydrosystem. In addition to oxygen demand impacts, proportions of water volumes are such that the oxygen-devoid sewage water discharged from CSOs contributes significantly to the oxygen deficit observed in the river further downstream. It is shown that ensuing unexpected hydraulic behaviour, such as a full river-flow reversal, can explain the dual nature of oxygen sag following major CSO events. At times the semi-sewer river plays the role of an in-stream stormwater tank, effectively attenuating the environmental impacts of Brussels CSOs. PMID:24569294

  6. Rising beyond elastocapillarity.

    PubMed

    Holmes, Douglas P; Brun, P-T; Pandey, Anupam; Protière, Suzie

    2016-06-14

    We consider the elastocapillary rise between swellable structures using a favorable solvent. We characterize the dynamic deformations and resulting equilibrium configurations for various beams. Our analysis reveals the importance of the spacing between the two beams, and the elastocapillary length lec, which prescribes the relative magnitude of surface tension and bending stiffness in the system. In particular, we rationalize the transition between coalescence-dominated, bending-dominated, and swelling-dominated regimes, and enumerate the subtle interfacial mechanisms at play in the ratcheting of a fluid droplet trapped between the curling beams. PMID:27076278

  7. Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination.

    PubMed

    Madoux-Humery, Anne-Sophie; Dorner, Sarah; Sauvé, Sébastien; Aboulfadl, Khadija; Galarneau, Martine; Servais, Pierre; Prévost, Michèle

    2013-09-01

    A monitoring program was initiated for two sewage outfalls (OA and OB) with different land uses (mainly residential versus institutional) over the course of a year. Eleven CSO events resulting from fall and summer precipitations and a mixture of snowmelt and precipitation in late winter and early spring were monitored. Median concentrations measured in CSOs were 1.5 × 10(6)Escherichia coli/100 mL, 136.0 mg/L of Total Suspended Solids (TSS), 4599.0 ng/L of caffeine (CAF), 158.9 ng/L of carbamazepine (CBZ), in outfall OA and 5.1 × 10(4)E. coli/100 mL, 167.0 mg TSS/L, 300.8 ng CAF/L, 4.1 ng CBZ/L, in outfall OB. Concentration dynamics in CSOs were mostly related to the dilution by stormwater and the time of day of the onset of overflows. Snowmelt was identified as a critical period with regards to the protection of drinking water sources given the high contaminant concentrations and long duration of events in addition to a lack of restrictions on overflows during this period. Correlations among measured parameters reflected the origins and transport pathways of the contaminants, with E. coli being correlated with CBZ. TSS were not correlated with E. coli because E. coli was found to be mostly associated with raw sewage whereas TSS were additionally from the resuspension of in-sewer deposits and surface runoff. In receiving waters, E. coli remained the best indicator of fecal contamination in strongly diluted water samples as compared to WWMPs because WWMPs can be diluted to below their detection limits. PMID:23764588

  8. Main Report

    PubMed Central

    2006-01-01

    scientific literature. The criteria were distributed among three main categories for each condition: The availability and characteristics of the screening test;The availability and complexity of diagnostic services; andThe availability and efficacy of treatments related to the conditions. A survey process utilizing a data collection instrument was used to gather expert opinion on the conditions in the first tier of the assessment. The data collection format and survey provided the opportunity to quantify expert opinion and to obtain the views of a diverse set of interest groups (necessary due to the subjective nature of some of the criteria). Statistical analysis of data produced a score for each condition, which determined its ranking and initial placement in one of three categories (high scoring, moderately scoring, or low scoring/absence of a newborn screening test). In the second tier of these analyses, the evidence base related to each condition was assessed in depth (e.g., via systematic reviews of reference lists including MedLine, PubMed and others; books; Internet searches; professional guidelines; clinical evidence; and cost/economic evidence and modeling). The fact sheets reflecting these analyses were evaluated by at least two acknowledged experts for each condition. These experts assessed the data and the associated references related to each criterion and provided corrections where appropriate, assigned a value to the level of evidence and the quality of the studies that established the evidence base, and determined whether there were significant variances from the survey data. Survey results were subsequently realigned with the evidence obtained from the scientific literature during the second-tier analysis for all objective criteria, based on input from at least three acknowledged experts in each condition. The information from these two tiers of assessment was then considered with regard to the overriding principles and other technology or condition

  9. Phosphate dynamics in an urban sewer: a case study of Nancy, France.

    PubMed

    Houhou, J; Lartiges, B S; Hofmann, A; Frappier, G; Ghanbaja, J; Temgoua, A

    2009-03-01

    The nature of phosphate phases present in suspended matter, biofilm, and sediment of Greater Nancy sewer system was investigated over a period of two years. The phosphate speciation was determined by two approaches: a direct identification of phosphorus mineral phases was conducted by Transmission Electron Microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDXS), whereas a chemical extraction of samples provided an estimate of phosphorus pools defined by the fractionation scheme. Quantitative analysis of 1340 individual particles by TEM-EDXS allowed to draw a picture of phosphate species distributions along the sewer system and over time. Amorphous Ca-phosphates (brushite, whitlockite, octacalcium phosphate, Mg-brushite, hydroxyapatite and carbapatite) were ubiquitous although brushite dominated upstream, and octacalcium phosphate and apatite prevailed downstream and in sediments. Al-Ca-phosphate minerals such as foggite, bearthite, gatumbaite, and crandallite appeared downstream and in biofilms. Ca-phosphate phase assemblages in the different locations of the sewer system were dependent on phase transformations from brushite to hydroxyapatite that were shown to be kinetically driven. The restriction of Al-Ca-phosphates to downstream of the sewer system was most probably related to the lower pHs measured at these sites. The pH dependency was confirmed by stability calculations. Chemical extractions were not reliable. TEM examination of extraction residues revealed the presence of neoformed Al-Ca-phosphate species that invalidated the fractionation scheme. Nonetheless, it confirmed that phosphate phases may undergo significant geochemical changes over a short time scale. PMID:19131087

  10. Identifying pathways for sanitary sewer pathogens to reach deep water supply wells in Madison, Wisconsin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work conducted by the Wisconsin Geological and Natural History Survey indicated that human enteric viruses from leaking sewers are present in several municipal wells in Madison, WI. These wells are the drinking water source for the City of Madison, are typically 700 to 900 feet deep, and pe...

  11. Mechanisms of Fat, Oil and Grease (FOG) Deposit Formation in Sewer Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FOG deposits in sewer systems recently have been shown to be metallic salts of fatty acids. However, the fate and transport of FOG deposit reactant constituents and the complex interactions during the FOG deposit formation process are still largely unknown. Batch tests were performed to elucidate ...

  12. SWIRL AND HELICAL BEND REGULATOR/CONCENTRATOR FOR STORM AND COMBINED SEWER OVERFLOW CONTROL

    EPA Science Inventory

    Swirl and helical bend devices were studied for three years at Lancaster, PA, and West Roxbury in Boston, MA. At Lancaster the study included: A full-scale swirl regulator/solids concentrator (SRC) for combined sewer overflow (CSO) control (24-ft (7.3-m) diameter) and a swirl deg...

  13. HANDLING AND DISPOSAL OF SLUDGES FROM COMBINED SEWER OVERFLOW TREATMENT. PHASE II - IMPACT ASSESSMENT

    EPA Science Inventory

    This report documents the results of an assessment of the effort that the United States will have to exert in the area of sludge handling and disposal if, in fact, full-scale treatment of combined sewer overflows is to become a reality. The results indicate that nationwide an ave...

  14. HIGH-RATE DISINFECTION OF COMBINED SEWER OVERFLOW USING CHLORINE DIOXIDE

    EPA Science Inventory

    This presentation is a state-of-the-art review of chlorine dioxide (ClO2) used for high-rate disinfection of combined sewer overflow (CSO). The review includes bench-, pilot-, and fullscale studies on the use of ClO2 as a disinfecting agent for a variety of wastewaters. Specific ...

  15. AN ASSESSMENT OF AUTOMATIC SEWER FLOW SAMPLERS (EPA/600/2-75/065)

    EPA Science Inventory

    A brief review of the characteristics of storm and combined sewer flows is given followed by a general discussion of the purposes for and requirements of a sampling program. The desirable characteristics of automatic sampling equipment are set forth and problem areas are outlined...

  16. Small diameter gravity sewers: self-cleansing conditions and aspects of wastewater quality.

    PubMed

    Dias, S P; Matos, J S

    2001-01-01

    The construction of conventional sewerage systems in small communities, with pipes laid on a uniform slope and manholes regularly spaced, is sometimes not economically feasible, because of the high costs of sewer installation. Under those circumstances, the small diameter gravity sewers (SDGS) have often proven to be substantially less costly than conventional sewers. Typically, in SDGS systems the wastewater from one or more households is discharged into an interceptor tank (or a single compartment septic tank). The settled effluent is discharged afterwards into small diameter sewers operating under gravity. In this paper, special emphasis is given to the analysis of self-cleansing conditions and to the analysis of risks of sulphide generation and occurrence of septic conditions in SDGS systems. For the evaluation of the self-cleansing conditions, the critical velocity and the critical shear stress were computed according to the Shields equation. The forecasting of dissolved oxygen concentrations and sulphide build-up along the lines, for different flow conditions, was done running an established wastewater quality model. PMID:11379122

  17. Biodegradation of fat, oil and grease (FOG) deposits under various redox conditions relevant to sewer environment.

    PubMed

    He, Xia; Zhang, Qian; Cooney, Michael J; Yan, Tao

    2015-07-01

    Fat, oil and, grease (FOG) deposits are one primary cause of sanitary sewer overflows (SSOs). While numerous studies have examined the formation of FOG deposits in sewer pipes, little is known about their biodegradation under sewer environments. In this study, FOG deposit biodegradation potential was determined by studying the biodegradation of calcium palmitate in laboratory under aerobic, nitrate-reducing, sulfate-reducing, and methanogenic conditions. Over 110 days of observation, calcium palmitate was biodegraded to CO2 under aerobic and nitrate-reducing conditions. An approximate 13 times higher CO2 production rate was observed under aerobic condition than under nitrate-reducing condition. Under sulfate-reducing condition, calcium palmitate was recalcitrant to biodegradation as evidenced by small reduction in sulfate. No evidence was found to support calcium palmitate degradation under methanogenic condition in the simulated sewer environment. Dominant microbial populations in the aerobic and nitrate-reducing microcosms were identified by Illumina seqeuncing, which may contain the capability to degrade calcium palmitate under both aerobic and nitrate-reducing conditions. Further study on these populations and their functional genes could shed more light on this microbial process and eventually help develop engineering solutions for SSOs control in the future. PMID:25715780

  18. THE CONSTRUCTION, TECHNICAL EVALUATION, AND FRICTIONAL DETERMINATION OF AN ALUMINUM STORM SEWER SYSTEM

    EPA Science Inventory

    The program consisted of analysis of the effect upon the quantity of sewerage flows in a portion of the existing combined system as a result of the construction of a demonstration aluminum storm sewer system, laboratory testing of flow characteristics of aluminum pipe, design and...

  19. Reduced sulfur compounds in the atmosphere of sewer networks in Australia: geographic (and seasonal) variations.

    PubMed

    Wang, B; Sivret, E C; Parcsi, G; Le, N M; Kenny, S; Bustamante, H; Stuetz, R M

    2014-01-01

    The management of odorous emissions from sewer networks has become an important issue for sewer system operators resulting in the need to better understand the composition of reduced sulfur compounds (RSCs). Gaseous RSCs including hydrogen sulfide (H2S), methanethiol (MeSH), dimethyl sulfide (DMS), carbon disulfide (CS2), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS) were measured in the atmosphere of selected sewer networks in two major Australian cities (Sydney and Melbourne) during 2011-2012. The RSC concentrations in the sewer air were detected in a highly variable range. H2S and MeSH were found at the highest concentrations, followed by DMS (39.2-94.0 μg/m(3)), CS2 (18.3-19.6 μg/m(3)), DMDS (7.8-49.6 μg/m(3)) and DMTS (10.4-35.3 μg/m(3)). Temporal trends in the occurrence of targeted RSCs were observed and the highest sulfur concentration occurred either in summer or spring, which are typically regarded as the warmer seasons. Statistical significant difference in the magnitude of targeted RSCs was found between samples collected in Sydney and Melbourne. PMID:24647180

  20. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  1. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method

    PubMed Central

    Alani, Amir M.; Faramarzi, Asaad

    2015-01-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  2. REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES

    EPA Science Inventory

    This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...

  3. Output-feedback control of combined sewer networks through receding horizon control with moving horizon estimation

    NASA Astrophysics Data System (ADS)

    Joseph-Duran, Bernat; Ocampo-Martinez, Carlos; Cembrano, Gabriela

    2015-10-01

    An output-feedback control strategy for pollution mitigation in combined sewer networks is presented. The proposed strategy provides means to apply model-based predictive control to large-scale sewer networks, in-spite of the lack of measurements at most of the network sewers. In previous works, the authors presented a hybrid linear control-oriented model for sewer networks together with the formulation of Optimal Control Problems (OCP) and State Estimation Problems (SEP). By iteratively solving these problems, preliminary Receding Horizon Control with Moving Horizon Estimation (RHC/MHE) results, based on flow measurements, were also obtained. In this work, the RHC/MHE algorithm has been extended to take into account both flow and water level measurements and the resulting control loop has been extensively simulated to assess the system performance according different measurement availability scenarios and rain events. All simulations have been carried out using a detailed physically based model of a real case-study network as virtual reality.

  4. CHARACTERIZATION OF METALS IN RUNOFF FROM RESIDENTIAL AND HIGHWAY STORM SEWERS

    EPA Science Inventory

    Stormwater runoff was sampled from six storm sewer outfalls in residential and highway settings in Monmouth County, NJ to determine the colloidal and dissolved metal concentrations. Heavy metals, common pollutants in natural waters and stormwater, are known to associate with par...

  5. Biodegradability of organic matter associated with sewer sediments during first flush.

    PubMed

    Sakrabani, Ruben; Vollertsen, Jes; Ashley, Richard M; Hvitved-Jacobsen, Thorkild

    2009-04-01

    The high pollution load in wastewater at the beginning of a rain event is commonly known to originate from the erosion of sewer sediments due to the increased flow rate under storm weather conditions. It is essential to characterize the biodegradability of organic matter during a storm event in order to quantify the effect it can have further downstream to the receiving water via discharges from Combined Sewer Overflow (CSO). The approach is to characterize the pollutograph during first flush. The pollutograph shows the variation in COD and TSS during a first flush event. These parameters measure the quantity of organic matter present. However these parameters do not indicate detailed information on the biodegradability of the organic matter. Such detailed knowledge can be obtained by dividing the total COD into fractions with different microbial properties. To do so oxygen uptake rate (OUR) measurements on batches of wastewater have shown itself to be a versatile technique. Together with a conceptual understanding of the microbial transformation taking place, OUR measurements lead to the desired fractionation of the COD. OUR results indicated that the highest biodegradability is associated with the initial part of a storm event. The information on physical and biological processes in the sewer can be used to better manage sediment in sewers which can otherwise result in depletion of dissolved oxygen in receiving waters via discharges from CSOs. PMID:19193392

  6. Demonstration of Green/Gray Infrastructure for Combined Sewer Overflow Control

    EPA Science Inventory

    This project is a major national demonstration of the integration of green and gray infrastructure for combined sewer overflow (CSO) control in a cost-effective and environmentally friendly manner. It will use Kansas City, MO, as a case example. The project will have a major in...

  7. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks.

    PubMed

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2016-07-01

    Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice. PMID:27124127

  8. COMPUTER MODEL ANALYSIS FOR MITIGATION PLANNING OF SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    Sanitary sewer overflows (SSOs) are generally difficult to witness or document as they usually occur during rain events when people are indoors or out of sight. To anser where and when an SSO may occur, it is necessary to know the flow conveyance capacity at various parts of the ...

  9. 40 CFR 35.2122 - Approval of user charge system and proposed sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Approval of user charge system and... Treatment Works § 35.2122 Approval of user charge system and proposed sewer use ordinance. If the project is... obtain the Regional Administrator's approval of its user charge system (§ 35.2140) and proposed...

  10. Measuring Flow Reductions in a Combined Sewer System Using Green Infrastructure

    EPA Science Inventory

    A green infrastructure (GI) design approach was used in CSO Basin #130, a 17-acre sewershed in the Butchertown section of Louisville, Kentucky, to reduce combined sewer overflows (CSOs). For the design year, the modeled design was expected to reduce the CSO frequency from 34 to ...

  11. High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...

  12. Effects of Climate and Sewer Condition on Virus Transport to Groundwater.

    PubMed

    Gotkowitz, Madeline B; Bradbury, Kenneth R; Borchardt, Mark A; Zhu, Jun; Spencer, Susan K

    2016-08-16

    Pathogen contamination from leaky sanitary sewers poses a threat to groundwater quality in urban areas, yet the spatial and temporal dimensions of this contamination are not well understood. In this study, 16 monitoring wells and six municipal wells were repeatedly sampled for human enteric viruses. Viruses were detected infrequently, in 17 of 455 samples, compared to previous sampling at these wells. Thirteen of the 22 wells sampled were virus-positive at least once. While the highest virus concentrations occurred in shallower wells, shallow and deep wells were virus-positive at similar rates. Virus presence in groundwater was temporally coincident, with 16 of 17 virus-positive samples collected in a six-month period. Detections were associated with precipitation and occurred infrequently during a prolonged drought. The study purposely included sites with sewers of differing age and material. The rates of virus detections in groundwater were similar at all study sites during this study. However, a relationship between sewer age and virus detections emerged when compared to data from an earlier study, conducted during high precipitation conditions. Taken together, these data indicate that sewer condition and climate affect urban groundwater contamination by human enteric viruses. PMID:27434550

  13. HIGH RATE NUTRIENT REMOVAL FOR COMBINED SEWER OVERFLOWS. BENCH SCALE AND DEMONSTRATION SCALE STUDIES

    EPA Science Inventory

    A high rate physical/chemical treatment system has been evaluated for the removal of suspended solids and the macronutrients, phosphorus and nitrogen, from combined sewer overflow. The system utilized a single unit process concept consisting of in-line chemical addition, coagulat...

  14. REDUCED COST SEWER PIPE RELINING USING ULTRASONIC TAPE LAMINATION - PHASE II

    EPA Science Inventory

    During the Phase I program, Foster-Miller developed techniques based on Ultrasonic Tape Lamination (UTL) for joining of plasticized PVC sewer pipe liner. This effort was undertaken in response to a need for environmentally sound and cost-effective methods for rehabilitation of...

  15. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.

    PubMed

    Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna

    2016-09-01

    Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis. PMID:27488195

  16. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    SciTech Connect

    Not Available

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site.

  17. SEWER FLOW MEASUREMENT: A STATE-OF-THE-ART ASSESSMENT (EPA/600/2-75/027)

    EPA Science Inventory

    A brief review of the characteristics of storm and combined sewer flows is given, followed by a general discussion of the need for such flow measurement, the types of flow data required, and the time element in flow data. A discussion of desirable flow measuring equipment charact...

  18. Predicting the Probability of Failure of Cementitious Sewer Pipes Using Stochastic Finite Element Method.

    PubMed

    Alani, Amir M; Faramarzi, Asaad

    2015-06-01

    In this paper, a stochastic finite element method (SFEM) is employed to investigate the probability of failure of cementitious buried sewer pipes subjected to combined effect of corrosion and stresses. A non-linear time-dependant model is used to determine the extent of concrete corrosion. Using the SFEM, the effects of different random variables, including loads, pipe material, and corrosion on the remaining safe life of the cementitious sewer pipes are explored. A numerical example is presented to demonstrate the merit of the proposed SFEM in evaluating the effects of the contributing parameters upon the probability of failure of cementitious sewer pipes. The developed SFEM offers many advantages over traditional probabilistic techniques since it does not use any empirical equations in order to determine failure of pipes. The results of the SFEM can help the concerning industry (e.g., water companies) to better plan their resources by providing accurate prediction for the remaining safe life of cementitious sewer pipes. PMID:26068092

  19. THE CHOICE OF REAL-TIME CONTROL STRATEGY FOR COMBINED SEWER OVERFLOW CONTROL

    EPA Science Inventory

    This paper focuses on the strategies used to operate a collection system in real-time control (RTC) in order to optimize use of system capacity and to reduce the cost of long-term combined sewer overflow (CSO) control. Three RTC strategies were developed and analyzed based on the...

  20. DUAL PROCESS HIGH-RATE FILTRATION OF RAW SANITARY SEWAGE AND COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    Pilot plant studies were conducted at New York's Newtown Creek Water Pollution Control Plant from 1975-1977 to investigate the suspended solids (SS) removal capabilities of the deep bed, high rate gravity filtration process on raw sewage and combined sewer overflows. The treatmen...

  1. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Understanding of solids deposition, erosion, and transport processes in sewer systems has improved considerably in the past decade. This has provided guidance for controlling sewer solids and associated acute pollutants to protect the environment and improve the operation of wastewater systems. Although measures to decrease combined sewer overflow (CSO) events have reduced the amount of discharged pollution, overflows continue to occur during rainy weather in combined sewer systems. The solution lies in the amount of water allotted to various processes in an effluent treatment system, in impact evaluation of water quality and prediction technology, and in stressing the importance of developing a control technology. Extremely contaminated inflow has been a serious research subject, especially in connection with the influence of rainy weather on nitrogen and organic matter removal efficiency in wastewater treatment plants (WWTP). An intensive investigation of an extremely polluted inflow load to WWTP during rainy weather was conducted in the city of Matsuyama, the region used for the present research on total suspended solid (TSS) concentration. Since the inflow during rainy weather can be as much as 400 times that in dry weather, almost all sewers are unsettled and overflowing when a rain event is more than moderate. Another concern is the energy consumed by wastewater treatment; this problem has become important from the viewpoint of reducing CO(2) emissions and overall costs. Therefore, while establishing a prediction technology for the inflow water quality characteristics of a sewage disposal plant is an important priority, the development of a management/control method for an effluent treatment system that minimises energy consumption and CO(2) emissions due to water disposal is also a pressing research topic with regards to the quality of treated water. The procedure to improve water quality must make use of not only water quality and biotic criteria, but also

  2. Ground potential rise monitor

    DOEpatents

    Allen, Zachery Warren; Zevenbergen, Gary Allen

    2012-07-17

    A device and method for detecting ground potential rise (GPR) comprising a first electrode, a second electrode, and a voltage attenuator. The first electrode and the second electrode are both electrically connected to the voltage attenuator. A means for determining the presence of a dangerous ground potential is connected to the voltage attenuator. The device and method further comprises a means for enabling one or more alarms upon the detection of the dangerous ground potential. Preferably, a first transmitter/receiver is connected to the means for enabling one or more alarms. Preferably, a second transmitter/receiver, comprising a button, is electromagnetically connected to the first transmitter/receiver. Preferably, the means for determining the presence of a dangerous ground potential comprises a means for determining the true RMS voltage at the output of the voltage attenuator, a transient detector connected to the output of the voltage attenuator, or a combination thereof.

  3. Ground potential rise monitor

    DOEpatents

    Allen, Zachery W.; Zevenbergen, Gary A.

    2012-04-03

    A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

  4. Getting the max out of past investments in sewer systems by using RTC

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Loenen, Arnejan; van Leeuwen, Elgard; van Nooyen, Ronald; van Velzen, Edwin

    2013-04-01

    We discuss a project in which water quality improvements of surface waters are realised by replacing local control of sewer pumps by central control. The paper focuses on the effect of implementation of real-time control in a specific group of sewer systems in the Netherlands, namely the systems that have been upgraded in the past as a result of new standards. Since these upgrades were often solely based on straightforward so-called upgrade rules and theoretical simulation studies, a thorough analysis of the real life systems by means of measurements to study the system performance or calibrate the models was rarely performed. As a result the potential of many systems is not used to the full. Because of the structure of these systems, (suboptimal distribution of storage and pump capacities) the effect of RTC is much larger than would be expected in the case of a completely new design. But because of implementation of RTC, it was required to do this thorough analysis of the sewer systems. This study focuses on the estimation of this additional RTC effect. RTC both improves the return on past investments and provides the benefits of central information and control. The project considered the sewer systems in the Hoeksche Waard area, south of Rotterdam, the Netherlands. Three RTC improvements have been implemented whereby the abovementioned effects have been achieved. There were many technological challenges to overcome during the project, such as relatively high rates of data communication needed for in systems with relatively small storage capacities, connections to multiple types of SCADA and information systems, the integration of meteo forecasts and the RTC backup architecture based on the use of multiple control modes. The potential of the RTC has been proved as such in the HoekscheWaard area. On the basis of this implementation in a typical dutch sewer system, we expect RTC to have the same potential at a national scale.

  5. Use of iron salts to control dissolved sulfide in trunk sewers

    SciTech Connect

    Padival, N.A.; Kimbell, W.A.; Redner, J.A.

    1995-11-01

    Sewer headspace H{sub 2}S reduction by precipitating dissolved sulfide in wastewater was investigated using iron salt (FeCl{sub 3} and FeCl{sub 2}). Full-scale experiments were conducted in a 40-km (25 mi) sewer with an average flow of 8.7 m{sup 3}/s (200 mgd). Results were sensitive to total Fe dosages and Fe(III)/Fe(II) blend ratios injected. A concentration of 16 mg/L total Fe and a blend ratio of 1.9:1 [Fe(III):Fe(II)] reduced dissolved sulfide levels by 97%. Total sulfide and headspace H{sub 2}S were reduced by 63% and 79%, respectively. Liquid and gas-phase sulfide reductions were largely due to the effective precipitation of sulfide with Fe(III) and Fe(II) and the limited volatilization of H{sub 2}S, respectively. Oxidation of sulfide in the presence of Fe(II) and minute amounts of O{sub 2} may have occurred. A combination of Fe(III) and Fe(II) proved more effective than either salt alone. By using excess Fe(III), dissolved sulfide can be reduced to undetectable levels. No specific relation between the concentration of Fe or Fe(III)/Fe(II) blend ratio and sewer crown pH was inferred. Iron salts may retard crown corrosion rates by precipitating free sulfide and reducing its release to the sewer headspace as H{sub 2}S. A mechanism to inhibit certain responsible bacteria was not established in the 40-km (25 mi) sewer.

  6. Nutrient Input and Dynamics in a Restored Urban Stream Impacted by Mixed Sewer Systems

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.; Bain, D. J.

    2008-12-01

    Export and retention of nutrients in urban watersheds remains poorly constrained. Available data is often based on studies conducted on large-scale, forested and mixed use watersheds rather than small urbanized systems. Additionally, there is a lack of data on the amount and impact of nutrients introduced into urban waterways as the result of stream-sewer interactions and a varied flow regime. In order to address this knowledge gap, water was sampled during baseflow (bi-weekly from April 2007 to present) and stormflow from a restored urban stream in Pittsburgh, Pennsylvania (USA) impacted by both Sanitary Sewer and Combined Sewer Overflow (SSO and CSO, respectively) networks. Nine Mile Run (NMR), a restored urban stream, drains a 1600 hectare urban watershed characterized as 38% impervious. Analysis of post-restoration water quality data suggests that atmospheric deposition and sewage both contribute nutrient pollution to the stream. We estimate input of atmospheric nitrate deposition to the watershed is 18.96 kg NO3- ha-1yr-1, yet a preliminary nitrogen budget suggests that nitrate export from the basin is consistently higher (~30 kg NO3- ha-1yr-1). Mean baseflow nitrate concentrations are substantially higher during the wetter portions of 2008 (12.07 mg NO3 -/L) as compared to the drier 2007 year (7.3 mg NO3 -/L). This suggests increased stream/sewer interactions during wetter periods. These results document the effect of Sanitary Sewer systems on an urban stream and highlight the challenges inherent in improving urban water quality through physical stream restorations.

  7. Tharsis Rise Graben

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 22 May 2002) The Science This image is located in the northwestern portion of the Tharsis Rise at about 12 N and 125 W (235 E). What is immediately noticeable in this image is the series of linear features that are called graben. These features are associated with crustal extension which results in a series of up and down blocks of crust that run perpendicular to the direction of the extension. Images of Mars have shown a large number of these tectonic features concentrated on or near the Tharsis region. The Tharsis region is an enormous bulge that causes major tectonic disruptions across the planet when it tries to settle down from its height and reach equilibrium with the rest of the planet. The graben in this image display a number of preferential directions indicating that the crustal stresses that caused the graben have changed over time. By examining the cross-cutting relationships between the features, it is possible to reassemble the history of the area. The Story Now, if you thought that Mars was almost perfectly round, think again! The red planet has a large bulge sticking out from it called Tharsis. Almost 3,000 miles across, this enormous region rises almost four miles above the average radius of the planet. That's quite a bulge! Since Tharsis the land of the largest volcanoes in the solar system, it may have been formed by both the uplift of land from tectonic action and the build-up of lava flows. Tharsis can cause some pretty major tectonic disruptions across the planet when it tries to settle down from its height and reach a better equilibrium with the rest of the planet. In this image, located in the northwestern portion of the Tharsis Rise, a whole lot of lowered features stripe the landscape. They are called grabens, and formed when the crust of the planet was stretched tectonically. This kind of crustal extension (or stretching) tends to form a series of up-and-down blocks of crust that run perpendicular to the direction of the crustal

  8. Capillary rise kinetics of some building materials.

    PubMed

    Karoglou, M; Moropoulou, A; Giakoumaki, A; Krokida, M K

    2005-04-01

    The presence of water in masonry is one of the main factors in deterioration. Capillary rise is the most usual mechanism of water penetration into building materials. In this study the kinetics of the capillary rise phenomenon was studied for various building materials: four stones, two bricks, and six plasters. A first-order kinetic model was proposed, in which the equilibrium moisture height derived from Darcy law. The capillary height time constant found to be strongly affected by the material characteristics. Moreover, the capillary height time constant can be predicted if the average pore radius of the materials is known. PMID:15752811

  9. The rise of graphene

    NASA Astrophysics Data System (ADS)

    Geim, A. K.; Novoselov, K. S.

    2007-03-01

    Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

  10. The rise of graphene.

    PubMed

    Geim, A K; Novoselov, K S

    2007-03-01

    Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications. PMID:17330084

  11. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach.

    PubMed

    Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves

    2015-03-01

    Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs. PMID:25315929

  12. Sea Level Rise in Santa Clara County

    NASA Technical Reports Server (NTRS)

    Milesi, Cristina

    2005-01-01

    Presentation by Cristina Milesi, First Author, NASA Ames Research Center, Moffett Field, CA at the "Meeting the Challenge of Sea Level Rise in Santa Clara County" on June 19, 2005 Santa Clara County, bordering with the southern portion of the San Francisco Bay, is highly vulnerable to flooding and to sea level rise (SLR). In this presentation, the latest sea level rise projections for the San Francisco Bay will be discussed in the context of extreme water height frequency and extent of flooding vulnerability. I will also present preliminary estimations of levee requirements and possible mitigation through tidal restoration of existing salt ponds. The examples will draw mainly from the work done by the NASA Climate Adaptation Science Investigators at NASA Ames.

  13. CONVENTIONAL AND ADVANCED SEWER DESIGN CONCEPTS FOR DUAL PURPOSE FLOOD AND POLLUTION CONTROL. A PRELIMINARY CASE STUDY, ELIZABETH, NEW JERSEY

    EPA Science Inventory

    Alternatives for pollution abatement from combined sewer overflows and stormwater discharges were evaluated. Separate storm and sanitary, conventional combined, and advanced combined systems with varying amounts of in-pipe and/or satellite storage and controlled flow routing were...

  14. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    PubMed

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. PMID:25840844

  15. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Facilities: Analysis of Massachusetts Data, 2003-2007

    EPA Science Inventory

    Background: Combined sewer systems (CSS) collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These c...

  16. A vision-based tool for the control of hydraulic structures in sewer systems

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Sage, D.; Kayal, S.; Jeanbourquin, D.; Rossi, L.

    2009-04-01

    During rain events, the total amount of the wastewater/storm-water mixture cannot be treated in the wastewater treatment plant; the overflowed water goes directly into the environment (lakes, rivers, streams) via devices called combined sewers overflows (CSOs). This water is untreated and is recognized as an important source of pollution. In most cases, the quantity of overflowed water is unknown due to high hydraulic turbulences during rain events; this quantity is often significant. For this reason, the monitoring of the water flow and the water level is of crucial environmental importance. Robust monitoring of sewer systems is a challenging task to achieve. Indeed, the environment inside sewers systems is inherently harsh and hostile: constant humidity of 100%, fast and large water level changes, corrosive atmosphere, presence of gas, difficult access, solid debris inside the flow. A flow monitoring based on traditional probes placed inside the water (such as Doppler flow meter) is difficult to conduct because of the solid material transported by the flow. Probes placed outside the flow such as ultrasonic water level probes are often used; however the measurement is generally done on only one particular point. Experience has shown that the water level in CSOs during rain events is far from being constant due to hydraulic turbulences. Thus, such probes output uncertain information. Moreover, a check of the data reliability is impossible to achieve. The HydroPix system proposes a novel approach to the monitoring of sewers based on video images, without contact with the water flow. The goal of this system is to provide a monitoring tool for wastewater system managers (end-users). The hardware was chosen in order to suit the harsh conditions of sewers system: Cameras are 100% waterproof and corrosion-resistant; Infra-red LED illumination systems are used (waterproof, low power consumption); A waterproof case contains the registration and communication system. The

  17. Nothing But MORB at Shatsky Rise

    NASA Astrophysics Data System (ADS)

    Natland, J. H.

    2013-12-01

    I compare basaltic rocks and glasses obtained by IODP Expedition 324 drilling at Shatsky Rise, a Jurassic Large Igneous Province in the northwestern Pacific, to mid-ocean ridge basalts (MORB) from the Indian Ocean and East Pacific Rise. Data are compositions in Sano et al (2012) and electron-probe microanalyses of spinel and clinopyroxene. Although several different basalt types were obtained from Shatsky Rise, they all have counterparts along modern spreading ridges, namely depleted (normal, or N-type) and enriched (E-type) MORB plus one extremely depleted type, here termed 'truly depleted'. The latter is similar to eastern Pacific basalts from small intra-transform spreading segments (e.g., Siqueiros fracture zone) and near-ridge seamounts. Basalts from Shatsky Rise are mainly strongly differentiated ferrobasalts; some appear to have mixed with or assimilated small amounts of silicic differentiates and with E-MORB. Similar processes also occur along the East Pacific Rise (9N, Endeavor Deep, Pacific-Antarctic East Pacific Rise). Some clinopyroxene crystals occur in gabbro clots at one site. The textures and mineral compositions resemble those of gabbro cumulates at Hess Deep, eastern Pacific. Spinel compositions from two sites, including in 'truly depleted' basalt, are similar to those in strongly depleted picritic basalt from Siqueiros Fracture Zone, except that they crystallized at lower temperature. Petrogenetic models suggest slightly lower temperatures and smaller degrees of partial melting for all parental Shatsky basalts than for either the N-type or depleted (D-type) MORB of Gale et al (2013). Those with smaller extents of melting resemble basalts from the very slowly spreading and deeply rifted Southwest Indian Ridge near the Indian Ocean triple junction. In summary, Shatsky Rise basalts in all respects resemble those of modern spreading ridges, but mostly to the East Pacific Rise. Compositions of mantle sources were similar; conditions of partial melting

  18. Quantification of groundwater infiltration and surface water inflows in urban sewer networks based on a multiple model approach.

    PubMed

    Karpf, Christian; Krebs, Peter

    2011-05-01

    The management of sewer systems requires information about discharge and variability of typical wastewater sources in urban catchments. Especially the infiltration of groundwater and the inflow of surface water (I/I) are important for making decisions about the rehabilitation and operation of sewer networks. This paper presents a methodology to identify I/I and estimate its quantity. For each flow fraction in sewer networks, an individual model approach is formulated whose parameters are optimised by the method of least squares. This method was applied to estimate the contributions to the wastewater flow in the sewer system of the City of Dresden (Germany), where data availability is good. Absolute flows of I/I and their temporal variations are estimated. Further information on the characteristics of infiltration is gained by clustering and grouping sewer pipes according to the attributes construction year and groundwater influence and relating these resulting classes to infiltration behaviour. Further, it is shown that condition classes based on CCTV-data can be used to estimate the infiltration potential of sewer pipes. PMID:21497364

  19. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    PubMed Central

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  20. Septic systems, but not sanitary sewer lines, are associated with elevated estradiol in male frog metamorphs from suburban ponds.

    PubMed

    Lambert, Max R; Giller, Geoffrey S J; Skelly, David K; Bribiescas, Richard G

    2016-06-01

    Suburban neighborhoods are a dominant type of human land use. Many housing regions globally rely on septic systems, rather than sanitary sewers, for wastewater management. There is evidence that septic systems may contaminate waterbodies more than sewer lines. There is also mounting evidence that human activities contaminate waterways with endocrine-disrupting chemicals (EDCs), which alter wildlife sexual development. While endocrine disruption is often associated with intense activities such as agriculture or wastewater treatment plant discharges, recent evidence indicates that endocrine disruption is pervasive in frogs from suburban neighborhoods. In conjunction with other putative EDC sources, one hypothesis is that wastewater is contaminating suburban waterways with EDCs derived from pharmaceuticals or personal care products. Here, we measure estradiol (E2) in metamorphosing green frogs (Rana clamitans) from forested ponds and suburban ponds adjacent to either septic tanks or sanitary sewers. We show that E2 is highest in male frogs from septic neighborhoods and that E2 concentrations are significantly lower in male frogs from forested ponds and from ponds near sewers. These results indicate that septic tanks may be contaminating aquatic ecosystems differently than sewer lines. This pattern contrasts prior work showing no difference in EDC contamination or morphological endocrine disruption between septic and sewer neighborhoods, implying that suburbanization may have varying effects at multiple biological scales like physiology and anatomy. PMID:26795918

  1. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  2. Case study of a fast propagating bacteriogenically induced concrete corrosion in an Austrian sewer system

    NASA Astrophysics Data System (ADS)

    Grengg, Cyrill; Mittermayr, Florian; Baldermann, Andre; Böttcher, Michael; Leis, Albrecht; Koraimann, Günther; Dietzel, Martin

    2015-04-01

    Reaction mechanisms leading to microbially induced concrete corrosion (MICC) are highly complex and often not fully understood. The aim of the present case study is to contribute to a deeper understanding of reaction paths, environmental controls, and corrosion rates related to MICC in a modern Austrian sewer system by introducing an advanced multi proxy approach that comprises gaseous, hydro-geochemical, bacteriological, and mineralogical analyses. Various crucial parameters for detecting alteration features were determined in the field and laboratory, including (i) temperature, pH, alkalinity, chemical compositions of the solutions, (ii) chemical and mineralogical composition of solids, (iii) bacterial analysis, and (iv) concentrations of gaseous H2S, CH4 and CO2 within the sewer pipe atmosphere. An overview of the field site and analytical results, focusing on reaction mechanisms causing the corrosion, as well as possible remediation strategies will be presented.

  3. Flow velocities and shear stresses during flushing operations in sewer collectors.

    PubMed

    Campisano, A; Modica, C

    2003-01-01

    Many relevant problems of drainage systems such as first flush pollution, flow capacity reduction and consequent risks of surcharges are worsened by sediment accumulation in sewer collectors. For the solution of these problems several sediment cleansing methods and techniques, e.g. mechanical methods, traps and flushing devices, have been developed and applied in the last decades. In particular, simulation studies and experimental campaigns have shown the effectiveness of flushing methods as preventive cleansing strategy in sewer collectors. In this paper the results of a numerical investigation for determining flushing waves characteristics both in terms of duration and flow rate are presented. The collector section lengths where flow velocities and average shear stresses determined by flushing waves exceed minimum threshold values are evaluated using a dimensionless approach. The results, related to the operative ranges of the practical applications, are exposed by means of graphs and regressive equations. PMID:12666809

  4. Evaluation of effectiveness of combined sewer overflow control measures by operational data.

    PubMed

    Schroeder, K; Riechel, M; Matzinger, A; Rouault, P; Sonnenberg, H; Pawlowsky-Reusing, E; Gnirss, R

    2011-01-01

    The effect of combined sewer overflow (CSO) control measures should be validated during operation based on monitoring of CSO activity and subsequent comparison with (legal) requirements. However, most CSO monitoring programs have been started only recently and therefore no long-term data is available for reliable efficiency control. A method is proposed that focuses on rainfall data for evaluating the effectiveness of CSO control measures. It is applicable if a sufficient time-series of rainfall data and a limited set of data on CSO discharges are available. The method is demonstrated for four catchments of the Berlin combined sewer system. The analysis of the 2000-2007 data shows the effect of CSO control measures, such as activation of in-pipe storage capacities within the Berlin system. The catchment, where measures are fully implemented shows less than 40% of the CSO activity of those catchments, where measures have not yet or not yet completely been realised. PMID:21252438

  5. Laboratory investigation on the performances of baffles for the capture of sewer floatables.

    PubMed

    Campisano, A

    2009-01-01

    The use of baffles in sewer systems enables the capture of floatables, which could be responsible for both malfunctioning of water treatment plants and aesthetic pollution of receiving bodies when discharges through combined sewer overflow devices occur. An experimental contribution to the understanding of capturing processes of floatable elements by means of baffle devices is presented in this paper. Experiments were carried out using different baffle configurations. The limit equilibrium conditions of various types of floatables, i.e the condition beyond which upstream intercepted floatables start to escape the baffle, were investigated. The dimensional analysis was used in order to generalize the results of the experiments and to compare the capturing performances of analysed baffle configurations. PMID:19587399

  6. Comparison of the inspector and rating protocol uncertainty influence in the condition rating of sewers.

    PubMed

    Sousa, V; Ferreira, F M; Meireles, I; Almeida, N; Saldanha Matos, J

    2014-01-01

    Wastewater drainage systems asset management decisions, in particular regarding rehabilitation interventions, are largely dependent on close-circuit television (CCTV) inspection results. However, the results of CCTV inspections are affected by several sources of uncertainty. Within the present communication, the inspector's uncertainty is quantified by comparing periodic inspection reports from three trunk sewers of a Portuguese sewer system. The inspections were carried out by the same experienced inspector using the same equipment. Therefore, the uncertainties from the lack of experience and the difference of the inspector and equipment were ruled out. The protocol uncertainty is also quantified comparing the results obtained with the Water Research Center (WRc) and the National Research Council of Canada (NRC) protocols condition ratings. Both operational and structural condition rating were analysed, but emphasis was given to the later since it dictates the repair and replacement interventions. PMID:24569288

  7. Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks.

    PubMed

    Wolf, Leif; Zwiener, Christian; Zemann, Moritz

    2012-07-15

    There is little quantitative information on the temporal trends of pharmaceuticals and other emerging compounds, including artificial sweeteners, in urban groundwater and their suitability as tracers to inform urban water management. In this study, pharmaceuticals and artificial sweeteners were monitored over 6 years in a shallow urban groundwater body along with a range of conventional sewage tracers in a network of observation wells that were specifically constructed to assess sewer leakage. Out of the 71 substances screened, 24 were detected at above the analytical detection limit. The most frequent compounds were the iodinated X-ray contrast medium amidotrizoic acid (35.3%), the anticonvulsant carbamazepine (33.3%) and the artificial sweetener acesulfame (27.5%), while all other substances occurred in less than 10% of the screened wells. The results from the group of specifically constructed focus wells within 10 m of defective sewers confirmed sewer leaks as being a major entrance pathway into the groundwater. The spatial distribution of pharmaceuticals and artificial sweeteners corresponds well with predictions by pipeline leakage models, which operate on optical sewer condition monitoring data and hydraulic information. Correlations between the concentrations of carbamazepine, iodinated X-ray contrast media and artificial sweeteners were weak to non-existent. Peak concentrations of up to 4130 ng/l of amidotrizoic acid were found in the groundwater downstream of the local hospital. The analysis of 168 samples for amidotrizoic acid, taken at 5 different occasions, did not show significant temporal trends for the years 2002-2008, despite changed recommendations in the medical usage of amidotrizoic acid. The detailed results show that the current mass balance approaches for urban groundwater bodies must be adapted to reflect the spatially distributed leaks and the variable wastewater composition in addition to the lateral and horizontal groundwater fluxes. PMID

  8. Storm and combined sewer overflow: An overview of EPA's Research Program. Book chapter

    SciTech Connect

    Field, R.

    1993-01-01

    The report represents an overview of the EPA's Storm and Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers Program involvements in the development of a diverse technology including pollution-problem assessment/solution methodology and associated instrumentation and stormwater management models, best management practices, erosion control, infiltration/inflow, control, control-treatment technology and the associated sludge and solids residuals handling and many others.

  9. An Automated Intelligent Fault Detection System for Inspection of Sewer Pipes

    NASA Astrophysics Data System (ADS)

    Ahrary, Alireza; Kawamura, Yoshinori; Ishikawa, Masumi

    Automation is an important issue in industry, particularly in inspection of underground facilities. This paper describes an intelligent system for automatically detecting faulty areas in a sewer pipe system based on images. The proposed system can detect various types of faults and be implemented in a real time system. The present paper describes system architecture and focuses on two modules of image preprocessing and detection of faulty areas. The proposed approach demonstrates high performance in detection and reduction of time and cost.

  10. Succession of Sulfur-Oxidizing Bacteria in the Microbial Community on Corroding Concrete in Sewer Systems† ▿

    PubMed Central

    Okabe, Satoshi; Odagiri, Mitsunori; Ito, Tsukasa; Satoh, Hisashi

    2007-01-01

    Microbially induced concrete corrosion (MICC) in sewer systems has been a serious problem for a long time. A better understanding of the succession of microbial community members responsible for the production of sulfuric acid is essential for the efficient control of MICC. In this study, the succession of sulfur-oxidizing bacteria (SOB) in the bacterial community on corroding concrete in a sewer system in situ was investigated over 1 year by culture-independent 16S rRNA gene-based molecular techniques. Results revealed that at least six phylotypes of SOB species were involved in the MICC process, and the predominant SOB species shifted in the following order: Thiothrix sp., Thiobacillus plumbophilus, Thiomonas intermedia, Halothiobacillus neapolitanus, Acidiphilium acidophilum, and Acidithiobacillus thiooxidans. A. thiooxidans, a hyperacidophilic SOB, was the most dominant (accounting for 70% of EUB338-mixed probe-hybridized cells) in the heavily corroded concrete after 1 year. This succession of SOB species could be dependent on the pH of the concrete surface as well as on trophic properties (e.g., autotrophic or mixotrophic) and on the ability of the SOB to utilize different sulfur compounds (e.g., H2S, S0, and S2O32−). In addition, diverse heterotrophic bacterial species (e.g., halo-tolerant, neutrophilic, and acidophilic bacteria) were associated with these SOB. The microbial succession of these microorganisms was involved in the colonization of the concrete and the production of sulfuric acid. Furthermore, the vertical distribution of microbial community members revealed that A. thiooxidans was the most dominant throughout the heavily corroded concrete (gypsum) layer and that A. thiooxidans was most abundant at the highest surface (1.5-mm) layer and decreased logarithmically with depth because of oxygen and H2S transport limitations. This suggested that the production of sulfuric acid by A. thiooxidans occurred mainly on the concrete surface and the

  11. Predictive optimal control of sewer networks using CORAL tool: application to Riera Blanca catchment in Barcelona.

    PubMed

    Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J

    2009-01-01

    This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control. PMID:19700825

  12. A database and model to support proactive management of sediment-related sewer blockages.

    PubMed

    Rodríguez, Juan Pablo; McIntyre, Neil; Díaz-Granados, Mario; Maksimović, Cedo

    2012-10-01

    Due to increasing customer and political pressures, and more stringent environmental regulations, sediment and other blockage issues are now a high priority when assessing sewer system operational performance. Blockages caused by sediment deposits reduce sewer system reliability and demand remedial action at considerable operational cost. Consequently, procedures are required for identifying which parts of the sewer system are in most need of proactive removal of sediments. This paper presents an exceptionally long (7.5 years) and spatially detailed (9658 grid squares--0.03 km² each--covering a population of nearly 7.5 million) data set obtained from a customer complaints database in Bogotá (Colombia). The sediment-related blockage data are modelled using homogeneous and non-homogeneous Poisson process models. In most of the analysed areas the inter-arrival time between blockages can be represented by the homogeneous process, but there are a considerable number of areas (up to 34%) for which there is strong evidence of non-stationarity. In most of these cases, the mean blockage rate increases over time, signifying a continual deterioration of the system despite repairs, this being particularly marked for pipe and gully pot related blockages. The physical properties of the system (mean pipe slope, diameter and pipe length) have a clear but weak influence on observed blockage rates. The Bogotá case study illustrates the potential value of customer complaints databases and formal analysis frameworks for proactive sewerage maintenance scheduling in large cities. PMID:22794800

  13. Surface models for coupled modelling of runoff and sewer flow in urban areas.

    PubMed

    Ettrich, N; Steiner, K; Thomas, M; Rothe, R

    2005-01-01

    Traditional methods fail for the purpose of simulating the complete flow process in urban areas as a consequence of heavy rainfall and as required by the European Standard EN-752 since the bi-directional coupling between sewer and surface is not properly handled. The new methodology, developed in the EUREKA-project RisUrSim, solves this problem by carrying out the runoff on the basis of shallow water equations solved on high-resolution surface grids. Exchange nodes between the sewer and the surface, like inlets and manholes, are located in the computational grid and water leaving the sewer in case of surcharge is further distributed on the surface. Dense topographical information is needed to build a model suitable for hydrodynamic runoff calculations; in urban areas, in addition, many line-shaped elements like houses, curbs, etc. guide the runoff of water and require polygonal input. Airborne data collection methods offer a great chance to economically gather densely sampled input data. PMID:16248177

  14. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  15. An obstacle to China's WWTPs: the COD and BOD standards for discharge into municipal sewers.

    PubMed

    Liao, Zhenliang; Hu, Tiantian; Roker, Scott Albert C

    2015-11-01

    In 2001, a construction campaign regarding wastewater treatment plants (WWTPs) occurred in China. Unfortunately, the treatment has not yet achieved anticipated effectiveness. A critical reason for this is that the influent chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentrations in WWTPs are unacceptably low. This paper indicates that a fundamental, but commonly overlooked contributing factor to this problem is that a large portion of easily degradable COD and BOD is degraded prematurely before entering municipal sewers, and this is directly correlated to China's standards for pollutant discharging into municipal sewers. This perspective is further unfolded through retrospection of the history of Chinese wastewater treatment and the investigation of standards among developed zones and districts. This paper suggests that in China, the standards for pollutant discharging into municipal sewers should be relaxed. Meanwhile, unnecessary pretreatment of COD and BOD should cease for the purpose of ensuring that easily degradable COD and BOD can be transferred to WWTPs to improve treatment efficiency. Moreover, additional alternatives are presented to resolve this problem. PMID:26341334

  16. Fuzzy neural network for flow estimation in sewer systems during wet weather.

    PubMed

    Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning

    2006-02-01

    Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein. PMID:16566517

  17. Influence of sampling intake position on suspended solid measurements in sewers: two probability/time-series-based approaches.

    PubMed

    Sandoval, Santiago; Bertrand-Krajewski, Jean-Luc

    2016-06-01

    Total suspended solid (TSS) measurements in urban drainage systems are required for several reasons. Aiming to assess uncertainties in the mean TSS concentration due to the influence of sampling intake vertical position and vertical concentration gradients in a sewer pipe, two methods are proposed: a simplified method based on a theoretical vertical concentration profile (SM) and a time series grouping method (TSM). SM is based on flow rate and water depth time series. TSM requires additional TSS time series as input data. All time series are from the Chassieu urban catchment in Lyon, France (time series from 2007 with 2-min time step, 89 rainfall events). The probability of measuring a TSS value lower than the mean TSS along the vertical cross section (TSS underestimation) is about 0.88 with SM and about 0.64 with TSM. TSM shows more realistic TSS underestimation values (about 39 %) than SM (about 269 %). Interquartile ranges (IQR) over the probability values indicate that SM is more uncertain (IQR = 0.08) than TSM (IQR = 0.02). Differences between the two methods are mainly due to simplifications in SM (absence of TSS measurements). SM assumes a significant asymmetry of the TSS concentration profile along the vertical axis in the cross section. This is compatible with the distribution of TSS measurements found in the TSM approach. The methods provide insights towards an indicator of the measurement performance and representativeness for a TSS sampling protocol. PMID:27178049

  18. On Capillary Rise and Nucleation

    ERIC Educational Resources Information Center

    Prasad, R.

    2008-01-01

    A comparison of capillary rise and nucleation is presented. It is shown that both phenomena result from a balance between two competing energy factors: a volume energy and a surface energy. Such a comparison may help to introduce nucleation with a topic familiar to the students, capillary rise. (Contains 1 table and 3 figures.)

  19. RISE: Service and Learning Combine.

    ERIC Educational Resources Information Center

    Taylor, Rosemarye T.; Peterson, Deborah S.

    2003-01-01

    RISE (Reading Intervention Sans Expense) is a one-on-one reading intervention that involves maximizing human resources, not expending dollars. Tutors are high school students enrolled in a community service learning course who are trained in guided reading. Research suggests that RISE is an effective and efficient intervention that impacts all of…

  20. Choices for a Rising Generation

    ERIC Educational Resources Information Center

    Obama, Barack

    2008-01-01

    This article presents an essay by the 2008 Democratic Party Presidential Nominee. This essay focuses on the role of the rising generation in bringing about real change in America. The author contends that, at this historic moment, Americans must ask their rising generation to serve their country as Americans always have--by working on a political…

  1. Wastewater micropollutants as tracers of sewage contamination: analysis of combined sewer overflow and stream sediments.

    PubMed

    Hajj-Mohamad, M; Aboulfadl, K; Darwano, H; Madoux-Humery, A-S; Guérineau, H; Sauvé, S; Prévost, M; Dorner, S

    2014-01-01

    A sensitive method was developed to measure the sediment concentration of 10 wastewater micropollutants selected as potential sanitary tracers of sewage contamination and include: nonsteroidal anti-inflammatory drugs (acetaminophen - ACE and diclofenac - DIC), an anti-epileptic drug (carbamazepine - CBZ), a β-blocker (atenolol - ATL), a stimulant (caffeine - CAF), a bronchodilator (theophylline - THEO), steroid hormones (progesterone - PRO and medroxyprogesterone - MedP), an artificial sweetener (aspartame - APM) and personal care products (N,N-diethyl-3-methylbenzamide - DEET). Natural sediments (combined sewer overflow and stream sediments) were extracted by ultrasonic-assisted extraction followed by solid-phase extraction. Analyses were performed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) using atmospheric pressure chemical ionisation in positive mode (APCI+) with a total analysis time of 4.5 min. Method detection limits were in the range of 0.01 to 15 ng g(-1) dry weight (dw) for the compounds of interest, with recoveries ranging from 75% to 156%. Matrix effects were observed for some compounds, never exceeding |±18%|. All results displayed a good degree of reproducibility and repeatability, with relative standard deviations (RSD) of less than 23% for all compounds. The method was applied to an investigation of stream and combined sewer overflow sediment samples that differed in organic carbon contents and particle size distributions. Acetaminophen, caffeine and theophylline (as confounded with paraxanthine) were ubiquitously detected at 0.13-22 ng g(-1) dw in stream bed sediment samples and 98-427 ng g(-1) dw in combined sewer overflow sediment samples. Atenolol (80.5 ng g(-1) dw) and carbamazepine (54 ng g(-1) dw) were quantified only in combined sewer overflow sediment samples. The highest concentrations were recorded for DEET (14 ng g(-1) dw) and progesterone (11.5 ng g(-1) dw) in stream bed and combined

  2. Surface Tension and Capillary Rise

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1972-01-01

    Discussion of the shortcomings of textbook explanations of surface tension, distinguishing between concepts of tension and capillary rise. The arguments require only a clear understanding of Newtonian mechanics, notably potential energy. (DF)

  3. Rising Food Prices: Who's Responsible?

    ERIC Educational Resources Information Center

    Brown, Lester R.

    1973-01-01

    Rise in food prices can be partially attributed to the high food consumption level throughout Europe and North America, coupled with failure to evolve systems for more production of cattle, soybeans, and fisheries at lower cost. (PS)

  4. Fault detection on a sewer network by a combination of a Kalman filter and a binary sequential probability ratio test

    NASA Astrophysics Data System (ADS)

    Piatyszek, E.; Voignier, P.; Graillot, D.

    2000-05-01

    One of the aims of sewer networks is the protection of population against floods and the reduction of pollution rejected to the receiving water during rainy events. To meet these goals, managers have to equip the sewer networks with and to set up real-time control systems. Unfortunately, a component fault (leading to intolerable behaviour of the system) or sensor fault (deteriorating the process view and disturbing the local automatism) makes the sewer network supervision delicate. In order to ensure an adequate flow management during rainy events it is essential to set up procedures capable of detecting and diagnosing these anomalies. This article introduces a real-time fault detection method, applicable to sewer networks, for the follow-up of rainy events. This method consists in comparing the sensor response with a forecast of this response. This forecast is provided by a model and more precisely by a state estimator: a Kalman filter. This Kalman filter provides not only a flow estimate but also an entity called 'innovation'. In order to detect abnormal operations within the network, this innovation is analysed with the binary sequential probability ratio test of Wald. Moreover, by crossing available information on several nodes of the network, a diagnosis of the detected anomalies is carried out. This method provided encouraging results during the analysis of several rains, on the sewer network of Seine-Saint-Denis County, France.

  5. Disparities in Water and Sewer Services in North Carolina: An Analysis of the Decision-Making Process

    PubMed Central

    Gibson, Jacqueline MacDonald

    2015-01-01

    Objectives. We examined the factors that affect access to municipal water and sewer service for unincorporated communities relying on wells and septic tanks. Methods. Using a multisite case study design, we conducted in-depth, semistructured interviews with 25 key informants from 3 unincorporated communities in Hoke, New Hanover, and Transylvania counties, North Carolina, July through September 2013. Interviewees included elected officials, health officials, utility providers, and community members. We coded the interviews in ATLAS.ti to identify common themes. Results. Financing for water and sewer service emerged as the predominant factor that influenced decisions to extend these services. Improved health emerged as a minor factor, suggesting that local officials may not place a high emphasis on the health benefits of extending public water and sewer services. Awareness of failed septic systems in communities can prompt city officials to extend sewer service to these areas; however, failed systems are often underreported. Conclusions. Understanding the health costs and benefits of water and sewer extension and integrating these findings into the local decision-making process may help address disparities in access to municipal services. PMID:26270307

  6. Assessing the Impacts of Pulp Loading from Non-Dispersible Materials on Downstream Sewer Systems (WERF Report INFR1R14)

    EPA Science Inventory

    Abstract:This study subjected wipes from five different manufacturers to a variety of tests to determine if changes to their physical characteristics occur when introduced into a sewer systemand what effect the shredded material (pulp) has on the downstream sewer. Shredded and no...

  7. Dopant-assisted negative photoionization Ion mobility spectrometry coupled with on-line cooling inlet for real-time monitoring H2S concentration in sewer gas.

    PubMed

    Peng, Liying; Jiang, Dandan; Wang, Zhenxin; Hua, Lei; Li, Haiyang

    2016-06-01

    Malodorous hydrogen sulfide (H2S) gas often exists in the sewer system and associates with the problems of releasing the dangerous odor to the atmosphere and causing sewer pipe to be corroded. A simple method is in demand for real-time measuring H2S level in the sewer gas. In this paper, an innovated method based on dopant-assisted negative photoionization ion mobility spectrometry (DANP-IMS) with on-line semiconductor cooling inlet was put forward and successfully applied for the real-time measurement of H2S in sewer gas. The influence of moisture was effectively reduced via an on-line cooling method and a non-equilibrium dilution with drift gas. The limits of quantitation for the H2S in ≥60% relative humidity air could be obtained at ≤79.0ng L(-1) with linear ranges of 129-2064ng L(-1). The H2S concentration in a sewer manhole was successfully determined while its product ions were identified by an ion-mobility time-of-fight mass spectrometry. Finally, the correlation between sewer H2S concentration and the daily routines and habits of residents was investigated through hourly or real-time monitoring the variation of sewer H2S in manholes, indicating the power of this DANP-IMS method in assessing the H2S concentration in sewer system. PMID:27130121

  8. Optimal design of sewer networks using cellular automata-based hybrid methods: Discrete and continuous approaches

    NASA Astrophysics Data System (ADS)

    Afshar, M. H.; Rohani, M.

    2012-01-01

    In this article, cellular automata based hybrid methods are proposed for the optimal design of sewer networks and their performance is compared with some of the common heuristic search methods. The problem of optimal design of sewer networks is first decomposed into two sub-optimization problems which are solved iteratively in a two stage manner. In the first stage, the pipe diameters of the network are assumed fixed and the nodal cover depths of the network are determined by solving a nonlinear sub-optimization problem. A cellular automata (CA) method is used for the solution of the optimization problem with the network nodes considered as the cells and their cover depths as the cell states. In the second stage, the nodal cover depths calculated from the first stage are fixed and the pipe diameters are calculated by solving a second nonlinear sub-optimization problem. Once again a CA method is used to solve the optimization problem of the second stage with the pipes considered as the CA cells and their corresponding diameters as the cell states. Two different updating rules are derived and used for the CA of the second stage depending on the treatment of the pipe diameters. In the continuous approach, the pipe diameters are considered as continuous variables and the corresponding updating rule is derived mathematically from the original objective function of the problem. In the discrete approach, however, an adhoc updating rule is derived and used taking into account the discrete nature of the pipe diameters. The proposed methods are used to optimally solve two sewer network problems and the results are presented and compared with those obtained by other methods. The results show that the proposed CA based hybrid methods are more efficient and effective than the most powerful search methods considered in this work.

  9. Acinetobacter, Aeromonas, and Trichococcus populations dominate the microbial community within urban sewer infrastructure

    PubMed Central

    VandeWalle, J. L.; Goetz, G.W.; Huse, S.M.; Morrison, H. G.; Sogin, M.L.; Hoffmann, R.G.; Yan, K.; McLellan, S.L.

    2012-01-01

    We evaluated the population structure and temporal dynamics of the dominant community members within sewage influent from two wastewater treatment plants (WWTPs) in Milwaukee, WI. We generated >1.1M bacterial pyrotag sequences from the V6 hypervariable region of 16S rRNA genes from 38 influent samples and two samples taken upstream in the sanitary sewer system. Only a small fraction of pyrotags from influent samples (~15%) matched sequences from human fecal samples. The fecal components of the sewage samples included enriched pyrotag populations from Lactococcus and Enterobacteriaceae relative to their fractional representation in human fecal samples. In contrast to the large number of distinct pyrotags that represent fecal bacteria such as Lachnospiraceae and Bacteroides, only one or two unique V6 sequences represented Acinetobacter, Trichococcus and Aeromonas, which collectively account for nearly 35% of the total sewage community. Two dominant Acinetobacter V6 pyrotags (designated Acineto tag 1 and Acineto tag 2) fluctuated inversely with a seasonal pattern over a 3-year period, suggesting two distinct Acinetobacter populations respond differently to ecological forcings in the system. A single nucleotide change in the V6 pyrotags accounted for the difference in these populations and corresponded to two phylogenically distinct clades based on full-length sequences. Analysis of wavelet functions, derived from a mathematical model of temporal fluctuations, demonstrated that other abundant sewer associated populations including Trichococcus and Aeromonas had temporal patterns similar to either Acineto tag 1 or Acineto tag 2. Populations with related temporal fluctuations were found to significantly correlate with the same WWTP variables (5-day BOD, flow, ammonia, total phosphorous, and suspended solids). These findings illustrate that small differences in V6 sequences can represent phylogenetically and ecologically distinct taxa. This work provides insight into

  10. Anaerobic transformations of wastewater organic matter and sulfide production--investigations in a pilot plant pressure sewer.

    PubMed

    Tanaka, N; Hvitved-Jacobsen, T

    2002-01-01

    Anaerobic transformations of wastewater organic matter and sulfide production rate were studied using a pilot plant pressure sewer (inner diameter: 102 mm, length: 47 m). Furthermore, a process model description including carbon and sulfur cycle was presented. Wastewater characterization based on oxygen utilization rate (OUR) measurement and VFA analysis was employed. Under anaerobic conditions, a net production of readily biodegradable substrate was observed, which fact is important for biological removal of nitrogen and phosphorus at subsequent wastewater treatment plants. Model parameters were determined on the basis of experimental findings. The model simulation of transformations of organic matter in sewers can be used as input to the model simulation and evaluation of the processes in wastewater treatment plants. The model is also useful to evaluate the problems in both sewers themselves and treatment plants caused by hydrogen sulfide. PMID:11902483

  11. Influence of rainfall estimation error and spatial variability on sewer flow prediction at a small urban scale

    NASA Astrophysics Data System (ADS)

    Schellart, A. N. A.; Shepherd, W. J.; Saul, A. J.

    2012-09-01

    Legislative drivers for water quality and urban flood risk are driving a growing need to accurately determine the performance of urban drainage systems in near real time. Rainfall data are clearly a key input to urban drainage system models. Historically rain gauge data have been used, however radar rainfall data are now widely available and benefits from significantly higher spatial coverage than rain gauges in most UK urban catchments. This paper describes a detailed study based on a small (11 km2) urban catchment in West Yorkshire, England. Radar and rain gauge data have been compared and used as the input to hydrodynamic sewer flow simulations, and the results of these simulations have been compared with measured flows in the sewer system. The results showed that for this size of catchment, there can be significant differences in simulated peak flows and combined sewer overflow spill volumes due to inherent uncertainties between the two rainfall estimates.

  12. Estimating inflow to a combined sewer overflow structure with storage tank in real time: evaluation of different approaches.

    PubMed

    Leonhardt, G; D'Oria, M; Kleidorfer, M; Rauch, W

    2014-01-01

    The performance assessment of storage tanks and combined sewer overflow (CSO) structures in sewer systems requires knowledge of the total inflow from the catchment during rainfall events. Many structures are, however, only equipped with sensors to measure water level and/or outflows. Based on the geometry of the tank, expressed as a level-storage relationship, inflow can be calculated from these data using a simple conceptual storage model. This paper compares a deterministic and a Bayesian approach for estimating the inflow to a CSO structure from measurements of outflows and water level. The Bayesian approach clearly outperforms the deterministic estimation which is very sensitive to measurement errors. Although computationally more demanding, the use of a simple linear storage model allows the online application of the Bayesian approach to repeatedly estimate inflow in short time intervals of a few minutes. The method could thus be used as an online software sensor for inflow to storage structures in sewer systems. PMID:25325537

  13. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    USGS Publications Warehouse

    Martin, J.D.

    1995-01-01

    Concentrations of dissolved oxygen measured at the station in the middle of the combined-sewer overflows were less than the Indiana minimum ambient water-quality standard of 4.0 milligrams per liter during all storms. Concentrations of ammonia, oxygen demand, copper, lead, zinc, and fecal coliform bacteria at the stations downstream from the combined-sewer overflows were much higher in storm runoff than in base flow. Increased concentrations of oxygen demand in runoff probably were caused by combined-sewer overflows, urban runoff, and the resuspension of organic material deposited on the streambed. Some of the increased concentrations of lead, zinc, and probably copper can be attributed to the discharge and resuspension of filter backwash

  14. Prioritising sewerage maintenance using inferred sewer age: a case study for Edinburgh.

    PubMed

    Arthur, S; Burkhard, R

    2010-01-01

    The reported research project focuses on using a database which contains details of customer contacts and CCTV data for a key Scottish catchment to construct a GIS based sewer condition model. Given the nature of the asset registry, a key research challenge was estimating the age of individual lengths of pipe. Within this context, asset age was inferred using the estimated age of surface developments-this involved overlaying the network in a GIS with historical digital maps. The paper illustrates that inferred asset age can reliably be used to highlight assets which are more likely to fail. PMID:20418640

  15. Bacterial degradation of polychlorinted biphenyls in sludge from an industrial sewer lagoon

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Takacs, A. M.; Kuivinen, D. E.

    1983-01-01

    A laboratory experiment was conducted to determine if polychlorinated biphenyls (PCB's) found in an industrial sewer sludge can be effectively degraded by mutant bacteria. The aerated sludge was inoculated daily with mutant bacteria in order to augment the existing bacteria with bacteria that were considered to be capable of degrading PCB's. The pH, nitrogen, and phosphorus levels were monitored daily to maintain an optimum growing medium for the bacteria. A gas chromatographic method was used to determine the PCB concentrations of the sludge initially and also throughout the experiment. Results and discussion of the bacterial treatment of polychlorinated biphenyls are presented.

  16. Graph theoretical stable allocation as a tool for central control of sewer systems

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Kolechkina, Alla

    2016-04-01

    Dutch sewer networks consist of multiple sub-networks that serve both to collect waste water and as a link in the transport chain of waste water to the Waste Water Treatment Plant. Within sub-networks transport is by gravity driven flow. The sub-networks are linked by pumping stations. If the network of pipes also serves to collect precipitation then the system is called a combined system. For some of these networks it may be beneficial to implement central control. We study whether the graph theoretical concept of stable allocations can be used as a basis for the algorithm underlying such a central conrol system.

  17. The Nazi doctors and the medical community; honor or censure? The case of Hans Sewering.

    PubMed

    White, Lawrence W

    1996-01-01

    During the Nazi era, most German physicians abrogated their responsibilities to individual patients, and instead chose to advocate the interests of an evil regime. In so doing, several fundamental bioethical principles were violated. Despite gross violations of individual rights, many physicians went on to have successful careers, and in many cases were honored. This paper will review the case of Hans Sewering, a participant in the Nazi euthanasia program who became the President-elect of the World Medical Association. The appropriate stance for the medical and scientific community toward those who violate human rights and ignore fundamental ethical principles of the healing professions will be considered. PMID:11645778

  18. Monitoring and analysis of combined sewer overflows, Riverside and Evanston, Illinois, 1997-99

    USGS Publications Warehouse

    Waite, Andrew M.; Hornewer, Nancy J.; Johnson, Gary P.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected and analyzed flow data in combined sewer systems in Riverside and Evanston, northeastern Illinois, from March 1997 to December 1999. Continuous 2- and 5-minute stage and velocity data were collected during surcharged and nonsurcharged conditions at 12 locations. Mass balances were calculated to determine the volume of water flowing through the tide-gate openings to the Des Plaines River and the North Shore Channel and to determine the volume of water flowing past the sluice gate to the deep tunnel. The sewer systems consist of circular pipes ranging in diameter from 0.83 feet to 10.0 feet, elliptical siphon pipes, ledges, and tide and sluice gates. Pipes were constructed of either brick and mortar or concrete, and ranged from having smooth surfaces to rough, pitted and crumbling surfaces. One pipe was noticeably affected by water infiltration from saturated ground. During data analysis, many assumptions were necessary because of the complexity of the flow data and sewer-system configurations. These assumptions included estimating the volume of water entering an interceptor sewer at the ''Gage Street pipe'' at Riverside, the effect of infiltration on the ''brick pipe'' at Riverside, and the minimum velocity required for the meter to make an accurate velocity determination. Other factors affecting the analysis of flow data included possible non-instrumented sources of inflow, and backwater conditions in some pipes, which could have caused error in the data analysis. Variations of these assumptions potentially could cause appreciable changes to the final massbalance calculations. Mass-balance analysis at Riverside indicated a total inflow volume into chamber 3 of approximately 721,000 cubic feet (ft3) during April 22-26, 1999. Outflow volume to the Des Plaines River at Riverside through the tide gate was approximately 132,000 ft3; outflow volume to the deep tunnel through the

  19. Assessing the Impact of a Combined Sewer Separation Project on Water Quality in Blackwater Creek, Virginia

    NASA Astrophysics Data System (ADS)

    Pradhan, K.; Warren, K. P.

    2013-12-01

    Over a century ago, the City of Lynchburg constructed a sanitary sewer system to deal with the increasing need for waste water treatment. State and federal environmental mandates require cities to eliminate sewer overflows, so in the 1990s, the City of Lynchburg devised a plan to fix the problem of combined sewer overflow. Since Lynchburg's Combined Sewer Separation (CSS) work began approximately twenty years ago, many of the overflow points have been eliminated, leaving 30 points to be closed in the future. It remains unclear, however, whether Blackwater Creek's freshwater ecosystems have begun to show improvement as a result of the City's CSS separation project. As recently as 2012, the Virginia Department of Environmental Quality characterized Blackwater Creek as a Category 5 Impaired Waterway, as assessed by benthic rapid bioassessment methods. Since 2003, the intro environmental science class at Randolph College has conducted stream assessment and water quality monitoring at two sites in Blackwater Creek, as a required field project. This work has involved nearly 300 students over that time, and includes rapid bioassessment (RBA) of aquatic macroinvertebrates, chemical and physical analysis, and riparian and channel vegetation assessment. Over this same period, the City has progressed through separation of the CSS system in a significant portion of Blackwater Creek's subwatershed, including our study area. We analyzed ten years of stream monitoring data in tandem with a geographic analysis of the progression of the CSS project to determine whether there has been resultant improvement in water quality. When analyzed in conjunction with the progress of the CSS project, the data did not exhibit a detectable difference between data collected before and after 2006. However, a simple linear regression of the data did show improvement in chemical and biological indicators of stream health, with a greater increase in results pertaining to the RBA. Further sampling is

  20. Remediation of Mercury-Contaminated Storm Sewer Sediments from the West End Mercury Area at the Y-12 National Security Complex in Oak Ridge, Tennessee - 12061

    SciTech Connect

    Tremaine, Diana; Douglas, Steven G.

    2012-07-01

    The Y-12 National Security Complex in Oak Ridge, TN has faced an ongoing challenge from mercury entrapped in soils beneath and adjacent to buildings, storm sewers, and process pipelines. Previous actions to reduce the quantity and/or mobilization of mercury-contaminated media have included plugging of building floor drains, cleaning of sediment and sludge from sumps, manholes, drain lines, and storm sewers, lining/relining of storm sewers and replacement of a portion of the storm sewer trunk line, re-routing and removal of process piping, and installation of the Central Mercury Treatment System to capture and treat contaminated sump water. Despite the success of these actions, mercury flux in the storm sewer out-falls that discharge to Upper East Fork Poplar Creek (UEFPC) continues to pose a threat to long-term water quality. A video camera survey of the storm sewer network revealed several sections of storm sewer that had large cracks, separations, swells, and accumulations of sediment/sludge and debris. The selected remedy was to clean and line the sections of storm sewer pipe that were determined to be primary contributors to the mercury flux in the storm sewer out-falls. The project, referred to as the West End Mercury Area (WEMA) Storm Sewer Remediation Project, included cleaning sediment and debris from over 2,460 meters of storm sewer pipe followed by the installation of nearly 366 meters of cure-in-place pipe (CIPP) liner. One of the greatest challenges to the success of this project was the high cost of disposal associated with the mercury-contaminated sludge and wastewater generated from the storm sewer cleaning process. A contractor designed and operated an on-site wastewater pre-treatment system that successfully reduced mercury levels in 191 cubic meters of sludge to levels that allowed it to be disposed at Nevada Nuclear Security Site (NNSS) disposal cell as a non-hazardous, low-level waste. The system was also effective at pre-treating over 1

  1. Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047

    SciTech Connect

    L. M. Dittmer

    2007-04-26

    The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. Inspection of deteriorating asbestos cement force mains with georadar technique.

    PubMed

    Smolders, S; Verhoest, L; De Gueldre, G; Van De Steene, B

    2009-01-01

    Several breaks on asbestos cement force mains indicated a problem with these kind of force mains. An inspection technique that could give a good idea about the state of asbestos cement pipes was searched for. A georadar technique already existed to inspect drinking water mains and gravity sewers. The technique measures the wall thickness of cement containing materials and it can differentiate between 'healthy' and deteriorated material. The technique was applied on four wastewater force mains in Flanders. The results indicated a rapid deterioration of the asbestos cement. A deterioration mechanism called 'calcium leaching' was known from asbestos cement drinking water mains. Further it was known that H(2)S is produced in force mains and that it can attack concrete containing materials by mains of biogenic sulphuric acid attack. This research checked if both deterioration mechanisms cause the measured rapid deterioration of the asbestos cement force mains. Finally deterioration speeds and minimum required wall thickness were calculated. With the results the residual lifetimes of the force mains were calculated and these could be applied in an asset management program. PMID:19700838

  3. A multi-objective optimisation model for sewer rehabilitation considering critical risk of failure.

    PubMed

    Ward, Ben; Savić, Dragan A

    2012-01-01

    A unique methodology for the optimal specification of sewer rehabilitation investment is presented in this paper. By accounting for the critical risk of asset failure, this methodology builds on previously successful work which explored the application of multi-objective optimisation tools to assist engineers with the specification of optimal rehabilitation strategies. The conventional sewerage rehabilitation specification process relies on the expertise of professional engineers to manually evaluate CCTV inspection information when determining the nature and extent of the rehabilitation solution. This process is not only tedious and subjective but it has no quantifiable means of identifying optimal solutions or possible combinations of optimal solutions in the delivery of catchment wide rehabilitation programmes. Therefore, the purely manual process of sewer rehabilitation design leaves a number of unanswered questions, such as: (1) Does the solution offer the greatest structural benefit to the network? (2) Is the solution the most cost-effective solution available? (3) Does the solution most greatly reduce the risk of critical asset failure? The application of a multi-objective genetic algorithm optimisation model, coupled with an enhanced critical risk methodology, has successfully answered these questions when applied to a case study data set provided by South West Water (UK). PMID:23032772

  4. Waveguide monitoring (such as sewer pipes or ocean zones) via matched field processing.

    PubMed

    Tolstoy, A I

    2010-07-01

    Detecting and locating changes in a waveguide can be extremely difficult. A method is suggested here which does not require simplification of the problem (no spherical chickens) nor any modeling of the waveguide nor of the propagation within it. The method relies only on previous broadband data recorded on an array of receivers (two or more) which is then compared to more recent data to investigate change. Backscattered energy is to be examined here although bistatic configurations may also be possible. This approach is applicable whenever there is sufficient, appropriate data for comparison (note that absolute levels are not needed) and can be applied to acoustically search for scatterers introduced to an ocean zone (such as targets or pollutants), blockages or changes in sewer pipes, or even to non-acoustic energy in a waveguide, e.g., the use of electromagnetic energy in the earth-ionosphere waveguide. This method is based on the signal processing technique known as matched field processing and will be demonstrated on a variety of laboratory sewer pipe data. The method (particularly for localization) is introduced here, as is the suggestion for application to general waveguide environments. PMID:20649214

  5. Sources of nitrate in ground water in a sewered housing development, Central Long Island, New York

    USGS Publications Warehouse

    Flipse, W.J., Jr.; Katz, B.G.; Lindner, J.B.; Markel, R.

    1984-01-01

    Nitrate concentrations in ground water on Long Island, New York, have increased markedly in the last 30 years. A significant amount of this increase has been attributed to lawn and garden fertilizers in addition to cesspool and septic-tank discharges. The increase in nitrate concentration is of particular concern in the central and eastern part of the island, where ground water is the sole source of drinking water. Ground-water samples were collected from 14 wells screened near the water table in the sewered Twelve Pines housing development constructed in Medford, Suffolk County, in 1970. Samples were collected during 1972-79 and analyzed for total ammonium, organic nitrogen, and nitrate. Statistical analyses indicate that concentrations of nitrate-nitrogen in water from 10 of the wells increased significantly during 1972-79; those in water from the other four wells did not. Nitrogen loads were estimated to be 2,300 kg/yr from fertilizers, less than 80 kg/yr from irrigation water, 200 kg/yr from animals, and less than 670 kg/yr from precipitation. Leakage from sewers was considered negligible. Nitrate-nitrogen isotope ratios also suggest that the greatest source of nitrogen is from cultivation sources (either mineralized soil nitrogen or fertilizers) rather than human or animal wastes.

  6. Sewers and scapegoats: spatial metaphors of smallpox in nineteenth century San Francisco.

    PubMed

    Craddock, S

    1995-10-01

    Medical geography is slowly including more social and cultural theory in its analysis of health issues. Yet there is still room for theoretical growth in the discipline, in areas such as historical inquiry, metaphoric landscapes of disease, and the role of disease and its interpretations in the production of place. With the example of four smallpox epidemics in nineteenth century San Francisco, application of these concepts is illustrated. Each successive epidemic in San Francisco brought stronger association of the disease with Chinatown, until an almost complete metonymy of place and disease had occurred by the last decades of the century. The articulation of biased medical theory onto a landscape of xenophobia engendered this metaphorical transformation of Chinatown into a pustule of contagion threatening to infect the rest of the urban body. A less metaphoric mapping of smallpox focused on the sewer. According to 19th-century miasmatic theories of epidemiology, sewers were the most dangerous urban topographical feature. In an increasingly class-stratified city, they undercut attempts of the upper classes to escape disease by carrying smallpox-causing miasmas across class and ethnic boundaries. A reinvigorated sanitation movement was the result. Both reactions to smallpox epidemics had significant influence in shaping San Francisco's landscape, real and symbolic. PMID:8545670

  7. Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems.

    PubMed

    Weiss, Gebhard

    2014-01-01

    Lamella settlers have been used in the past few years for the sedimentation of particles in wastewater and stormwater applications. A new and very innovative approach for the treatment of stormwater flows is proposed which extends the portfolio of solutions beyond traditional settling tanks. Surface runoff is stored in a sewer or a basin and finally treated in a small but continuously operated lamella clarifier. The low throughput flow will yield good treatment efficiency at a small footprint. The possibilities of using existing storage volume in a storm sewer, as well as the structural flexibility of the arrangement are decisive benefits. As a large operational advantage, the lamellae may be cleaned mechanically, e.g. by pivoting under water. Finally, the flow and the sludge which will be sent to the downstream treatment plant will be minimized. A new comparative simulation method is proposed in order to assess an equivalent degree of stormwater treatment, either by achieving an equal annual volume of treated stormwater or, more directly, an equal amount of spilled pollutant load. The new solution is compared with a traditional settling tank according to current German design rules. Additionally, a case study from a real installation will be presented. PMID:24759518

  8. Evaluation of hydrogen sulphide concentration and control in a sewer system.

    PubMed

    Oviedo, Eugenio Recio; Johnson, Drew; Shipley, Heather

    2012-06-01

    This study focused on monitoring hydrogen sulphide (dissolved and atmospheric) generation and wastewater volumetric flow in a 21.4 km sewer line of the City of San Antonio, Texas. The results were used to evaluate daily and seasonal trends of atmospheric and dissolved sulphide, and to better apply sulphide control using ferrous sulphate to prevent odour and sewer pipe deterioration. As part of this study, the evaluation of a cost-effective dosing strategy with ferrous sulphate was performed to better control the sulphide contents in wastewater. Dosing studies were performed in the laboratory to find the required ratio of ferrous sulphate for acceptable sulphide removal. The results indicate a 1.25 mole ratio requirement, to reduce sulphide by 93%. Over a typical daily diurnal cycle, necessary dosing rates to maintain sulphide concentrations below 2mg varied between 0 and 36,777 mold(-1) with a daily average rate of 14,438 mol d(-1). If, instead of dosing at the maximum required rate, dosing was matched over the diurnal cycle, chemical savings would amount to 22,339 mold(-1) while achieving sulphide control. The approximate cost of the ferrous sulphate solution dosed is $0.14 per mol and this amount of chemical savings translates into roughly $2923 per day. Actual dosing cost for the hypothetical average day will be $1889 per day. These cost savings can easily recoup the required instrumentation costs to achieve this diurnal dose matching. PMID:22856291

  9. Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data.

    PubMed

    Mounce, S R; Shepherd, W; Sailor, G; Shucksmith, J; Saul, A J

    2014-01-01

    Combined sewer overflows (CSOs) represent a common feature in combined urban drainage systems and are used to discharge excess water to the environment during heavy storms. To better understand the performance of CSOs, the UK water industry has installed a large number of monitoring systems that provide data for these assets. This paper presents research into the prediction of the hydraulic performance of CSOs using artificial neural networks (ANN) as an alternative to hydraulic models. Previous work has explored using an ANN model for the prediction of chamber depth using time series for depth and rain gauge data. Rainfall intensity data that can be provided by rainfall radar devices can be used to improve on this approach. Results are presented using real data from a CSO for a catchment in the North of England, UK. An ANN model trained with the pseudo-inverse rule was shown to be capable of predicting CSO depth with less than 5% error for predictions more than 1 hour ahead for unseen data. Such predictive approaches are important to the future management of combined sewer systems. PMID:24647201

  10. Combined sewer overflow control with LID based on SWMM: an example in Shanghai, China.

    PubMed

    Liao, Z L; Zhang, G Q; Wu, Z H; He, Y; Chen, H

    2015-01-01

    Although low impact development (LID) has been commonly applied across the developed countries for mitigating the negative impacts of combined sewer overflows (CSOs) on urban hydrological environment, it has not been widely used in developing countries yet. In this paper, a typical combined sewer system in an urbanized area of Shanghai, China was used to demonstrate how to design and choose CSO control solutions with LID using stormwater management model. We constructed and simulated three types of CSO control scenarios. Our findings support the notion that LID measures possess favorable capability on CSO reduction. Nevertheless, the green scenarios which are completely comprised by LID measures fail to achieve the maximal effectiveness on CSO reduction, while the gray-green scenarios (LID measure combined with gray measures) achieve it. The unit cost-effectiveness of each type of scenario sorts as: green scenario > gray-green scenario > gray scenario. Actually, as the storage tank is built in the case catchment, a complete application of green scenario is inaccessible here. Through comprehensive evaluation and comparison, the gray-green scenario F which used the combination of storage tank, bio-retention and rain barrels is considered as the most feasible one in this case. PMID:25909722

  11. Scaling-Free Electrochemical Production of Caustic and Oxygen for Sulfide Control in Sewers.

    PubMed

    Lin, Hui-Wen; Rabaey, Korneel; Keller, Jürg; Yuan, Zhiguo; Pikaar, Ilje

    2015-10-01

    Caustic shock-loading and oxygen injection are commonly used by the water industry for biofilm and sulfide control in sewers. Caustic can be produced onsite from wastewater using a two-compartment electrochemical cell. This avoids the need for import and storage of caustic soda, which typically represents a cost and a hazard. An issue limiting the practical implementation of this approach is the occurrence of membrane scaling due to the almost universal presence of Ca(2+) and Mg(2+) in wastewater. It results in a rapid increase in the cell voltage, thereby increasing the energy consumption of the system. Here, we propose and experimentally demonstrate an innovative solution for this problem involving the inclusion of a middle compartment between the anode and cathode compartments. Caustic was efficiently produced from wastewater over a period of 12 weeks and had an average Coulombic efficiency (CE) of 84.1 ± 1.1% at practically relevant caustic strengths (∼3 wt %). Neither membrane scaling nor an increase in the cell voltage was observed throughout the experiments. In addition, dissolved oxygen was produced in the anode, resulting in continuously oxygenated wastewater leaving the three-compartment cell. This membrane-scaling control strategy represents a major step forward toward practical implementation of on-site simultaneous electrochemical caustic and oxygen generation for sulfide control in sewers and also has the potential to be applied to other (bio)electrochemical systems receiving wastewater as source for product recovery. PMID:26377687

  12. Performance assessment of separate and combined sewer systems in metropolitan areas in Southern China.

    PubMed

    Li, Tian; Zhang, Wei; Feng, Cang; Shen, Jun

    2014-01-01

    To assess the performance of urban drainage systems in metropolitan areas in southern China, 12 urban drainage systems, including nine separate sewer systems (SSSs) and three combined sewer systems (CSSs) were monitored from 2008 to 2012 in Shanghai and Hefei. Illicit connection rates of SSS were determined. The results indicate that serious illicit connections exist for most SSSs. Annual volume balance for two SSSs with serious illicit connection was assessed with a hydraulic model to determine the dry weather overflow volume. Although interception facilities have been implemented in SSSs, for some systems with serious illicit connections, a considerable volume of dry weather overflow still existed. Combined with monitoring of dry/wet weather flow quality, the pollutant load caused by wet/dry weather overflow was quantified. The results revealed that there was no obvious advantage of having SSSs over CSSs in terms of pollutant control. The serious pollution caused by illicit connections and insufficient management occurs in many cities in China. The performance assessment of separate and CSSs in Shanghai and Hefei provides important lessons and practical experience that can be applied to the construction and management of urban drainage system in China as well as other developing countries. PMID:24473315

  13. Diurnal fluctuation of indicator microorganisms and intestinal viruses in combined sewer system.

    PubMed

    Kim, W J; Managaki, S; Furumai, H; Nakajima, F

    2009-01-01

    Combined sewer overflow (CSO) has been considered to be a source of pathogenic microorganisms for aquatic environment. For the effective control and treatment of CSOs, the microbial behavior in combined sewer system (CSS) needs to be investigated. In this study, whole-day extensive monitoring of indicator microorganisms and intestinal viruses in dry weather flow (DWF) was conducted at a small residential urban drainage area with CSS. All indicator bacteria represented similar diurnal variations in the two different monitoring campaigns; their concentrations gradually decreased to the minimum at the dawn (around 5 a.m.), increased sharply to the maximum around 7 to 8 a.m., and remained rather constant from noon to midnight. On the other hand, neither coliphages nor intestinal viruses showed any concentration peaks in the morning. The maximum/minimum load ratios ranged from 18 to 42 for total coliforms, fecal coliforms and E. coli, whereas those ratios for coliphages, enteroviruses and noroviruses G2 showed greater values than those for indicator bacteria. These results indicate that the diurnal variation patterns of bacterial and viral concentrations in DWF should be considered, which affect the discharge characteristics of each microorganism and the loads of bacteria and viruses in CSOs significantly vary with the overflow time as well. PMID:19934500

  14. Optimization of measurement campaigns for calibration of a conceptual sewer model.

    PubMed

    Kleidorfer, M; Möderl, M; Fach, S; Rauch, W

    2009-01-01

    To simulate hydrological models of combined sewer systems an accurate calibration is indispensable. In addition to all sources of uncertainties in data collection due to the measurement methods itself, it is a key question which data has to be collected to calibrate a hydrological model, how long measurement campaigns should last and where that data has to be collected in a spatial distributed system as it is neither possible nor sensible to measure the complete system characteristics. In this paper we address this question by means of stochastic modelling. Using Monte Carlo Simulation different calibration strategies (selection of measurement sites, selection of rainfall-events) and different calibration parameters (overflow volume, number of overflows) are tested, in order to evaluate the influence on predicting the total overflow volume of the entire system. This methodology is applied in a case study with the aim to calculate the combined sewer overflow (CSO) efficiency. It can be shown that a distributed hydrological model can be calibrated sufficiently when calibration is done on 30% of all existing CSOs based on long-term observation. Event based calibration is limited possible to a limited extend when calibration events are selected carefully as wrong selection of calibration events can result in a complete failure of the calibration exercise. PMID:19403965

  15. Sewer infiltration/inflow: long-term monitoring based on diurnal variation of pollutant mass flux.

    PubMed

    Bares, V; Stránský, D; Sýkora, P

    2009-01-01

    The paper deals with a method for quantification of infiltrating groundwater based on the variation of diurnal pollutant load and continuous water quality and quantity monitoring. Although the method gives us the potential to separate particular components of wastewater hygrograph, several aspects of the method should be discussed. Therefore, the paper investigates the cost-effectiveness, the relevance of pollutant load from surface waters (groundwater) and the influence of measurement time step. These aspects were studied in an experimental catchment of Prague sewer system, Czech Republic, within a three-month period. The results indicate high contribution of parasitic waters on night minimal discharge. Taking into account the uncertainty of the results and time-consuming maintenance of the sensor, the principal advantages of the method are evaluated. The study introduces a promising potential of the discussed measuring concept for quantification of groundwater infiltrating into the sewer system. It is shown that the conventional approach is sufficient and cost-effective even in those catchments, where significant contribution of foul sewage in night minima would have been assumed. PMID:19587396

  16. Assessment of flood hazard in a combined sewer system in Reykjavik city centre.

    PubMed

    Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe

    2015-01-01

    Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades. PMID:26442488

  17. Dynamics of pollutant discharge in combined sewer systems during rain events: chance or determinism?

    PubMed

    Hannouche, A; Chebbo, G; Joannis, C

    2014-01-01

    A large database of continuous flow and turbidity measurements cumulating data on hundreds of rain events and dry weather days from two sites in Paris (called Quais and Clichy) and one in Lyon (called Ecully) is presented. This database is used to characterize and compare the behaviour of the three sites at the inter-events scale. The analysis is probed through three various variables: total volumes and total suspended solids (TSS) masses and concentrations during both wet and dry weather periods in addition to the contributions of diverse-origin sources to event flow volume and TSS load values. The results obtained confirm the previous findings regarding the spatial consistency of TSS fluxes and concentrations between both sites in Paris having similar land uses. Moreover, masses and concentrations are proven to be correlated between Parisian sites in a way that implies the possibility of some deterministic processes being reproducible from one catchment to another for a particular rain event. The results also demonstrate the importance of the contribution of wastewater and sewer deposits to the total events' loads and show that such contributions are not specific to Paris sewer networks. PMID:24759538

  18. Global predictive real-time control of Quebec Urban Community's westerly sewer network.

    PubMed

    Pleau, M; Pelletier, G; Colas, H; Lavallée, P; Bonin, R

    2001-01-01

    Quebec Urban Community (QUC) has selected Global Predictive Real-Time Control (GP-RTC) as the most efficient approach to achieve environmental objectives defined by the Ministry of Environment. QUC wants to reduce combined sewer overflows (CSOs) frequency to the St Lawrence river to two events per summer period in order to reclaim the use of Jacques-Cartier Beach for recreational activities and sports of primary contact. QUC's control scheme is based on the Certainty Equivalent Control Open Loop Feedback (CEOLF) strategy which permits one to introduce, at each control period, updated measurements and meteorological predictions. A non-linear programming package is used to find the flow set points that minimise a multi-objective (cost) function, subjected to linear equality and inequality constraints representing the physical and operational constraints on the sewer network. Implementation of GP-RTC on QUC's westerly network was performed in the summer of 1999 and was operational by mid-August. Reductions in overflow volumes with GP-RTC compared to static control are attributed to the optimal use of two existing tunnels as retention facilities as well as the maximal use of the wastewater treatment plant (WWTP) capacity. PMID:11385838

  19. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas.

    PubMed

    Pandey, Sudhir Kumar; Kim, Ki-Hyun; Kwon, Eilhann E; Kim, Yong-Hyun

    2016-04-01

    To learn more about the emission characteristics of odorants released from sewer manholes and stormwater catch basins (SCBs) in an urban environment, we measured the emission concentrations of major odorants including 22 target compounds designated as offensive odorants by the Korean Ministry of Environment (KMOE). All of our measurements were made from urban sewer manholes and SCBs in a highly commercialized location in Seoul, Korea. The results of our study were analyzed to identify the major odorants from such sources and to assess their contribution to odor intensity. The malodor strengths at both types of underground sources were considerably higher in the afternoon than in the morning. The assessment of odor intensity (OI) and odor activity value (OAV) confirmed the dominance of key odorants like H2S, CH3SH, and ammonia along with various volatile fatty acids (VFAs) and phenol. The concentration of these major odorants (H2S, CH3SH, and NH3) exceeded the maximum permissible limit given as the odor prevention law in Korea. As such, significantly high levels of odorants released from these underground sources were greatly distinguished from those seen at above ground locations. PMID:26775004

  20. The Rise of Online Learning

    ERIC Educational Resources Information Center

    Umpstead, Bruce

    2009-01-01

    This article discusses the rise of online learning and describes how educators in Michigan are doing their part to harness the power of online learning to transform today's high school students into lifelong learners, a key component of students' long-term success in the global economy. The author urges schools to prepare for the growing demand in…

  1. Probability of sea level rise

    SciTech Connect

    Titus, J.G.; Narayanan, V.K.

    1995-10-01

    The report develops probability-based projections that can be added to local tide-gage trends to estimate future sea level at particular locations. It uses the same models employed by previous assessments of sea level rise. The key coefficients in those models are based on subjective probability distributions supplied by a cross-section of climatologists, oceanographers, and glaciologists.

  2. Capillary Rise in a Wedge

    ERIC Educational Resources Information Center

    Piva, M.

    2009-01-01

    In introductory-level physics courses, the concept of surface tension is often illustrated using the example of capillary rise in thin tubes. In this paper the author describes experiments conducted using a planar geometry created with two small plates forming a thin wedge. The distribution of the fluid entering the wedge can be studied as a…

  3. The effects of sewer infrastructure on water quality: implications for land use studies.

    NASA Astrophysics Data System (ADS)

    Vrebos, Dirk; Staes, Jan; Meire, Patrick

    2010-05-01

    The European Water Framework Directive requires a good ecological status of the European water bodies and the necessary measures to obtain this have to be implemented. The water quality of a river is the result of complex anthropogenic systems (buildings, waste water treatment infrastructure, regulations, etc.) and biogeochemical and eco-hydrological interactions. It is therefore essential to obtain more insight in the factors that determine the water quality in a river. Research into the relation between land use and water quality is necessary. Human activities have a huge impact on the flow regimes and associated water quality of river systems. Effects of land use bound activities on water quality are often investigated, but these studies generally ignore the hydrological complexity of a human influenced catchment. Infrastructure like sewer systems and wastewater treatment plants (WWTP) can displace huge quantities of polluted water. The transfers change flow paths, displace water between catchments and change the residence time of the system. If we want to correctly understand the effect of land use distribution on water quality we have to take these sewer systems into account. In this study we analyse the relation between land use and water quality in the Nete catchment (Belgium) and investigate the impact of the sewage infrastructure on this relation. The Nete catchment (1.673 km²) is a mosaic of semi natural, agricultural and urbanized areas and the land use is very fragmented. For the moment 74% of the households within the catchment are connected to a WWTP. The discharges from these WWTP's compose 15% of the total discharge of the Nete. Based on a runoff model the surface of upstream land use was calculated for 378 points. These data were then corrected for the impact of WWTP's. Using sewage infrastructure plans, urban areas connected to a WWTP were added to the upstream land use of the WWTP's water receiving stream. In order to understand the effect of

  4. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    Keywords: pipe leakage, urban hydrogeology, catchment scale, OpenGeoSys, HYSTEM-EXTRAN Wastewater leakage from subsurface sewer pipe defects leads to contamination of the surrounding soil and groundwater (Ellis, 2002; Wolf et al., 2004). Leakage rates at pipe defects have to be known in order to quantify contaminant input. Due to inaccessibility of subsurface pipe defects, direct (in-situ) measurements of leakage rates are tedious and associated with a high degree of uncertainty (Wolf, 2006). Proposed catchment-scale models simplify leakage rates by neglecting unsaturated zone flow or by reducing spatial dimensions (Karpf & Krebs, 2013, Boukhemacha et al., 2015). In the present study, we present a physically based 3-dimensional numerical model incorporating flow in the pipe network, in the saturated zone and in the unsaturated zone to quantify leakage rates on the catchment scale. The model consists of the pipe network flow model HYSTEM-EXTAN (itwh, 2002), which is coupled to the subsurface flow model OpenGeoSys (Kolditz et al., 2012). We also present the newly developed coupling scheme between the two flow models. Leakage functions specific to a pipe defect are derived from simulations of pipe leakage using spatially refined grids around pipe defects. In order to minimize computational effort, these leakage functions are built into the presented numerical model using unrefined grids around pipe defects. The resulting coupled model is capable of efficiently simulating spatially distributed pipe leakage coupled with subsurficial water flow in a 3-dimensional environment. References: Boukhemacha, M. A., Gogu, C. R., Serpescu, I., Gaitanaru, D., & Bica, I. (2015). A hydrogeological conceptual approach to study urban groundwater flow in Bucharest city, Romania. Hydrogeology Journal, 23(3), 437-450. doi:10.1007/s10040-014-1220-3. Ellis, J. B., & Revitt, D. M. (2002). Sewer losses and interactions with groundwater quality. Water Science and Technology, 45(3), 195

  5. Cenozoic seismic stratigraphy of the SW Bermuda Rise

    SciTech Connect

    Mountain, G.S.; Driscoll, N.W.; Miller, K.G.

    1985-01-01

    The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough to erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.

  6. Evaluation of Green Alternatives for Combined Sewer Overflow Mitigation: A Proposed Economic Impact Framework and Illustration of its Application

    EPA Science Inventory

    This report develops a broad framework, or taxonomy, for identifying and organizing the socio-economic impacts of sewer infrastructure projects. It focuses on a green project in Cincinnati, Ohio that has adopted broader economic goals. The report then uses this example to illustr...

  7. Sanitary Sewer Overflows and Association with Gastrointestinal Illness: A case crossover analysis of Massachusetts Data, 2006-2007

    EPA Science Inventory

    Sanitary sewer overflows (SSOs) occur when untreated sewage is discharged into water sources potentially causing contamination. SSOs are primarily caused by heavy rainfall, which is expected to become heavier and more episodic due to climate change. We conducted a case-crossover ...

  8. DUAL PROCESS HIGHRATE FILTRATION OF RAW SANITARY SEWAGE AND COMBINED SEWER OVERFLOWS (EPA/600/2-79/015)

    EPA Science Inventory

    Pilot plant studies were conducted in New York City's Newtown Creek Water Pollution Control Plant from 19754977 to investigate the suspended solids (SS) removal capabilities of the deepbed, highrate gravity filtration process on raw sewage and combined sewer overflows.

  9. Automatic Vacuum Flushing Technology for Combined Sewer Solids: Laboratory Testing and Proposed Improvements (WERF Report INFR7SG09)

    EPA Science Inventory

    This research study included an extensive literature review on existing sewer sediment flushing technologies. An innovative vacuum flush system previously developed by the U.S. EPA was tested under laboratory conditions. The tests revealed a strong correlation between the strengt...

  10. STORM AND COMBINED SEWER OVERFLOW: AN OVERVIEW OF EPA'S RESEARCH PROGRAM (EPA/600/8-89/054)

    EPA Science Inventory

    This report represents an overview of the EPA's Storm & Combined Sewer Pollution Control Research Program performed over a 20-year period beginning with the mid-1960s. It covers program involvements in the development of a diverse technology including pollution-problem assessment...

  11. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  12. HANDLING AND DISPOSAL OF SLUDGES FROM COMBINED SEWER OVERFLOW TREATMENT: PHASE I CHARACTERIZATION (EPA/600/2-77/053A)

    EPA Science Inventory

    This report summarizes the results of a characterization and treatment test program undertaken to develop optimum means of handling and disposal of residual sludges from combined sewer overflow (CSO) treatment systems. Desk top engineering reviews were also conducted to gather, a...

  13. TREATMENT OF COMBINED SEWER OVERFLOWS BY HIGH GRADIENT MAGNETIC SEPARATION. ON-SITE TESTING WITH MOBILE PILOT PLANT TRAILER

    EPA Science Inventory

    Seeded water treatment using a SALA high gradient magnetic separator pilot plant system was conducted on combined sewer overflows and raw sewage at SALA Magnetics in Cambridge, MA and at on-site locations in the Boston area. Special emphasis was placed on specific design and oper...

  14. Evaluation of the Effectiveness of Five Odor Reducing Agents for Sewer System Odors Using an On-Line Total Reduced Sulfur Analyzer

    PubMed Central

    Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook

    2012-01-01

    Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148

  15. Falling and Rising in Water

    ERIC Educational Resources Information Center

    Mohazzabi, Pirooz

    2010-01-01

    When an object is immersed in a liquid and released, it may sink to the bottom or rise to the surface and float. If the object's density is greater than that of the liquid, it sinks. If the object's density is less than the density of the liquid, it floats. In the special case when the object's density matches the density of the liquid, it will…

  16. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management. PMID:25500472

  17. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    USGS Publications Warehouse

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate

  18. Determination of VOSCs in sewer headspace air using TD-GC-SCD.

    PubMed

    Wang, Bei; Sivret, Eric C; Parcsi, Gavin; Stuetz, Richard M

    2015-05-01

    The management of odorous emissions from sewer networks has become an important issue for sewer operators resulting in the need to better understand the composition of volatile organic sulfur compounds (VOSCs). In order to characterise the composition of such malodorous emissions, a method based on thermal desorption (TD) and gas chromatography coupled to sulfur chemiluminescence detector (GC-SCD) has been developed to determine a broader range of VOSCs, hydrogen sulfide (H2S), methanethiol (MeSH), ethanethiol (EtSH), dimethyl sulfide (DMS), carbon disulfide (CS2), ethylmethyl sulfide (EMS), 1-butanethiol (1-BuSH), dimethyl disulfide (DMDS), diethyl disulfide (DEDS), and dimethyl trisulfide (DMTS). Parameters affecting the chromatographic behaviour of the target compounds were studied (e.g., temperature program, carrier gas velocity) as well as the experimental conditions affecting the adsorption/desorption process (temperature, flow and time). Optimised extraction of VOSCs samples was achieved under adsorption temperatures of less than -20°C, and a desorption flow rate of ~6 ml/min. Active collection on the cold trap enabled a small gas volume of 50-100ml to be sampled for all analytes without breakthrough. Calibration curves were derived at different TD loading volumes with determined linearity ranging between 0.09 ng and 60.1 ng. The method detection limits (MDLs) were in the range of 0.10-5.26 μg/m(3) with TD recoveries higher than 66% and reproducibility (relative standard deviation values) between 1.8% and 6.1% being obtained for all compounds. The VOSCs characterisation at different sewerage collection sites in Sydney, Australia (for seasonal, weekly and diurnal) showed that six of the ten targeted compounds were consistently detected at all sample events. Diurnal patterns of VOSCs investigated were clearly observed with the highest concentration occurring after 12 pm (noon) for H2S and MeSH. The consecutive 5 day analysis showed no significant difference

  19. Health hazard evaluation report HETA 94-0182-2519, Little Blue Valley Sewer District, Independence, Missouri

    SciTech Connect

    Marlow, D.A.

    1995-08-01

    In response to a confidential request, an investigation was begun into possible hazardous working conditions at the Little Blue Valley Sewer District wastewater treatment facility (SIC-4952), Independence, Missouri. Complaints received included gastrointestinal disurbances, sore throats, fatigue, headaches, eye irritation, and coughing among those working in the belt press room. Personal breathing zone samples for total particulate ranged from 0.03 to 0.28mg/m3. Measurements also indicated a range of 2.50 to 6.82 endotoxin units per cubic meter of air. Sludge samples containing 40% solids had the highest concentrations and largest variety of volatile organic compounds. Analysis indicated that the belt room workers were exposed to hydrogen-sulfide at concentrations which exceeded the NIOSH 10 minute ceiling of 10 parts per million (ppm) in eight of 13 breathing zone samples; three also exceeded the OSHA limit of 20ppm. The author concludes that workers were overexposed to hydrogen-sulfide.

  20. Development and testing of highway storm-sewer flow measurement and recording system

    USGS Publications Warehouse

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  1. Modeling climate change impacts on combined sewer overflow using synthetic precipitation time series.

    PubMed

    Bendel, David; Beck, Ferdinand; Dittmer, Ulrich

    2013-01-01

    In the presented study climate change impacts on combined sewer overflows (CSOs) in Baden-Wuerttemberg, Southern Germany, were assessed based on continuous long-term rainfall-runoff simulations. As input data, synthetic rainfall time series were used. The applied precipitation generator NiedSim-Klima accounts for climate change effects on precipitation patterns. Time series for the past (1961-1990) and future (2041-2050) were generated for various locations. Comparing the simulated CSO activity of both periods we observe significantly higher overflow frequencies for the future. Changes in overflow volume and overflow duration depend on the type of overflow structure. Both values will increase at simple CSO structures that merely divide the flow, whereas they will decrease when the CSO structure is combined with a storage tank. However, there is a wide variation between the results of different precipitation time series (representative for different locations). PMID:23823552

  2. A model for the movement of large solids in small sewers.

    PubMed

    Butler, D; Littlewood, K; Orman, N

    2005-01-01

    An extensive series of experiments has been carried out to investigate the movement mechanisms and behaviour of large solids in small sewers. This paper describes the development, calibration and verification of a model (SOLID) based on data obtained from the experimental rig. It is used to predict solid movement with respect to 'limiting solid transport distance'. Key model parameters are the coefficients of static and dynamic friction, the shape factor of amorphous solids and the flow bypass coefficient. The model is shown to successfully represent the movement of a large solid down a small pipe, where the solid is moving as a sliding, leaking dam, particularly the first 'hop'. Limitations of the model include a limited facility to well represent multiple hops and the need for closely spaced computational nodes leading to small time steps, and long run times. PMID:16248182

  3. Development of a glass polymer composite sewer pipe from waste glass. Final report

    SciTech Connect

    Rayfiel, R.; Kukacka, L.E.

    1980-02-01

    A range of polymer-aggregate composites for applications in industry which appear to be economically attractive and contribute to energy conservation were developed at BNL. Waste glass is the aggregate in one such material, which is called glass-polymer-composite (GPC). This report assays the economics and durability of GPC in piping for storm drains and sewers. The properties of the pipe are compared statistically with the requirements of industrial specifications. These establish the raw materials requirements. The capital and operating costs for producing pipe are then estimated. Using published sales values for competing materials, the return on investment is calculated for two cases. The ultimate energy requirement of the raw materials in GPC is compared with the corresponding requirement for vitrified clay pipe. The strengths of GPC, reinforced concrete, vitrified clay and asbestos cement pipe are compared after extended exposure to various media. The status of process and product development is reviewed and recommendations are made for future work.

  4. Use of cement dust in the manufacture of vitrified sewer pipes.

    PubMed

    El Sherbiny, S A; Youssef, N F; Ibrahim, O A; Abadir, M F

    2004-01-01

    Waste by-pass cement dust was added in different percentages ranging from 2% to 10% to a standard mix for sewer pipes manufacture, as a substitute for expensive feldspar. It was found that a mix consisting of 45% kaolin, 36% ball clay, 9% grog and 10% by-pass dust and fired at a temperature of 1300 degrees C for 4 h yielded samples that meet the standards. It was possible to reach a water absorption of 4%, a modulus of rupture of 7.8 MPa and a resistance to acids and alkalis conforming with standard values. A test pipe was fabricated by vacuum extrusion using the suggested composition and was found to withstand a hydraulic pressure of 14 MPa for one minute without the appearance of any cracks. PMID:15219918

  5. Cumulative effects of fecal contamination from combined sewer overflows: Management for source water protection.

    PubMed

    Jalliffier-Verne, Isabelle; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2016-06-01

    The quality of a drinking water source depends largely on upstream contaminant discharges. Sewer overflows can have a large influence on downstream drinking water intakes as they discharge untreated or partially treated wastewaters that may be contaminated with pathogens. This study focuses on the quantification of Escherichia coli discharges from combined sewer overflows (CSOs) and the dispersion and diffusion in receiving waters in order to prioritize actions for source water protection. E. coli concentrations from CSOs were estimated from monitoring data at a series of overflow structures and then applied to the 42 active overflow structures between 2009 and 2012 using a simple relationship based upon the population within the drainage network. From these estimates, a transport-dispersion model was calibrated with data from a monitoring program from both overflow structures and downstream drinking water intakes. The model was validated with 15 extreme events such as a large number of overflows (n > 8) or high concentrations at drinking water intakes. Model results demonstrated the importance of the cumulative effects of CSOs on the degradation of water quality downstream. However, permits are typically issued on a discharge point basis and do not consider cumulative effects. Source water protection plans must consider the cumulative effects of discharges and their concentrations because the simultaneous discharge of multiple overflows can lead to elevated E. coli concentrations at a drinking water intake. In addition, some CSOs have a disproportionate impact on peak concentrations at drinking water intakes. As such, it is recommended that the management of CSOs move away from frequency based permitting at the discharge point to focus on the development of comprehensive strategies to reduce cumulative and peak discharges from CSOs upstream of drinking water intakes. PMID:27011341

  6. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system

    NASA Astrophysics Data System (ADS)

    Semadeni-Davies, Annette; Hernebring, Claes; Svensson, Gilbert; Gustafsson, Lars-Göran

    2008-02-01

    SummaryAssessment of the potential impact of climate change on water systems has been an essential part of hydrological research over the last couple of decades. However, the notion that such assessments should also include technological, demographic and land use changes is relatively recent. In this study, the potential impacts of climate change and continued urbanisation on waste and stormwater flows in the combined sewer of central Helsingborg, South Sweden, have been assessed using a series of DHI MOUSE simulations run with present conditions as well as two climate change scenarios and three progressive urbanisation storylines. At present, overflows of untreated wastewater following heavy rainfalls are a major source of pollution to the coastal receiving waters and there is a worry that increased rainfall could exacerbate the problem. Sewer flows resulting from different urbanisation storylines were simulated for two 10-year periods corresponding to present (1994-2003) and future climates (nominally 2081-2090). In all, 12 simulations were made. Climate change was simulated by altering a high-resolution rainfall record according to the climate-change signal derived from a regional climate model. Urbanisation was simulated by altering model parameters to reflect current trends in demographics and water management. It was found that city growth and projected increases in precipitation, both together and alone, are set to worsen the current drainage problems. Conversely, system renovation and installation of sustainable urban drainage systems (SUDS) has a positive effect on the urban environment in general and can largely allay the adverse impacts of both urbanisation and climate change.

  7. Treatment of Y-12 storm sewer sediments and DARA soils by thermal desorption

    SciTech Connect

    Morris, M.I.; Shealy, S.E.

    1995-12-31

    The 1992 Oak Ridge Reservation Federal Facilities Compliance Agreement (FFCA) listed a number of mixed wastes, subject to land disposal restrictions (LDR), for which no treatment method had been identified, and required DOE to develop strategies for treatment and ultimate disposal of those wastes. This paper presents the results of a program to demonstrate that thermal desorption can remove both organics and mercury from two mixed wastes from the DOE Y-12 facility in Oak Ridge, Tennessee. The first waste, the Y-12 Storm Sewer Sediments (SSSs) was a sediment generated from upgrades to the plant storm sewer system. This material contained over 4 percent mercury, 2 percent uranium and 350 mg/kg polychlorinated biphenyls (PCBs). Leachable mercury exceeded toxicity characteristic leaching procedure (TCLP) and LDR criteria. The second waste, the Disposal Area Remedial Action (DARA) Soils, are contaminated with uranium, mercury and PCBs. This treatability study included bench-scale testing of a thermal desorption process. Results of the testing showed that, for the SSSs, total mercury could be reduced to 120 mg/kg by treatment at 600{degrees}C, which is at the high end of the temperature range for typical thermal desorption systems. Leachable TCLP mercury was less than 50 {mu}g/L and PCBs were below 2 mg/kg. Treatment of the DARA Soils at 450{degrees}C for 10 minutes resulted in residual PCBs of 0.6 to 3.0 mg/kg. This is too high (goal < 2mg/kg) and higher treatment temperatures are needed. The testing also provided information on the characteristics and quantities of residuals from the thermal desorption process.

  8. Sea Level Rise in Tuvalu

    NASA Astrophysics Data System (ADS)

    Lin, C. C.; Ho, C. R.; Cheng, Y. H.

    2012-04-01

    Most people, especially for Pacific Islanders, are aware of the sea level change which may caused by many factors, but no of them has deeper sensation of flooding than Tuvaluan. Tuvalu, a coral country, consists of nine low-lying islands in the central Pacific between the latitudes of 5 and 10 degrees south, has the average elevation of 2 meters (South Pacific Sea Level and Climate Monitoring Project, SPSLCMP report, 2006) up to sea level. Meanwhile, the maximum sea level recorded was 3.44m on February 28th 2006 that damaged Tuvaluan's property badly. Local people called the flooding water oozes up out of the ground "King Tide", that happened almost once or twice a year, which destroyed the plant, polluted their fresh water, and forced them to colonize to some other countries. The predictable but uncontrollable king tide had been observed for a long time by SPSLCMP, but some of the uncertainties which intensify the sea level rise need to be analyzed furthermore. In this study, a span of 18 years of tide gauge data accessed from Sea Level Fine Resolution Acoustic Measuring Equipment (SEAFRAME) are compared with the satellite altimeter data accessed from Archiving Validation and Interpretation of Satellite Data in Oceanography (AVISO). All above are processed under the limitation of same time and spatial range. The outcome revealed a 9.26cm difference between both. After the tide gauge data shifted to the same base as altimeter data, the results showed the unknown residuals are always positive under the circumstances of the sea level rise above 3.2m. Apart from uncertainties in observing, the residual reflected unknown contributions. Among the total case number of sea level rise above 3.2m is 23 times, 22 of which were recorded with oceanic warm eddy happened simultaneously. The unknown residual seems precisely matched with oceanic warm eddies and illustrates a clear future approach for Tuvaluan to care for.

  9. Martian Heat on the Rise

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows that the atmospheric temperatures above the surface of Mars at Gusev Crater, Mars Exploration Rover Spirit's landing site, fluctuate to a significant degree. The color red denotes warmer temperatures, while blue is cooler. The red and yellow waves of color represent thermals, or pockets of heat, which rise and fall across the surface. These data, acquired by the rover's miniature thermal emission spectrometer, help scientists understand how the bottom layer of air closest to the surface behaves and interacts with global winds.

  10. Rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas M.

    2012-11-01

    Several global and regional factors contribute to observed sea-level change along any particular coast. Global processes include changes in ocean mass (glacio-eustasy from ice melt), ocean volume (steric effects), viscoelastic land movements (glacioisostatic adjustment GIA), and changes in terrestrial water storage. Regional processes, often connected to steric and glacial changes, include changes in ocean circulation (Meridional Overturning Circulation [MOC]), glacial melting, local GIA, regional subsidence and others. Paleoclimate, instrumental and modeling studies show that combinations of these factors can cause relatively rapid rates of sea-level rise exceeding 3 mm yr-1 over various timescales along particular coasts. This paper discusses patterns and causes of sea-level rise with emphasis on paleoclimatological records. It then addresses the hypothesis of late Holocene (pre-20th century) sea-level stability in light of paleoclimatic evidence, notably from reconstructions of sea-surface temperature and glacial activity, for significant climate and sea-level variability during this time. The practical difficulties of assessing regional sea-level (SL) patterns at submillennial timescales will be discussed using an example from the eastern United States.

  11. Drainage in a rising foam.

    PubMed

    Yazhgur, Pavel; Rio, Emmanuelle; Rouyer, Florence; Pigeonneau, Franck; Salonen, Anniina

    2016-01-21

    Rising foams created by continuously blowing gas into a surfactant solution are widely used in many technical processes, such as flotation. The prediction of the liquid fraction profile in such flowing foams is of particular importance since this parameter controls the stability and the rheology of the final product. Using drift flux analysis and recently developed semi-empirical expressions for foam permeability and osmotic pressure, we build a model predicting the liquid fraction profile as a function of height. The theoretical profiles are very different if the interfaces are considered as mobile or rigid, but all of our experimental profiles are described by the model with mobile interfaces. Even the systems with dodecanol are well known to behave as rigid in forced drainage experiments. This is because in rising foams the liquid fraction profile is fixed by the flux at the bottom of the foam. Here the foam is wet with higher permeability and the interfaces are not in equilibrium. These results demonstrate once again that it is not only the surfactant system that controls the mobility of the interface, but also the hydrodynamic problem under consideration. For example liquid flow through the foam during generation or in forced drainage is intrinsically different. PMID:26554500

  12. Geochemistry and age of Shatsky, Hess, and Ojin Rise seamounts: Implications for a connection between the Shatsky and Hess Rises

    NASA Astrophysics Data System (ADS)

    Tejada, Maria Luisa G.; Geldmacher, Jörg; Hauff, Folkmar; Heaton, Daniel; Koppers, Anthony A. P.; Garbe-Schönberg, Dieter; Hoernle, Kaj; Heydolph, Ken; Sager, William W.

    2016-07-01

    Shatsky Rise in the Northwest Pacific is the best example so far of an oceanic plateau with two potential hotspot tracks emanating from it: the linear Papanin volcanic ridge and the seamounts comprising Ojin Rise. Arguably, these hotspot tracks also project toward the direction of Hess Rise, located ∼1200 km away, leading to speculations that the two plateaus are connected. Dredging was conducted on the massifs and seamounts around Shatsky Rise in an effort to understand the relationship between these plateaus and associated seamounts. Here, we present new 40Ar/39Ar ages and trace element and Nd, Pb, and Hf isotopic data for the recovered dredged rocks and new trace elements and isotopic data for a few drill core samples from Hess Rise. Chemically, the samples can be subdivided into plateau basalt-like tholeiites and trachytic to alkalic ocean-island basalt compositions, indicating at least two types of volcanic activity. Tholeiites from the northern Hess Rise (DSDP Site 464) and the trachytes from Toronto Ridge on Shatsky's TAMU massif have isotopic compositions that overlap with those of the drilled Shatsky Rise plateau basalts, suggesting that both Rises formed from the same mantle source. In contrast, trachytes from the southern Hess Rise (DSDP Site 465A) have more radiogenic Pb isotopic ratios that are shifted toward a high time-integrated U/Pb (HIMU-type mantle) composition. The compositions of the dredged seamount samples show two trends relative to Shatsky Rise data: one toward lower 143Nd/144Nd but similar 206Pb/204Pb ratios, the other toward similar 143Nd/144Nd but more radiogenic 206Pb/204Pb ratios. These trends can be attributed to lower degrees of melting either from lower mantle material during hotspot-related transition to plume tail or from less refractory shallow mantle components tapped during intermittent deformation-related volcanism induced by local tectonic extension between and after the main volcanic-edifice building episodes on Shatsky

  13. VERIFICATION OF NUMERICAL MODEL FOR URBAN INUNDATION DUE TO TORRENTIAL RAINFALL USING PHYSICAL EXPERIMENTAL FLUME WITH A SEWER PIPE

    NASA Astrophysics Data System (ADS)

    Kawaike, Kenji; Shimizu, Atsushi; Baba, Yasuyuki; Nakagawa, Hajime; Takeda, Makoto

    In this paper, in order to verify the stormwater exchange model between ground surface and sewerage system in integrated urban inundation model, we conducted experiments of urban inundation using a flat basin with a sewer pipe and rainfall supplier, and those results are compared with numerical simulation results. From the comparison between them, it is obvious that stormwater drainage and overflow discharge in urban area can be estimated exactly by using step-down formula and overflow formula in steady flow cases. In unsteady flow cases, however, calculated inundation water depth on the ground surface responses to piezometric head of the sewer pipe too quickly than experimental results, which requires much smaller values of the coefficients in those formula.

  14. Parkinson's Rates Rising Among American Men

    MedlinePlus

    ... fullstory_159464.html Parkinson's Rates Rising Among American Men Smoking is known to help shield against the ... disease may be on the rise for U.S. men over the past three decades, and the trend ...

  15. An analysis of the Cured-in-Place Pipe (CIPP) subproject of the sanitary sewer rehabilitation project

    SciTech Connect

    Morrow, W.; Siemiatkoski, S.

    1994-01-25

    The comprehensive rehabilitation of the Lawrence Livermore National Laboratory Sanitary Sewer System centers around a Cured-in-Place Pipe project. Driven by regulatory requirements to eliminate the potential for exfiltration, a careful condition assessment of the existing infrastructure was conducted. Under programmatic constraints to maintain continuous operations, the INLINER USA cured-in-place pipe system was selected as the appropriate technology, and the project is currently under contract.

  16. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.

    PubMed

    Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah

    2014-11-15

    The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. PMID:25192930

  17. Constraining nitrogen inputs to urban streams from leaking sewer infrastructure using inverse modeling: Implications for urban water quality

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.; Bain, D. J.

    2011-12-01

    Excess fixed nitrogen contributes to stream degradation in densely populated regions, compounding problems of surface water contamination in urban landscapes. In particular, leaking sewer infrastructure is an acknowledged source of non-point source (NPS) nitrogen pollution to ground- and surface water in urban areas; however quantification of such contributions is exceedingly limited. This lack of knowledge inhibits efforts to understand urban nitrogen retention and export, despite the potential for this source to impact downstream water quality. Nine Mile Run (NMR), a restored urban stream in Pittsburgh, Pennsylvania (USA), drains a 1600 hectare urban watershed characterized by a high degree of impervious surface cover (38%). For years known locally as "stink creek," NMR remains significantly impacted by combined sewer overflows, leaky sewers, and degraded water quality. In order to assess sources of impairment, water samples were collected from four locations bi-weekly over two years, intensive sampling was conducted during one summer storm and DIN concentrations in water samples were analyzed (where DIN = nitrate + nitrite + ammonium). Using DIN concentrations, discharge records, published estimates of urban watershed nitrogen retention, and known inputs of atmospherically deposited nitrogen, a watershed nitrogen budget was constructed for NMR and subsequently inverted to constrain potential sewage inputs. Retention estimates ranging from 65 to 85% were applied and resulting calculations indicate that DIN contributions from sewage ranged from 5.5 to 25 kg ha-1yr-1. This research documents the potential contribution of sewage to DIN loads in urban streams and highlights the challenges of reducing nutrient pollution to receiving waters in cities with aging, degraded sewer lines.

  18. Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Monk, Jan C.

    1992-01-01

    The topics are presented in viewgraph form and include the following: Space Transportation Main Engine (STME) definition, design philosophy, robust design, maximum design condition, casting vs. machined and welded forgings, operability considerations, high reliability design philosophy, engine reliability enhancement, low cost design philosophy, engine systems requirements, STME schematic, fuel turbopump, liquid oxygen turbopump, main injector, and gas generator. The major engine components of the STME and the Space Shuttle Main Engine are compared.

  19. Development and implementation of a real-time control strategy for the sewer system of the city of Vienna.

    PubMed

    Fuchs, L; Beeneken, T

    2005-01-01

    The paper describes the realization of a real-time control for the Vienna sewer system. The project is scheduled for completion for 2004. The 3.5 year project comprises all planning stages starting with the recording of data up to the planning of measuring and controlling units. The concrete steps of the planning stages are explained. A measuring system including 25 rainfall measurements, 40 flow measurements and 20 water level measurements is implemented as an online system. This measuring system is designed to achieve two objectives, on the one hand the real-time control and on the other hand the calibration of the model that is used for the hydrodynamic sewer system simulation. The approx. 53,000 pipes have served to generate a coarse network of no more than approx. 2600 pipes. The area data were derived with high accuracy from available aerial photograph interpretations. With simulation runs of a rule-based control software the system operation was examined. A self-learning system will improve the rule basis. A forecasting model that uses weather observation radar will additionally influence the controlling decisions. The findings from the investigations are immediately considered in the planning of measuring and control units. The simulated results for the first phase of implementation, which demonstrate the benefit of RTC for the Vienna sewer system, are explained. PMID:16248195

  20. Field validation of a new low-cost method for determining occurrence and duration of combined sewer overflows.

    PubMed

    Montserrat, A; Gutierrez, O; Poch, M; Corominas, Ll

    2013-10-01

    Combined sewer overflow (CSO) events produced in combined sewer systems (CSS) during wet weather conditions are a threat for the receiving water bodies. The large number of CSO structures normally present in a CSS makes that the monitoring of the complete CSO network in a simultaneous way would drastically increase the investment costs. In this paper, a new methodology is presented aiming to characterize the occurrence and duration of CSO events by means of low-cost temperature sensors. Hence, a large number of CSO structures can be simultaneously monitored and the system can be characterized as a whole. The method assumes temperature differences between the overflowing mix of wastewater and stormwater and the sewer gas phase, so the temperature shift produced during a rainfall episode is related to a CSO event occurrence. The method has been tested and validated in La Garriga CSS (Spain) where the temperature at 13 CSO weirs was monitored for a period of 1 year (57 rainfall episodes). For the whole set of CSO events, occurrence and duration were successfully determined in 80% of cases. Advantages, limitations and potential applications of the method are discussed at the end of the paper. PMID:23867850

  1. Large Volcanic Rises on Venus

    NASA Technical Reports Server (NTRS)

    Smrekar, Suzanne E.; Kiefer, Walter S.; Stofan, Ellen R.

    1997-01-01

    Large volcanic rises on Venus have been interpreted as hotspots, or the surface manifestation of mantle upwelling, on the basis of their broad topographic rises, abundant volcanism, and large positive gravity anomalies. Hotspots offer an important opportunity to study the behavior of the lithosphere in response to mantle forces. In addition to the four previously known hotspots, Atla, Bell, Beta, and western Eistla Regiones, five new probable hotspots, Dione, central Eistla, eastern Eistla, Imdr, and Themis, have been identified in the Magellan radar, gravity and topography data. These nine regions exhibit a wider range of volcano-tectonic characteristics than previously recognized for venusian hotspots, and have been classified as rift-dominated (Atla, Beta), coronae-dominated (central and eastern Eistla, Themis), or volcano-dominated (Bell, Dione, western Eistla, Imdr). The apparent depths of compensation for these regions ranges from 65 to 260 km. New estimates of the elastic thickness, using the 90 deg and order spherical harmonic field, are 15-40 km at Bell Regio, and 25 km at western Eistla Regio. Phillips et al. find a value of 30 km at Atla Regio. Numerous models of lithospheric and mantle behavior have been proposed to interpret the gravity and topography signature of the hotspots, with most studies focusing on Atla or Beta Regiones. Convective models with Earth-like parameters result in estimates of the thickness of the thermal lithosphere of approximately 100 km. Models of stagnant lid convection or thermal thinning infer the thickness of the thermal lithosphere to be 300 km or more. Without additional constraints, any of the model fits are equally valid. The thinner thermal lithosphere estimates are most consistent with the volcanic and tectonic characteristics of the hotspots. Estimates of the thermal gradient based on estimates of the elastic thickness also support a relatively thin lithosphere (Phillips et al.). The advantage of larger estimates of

  2. Activities of Combined Sewer Overflows: A Comparison of Measured and Computed Data

    NASA Astrophysics Data System (ADS)

    Ostrowski, M. W.; Koch, J.; Wetzstein, A.

    In order to relieve sewerage systems of excess stormwaters during heavy rainfalls overflow structures are necessary for a safe operation of urban drainage and wastew- ater treatment facilities. Overflow tanks have storage effects while pure overflows di- vide the discharges and route the excess water in the next watercourse. The outflows from combined sewage overflows can evoke significant effects on the receiving waters. Hydraulic effects ("hydraulic stress") result from the additional discharges, which are generally introduced at a single point. Toxic effects are caused by the pollutant load of the decanted discharges. In awareness of these effects an immission based consid- eration is required. The lack of reliable, measurement based data is obvious, although the generally accepted necessity of those is noted in recent research projects and regu- lations of public authorities. An immission based view necessitates data regarding the amount, number and duration of the overflows. Particularly with regard to the storm overflows this data is mostly achieved by means of computational simulations. The lack of measured data is the consequence of the adverse conditions in sewer pipes and the complex hydraulic situation at the overflow structures. Reliable data is necessary for the verification, the validation and the improvement of hydrological models. Within the scope of a research project, carried out in the section for Hydrology and Water Management of the Technical University of Darmstadt, a storm overflow was equipped with measuring devices. Aims of the investigations were to discover the limiting boundary conditions in measuring sewer discharges and to record reliable data, concerning the overflow activities of the observed structure. The measured data should be compared with the results of the model SMUSI, which is an evaluation model of the public authorities in the federal state of Hesse, Germany. It is the objective of the presentation to - specify the

  3. Teaching Main Idea Comprehension.

    ERIC Educational Resources Information Center

    Baumann, James F., Ed.

    Intended to help classroom teachers, curriculum developers, and researchers, this book provides current information on theoretical and instructional aspects of main idea comprehension. Titles and authors are as follows: "The Confused World of Main Idea" (James W. Cunningham and David W. Moore); "The Comprehension of Important Information in…

  4. The Maine Event

    ERIC Educational Resources Information Center

    McHale, Tom

    2007-01-01

    In this article, the author describes the successful laptop program employed at Mt. Abram High School in Strong, Maine. Through the Maine Learning Technology Initiative, the school has issued laptops to all 36,000 teachers and students in grades 7-8. This program has helped level the playing field for a student population that is 50 percent to 55…

  5. MAINE MARINE WORM HABITAT

    EPA Science Inventory

    WORM provides a generalized representation at 1:24,000 scale of commercially harvested marine worm habitat in Maine, based on Maine Department of Marine Resources data from 1970's. Original maps were created by MDMR and published by USF&WS as part of the ""&quo...

  6. Capillary Rise in Porous Media.

    PubMed

    Lago, Marcelo; Araujo, Mariela

    2001-02-01

    Capillary rise experiments were performed in columns filled with glass beads and Berea sandstones, using visual methods to register the advance of the water front. For the glass bead filled columns, early time data are well fitted by the Washburn equation. However, in the experiments, the advancing front exceeded the predicted equilibrium height. For large times, an algebraic behavior of the velocity of the front is observed (T. Delker et al., Phys. Rev. Lett. 76, 2902 (1996)). A model for studying the capillary pressure evolution in a regular assembly of spheres is proposed and developed. It is based on a quasi-static advance of the meniscus with a piston-like motion and allows us to estimate the hydraulic equilibrium height, with values very close to those obtained by fitting early time data to a Washburn equation. The change of regime is explained as a transition in the mechanism of advance of the meniscus. On the other hand, only the Washburn regime was observed for the sandstones. The front velocity was fitted to an algebraical form with an exponent close to 0.5, a value expected from the asymptotic limit of the Washburn equation. Copyright 2001 Academic Press. PMID:11161488

  7. Temperature rise in superfluid helium pumps

    NASA Technical Reports Server (NTRS)

    Kittel, Peter

    1988-01-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  8. Temperature rise in superfluid helium pumps

    SciTech Connect

    Kittel, P.

    1988-07-01

    The temperature rise of a fountain effect pump (FEP) and of a centrifugal pump (CP) are compared. Calculations and estimates presented here show that under the operating conditions expected during the resupply of superfluid helium in space, a centrifugal pump will produce a smaller temperature rise than will a fountain effect pump. The temperature rise for the FEP is calculated assuming an ideal pump, while the temperature rise of the CP is estimated from the measured performance of a prototype pump. As a result of this smaller temperature rise and of the different operating characteristics of the two types of pumps, transfers will be more effective using a centrifugal pump.

  9. Antarctic ice rise formation, evolution, and stability

    NASA Astrophysics Data System (ADS)

    Favier, Lionel; Pattyn, Frank

    2015-06-01

    Antarctic ice rises originate from the contact between ice shelves and one of the numerous topographic highs emerging from the edge of the continental shelf. While investigations of the Raymond effect indicate their millennial-scale stability, little is known about their formation and their role in ice shelf stability. Here we present for the first time the simulation of an ice rise using the BISICLES model. The numerical results successfully reproduce several field-observable features, such as the substantial thinning downstream of the ice rise and the successive formation of a promontory and ice rise with stable radial ice flow center, showing that ice rises are formed during the ice sheet deglaciation. We quantify the ice rise buttressing effect, found to be mostly transient, delaying grounding line retreat significantly but resulting in comparable steady state positions. We demonstrate that ice rises are key in controlling simulations of Antarctic deglaciation.

  10. Timescales for detecting a significant acceleration in sea level rise

    PubMed Central

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  11. Timescales for detecting a significant acceleration in sea level rise.

    PubMed

    Haigh, Ivan D; Wahl, Thomas; Rohling, Eelco J; Price, René M; Pattiaratchi, Charitha B; Calafat, Francisco M; Dangendorf, Sönke

    2014-01-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012

  12. Timescales for detecting a significant acceleration in sea level rise

    NASA Astrophysics Data System (ADS)

    Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke

    2014-04-01

    There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records.

  13. Benchmarking laboratory observation uncertainty for in-pipe storm sewer discharge measurements

    NASA Astrophysics Data System (ADS)

    Aguilar, Marcus F.; McDonald, Walter M.; Dymond, Randel L.

    2016-03-01

    The uncertainty associated with discharge measurement in storm sewer systems is of fundamental importance for hydrologic/hydraulic model calibration and pollutant load estimation, although it is difficult to determine as field benchmarks are generally impractical. This study benchmarks discharge uncertainty in several commonly used sensors by laboratory flume testing with and without a woody debris model. The sensors are then installed in a field location where laboratory benchmarked uncertainty is applied to field measurements. Combined depth and velocity uncertainty from the laboratory ranged from ±0.207-0.710 in., and ±0.176-0.631 fps respectively, and when propagated and applied to discharge estimation in the field, resulted in field discharge uncertainties of between 13% and 256% of the observation. Average daily volume calculation based on these observations had uncertainties of between 58% and 99% of the estimated value, and the uncertainty bounds of storm flow volume and peak flow for nine storm events constituted between 31-84%, and 13-48% of the estimated value respectively. Subsequently, the implications of these observational uncertainties for stormwater best-management practice evaluation, hydrologic modeling, and Total Maximum Daily Load development are considered.

  14. London Tideway Tunnels: tackling London's Victorian legacy of combined sewer overflows.

    PubMed

    Thomas, G B; Crawford, D

    2011-01-01

    It takes a few millimetres of rainfall to cause the 34 most polluting combined sewer overflows (CSOs) to discharge into the River Thames. Currently, in a typical year, spillages to the tidal reaches of the River Thames occur about 60 times, with an estimated spill volume of 39 million cubic metres. Both the UK Government and the European Union have determined that the CSO discharges have an adverse environmental impact on fish species, introduce unacceptable aesthetics and elevate the health risks for recreational users of the Thames, with a frequency of discharge which is in breach of the Urban Wastewater Treatment Directive. Studies have established that the environmental objectives can be fully met on the most cost-effective basis by completing both quality improvements to treatment works and by the provision of a storage and transfer tunnel to intercept unsatisfactory CSOs. Extensive modelling has been undertaken to develop an optimised solution. In parallel with the design development a rigorous and comprehensive site selection methodology has been established to select sites and consult stakeholders and the public on the preferred sites and scheme, with the first stage of public consultation planned for later in 2010. The London Tideway Tunnels are an essential part of the delivery of improvements to the water quality of the tidal River Thames, and this ambitious, historic scheme represents a vital strategic investment in London's infrastructure. PMID:21245557

  15. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    USGS Publications Warehouse

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  16. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses

    USGS Publications Warehouse

    Hunt, R.J.; Borchardt, M. A.; Richards, K.D.; Spencer, S. K.

    2010-01-01

    This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways. ?? 2010 American Chemical Society.

  17. Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants

    PubMed Central

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536

  18. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants.

    PubMed

    Phillips, P J; Chalmers, A T; Gray, J L; Kolpin, D W; Foreman, W T; Wall, G R

    2012-05-15

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40-90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536

  19. Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system.

    PubMed

    Ozaki, Noriatsu; Takamura, Yoshihiro; Kojima, Keisuke; Kindaichi, Tomonori

    2015-09-01

    The loading and removal of polycyclic aromatic hydrocarbons (PAHs) were measured and estimated in a wastewater treatment plant in a separated sewer system in a suburban area of Japan. The influent 16 PAHs concentration was 219 ± 210 ng L(-1), whereas the effluent concentration was 43.5 ± 42.5 ng L(-1) (mean ± sd). No clear diurnal or weekly fluctuation was observed. However, evaluation of long-term changes revealed PAH fluctuations continuing for more than 1 week. Half of the PAHs (63%) were biologically or chemically transformed, or vaporized in the treatment plant, while the remainder were discharged with effluent (28%) and excess sludge (9%). Measurement of the per capita loading of the treatment plant revealed values of 142 ± 53 and 28 ± 11 μg person(-1)day(-1) (mean ± 95% confidence interval) for influent and effluent, respectively. Isomer ratio analysis revealed that the PAHs originated from a mixture of petroleum, petroleum combustion, and burning of biomass residues. PMID:26026633

  20. Managing sewer solids for the reduction of foul flush effects--Forfar WTP.

    PubMed

    Fraser, A G; Sakrabani, R; Ashley, R M; Johnstone, F M

    2002-01-01

    In times of high sewer flow, conditions can exist which enable previously deposited material to be re-entrained back into the body of the flow column. Pulses of this highly polluted flow have been recorded in many instances at the recently constructed wastewater treatment plant (WTP) in Forfar, Scotland. Investigations have been undertaken to characterise the incoming flows and to suggest remedial measures to manage the quality fluctuations. Initial visits to the works and incoming pipes indicated a high degree of sediment deposition in the two inlet pipes. Analyses were carried out and consequently, changes to the hydraulic regime were made. Measurements of sediment level, sediment quality, wall slime and bulk water quality were monitored in the period following the remedial works to observe any improvements. Dramatic alterations in each of the determinands measured were recorded. Analyses were then undertaken to determine long term sediment behaviour and to assess the future usefulness of existing upstream sediment traps. It was concluded that with proper maintenance of the traps, the new hydraulic regime is sufficient to prevent further significant build up of sediment deposits and reduce impacts on the WTP. Further investigations made by North of Scotland Water Authority highlighted trade inputs to the system which may also have contributed to the now managed foul flush problem. PMID:11902479

  1. Modelling of E. coli distribution in coastal areas subjected to combined sewer overflows.

    PubMed

    De Marchis, Mauro; Freni, Gabriele; Napoli, Enrico

    2013-01-01

    Rivers, lakes and the sea were the natural receivers of raw urban waste and storm waters for a long time but the low sustainability of such practice, the increase of population and a renewed environmental sensibility increased researcher interest in the analysis and mitigation of the impact of urban waters on receiving water bodies (RWB). In Europe, the integrated modelling of drainage systems and RWB has been promoted as a promising approach for implementing the Water Framework Directive. A particular interest is given to the fate of pathogens and especially of Escherichia coli, in all the cases in which an interaction between population and the RWB is foreseen. The present paper aims to propose an integrated water quality model involving the analysis of several sewer systems (SS) discharging their polluting overflows on the coast in a sensitive marine environment. From a modelling point of view, the proposed application integrated one-dimensional drainage system models with a complex three-dimensional model analysing the propagation in space and time of E. coli in the coastal marine area. The integrated approach was tested in a real case study (the Acicastello bay in Italy) where data were available both for SS model and for RWB propagation model calibration. The analysis shows a good agreement between the model and monitored data. The integrated model was demonstrated to be a valuable tool for investigating the pollutant propagation and to highlight the most impacted areas. PMID:24037165

  2. Predicting Air-Water Geysers and Their Implications on Reducing Combined Sewer Overflows

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2014-12-01

    An air-water geyser in a closed conduit system is characterized by an explosive jetting of a mixture of air and water through drop-shafts. In this study, three scenarios of geysers are numerically simulated using a 3D computational fluid dynamics (CFD) model. The three tested scenarios are comprised of a drop shaft that is closed at its bottom and partially or fully open at the top. Initially, the lower section of the drop shaft is filled with pressurized air, the middle section with stagnant water and the upper section with air at atmospheric pressure. The pressure and volume of the pressurized air, and hence the stored energy, is different for all three test cases. The volume of the stagnant water and the air at atmospheric pressure are kept constant in the tests. The numerical simulations aim to identify the correlation between dimensionless energy stored in the pressurized air pocket and dimensionless maximum pressure reached at the outlet. This dimensionless correlation could be used to determine the energy threshold that does not produce air-water geyser, which in turn could be used in the design of combined sewer systems for minimizing geysers.

  3. Constructed wetlands for combined sewer overflow treatment in a Mediterranean country, Portugal.

    PubMed

    Amaral, R; Ferreira, F; Galvão, A; Matos, J S

    2013-01-01

    The use of constructed wetlands as a valuable and attractive method for combined sewer overflow (CSO) treatment has been demonstrated in several studies. In Portugal, a Mediterranean country having usually a long dry period, there are still no applications of this technology. The purpose of this research is to gather information and know-how required for the design and management of this type of infrastructure. A pilot-scale experimental setup for CSO treatment was installed and evaluated in situ, in terms of organic matter, total suspended solids and microorganism removal with emphasis on the results of the start-up. After 1 day of retention average removal efficiencies of 73-79% and 82-89% were obtained in terms of chemical oxygen demand (COD) and total suspended solids (TSS), respectively. During the remaining retention time a slower removal was observed. After 7 days, the COD removal efficiencies reached 86-91% and the TSS removal efficiencies reached 93-97%. On average, after 1 day, reductions of 1.2-2.0 log and 1.9-2.4 log, respectively, for total coliforms and Enterococcus were observed. For a retention time of 7 days these reductions attained 4.0-4.9 log and 4.4-5.3 log, respectively. PMID:23787312

  4. Heavy metal distribution in an urban wetland impacted by combined sewer overflow.

    PubMed

    Rouff, Ashaki A; Eaton, Timothy T; Lanzirotti, Antonio

    2013-11-01

    The heavy metal content and distribution in an urban wetland affected by combined sewer overflow (CSO) discharge during dry conditions was evaluated. Metals identified in the CSO discharge were also measured upstream and downstream of the CSO. Metals were detected in the acid-extractable fraction of the wetland sediments and the roots of Phragmites australis plants. Sediment from the banks of a pool created by the CSO, and from a clay bed upstream were found to be moderately contaminated with Cu, Pb and Zn. Micro X-ray fluorescence (μ-XRF) of Phragmites roots from the CSO banks showed a correlation in the spatial distribution of Fe and Mn, attributed to the formation of mineral plaques on the root surface. Micro X-ray absorption near edge spectroscopy (μ-XANES) revealed that Cu and Zn were complexed with the organic ligands phytate and cysteine. The findings indicated that continuous discharge from the CSO is a source of heavy metals to the wetland. Metals bound to sediments are susceptible to remobilization and subsequent transport, whereas those associated with Phragmites roots may be more effectively sequestered. These observations provide insight into the behavior of heavy metals in urban areas where CSOs discharge into wetlands. PMID:24012138

  5. Chemical disinfection of combined sewer overflow waters using performic acid or peracetic acids.

    PubMed

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper; Gramstad, Robin; Öjstedt, Ulrik; Sharma, Anitha Kumari; Andersen, Henrik Rasmus

    2014-08-15

    We investigated the possibility of applying performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA towards Escherichia coli (E. coli) and Enterococcus was studied in batch-scale and pre-field experiments. In the batch-scale experiment, 2.5 mg L(-1) PAA removed approximately 4 log unit of E. coli and Enterococcus from CSO with a 360 min contact time. The removal of E. coli and Enterococcus from CSO was always around or above 3 log units using 2-4 mg L(-1) PFA; with a 20 min contact time in both batch-scale and pre-field experiments. There was no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA; a slight toxic effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event, the disinfection efficiencies were confirmed and degradation rates were slightly higher than predicted in simulated CSO. PMID:24918873

  6. A case independent approach on the impact of climate change effects on combined sewer system performance.

    PubMed

    Kleidorfer, M; Möderl, M; Sitzenfrei, R; Urich, C; Rauch, W

    2009-01-01

    Design and construction of urban drainage systems has to be done in a predictive way, as the average lifespan of such investments is several decades. The design engineer has to predict many influencing factors and scenarios for future development of a system (e.g. change in land use, population, water consumption and infiltration measures). Furthermore, climate change can cause increased rain intensities which leads to an additional impact on drainage systems. In this paper we compare the behaviour of different performance indicators of combined sewer systems when taking into account long-term environmental change effects (change in rainfall characteristics, change in impervious area and change in dry weather flow). By using 250 virtual case studies this approach is--in principle--a Monte Carlo Simulation in which not only parameter values are varied but the entire system structure and layout is changed in each run. Hence, results are more general and case-independent. For example the consideration of an increase of rainfall intensities by 20% has the same effect as an increase of impervious area of +40%. Such an increase of rainfall intensities could be compensated by infiltration measures in current systems which lead to a reduction of impervious area by 30%. PMID:19759458

  7. Attenuation of pollutants in sanitary sewer overflow: comparative evaluation of treatment with fixed media bioreactors.

    PubMed

    Tao, Jing; Mancl, Karen M; Tuovinen, Olli H

    2010-03-01

    Five types of fixed media bioreactors (biofilters)--sand, felt (textile), peat, felt/sand, and peat/sand--were used to treat sanitary sewer overflow (SSO). A simulated 6-h peak flow of a 25-yr SSO event contained 40-125 mg/l biochemical oxygen demand (BOD(5)) and was loaded on the bioreactors at a high hydraulic loading rate of 0.2m/h. The sand bioreactors were the most effective in the treatment, reducing BOD(5) by 84+/-9%. The combination media peat/sand and felt/sand showed similar efficiency with peat, higher than felt. After the initial start-up, all the bioreactors reached >90% reduction of total suspended solids. The bioreactors also effectively removed ammonia and total phosphorus concentrations in a 2-h SSO loading, which would occur more often than a 6-h peak flow in a 25-yr SSO event. The effluent concentration of nutrients increased with continued loadings after the first 2h. PMID:19932657

  8. Micropollutants in stormwater runoff and combined sewer overflow in the Copenhagen area, Denmark.

    PubMed

    Birch, H; Mikkelsen, P S; Jensen, J K; Lützhøft, H-C Holten

    2011-01-01

    Stormwater runoff contains a broad range of micropollutants. In Europe a number of these substances are regulated through the Water Framework Directive, which establishes Environmental Quality Standards (EQSs) for surface waters. Knowledge about discharge of these substances through stormwater runoff and combined sewer overflows (CSOs) is essential to ensure compliance with the EQSs. Results from a screening campaign including more than 50 substances at four stormwater discharge locations and one CSO in Copenhagen are reported here. Heavy metal concentrations were detected at levels similar to earlier findings, e.g., with copper found at concentrations up to 13 times greater than the Danish standard for surface waters. The concentration of polyaromatic hydrocarbons (PAHs) exceeded the EQSs by factors up to 500 times for stormwater and 2,000 times for the CSO. Glyphosate was found in all samples whilst diuron, isoproturon, terbutylazine and MCPA were found only in some of the samples. Diethylhexylphthalate (DEHP) was also found at all five locations in concentrations exceeding the EQS. The results give a valuable background for designing further monitoring programmes focusing on the chemical status of surface waters in urban areas. PMID:22097024

  9. Antibiotic resistance of bacteria in raw and biologically treated sewage and in groundwater below leaking sewers.

    PubMed

    Gallert, C; Fund, K; Winter, J

    2005-11-01

    More than 750 isolates of faecal coliforms (>200 strains), enterococci (>200 strains) and pseudomonads (>340 strains) from three wastewater treatment plants (WTPs) and from four groundwater wells in the vicinity of leaking sewers were tested for resistance against 14 antibiotics. Most, or at least some, strains of the three bacterial groups, isolated from raw or treated sewage of the three WTPs, were resistant against penicillin G, ampicillin, vancomycin, erythromycin, triple sulfa and trimethoprim/sulfamethoxazole (SXT). Only a few strains of pseudomonads or faecal coliforms were resistant against some of the other tested antibiotics. The antibiotic resistances of pseudomonads, faecal coliforms and enterococci from groundwater varied to a higher extent. In contrast to the faecal coliforms and enterococci, most pseudomonads from all groundwater samples, including those from non-polluted groundwater, were additionally resistant against chloramphenicol and SXT. Pseudomonads from sewage and groundwater had more multiple antibiotic resistances than the faecal coliforms or the enterococci, and many pseudomonads from groundwater were resistant to more antibiotics than those from sewage. The pseudomonads from non-polluted groundwater were the most resistant isolates of all. The few surviving faecal coliforms in groundwater seemed to gain multiple antibiotic resistances, whereas the enterococci lost antibiotic resistances. Pseudomonads, and presumably, other autochthonous soil or groundwater bacteria, such as antibiotic-producing Actinomyces sp., seem to contribute significantly to the gene pool for acquisition of resistances against antibiotics in these environments. PMID:16001254

  10. Dispersion and Travel Time of Dissolved and Floating Tracers in Urban Sewers

    NASA Astrophysics Data System (ADS)

    Istók, Balázs; Kristóf, Gergely

    2014-03-01

    Environmental impacts of oil spills affecting urban sewage networks can be eliminated if timely intervention is taken. The design of such actions requires knowledge of the transport of surface pollutants in open channels. In this study we investigated the travel time and dispersion of pollutants by means of tracer experiments in sewage networks and a creek. The travel time of surface tracers has been found to be significantly shorter than that of a bulk flow tracer. The ratio of the travel times of a bulk flow tracer and surface tracers agreed with the known correlations obtained for rivers. An increasing tendency in the ratio of travel times has been observed for increasing bulk flow velocity. A segment-wise dispersion model was implemented in the existing hydraulic model of a sewer system. The simulation results were compared with the experimental observations. The dispersion rate of the bulk flow tracer has been found to obey Taylor's mixing theory for long channels and was more intensive than that of surface tracers in community sewage channels.

  11. Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization.

    PubMed

    El Samrani, A G; Lartiges, B S; Villiéras, F

    2008-02-01

    The coagulation of combined sewer overflow (CSO) was investigated by jar-testing with two commercial coagulants, a ferric chloride solution (CLARFER) and a polyaluminium chloride (WAC HB). CSO samples were collected as a function of time during various wet-weather events from the inlet of Boudonville retention basin, Nancy, France. Jar-tests showed that an efficient turbidity removal can be achieved with both coagulants, though lower optimum dosages and higher re-stabilization concentrations were obtained with the aluminum-based coagulant. Optimum turbidity removal also yielded effective heavy metal elimination. However, the evolution with coagulant dosage of Cu, Zn, Pb, Cr, soluble and suspended solids contents followed various patterns. The removal behaviors can be explained by a selective aggregation of heavy metal carriers present in CSO and a specific interaction between hydrolyzed coagulant species and soluble metals. Stoichiometric relationships were established between optimal coagulant concentration, range of optimal dosing, and CSO conductivity, thus providing useful guidelines to adjust the coagulant demand during the course of CSO events. PMID:17961629

  12. Analysis of obstruction reason of urban sewer using spatial association rules

    NASA Astrophysics Data System (ADS)

    Zhu, Hongmei; Luo, Yu

    2009-10-01

    Sewerage network is an important part of municipal infrastructure for a city. Obstruction of sewer causes street flooding and affects people's daily life directly. To investigate reasons why some sewage pipes are blocked frequently in Kunming, China, we employ spatial analysis and data mining technology to analyze the data on the basis of a municipal sewerage geographic information system of the city. In the GIS, all of map layers and attribute tables are organized and saved in a relational database with Geodatabase model. First, we combined SQL attribute query with spatial location query to find out the sewage pipes that are blocked frequently. Then, we carried out buffer analysis and intersect analysis on the layers of the frequently-blocked pipes and buildings along the streets to extract buildings that are close to these frequently-blocked pipes. Joining the buildings in the buffer scope and the frequently-blocked pipes forms a big table prepared for spatial data mining. We used Apriori algorithm to mine spatial association rules from the data in the big table in order to search implicit reasons of obstruction of the pipes. The results from data mining indicate that strong spatial and non-spatial associate rules exist between the obstruction and restaurants in the buildings, as well as attribute slopes and diameters of these sewage pipes.

  13. The Main Idea Organizer.

    ERIC Educational Resources Information Center

    Burke, Jim

    2003-01-01

    Presents the Main Idea Organizer (MIO) to help students who may struggle with writing, reading, and thinking--though in different ways and for different reasons. Describes many different ways the author uses the MIO. (SG)

  14. MAINE WEIRS 1990

    EPA Science Inventory

    WEIR90 shows point locations of herring weirs in Maine based on 1990 overflight by MDMR Marine Patrol, mapped at an approximate scale of 1:100,000. Data were screen digitized from paper maps used during the overflight.

  15. FCC main fractionator revamps

    SciTech Connect

    Golden, S.W.; Martin, G.R.; Sloley, A.W. )

    1993-03-01

    Structured packing use in fluid catalytic cracker (FCC) main fractionators significantly impacts unit pressure profile. Unit pressure balance links the FCC main fractionator, reactor, regenerator, air compressor and wet gas compressor. Unit pressure balance should be viewed as a design variable when evaluating FCC unit revamps. Depending upon limitations of the particular FCC unit, capacity increases of 12.5% to 22.5% have been achieved without modifications to major rotating equipment, by revamping FCC main fractionators with structured packing. An examination of three FCC main fractionator revamps show improvements to pressure profiles and unit capacity. The three revamps described included a wet gas compressor volume limit; an air blower limitation; and a wet gas compressor motor limitation.

  16. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    PubMed

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general. PMID:12380970

  17. The main cubioid

    NASA Astrophysics Data System (ADS)

    Blokh, Alexander; Oversteegen, Lex; Ptacek, Ross; Timorin, Vladlen

    2014-08-01

    The connectedness locus in the parameter space of quadratic polynomials is called the Mandelbrot set. A good combinatorial model of this set is due to Thurston. By definition, the principal hyperbolic domain of the Mandelbrot set consists of parameter values, for which the corresponding quadratic polynomials have an attracting fixed point. The closure of the principal hyperbolic domain of the Mandelbrot set is called the main cardioid. Its topology is completely described by Thurston's model. Less is known about the connectedness locus in the parameter space of cubic polynomials. In this paper, we discuss cubic analogues of the main cardioid and establish relationships between them.

  18. Drivers of Pontocaspian Biodiversity Rise and Demise

    NASA Astrophysics Data System (ADS)

    Wesselingh, Frank; Flecker, Rachel; Wilke, Thomas; Leroy, Suzanne; Krijgsman, Wout; Stoica, Marius

    2015-04-01

    In the past two million years, the region of the Black Sea Basin, Caspian Basin and adjacent Anatolia and the Balkans were the stage of the evolution of a unique brackish water fauna, the so-called Pontocaspian fauna. The fauna is the result of assembly of genera with a Paratethyan origin and Anatolian origins during the Early Pleistocene. The rapid diversification of the Pontocaspian fauna is the result of the very dynamic nature of the lakes (the Caspian Sea is technically a lake) and seas in the region in the past two million years. In most times the various lake basins were isolated (like today), but in other episodes connections existed. Regional and global climate as well as the regional tectonic regimes were main drivers of lake basin evolution. Over the past 80 years a major biodiversity crisis is hitting the Pontocaspian faunas due to environmental degradation, pollution and invasive species. In the new EU-ETN PRIDE (Drivers of Pontocaspian Biodiversity Rise and Demise)we will be documenting the geological context of past diversifications and turnover events. We present examples of rapid turnover (biodiversity crises) in the Quaternary, assess driving forces and draw implications for the nature of the current human-mediated biodiversity crisis in the region.

  19. Buildings rise from natural contours.

    PubMed

    Baillie, Jonathan

    2014-09-01

    This October will see the completion of a pound 42 million, two-phase construction project by main contractor, Medicinq Osborne, to deliver a new 86-bed adult acute inpatient mental health unit for Hertfordshire Partnership University NHS Foundation Trust (HPFT) at Kingsley Green near Radlett. Recently named Kingfisher Court--after 150 staff, service-users, and members of the public made their suggestions, and a majority felt 'particularly engaged' with a bird theme--the new facility is a key element of a pound100 m, five-year 'Transformation Programme' through which the Trust is aiming to significantly improve the efficiency and quality of its services across Hertfordshire, North Essex, and Norfolk. As HEJ editor, Jonathan Baillie reports, HPFT's goal is to incorporate into Kingfisher Court 'world-class, state-of-the-art facilities' that will help it achieve its 'vision' of becoming England's best provider of mental healthcare and specialist learning disability services. PMID:25282993

  20. Ladybugs of Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Color images are presented for the 57 species of Coccinellidae, commonly known as ladybugs, that are documented from Maine. Images are displayed in taxonomic order. Information on each species includes its genus-species name, length, and an actual-size silhouette beside a grid matched to the scale...