Science.gov

Sample records for river delta south

  1. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China.

    PubMed

    Geng, Junjie; Wang, Yiping; Luo, Hanjin

    2015-12-30

    Riverine samples were collected at various locations in the Pearl River Delta (PRD) to determine the concentrations of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, and Pb) in time and space and to estimate the fluxes of heavy metals to the coastal waters off South China. Most of the elements exhibit clear temporal and spatial trends. Principal component analysis shows that surface erosion is the major factor affecting metal concentrations in particulates in the PRD. Natural geology is an important source of these heavy metals. The annual fluxes of Cr, Ni, Cu, Mn, Zn, Cd, and Pb in upstream and downstream were 445, 256, 241, 3293, 1279, 12, and 317 t/year and 1823, 1144, 1786, 15,634, 6183, 74, and 2017 t/year, respectively. A comparison indicated that the annual fluxes of Mn accounted for 1.3% of the global river fluxes, whereas other elements contribute <1%. PMID:26555797

  2. PCB contamination in soils of the Pearl River Delta, South China: levels, sources, and potential risks.

    PubMed

    Zhang, Haibo; Luo, Yongming; Teng, Ying; Wan, Hongfu

    2013-08-01

    Polychlorinated biphenyls (PCBs) contamination in tropical and sub-tropical areas and the associated risks have attracted great concern. A total of 69 samples representing five distinct land types were collected to assess PCB concentrations in the Pearl River Delta (PRD), South China, including spatial distributions in soils of the area, the probable anthropogenic sources, and related potential risks. PCBs concentrations in soils of the PRD ranged from 0.3 to 202 ng g(-1). More severe PCBs contamination was presented in the western part than in the eastern part of the PRD region. The PCBs were dominated by low-chlorinated biphenyls; however, the proportion of higher-chlorinated biphenyls was elevated with the influence of industrial activities. Principal component analysis indicated that PCBs contamination in soils of the PRD region was mainly associated with 1#PCBs, while 2#PCB and e-waste emission in South China also accounted for it partly, especially to the industrial activity severely impacted areas. Toxic equivalent (TEQ) of the dioxin-like PCBs in the soils indicated that higher risk of PCB contamination was presented in the Dongjiang River Valley (55 ng TEQ kg(-1), on average) than in the Xijiang River Valley, and were mostly contributed by the congener of PCB126. PMID:23354616

  3. Constraining rates and trends of historical wetland loss, Mississippi River Delta Plain, south-central Louisiana

    USGS Publications Warehouse

    Bernier, Julie C.; Morton, Robert A.; Barras, John A.

    2006-01-01

    The timing, magnitude, and rate of wetland loss were described for five wetland-loss hotspots in the Terrebonne Basin of the Mississippi River delta plain. Land and water areas were mapped for 34 dates between 1956 and 2004 from historical National Wetlands Inventory (NWI) datasets, aerial photographs, and Landsat Thematic Mapper (TM) satellite images. Since 1956, the emergent land area at the five study areas in south-central Louisiana has decreased by about 50%. Comparison of the water-area curve derived from the 29 TM images with water-level records from the nearby Grand Isle, Louisiana tide gauge (NOS #8761724) clearly shows that changes in land and water areas fluctuate in response to variations in regional water levels. The magnitude of water-area fluctuations decreased from the 1980s to the 1990s as former areas of wet marsh within and immediately adjacent to the wetland-loss hotspots became permanently submerged. The most rapid wetland loss occurred during the late 1960s and 1970s. Peak wetland-loss rates during this period were two to four times greater than both the pre-1970s background rates and the most recent wetland-loss rates. These results provide constraints on predicting future delta-plain wetland losses and identify Landsat TM imagery as an important source for analyzing land- and water-area changes across the entire delta plain.

  4. A review of environmental and human exposure to persistent organic pollutants in the Pearl River Delta, South China.

    PubMed

    Zhang, Kai; Wei, Yan-Li; Zeng, Eddy Y

    2013-10-01

    Rapid economic growth in South China (including Guangdong Province, Hong Kong, and Macau), particularly within the Pearl River Delta region, has resulted in severe pollution of the natural eco-environment in the last three decades. Large amounts of monitoring data on organic pollution in the Pearl River Delta have been accumulated, which allows us to conduct a fairly comprehensive assessment of the state of the Pearl River Delta and elucidate spatial and temporal patterns of pollution on a regional scale. Of various causes for environmental deterioration, negative impact from persistent organic pollutants (POPs) is a global concern. This review examines the current levels and distribution patterns of several POPs, namely DDT (and its metabolites DDD and DDE), hexachlorocyclohexanes, and polybrominated diphenyl ethers, in various environmental compartments of South China. The general information on environmental occurrence, regional behaviors, ecological effects, and human exposure of these POPs in this region are reviewed. PMID:23245873

  5. Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the northern South China Sea

    SciTech Connect

    Luo, X.J.; Chen, S.J.; Mai, B.X.; Sheng, G.Y.; Fu, J.M.; Zeng, E.Y.

    2008-07-15

    Polycyclic aromatic hydrocarbons (PAHs) were measured in 59 surface sediments from rivers in the Pearl River Delta and the northern continental shelf of the South China Sea. Total PAH concentrations varied from 138 to 6,793 ng/g dry weight. The sources of PAH inputs to sediments in the Pearl River Delta were qualitatively and quantitatively determined by diagnostic ratios and principal components analysis with multiple linear regression. The results showed that on average coal and wood combustion, petroleum spills, vehicle emissions, and nature sources contributed 36%, 27%, 25%, and 12% of total PAHs, respectively. Coal and biomass combustion was the main source of PAHs in sediments of the South China Sea, whereas petroleum combustion was the main source of pyrolytic PAHs in riverine and estuarine sediments of the Pearl River Delta. Perylene was formed in situ in river sediments and then transported to coastal areas along with other PAHs. The relative abundance of perylene from five-ring PAHs can be used to estimate the contribution of riverine-discharged PAHs to coastal sediments.

  6. Modeling river delta formation.

    PubMed

    Seybold, Hansjörg; Andrade, José S; Herrmann, Hans J

    2007-10-23

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  7. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  8. Modeling river delta formation

    PubMed Central

    Seybold, Hansjörg; Andrade, José S.; Herrmann, Hans J.

    2007-01-01

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  9. Modern sediment dispersal pattern and sediment budget on the continental shelf off the Mekong River delta, South China Sea

    NASA Astrophysics Data System (ADS)

    Szczucinski, W.; Jagodzinski, R.; Hanebuth, T.; Stattegger, K.; Wetzel, A.; Mitrega, M.; Unverricht, D.; Van Phach, P.

    2013-12-01

    The Mekong River is one the major suppliers of sediments to the ocean resulting in the formation of one of the largest river deltas. A major portion of the supplied sediments is accumulated in the subaqueous part of the delta which progrades directly off the river mouths as well as forms in an area next to Camau Peninsula, more than 200 km westward of these mouths. This study shows evidence for the existence of a Mekong-fed prodelta further offshore and provides a first quantitative estimate of the modern fate of fluvial-derived sediments and of the dispersal pattern of sediments transported further offshore to the subaqueous prodelta, to the outer continental shelf and to the deep South China Sea basin. The study is based on 96 surface sediment samples and five short sediment cores which were analyzed for grain-size composition, carbonate and total organic carbon contents, sedimentary structures (X-ray radiographs), clay mineralogy and bulk geochemistry, as well as 210Pb and 137Cs-based sediment accumulation rates. According to these results, the shelf environment is divided into three zones. Westward and southward of Camau Peninsula, the subaqueous prodelta (water depth < 32 m) appears as mud-dominated, organic-rich, high-accumulation (up to 1.5 cm yr-1) zone. South of the river mouths, a wide zone is dominated by terrigenous sands, probably representing the sink for river-supplied bedload sediments. The third, most offshore zone is dominated by muddy sands rich in biogenic carbonate. Evidence for redeposition, event deposition and changing sedimentary conditions is found in each of these zones reflecting the combined effects of tides, changing monsoonal current and wind regimes as well as of episodic tropical storms. The sediment budget calculation reveals that the subaqueous delta front stores about 50% of the fine-grained sediments supplied by the Mekong River. Roughly one fourth of the sediments is retained in the subaerial part of the delta (including the

  10. Relation between oceanic conditions in the South China Sea and water levels within and along the Vietnamese Mekong River Delta

    NASA Astrophysics Data System (ADS)

    Uehara, K.; Tanaka, A.; Saito, Y.; Tamura, T.; Nguyen, V. L.; Ta, T. K.

    2013-12-01

    Seasonal water level change within and around the Vietnamese Mekong River Delta (MRD) has been analyzed to understand the impact of climate change in the South China Sea on river flooding within the MRD. It was found that the sea level variability along the deltaic coast has high coherence with the strength of offshore oceanic currents which seasonally reverse their direction under the SE Asian monsoon climate, indicating that the coastal sea level is linked with offshore currents through a geostrophic relation. It was also suggested that the temporal pattern of water levels in the middle reaches of the MRD, 80-100km apart from the river mouth, was influenced not only by upstream information but also by the downstream sea level change. These results indicates that the climatic change in the oceanic current field may influence the occurrence of flooding within the MRD especially during the NE monsoon season when the sea level is high.

  11. Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Wang, Xin-Ming; Gao, Bo; Fu, Xiao-Xin; He, Quan-Fu; Zhao, Xiu-Ying; Yu, Jian-Zhen; Zheng, Mei

    2012-03-01

    Fine particles (PM2.5) were collected using filter-based high-volume samplers during summer-winter 2008 at a rural site in the central Pearl River Delta (PRD), south China, to determine typical secondary organic aerosol (SOA) tracers from significant biogenic (isoprene, monoterpenes, and sesquiterpenes) and anthropogenic (aromatics) precursors. Average isoprene SOA tracers were significantly higher during summer (126 ng m-3) than during fall-winter (25.1 ng m-3), owing largely to the higher isoprene emission and reaction rates in summer. Average monoterpene SOA tracers during summer (11.6 ng m-3) and fall-winter (16.4 ng m-3) showed much less difference compared to isoprene SOA tracers, probably resulting from the counteracting effects of temperature on the precursor emission/tracer formation and on gas/particle partitioning. The concentrations of the aromatics' SOA tracer (2,3-dihydroxy-4-oxopentanoic acid) ranged from 1.70 to 52.0 ng m-3 with an average of 15.1 ng m-3, which was the highest reported in ambient air. The secondary organic carbon (SOC) estimated by the SOA-tracer method averaged 3.07 μg C m-3 in summer and 2.00 μg C m-3 in fall-winter, contributing 38.4% and 8.7% to OC, respectively. During summer, aromatics-SOC and isoprene-SOC reached 2.25 ± 1.5 μg C m-3 and 0.64 ± 0.7 μg C m-3 and accounted for 76% and 18% of the estimated SOC, respectively, while during fall-winter, aromatics-SOC (1.64 ± 1.4 μg C m-3) was dominant with a share of 79% in total estimated SOC. These results indicated that anthropogenic aromatics were dominant SOC precursors in the highly industrialized and urbanized PRD region. During summer, SOC levels estimated by elemental carbon (EC) tracer method were not only consistent with but also correlated well with those by SOA-tracer method. During fall-winter, however, SOC by SOA-tracer method was only about one third of that by EC-tracer method. Their gaps were significantly correlated with the biomass burning tracer

  12. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China

    PubMed Central

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431

  13. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China.

    PubMed

    Tan, Xiao-Xin; Luo, Xiao-Jun; Zheng, Xiao-Bo; Li, Zong-Rui; Sun, Run-Xia; Mai, Bi-Xian

    2016-02-15

    Twelve organophosphorus flame retardants (PFRs) were identified in the sediments and the sediment core collected from the rivers and the estuary in the Pearl River Delta, with the aim of investigating their spatial and vertical distributions. The concentrations of PFRs ranged from 8.3 to 470 ng/g dry weight with high levels of PFRs in the urban area and the e-waste recycling region. Generally, TPhP, TCPP, TEHP, TCEP, and TBEP were the dominant compounds of the PFRs, the composition of which varied across the different regions, reflecting the different sources of PFRs. In the estuary, the PFRs mainly derived from the Xijiang River and the Shunde sections. Increased concentrations of halogen-containing PFRs have been observed in the upper layers of the sediment core. Conversely, relatively high concentrations of halogen-free PFRs were observed in the lower layers of the sediment core, indicating different usage patterns or environmental behaviors between the halogen and the non-halogen PFRs in the study area. PMID:26657357

  14. Modern sedimentation and sediment dispersal pattern on the continental shelf off the Mekong River delta, South China Sea

    NASA Astrophysics Data System (ADS)

    Szczuciński, Witold; Jagodziński, Robert; Hanebuth, Till J. J.; Stattegger, Karl; Wetzel, Andreas; Mitręga, Marta; Unverricht, Daniel; Van Phach, Phung

    2013-11-01

    The Mekong River is one of the major suppliers of sediments to the ocean, resulting in the formation of one of the largest river deltas. A major portion of the supplied sediments is accumulated in the subaqueous delta front, which progrades directly off the river mouths and also forms at a distance of more than 200 km westward, next to the Camau Peninsula. This study presents evidence of the existence of a Mekong-fed prodelta further offshore and provides a first quantitative assessment of the modern fluvial-derived sediment dispersal pattern to the subaqueous prodelta, the outer continental shelf and the deep region of the South China Sea. The study is based on 96 surface shelf sediment samples and five short sediment cores, which were analyzed for grain-size composition, carbonate and total organic carbon contents, sedimentary structures (X-ray radiographs), clay mineralogy and bulk geochemistry as well as 210Pb and 137Cs-based sediment accumulation rates. The major sediment types in water depths of 18 m to 112 m include muddy sand, sand, gravelly muddy sand, sandy mud, gravelly sand and mud. The mud is composed mostly of silt fraction, while gravel is primarily composed of shell hash. The sedimentary structures include lamination, cross-stratification, truncation surfaces and burrows of various types. The carbonate content in the sediments varies from 3% close to the Mekong River mouths to 81% further on the shelf. Total organic carbon is from 0.02% in sand to 0.94% in mud. The highest average elemental concentrations are of Si, Ca, Al, Fe, Mg and K. The spatial variability is similar for Al, K and Ti, as well as for Ca and Sr, suggesting the common presence in phyllosilicates and calcium carbonate minerals, respectively. The most common clay mineral is illite followed by smectite, kaolinite and chlorite. The spatial distribution of clay minerals suggests that they are primarily derived from the Mekong River, except in the northeastern region. The sediment

  15. Colorado River Delta

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Colorado River ends its 2330 km journey in the Gulf of Mexico in Baja California. The heavy use of the river as an irrigation source for the Imperial Valley has dessicated the lower course of the river in Mexico such that it no longer consistently reaches the sea. Prior to the mid 20th century, the Colorado River Delta provided a rich estuarine marshland that is now essentially desiccated, but nonetheless is an important ecological resource.

    The image was acquired May 29, 2006, covers an area of 44.3 x 57.5 km, and is located at 32.1 degrees north latitude, 115.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  16. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  17. Evaluation of the reliability of a conventional platform installed in South Pass Block 47 of the Mississippi River delta

    SciTech Connect

    Bea, R.G.

    1996-12-31

    In August 1995, the Energy Development Corporation (EDC) installed a conventional drilling and production platform in South Pass Block 47 (SP 47). Due to its proximity to the delta of the Mississippi River, this platform will be subject to the environmental forces developed by hurricanes and movements of the sea floor. This paper summarizes results from probability based study of the reliability characteristics of a conventional platform installed in SP 47. Bases for evaluation of the acceptability of the reliability of the platform are developed. This paper shows how reliability methods can be used to help improve the efficiency of offshore platforms. Application of traditional engineering approaches indicated the need for a mudslide resistant platform. Given that a mudslide resistant platform was required, then the gas reserves could not have been developed.

  18. Mississippi River Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As the Mississippi River enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad stripe running northwest to southeast.

    This image was acquired on May 24, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping

  19. [Distribution Characteristics and Risk Assessment of Phthalic Acid Esters in Agricultural Products Around the Pearl River Delta. South China].

    PubMed

    Li, Bin; Wu, Shan; Liang, Jin-ming; Deng, Jie-fan; Wang, Ke; Liang, Wen-li; Zeng, Cai-ming; Peng, Si-qing; Zhang, Tian-bin; Yang, Guo-yi

    2016-01-15

    In order to investigate and assess the distribution of pathalic acid easters (PAEs) in agricultural products from typical areas of the Pearl River Delta, South China, 131 agricultural products were sampled for determination of 6 PAEs priority pollutants classified by the U. S. EPA by GC-FID. The results showed that the total contents of the PAEs (sigma PAEs) in agricultural products samples ranged from nd to 79.86 mg x kg(-1) and the mean value was 2.84 mg x kg(-1), with the detected ratio of 98.5%. The average concentrations of sigma PAEs in different types of agricultural products were ordered by vegetables (3.03 mg x kg(-1)) > rice (2.52 mg x kg(-1)) > fruits (1.26 mg x kg(-1)). The mean concentration of PAEs distributed in the four typical cities of the Pearl River Delta, and decreased in the sequence of Zhuhai (6.53 mg x kg(-1)) > Dongguan (2.59 mg x kg(-1)) > Huizhou (1.53 mg x kg(-1)) > Zhongshan (1.12 mg x kg(-1)). Di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) contributed more than 90. 8% of the total PAEs in samples, and were the main components of PAEs in agricultural products from the Pearl River Delta, with higher percentage contents and detected ratio. Meanwhile, the average concentrations of sigma PAEs in cabbage mustard, lettuce occurred in Zhuhai and Dongguan cities, followed by lettuce and leaf lettuce in the corresponding DEHP from Zhuhai city, both exceeded the suggested standards in U.S.A. and Europe and were of high health risk. There were significant differences among 14 various vegetables in the contents of the 6 PAEs compounds, and the sigma PAEs contents in cabbage mustard and lettuce as part of leafy vegetables were higher than those in other vegetables, while the lowest were detected in flowering cabbage and edible amaranth. Therefore, the type of vegetables and its growing environment exposed to the atmosphere and soil were the main factors that significantly affected their accumulation of

  20. Toxaphene levels in retail food from the Pearl River Delta area of South China and an assessment of dietary intake.

    PubMed

    Jiang, YouSheng; Liu, ZhiBin; Wu, DongTing; Zhang, JianQing; Zhou, Jian; Li, ShengNong; Lu, LinGeng; Lin, XiaoShi; Lu, ShaoYou; Peng, JinLing

    2016-06-01

    Limited literature exists on toxaphene contamination in food worldwide, particularly in mainland China. In this study, three toxaphene congeners, Parlar 26 (B8-1413), Parlar 50 (B9-1679) and Parlar 62 (B9-1025), were analyzed in five different food categories from the Pearl River Delta Area in China using isotope dilution high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS), and toxaphene levels in food were reported and toxaphene dietary intake by local residents estimated. The results showed that fish contained the highest toxaphene level with a median of 12.87 pg/g wet weight (ww), followed by poultry meat, egg products, livestock meat and vegetable, which had median levels of 5.8, 2.2, 1.89 and 0.67 pg/g ww, respectively. Parlar 50 and Parlar 26 were the predominant characteristic congeners in fish, and Parlar 26 was the predominant congener not only in poultry products and eggs, but also in livestock and vegetable. The estimated average daily intake found by local residents was 35.57 pg/kg body weight/day. Overall toxaphene levels and estimated dietary intake in the Pearl River Delta Area of South China are far lower than the European Maximum Residue Limits (EU MRLs), the German MRL for fish, and other international literature data. Therefore, the risk of adverse health effects from dietary intakes of toxaphene for the local residents is not considerable at the current time, but follow-ups are warranted to study dynamic changes of toxaphene in food in this area. PMID:26991380

  1. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea.

    PubMed

    Mai, Bixian; Chen, Shejun; Luo, Xiaojun; Chen, Laiguo; Yang, Qingshu; Sheng, Guoying; Peng, Pingan; Fu, Jiamo; Zeng, Eddy Y

    2005-05-15

    Spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs) in sediments of the Pearl River Delta (PRD) and adjacent South China Sea (SCS) of southern China were examined. A total of 66 surface sediment samples were collected and analyzed to determine the concentrations of 10 PBDE congeners (BDE-28, -47, -66, -100, -99, -154, -153, -138, -183, and -209). The concentrations of BDE-209 and SigmaPBDEs (defined as the sum of all targeted PBDE congeners except for BDE-209) ranged from 0.4 to 7340 and from 0.04 to 94.7 ng/g, respectively. The SigmaPBDEs concentrations were mostly < 50 ng/g, within the range for riverine and coastal sediments around the world, whereas the BDE-209 concentrations at the most contaminated sites were at the high end of the worldwide figures. Congener compositions were dominated by BDE-209 (72.6 - 99.7%), with minor contributions from penta- and octa-BDEs. Slightly different PBDE compositions were observed among samples collected from different locations, attributable to possible decomposition of highly brominated congeners and/or redistribution between particles of various sizes during atmospheric or fluvial transportation. The PBDE patterns in the SCS and Pearl River Estuary sediments were similar to those in sediments of the Zhujiang and Dongjiang Rivers, reflecting the widespread influence from local inputs. Analyses of two short sediment cores collected from the Pearl River Estuary showed that concentrations of BDE-209 rapidly increased in the upper layers of both cores, coincident with the growth of the electronics manufacturing capacities in the PRD region. The major sources of PBDEs were probably waste discharges from the cities of Guangzhou, Dongguan, and Shenzhen, the three fastest growing urban centers in the PRD. PMID:15952354

  2. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China.

    PubMed

    Chen, Laiguo; Liu, Ming; Fan, Ruifang; Ma, Shexia; Xu, Zhencheng; Ren, Mingzhong; He, Qiusheng

    2013-03-01

    The potential for Hg release during municipal solid waste incineration (MSWI) is attracting increased attention due to high volume of municipal waste being treated by incineration in China. Emission amounts have been estimated using emission factors developed for other countries. To fine tune our emission estimate total mercury (THg) and mercury speciation were measured using isokinetic sampling in eight plants, of which six used grate furnace combustor (GFC) and two circulation fluidized bed combustors (CFBCs). Results showed that average THg concentration (19.5 ± 13.6 μg/Nm) in flue gas at the facilities that used CFBC was significantly lower than that at those using GFC (51.4 ± 28.3 μg/Nm, p=0.002). Gaseous oxidized mercury (GOM), gaseous elemental mercury (GEM, Hg), and particulate mercury (Hg) represented 95.5 ± 3.8%, 4.1 ± 3.9% and 0.4 ± 0.3% in GFC, and 63.8 ± 8.6%, 33.6 ± 10.5% and 2.6 ± 1.9% in CFBC, respectively. The measured average THg emission factor for the 8 MSWI plants was 208 ± 130 mg/t in the Pearl River Delta (PRD) region, with 217 ± 158 mg/t and 188 ± 17.7 mg/t were from GFC and CFBC, respectively. Using the average emission factor the estimated total mercury emissions from MSWI were 4.67 ± 2.91 t in China, and 770 ± 65.5 kg in the PRD region in 2010. Of these, 4240 ± 210 kg, 408 ± 231 kg and 14.8 ± 14.1 kg, and 688 ± 37 kg, 78.9 ± 40.6 kg and 3.2 ± 3.0 kg were GOM, Hg, and Hg, respectively. Mercury emissions will continue to increase as the amounts of MSW being incinerated increases. PMID:23410861

  3. Chlorinated paraffins in sediments from the Pearl River Delta, South China: spatial and temporal distributions and implication for processes.

    PubMed

    Chen, Man-Ying; Luo, Xiao-Jun; Zhang, Xiu-Lan; He, Ming-Jing; Chen, She-Jun; Mai, Bi-Xian

    2011-12-01

    Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) were measured in sediments from ponds, rivers and tributaries, and an estuary, as well as a sediment core in the Pearl River Delta (PRD), South China, to comprehensively investigate the spatial and temporal distributions of CPs. The concentrations of SCCPs and MCCPs in sediment were varied from 320 to 6600 ng/g and from 880 to 38,000 ng/g, respectively. Elevated CP concentrations were found in pond sediments (means of 2800 and 21,000 ng/g for SCCPs and MCCPs) in the e-waste recycling area and in river sediments (means of 1200 and 3900 ng/g for SCCPs and MCCPs) in the highly industrialized areas. The significant positive correlations between SCCP concentration and MCCPs/SCCPs in the highly industrialized areas reflected the emission of local industry activities, while the significant negative correlations in the low industrial activity areas could be linked to long-range transportation of CPs. An increased abundance of short chain and low chlorinated congeners was observed in the low industrial activity areas compared to the industrialized areas. The preferred transportation of short chain and low chlorinated congener CPs and the dechlorination of higher chlorinated congeners CPs were the most likely reasons. The vertical profile of CPs in the sediment core indicated a rapid increase in the usage of CPs and a shift to more MCCPs in recent years. The decreased chlorine content of CPs with increasing sediment depth indicated the possibility of dechlorination of higher chlorinated congeners (Cl(9) and Cl(10)) after deposition in sediments with greater dechlorination potential for short chain CPs than long chain CPs. PMID:22014313

  4. The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River delta, South China.

    PubMed

    Kong, K Y; Cheung, K C; Wong, C K C; Wong, M H

    2005-05-01

    Hong Kong and South China are the most developed regions within China. The industrialization in these areas has resulted in severe environmental problems. Sediment and biotic samples including tilapia (Oreochromis mossambicus), bighead carp (Aristichthys nobilis), grass carp (Ctenopharyngodon idellus), crucian carp (Carassius auratus) and mandarin fish/fresh water grouper (Siniperca chuatsi) were collected from different fishponds in the Pearl River Delta (Tanzhou, Sanjiao, Guangzhou, Shipai, Changan and Mai Po) for the analysis of polycyclic aromatic hydrocarbons (PAHs) and organochlorine (OC) pesticides. Mandarin fish, which belongs to the highest trophic level, accumulated the highest concentrations of PAHs and DDTs among all fish species. The levels of DDTs in fish samples ranged from 1.5 to 62ng g-1 (wet wt.), with more than 30% of the fish samples exceeding the limit of 14.4ng g-1 (wet wt.) for human consumption recommended by US EPA (2000). Levels of PAHs in fish samples ranged from 1.91 to 224.03ng g-1 (wet wt.), but the potency-weighted total concentrations of PAHs in all muscle tissues were below the guideline value of 0.67ng g-1 (wet wt.) for human consumption set by US EPA (2000). The guideline value calculated was based on a tissue consumption rate of 142.2g day-1 (4-5 meals per week), which is a more protective rate for populations with a high consumption of fish, like Chinese and Asians. The effect of lipid content in PAHs and DDTs accumulation in fish tissue was not significant in general. PMID:15899281

  5. Delta growth and river valleys: the influence of climate and sea level changes on the South Adriatic shelf (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Maselli, V.; Trincardi, F.; Asioli, A.; Ceregato, A.; Rizzetto, F.; Taviani, M.

    2014-09-01

    Incised valleys across continental margins represent the response of fluvial systems to changes in their equilibrium dynamics, mainly driven by base level fall forced by glacial-eustatic cycles. The Manfredonia Incised Valley formed during the last glacial sea level lowstand, when most of the southern Adriatic shelf was sub-aerially exposed but the outer shelf remained under water. The pronounced upstream deepening of the valley is ascribed to river incision of the MIS5e highstand coastal prism and related subaqueous clinoform under the influence of MIS5-4 sea level fluctuations, while the downstream shallowing and narrowing mainly reflects the impact of increased rates of sea level fall at the MIS3-2 transition on a flatter mid-outer shelf. Until 15 ka BP, the valley fed an asymmetric delta confined to the mid-outer shelf, testifying that continental and deep marine systems remained disconnected during the lowstand. Sea level rise reached the inner shelf during the Early Holocene, drowning the valley and leading to the formation of a sheltered embayment confined toward the land: at this time part of the incision remained underfilled with a marked bathymetric expression. This mini-basin was rapidly filled by sandy bayhead deltas, prograding from both the northern and southern sides of the valley. In this environment, protected by marine reworking and where sediment dispersal was less effective, the accommodation space was reduced and autogenic processes forced the formation of multiple and coalescing delta lobes. Bayhead delta progradations occurred in few centuries, between 8 and 7.2 ka cal BP, confirming the recent hypothesis that in this area the valley was filled during the formation of sapropel S1. This proximal valley fill, representing the very shallow-water equivalent of the cm-thick sapropel layers accumulated offshore in the deeper southern Adriatic basin, is of key importance in following the signature of the sapropel in a facies-tract ideally from the

  6. Depositional architecture and evolution of inner shelf to shelf edge delta systems since the Late Oliocene and their respone to the tectonic and sea level change, Pear River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Lin, Changsong; Zhang, Zhongtao; liu, Jingyan; Jiang, Jing

    2016-04-01

    The Pear River Mouth Basin is located in the northern continent margin of the South China Sea. Since the Late Oligocene, the long-term active fluvial systems (Paleo-Zhujiang) from the western basin margin bebouched into the northern continental margin of the South China Sea and formed widespread deltaic deposits in various depositional geomorphologies and tectonic settings. Based of integral analysys of abundant seismic, well logging and drilling core data, Depositional architecture and evolution of these delta systems and their respone to the tectonic and sea level change are documented in the study. There are two basic types of the delta systems which have been recognized: inner shelf delta deposited in shallow water enviroments and the outer shelf or shelf-edge delta systems occurred in deep water settings. The paleowater depths of these delta systems are around 30 to 80m (inner shelf delta) and 400-1000m (shelf-edge delta) estimated from the thickness (decompaction) of the delta front sequences. The study shows that the inner shelf delta systems are characterized by relatively thin delta forests (20-40m), numereous stacked distributary channel fills, relative coarse river mouth bar deposits and thin distal delta front or distal bar and prodelta deposits. In contrast, the outer shelf or shelf edge delta systems are characteristic of thick (300-800m) and steep (4-60) of deltaic clinoforms, which commonly display in 3D seismic profiles as "S" shape reflection. Large scale soft-sediment deformation structures, slump or debris flow deposits consisting mainly of soft-sediment deformed beds, blocks of sandstones and siltstones or mudstones widely developed in the delta front deposits. The shelf edge delta systems are typically associated with sandy turbidite fan deposits along the prodelta slopes, which may shift basinwards as the progradation of the delta systems. The delta systems underwent several regional cycles of evolution from inner shelf deltas to shelf edge

  7. Effects of landscape heterogeneity on the elevated trace metal concentrations in agricultural soils at multiple scales in the Pearl River Delta, South China.

    PubMed

    Li, Cheng; Li, Fangbai; Wu, Zhifeng; Cheng, Jiong

    2015-11-01

    Based on multiple geo-accumulation indices and correlation and partial redundancy analyses, we examined the spatial patterns of agricultural soil contaminations for As, Pb, Cd, Cr, and Ni in the Pearl River Delta, South China and their relations with landscape heterogeneity at small, medium and large spatial scales. We found that the concentrations of trace elements were slightly elevated, and most trace metals had a geogenic origin. Landscape variables explained 21-53% of the variation of elevated trace metal concentrations with an increasing explanatory power from the small to the large scale. The three variable groups representing parent materials, distance density characteristics and land use had different contributions to the elevated trace metals among scales. Both the distance density variables and land use pattern had a stronger influences on trace metal concentrations at a small scale than at a larger scale, while the parent materials was important at all the scales. PMID:26196316

  8. Using delta-front bathymetry to understand river delta progradation

    NASA Astrophysics Data System (ADS)

    Shaw, J. B.; Mohrig, D. C.

    2010-12-01

    We investigate the delta-front bathymetry of the Wax Lake Delta in Louisiana, USA; a sand rich river delta prograding quickly (~100 m/yr) into a shallow (~2.5 m) basin. The delta-front is the zone separating the bottomset from the topset of the delta. Bottomset sedimentation covers the bed evenly whereas topset sediment transport is focused by flow through distributary channels. The delta front connects these two disparate transport regimes and has a profound effect on channel-network evolution and sedimentary structure of river deltas. Predictions of delta-front topography made by models of delta progradation have rarely been compared to the bathymetry of field-scale deltas. We have mapped 60 km2 of delta front bathymetry immediately seaward of two sub-aerial distributary channels. Subaqueous channels extend up to 2 km seaward of their subaerial portions. These channels lose definition at their distal ends through a combination of channel-bed shoaling and loss of bank relief. Little bathymetric relief is observed at the fronts of the subaqueous channels, calling into question the role of channel-mouth bars in generating the bifurcations observed in this delta-channel network. Near the subaerial to subaqueous transition, steep and eroding sidewalls transition to constructional banks with gentle grades. Grab samples of bed material have been collected throughout the study area in order to detect proximal to distal fining and to constrain the shear stresses connected with delta-front sedimentation. A better understanding of sediment transport in the delta front and its affiliated patterns of erosion and deposition is essential for progress in understanding how river deltas prograde and fill their basins.

  9. Passive air sampling of DDT, chlordane and HCB in the Pearl River Delta, South China: implications to regional sources.

    PubMed

    Wang, Jun; Guo, Lingli; Li, Jun; Zhang, Gan; Lee, Celine S L; Li, Xiangdong; Jones, Kevin C; Xiang, Yunrong; Zhong, Liuju

    2007-06-01

    The Pearl River Delta (PRD) is one of the largest fast-developing economic zones in China. Hong Kong and the mainland part of the PRD differed in socio-economic development history and chemical management policies. Polyurethane foam (PUF)-passive air sampling (PAS) was deployed at 21 regional air quality monitoring stations across the PRD in summer and winter, respectively. Dichloro-diphenyl-trichloroethane (DDT), chlordane and hexachlorobenzene (HCB) were analyzed with GC-MS. High total DDT (240-3700 pg m(-3)) and chlordane (100-2600 pg m(-3)) concentrations were observed. Concentrations of DDTs and chlordane were higher in summer than winter; HCB vice versa. Spatially, the mainland part of the PRD generally displayed higher DDT concentrations than Hong Kong. Antifouling paint for fishing ships in coastal China was suggested to be an important current DDT source in the coast. The reason is unknown for the very low trans-/cis-chlordane (TC/CC) ratios (0.27) found in the mainland in winter. HCB concentrations were relatively uniform across the PRD, and long range transport of HCB from inland/North China to the PRD in winter was suggested. PMID:17554430

  10. Fecal steroids in riverine runoff of the Pearl River Delta, South China: levels, potential sources and inputs to the coastal ocean.

    PubMed

    Wang, Ji-Zhong; Guan, Yu-Feng; Ni, Hong-Gang; Liu, Gui-Jian; Zeng, Eddy Y

    2010-01-01

    Domestic sewage is a potential source of contamination deteriorating water quality in rivers and coastal environments. The present study determined the concentrations of eight steroids in both filtrate and suspended particulate matter (SPM) samples collected monthly at the eight major riverine runoff outlets of the Pearl River Delta (PRD), South China, from March 2005 to February 2006. The concentration of the eight steroids (sum of which is defined as Sigma(8)steroid) in the filtrate and SPM samples ranged 16.7-1340 ng L(-1) and 0.44-240 microg g(-1), respectively. The filtrate samples contained the highest levels of cholesterol (CHOE) and stigmasterol (STIG) on average, whereas the SPM samples had the largest relative abundances of CHOE and coprostanol (COP). In general, larger proportions of the steroids were associated with SPM than with the filtrate phase. The combined (filtrate plus SPM) concentrations of COP in riverine runoff of the PRD were at the midpoint of the global range in surface water. The concentrations of Sigma(8)steroid and COP in SPM were not significantly correlated with particulate organic carbon (POC), riverine runoff, or SPM concentrations, which indicates the dominance of nonpoint input sources for the occurrence of steroids in the PRD. The annual riverine inputs of Sigma(8)steroid and COP were estimated at 360 and 31.6 tons yr(-1), respectively, and the monthly inputs of both Sigma(8)steroid and COP were positively correlated with monthly runoff discharge. Furthermore, the concentrations of Sigma(8)steroid, COP, and CHOE showed significant temporal and spatial variability. These results can be explained by a combination of climatic characteristics, socioeconomic conditions, and steroid sources. Analyses of the diagnostic indices of COP and background information suggested that riverine runoff from the PRD may have been affected by domestic wastewater, which appeared to be a major COP source to the Pearl River Estuary and South China Sea

  11. Riverine inputs of total organic carbon and suspended particulate matter from the Pearl River Delta to the coastal ocean off South China.

    PubMed

    Ni, Hong-Gang; Lu, Feng-Hui; Luo, Xian-Lin; Tian, Hui-Yu; Zeng, Eddy Y

    2008-06-01

    A total of 1008 samples were collected from the eight major riverine runoff outlets in the Pearl River Delta (PRD) during 2005-2006 to estimate the fluxes of total organic carbon (TOC) to the coastal ocean off South China. The average dissolved organic carbon (DOC) concentration was 1.67 mg/L with a range of 1.38-2.13 mg/L. Concentrations of particulate organic carbon (POC) ranged from 2.66-4.12% of total suspended particulate matter (SPM). The fluxes of TOC and SPM from the PRD via the eight outlets were 9.2 x 10(5) and 2.5 x 10(7)tons/yr, respectively. Temporal variations in POC and DOC were observed at all outlets due to the large variability in runoff levels because of the seasonality of rainfall, and the riverine discharge amount was an important factor controlling TOC flux. The net contribution of organic carbon from the PRD to the coastal ocean represented approximately 0.1-0.2% of total organic carbon transported by rivers worldwide. PMID:18374367

  12. [Impacts of landscape patterns on heavy metal contamination of agricultural top soils in the Pearl River Delta, South China].

    PubMed

    Li, Cheng; Li, Fang-bai; Wu, Zhi-feng; Cheng, Jiong

    2015-04-01

    Landscape patterns are known to influence many ecological processes, but the relationship between landscape patterns and soil pollution processes is not well understood. Based on 300 top soil samples, land use and cover map for the Pearl River Delta (PRD) of 2005, this study explored the characteristics and spatial pattern of heavy metal contamination of agricultural top soils and examined the impacts of landscape patterns on the heavy metal contamination in the buffers of soil samples. Research methods included geostatistical analysis, landscape pattern analysis, single-factor pollution indices, and Pearson correlation analysis. We found that: 1) out of the 235 agricultural soil samples, 3.8%, 0.4%, 17.0% and 9.4% samples exceeded the Grade II national standard for As, Pb, Cd and Ni concentrations respectively. High pollution levels were found in three cities, Guangzhou, Foshan and Zhongshan; 2) soils in the farmland were more polluted than those in the forest and orchard land, and there were no differences among different agricultural land use types in contamination level of each heavy metal (except Cd); and 3) the proportion, mean patch area as well as the degree of landscape fragmentation, landscape-level structural complexity and aggregation/connectivity of water at the buffer zone were significantly positively correlated with the contamination level of each of the four heavy metals in agricultural top soils. Part of the landscape pattern of urban land in the buffer zone also positively correlated with Pb and Cd levels (P < 0.05). On the contrary, the proportion, mean patch area and aggregation degree of forest land negatively correlated with soil Pb and Ni levels (P < 0.05); and 4) the closer to the industry land were the soil samples, the more polluted the soils were for Pb, Cd and Ni. Only landscape diversity was found to be positively correlated with soil Cd contamination. The study results provide new information and scientific basis for heavy metal

  13. Persistent halogenated compounds in fish from rivers in the Pearl River Delta, South China: Geographical pattern and implications for anthropogenic effects on the environment.

    PubMed

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Li, Zongrui; Wang, Tao; Tao, Lin; Mai, Bixian

    2016-04-01

    Three fish species, mud carp (Cirrhinus molitorella), tilapia (Tilapia nilotica), and plecostomus (Hypostomus plecostomus), from rivers in the Pearl River Delta (PRD) were analyzed for dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and Dechlorane Plus (DP). The concentrations of DDTs, HCHs, PCBs, PBDEs, DBDPE, and DP ranged from 380-57,000, 5.5-100, 30-4200, 6.9-690, 0.29-460, and 0.09-20ng/g lipid weight, respectively. Congener profiles or chemical compositions of PBDEs, DPs, DDTs, and HCHs in plecostomus differed significantly from those in the other two fish species, which can be ascribed to species-specific metabolism. DDTs derived from historical residue and land erosion remained the predominant pollutants in the PRD, while industrial and urban activities resulted in elevated levels of PCBs and PBDEs in the metropolitan area. E-waste recycling activities have greatly impacted on the adjacent aquatic environment, and the potential point source for DBDPE was also revealed. PMID:26821261

  14. Observation of tropospheric NO2 by airborne multi-axis differential optical absorption spectroscopy in the Pearl River Delta region, south China

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Xie, Pin-Hua; Si, Fu-Qi; Li, Ang; Wu, Feng-Cheng; Wang, Yang; Liu, Jian-Guo; Liu, Wen-Qing; Andreas, Hartl; Chan, Ka Lok

    2014-09-01

    An airborne multi-axis differential optical absorption spectroscopic (AMAX-DOAS) instrument was developed and applied to measure tropospheric NO2 in the Pearl River Delta region in the south of China. By combining the measurements in nadir and zenith directions and analyzing the UV and visible spectral region using the DOAS method, information about tropospheric NO2 vertical columns was obtained. Strong tropospheric NO2 signals were detected when flying over heavilly polluted regions and point sources like plants. The AMAX-DOAS results were compared with ground-based MAX-DOAS observations in the southwest of Zhuhai city using the same parameters for radiative transport calculations. The difference in vertical column data between the two instruments is about 8%. Our data were also compared with those from OMI and fair agreement was obtained with a correlation coefficient R of 0.61. The difference between the two instruments can be attributed to the different spatial resolution and the temporal mismatch during the measurements.

  15. From Natural to Design River Deltas

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu

    2016-04-01

    Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.

  16. Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Barclay, David J.; Yager, Elowyn M.; Graves, Jason; Kloczko, Michael; Calkin, Parker E.

    2013-12-01

    Fluctuations of four valley glaciers in coastal south-central Alaska are reconstructed for the past two millennia. Tree-ring crossdates on 216 glacially killed stumps and logs provide the primary age control, and are integrated with glacial stratigraphy, ages of living trees on extant landforms, and historic forefield photographs to constrain former ice margin positions. Sheridan Glacier shows four distinct phases of advance: in the 530s to c.640s in the First Millennium A.D., and the 1240s to 1280s, 1510s to 1700s, and c.1810s to 1860s during the Little Ice Age (LIA). The latter two LIA advances are also recorded on the forefields of nearby Scott, Sherman and Saddlebag glaciers. Comparison of the Sheridan record with other two-millennia long tree-ring constrained valley glacier histories from south-central Alaska and Switzerland shows the same four intervals of advance. These expansions were coeval with decreases in insolation, supporting solar irradiance as the primary pacemaker for centennial-scale fluctuations of mid-latitude valley glaciers prior to the 20th century. Volcanic aerosols, coupled atmospheric-oceanic systems, and local glacier-specific effects may be important to glacier fluctuations as supplemental forcing factors, for causing decadal-scale differences between regions, and as a climatic filter affecting the magnitude of advances.

  17. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    SciTech Connect

    Chen, K.F.

    1999-05-13

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.

  18. Do river deltas in east India retreat? A case of the Krishna Delta

    NASA Astrophysics Data System (ADS)

    Gamage, Nilantha; Smakhtin, Vladimir

    2009-02-01

    The construction of multiple dams and barrages in many Indian River basins over the last few decades significantly reduced river flow to the sea and affected the sediment regime. More reservoir construction is planned through the proposed National River Linking Project (NRLP), which will transfer massive amounts of water from the North to the South of India. The impacts of these developments on fertile and ecologically sensitive deltaic environments are poorly understood and quantified at present. In this paper an attempt is made to identify, locate and quantify coastal erosion and deposition processes in one of the major river basins in India—the Krishna—using a time series of Landsat images for 1977, 1990 and 2001 with a spatial resolution ranging from 57.0 m to 28.5 m. The dynamics of these processes are analyzed together with the time series of river flow, sediment discharge and sediment storage in the basin. Comparisons are made with similar processes identified and quantified earlier in the delta of a neighboring similarly large river basin—the Godavari. The results suggest that coastal erosion in the Krishna Delta progressed over the last 25 years at the average rate of 77.6 ha yr - 1 , dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.

  19. The depositional characteristics and oil potential of paleo Pearl river delta systems in the Pearl river mouth basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Jishu; Xu, Shice; Sang, Jinyu

    1994-07-01

    Delta systems in the Zhuhai, Zhujiang and Hanjiang formations are interpreted as having formed during periods of sea-level rise from the late Oligocene to mid-Miocene (30-10.5 My B.P.). Deltas in the Zhuhai Formation were developed in a shallow water environment on a sandy, wave- or fluvial-dominated coasts. Thick and blanket-like sandstones are common but mudstones are infrequent. Oil-bearing zones have been found only in the upper part of the systems, overlain by mudstone of the Zhujiang Formation. Deltas in the Zhujiang Formation are interpreted as having formed in a deeper water environment on sandy, wave- or fluvial-dominated coasts. Carbonate platforms started growing on the Dongsha massif as the sea-level slowly rose. The moderate sandstone/mudstone ratio in the delta systems and a zone of secondary porosity in the carbonate rocks provide an excellent reservoir rock and seal rock for the basin. Deltas in the Lower Hanjiang Formation are similar to those of the Zhujiang Formation, but the upper part of the Formation is interpreted as having formed in a shelf environment; the thick shelf mudstone, interbedded with offshore bar sandstones, would be one of the better regional seal rocks in the study area. No carbonate rock developed on the Dongsha massif due to the rapid rise in sea-level. All delta systems from the Zhuhai to the Zhujiang Formation are stacked in an onlap pattern indicating a more and more expanding marine transgression, which was caused by eustatic sea-level rise. This marine transgression is almost unique and contrasts to the progradational (offlap) pattern of Cenozoic delta systems in the Gulf of Mexico. It resulted in thick sandstone deposits, immature or poorly mature source rock and no ductile mudstones, with no growth faults or rollover structures. Hydrocarbons generated from Eocene-Oligocene lacustrine source rocks are trapped by drape structures related to local basement highs or by carbonate rock with secondary porosity. Most of the

  20. Lena River delta formation during the Holocene

    NASA Astrophysics Data System (ADS)

    Bolshiyanov, D.; Makarov, A.; Savelieva, L.

    2015-01-01

    The Lena River delta, the largest delta of the Arctic Ocean, differs from other deltas because it consists mainly of organomineral sediments, commonly called peat, that contain a huge organic carbon reservoir. The analysis of delta sediment radiocarbon ages showed that they could not have formed as peat during floodplain bogging; rather, they accumulated when Laptev Sea water level was high and green mosses and sedges grew and were deposited on the surface of flooded marshes. The Lena River delta formed as organomineral masses and layered sediments accumulated during transgressive phases when sea level rose. In regressive phases, the islands composed of these sediments and other, more ancient islands were eroded. Each new sea transgression led to further accumulation of layered sediments. As a result of alternating transgressive and regressive phases, the first alluvial-marine terrace formed, consisting of geological bodies of different ages. Determining the formation age of different areas of the first terrace and other marine terraces on the coast allowed the periods of increasing (8000-6000 BP (years before present), 4500-4000, 2500-1500, and 400-200 BP) and decreasing (5000, 3000, and 500 BP) Laptev Sea levels to be distinguished in the Lena Delta area.

  1. Lena River Delta formation during the Holocene

    NASA Astrophysics Data System (ADS)

    Bolshiyanov, D.; Makarov, A.; Savelieva, L.

    2014-03-01

    The Lena River Delta, the largest delta of the Arctic Ocean, differs from other deltas because it consists mainly of organomineral sediments, commonly called peat, that contain a huge organic carbon reservoir. The analysis of Delta sediment radiocarbon ages showed that they could not have formed as peat during floodplain bogging, but accumulated when Laptev Sea water level was high and green mosses and sedges grew and were deposited on the surface of flooded marshes. The Lena River Delta formed as organomineral masses and layered sediments accumulated during transgressive phases when sea level rose. In regressive phases, the islands composed of these sediments and other, more ancient islands were eroded. Each new sea transgression led to further accumulation of layered sediments. As a result of alternating transgressive and regressive phases the first alluvial-marine terrace formed, consisting of geological bodies of different ages. Determining the formation age of different areas of the first terrace and other marine terraces on the coast allowed the periods of increasing (8-6 Ka, 4.5-4 Ka, 2.5-1.5 Ka, 0.4-0.2 Ka) and decreasing (5 Ka, 3 Ka, 0.5 Ka) Laptev Sea levels to be distinguished in the Lena Delta area.

  2. River deltas: channelizing sandpiles with memory

    NASA Astrophysics Data System (ADS)

    Jerolmack, Douglas; Reitz, Meredith

    2013-03-01

    River deltas are wedges of sediment that are built via the lateral migration of self-channelizing rivers, but the timescale of this process is prohibitively long to observe in nature. Here we present laboratory results that allow us to examine how channels form and fill space to create a delta. Flow collapses into a single channel whose dimensions adjust to threshold transport conditions for the imposed sediment load. This channelization causes localized shoreline growth until the slope drops below a threshold value for sediment transport. This leads to deposition within the channel, with an upstream-migrating step akin to a stopping front in granular flows, which causes widespread flooding and the selection of a new (steeper) channel path. This cycle is remarkably periodic; delta slope oscillates between two thresholds - entrainment and distrainment - analogous to static and dynamic angles of repose. Selection of a new flow path is inherently stochastic, but previously abandoned channels act as significant attractors for the flow. Once a critical density of flow paths has been established, the flow oscillates among the same 3-5 channels indefinitely. These dynamics result in self-similar (quasi-)radial growth of delta lobes, which can be described using a simple geometric model. Despite its simplicity, the experimental system agrees well with what can be measured from natural deltas Thus, temporal and spatial patterns of deltas appear to be a robust result of mass conservation and transport thresholds.

  3. The influence of temperature and aerosol acidity on biogenic secondary organic aerosol tracers: Observations at a rural site in the central Pearl River Delta region, South China

    NASA Astrophysics Data System (ADS)

    Ding, Xiang; Wang, Xin-Ming; Zheng, Mei

    2011-02-01

    At a rural site in the central Pearl River Delta (PRD) region in south China, fine particle (PM 2.5) samples were collected during fall-winter 2007 to measure biogenic secondary organic aerosol (SOA) tracers, including isoprene SOA tracers (3-methyl-2,3,4-trihydroxy-1-butene, 2-methylglyceric acid, 2-methylthreitol and 2-methylerythritol), α-pinene SOA tracers ( cis-pinonic acid, pinic acid, 3-methyl-1,2,3-butanetricarboxylic acid, 3-hydroxyglutaric acid and 3-hydroxy-4,4-dimethylglutaric acid) and a sesquiterpene SOA tracer (β-caryophyllinic acid). The isoprene-, α-pinene- and sesquiterpene-SOA tracers averaged 30.8 ± 15.9, 6.61 ± 4.39, and 0.54 ± 0.56 ng m -3, respectively; and 2-methyltetrols (sum of 2-methylthreitol and 2-methylerythritol, 27.6 ± 15.1 ng m -3) and cis-pinonic acid (3.60 ± 3.76 ng m -3) were the dominant isoprene- and α-pinene-SOA tracers, respectively. 2-Methyltetrols exhibited significantly positive correlations ( p < 0.05) with ambient temperature, probably resulting from the enhanced isoprene emission strength and tracer formation rate under higher temperature. The significantly positive correlation ( p < 0.05) between 2-methyltetrols and the estimated aerosol acidity with a slope of 59.4 ± 13.4 ng m -3 per μmol [H +] m -3 reflected the enhancement of isoprene SOA formation by aerosol acidity, and acid-catalyzed heterogeneous reaction was probably the major formation pathway for 2-methyltetrols in the PRD region. 2-Methylglyceric acid showed poor correlations with both temperature and aerosol acidity. The α-pinene SOA tracers showed poor correlations with temperature, probably due to the counteraction between temperature effects on the precursor emission/tracer formation and gas/particle partitioning. Among the α-pinene SOA tracers, only cis-pinonic acid and pinic acid exhibited significant correlations with aerosol acidity with slopes of -11.7 ± 3.7 and -2.2 ± 0.8 ng m -3 per μmol [H +] m -3, respectively. The negative

  4. Tidal river dynamics: Implications for deltas

    NASA Astrophysics Data System (ADS)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  5. Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.

  6. Reliability characteristics of a platform in the Mississippi River delta

    SciTech Connect

    Bea, R.G.

    1998-08-01

    In August 1995, the Energy Development Corporation installed a conventional drilling and production platform in South Pass Block 47. Due to its proximity to the delta of the Mississippi River, this platform is exposed to the environmental forces developed by hurricanes and movements of the seafloor. This paper summarizes results from probability-based study of the oceanographic, geotechnical, and structural reliability characteristics of a conventional platform installed in South Pass Block 47. Experience with other structures installed in this area that have failed due to seafloor slides is correlated with results from these analyses. The analyses indicated that a conventional platform could be safely installed at the proposed location. The platform has experienced several severe hurricanes without signs of distress.

  7. Elwha River Delta: Geomorphology of a Mixed-Sediment Beach

    NASA Astrophysics Data System (ADS)

    George, D. A.; Warrick, J. J.

    2007-12-01

    The Elwha River drains the Olympic Peninsula of Washington and forms a mixed grain-size delta in the Strait of Juan de Fuca. The Elwha River has been dammed for almost a century, and a pending dam removal project is expected to reconnect upstream sediment sources to the river mouth. Topographic and grain-size mapping of the delta during 1939-2007 is synthesized and the geomorphology and shoreline changes of this system are described. Data sources include historical aerial photographs, airborne LIDAR, semiannual RTK DGPS topographic surveys and grain-size analyses from digital photographs. The delta is divided into three geomorphic regions: west delta, river mouth and east delta. The river mouth is the most complex region due to the river channel movement, side-channels, and bars immediately offshore of the mouth. The east and west delta differ in beach profile and shoreline change rates. The west delta is steep, cuspate and lacks a low-tide terrace. Further, the west delta has exhibited little semi-annual or inter-annual shoreline change. In contrast, the east delta has a steep foreshore, flat low tide terrace that is dominated by cobble, and a consistent trend of erosion during the surveys. These observations can be used to track coastal changes following dam removal on the Elwha River..

  8. Aromatic hydrocarbons as ozone precursors before and after outbreak of the 2008 financial crisis in the Pearl River Delta region, south China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Blake, Donald R.; Li, Longfeng; Zhang, Zhou; Wang, Shaoyi; Guo, Hai; Lee, Frank S. C.; Gao, Bo; Chan, Loyin; Wu, Dui; Rowland, F. Sherwood

    2012-08-01

    In the second half of 2008 China's highly industrialized Pearl River Delta (PRD) region was hard-hit by the financial crisis (FC). This study reports volatile organic compounds measured in the PRD during November-December in both 2007 before the FC and 2008 after the FC. While total mixing ratios of non-methane hydrocarbons (NMHCs) on average were only about 7% lower from 40.2 ppbv in 2007 to 37.5 ppbv in 2008, their ozone formation potentials (OFPs) dropped about 30%, resulting from about 55% plummet of aromatic hydrocarbons (AHs) against a greater than 20% increase of total alkanes/alkenes. The elevated alkanes and alkenes in 2008 could be explained by greater emissions from vehicle exhausts and LPG combustion due to rapid increase of vehicle numbers and LPG consumption; the drop of AHs could be explained by reduced emissions from industries using AH-containing solvents due to the influence of the FC, as indicated by much lower ratios of toluene to benzene and of xylenes/trichloroethylene/tetrachloroethylene to carbon monoxide (CO) in 2008. Source apportionment by positive matrix factorization (PMF) also revealed much less contribution of industry solvents to total anthropogenic NMHCs and particularly to toluene and xylenes in 2008 than in 2007. Based on PMF reconstructed source contributions, calculated OFPs by industrial emissions were responsible for 40.8% in 2007 in contrast to 18.4% in 2008. Further investigation into local industry output statistics suggested that the plummet of AHs in 2008 should be attributed to small enterprises, which contributed largely to ambient AHs due to their huge numbers and non-existent emission treatment, but were much more influenced by the FC.

  9. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China.

    PubMed

    Chang, Chun-Ying; Xu, Xiang-Hua; Liu, Chuan-Ping; Li, Shu-Yi; Liao, Xin-Rong; Dong, Jun; Li, Fang-Bai

    2014-07-01

    Variable-charge (v-c) soils in subtropical areas contain considerable amounts of iron/aluminum (Fe/Al) oxides that can strongly influence the fate of heavy metals in agricultural ecosystems. However, the relationship between heavy metal accumulation in vegetables and the geochemical factors associated with v-c soils in subtropical regions remains unknown. The present study investigated heavy metal accumulation under field conditions in the Pearl River Delta (PRD) by measuring the content of 8 heavy metals (zinc (Zn), arsenic (As), copper (Cu), mercury (Hg), lead (Pb), chromium (Cr), nickel (Ni) and cadmium (Cd)) in 43 pairs of v-c soil and vegetable (balsam pear and cowpea) samples. Soil physicochemical properties including pH, texture, organic matter and oxide minerals (Fe2O3, SiO2, Al2O3, CaO, MgO, K2O and Na2O) were also analyzed. Heavy metal accumulation from soil to vegetables was assessed based on bioconcentration factors (BCFs). The results showed that soil extractable Fe, oxide minerals and chemical weathering indices of v-c soils strongly affected heavy metal accumulation, whereas the content of Zn, Cu, Cr and Ni in vegetables was strongly affected by the soil clay content. Significant correlations were found between the BCFs of heavy metals and oxide minerals. However, no significant relationship was found between pH and heavy metal accumulation (except for Cu) in balsam pear and cowpea. Correlation analyses showed that a lower oxalate/DCB- extractable Fe content might indicate greater heavy metal (Zn, Cu, Hg, Cr and Ni) accumulation in vegetables. Therefore, it can be deduced that oxalate/DCB- extractable Fe content is a critical geochemical factor that determines the bioavailability of heavy metals and that iron biogeochemical cycles play vital roles in the fate of heavy metals in vegetable fields in this area. These findings provide new insights into the behaviors and fate of heavy metals in subtropical v-c soils and can be used to develop possible

  10. Variation trends and influencing factors of total gaseous mercury in the Pearl River Delta-A highly industrialised region in South China influenced by seasonal monsoons

    NASA Astrophysics Data System (ADS)

    Chen, Laiguo; Liu, Ming; Xu, Zhencheng; Fan, Ruifang; Tao, Jun; Chen, Duohong; Zhang, Deqiang; Xie, Donghai; Sun, Jiaren

    2013-10-01

    Studies on atmospheric mercury in the Pearl River Delta (PRD) region are important because of the economic relevance of this region to China, because of its economic developmental pattern and because it is a highly industrialised area influenced by the strong seasonal monsoons. Total gaseous mercury (TGM), meteorological parameters and criteria pollutant concentrations were measured at Mt. Dinghu (DH, a regional monitoring site) and Guangzhou (GZ, an urban monitoring site) in the PRD region from October 2009 to April 2010 and from November 2010 to November 2011, respectively. The ranges of daily average TGM concentrations at the DH and GZ sites were 1.87-29.9 ng m-3 (5.07 ± 2.89 ng m-3) and 2.66-11.1 ng m-3 (4.60 ± 1.36 ng m-3), respectively, which were far more significant than the background values in the Northern Hemisphere (1.5-1.7 ng m-3), suggesting that the atmosphere in the PRD has suffered from mercury pollution. Similar TGM seasonal distributions at the two sites were observed, with a descending order of spring, winter, autumn and summer. The different seasonal monsoons were the dominant factor controlling the seasonal variability of the TGM, with variations in the boundary layer and oxidation also possibly partially contributing. Different diurnal patterns of the TGM at two sites were observed. TGM levels during the daytime were higher than those during the nighttime and were predominantly influenced by mountain and valley winds at the DH site, whereas the opposite trend was evident at the GZ site, which was primarily influenced by the boundary-layer height and O3 concentration. During the monitoring period, the correlations between the daily TGM levels and the SO2 and NO2 levels at the DH site were significant (r = 0.36, p < 0.001; r = 0.29, p < 0.001), suggesting that coal-fired emission is an important source of mercury for this regional monitoring site. At the GZ site, the correlations between the daily TGM level and the NO, NO2, CO levels were

  11. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  12. Ecosystem Services Assessment of the Nemunas River Delta

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. The Nemunas River Delta, in Lithuania, provides many ecosystem services to the people of the area, including food, fuel, transportation, climate regulation, water purificati...

  13. Volga River Delta and Caspian Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color MODIS image from May 10, 2002, captures Russia's Volga River (running south through the center) emptying into the northern portion of the Caspian Sea. The waters of the Caspian Sea are quite murky in this image, highlighting the water quality problems plaguing the sea. The sea is inundated with sewage and industrial and agricultural waste, which is having measurable impact on human health and wildlife. According reports from the Department of Energy, in less than a decade the sturgeon catch dropped from 30,000 tons to just over 2,000 tons. National and international groups are currently joining together to find strategies of dealing with the environmental problems of the Caspian Sea. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  14. Altamaha River Delta, Georgia Sea Islands

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The history of sea islands in the Altamaha River delta on the coast of Georgia is revealed in this image produced from data acquired by the Airborne Synthetic Aperture Radar (AIRSAR), developed and operated by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The outlines of long-lost plantation rice fields, canals, dikes and other inlets are clearly defined. Salt marshes are shown in red, while dense cypress and live oak tree canopies are seen in yellow-greens.

    Agricultural development of the Altamaha delta began soon after the founding of the Georgia Colony in 1733. About 25 plantations were located on the low-lying islands and shores by the 19th century, taking advantage of the rich alluvial flow and annual inundation of water required by some crops. The first major crop was indigo; when demand for that faded, rice and cotton took its place. A major storm in 1824 destroyed much of the town of Darien (upper right) and put many of the islands under 20 feet of water. The Civil War ended the plantation system, and many of the island plantations disappeared under heavy brush and new growth pine forests. Some were used as tree farms for paper and pulp industries, while the Butler Island (center left) plantation became a wildlife conservation site growing wild sea rice for migrating ducks and other waterfowl. Margaret Mitchell is reputed to have used the former owner of the Butler Plantation as a basis for the Rhett Butler character in her novel 'Gone With The Wind,' taking the first name from Rhett's Island (lower right).

    These data were obtained during a 1994-95 campaign along the Georgia coast. AIRSAR's ability to detect vegetation canopy density, hydrological features and other topographic characteristics is a useful tool in landscape archaeology. AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. The analysis on the data shown was accomplished by Dr. Gary Mckay, Department of Archaeology and Geography, and Ian

  15. 33 CFR 117.756 - South River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false South River. 117.756 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.756 South River. The draw of the Conrail bridge, mile 2.8 at South River shall open on weekdays (exclusive of holidays) from December 1 through the...

  16. 33 CFR 117.756 - South River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false South River. 117.756 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.756 South River. The draw of the Conrail bridge, mile 2.8 at South River shall open on weekdays (exclusive of holidays) from December 1 through the...

  17. 33 CFR 117.756 - South River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false South River. 117.756 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.756 South River. The draw of the Conrail bridge, mile 2.8 at South River shall open on weekdays (exclusive of holidays) from December 1 through the...

  18. 33 CFR 117.756 - South River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false South River. 117.756 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.756 South River. The draw of the Conrail bridge, mile 2.8 at South River shall open on weekdays (exclusive of holidays) from December 1 through the...

  19. 33 CFR 117.756 - South River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false South River. 117.756 Section 117... OPERATION REGULATIONS Specific Requirements New Jersey § 117.756 South River. The draw of the Conrail bridge, mile 2.8 at South River shall open on weekdays (exclusive of holidays) from December 1 through the...

  20. Upper Wilcox Rosita delta system of south Texas: growth-faulted shelf-edge deltas

    SciTech Connect

    Edwards, M.B.

    1981-01-01

    The Rosita delta system, a heretofore unrecognized, major depositional system preserved in the deep upper Wilcox of south Texas, was delineated by detailed correlation of approximately 500 well logs. The Rosita delta system comprises at least three delta complexes, each of which can be traced up to tens of miles along strike and up to approximately 15 mi (24 km) downdip. Basinward, across the growth-fault zone, each delta complex thickens from about 600 ft (180 m) to more than 3000 ft (900 m). The growth faults were activated by progradation of deltas over unstable prodelta-slope muds at the contemporary shelf margin. The three upper Wilcox delta complexes studied in detail are, from oldest to youngest, the Duval, Zapata, and Live Oak deltas, named for the counties in which they are centered. Each complex consists of several lobes, some of which can be traced across the deep zones where the thickness increases by as much as tenfold owing to progradation over active growth faults. Characteristic coarsening-upward progradational units are interpreted from electric log patterns to include prodelta shales, delta-front sandstones, distributary channel and channel-mouth bar sandstones, and interdistributary shales and sandstones. Appreciable variability in sandstone distribution in the deltas may reflect changing importance of fluvial versus marine currents in distributing sediment along the delta front. However, all of the deltas prograded abruptly toward the shelf margin. The gulfward extent of these delta complexes is unknown, and it is concluded that appreciable quantities of sandstone remain to be explored in the deep subsurface of the trend.

  1. A historical perspective of river basin management in the Pearl River Delta of China.

    PubMed

    Weng, Qihao

    2007-12-01

    Three innovations in water and soil conservancy technology in the Pearl River Delta of South China, i.e., dike building, land reclamation, and dike-pond systems, were examined from a historical perspective. They were found to best reflect local farmers' efforts to cope with the challenges of various water disasters and to build a harmonious relationship with the changed environment. These technologies were critical to the agricultural success and sustainability over the past 2000 years, and reflected local farmers' wisdom in balancing land use and environmental conservation. Imprudent use of a new agricultural technology could damage the environment, and could disturb the human-environment relationship, as evidenced by the more frequent flooding that followed inappropriate dike building and premature reclamation. It is suggested that as the urbanization and industrialization process in the delta region continues, the kind of thinking that made the water and soil conservancy sustainable needs to be incorporated into the design of similar technologies for water use and river basin management today. PMID:17240525

  2. Morphology of river deltas on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Witek, Piotr; Czechowski, Leszek

    2016-07-01

    The Cassini-Huygens mission is entering its final phase. The landing of Huygens on Titan and flybys performed by the Cassini probe during the last ten years revolutionized our knowledge about that moon, revealing a complex fluvio-lacustrine environment. Despite significant differences in composition, temperature and gravity, the processes of sediment transport and deposition are similar on Earth and Titan. We performed numerical simulations of development of river deltas in Titanian and terrestrial conditions, under various discharges and with different dominant grain sizes. We found that evolution of deltaic deposits is more rapid on Titan due to higher efficiency of transport, but the flat, lobate river deltas may form in narrower range of parameters than on Earth. Our results help in understanding the evolution of sedimentary deposits and may partially explain the paucity of river deltas in Titan's lakes.

  3. Quantitative metrics that describe river deltas and their channel networks

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.

    2011-12-01

    Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.

  4. Underground and Previously Undiscovered Rivers in the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Kolker, A.; Breaux, A.; Coleman, D.; Inniss, L. V.; Telfeyan, K.; Kim, J.; Schneider, A.; Allison, M. A.; Cable, J. E.; Johannesson, K. H.

    2013-12-01

    In this study we show that there are large, and previously undiscovered, groundwater pathways by which water from the Mississippi River is transported to the wetlands and estuaries of the Mississippi River Delta. Results from multiple methodologies suggest that the total flux of groundwater to the coastal zone in the Mississippi River Delta averages 1,000 m3 s-1, and can reach 5,000 m3 s-1 at high flow. We suggest that flow preferentially occurs through paleo-crevasse channels, relict bayous, and other buried deposits of permeable and coarse grained material. These conduits were formed during the present and previous stages of the delta cycle, which occurred in historical (102 y) and late Holocene(103 y) times, respectively. Flow is driven by the hydrological head difference between the river and the estuary, which is seasonally variable in magnitudeand can reach 5-8 m during peak river floods. This talk will present data from hydrological budgets that show a missing fraction in the Mississippi River water budget, and a missing source of fresh water to a large estuary. We will show that water levels in wells in New Orleans fluctuate with the stage of the Mississippi River. Data of Rn concentration indicate advective submarine groundwater flow, whereas Ba concentrations suggest geochemical leachates are entering the estuary. Furthermore, seismic data indicate the prevalence of paleochannels and other buried features that could carry flow. Given the importance of deltas to global geochemical budgets, we suggest that these results may be generalizable: submarine groundwater discharge in deltas may prove to be an important but understudied pathway by which dissolved materials are transported from the continents to the ocean.

  5. Sandy River Delta Habitat Restoration Project, Annual Report 2001.

    SciTech Connect

    Kelly, Virginia; Dobson, Robin L.

    2002-11-01

    The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland with components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years but shortly after FS

  6. Detection of Area Changes in River Mouthbars at the Mekong River Delta using ALOS/PALSAR data

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Uehara, K.; Tamura, T.; Saito, Y.

    2011-12-01

    Projected sea-level rise by the year 2100 would be ~1m recently and its negative impact on the coastal zone has been pointed out, particularly for mega-deltas in Asia by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007). The relative sea-level rise varies with specific conditions and processes over broad spatial and temporal scales. Therefore, long-term monitoring of geomorphological changes in coastal areas over wide areas is of highly interest and importance for coastal management. However, due to limited data availability and accessibility in developing countries, there is not enough systematic coastal monitoring. The Mekong River Delta is one of typical mega-deltas in Asia, which has a low-lying wide delta-plain located in Cambodia to South Vietnam. Sediment and water discharges of the Mekong River are controlled by the monsoon with high and low discharge in summer (wet season) and winter (dry season), respectively. Therefore, technologies such as SAR (Synthetic Aperture Radar) not affected by the cloud conditions offer potential for monitoring in the monsoon Asia region. In this study, ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data acquired over a period from December 2006 to January 2011 are analyzed to investigate the relation between the sea level and the shape of mouthbars in the Mekong River. Level-1.0 PALSAR data were processed, coregistered, and geocoded to make SAR backscatter intensity images. River mouthbars with strong backscatter, which is surrounded by the water with weak backscatter, are successfully extracted using a histogram thresholding algorithm. Estimated areas of river mouthbars, which are located at the central part of the delta and openly faced to the South China Sea, gradually increase on an annual time scale. These river mouthbars are growing to the seaward. Besides this overall increasing trend, seasonal variations of areas are observed; these correlate with

  7. Changing river courses in the western part of the Ganga-Brahmaputra delta

    NASA Astrophysics Data System (ADS)

    Rudra, Kalyan

    2014-12-01

    The Ganga-Brahmaputra delta is the largest on Earth, the product of two of the world's largest and siltiest rivers. It is formed in a basin located over the zone where the Indian plate subducts beneath the Himalaya to the north and the Indo-Burman ranges to the east. The distributaries in the south-western part of the delta remain disconnected from the Ganga-Padma during the lean season, although they are still active in bank erosion and sediment transport during the monsoon. Four distributaries of the Bhagirathi-Hugli (the westernmost branch of the Ganga) have gone dry during known historical period. In many cases, the natural decay of rivers has been exacerbated by the human intervention, especially where rivers are embanked and no allowance made for their migration through meandering and avulsion. In the coastal zone where mangroves were cleared and creeks were embanked since the late 18th century, decay of channels, and advancement of the sea towards inland have been aggravated. The subsequent attempt of flushing the sediment load to the sea from the estuary to improve the status of navigation in the Bhagirathi-Hugli River was not successful to the level of expectation. This paper deals with the decay and changing courses of rivers in the western part of the Ganga-Brahmaputra delta.

  8. Ecosystem Services Assessment of the Nemunas River Delta

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. The Nemunas River Delta, in Lithuania, is a valued area that can provide a range of services. We conducted a meta-analysis of existing studies done on the region to identify...

  9. Flow patterns and morphology of a prograding river delta

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Mohrig, David; Wagner, R. Wayne

    2016-02-01

    The transition of flow between laterally confined channels and the unchannelized delta front controls the morphodynamic evolution of river deltas but has rarely been measured at the field scale. We quantify flow patterns and bathymetry that define the evolution of the subaqueous delta front on the Wax Lake Delta, a rapidly prograding delta in coastal Louisiana. A significant portion of flow (˜59%) departs the channel network over lateral channel margins as opposed to the downstream channel tips. Bathymetric surveys and remotely sensed estimates of flow direction allow spatial changes in flow velocity to be quantified and patterns of erosion and deposition to be estimated. Shallowing along channel margins produces spatial acceleration and erosion. Lateral spreading, deceleration, and deposition occur within three to eight channel widths outside of the channel margins. In interdistributary bays, the shape of each flow path is constrained by "nourishment boundaries" that separate the outflows from neighboring channels. Deposit elevation decreases with a basinward slope of 2.4 × 10-4 with distance from a channel margin along any flow path, regardless of the channel or location that flow departed the network. Bathymetric depressions called "interdistributary troughs" form along nourishment boundaries where flow paths are the longest and deposit elevation is correspondingly low. We conclude that the deposit morphology exerts a strong control on bathymetric evolution and that interaction between neighboring channels and even neighboring deltas can influence delta front morphology.

  10. 2500 years of changing shoreline accretion rates at the mouths of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Tamura, Toru; Anthony, Edward; Brunier, Guillaume; Saito, Yoshiki; Dussouillez, Philippe; Lap Nguyen, Van; Ta, Oahn

    2016-04-01

    The Mekong River delta prograded rapidly in a relatively sheltered bight in the South China Sea under the influence of high fluvial sediment supply 5300 to 3500 years ago, developing from an estuary into a delta. This >200 km seaward growth resulted in increasing exposure of the delta to ocean waves that led to a more wave-influenced mode of progradation characterized by the construction of numerous sets of beach ridges in the eastern sector of the delta, which shows a system of multiple distributary mouths. The growth pattern of this river-mouth sector over the last 2500 years has been determined from OSL dating of these beach-ridge deposits, while the most up-to-date trends (1950-2014) have been highlighted from the analysis of maps and satellite images. The OSL ages show that the area of the delta in the mouths sector remained nearly constant till about 500 yr BP, following which significant accretion occurred, possibly in response to changes in catchment land-use and monsoon rainfall and attendant river water and sediment discharge. A fine-tuned analysis of changes since 1950 shows dominant but fluctuating accretion, with two periods of erosion. The first (1965-1973) occurred in the course of the second Indochina war, and the second more recently from 2003 to 2011, followed by mild recovery between 2011 and 2014. These fluctuations most likely reflect changes in sediment supply caused by the vicissitudes of war and its effect on vegetation cover, as well as variations in monsoon rainfall and discharge, and, for the most recent period, massive sand mining in the river and deltaic channels. Accretion of the mouths sector has gone apace, over the same recent multi-decadal period, with large-scale erosion of the muddy shores of the delta in the western South China Sea and the Gulf of Thailand, thus suggesting that the mouths sector may be increasingly sequestering sediment to the detriment of the rest of the delta shoreline. The accretion in the mouths sector is

  11. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Haas, Jan; Ban, Yifang

    2014-08-01

    This study investigates land cover changes, magnitude and speed of urbanization and evaluates possible impacts on the environment by the concepts of landscape metrics and ecosystem services in China's three largest and most important urban agglomerations: Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Based on the classifications of six Landsat TM and HJ-1A/B remotely sensed space-borne optical satellite image mosaics with a superior random forest decision tree ensemble classifier, a total increase in urban land of about 28,000 km2 could be detected alongside a simultaneous decrease in natural land cover classes and cropland. Two urbanization indices describing both speed and magnitude of urbanization were derived and ecosystem services were calculated with a valuation scheme adapted to the Chinese market based on the classification results from 1990 and 2010 for the predominant land cover classes affected by urbanization: forest, cropland, wetlands, water and aquaculture. The speed and relative urban growth in Jing-Jin-Ji was highest, followed by the Yangtze River Delta and Pearl River Delta, resulting in a continuously fragmented landscape and substantial decreases in ecosystem service values of approximately 18.5 billion CNY with coastal wetlands and agriculture being the largest contributors. The results indicate both similarities and differences in urban-regional development trends implicating adverse effects on the natural and rural landscape, not only in the rural-urban fringe, but also in the cities' important hinterlands as a result of rapid urbanization in China.

  12. 3. ENVIRONMENT, FROM SOUTH, SHOWING RIVER ROAD RIDGE CARRYING CASSELMAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. ENVIRONMENT, FROM SOUTH, SHOWING RIVER ROAD RIDGE CARRYING CASSELMAN RIVER ROAD OVER CASSELMAN RIVER - River Road Bridge, Crossing Casselman River on Casselman River Road, Grantsville, Garrett County, MD

  13. Interplay between river discharge and tides in a delta distributary

    NASA Astrophysics Data System (ADS)

    Leonardi, Nicoletta; Kolker, Alexander S.; Fagherazzi, Sergio

    2015-06-01

    The hydrodynamics of distributary channels has tremendous impact on nutrient and dissolved oxygen circulation, transport of sediments, and delta formation and evolution; yet many processes acting at the river-marine interface of a delta are poorly understood. This paper investigates the combined effect of river hydrograph and micro-tides on the hydrodynamics of a delta distributary. As the ratio between river flow to tidal flow increases, tidal flood duration at the distributary mouth decreases, up to the point when flow reversal is absent. Field measurements in a distributary of the Apalachicola Delta, Florida, USA, reveal that, once the flow becomes unidirectional, high-discharge events magnify tidal velocity amplitudes. On the contrary, while the flow is bidirectional, increasing fluvial discharge decreases tidal velocity amplitudes down to a minimum value, reached at the limit between bidirectional and unidirectional flow. Due to the different response of the system to tides, the transition from a bidirectional to a unidirectional flow triggers a change in phase lag between high water and high water slack. In the presence of high riverine flow, tidal dynamics also promote seaward directed Eulerian residual currents. During discharge peaks, these residual currents almost double mean velocity values. Our results show that, even in micro-tidal environments, tides strongly impact distributary hydrodynamics during both high and low fluvial discharge regimes.

  14. Coastal eutrophication near the Mississippi river delta

    NASA Astrophysics Data System (ADS)

    Turner, R. Eugene; Rabalais, Nancy N.

    1994-04-01

    CHANGES in delivery of river-borne nutrients such as dissolved phosphate, nitrate and silicate, owing to land-use changes and anthropogenic emissions, are known to result in eutrophication1- enhanced phytoplankton blooms-and more severe hypoxic events2-1 in many enclosed bays and seas. Although similar ecological effects might be expected on continental shelves, the occurrence of such eutrophication has remained unresolved5. Here we present evidence of eutrophication of the continental shelf near the outflow of the Mississippi river, obtained by quantifying biologically bound silica (BSi) in diatom remnants within dated sediment cores. BSi accumulation rates are greatest in water depths of 20 to 50 m within 100 km of the river mouth, and have increased by as much as 100% this century. The increases were substantial by 1980, by which time riverine nitrogen loading had doubled relative to the beginning of the century, even though the silica loading had declined by 50% over the same period. Thus changes in river-borne nutrient loadings can modify coastal food webs and affect the amount and distribution of oxygen in bottom waters on the scale of continental shelves.

  15. Geomorphic evolution of the Lilas River fan delta (Central Evia, Greece), during the Quaternary

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Tsironis, Giorgos; Tsodoulos, Ioannis; Iliopoulos, George; Tsanakas, Konstantinos; Batzakis, Vasilis

    2015-04-01

    This study deals with the geomorphic evolution of the Lilas river fan delta, which is a late Holocene fan delta with an area of about 25 km2, extended mainly towards the south Evoikos Gulf and a secondary extension of approximately 5 km2 towards the north Evoikos Gulf (Central Evia Isl., Greece). This work has combined field geomorphological mapping with the study of the stratigraphy of late Pleistocene - Holocene deltaic sediments. A detailed geomorphic map at the scale of 1:5,000 has been prepared showing both the deltaic plain and the coastal zone features using GIS techniques. Comparative interpretation of aerial photographs taken in different dates and reliable maps of the last two centuries along with field observations depict recent changes of the delta morphology. Profiles of seven drill cores up to the depth of 70 m, provided by the municipality authorities, were considered in order to study the late Pleistocene - Holocene stratigraphy of the broader fan delta plain. Additionally, two boreholes reaching the depth of 4.75 m were drilled with a portable drilling set. The stratigraphy of the late Holocene sediments was studied in detail and 41 sediment samples, collected from selected sedimentary layers, were analyzed using micropaleontological and grain size analysis methods, while samples were dated using OSL. The study of the stratigraphy of the late Holocene deltaic sediments showed that during this period the sea invaded the area of the northwestern delta and created a shallow open marine environment which at times was disturbed by multiple quiet lagoonal phases of fine sediment deposition. Geomorphological mapping showed that among the most important factor for the recent development of the delta is fluvial sedimentation. The dominant landforms in the deltaic plain are the numerous abandoned palaeochannels. The main channel of the river changed its course several times leading to the building and subsequent abandonment of at least four fan delta lobes

  16. Mackenzie River Delta morphological change based on Landsat time series

    NASA Astrophysics Data System (ADS)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied

  17. Measured flow and tracer-dye data showing the anthropogenic effects on the hydrodynamics of south Sacramento-San Joaquin Delta, California, spring 1996 and 1997

    USGS Publications Warehouse

    Oltmann, Richard N.

    1998-01-01

    Tidal flows were measured using acoustic Doppler current profilers and ultrasonic velocity meters during spring 1996 and 1997 in south Sacramento-San Joaquin Delta, California, when (1) a temporary barrier was installed at the head of Old River to prevent the entrance of migrating San Joaquin River salmon smolts, (2) the rate of water export from the south Delta was reduced for an extended period of time, and (3) a 30-day pulse flow was created on the San Joaquin River to move salmon smolts north away from the export facilities during spring 1997. Tracer-dye measurements also were made under these three conditions.

  18. Tide and river influences on distributary channels of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Nguyen, V. L.; Ta, T. K. O.; Tamura, T.; Kanai, Y.; Nakashima, R.

    2015-12-01

    The Mekong River delta, one of the world's largest deltas, has extended from Phnom Penh in Cambodia (apex) to the coast from the Saigon River mouth to Cape Camau in Vietnam with a triangular-shape area of more than 60,000 km2. The delta has prograded more than 200 km over at least the last 6-7 ka. The river-mouth area of the delta is meso-tidal with the mean tidal range of 2.5 ± 0.1 m and the maximum tidal range is 3.2-3.8 m. The mean wave height is 0.9 m. Its water discharge is 470 km3/y and its sediment discharge is 160 million t/y, or tenth and ninth largest in the world, respectively. The water discharge varies by season because most of the drainage area is under a monsoonal tropical regime. The flow at Phnom Penh, Cambodia, reaches a maximum in October (typically 39,000 m3/s) and a minimum in May (about 1700 m3/s). Tidal water-level changes are observed in Cambodia, more than 200 km upstream from the river mouth. To understand the combined influenced of river and tide on river bottom sediments, we have collected ~210 surface samples from river bottoms of the whole Mekong River delta in Vietnam, covering five distributaries during dry season from January to May 2015. Sediment characteristics show clearly tide- and river-influenced areas, which are closely linked with river morphology.

  19. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    USGS Publications Warehouse

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial

  20. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  1. Changes in the areal extents of the Athabasca River, Birch River, and Cree Creek Deltas, 1950-2014, Peace-Athabasca Delta, Canada

    NASA Astrophysics Data System (ADS)

    Timoney, Kevin; Lee, Peter

    2016-04-01

    Deltas form where riverborne sediment accumulates at the interface of river mouths and their receiving water bodies. Their areal extent is determined by the net effect of processes that increase their extent, such as sediment accumulation, and processes that decrease their extent, such as erosion and subsidence. Through sequential mapping and construction of river discharge and sediment histories, this study examined changes in the subaerial extents of the Cree Creek and Athabasca River Deltas (both on the Athabasca River system) and the Birch River Delta in northern Canada over the period 1950-2014. The purpose of the study was to determine how, when, and why the deltas changed in areal extent. Temporal growth patterns were similar across the Athabasca and Birch River systems indicative of a climatic signal. Little or no areal growth occurred from 1950 to 1968; moderate growth occurred between 1968 and the early to mid-1980s; and rapid growth occurred between 1992 and 2012. Factors that affected delta progradation included dredging, sediment supply, isostatic drowning, delta front bathymetry, sediment capture efficiency, and storms. In relation to sediment delivered, areal growth rates were lowest in the Athabasca Delta, intermediate in the Birch Delta, and highest in the Cree Creek Delta. Annual sediment delivery is increasing in the Cree Creek Delta; there were no significant trends in annual sediment delivery in the Birch and Athabasca Deltas. There was a lag of up to several years between sediment delivery events and progradation. Periods of delta progradation were associated with low water levels of the receiving basins. Predicted climate-change driven declines in river discharge and lake levels may accelerate delta progradation in the region. In the changing ecosystems of northeastern Alberta, inadequate monitoring of vegetation, landforms, and sediment regimes hampers the elucidation of the nature, rate, and causality of ecosystem changes.

  2. 1. SANDY RIVER BRIDGE AT TROUTDALE, SOUTH END, LOOKING 18 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SANDY RIVER BRIDGE AT TROUTDALE, SOUTH END, LOOKING 18 DEGREES NORTH. SAME PHOTO AS OR-36-1. - Historic Columbia River Highway, Sandy River Bridge at Troutdale, Historic Columbia River Highway spanning Sandy River, Troutdale, Multnomah County, OR

  3. 2. SANDY RIVER BRIDGE AT TROUTDALE, SOUTH END, LOOKING 20 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SANDY RIVER BRIDGE AT TROUTDALE, SOUTH END, LOOKING 20 DEGREES NORTH. - Historic Columbia River Highway, Sandy River Bridge at Troutdale, Historic Columbia River Highway spanning Sandy River, Troutdale, Multnomah County, OR

  4. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    SciTech Connect

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Doppler Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.

  5. Dispersion mechanisms of a tidal river junction in the Sacramento–San Joaquin Delta, California

    DOE PAGESBeta

    Gleichauf, Karla T.; Wolfram, Philip J.; Monsen, Nancy E.; Fringer, Oliver B.; Monismith, Stephen G.

    2014-12-17

    In branching channel networks, such as in the Sacramento–San Joaquin River Delta, junction flow dynamics contribute to dispersion of ecologically important entities such as fish, pollutants, nutrients, salt, sediment, and phytoplankton. Flow transport through a junction largely arises from velocity phasing in the form of divergent flow between junction channels for a portion of the tidal cycle. Field observations in the Georgiana Slough junction, which is composed of the North and South Mokelumne rivers, Georgiana Slough, and the Mokelumne River, show that flow phasing differences between these rivers arise from operational, riverine, and tidal forcing. A combination of Acoustic Dopplermore » Current Profile (ADCP) boat transecting and moored ADCPs over a spring–neap tidal cycle (May to June 2012) monitored the variability of spatial and temporal velocity, respectively. Two complementary drifter studies enabled assessment of local transport through the junction to identify small-scale intrajunction dynamics. We supplemented field results with numerical simulations using the SUNTANS model to demonstrate the importance of phasing offsets for junction transport and dispersion. Different phasing of inflows to the junction resulted in scalar patchiness that is characteristic of MacVean and Stacey’s (2011) advective tidal trapping. Furthermore, we observed small-scale junction flow features including a recirculation zone and shear layer, which play an important role in intra-junction mixing over time scales shorter than the tidal cycle (i.e., super-tidal time scales). Thus, the study period spanned open- and closed-gate operations at the Delta Cross Channel. Synthesis of field observations and modeling efforts suggest that management operations related to the Delta Cross Channel can strongly affect transport in the Delta by modifying the relative contributions of tidal and riverine flows, thereby changing the junction flow phasing.« less

  6. The diversity of permafrost-affected soils in the Lena River Delta and its hinterland

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Kutzbach, Lars; Yakshina, Irina; Pfeiffer, Eva-Maria

    2013-04-01

    The North-Siberian Lena River Delta is the largest Arctic delta and an important interface between the Arctic Ocean in the North and the large Siberian land masses in the South. This delta consists not only of Holocene deltaic sediment deposits as a river terrace and the modern active floodplains but also of remnants of the former Pleistocene mainland including large islands of ice-complex sediments and the Arga-Muora-Sise Island, which is composed of pure sand sediments of still debated origin. The highly diverse landscape structure of the Lena River Delta is reflected by a great variety of permafrost-affected soils (gelisols). This study aims at describing this great gelisol diversity and at analysing the dominant soil-forming processes in this comparatively scarcely studied soil region. The soil development in the investigated continuous permafrost region is limited by the short thawing period of around three months (June to September) and takes place in the shallow (< 1 m) seasonally thawed active layer. The geological parent material plays an important role for the development of soils in the Lena River Delta region. The distribution of the various soil types closely follows the pattern of the geomorphic units characterised by differing sedimentation conditions. The properties and genesis of the soils on the Holocene river terrace and the modern floodplains are strongly affected by the enormous amounts of fluvial sediments (about 12 x 106 tons per year) brought by the Lena River into its delta. The fluvial sedimentation together with the also pronounced aeolian sedimentation results in a fast vertical growth of soils. The upward rise of the soil surface leads to an upward movement of the permafrost table resulting in fast incorporation of soil material formed in the supra-permafrost zone into the permafrost. Due to the morphodynamics of ice-wedge polygons and resulting formation of patterned ground with elevated rims and depressed and water-saturated centres

  7. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  8. Distributary-mouth bar development and role of submarine landslides in delta growth, South Pass, Mississippi delta

    SciTech Connect

    Lindsay, J.F.; Coleman, J.M.; Prior, D.B.

    1984-11-01

    Submarine landslides play a major role in the development of distributary-mouth bars and are of major importance in transporting sediment from the bar front to deeper water along the Mississippi delta front. Historic maps of the South Pass of the Mississippi delta show that the bar advanced seaward more than 1 mi (1.6 km) between 1867 and 1953. Details of the growth of the bar have been elucidated using an elaborate computer modeling program to analyze these historic maps. The analysis has shown that the geometry of the bar was controlled by the dynamics of the freshwater plume of river water as it mixed with saline Gulf water. Approximately half the sediment deposited on the bar was moved into deeper water by submarine landslides. The underlying causes of bar failure were established during major floods with the deposition of thick blankets of unstable, watersaturated sediments on the bar front. Failure occurred one to four years later in response to a variety of triggering mechanisms, which either changed the shear strength of the sediment or modified local bottom slope. The triggering mechanisms include: major storms and hurricanes, mudlump activity, and possibly, increased pore pressures resulting from generation of biogenic gas. Bar growth and basinward movement of sediment thus represent a multilvariate problem that can be approached by means of a computer analysis of bathymetric data.

  9. Cyclone Nargis survey in Myanmar's Ayeyarwady River delta

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.; Thwin, S.; Thu, M. K.; Chan, N.

    2008-12-01

    Tropical cyclone Nargis (Cat. 4) made landfall on May 2, 2008, causing the worst natural disaster in Myanmar's recorded history. Official death toll estimates exceed 130,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. Nargis took a rare nearly eastern track over the Bay of Bengal while developing sustained winds over 210 km/h with gusts up to 260 km/h hours prior to landfall in Myanmar at untypically low latitude near 16°N. It then proceeded northeast and approximately 12 hours later weakened to a Category 1 storm with sustained wind speeds of 130 km/h as it passed over Yangon. The first independent storm surge reconnaissance team was deployed to Myanmar from 9 to 23 August 2008. Cyclone Nargis struck low-lying coastal plains particularly vulnerable to storm surge flooding due to the lack of effective barriers. The team surveyed coastal and inland villages from Pyapon to Purian Point, encompassing the Bogale and Ayeyarwady River mouths. The survey by boat spanned more than 150 km parallel to the cyclone track between Pyapon and Pyinkhayan encompassing 20 hardest hit settlements such as Pyinsalu. More than 1m vertical erosion and 150 m land loss were measured at various coastal locations such as Aya. Massive deforestation of mangroves and land use were documented. Maximum storm surge elevations and overland flow depths were measured based on water marks on buildings, scars on trees, and rafted debris. The storm surge peaked in the landfall area south of Pyinkhayan and eastwards in Pyinsalu exceeding 5m. Storm waves more than 2m high were superimposed on the storm surge level in most areas according to eyewitnesses. Inundation distances reached beyond 50 km inland. Catastrophic peak fatality rates exceeded 80% in hardest hit villages with the majority being children and women. The high water marks and fatality rates significantly exceeded corresponding 2004 Indian Ocean tsunami values at every location. Eyewitnesses were interviewed to

  10. Morphology of river deltas on Earth and Titan

    NASA Astrophysics Data System (ADS)

    Witek, Piotr; Czechowski, Leszek

    2016-04-01

    Presently volatile cycles are known to operate on surfaces of two planetary bodies in the Solar System, Earth and Titan. Fluvial erosion, transport and deposition of rocky material modify parts of the surface. Numerous indications of geologically recent sediment transport have been discovered on Titan by the Cassini-Huygens mission. Theoretical calculations suggest greater mobility of Titanian sediments in comparison to terrestrial, due to lower gravity and lower density of typical crustal material. Using numerical model of flow and sediment transport, we compare the development and morphology of deposits forming in lakes in terrestrial and Titanian conditions. We explore the range of possible river discharges, including natural variability, and several dominant grain sizes. We consider several compositions of sediments on Titan, on Earth we model the transport of quartz grains by water. We perform simulations for the same initial geometry of river channel and lake basin, for a given discharge and dominant grain diameter in each environment. Morphology and evolution of the deltaic deposits are compared. We observe that the erosion has dominant role for the smallest grains, and the effect is more pronounced on Titan than on Earth. The largest grains usually form steep-sloped fan-like deltas on both planetary bodies. The processes of formation and development of the sedimentary landforms are generally similar in both environments. Particular types of deposits may however form in different ranges of discharge and grain size, due to differences in environmental parameters. Greater mobility of sediments on Titan result in easier displacement of loose granular material, especially for smallest considered grains. The flat, lobate deltas can form in narrower range of discharges and grain sizes than on Earth. This fact might be partially responsible for scarcity of river deltas on that active moon, where other signs of fluvial processes are widespread.

  11. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina.

    PubMed

    Sica, Y V; Quintana, R D; Radeloff, V C; Gavier-Pizarro, G I

    2016-10-15

    Wetland loss is a global concern because wetlands are highly diverse ecosystems that provide important goods and services, thus threatening both biodiversity and human well-being. The Paraná River Delta is one of the largest and most important wetland ecosystems of South America, undergoing expanding cattle and forestry activities with widespread water control practices. To understand the patterns and drivers of land cover change in the Lower Paraná River Delta, we quantified land cover changes and modeled associated factors. We developed land cover maps using Landsat images from 1999 and 2013 and identified main land cover changes. We quantified the influence of different socioeconomic (distance to roads, population centers and human activity centers), land management (area within polders, cattle density and years since last fire), biophysical variables (landscape unit, elevation, soil productivity, distance to rivers) and variables related to extreme system dynamics (flooding and fires) on freshwater marsh conversion with Boosted Regression Trees. We found that one third of the freshwater marshes of the Lower Delta (163,000ha) were replaced by pastures (70%) and forestry (18%) in only 14years. Ranching practices (represented by cattle density, area within polders and distance to roads) were the most important factors responsible for freshwater marsh conversion to pasture. These rapid and widespread losses of freshwater marshes have potentially large negative consequences for biodiversity and ecosystem services. A strategy for sustainable wetland management will benefit from careful analysis of dominant land uses and related management practices, to develop an urgently needed land use policy for the Lower Delta. PMID:27369090

  12. Biogeochemical features of aquatic plants in the Selenga River delta

    NASA Astrophysics Data System (ADS)

    Shinkareva, Galina; Lychagin, Mikhail

    2014-05-01

    The Selenga River system provides more than a half of the Lake Baikal total inflow. The river collects a significant amount of pollutants (e.g. heavy metals) from the whole basin. These substances are partially deposited within the Selenga delta, and partially are transported further to the lake. A generous amount of aquatic plants grow in the delta area according to its favorable conditions. This vegetation works as a specific biofilter. It accumulates suspended particles and sorbs some heavy metals from the water. The study aimed to reveal the species of macrophytes which could be mostly important for biomonitoring according to their chemical composition. The field campaign took place in the Selenga River delta in July-August of 2011 (high water period) and in June of 2012 (low water period). 14 species of aquatic plants were collected: water starwort Callitriche hermaphroditica, small yellow pond lily Nuphar pumila, pondweeds Potamogeton crispus, P. pectinatus, P. friesii, broadleaf cattail Typha latifolia, hornwort or coontail Ceratophyllum demersum, arrowhead Sagittaria natans, flowering rush (or grass rush) Butomus umbellatus, reed Phragmites australis, parrot's feather Myriophyllum spicatum, the common mare's tail Hippuris vulgaris, Batrachium trichophyllum, canadian waterweed Elodea canadensis. The samples were dried, grinded up and digested in a mixture of HNO3 and H2O2. The chemical composition of the plant material was defined using ICP-MS and ICP-AES methods. Concentrations of Fe, Mn, Cr, Ni, Cu, B, Zn, V, Co, As, Mo, Pb, and U were considered. The study revealed that Potamogeton pectinatus and Myriophyllum spicatum concentrate elements during both high and low water periods. Conversely the Butomus umbellatus and Phragmites australis contain small amount of heavy metals. The reed as true grasses usually accumulates fewer amounts of elements than other macrophytes. To compare biogeochemical specialization of different species we suggest to use

  13. Coupled 1D-3D hydrodynamic modelling, with application to the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Twigt, Daniel J.; de Goede, Erik D.; Zijl, Firmijn; Schwanenberg, Dirk; Chiu, Alex Y. W.

    2009-12-01

    modelling of complex coastal waters and river network systems, whilst the advantages of both systems are maintained and used in an optimal and computationally efficient way. The coupled 1D-3D system is used to model the flows in the Pearl River Delta (Guangdong, China), which are determined by the interaction of the upstream network of the Pearl River and the open waters of the South China Sea. The highly complex upstream river network is modelled in 1D, simulating river discharges for the dry and wet monsoon periods. The 3D coastal model simulates the flow due to the external (ocean) periodic tidal forcing, the salinity distribution for both dry and wet seasons, as well as residual water levels (sea level anomalies) originating from the South China Sea. The model is calibrated and its performance extensively assessed against field measurements, resulting in a mean root mean square (RMS) error of below 6% for water levels over the entire Pearl River Delta. The model also represents both the discharge distribution over the river network and salinity transport processes with good accuracy, resolving the discharge distribution over the main branches of the river network within 5% of reported annual mean values and RMS errors for salinity in the range of 2 ppt (dry season) to 5 ppt (wet season).

  14. Refining the link between the Holocene development of the Mississippi River Delta and the geologic evolution of Cat Island, MS: implications for delta-associated barrier islands

    USGS Publications Warehouse

    Miselis, Jennifer L.; Buster, Noreen A.; Kindinger, Jack G.

    2014-01-01

    The geologic evolution of barrier islands is profoundly influenced by the nature of the deposits underlying them. Many researchers have speculated on the origin and evolution of Cat Island in Mississippi, but uncertainty remains about whether or not the island is underlain completely or in part by deposits associated with the past growth of the Mississippi River delta. In part, this is due to a lack of comprehensive geological information offshore of the island that could augment previous stratigraphic interpretations based on terrestrial borings. An extensive survey of Cat Island and its surrounding waters was conducted, including shallow-water geophysics (e.g., high-resolution chirp seismic, side-scan sonar, and swath and single-beam bathymetry) and both terrestrial and marine vibracoring. High-resolution seismic data and vibracores from south and east of the island show two horizontally laminated silt units; marine radiocarbon dates indicate that they are St. Bernard delta complex (SBDC) deposits. Furthermore, seismic data reveal that the SBDC deposits taper off toward the southern shoreline of Cat Island and to the west, morphology consistent with the distal edge of a delta complex. The sedimentology and extent of each unit suggest that the lower unit may have been deposited during an earlier period of continuous river flow while the upper unit may represent reduced or sporadic river flow. OSL dates from the island platform (beneath beach ridge complexes) indicate three stages of terrestrial evolution: island emergence resulting from relative sea-level rise (~ 5400 ybp) island aggradation via littoral transport (~ 2500–4000 ybp) and island degradation due to delta-mediated changes in wave direction (present– ~ 3600 ybp). Finally, the combination of terrestrial and marine data shows that portions of Cat Island that are lower in elevation than the central part of the island are younger and are likely underlain by a thin layer of deltaic sediments. This

  15. Natural and Technogenic Factors of Heavy Metal Accumulation In Sediments of The Caspian River Deltas

    NASA Astrophysics Data System (ADS)

    Kasimov, N. S.; Lychagin, M. Yu.

    Content of chemical elements and compounds in deltaic sediments is determined by mineralogical and geochemical peculiarities of feeding provinces, features of sub- stance transportation in dissolved and suspended forms, sediment lithology, pH and Redox conditions, and technogenic factors of sediment pollution. River deltas consider to be undergone by the highest technogenic pressure. It is caused by a transportation of pollutants from the whole river basin. Pollutant accumulation in reservoir sediments decreases a value of this factor. Heavy metal (HM) levels in specific cases of river deltas depend on a complex of natural and technogenic conditions. The conditions are quite different in deltas of the Caspian rivers. Heavy metal levels in sediments of the deltas are strongly related to mineralogical and geochemical features of feeding provinces. In accordance with them, HM levels were found as the lowest in sediments of the Volga delta. Terek delta sediments show higher values of Zn, Cu and Pb. Kura delta sediments are characterized by the highest values of Cu, Ni, Co and Cr. Sediments in the Sefidrud delta, as well as in mouths of smaller rivers of the Iranian coast, show intermediate HM levels. HM levels in sediments of Volga, Terek and Kura deltas are strongly related to miner- alogical and geochemical features of feeding provinces. Input of technogenic pollutant sources depends on many factors. Presence of these sources is evident from discor- dance in geochemistry of bottom sediments and soils of specific deltas. HM levels in river sediments of the Volga delta are close to that in soils. Sediments of Kura delta, and especially Terek delta contain essentially more HM than corresponding soils. Ef- fect of river control structures on Volga and Kura rivers in this case is definite. Terek delta is undergone to the higher technogenic pressure due to the absence of large water reservoirs in its basin.

  16. 3. SANDY RIVER (STARK ST.) BRIDGE, SOUTH END, LOOKING 295 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SANDY RIVER (STARK ST.) BRIDGE, SOUTH END, LOOKING 295 DEGREES WEST-SOUTHWEST. - Historic Columbia River Highway, Stark Street Bridge, Spanning Sandy River on Stark Street at Historic Columbia River Highway, Troutdale, Multnomah County, OR

  17. Assessing Subaqueous Mudflow Hazard on the Mississippi River Delta Front, Part 1: A Historical Perspective on Mississippi River Delta Front Sedimentation

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Bentley, S. J.; Obelcz, J.; Xu, K.; Miner, M. D.; Georgiou, I. Y.; Hanegan, K.; Keller, G.

    2014-12-01

    Subaqueous mudflows are known to be ubiquitous across the Mississippi River delta front (MRDF) and have been identified as a hazard to offshore infrastructure. Among other factors, sediment accumulation rates and patterns play an important role in governing the stability of delta front sediment. High sedimentation rates result in underconsolidation, slope steepening, and increased biogenic gas production, which are all known to decrease stability. Sedimentation rates are highly variable across the MRDF, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River sediment into the Gulf of Mexico. Since the 1950s, the sediment load of the Mississippi River has decreased by ~50% due to dam construction upstream. The impact of this decreased sediment load on MRDF mudflow dynamics has yet to be examined. We compiled MRDF bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009, in order to identify historic trends in sedimentation patterns. The progradation of Southwest Pass (measured at 10 m depth contour) has slowed from ~66 m/yr between 1764 and 1940 to ~25 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre. Advancement of the delta also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward ~25 m/yr, but did not advance from 1979-2005. Furthermore, over the same area and time ranges, the sediment accumulation rate decreased by ~82%. We expect these sedimentation trends are occurring across the delta front, with potential impacts on spatial and temporal patterns of subaqueous mudflows. The MRDF appears to be entering a phase of decline, which will likely be accelerated by future upstream sediment diversion projects. New geophysical data will be required to assess

  18. Bathymetry of the Hong and Luoc River Junction, Red River Delta, Vietnam, 2010

    USGS Publications Warehouse

    Kinzel, Paul J.; Nelson, Jonathan M.; Toan, Duong Duc; Thanh, Mung Dinh; Shimizu, Yasuyuki

    2012-01-01

    The U.S. Geological Survey, in collaboration with the Water Resources University in Hanoi, Vietnam, conducted a bathymetric survey of the junction of the Hong and Luoc Rivers. The survey was done to characterize the channel morphology of this delta distributary network and provide input for hydrodynamic and sediment transport models. The survey was carried out in December 2010 using a boat-mounted multibeam echo sounder integrated with a global positioning system. A bathymetric map of the Hong and Luoc River junction was produced which was referenced to the datum of the Trieu Duong tide gage on the Luoc River.

  19. Hydrodynamic modeling for river delta salt marshes using lidar topography

    NASA Astrophysics Data System (ADS)

    Hodges, Ben R.

    2014-05-01

    Topographic data from lidar and multi-beam sonar create new challenges for hydrodynamic models of estuaries, tidelands, and river deltas. We now can readily obtain detailed elevation data on 1 m scales and finer, but solving hydrodynamics with model grid cells at these small scales remains computationally prohibitive (primarily because of the small time step required for small grid cells). Practical estuarine models for the next decade or so will likely have grid scales in the range of 5 to 15 m. So how should we handle known subgrid-scale features? Simply throwing out known data does not seem like a good idea, but there is no consensus on how best to incorporate knowledge of subgrid topography into either hydrodynamic or turbulence models. This presentation discusses both the theoretical foundations for modeling subgrid-scale features and the challenges in applying these ideas in the salt marshes of a river delta. The subgrid problem highlights some important areas for field and laboratory research to provide calibration parameters for new models that upscale the effects of known subgrid features.

  20. River, delta and coastal morphological response accounting for biological dynamics

    NASA Astrophysics Data System (ADS)

    Goldsmith, W.; Bernardi, D.; Schippa, L.

    2015-03-01

    Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  1. Nature of decadal-scale sediment accumulation on the western shelf of the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Reide Corbett, D.; McKee, Brent; Allison, Mead

    2006-11-01

    Sediment delivered to coastal systems by rivers (15×10 9 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×10 8 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment. Three types of 210Pb profiles were observed from short cores (15-45 cm) collected on the shelf. Proximal to Southwest Pass in 30-100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr -1 (>1.8 g cm -2 yr -1). Kasten cores (˜200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr -1; >3 g cm -2 yr -1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ˜10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr -1 (<0.5 g cm -2 yr -1). A preliminary sediment budget based on the distribution of 210Pb

  2. Tide-dominated delta model for coal-bearing Wilcox strata in south Texas

    SciTech Connect

    Breyer, J.A.

    1984-04-01

    Coal-bearing Wilcox strata near Uvalde in south Texas are the deposits of a tide-dominated delta. The delta of the Klang and Langat Rivers, Malaysia, provides a modern analog for these strata. Five facies have been identified from a study of core and well logs: lignite; underclay; interbedded sand and mud with lenticular, wavy, and flaser bedding; ripple-laminated or cross-bedded sand; and greenish, very strongly bioturbated sand. On the Klang-Langat delta, the modern equivalents of these facies are peat formed in fresh water swamps; root horizons developed beneath the peat; interbedded sand and mud deposited on tidal flats; channel sands; and shallow marine sand and mud. Tidal flat deposits are the most abundant type of sediment on the Klang-Langat delta and in the coal-bearing Wilcox strata. The tidal flats of the modern delta are crossed by small tidal creeks and by larger tidal streams. The tidal channels are cut into tidal flat sediments and separate peat-forming areas. Channel sands in the Wilcox are cut into tidal flat deposits and form washouts in the lignite. Two types of channel-fill sand are present in the Wilcox, sands 5-15 ft (1.5-4.5 m) thick and sands more than 30 ft (9m) thick. The thinner sands, deposits of small tidal creeks, have sharp, erosive bases, fine upward and pass into interbedded sand and mud. The thicker sands have sharp tops as well as sharp bases and show no grain-size trends; they are fills of larger tidal streams.

  3. Hepatitis B and hepatitis delta virus infection in South America.

    PubMed Central

    Torres, J R

    1996-01-01

    About 100,000 cases of acute hepatitis B virus (HBV) infection occur annually in South America. The overall prevalence of HBV infection in low risk populations ranges from 6.7% to 41%, while hepatitis B surface antigen (HBsAg) rates range from 0.4% to 13%. In high endemicity aboriginal or rural populations, perinatal transmission may play a major part in the spread of HBV. In urban populations, however, horizontal transmission, probably by sexual contact, is the predominant mode of spread, with higher rates of HBV positivity in lower socioeconomic groups. High risk populations such as health care workers and haemodialysis patients show higher rates of HBV infection than comparable populations elsewhere. The risk of posttransfusion hepatitis B remains high in some areas. Concomitant HBV infection may accelerate the chronic liver disease seen in decompensated hepatosplenic schistosomiasis. In the north, the prevalence of hepatitis delta virus (HDV) infection ranks among the highest in the world. In the south, the problem appears negligible although it is increasing within high risk urban communities. HDV superinfection has been the cause of large outbreaks of fulminant hepatitis. The cost of comprehensive or mass vaccination programmes remains unaffordable for most South American countries. Less expensive alternatives such as low dose intradermal schedules of immunisation have been used with success in selected adult subjects. PMID:8786054

  4. Hydrologic Modeling of a Tropical River Delta by Applying Remote Sensing Data: the Niger Delta and its Distributaries.

    NASA Astrophysics Data System (ADS)

    Hannon, M. T.; Syvitski, J. P.; Kettner, A. J.

    2008-12-01

    Delta regions offer rich resources to coastal human populations with their large upstream freshwater sources. Tropical deltas such as the Niger, Nigeria, whose drainage basin incorporates arid regions, receive a significant portion of their runoff from precipitation falling directly on the delta. Between 1970 and 2006, the Niger discharged (Lokoja station) 5000 ± 890 m3/s into upper delta. Here we apply Tropical Rainfall Measurement Mission (TRMM) based precipitation estimates (SB42), with a 0.25° x 0.25° spatial resolution (~100 grid points across the Niger Delta at 3 hourly intervals 1998-2008), and MODIS evapotranspiration (ET) estimates (MOD16), to determine the impact of massive local precipitation events on the routing of water and sediment flux through the Niger Delta's distributaries. The Niger delta receives 2275 mm/y ± 264 mm/y of rainfall with the SE area exceeding 3500 mm/y. The delta's ET varies seasonally between 45 and 65 mm/mo. The in situ generated hydrological runoff is 1675 mm/y, or an equivalent of a discharge 73% the size of the river flux entering the delta. With maximum annual daily discharge from the Niger often exceeding 15,000 m3/s, in combination with the significant in situ runoff, much of the delta's surface is seasonally under floodwaters. LandSat7 imagery indicates delta distributaries that are disconnected from the Niger River, and only drain local precipitation events. This disconnection plays into the discharge and sediment fluxes of these distributaries.

  5. The Riverbed Evolution, Avulsions and Backwater Hydrodynamics on the Huanghe River Delta

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Ganti, V.; Lamb, M. P.

    2013-12-01

    The Huanghe River is known for high suspended sediment concentration and resultant heavy sedimentation and frequent channel-shifting among major rivers in the world. This plain coastal river is the main contributor of terrestrial sediment to the Bohai Sea and the Yellow Sea. Since 1855, there have been 11 major avulsions (versus 4 avulsions on the Mississippi River during the Holocene) on the lower reach with an recurrence interval of ~10 years, developing individual lobes that build up the modern Huanghe River delta. We summarize the main features of riverbed evolution on the delta with a database of measured data. The observed avulsions on the delta often occurred along a persistent spatial node, whose distance from the shoreline scales with the computed backwater length. In order to explain the avulsion locations on the delta, and meanwhile to test the viewpoint of river backwater controls on avulsion locations on deltas, we simulate the long profile evolution of the riverbed on the delta considering river discharge, river plume spreading, land subsidence and sea level rise, with a 1D fluvial morphodynamic model. The main results from the numerical simulations provide insights into how the long profile of the river on the delta evolves at the time scales of flood events and avulsions.

  6. 78 FR 39314 - Notice of Availability of the Decision Record for the Delta River Special Recreation Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Bureau of Land Management Notice of Availability of the Decision Record for the Delta River Special... the availability of the Decision Record (DR) for the Delta River Special Recreation Management Area... Assessment (EA) for the Delta River Special Recreation Management Area (SRMA) Plan and East Alaska...

  7. Hydrogeologic reconnaissance of the Mekong Delta in South Vietnam and Cambodia

    USGS Publications Warehouse

    Anderson, Henry R.

    1978-01-01

    The present report describes the results of a hydrogeologic reconnaissance in the Mekong Delta region by the writer, a hydrogeologist of the U.S. Geological Survey, while on assignment as an adviser to the Vietnamese Directorate of Water Supply from October 1968 to April 1970 under the auspices of the U.s. Agency for International Development. The delta of the Mekong River, comprising an area of about 70,000 square kilometres in South Vietnam and Cambodia, is an almost featureless plain rising gradually from sea level to about 5 metres above sea level at its apex 300 kilometres inland. Most of the shallow ground water in the Holocene Alluvium of the delta in Vietnam is brackish or saline down to depths of 50 to 100 metres. Moreover, in the Dong Thap Mu?oi (Plain of Reeds) the shallow ground water is alum-bearing. Locally, however, perched bodies of fresh ground water occur in ancient beach and dune ridges and are tapped by shallow dug wells or pits for village and domestic water supply. The Old Alluvium beneath the lower delta contains freshwater in some areas, notably in the Ca Mau Peninsula and adjacent areas, in the viciniy of Bau Xau near Saigon, and in the Tinh Long An area. Elsewhere in the lower delta both the Holocene and Old Alluvium may contain brackish or saline water from the land surface to depths of as much as 568 metres, as for example in Tinh Vinh Binh. Ground water in the outcrop area of Old Alluvium northwest of Saigon is generally fresh and potable, but high iron and low pH are locally troublesome. Although considerable exploratory drilling for ground water down to depths of as much as 568 metres has already been completed, large areas of the delta remain yet to be explored before full development of the ground-water potential can be realized. With careful development and controlled management to avoid saltwater contamination, however, it is estimated that freshwater aquifers could provide approximately 80 percent of existing needs for village

  8. Water management in the Senegal River Delta: a continuing uncertainty

    NASA Astrophysics Data System (ADS)

    Mietton, M.; Dumas, D.; Hamerlynck, O.; Kane, A.; Coly, A.; Duvail, S.; Pesneaud, F.; Baba, M. L. O.

    2007-11-01

    Water management is the driving force behind the productivity of the ecosystems of the Senegal River Estuary and floodplains. It is dependent on human decision-making, but has been separated from the River's flooding since the building of the Diama Dam. The current objectives of the Office de Mise en Valeur du fleuve Sénégal (OMVS: Senegal River Development Agency) are mainly turned towards the development of irrigated agriculture on the former floodplains and since 2002 the production of hydroelectric power at Manantali. In October 2003, a four-metre-wide runoff canal, which quickly widened into a breach several hundred metres across, was dug in the Barbary Spit area to protect the city of Saint-Louis from heavy flooding. The hydraulic quality of the area downstream from the dam has improved to the extent that there is no longer any flooding there, but as the management of the dams concerns only the section of the river between Manantali and Diama, a certain amount of flood risk probably still persists. The intrusion of seawater into the estuary is also threatening ecosystems and fresh water supplies, and abruptly altering agricultural practices such as fruit and vegetable growing in the Gandiolais district. When added to the tentative efforts to coordinate the management of the two dams, with no management objective downstream from Diama, such permanent modifications impose serious constraints on the managers and residents of the lower delta. This paper presents an overview of the constraints and uncertainties at different levels and scales. This wholly human-wrought environment can be considered as a learning experience, where a large number of variables need to be monitored closely and an ongoing process of participatory analysis should be backed up by multidisciplinary research.

  9. 5. GENERAL VIEW FROM SOUTH BANK OF SNAKE RIVER LYONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GENERAL VIEW FROM SOUTH BANK OF SNAKE RIVER LYONS FERRY BRIDGE TO THE RIGHT, JOSO HIGH (UNION PACIFIC RAILROAD) BRIDGE TO THE LEFT - Snake River Bridge at Lyons' Ferry, State Route 261 spanning Snake River, Starbuck, Columbia County, WA

  10. APALACHICOLA RIVER BRIDGE PIER 5, SOUTH SIDE, AND BOTTOM OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    APALACHICOLA RIVER BRIDGE PIER 5, SOUTH SIDE, AND BOTTOM OF STEEL TRUSS SPAN 4 (IN BACKGROUND) AND 5 (IN FOREGROUND), FACING NORTH - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  11. VIEW OF APALACHICOLA RIVER BRIDGE PIER 6 SUPPORTING SOUTH END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF APALACHICOLA RIVER BRIDGE PIER 6 SUPPORTING SOUTH END OF SPAN 5, WEST SIDE, FACING NORTHEAST - Apalachicola River Bridge, State Route 20 spanning the Apalachicola River, Blountstown, Calhoun County, FL

  12. 27. VIEW SHOWING SOUTH SIDE OF MISSISSIPPI RIVER RECREATION OFFICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VIEW SHOWING SOUTH SIDE OF MISSISSIPPI RIVER RECREATION OFFICE BUILDING, LE CLAIRE BASE COMPOUND - Mississippi River 9-Foot Channel, Lock & Dam No. 14, Upper Mississippi River, Le Claire, Scott County, IA

  13. Integrating Delta Building Physics & Economics: Optimizing the Scale of Engineered Avulsions in the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Mohrig, D.; Hobbs, B. F.; Parker, G.

    2011-12-01

    Land loss in the Mississippi River Delta caused by subsidence and erosion has resulted in habitat loss, interference with human activities, and increased exposure of New Orleans and other settled areas to storm surge risks. Prior to dam and levee building and oil and gas production in the 20th century, the long term rates of land building roughly balanced land loss through subsidence. Now, however, sediment is being deposited at dramatically lower rates in shallow areas in and adjacent to the Delta, with much of the remaining sediment borne by the Mississippi being lost to the deep areas of the Gulf of Mexico. A few projects have been built in order to divert sediment from the river to areas where land can be built, and many more are under consideration as part of State of Louisiana and Federal planning processes. Most are small scale, although there have been some proposals for large engineered avulsions that would divert a significant fraction of the remaining available sediment (W. Kim, et al. 2009, EOS). However, there is debate over whether small or large diversions are the economically optimally and socially most acceptable size of such land building projects. From an economic point of view, the optimal size involves tradeoffs between scale economies in civil work construction, the relationship between depth of diversion and sediment concentration in river water, effects on navigation, and possible diminishing returns to land building at a single location as the edge of built land progresses into deeper waters. Because land building efforts could potentially involve billions of dollars of investment, it is important to gain as much benefit as possible from those expenditures. We present the result of a general analysis of scale economies in land building from engineered avulsions. The analysis addresses the question: how many projects of what size should be built at what time in order to maximize the amount of land built by a particular time? The analysis

  14. The evolution of a subaqueous delta in the Anthropocene: A stratigraphic investigation of the Brazos River delta, TX USA

    NASA Astrophysics Data System (ADS)

    Carlin, Joseph A.; Dellapenna, Timothy M.

    2015-12-01

    Globally, deltas are increasingly threatened by anthropogenic activities. As a result, deltas now evolve through the combined effects of natural and human-induced processes occurring throughout the fluvial-deltaic system. The Brazos River delta, located along the Texas coast in the northwestern Gulf of Mexico, and its watershed have been impacted by direct and indirect human activities since the late 19th century. This provides an opportunity to investigate how such alterations have shaped the evolution of a delta in the Anthropocene, a time when humans are drivers of geological change. Historic alteration to the delta and watershed include extensive agricultural activity, jetty construction at the mouth in the late 1890s, mouth diversion ~10 km to the southwest in 1929, and reservoir construction throughout the early and mid 20th Century. Three subaerial deltaic geometries provided the framework to connect subaerial deltaic responses, to the anthropogenic alterations, to the resulting stratigraphic characteristics observed in the subaqueous delta. This study utilized high-resolution geophysical data (swath bathymetry, side scan sonar, CHIRP subbottom profiling) on the subaqueous delta to investigate the subaqueous delta stratigraphy and infer the processes that shaped the deltaic record over time. The results showed distinct areas across the subaqueous delta that were dominated by erosion and deposition. Erosional areas corresponded to earlier growth phase depocenters being exposed at the surface, while the depositional areas corresponded to areas with the most recent growth phase depocenter overlying the earlier depocenters. These results highlight that the subaqueous depocenter has migrated westward over time, consistent with the observed changes to the subaerial delta. Additionally, the data showed that evidence for these past growth phases and depocenters may be preserved within the subaqueous delta, even after subaerial portions of the delta returned to pre

  15. The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas

    NASA Astrophysics Data System (ADS)

    Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.

    2015-12-01

    Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.

  16. Experimental river delta size set by multiple floods and backwater hydrodynamics

    PubMed Central

    Ganti, Vamsi; Chadwick, Austin J.; Hassenruck-Gudipati, Hima J.; Fuller, Brian M.; Lamb, Michael P.

    2016-01-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534

  17. Experimental river delta size set by multiple floods and backwater hydrodynamics.

    PubMed

    Ganti, Vamsi; Chadwick, Austin J; Hassenruck-Gudipati, Hima J; Fuller, Brian M; Lamb, Michael P

    2016-05-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534

  18. Barrier island arcs along abandoned Mississippi River deltas

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.; Boyd, Ron

    1985-01-01

    Generation of transgressive barrier island arcs along the Mississippi River delta plain and preservation of barrier shoreline facies in their retreat paths on the inner shelf is controlled by: (1) shoreface translation; (2) age of the transgression; and (3) the thickness of the barrier island arc sediment package. Barrier island arcs experience an average relative sea level rise of 0.50-1.00 cm yr-1 and shoreface retreat rates range from 5-15 m yr-1. Young barrier island arc sediment packages (Isles Dernieres) are thin and have experienced limited landward retreat of the shoreface. Older barrier island arcs (Chandeleur Islands) are thicker and have experienced significant landward movement of the shoreface because of the greater time available for retreat. If the transgressed barrier shoreline sediment package lies above the advancing ravinement surface, the entire sequence is truncated. A thin reworked sand sheet marks the shoreface retreat path. The base of the transgressive sediment package can lie below the ravinement surface in older barrier shorelines. In this setting, the superstructure of the barrier shoreline is truncated, leaving the basal portion of the transgressive sequence preserved on the inner shelf. A variety of transgressive stratigraphic sequences from sand sheets to truncated barrier islands to sand-filled tidal inlet scars have been identified by high resolution seismic profiling across the shoreface retreat paths of Mississippi delta barrier island arcs. One of these examples, the Isles Dernieres, represents a recently detached barrier island arc in the early stages of transgression. An older example, the Chandeleur Islands, represents a barrier island arc experiencing long-term shoreface retreat. This paper describes the stratigraphic character and preserved transgressive facies for the Isles Dernieres and Chandeleur Islands. ?? 1985.

  19. Hydro-environmental status and soil management of the River Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Elewa, H. H.; El Nahry, A. H.

    2009-04-01

    The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca-Mg-Na-HCO3-Cl-SO4 type I; facies 2: Na-Cl-HCO3 type II; facies 3: Na-Ca-Mg-Cl type III, facies 4: Ca-Na-Mg-Cl-HCO3 type IV and facies 5: Na-Mg-Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil

  20. An ozone episode over the Pearl River Delta in October 2008

    NASA Astrophysics Data System (ADS)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  1. The Selenga River delta - a geochemical barrier for the waters of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Chalov, Sergey; Thorslund, Josefin; Pietron, Jan; Jarsjö, Jerker

    2016-04-01

    Delta systems play an important role in retention of sediments and contaminants to downstream recipients, through processes such as gravitational sedimentation, flocculation and biofiltration. The Selenga river delta is one of the world's largest inland deltas, providing a huge buffer zone between Lake Baikal and upstream waters of the Selenga river basin. Understanding the delta functioning is critical for the planning of water management measures in the Selenga River Basin and for protection of the waters of Lake Baikal. We here study the current state and functioning of the delta's ecosystem and hydrogeochemical processes. More specifically, we considered spatio-temporal changes in water flow, morphology and transport of sediments and metals within the delta and what potential impacts these changes may have on the delta functions. Results show that the delta network has a large influence on the mass of metals reaching the Lake Baikal at the delta outlet. Regions with high density of wetlands and small channels, in contrast to main channel regions, show a consistent pattern of considerable contaminant filtering and removal (between 77-99% for key metals), during both high and low flow conditions, following with a significant increase (2-3 times) of bottom sediment pollution. Geomorphological processes also governs the barrier function of the delta, due to partitioning of flow between different channel systems. These results are particularly relevant in the light of recent and expected future changes involving both the hydrology and water quality in the Lake Baikal basin. Taken together, this emphasizes the importance of understanding the interface between flow partitioning, delta morphology, and sediment and metal patterns and storage rates for fully capturing and quantifying the variety in delta functions. This is particularly relevant coupled to hydroclimatic changes in the region, which could lead to significant decline in barrier functions of the delta due to

  2. Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta

    NASA Astrophysics Data System (ADS)

    Sassi, Maximiliano G.; Hoitink, A. J. F.; de Brye, Benjamin; Vermeulen, Bart; Deleersnijder, Eric

    2011-12-01

    Bifurcations in tidally influenced deltas distribute river discharge over downstream channels, asserting a strong control over terrestrial runoff to the coastal ocean. Whereas the mechanics of river bifurcations is well-understood, junctions in tidal channels have received comparatively little attention in the literature. This paper aims to quantify the tidal impact on subtidal discharge distribution at the bifurcations in the Mahakam Delta, East Kalimantan, Indonesia. The Mahakam Delta is a regular fan-shaped delta, composed of a quasi-symmetric network of rectilinear distributaries and sinuous tidal channels. A depth-averaged version of the unstructured-mesh, finite-element model second-generation Louvain-la-Neuve Ice-ocean Model has been used to simulate the hydrodynamics driven by river discharge and tides in the delta channel network. The model was forced with tides at open sea boundaries and with measured and modeled river discharge at upstream locations. Calibration was performed with water level time series and flow measurements, both spanning a simulation period. Validation was performed by comparing the model results with discharge measurements at the two principal bifurcations in the delta. Results indicate that within 10 to 15 km from the delta apex, the tides alter the river discharge division by about 10% in all bifurcations. The tidal impact increases seaward, with a maximum value of the order of 30%. In general, the effect of tides is to hamper the discharge division that would occur in the case without tides.

  3. Coast and river mouths, Columbia, South America

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Numerous rivers in Ecuador and Columbia stand out in this South American Pacific coastal scene (1.5N, 79.0W). This region has one of the highest rainfalls in the world with the consequent heavy cloud cover and it is rare to be able to photograph the surface. The Pacific mountain drainage area is small but produces a large volume of runoff and sediment flow into the ocean.

  4. Plant community succession in modern Yellow River Delta, China.

    PubMed

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-08-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land-->community Suaeda salsa-->community Tamarix chinensis-->grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  5. Latest Quaternary stratigraphic framework of the Mississippi River delta region

    USGS Publications Warehouse

    Kulp, Mark; Howell, Paul; Adiau, Sandra; Penland, Shea; Kindinger, Jack; Williams, S. Jeffress

    2002-01-01

    Previous researchers separated the uppermost Quaternary stratigraphy of the Mississippi River delta region into two major lithofacies. The stratigraphically lower of these, "substratum," primarily consists of coarse-grained sediment deposited within lowstand-incised stream valleys. Relatively finer-grained "topstratum" overlies substratum; above interfluves, topstratum directly overlies weathered late Pleistocene sediments. However, the onshore to offshore distribution and architecture of these lithofacies was not well constrained. This study integrates published and unpublished lithostratigraphic data with high-resolution seismic profiles from the continental shelf to aid in mapping the regional distribution of major substratum deposits and thickness of topstratum sediments. A transgressive sand sheet commonly marks the base of the topstratum deposits, providing a stratigraphic marker to aid in regional lithostratigraphic correlations. Radiocarbondated deposits and boreholes tied to oxygen isotope chronologies provide chronostratigraphic control. Excellent correlation between these multiple datasets has been found to exist, enabling construction of regional isopachous and structural elevation maps and cross sections detailing elements of the Late Quaternary stratigraphy.

  6. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  7. River salinity on a mega-delta, an unstructured grid model approach.

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  8. Site Response in the San Joaquin/Sacramento River Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, J. B.; Boatwright, J.

    2007-12-01

    The Sacramento/San Joaquin River Delta lies on the western edge of the Great Valley and contains a system of levees that are thought to be prone to catastrophic failure from a major earthquake in the San Francisco Bay area or on faults along the western border of the Great Valley. To assess this risk we deployed digital recorders and broadband sensors in late 2006 and 2007 at 3 levee sites in the Delta (each site had a top and base sensor) and at one reference site to the west. Cone penetrometer data show that at the base, the soils have low S-wave velocities of 170 to 240 m/s. Upper soil layers are typically peats and aeolian sands. During the nine months of deployment, we recorded 3 local events (45kmDelta (Byron Hot Springs , BYR) or Black Diamond Mine (BDM, part of the Berkeley Digital Seismic Network). Spectra are normalized for distance. Each spectrum is smoothed with an algorithm that tries to preserve peaks; a running mean filter is also applied to the spectra from the reference site to reduce the possibility of holes in the reference spectrum appearing as a resonance in the ratio. Our primary observation is that many of the spectral ratios show large resonances, typically at 1-3 Hz and may represent a substantial risk to the levees. Sites at the tops of levees typically have stronger resonances in the 1-3 Hz range compared to base sites. The character of these ratios, however, differs substantially for each event. For example, the top site at Bethel Isl. has peaks in the site response with amplitudes between 6 and 15 (2-3Hz) for an earthquake located near Berkeley using either reference site, but is only apparent in the ratios using BDM for the other two events. This is because BYR has more amplitude in the 2- 3

  9. Cryosols of the Northeast Siberian Lena River Delta and its hinterland - genesis and diversity

    NASA Astrophysics Data System (ADS)

    Zubrzycki, Sebastian; Kutzbach, Lars; Pfeiffer, Eva-Maria

    2016-04-01

    The North-Siberian Lena River Delta (LRD) is the largest Arctic delta and an important interface between the Arctic Ocean in the North and the large Siberian land masses in the South. LRD consists not only of Holocene deltaic sediment deposits as a river terrace and the modern active floodplains but also of remnants of the former Pleistocene mainland including large islands of ice-complex sediments and the Arga-Muora-Sise Island, which is composed of pure sand sediments of still debated origin. The highly diverse landscape structure of LRD is reflected by a great variety of permafrost-affected soils (cryosols). This study aims at describing this great cryosol diversity and at analysing the dominant soil-forming processes in this comparatively scarcely studied soil region. The soil development in the investigated continuous permafrost region is limited by the short thawing period of around three months (June to September) and takes place in the shallow (below 1 m) seasonally thawed active layer. The geological parent material plays an important role for the development of soils in the LRD region. The distribution of the various soil types closely follows the pattern of the geomorphic units characterised by differing sedimentation conditions. The properties and genesis of the soils on the Holocene river terrace and the modern floodplains are strongly affected by the enormous amounts of fluvial sediments (about 12 x 106 tons per year) brought by the Lena River into its delta. The fluvial sedimentation together with the also pronounced aeolian sedimentation results in a fast vertical growth of soils. The upward rise of the soil surface leads to an upward movement of the permafrost table resulting in fast incorporation of soil material formed in the supra-permafrost zone into the permafrost. Due to the morphodynamics of ice-wedge polygons and resulting formation of patterned ground with elevated rims and depressed and water-saturated centres, the Holocene river terrace

  10. Discharge diversion in the Patía River delta, the Colombian Pacific: Geomorphic and ecological consequences for mangrove ecosystems

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Cantera, Jaime R.

    2013-10-01

    In the Patía River delta, the best-developed delta on the western margin of South America, a major water diversion started in 1972. The diversion of the Patía flow to the Sanquianga River, the latter a small stream draining internal lakes from the Pacific lowlands, shifted the active delta plain from the south to the north and changed the northern estuarine system into an active delta plain. The Sanquianga Mangrove National Park, a mangrove reserve measuring 800 km2, lies in this former estuary, where major hydrologic and sedimentation changes are occurring. Overall, major environmental consequences of this discharge diversion in terms of geomorphic changes along distributary channels and ecological impacts on mangrove ecosystems are evidenced by: (1) distributary channel accretion by operating processes such as sedimentation, overbank flow, increasing width of levees, sedimentation in crevasses, interdistributary channel fill, and colonization of pioneer mangrove; (2) freshening conditions in the Sanquianga distributary channel, a hydrologic change that has shifted the upper estuarine region (salinity <1%) downstream; (3) downstream advance of freshwater vegetation, which is invading channel banks in the lower and mixing estuarine zones; (4) die-off of approximately 5200 ha of mangrove near the delta apex at Bocas de Satinga, where the highest sediment accumulation rates occur; and (5) recurrent periods of mangrove defoliation due to a worm plague. Further analyses indicate strong mangrove erosion along transgressive barrier islands on the former delta plain. Here tectonic-induced subsidence, relative sea-level rise, and sediment starving conditions due to the channel diversion, are the main causes of the observed retreating conditions of mangrove communities. Our data also indicate that the Patía River has the highest sediment load (27 × 106 t yr-1) and basin-wide sediment yield (1500 t km-2 yr-1) on the west coast of South America. Erosion rates from the Pat

  11. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited

  12. The sediment-starved Yellow River Delta as remotely controlled by human activities in the river basin

    NASA Astrophysics Data System (ADS)

    Wang, H.; Bi, N.

    2015-12-01

    Human presented significant disturbances on the natural processes of land-ocean interactions in context of global change. Here we illustrate how the signals of human activities in the river basin have been transferred to the coastal ocean along the hydrological pathway and remotely controlled the Yellow River Delta. Dam-orientated water and sediment regulation scheme (WSRS) has resulted in effective erosion of the lower channel and mitigation of siltation within the reservoirs. However, significant impacts have been identified on the delta morphology and coastal ecosystem ten years after the WSRS, which was unexpected at the beginning of engineering efforts. The coarser sediment derived from the channel erosion during the first phase of WSRS was directly contributed to the rapid accretion of present river mouth, whereas the delta was starved and declined due to insufficient sediment supply and regime shift of sediment transport. The fine-grained sediment exported from the Xiaolangdi Reservoir during the second phase of WSRS seemed to be a critical carrier for the nutrients and pollutants. The human-altered hydrological cycle, enhanced delivery of nutrient and pollutants and the changing estuarine environment present unpredictable impacts on both terrestrial and aquatic ecosystem in the delta region. These confirm that humans are modifying the river-coast system in ways that go well beyond climate change, and an integrated management of the river-coast continuum is crucially important for the sustainability of the river-delta system.

  13. Morphology and Sediment Transport Dynamics of the Selenga River Delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Il'icheva, L.; Nittrouer, J. A.; Pavolv, M.

    2013-12-01

    The Selenga River fan delta is a lacustrine system located in southeastern Siberia, Russia, where Selenga River flows into Lake Baikal. The Selenga River is the largest source of sediment and water entering Lake Baikal. Covering ~550 km2, the Selenga delta is one of the largest freshwater deltas in the world. Evaluating the Selenga delta and its morphology is very important for local residents who rely upon the delta for both ecological and agricultural welfare. However, a sediment budget remains poorly constrained, as do estimates for the partitioning of water and sediment amongst the numerous bifurcating delta channels. This information is critical for addressing how the delta morphology evolves and influences the stratigraphic composition of the delta. To investigate the morphological characteristics of the delta, a field expedition was undertaken during July 2013 in collaboration with Russian scientists. The overall goal of the field work was to constrain delta dynamics through data collection. Field measurements included single-beam bathymetry data and sidescan sonar data to characterize: 1) channel geometries of the delta; 2) bedform sizes and distribution; and 3) grain-size composition of the channel bed. Flow velocity measurements were collected within the bifurcating channels to measure water discharge. Bedload samples were obtained within the active distributary channels to measure downstream sediment fining. Additionally, channel island cores were collected in order to analyze the internal architecture of the delta. The data reveal a systematic downstream sediment fining, from a predominantly gravel bed near the delta apex, to a fine-sand bed at the delta-lake interface (~40 km total distance). Bathymetry data document how width-to-depth ratios systematically decrease downstream in association with increasing channel bifurcations and decreasing channel-bed grain size. Furthermore, the investigations reveal that the delta is actively terraced, with the

  14. Geochemical flows of heavy metals in the Don and Kuban Rivers deltas

    NASA Astrophysics Data System (ADS)

    Tkachenko, Oleg; Tkachenko, Anna; Lychagin, Mikhael

    2015-04-01

    Don and Kuban are the two biggest rivers of the Azov sea basin. Deltaic areas of Don and Kuban Rivers have been influenced by agricultural and industry for a long time. A significant amount of heavy metals and biogenic elements comes into the rivers downstream annually. However, in the deltaic areas these geochemical flows are transformed due to changing of the environment conditions, some pollutions are excluded from the flows and accumulated in the deltaic landscapes. In this way Don and Kuban Rivers deltas can be considered as the biogeochemical filters on the way of the heavy metals and biogenic elements flows in to the Azov Sea. The paper presents the results of the heavy metals flows investigation in the Don and Kuban Rivers deltas. This investigation is based on the field studies of the water flow and sediment load distributions and heavy metals (Fe, Mn, Zn, Cu, Cd, Ni, Cr, Co, Pb) content in the water and suspended matter of the deltas. Quantities arriving of heavy metals in the delta apex in the low water period are calculated; seasonal patterns of flows are considered. Is shown that greater number of heavy metals flow into the delta during the flood period, especially with respect to the dissolved forms of zinc and copper; it is also shown a significant increase of the heavy metals flows downstream of the large cities (Rostov-on-Don, Azov, Temryuk). All these facts indicate anthropogenic impact on the heavy metals inflow. In comparing the heavy metals flow in the Don and Kuban Rivers deltas investigated that Don River flows is an order of magnitude greater than the Kuban River flows. When it comes about the structure of the flows, shown that Don River characterized increased content of dissolved form of heavy metals; Kuban River originates in the Caucasus Mountains so the proportion of suspended forms is higher.

  15. Network topology, Transport dynamics, and Vulnerability Analysis in River Deltas: A Graph-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Foufoula-Georgiou, E.; Longjas, A.; Zaliapin, I. V.

    2014-12-01

    River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external factors causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying river delta topology and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in quantifying the complexity of the delta network topology, computing its steady state fluxes, and identifying upstream (contributing) and downstream (nourishment) areas from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way of systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  16. Human induced discharge diversion in a tropical delta and its environmental implications: The Patía River, Colombia

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan D.; Kettner, Albert

    2012-03-01

    SummaryThe Patía River, the number one in terms of sediment yield ˜1500 t km-2 yr-1 draining the western South America, has the most extensive and well developed delta on the Pacific coast, measuring 1700 km2. During the Holocene, nature forced the Patía delta to the south; however, a major water diversion, starting in 1972, diverted the Patía flow to the Sanguianga River, the latter, a small stream draining internal lakes from the Pacific lowlands. This human induced discharge diversion shifted the active delta plain back to the north and changed the northern estuarine system into an active delta plain. Overall, major environmental consequences of this discharge diversion in terms of morphological changes along the delta coast and distributary channels, are evidenced by: (1) coastal retreat along the abandoned delta lobe; 63% of the southern shoreline is retreating at maximum rates of 7 m yr-1, with a corresponding coastal land loss of 106 m yr-1; (2) transgressive barrier islands with exposed peat soils in the surf zone; (3) abandonment of former active distributaries in the southern delta plain with associated closing of inlets and formation of ebb tidal deltas; (4) breaching events on barrier islands; and (5) distributary channel accretion in the northern delta plain by morphological processes such as sedimentation (also in crevasses), overbank flow, increasing width of levees, interdistributary channel fill, and colonization of pioneer mangrove. The Sanguianga Mangrove National Park (SMNP), the largest mangrove reserve in Colombia, measuring 800 km2, lies in this former estuary, where major hydrologic and sedimentation changes are occurring. Observed environmental changes in the SMNP, include (1) seaward advance of the sub-aqueous delta front at the Sanquianga inlet evidenced by an increase in tidal flat area from 5.4 Mm2 in 1986 to 14 Mm2 in 2001; (2) freshening conditions in the Sanguianga distributary channel, a hydrologic change that has shifted the

  17. Polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta (China): concentrations, fluxes, and fate.

    PubMed

    Wang, Ji-Zhong; Guan, Yu-Feng; Ni, Hong-Gang; Luo, Xian-Lin; Zeng, Eddy Y

    2007-08-15

    On the basis of a monthly sampling effort from March 2005 to February 2006, the total concentrations of the sums of 27 and 15 polycyclic aromatic hydrocarbons (defined as sigma27PAHs and sigma15PAHs, respectively) in riverine runoff of the Pearl River Delta (PRD), China, and associated fluxes were determined. No clear temporal and spatial trends of PAH concentrations were found at all eight riverine runoff outlets where the samples were collected. The annual fluxes of sigma27PAHs and sigma15PAHs from the PRD to the coastal ocean were 60.2 and 33.9 metric tons, respectively. Assuming that riverine flux was positively related to the regional emission of PAHs, the annual riverine fluxes from five major rivers in China to the global oceans were estimated, which are quite significant relative to other major rivers of the world. On the basis of mass balance considerations, approximately 87% of sigma15PAHs inputting to the Pearl River Estuary and northern South China Sea was derived from riverine runoff from the PRD. In addition, approcimately 22.3 metric tons of sigma15PAHs annually outflow to open seas, which is equivalent to a concentration of 0.34 pg/L in the global oceans if the PAHs are evenly distributed in the upper 200 m of the water column. A comparison with the global background level of PAHs indicated that approximately 0.4% of PAHs in the open oceans may have been contributed by 1-year discharge from the PRD. PMID:17874763

  18. Numerical investigation of surface water-groundwater interactions in a river-dominated delta

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey; Edmonds, Douglas; Knights, Deon

    2015-04-01

    Deltas are fragile coastal wetland systems that are rapidly vanishing due to subsidence and sea level rise. In most wetland environments, groundwater plays a central role in carbon and nutrient cycles, vegetation community structure, and contaminant transport, yet little is known about groundwater in vanishing delta wetlands. Here, we characterize the basic patterns, rates, and residence times of groundwater flow in a model delta wetland. Delta topography was simulated by growing the delta in Delft3D, a morphodynamic flow and sediment transport model. Water surface elevations under mean annual discharge conditions were used to drive a steady groundwater flow model. Under these average hydrologic conditions, surface water-groundwater exchange represents a small fraction (<1%) of river discharge to the coast, but storm surge, waves, and tides likely increase exchange rates periodically. Groundwater residence times range widely from hours to years. The residence time distribution exhibits power-law tailing that is characteristic of surface water-groundwater exchange in single-threaded river channels. The patterns of groundwater residence times within delta networks are likely to control redox chemistry and may therefore influence the community structure of microbes, benthic invertebrates, and plants. This study illustrates the tremendous potential for numerical approaches to characterizing groundwater flow in delta wetlands. Continued efforts are needed to understand the role of groundwater in delta wetlands, particularly in light of growing initiatives to restore deltas and their ecosystems.

  19. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River delta

    USGS Publications Warehouse

    FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.

    2004-01-01

    The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea-level rise (1??03 cm year-1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross-sections and prograding ebb-tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2??2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb-tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey-brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75-100%) compared with the distal delta sediments (60-80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb-tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb-tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet

  20. Recent morphodynamic evolution of coastline of Mekong river Delta, towards an increased vulnerability

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Brunier, Guillaume; Anthony, Edward

    2015-04-01

    Key words: Mekong river delta - Coastal deltaic morphodynamic - Deltaic vulnerability The complexity of coastal river deltas lies in part in aspects of sediment supply and redistribution, trapping and readjustment. The sediment supply and involved processes are governed by river-marine forcing, weather and climate, increasingly affected by humans, all within a frame of interactivity and morphodynamic equilibrium/disequilibrium that determine the evolution of the delta. The Mekong river delta is the third largest delta in the world. It is subject to important tidal influence, alluvial contribution from the fourth largest Asian river, seasonal monsoons and associated swell and other high-energy events. After a strong advance of over 200 km from 6.0 ka to near present (Tamura et al., 2012), the delta shoreline is rapidly and irregularly retreating, constraining the 20 million people living off the delta to suffer or adapt. This study documents changes over the last 50 years affecting the 700 km-long shoreline of the delta based on analysis of USGS topographic maps (1965), low-resolution Landsat (1973-2014) and very high-resolution SPOT 5 (2003-2011) satellite imagery. The results show widespread erosion of nearly 10 m/year over the period corresponding to the Second Indochinese conflict (1962-1972). Then followed a multi-decadal phase of accretion of about 8 m/yr, with spatial fluctuations of up to nearly -20 m/yr. This variability could reflect alternation of periods of resilience and self-organization in coastal sediment cells. A deceleration of accretion in the 2000s (+0.63 m/yr) and even a shift to erosion since 2011 (-1 m/s) are observed in parallel with the intensification of land-use changes, exploitation of the river-bed by sand mining, and hydropower dams (Brunier et al., 2014), and deforestation of deltaic wetlands for agriculture and fisheries(Thu et al., 2007). These erosion trends and their spatiotemporal disparities exacerbate the vulnerability of the

  1. Sand as a stable and sustainable resource for nourishing the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey A.; Viparelli, Enrica

    2014-05-01

    The Mississippi River delta is undergoing a catastrophic drowning, whereby 5,000 km2 of low-lying wetlands have converted to open water over at least the past eight decades, as a result of many anthropogenic and natural factors. Continued net land loss has been thought inevitable due to a decline in the load of total suspended sediment--both sand and mud--carried by the river. However, sand--which accounts for ~50-70% of modern and ancient Mississippi delta deposits but comprises only ~20% of the sampled portion of the total load--could be more important than mud for subaerial delta growth. Historically, half of the Mississippi River sediment load is supplied by the Missouri River. Here we analyse suspended sediment load data from two locations downstream from the lowest Missouri River dam to show that the measured sand load in the lower 1,100 km of the Mississippi River has not significantly diminished since dam construction. A one-dimensional numerical model of river morphodynamics predicts that the sand load feeding the delta will decrease only gradually over the next several centuries, with an estimated decline from current values of no more than about 17% within the coming six centuries. We conclude that the lower Mississippi River channel holds a significant reservoir of sand that is available to replenish diminished loads via bed scour and substantially mitigate land loss.

  2. Sediment transport and morphodynamic changes in Ziarat Estuary and Mond River Delta, the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Razavi Arab, Azadeh; Haghshenas, S. Abbas; Samsami, Farzin

    2014-05-01

    The Mond River, which is considered as one of the Major Iranian rivers discharging in to the Persian Gulf, is bounded within the region from 51°10' to 54°28' E and 27°20' to 29°51' N, flowing in two provinces of Fars and Boushehr. The latest part of the river is completely meandered and the river mouth has been migrating twice during the past 50 years. Total sediment discharge of the river is estimated as 12 million cubic meter per year. Analysis of meandering river phenomenon and river mouth migration as well as evolution of the down-stream sand spits has long been one of the challenges in hydrodynamic discussions. This natural process usually takes place in rivers to provide energy equilibrium and its integration with human desires has posed as a management issue. The sediment discharging to the Persian Gulf plays an essential role in formation of Mond River Delta as well as a set of sand spits formed in downstream of the river mouth. The morpho-dynamic of entire environment of the Mond River - Mond Delta highly affects marine environment in the surrounding area. The present study offers the results of a numerical and field investigation of various features of river-delta interaction on Ziarat Estuary and the Mond Delta area. A numerical model has been utilized to investigate cases of flow and sediment transport behaviour in the coastal Mond area and future migration patterns of the River Mouth is estimated. Sediment sources and relevant contributions in morphodynamic changes of the sand spits are widely investigated through sediment constituent analysis. The results of the numerical model are compared with field observations and comprehensive GIS based analysis of historic shoreline changes from aerial photos and satellite imagery. It is concluded that the model achievements are capable to predict the observed phenomena. Management guidelines and suggestions are deducted and drawn from the calibration and verification of the results with field observations

  3. Grain size controls on the morphology and stratigraphy of river-dominated deltas

    NASA Astrophysics Data System (ADS)

    Burpee, Alex; Parsons, Daniel; Slingerland, Rudy; Edmonds, Doug; Best, Jim; Cederberg, James; McGuffin, Andrew; Caldwell, Rebecca; Nijhuis, Austin

    2015-04-01

    The proportions of sand and mud that make up a river-dominated delta strongly determine its topset morphology, which in turn controls its internal facies and clinoform geometry. These relationships allow prediction of the stratigraphy of a delta using the character of its topset and reconstruction of deltaic planform from measures of clinoform geometry. This paper presents results from the Delft3D modeling system which was used to simulate nine self-formed deltas that possess different sediment loads and critical shear stresses that are required for re-entrainment of mud. The simulated deltas were set to prograde into a shallow basin without waves, tides, Coriolis forcing, and buoyancy. Model results indicate that sand-dominated deltas are more fan-shaped whilst mud-dominated deltas are more birdsfoot in planform, because the sand-dominated deltas have more active distributaries, a smaller variance of topset elevations, and thereby experience a more equitable distribution of sediment to their perimeters. This results in a larger proportion of channel facies in sand-dominated deltas, and more uniformly-distributed clinoform dip directions, steeper dips, and greater clinoform concavity. These conclusions are consistent with data collected from the Goose River Delta, a coarse-grained fan delta prograding into Goose Bay, Labrador, Canada and also allow us to undertake a re-interpretation of the Kf-1 parasequence set of the Cretaceous Last Chance Delta, a unit of the Ferron Sandstone near Emery, Utah, USA. We argue that the Last Chance delta likely possessed numerous distributaries with at least five orders of bifurcation.

  4. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Burdick, Summer M.; Brown, Daniel T.

    2010-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in others. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, which is seasonally anoxic. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana Unit) in October 2007 and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Unit) a year later to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2009 by the U.S. Geological Survey as a part of this monitoring effort. The Williamson River Delta appeared to provide suitable rearing habitat for endangered larval Lost River and shortnose suckers in 2008 and 2009. Larval suckers captured in this delta typically were

  5. Measured flow and tracer-dye data for spring 1996 and 1997 for the south Sacramento-San Joaquin Delta, California

    USGS Publications Warehouse

    Oltmann, Richard N.

    1999-01-01

    During the spring of years when the flow of the San Joaquin River is less than 7,000 cubic feet per second (ft3/s) a temporary rock barrier is installed by the California Department of Water Resources (DWR) at the head of Old River (HOR) in the south Sacramento-San Joaquin Delta to prevent out migrating salmon in the San Joaquin River from entering Old River and being drawn to the State and federal pumping facilities (Figure 1). The export rate of the pumping facilities also is reduced during these migration periods to minimize the draw of fish to the export facilities through the other channels connected to the San Joaquin River north of the HOR such as Turner Cut, Columbia Cut, and Middle River.

  6. Linking rapid erosion of the Mekong River delta to human activities.

    PubMed

    Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  7. Sediment transport dynamics linked to morphological evolution of the Selenga River delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.

    2014-12-01

    The Selenga River delta, Lake Baikal, Russia, is approximately 700 km2 in size and contains three active lobes that receive varying amounts of water and sediment discharge. This delta represents a unique end-member in so far that the system is positioned along the deep-water (~1500 m) margin of Lake Baikal and therefore exists as a shelf-edge delta. In order to evaluate the morphological dynamics of the Selenga delta, field expeditions were undertaken during July 2013 and 2014, to investigate the morphologic, sedimentologic, and hydraulic nature of this delta system. Single-beam bathymetry data, sidescan sonar data, sediment samples, and aerial survey data were collected and analyzed to constrain: 1) channel geometries within the delta, 2) bedform sizes and spatial distributions, 3) grain size composition of channel bed sediment as well as bank sediment, collected from both major and minor distributary channels, and 4) elevation range of the subaerial portion of the delta. Our data indicate that the delta possesses downstream sediment fining, ranging from predominantly gravel and sand near the delta apex to silt and sand at the delta-lake interface. Field surveys also indicate that the Selenga delta has both eroding and aggrading banks, and that the delta is actively incising into some banks that consist of terraces, which are defined as regions that are not inundated by typical 2- to 4-year flood discharge events. Therefore the terraces are distinct from the actively accreting regions of the delta that receive sedimentation via water inundation during regular river floods. We spatially constrain the regions of the Selenga delta that are inundated during floods versus terraced using a 1-D water-surface hydrodynamic model that produces estimates of stage for flood water discharges, whereby local water surface elevations produced with the model are compared to the measured terrestrial elevations. Our analyses show that terrace elevations steadily decrease downstream

  8. Quantifying the signature of sediment composition on the topologic and dynamic complexity of river delta channel networks and inferences toward delta classification

    NASA Astrophysics Data System (ADS)

    Tejedor, Alejandro; Longjas, Anthony; Caldwell, Rebecca; Edmonds, Douglas A.; Zaliapin, Ilya; Foufoula-Georgiou, Efi

    2016-04-01

    Deltas contain complex self-organizing channel networks that nourish the surface with sediment and nutrients. Developing a quantitative understanding of how controlling physical mechanisms of delta formation relate to the channel networks they imprint on the landscape remains an open problem, hindering further progress on quantitative delta classification and understanding process from form. Here we isolate the effect of sediment composition on network structure by analyzing Delft3D river-dominated deltas within the recently introduced graph-theoretic framework for quantifying complexity of delta channel networks. We demonstrate that deltas with coarser incoming sediment tend to be more complex topologically (increased number of pathways) but simpler dynamically (reduced flux exchange between subnetworks) and that once a morphodynamic steady state is reached, complexity also achieves a steady state. By positioning simulated deltas on the so-called TopoDynamic complexity space and comparing with field deltas, we propose a quantitative framework for exploring complexity toward systematic inference and classification.

  9. Determining the Palaeodrainage of the Nile River from a Provenance Study of the Nile Delta Cone Sediments

    NASA Astrophysics Data System (ADS)

    Fielding, L.; Najman, Y.; Millar, I.; Butterworth, P.; Garzanti, E.; Kneller, B. C.

    2014-12-01

    This study documents the palaeodrainage history of the Nile River, in particular the time of its transition from a small locally sourced drainage network to the initiation of an extensive catchment. Today, the Nile drains as far south as Lake Victoria, with the White Nile draining largely cratonic rocks of Archean to Proterozoic age and the Blue Nile draining Cenozoic Ethiopian Continental Flood Basalts and Neoproterozoic basement. However, the timing of catchment expansion to the river's current extent is highly debated. Two end member models are: A) The Blue Nile did not connect with the lower Nile until the Late Messinian, and the White Nile not until 0.5 Ma. In this model, the pre-Messinian Nile delta sediments are locally derived from the Red Sea Hills (RSH) (Issawi and McCauley 1992). B) The Blue Nile has been connected to the lower Nile since the Oligocene (Burke and Wells 1989). Onshore fieldwork characterised each possible source area (Ethiopian flood basalts, Archean craton, and Neoproterozoic basement and Phanerozoic cover sequences of the RSH) using petrography, geochemistry and isotope studies. Tertiary-aged Nile delta sediments provide a unique archive of the river's palaeodrainage history, which were analysed from conventional core from exploration and appraisal wells in order to identify the occurrence (if any) of these sources in the delta geological record. Heavy mineral, petrographic, U/Pb rutile and Lu/Hf zircon analyses indicate Blue Nile and/or RSH input to the Nile delta since at least the Oligocene with very little input from the White Nile. Sr and Nd whole-rock analyses of mud samples allow discrimination between the Blue Nile and RSH sources and may, subject to further analyses, confirm Blue Nile input to the delta since the Oligocene. U-Pb zircon analyses reveal the presence of 20-30 Ma zircons in both the modern river sediments from the Ethiopian Highlands and the Nile Delta core from the early Miocene to present day indicating a

  10. Food web implications of delta13C and delta15N variability over 370 km of the regulated Colorado River USA.

    PubMed

    Shannon, J P; Blinn, D W; Haden, G A; Benenati, E P; Wilson, K P

    2001-01-01

    Dual stable isotope analysis in the regulated Colorado River through Grand Canyon National Park, USA, revealed a food web that varied spatially through this arid biome. Down-river enrichment of delta13C data was detected across three trophic levels resulting in shifted food webs. Humpack chub delta13C and delta15N values from muscle plugs and fin clips did not differ significantly. Humpback chub and rainbow trout trophic position is positively correlated with standard length indicating an increase in piscivory by larger fishes. Recovery of the aquatic community from impoundment by Glen Canyon Dam and collecting refinements for stable isotope analysis within large rivers are discussed. PMID:11924849

  11. Quantifying the effects of tidal amplitude on river delta network flow partitioning

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Sendrowski, A.; Passalacqua, P.

    2014-12-01

    Deltas are generally classified as river-, tide-, or wave-dominated systems, but the influences of all environmental forces cannot be ignored when fully addressing the dynamics of the system. For example, in river-dominated deltas, river flow from the feeder channel acts as the primary driver of dynamics within the system by delivering water, sediment, and nutrients through the distributary channels, but tides and waves may affect their allocation within the network. There has been work on the asymmetry of environmental fluxes at bifurcations, but relatively few studies exist on the water partitioning at the network scale. Understanding the network and environmental effects on the flux of water, sediment, and nutrients would benefit delta restoration projects and management practices. In this study, we investigate the allocation of water flow among the five major distributary channels at Wax Lake Delta (WLD), a micro-tidal river-dominated delta in coastal Louisiana, and the effects of tidal amplitude on distributary channel discharges. We collect and compare discharge results from acoustic Doppler current profiler (ADCP) velocity transects between spring and neap tide and between falling and rising tide. The results show that discharges increased from spring to neap tide and from rising to falling tide. We investigate the spatial gradients of tidal influence within the network and validate hydraulic geometry relations for tidally influenced channels. Our results give insight into the control of network structure on flow partitioning and show the degree of tidal influence on channel flow in the river-dominated WLD.

  12. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  13. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  14. Subaquatic soils in the Volga, Don and Kuban Rivers deltas.

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anna; Gerasimova, Maria; Lychagin, Mikhail

    2015-04-01

    River deltas occupy a special interface position in the environment and are characterized by contrasting hydrological and landscape-geochemical regimes. Small depth of water and weak currents contribute to suspended matter deposition. Significant spread of aquatic plants provides the enrichment of subaquatic soils in organic matter. All these factors contribute to the formation of different subaquatic soils. Possibility of including them in the classification systems is discussed by many authors (Demas and Rabenhorst, 2001; Stolt et al., 2011); there is also a special subaquatic qualifier for submerged soils in WRB; however, they are still absent in many national classification systems, as well as in the recent Russian one (2008). The purpose of this research is to reveal the properties of the subaquatic soils in the Volga, Don and Kuban Rivers deltaic areas and to propose pedogenetic approaches to categorize AQUAZEMS. Investigations of deltaic areas were performed in 2010-2012 in deltaic lagoons, fresh-water bays, small channels, oxbow lakes, and also in the part of deltaic near-shore zone. Morphological descriptions of distinguishable layers (colour, texture, thickness, boundaries, consistence, plant residues and shell debris) were made in columns obtained by augering as it is done by other researchers (Stolt et al., 2011), and supplemented with analytical data (pH, Eh, TDS, particle-size composition, and Corg). It is suggested to name the horizons in aquazems in the same way as in terrestrial soils in the recent Russian soil classification system, and apply symbols starting with the combination of caps - AQ. Most typical for aquazems is their aquagley AQG horizon that has features similar to terrestrial gleys - homogeneity in color and consistence, permeation by clay, predominance of dove grey colour. The AQG horizon gradually merges into parent material - stratified bottom sediments. The "topsoil" is usually enriched in organic matter and may be different in

  15. Sequence stratigraphic model of the Rio Grande Delta, south west Texas: Potential analog for the Niger Delta

    SciTech Connect

    Banfield, L.A.; Anderson, J.B.; Vail, P.R. )

    1996-01-01

    A sequence stratigraphic model developed from the ancient Rio Grande Delta in South West Texas is suggested as an analog for the Niger Delta. The two delta systems are characterized by high sand bedloads, shale diapirism with associated listric normal faulting, and large amounts of tidal and wave influence forming lower coastal plains characterized by swamps and estuaries. The sequence stratigraphic model of the ancient Rio Grande delta is based on approximately 1200 kilometers of single channel, 15 cubic inch water gun data, lithologic descriptions from approximately 25 long cores (28-30 m) located in 17-94 meters water depth, three gamma ray logs, paleontologic data from two cores, and oxygen isotopic data from one core (152 meters in length and located in 94 meters water depth). The combined data indicate that considerable quantities of sand are sequestered on the continental shelf and point sourcing the slope. The Rio Grande sequence stratigraphic model provides an improved understanding of sand deposits on the shelf, of the role of sediment bypass during lowstands, and of the base of slope deposits formed by headward eroding canyons ( ) or channels ( ) located at the shelf break. This information regarding the distribution of sand in the Rio Grande system can provide valuable insight into the reservoir distribution in the Niger system, improving existing reservoir predictions.

  16. Sequence stratigraphic model of the Rio Grande Delta, south west Texas: Potential analog for the Niger Delta

    SciTech Connect

    Banfield, L.A.; Anderson, J.B.; Vail, P.R.

    1996-12-31

    A sequence stratigraphic model developed from the ancient Rio Grande Delta in South West Texas is suggested as an analog for the Niger Delta. The two delta systems are characterized by high sand bedloads, shale diapirism with associated listric normal faulting, and large amounts of tidal and wave influence forming lower coastal plains characterized by swamps and estuaries. The sequence stratigraphic model of the ancient Rio Grande delta is based on approximately 1200 kilometers of single channel, 15 cubic inch water gun data, lithologic descriptions from approximately 25 long cores (28-30 m) located in 17-94 meters water depth, three gamma ray logs, paleontologic data from two cores, and oxygen isotopic data from one core (152 meters in length and located in 94 meters water depth). The combined data indicate that considerable quantities of sand are sequestered on the continental shelf and point sourcing the slope. The Rio Grande sequence stratigraphic model provides an improved understanding of sand deposits on the shelf, of the role of sediment bypass during lowstands, and of the base of slope deposits formed by headward eroding canyons (?) or channels (?) located at the shelf break. This information regarding the distribution of sand in the Rio Grande system can provide valuable insight into the reservoir distribution in the Niger system, improving existing reservoir predictions.

  17. Distribution and condition of larval and juvenile Lost River and shortnose suckers in the Williamson River Delta restoration project and Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Burdick, Summer M.

    2012-01-01

    Federally endangered Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) were once abundant throughout their range but populations have declined. They were extirpated from several lakes in the 1920s and may no longer reproduce in other lakes. Poor recruitment to the adult spawning populations is one of several reasons cited for the decline and lack of recovery of these species and may be the consequence of high mortality during juvenile life stages. High larval and juvenile sucker mortality may be exacerbated by an insufficient quantity of suitable or high-quality rearing habitat. In addition, larval suckers may be swept downstream from suitable rearing areas in Upper Klamath Lake into Keno Reservoir, where they are assumed lost to Upper Klamath Lake populations. The Nature Conservancy flooded about 3,600 acres (1,456 hectares) to the north of the Williamson River mouth (Tulana) in October 2007, and about 1,400 acres (567 hectares) to the south and east of the Williamson River mouth (Goose Bay Farms) in October 2008, in order to retain larval suckers in Upper Klamath Lake, create nursery habitat, and improve water quality. The U.S. Geological Survey joined a long-term research and monitoring program in collaboration with The Nature Conservancy, the Bureau of Reclamation, and Oregon State University in 2008 to assess the effects of the Williamson River Delta restoration on the early life-history stages of Lost River and shortnose suckers. The primary objectives of the research were to describe habitat colonization and use by larval and juvenile suckers and non-sucker fishes and to evaluate the effects of the restored habitat on the health and condition of juvenile suckers. This report summarizes data collected in 2010 by the U.S. Geological Survey as a part of this monitoring effort and follows two annual reports on data collected in 2008 and 2009. Restoration modifications made to the Williamson River Delta appeared to provide

  18. A graph-theoretic approach to River Deltas: Studying complexity, universality, and vulnerability to change.

    NASA Astrophysics Data System (ADS)

    Tejedor, Alejandro; Longjas, Anthony; Zaliapin, Ilya; Foufoula-Georgiou, Efi

    2015-04-01

    River deltas are landforms with complex channel networks that deliver water, sediment and nutrient fluxes from rivers to oceans or inland water bodies via multiple pathways. Most of the deltas are subject to anthropogenic and natural perturbations causing topological and dynamical changes in the delta structure and function. We present a quantitative framework based on spectral graph theory within which a systematic study of the topology, transport dynamics and response to change of river deltas can be performed, as well as computation of sub-networks (from apex to shoreline outlets), and contributing/nourishing areas. We introduce metrics of topologic and dynamic complexity and define a multidimensional complexity space where each delta projects. By analysis of seven deltas of different morphodynamic and environmental settings, we report a surprising power law relationship between sub-network size and its dynamic exchange with surrounding sub-networks within the deltaic system. The exponent of the relationship is universal (predicting that a sub-network twice as large leaks out to other sub-networks only 1.3 times its total flux) and the pre-exponent depends on the topologic complexity of the delta network as a whole, i.e., the ensemble of the interacting sub-sub-networks. We also use the developed framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way for systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  19. 1. VIEW SOUTH ACROSS SUSQUEHANNA RIVER, LOCK SETTING (Opening of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTH ACROSS SUSQUEHANNA RIVER, LOCK SETTING (Opening of lock on bank by shrubs, near center of photograph) - Bald Eagle Cross-Cut Canal Lock, North of Water Street along West Branch of Susquehanna River South bank, 500 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  20. 2. LOOKING SW ALONG SOUTH BRANCH OF CHICAGO RIVER. BALTIMORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING SW ALONG SOUTH BRANCH OF CHICAGO RIVER. BALTIMORE & OHIO CHICAGO TERMINAL RAILROAD BRIDGE (HAER No. IL-67) IS IN RAISED POSITION, WITH ST. CHARLES AIR LINE BRIDGE BEHIND. - St. Charles Air Line Bridge, Spanning South Branch of Chicago River, north of Sixteenth Street, Chicago, Cook County, IL

  1. 33 CFR 117.624 - Black River (South Haven).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Black River (South Haven). 117.624 Section 117.624 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.624 Black River (South...

  2. 33 CFR 117.624 - Black River (South Haven).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Black River (South Haven). 117.624 Section 117.624 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.624 Black River (South...

  3. 33 CFR 117.624 - Black River (South Haven).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Black River (South Haven). 117.624 Section 117.624 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.624 Black River (South...

  4. 33 CFR 117.624 - Black River (South Haven).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Black River (South Haven). 117.624 Section 117.624 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.624 Black River (South...

  5. 33 CFR 117.624 - Black River (South Haven).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Black River (South Haven). 117.624 Section 117.624 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Michigan § 117.624 Black River (South...

  6. Linking rapid erosion of the Mekong River delta to human activities

    PubMed Central

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  7. Linking rapid erosion of the Mekong River delta to human activities

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-10-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.

  8. Coastal Vulnerability and Load Induced Subsidence of the Modern Mississippi River Delta and Environs

    NASA Astrophysics Data System (ADS)

    Dokka, R. K.; Ivins, E. R.; Blom, R. G.

    2006-12-01

    The disasters wrought by Hurricanes Katrina and Rita along the northern Gulf coast have heightened our awareness of the vulnerability of this low-lying landscape to storm surge. Although topographically subdued, the surface is the product of the dynamic interplay between the processes of subsidence, sediment accretion, and eustasy. Quantification and determination of causative processes of subsidence are thus essential as Society rebuilds and protects communities and contemplates restoration of the coastal ecosystem. Previous models for subsidence have emphasized the roles of shallow compaction and anthropomorphic effects. We agree that these processes are important, but also note that the isostatic impact of both the load of the delta sediments and the effects of water loading following glacial intervals have never been integrated into landscape models. It is thus not surprising that previous models cannot explain the recent geodetic measurements that show that subsidence is geographically more extensive and has been occurring at rates faster than previously anticipated. Here, we explore the combined 3-D physical implications of both sediment loading (delta) and water loading (eustasy) in south Louisiana and Mississippi over the course of the last several glacial cycles. Our models are based on a viscoelastic Earth and successfully explain the gross magnitude of modern subsidence measured by GPS, leveling, InSAR, and mareographs throughout the region. In areas of significant anomalies (spikes in observed subsidence rates that cannot be explained by load models), most can be explained as consequences of local processes such as faulting, fluid withdrawal (generally water), and drainage projects. The models suggest the possibility that additional loads (alluvial valley of the Mississippi River and offshore deposits) also play a role in subsidence.

  9. Birds of the Indigirka River Delta, Russia: Historical and biogeographic comparisons

    USGS Publications Warehouse

    Pearce, J.M.; Esler, Daniel; Degtyarev, A.G.

    1998-01-01

    We documented the breeding status and relative abundance of all avian species on the coastal portion of the Indigirka River Delta during spring and summer 1993-95. Data on avifaunal composition were then compared to data from adjacent areas from Eastern Siberia to the Chukotka Peninsula to evaluate how species composition changes longitudinally within the arctic and typical tundra zones of northern Russia. We recorded 63 species on the Indigirka River Delta, 37 (58.7 %) of which were confirmed breeders during at least one of the three years. Five new species were recorded breeding (Arenaria interpres, Calidris acuminata, Limnodromus scolopaceus, Stercorarius parasiticus, and Asio flammeus), and 13 previously unrecorded species were observed during this study. We also identified several species of rare or threatened status in Russia and North America, including Branta bernicla, Somateria fischeri, Polysticta stelleri, and Rhodostethia rosea. We used parsimony and distance matrix methods to compare the breeding species richness on the Indigirka River Delta to that of six other Russian Arctic areas. Biogeographic comparisons revealed the presence of two clades in the Russian Arctic: the Lena River Delta east to Chaun Delta and the Chukotka Peninsula.

  10. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  11. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  12. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  13. Geoarcheological investigations on the development of the Neva River delta (Gulf of Finland) during the Holocene

    NASA Astrophysics Data System (ADS)

    Kulkova, M. A.; Gusentsova, T. M.; Sapelko, T. V.; Nesterov, E. M.; Sorokin, P. E.; Ludikova, A. V.; Ryabchuk, D. V.; Markova, M. A.

    2014-01-01

    The article is devoted to the formation of the Neva River in the context of geoarcheological investigations carried out on the archeological site Okhta 1, which is located at the mouth of the Okhta River in the St. Petersburg city region (NW Russia). The site is multilayered and includes cultural layers from the Neolithic, Early Metal Age, Iron Age, and the Landskrona 13th century and Nienschanz 17th century fortresses. The Neva River's formation has long been a controversial question. The transgression of Ladoga Lake around 5950-2950 cal BP had an effect on the formation of the Neva River. By reviewing the complex investigations of the deposits and artifacts by geological and archeological methods, we may reconstruct the developmental stages of the Litorina Sea Bay and Neva River delta in this area. The formation of delta river sediments occurred from 3589 to 3078 cal BP. The end of the delta river formation can be associated with the appearance of ancient Early Iron Age people in the region in 2750-2350 cal BP.

  14. Regional dynamics of persistent organic pollutants (POPs) in the Pearl River Delta, China: implications and perspectives.

    PubMed

    Zhang, Kai; Zhang, Bao-Zhong; Li, Shao-Meng; Zeng, Eddy Y

    2011-10-01

    The mass transport budgets of 1,1,1-trichloro-2,2-bis(chlorophenyl)ethane (p,p'-DDT) and decabromodiphenyl ether (BDE-209) in the Pearl River Delta, South China were calculated based on previously collected data. Residual p,p'-DDT, mostly related to historical use, has largely settled into soil (780,000 kg), while the soil BDE-209 inventory (44,000 kg) is considerably smaller. Conversely, large amounts of BDE-209 currently used in numerous commercial products have resulted in a much higher atmospheric depositional flux of BDE-209 (28,100 kg/yr) relative to p,p'-DDT (310 kg/yr). The soil inventory of p,p'-DDT is predicted to decrease to half of its current value after 22 years, and the percent area containing soil p,p'-DDT at levels exceeding the effects range-medium (27 ng/g) will decrease from 40% to 20%. Finally, soil BDE-209 inventory will reach an equilibrium value of 940 tons in ~60 years, when BDE-209 levels in 50% of soil will be above an equivalent risk guideline value (125 ng/g). PMID:21669481

  15. An Observed Step Change in River Delta Turbidity Following 1982-1983 El Nino Floods

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Morgan-King, T.; Ustin, S.

    2010-12-01

    Sediment transport influences the geomorphology, biogeochemical cycling, pollutant load, and ecology of river deltas and estuaries. In the Sacramento-San Joaquin Delta, turbidity is largely considered a surrogate of suspended sediment concentration, and has been declining over the past 30 years. This has contributed to dramatic changes in the ecology of the Delta and to the decline of the endemic and endangered delta smelt. The declining turbidity trend in the Delta has been attributed to reduced sediment inputs and expansion of invasive submerged aquatic vegetation. In this study, we analyzed historic monthly turbidity records collected by the California Department of Water Resources Environmental Monitoring Program from 1975-2008. We investigated structural changes in the turbidity trend, and identified a significant step decrease in turbidity after the beginning of the 1984 water year at nine different sites within the Delta. This significant decrease in Delta turbidity appears to have been caused by the combination of large El-Nino driven winter floods from both the San Joaquin and Sacramento Rivers in 1982-1983 and the high inflows throughout the summer. We suggest that these extended high flow events flushed the erodible sediment pool from the Delta into the San Francisco Bay. This event has left the Delta in its current, low-turbidity state. Another study found that a step decrease in suspended sediment concentration in San Francisco Bay in 1999 may have been caused by depletion of erodible sediment. This indicates that depletion of erodible sediment may have progressed downstream and, if the erodible sediment pools were created by hydraulic mining in the late 1800s, sedimentation in the estuary has largely recovered from hydraulic mining.

  16. Source and composition of sediments and organic carbon delivered to the Mackenzie River delta

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Blusztajn, J.; Giosan, L.; Montlucon, D. B.; Graf-Pannatier, E.; Eglinton, T. I.

    2012-12-01

    The Mackenzie River is believed to represent the largest fluvial sediment flux to the Arctic Ocean (124 Mt/yr), delivering as much sediment as all other major Arctic Rivers combined. This flux is based on river inflow prior to its entry into the delta, and consists of Mackenzie River mainstem sediments (103 Mt/yr; including Arctic Red River) entering the delta from the southeast, and Peel River sediments (21 Mt/yr) entering from the southwest. The Mackenzie River delta, the second largest river delta in the world, is covered with thousands of small, shallow lakes. In-lake sedimentation, in addition to overbank and point bar sedimentation, is substantial and estimated to be around 102 Mt/yr. Erosion of banks and channels may account for approximately half of this flux, so the "true" offshore sediment flux might be lower than is typically reported. Improved estimates are required for the flux and provenance of fluvial sediment delivered to the delta, and to the adjacent Beaufort Sea, to be able to increase our understanding of Arctic deltas, particularly in the light of ongoing and future climatic change. Here we investigate the source and composition of sediments in the Mackenzie delta and near-coastal zone, based on a blend of sedimentological (grain size, mineral surface area), organic (%TOC, %TN, δ13C, δ15N, Δ14C) and inorganic (major/trace elements, Nd/Sr isotopes) properties of suspended river particulates (n=6), bank sediments (n=8), lake sediments (n=21), and shelf sediments (n=9). Bank and shelf sediments showed fairly constant bulk %TOC contents and δ13C values (1.0±0.3%, and -26.7±0.3‰; 1.3±0.3%, and -25.5±0.7‰, respectively) whereas lake sediments revealed greater spatial variability (2.2±1.2%, and -26.8±1.3‰). The variability in Nd isotopes of the detrital sediment component is significant (ɛNd of suspended matter -12.7 to -13.9; banks -12.4 to -14.5; lakes -11.4 to -14.5; and shelf -12.5 to -13.0). This suggests strong variations in

  17. STS-65 Earth observation of Omo River Delta, Lake Turkana in Ethiopia / Kenya

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of Omo River Delta and Lake Turkana in Ethiopia / Kenya. The Omo Delta at the north end of Lake Turkana (Rudolph) is one of the long-term environmental study sites of the Space Shuttle program. The environmental interest in this instance is the documentation of the delta's extension into the lake. This delta extension, or aggradation, is felt to be the result of large-scale soil erosion in the recently deforested areas of Ethiopia in the watershed of the Omo River. Using digitized, rectified, machine-classified, and mensurated NASA photography, it has been determined that the Omo Delta has increased in area by approximately 400% to about 1,800 square kilometers since it was first photographed during the Gemini program in 1965. This photograph documents the long-term and increasing turbidity of Lake Turkana and the continuing delta extension southward by both the northwest and northeast distributaries of the Om

  18. 3. SOUTH FORK OF THE TULE RIVER MIDDLE FORK BRANCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH FORK OF THE TULE RIVER MIDDLE FORK BRANCH FLUME AT THE NORTH FORK OF THE TULE RIVER MIDDLE FORK CROSSING SHOWING ORIGINAL DIMENSIONAL STONE PIER ON WEST BANK AT PHOTO CENTER, AND REMAINS OF ORIGINAL EAST BANK DIMENSIONAL STONE PIER AT PHOTO LEFT BELOW NEW (ca. 1931) EAST BANK PIER. VIEW TO SOUTHEAST. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA

  19. G-2 and G-3 reservoirs, Delta South field, Nigeria - 2. Simulation of water injection

    SciTech Connect

    Thakur, G.C.; Stanat, P.L.; Aruna, M.; Ajayi, S.A.; Poston, S.

    1982-01-01

    A description is given of a two-dimensional, three-phase, black-oil simulation of the G-2 and G-3 reservoirs in the Delta South field offshore Nigeria. The purpose of these studies was to investigate, from an engineering standpoint, various operating schemes for optimizing the oil recovery from each of these highly gravity-segregated reservoirs. 4 refs.

  20. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    PubMed Central

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads. PMID:26628104

  1. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-12-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  2. Research Spotlight: What controls the shape of sediment channels in river deltas?

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    When turbulent, sediment-filled rivers empty into oceans and lakes, the channels often divide repeatedly to form triangular deltas. Some channels, however, travel long distances before bifurcating, creating elongated channels. Understanding how these patterns arise could be useful for designing wetland restoration schemes on river deltas. Seeking to explain the conditions under which elongated channels form, Falcini and Jerolmack considered an analogy with cold filaments in ocean currents, in which high potential vorticity (a measure that combines the rotation of a flow with its thermal gradient) helps a filament hold a coherent structure over long distances. The researchers introduced a model that incorporates sediment concentration and fluid vorticity, to derive a new “potential vorticity” equation that describes sedimentation patterns at the river mouth. Their model shows that a high potential vorticity is needed for the creation of elongated channels, and their comparison to modeling, laboratory, and field studies confirms that potential vorticity is a primary control on channel morphology. The new model could help to understand the shape of the iconic Mississippi River delta and may aid in the design of proposed channel diversions there and in other deltas. (Journal of Geophysical Research-Earth Surface, doi:10.1029/2010JF001802, 2010)

  3. Dead delta's former productivity: Two trillion shells at the mouth of the Colorado River

    NASA Astrophysics Data System (ADS)

    Kowalewski, Michal; Avila Serrano, Guillermo E.; Flessa, Karl W.; Goodfriend, Glenn A.

    2000-12-01

    The diversion of the Colorado River by dams and irrigation projects, started in the 1930s, triggered the collapse of the Colorado delta ecosystem. Paleontological, ecological, geochronological, stable isotope, field, and satellite image data provide estimates of the delta's benthic productivity during the 1 k.y. directly preceding the artificial shutdown of the river. At least 2 × 1012 shells of bivalve mollusks make up the current beaches and islands of the delta. The 125 individual valves dated using 14C-calibrated amino acid racemization indicate that these shells range in age from A.D. 950 to 1950. Seasonal intrashell cycles in δ180 values indicate that average-sized bivalves lived at least 3 yr. The most conservative calculation based on these numbers indicates that during the time of natural river flow, an average standing population of ˜6 × 109 bivalve mollusks (population density ˜50/m2) thrived on the delta. In contrast, the present abundance of shelly benthic macroinvertebrates is ˜94% lower (3/m2 in 1999 2000). The dramatic decrease in abundance testifies to the severe loss of benthic productivity resulting from diversion of the river's flow and the inadequacy of its partial resumption (1981 to present). An integration of paleontological records with geomorphological, geochemical, and geochronological data can provide quantitative insights into human impact on coastal ecosystems.

  4. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    PubMed

    Smith, James E; Bentley, Samuel J; Snedden, Gregg A; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads. PMID:26628104

  5. Sediment consolidation settlement of Chengbei Sea area in the northern Huanghe River subaqueous delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Feng, Xiuli; Liu, Xiao

    2016-06-01

    One of the most important factors controlling the morphology of the modern Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.

  6. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  7. HABITAT ASSESSMENT USING A RANDOM PROBABILITY BASED SAMPLING DESIGN: ESCAMBIA RIVER DELTA, FLORIDA

    EPA Science Inventory

    Smith, Lisa M., Darrin D. Dantin and Steve Jordan. In press. Habitat Assessment Using a Random Probability Based Sampling Design: Escambia River Delta, Florida (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems...

  8. Biological assessment: water hyacinth control program for the Sacramento/ San Joaquin River Delta of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed Biological Assessment was developed for the proposed Areawide Water Hyacinth Control Program to outline the procedures that will be used to control this invasive aquatic plant in the Sacramento/ San Joaquin River Delta, and to help determine if this action is expected to threaten endanger...

  9. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta destabilisation

    NASA Astrophysics Data System (ADS)

    Brunier, Guillaume; Anthony, Edward J.; Goichot, Marc; Provansal, Mireille; Dussouillez, Philippe

    2014-11-01

    The Mekong delta, in Vietnam, is the world's third largest delta. Densely populated, the delta has been significantly armoured with engineering works and dykes to protect populations and infrastructure from storms, and shrimp farms from saltwater intrusion. Considerable development pressures in Vietnam and in the upstream countries have resulted in the construction of several dams in China and in important channel-bed aggregate extractions especially in Cambodia. The effects of these developments impact the delta dynamics in various ways. In this study, changes in the channel morphology of the Mekong proper and the Bassac, the two main distributaries in the 250 km-long deltaic reach from the Cambodian border to the coast, were analysed using channel depth data for 1998 and 2008. The channels display important and irregular bed changes over the 10-year comparison period, including significant incision and expansion and deepening of numerous pools. The mean depth of both channels increased by more than 1.3 m. Both channels also showed correlative significant bed material losses: respectively 90 million m3 in the Mekong and 110 million m3 in the Bassac over the 10-year period. These important losses over a relatively short period, and weak correlations between bed incision and hydraulic parameters suggest that the marked morphological changes are not in equilibrium with flow and sediment entrainment conditions, and are therefore not related to changes in river hydrology. We claim that aggregate extraction, currently practised on a very large scale in the Mekong delta channels and upstream of the delta, is the main cause of these recent morphological changes. These changes are deemed to contribute actively to rampant bank erosion in the delta as well as to erosion of the Mekong delta shoreline. Other contributory activities include the numerous dykes and embankments. The role of existing dams in bed losses remains unclear in the absence of reliable data on the Mekong

  10. Long-term NO2 monitoring by satellite in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Li, Long; Shi, Runhe; Liu, Pudong; Zhang, Jie

    2013-09-01

    Recently, the air quality has been continuing to deteriorate and threaten public health in the Pearl River Delta. China, the host country for the 2010 Asian Games, faced the great challenge of air quality issues, particularly in the Pearl River Delta, where the Asian Games were held. The major aim of this study is to reveal the spatial and temporal characteristics of NO2 in the Pearl River Delta during October 2004 to December 2010. The long-term characteristics and variations of the NO2 column concentration before and during the 2010 Asian Games were analyzed by using the NO2 product OMNO2e from the Ozone Monitoring Instrument (OMI). Results show that the annual average of the NO2 column concentration has a significant downward trend from 2005 to 2010 in the Pearl River Delta: the total column concentration of NO2 (TotNO2) in the atmosphere decreased from 9.207×1015 molec/cm2 to 8.173×1015 molec/cm2, with an average annual rate of -2.247%; the tropospheric column concentration of NO2 (TropNO2)decreased from 6.685×1015 molec/cm2 to 5.646×1015 molec/cm2, with an average annual rate of -3.109%. The ratio TropNO2/TotNO2 indicating the amount of NO2 exhausted by human activities also decreased from 0.726 in 2005 to 0.691 in 2010. During the 2010 Asian Games, the weekly average of the TropNO2 in Pearl River Delta was maintained at a low level. The NO2 average distribution in the Pearl River Delta is characterized by the maximum in the geometric center, outwardly smaller, and the shrinking areas with high TropNO2 concentration from 2005 to 2010. Foshan, Jiangmen and Kwangchowan were severely polluted cities during the Games. However, the air quality of the Pearl River Delta was improved compared to its historical periods due to governmental preventive/control measures during the 2010 Asian Games.

  11. Mississippi Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mississippi River delta teems with sediment deposited by the river as it flows into the Gulf of Mexico in this true-color image captured by MODIS on October 15, 2001. The sediment, which is marked by brown swirls in the Gulf, provides nutrients for the bloom of phytoplankton visible as blue-green swirls off the coastline. In the high-resolution image the city of Memphis can be seen in the southwest corner of Tennessee, which is just to left of center at the top of the image. The brown coloration that encompasses Memphis and either side of the river, as flows north to south along the left side of the image, is the river's flood plain. Also visible, in the upper-right hand corner of the image is the southern end of the Appalachian Mountains.

  12. Sediment Bypassing of River Mouths: Mechanisms and Effects on Delta Evolution

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Ashton, A. D.; Giosan, L.; Nardin, W.; Fagherazzi, S.

    2014-12-01

    Wave-influenced deltas are shaped by wave-driven transport of river-borne sediments. Near the river mouth, combined jet and wave dynamics, along with morphodynamic feedbacks, control the fraction of sediment transported alongshore by littoral currents that can bypass the river channel. Here we study how different bypassing rates influence large-scale delta evolution and examine the effect of waves and the river mouth jet on alongshore sediment bypassing. First, we use a modified version of the Coastline Evolution Model (CEM) to look at the effects of wave climate, fluvial sediment supply, and alongshore sediment bypassing rates on channel orientation. This modified version of CEM progrades the channel in a direction perpendicular to the local shoreline orientation at the river mouth, allowing feedbacks between alongshore sediment transport and fluvial sediment delivery to steer the river channel. Additionally, we allow a prescribed fraction of littoral sediment to bypass the river mouth. We find that deltas that have a large fluvial sediment flux can orient themselves into the direction of dominant wave approach. Lower fluvial inputs result in channels that are deflected downdrift, with increasing deflection as bypassing is reduced. In contrast, channels do not deflect downdrift (but can reorient themselves updrift for large fluvial fluxes) when full bypassing is allowed. These results demonstrate the importance of river mouth sediment bypassing on delta growth patterns, but, as we explore arbitrary bypassing laws, the simulations cannot help us constrain natural bypassing fluxes. To further investigate the natural extent and mechanisms of bypassing, we use the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. With a simplified shoreface and river channel, the model is able to construct river mouth morphology from the combined action of alongshore transport and a river mouth jet. Exploring river mouth morphology and sediment bypassing under various wave

  13. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  14. Long-term process-based morphodynamic modeling of the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Wu, Chaoyu

    2014-12-01

    The Pearl River Delta (PRD) is one of the most complex large-scale estuarine systems in China. A long-term morphodynamic model is developed to simulate the evolution of the PRD and its estuarine system. The driving forces and control factors considered in the model include river discharge, representative tides, and sediment supply from the Pearl River system; sediment compaction; neotectonic movement; and sea-level variation. Core data with 14C dating at 40 locations are used to validate the model output with satisfactory results. New findings on the mid-Holocene evolution of the PRD show that the delta's chronological and spatial evolution pattern is different from those found in previous studies in several respects. The model confirms that complex morphologies, e.g., rocky islands in shallow estuarine bays, are some of the most important factors affecting the long-term evolution of the PRD.

  15. Delta distributary dynamics in the Skagit River Delta (Washington, USA): Extending, testing, and applying avulsion theory in a tidal system

    NASA Astrophysics Data System (ADS)

    Hood, W. Gregory

    2010-11-01

    Analysis of historical aerial photos shows that Skagit Delta (Washington, USA) distributary dynamics are consistent with the Slingerland and Smith model of avulsion dynamics where the ratio of the water surface slopes of the two branches of a bifurcation predicts avulsion stability. This model was extended to predict distributary inlet (upstream) width and bankfull cross-sectional area. The water surface gradient ratio for a bifurcation pair predicted distributary width well; the lowest R2 was 0.61 for the 1937 data points, but R2 ranged from 0.83 to 0.90 for other year-specific regression lines. Gradient ratios were not constant over the historical record; from 1937 to 1972 the mainstem river channel lengthened by 1250 m in the course of marsh progradation, while distributary lengthening was comparatively negligible. Consequently, the gradient advantage of the distributaries increased and their channels widened. After the mainstem river terminus stabilized from 1972 to the present, the distributaries continued to lengthen with marsh progradation, so that distributary gradient advantage steadily declined and the distributaries narrowed. While distributary cross sections were not available for the historical period, they were surveyed in 2007 near the distributary inlets. Gradient ratio was more closely related to distributary inlet bankfull cross-sectional area ( R2 = 0.95) than to minimum distributary width for any photo year examined. Applying this form of analysis to Skagit Delta distributaries that have been dammed in the course of agricultural development suggests that their restoration to stabilize eroding marshes at their outlets and recover salmon migration pathways would be feasible without significant risk of full river avulsion.

  16. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    USGS Publications Warehouse

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  17. 8. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH OF LEGGETT, HUMBOLDT COUNTY, CALIFORNIA. LOOKING N. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  18. 9. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EEL RIVER SOUTH FORK BRIDGE, OLD HIGHWAY 101. NORTH OF LEGGETT, HUMBOLDT COUNTY, CALIFORNIA. LOOKING W. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  19. Holocene evolution in weathering and erosion patterns in the Pearl River delta

    NASA Astrophysics Data System (ADS)

    Hu, Dengke; Clift, Peter D.; BöNing, Philipp; Hannigan, Robyn; Hillier, Stephen; Blusztajn, Jerzy; Wan, Shiming; Fuller, Dorian Q.

    2013-07-01

    Sediments in the Pearl River delta have the potential to record the weathering response of this river basin to climate change since 9.5 ka, most notably weakening of the Asian monsoon since the Early Holocene (˜8 ka). Cores from the Pearl River delta show a clear temporal evolution of weathering intensity, as measured by K/Al, K/Rb, and clay mineralogy, that shows deposition of less weathered sediment at a time of weakening monsoon rainfall in the Early-Mid Holocene (6.0-2.5 ka). This may reflect an immediate response to a less humid climate, or more likely reduced reworking of older deposits from river terraces as the monsoon weakened. Human settlement of the Pearl River basin may have had a major impact on landscape and erosion as a result of the establishment of widespread agriculture. After around 2.5 ka weathering intensity sharply increased, despite limited change in the monsoon, but at a time when anthropogenic pollutants (e.g., Cu, Zn, and Pb) increased and when the flora of the basin changed. 87Sr/86Sr covaries with these other proxies but is also partly influenced by the presence of carbonate. The sediments in the modern Pearl River are even more weathered than the youngest material from the delta cores. We infer that the spread of farming into the Pearl River basin around 2.7 ka was followed by a widespread reworking of old, weathered soils after 2.5 ka, and large-scale disruption of the river system that was advanced by 2.0 ka.

  20. Heavy Metals and Biogenic Elements in Aquatic Systems of the Don River Delta

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anna; Tkachenko, Oleg

    2014-05-01

    River deltas are located in the lower parts of the cascade landscape-geochemical systems of the river basins, so their geochemical conditions often characterize the anthropogenic impact on whole river system. The Don River runs through the one of the most agriculturally developed and densely populated area of Russia, and flows into the Azov Sea - the smallest and shallowest sea in the world. These factors determine the geochemical features of aquatic systems of the Don River mouth area and the specificity of the "river-sea" geochemical barrier zone. The paper presents results of the field studies of the geochemical structure of the Don River mouth area, which were conducted in frames of the RFBR project in 2012-2013. Major types of the deltaic water streams and bodies were studied in different hydrological seasons: spring floods, summer, autumn and winter low water periods. About 50 samples of water, suspended matter and 60 samples of bottom sediments have been collected and analyzed for heavy metals (Fe, Mn, Zn, Cu, Ni, Co, Pb, Cr, Cd etc.) and biogenic elements (nitrate, nitrite, ammonium, phosphates, silica, total nitrogen and phosphorus, dissolved oxygen and chlorophyll) content. To assess the toxicity degree and nutrient potential of water, bioassay test conducted by growing daphnia in water samples were held. The study shows that the Don River delta water is characterized by the relatively low values of dissolved heavy metal content. Significantly higher values of heavy metals were determined in the vicinity of settlements only. Metal accumulation in bottom sediments can be associated mainly with the rate of water flow. Higher values were found in sediments of small channels with weak flow velocity and prevailing processes of the suspended matter deposition. The data on the seasonal dynamics of nutrients and spatial variability of their forms have been obtained. The maximum concentration of nitrogen, phosphorus, silicon, and other biogenic elements are

  1. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt

    NASA Technical Reports Server (NTRS)

    Aly, Mohamed H.; Klein, Andrew G.; Giardino, John R.

    2005-01-01

    The Nile River Delta is experiencing rapid rates of coastal change. The rate of both coastal retreat and accretion in the Eastern Nile Delta requires regular, accurate detection and measurement. Current techniques used to monitor coastal changes in the delta are point measurements and, thus, they provide a spatially limited view of the ongoing coastal changes. SAR interferometry can provide measurements of subtle coastal change at a significantly improved spatial resolution and over large areas (100 sq km). Using data provided by the ERS-1&2 satellites, monitoring can be accomplished as frequently as every 35 days when needed. Radar interferometry is employed in this study to detect segments of erosion and accretion during the 1993-2000 period. The average rates of erosion and accretion in the Eastern Nile Delta are measured to be -11.64 m/yr and +5.12 m/yr, respectively. The results of this interferometric study can be used effectively for coastal zone management and integrated sustainable development for the Nile River Delta.

  2. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  3. Detailed Morphology and Sediment Transport Processes in the Nearshore of the Fraser River Delta, British Columbia

    NASA Astrophysics Data System (ADS)

    Hill, P. R.; Meule, S.; Carle, L.; Davidson, S. H.; Barrie, J. V.

    2002-12-01

    Permanent river training structures have stabilized the mouth of the Fraser River and largely isolated the Roberts Bank sector of the Fraser River delta from sandy sediment supply. In a study to determine the susceptibility to erosion of the delta nearshore and associated infrastucture, the entire delta front has been mapped using multibeam sonar. High-resolution morphological maps of the nearshore reveal a range of bedforms, dominated by the strong tidal currents that sweep the delta front. Certain sectors of the nearshore are, however, dominated by erosional features including outcropping beds. Numerical modeling, using the SEDTRANS96 program, indicates that wave motions influence sediment transport in water depths less than 15 m during the moderate fetch-limited winter storms typical of the region. Wave, current profile, suspended sediment and seabed imagery data were collected at a site in 10 m water depth as a calibration for further sediment transport modeling. Preliminary results indicate bedload and suspended sediment transport occurred in response to both tidal currents and combined wave- and current conditions.

  4. Flooding the Colorado River Delta: A Landscape-Scale Experiment

    NASA Astrophysics Data System (ADS)

    Flessa, Karl W.; Glenn, Edward P.; Hinojosa-Huerta, Osvel; Parra-Rentería, Carlos A.; Ramírez-Hernández, Jorge; Schmidt, John C.; Zamora-Arroyo, Francisco A.

    2013-12-01

    A large pulse of water is planned to be released into the dry Colorado River channel in Mexico. This engineered experimental spring flood, which will flow from Lake Mead and pass through downstream reservoirs, is the culmination of decades of applied research. The pulse flow is a rare opportunity for research at the landscape scale [Glenn et al., 2013].

  5. Evolution of an Anthropocene Delta: Understanding the Interplay of Natural and Anthropogenic Forces That Shaped the Brazos River Subaqueous Delta, USA

    NASA Astrophysics Data System (ADS)

    Carlin, J. A.; Dellapenna, T. M.

    2014-12-01

    Deltas are unique environments that are rich in natural resources and human populations. As a result, human activities directly to the delta and indirectly to the watershed in the Anthropocene have led to changes within the deltaic system as a response to these natural and anthropogenic forces. Understanding the response of deltas to these new forcings will be critical to assess the vulnerability of deltas to global climate change and expanding human populations. The Brazos River Delta, located in the northwestern Gulf of Mexico, served as an ideal study area to investigate the effect of human activities on a delta. Historical alterations to the system include agricultural activity, jetty construction, an engineered mouth diversion, and reservoir construction throughout the early and mid 20th Century. Three subaerial deltaic growth phases were identified based on historic shoreline configurations, and combined with high-resolution geophysical data (swath bathymetry, side scan sonar, CHIRP subbottom profiling) from the subaqueous delta to investigate the subaqueous delta changes over time. Evidence from these alternating progradational and retrogradational periods are preserved within the subaqueous delta. The data showed that as the growth of the subaerial delta changed over time, the subaqueous clinoform was subjected to regions of progradation or abandonment. The abandoned clinoform sections were characterized by a thinning modern clinoform sequence downslope from an erosional scarp. High side scan sonar backscatter features are believed to distinguish exposed erosional surfaces throughout the subaqueous delta demarcating the abandoned sections at the seabed. Prograding clinoform areas lack these high backscatter features. In these areas the modern clinoform was relatively thicker and does not exhibit the upslope erosional scarps. This noticeable asymmetry across the subaqueous delta shows that the Brazos Delta has migrated southwestward resulting from shifts in

  6. Mouths of the Amazon River, Brazil, South America

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In this view of the Amazon River Mouth (0.0, 51.0W), a large sediment plume can be seen expanding outward into the Atlantic Ocean. The sediment plume can be seen hugging the coast north of the delta as a result of the northwest flowing coastal Guyana Current. In recent years, the flow of the Amazon has become heavily laden with sediment as soil runoff from the denuded landscape of the interior enters the Amazon River (and other rivers) drainage system.

  7. Quantifying the transition from fluvial- to wave-dominance for river deltas with multiple active channels

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Ashton, A. D.; Giosan, L.

    2012-12-01

    The plan-view morphologies of fluvial- and wave-dominated deltas are clearly distinctive, but transitional forms are numerous. A quantitative, process-based description of this transition remains unexplored, particularly for river deltas with multiple active channels. Previous studies focused on general attributes of the fluvial and marine environment, such as the balance between wave energy and river discharge. Here, we propose that the transition between fluvial and wave dominance is directly related to the magnitude of the fluvial bedload flux to the nearshore region versus the alongshore sediment transport capacity of waves removing sediment away from the mouth. In the case of a single-channel delta, this balance can be computed for a given distribution of waves approaching shore. Fluvial dominance occurs when fluvial sediment input exceeds the wave-sustained maximum alongshore sediment transport for all potential shoreline orientations both up- and downdrift of the river mouth. However, deltaic channels have the tendency to bifurcate with increasing fluvial strength. Initial bifurcation splits the fluvial sediment flux among individual channels, while the potential sediment transport by waves remains constant for both river mouths. At higher bifurcation orders, multiple channels interact with each other alongshore, a situation more complicated than the single channel case and one that cannot be simple addressed analytically. We apply a model of plan-view shoreline evolution to simulate the evolution of a deltaic environment with multiple active channels. A highly simplified fluvial domain is represented by deposition of sediment where channels meet the coast. We investigate two scenarios of fluvial delivery. The first scenario deposits fluvial sediment alongshore on a self-similar predefined network of channels. We analyze the effects of different network geometrical parameters, such as bifurcation length, bifurcation angle, and sediment partitioning. In the

  8. 33 CFR 117.751 - Shark River (South Channel).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Shark River (South Channel). 117.751 Section 117.751 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.751 Shark River...

  9. 33 CFR 117.751 - Shark River (South Channel).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Shark River (South Channel). 117.751 Section 117.751 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.751 Shark River...

  10. 33 CFR 117.751 - Shark River (South Channel).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Shark River (South Channel). 117.751 Section 117.751 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.751 Shark River...

  11. 33 CFR 117.751 - Shark River (South Channel).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Shark River (South Channel). 117.751 Section 117.751 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.751 Shark River...

  12. 33 CFR 117.751 - Shark River (South Channel).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Shark River (South Channel). 117.751 Section 117.751 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.751 Shark River...

  13. Dam Removal as Nearshore Restoration - Patterns and Processes of the Elwha River Delta

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.; Gelfenbaum, G.; Johannessen, J.; Beirne, M.; Winter, B.

    2005-12-01

    Dams on the Elwha River of the Olympic Peninsula have reduced sediment transport in the river for almost a century. Following dam removal, which is slated to begin in 2008, over 14 million cubic meters of mixed grain-size sediments will be exposed in the former reservoirs, much of which will erode and transport to the Strait of Juan de Fuca. Increased supply of sediment to the strait, may end, or perhaps reverse, the current trend of erosion along the river delta and adjacent shoreline. Here we describe the history of shoreline evolution along the Elwha River delta and detail monitoring plans to track nearshore changes following dam removal. Historic data document a general trend of erosion along the delta resulting in a net loss of approx. 65,000 sq. meters of land between 1926 and 1995, although variability in erosion rates is observed over both space and time. Continued monitoring of the shoreface is planned by both U.S. Geological Survey (USGS) and Lower Elwha Klallam Tribe (LEKT) scientists. USGS scientists have also implemented a research program that includes beach and nearshore mapping, process (wave and current) monitoring, and numerical modeling of sediment dispersal. Here we will present preliminary results of this work including high-resolution seabed maps of bathymetry and sediment type and changes in the nearshore bathymetry and beach topography from semi-annual mapping using RTK GPS technologies.

  14. The Morphology and Stability of Bifurcations in the Mossy River Delta, Saskatchewan, Canada

    NASA Astrophysics Data System (ADS)

    Edmonds, D. A.; Slingerland, R. L.; Best, J. L.; Bridge, J. S.; Janesko, D.; Parsons, D. R.; Smith, N. D.

    2006-12-01

    Channel bifurcation is a fundamental process in the initiation and evolution of braided rivers, anastomosed rivers, alluvial fans, and deltas. To better understand deltaic distributary bifurcations, we have initiated a study of five bifurcations in the Mossy River Delta, Saskatchewan, Canada. Preliminary data were collected using an Eagle single-beam echo sounder, a Sontek 1500 KHz acoustic Doppler profiler, and Sokkia total station. At the flow discharge investigated, the flow diverges from the trunk channel orientation into each bifurcate channel close to the bifurcation point. Moreover, for four of the five bifurcations, the wider bifurcate channel generally has discharge (Q) that is 13 to 28 percent less than the narrower bifurcate channel, cross-sectional mean velocity that is slower by a few percent, depth (d) that is shallower by half, water surface slope (S) that is steeper by a few percent, and higher dune height relative to water depth. Furthermore, a morphological ramp with slope from 0.1 to 1 degree leads from the deeper, undivided channel at the bifurcation point to the shallower channel. The origin of these geomorphic and hydraulic relationships remains an open question, and must await further investigation. However, relative values of S, Q, and d for the bifurcate channels in the Mossy River Delta are opposite the theory of Bolla-Pittaluga et al. (2003), in which bifurcations are stable if the bifurcate channel with the lower S has a smaller Q and d.

  15. South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.

    SciTech Connect

    Siddall, Phoebe

    1992-04-01

    In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

  16. How Does the Morphology of Shelf-Margin Deltas Relate to Sea-Level Elevation? Clues From the Modern Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Bart, P. J.

    2005-12-01

    Scientists have attempted to precisely determine eustatic changes using various techniques. One of these is the sequence stratigraphic technique which relies on vertical changes in the position of coastal onlap (Vail et al, 1977). In subsequent years, several authors have recognized many limitations in this approach (Christie-Blick et al., 1990). Our ongoing study focuses on the possibility of using the morphology of modern and ancient shelf-margin deltas as sea-level indicators to determine past sea-level elevations. The Mississippi River Delta provides an excellent opportunity to study the precise relationship between shelf-edge delta morphology and sea-level elevation. A morphological analysis of the modern Mississippi River Delta suggests that there may be a direct relationship between the sea-level and the offlap break features of the delta. The offlap break is defined at the intersection of topset and foreset at the location of a marked increase in slope. At this point, the bathymetric curvature (i.e. second derivative of sea-floor) is highest. This is analogous to O'Grady and Syvitski (2002) definition of shelf break offshore Greenland. More than a hundred bathymetric cross sections were made across the modern Balize lobe of the Mississippi River Delta using Rivertools software. The geomorphic analysis showed that there were two distinct morphologic types of the delta. In one type, there is a sharp transition from the topset to the foreset, whereas in a second type, the topset-foreset transition is gradual. It was observed that sharp offlap breaks characterize the eastern part of the delta at water depths of 1 ± 0.3 m. The southern and southwestern parts of the delta are characterized by gradual offlap breaks at water depths of 4 ± 2 m.

  17. The combined impact on the flooding in Vietnam's Mekong River delta of local man-made structures, sea level rise, and dams upstream in the river catchment

    NASA Astrophysics Data System (ADS)

    Le, Thi Viet Hoa; Nguyen, Huu Nhan; Wolanski, Eric; Tran, Thanh Cong; Haruyama, Shigeko

    2007-01-01

    The Mekong River delta plays an important role in the Vietnamese economy and it has been severely impacted during this century by a series of unusually large floods. In the dry season the delta is also impacted by salinity intrusion and tides. These effects have caused severe human hardship. To mitigate these impacts, a large number of engineering structures, primarily dykes and weirs, have been built in the delta in recent years and are still being built, mainly to control floods and saltwater intrusion. These control measures are still being upgraded. A GIS-linked numerical model shows that the flood levels in the delta depend on the combined impacts of high river flows in the Mekong River, storm surges, sea level rise, and the likely, future siltation of the Mekong Estuary resulting from the construction of dams in China as well as many other dams proposed throughout the remaining river catchment. The model suggests that the engineering structures in the delta increase the flow velocities in the rivers and canals, increasing bank erosion, and cause the water to be deeper in the rivers and canals. This increases flooding in the non-protected areas of the delta and increases the risk of catastrophic failure of the dykes in the protected areas. The model also predicts that a sea level rise induced by global warming will enhance flooding in the Mekong River delta in Vietnam, and that flooding may worsen in the long term as a result of estuarine siltation resulting from the construction of dams. At the scale of the Mekong River basin, a multinational water resources management plan is needed that includes the hydrological needs of the delta. At the scale of the delta, a compromise is needed between allowing some flooding necessary for agriculture and preventing catastrophic flooding to alleviate human suffering.

  18. Basin-Scale Exports vs. Coastal Delivery of Carbon, Nutrients and Particulates Above and Below Arctic River Deltas

    NASA Astrophysics Data System (ADS)

    Striegl, R. G.; Tank, S. E.; Weeks, G.; Holmes, R. M.; McClelland, J. W.

    2014-12-01

    Recent studies have substantially improved our understanding of water, sediment and materials exports by arctic rivers. Seasonality of exports, particularly during the spring freshet, is better quantified, as are the inland sources of water and sediment discharge and the source and chemical character of other material exports, including carbon and nutrients. Measurements on small rivers discharging directly to the Arctic Ocean and lacking complex deltas can accurately quantify local inputs to coastal regions. However, the majority of hydrologic inputs to the Arctic Ocean derive from 6 major Eurasian and North American rivers. Water, sediment, and chemical exports from these rivers are typically measured above head of tide, far inland, and commonly above large river deltas. These deltas settle particles and provide favorable environments for deposition, storage, and biogeochemical consumption, production, and transformation of aquatic carbon and nutrients. Consequently, basin exports measured above river deltas likely misrepresent actual delivery to coastal regions. In addition to accumulating sediment, observed and modeled arctic delta effects include enrichment of the organic content of suspended solids, increased dissolved organic carbon and nitrogen (DOC; DON) concentration, decreased inorganic nutrient concentration, and settling and likely increased bioavailability of particle associated contaminants, such as mercury. Increased DOC concentration in the Mackenzie River delta has also been associated with a change in DOC quality, with increased potential for biodegradation of DOC and decreased potential for photodegradation of DOC from head of tide to within the delta. For the most part, assessments of differences between head of tide basin exports and coastal delivery tend to be qualitative rather than quantitative, largely because of difficulties quantifying tidally affected flow. This points to the need to resolve data gaps, improve quantitative assessments

  19. Greenhouse Gas Emissions within Seasonally Flooded Tropical River Deltas

    NASA Astrophysics Data System (ADS)

    Salvador, A. K.; Schaefer, M.; Roberts, K. A.; Fendorf, S. E.; Benner, S. G.

    2015-12-01

    Soils contain the largest terrestrial carbon pool on Earth, and approximately one-third of soil carbon is stored in the tropics. Gas exchange between soil and the atmosphere occurs largely as a result of microbial degradation (mineralization) of organic carbon. The rate of soil organic matter (SOM) mineralization is determined by a combination of climatic factors and soil ecosystem properties, which dictate the dominant metabolic pathway(s) within soil at a given time; major changes in metabolic rate are particularly pronounced between aerobic and anaerobic mineralization. Here we assessed the impact of soil moisture, a major factor determining soil anaerobiosis, on greenhouse gas fluxes in a tropical, seasonally flooded wetland in the Mekong Delta. We monitored CO2, CH4, and N2O gas fluxes, porewater chemistry, and soil moisture content in a seasonal wetland. Additionally, we collected wetland soil cores (10 cm diameter) and manipulated them in the laboratory, allowing us to control soil moisture and drying rates, and to simulate multiple periods of wetting and drying. During drying, CH4 fluxes within the wetland initially increase to a maximum before decreasing as soil moisture decreases and oxygen diffusion into the soil increases. Maximum CH4 fluxes vary with moisture content, but the wettest sites produced fluxes >1000 mg C m-2 d-1 for short periods of time. As drying continues, CH4 fluxes decrease to nearly zero, and N2O fluxes begin to increase to ~3 mg N m-2 d-1 but do not appear to have reached a maximum before sampling ceased. Gas flux from soil core incubations (n=5) exhibit trends and values similar to field measurements. CH4 fluxes initially increase and reach >1000 mg C m-2 d-1 in cores while N2O fluxes reach up to 10 mg N m-2 d-1 and decrease with continued drying. CO2 fluxes in both field and laboratory are sustained until near desiccated conditions. Seasonal wetlands are characteristic of large tropical deltas. Our findings provide a means to

  20. Decades of Change on the Ganges-Brahmaputra Delta; Rivers, Coastlines, Agriculture and Development

    NASA Astrophysics Data System (ADS)

    Small, C.; Sousa, D.; Chiu, S.; Mondal, D. R.; Steckler, M. S.; Akhter, S. H.; Mia, B.; Goodbred, S. L., Jr.; Wilson, C.; Seeber, L.

    2014-12-01

    The Ganges-Brahmaputra delta (GBD) is formed by the convergence of two great rivers, superlative in both size and geologic activity. The GBD is home to > 150 million people with a mean population density of more than 1000 people/km2. The fertile soils, abundant water and favorable climate also make the delta one of the most agriculturally diverse and productive areas on Earth. We seek to better understand the coupled natural and anthropogenic dynamics of the delta through a number of cross-disciplinary field studies of the contributing geophysical, biophysical and anthropogenic processes. To provide a synoptic multitemporal perspective for these studies, we use a variety of remotely sensed observations collected over the delta since 1988. In this overview we provide a synthesis of recent results from studies of 4 interrelated processes; river channel migration, coastal erosion and deposition, co-evolution of agriculture and aquaculture, and economic development. In each study we use multi-sensor spatiotemporal analysis of remotely sensed imagery spanning more than 2 decades to observe and quantify a variety of processes at multiple spatial and temporal scales. MODIS Enhanced Vegetation Index (EVI) composites provide 16 day temporal and 250m spatial resolution of the entire delta from 2000 to present. This image time series captures not only agricultural phenology over the entire delta but also the development of aquaculture on the lower delta and interannual fluvial dynamics on both the Ganges and Brahmaputra rivers. Landsat TM, ETM+ and OLI allow us to represent land cover as continuous fields of soil and sediment substrate, vegetation and dark surfaces (water and shadow) throughout the delta since 1988. Despite its irregular temporal sampling, Landsat's 30 m pixels better resolve both natural and anthropogenic land cover units and its longer time series extends retrospective analyses back to 1988. More recent sensors like Ikonos, Quickbird, GeoEye and World

  1. Geogenic Sources Strongly Contribute to the Mackenzie River Delta's Methane Emissions Derived From Airborne Flux Data

    NASA Astrophysics Data System (ADS)

    Kohnert, K.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T.

    2015-12-01

    Arctic permafrost-associated wetlands and thawing permafrost emit the greenhouse gas methane (CH4), either as a product of recent microbial activity in the active layer or taliks, or from deeper geogenic sources where pathways through the permafrost exist. Current emission estimates vary strongly between different models and there is still disagreement between bottom-up estimates from local field studies and top-down estimates from atmospheric measurements. We use airborne flux data from two campaigns in the Mackenzie River Delta, Canada, in July 2012 and 2013 to directly quantify permafrost CH4 emissions on the regional scale, to analyse the regional pattern of CH4 fluxes and to estimate the contribution of geogenic emissions to the overall CH4 budget of the delta. CH4 fluxes were calculated with a time-frequency resolved version of the eddy covariance technique, resulting in a gridded 100 m x 100 m resolution flux map within the footprints of the flight tracks. We distinguish geogenic gas seeps from biogenic sources by their strength and show that they contribute strongly to the annual CH4 budget of the delta. Our study provides the first estimate of annual CH4 release from the Mackenzie River Delta and the adjacent coastal plain. We show that one percent of the covered area contains the strongest geogenic seeps which contribute disproportionately to the annual emission estimate. Our results show that geogenic CH4 emissions might need more attention, especially in areas where permafrost is vulnerable to thawing sufficiently to create pathways for geogenic gas migration. The presented map can be used as a baseline for future CH4 flux studies in the Mackenzie River Delta.

  2. Reconstruction of high-resolution magnetostratigraphy of the Changjiang (Yangtze) River Delta, China

    NASA Astrophysics Data System (ADS)

    Duan, Zongqi; Liu, Qingsong; Shi, Xuefa; Yao, Zhengquan; Liu, Jianxing; Su, Kai

    2016-02-01

    A detailed magnetic analysis has been conducted on the borehole CJ-1 (172.3 m in length) from the Changjiang (Yangtze) River delta. Results show that the dominant magnetic carriers are magnetite and hematite. Palaeomagnetic results reveal that high-frequency changes in palaeomagnetic inclinations are tied significantly to abnormal anisotropy of magnetic susceptibility (AMS) patterns due to effects of the high-energy depositional environment in this region. On the basis of AMS patterns, doubtful palaeomagnetic directional anomalies can be distinguished from authentic palaeomagnetic excursions. Magnetostratigraphic results indicate that the Matuyama-Brunhes boundary (MBB) was recorded at a depth of ˜152.5 m. The presence of several short-lived inclination anomalies implied that the sedimentation could be continuous even at the millennial timescale at certain depth intervals bracketing these fast geomagnetic events. In summary, our study provides new insights into constructing reliable magnetostratigraphy in the delta region. Moreover, our new magnetostratigraphy of the Changjiang River delta deposits will facilitate studies on the relevant long-term palaeoenvironmental evolution of the delta.

  3. DELTAE

    SciTech Connect

    Ward, W.C.; Swift, G.W. )

    1993-11-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  4. Is It Feasible to Build New Land in the Mississippi River Delta?

    NASA Astrophysics Data System (ADS)

    Kim, Wonsuck; Mohrig, David; Twilley, Robert; Paola, Chris; Parker, Gary

    2009-10-01

    What if the Mississippi River levees were cut below New Orleans? What if much of the water and sediment were allowed to flow out and build new deltas? Could deltaic land loss be reversed, and indeed restored? Using a conservative sediment supply rate and a range of rates of sea level rise and subsidence, a physically based model of deltaic river sedimentation [Kim et al., 2009] predicts that approximately 700-1200 square kilometers of new land (exposed surface and in-channel freshwater habitat) could be built over a century (Figure 1).

  5. Mississippi River delta as seen from the Gemini 9-A spacecraft

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The Mississippi River delta, and Gulf coasts of Louisiana, Mississippi, Alabama and Florida as seen from the Gemini 9-A spacecraft during its first revolution of the earth. Florida peninsula is seen at upper right corner of picture. lake Pontchartrain is at lower left. new orleans is located between the lake and the U-shaped bend in the river. Large bay at top left center is Mobile Bay. Apalachicola, Florida, is the point of land at top center of picture. Note alluvial deposit at mouths of Mississippi.

  6. Arsenic in benthic bivalves of San Francisco Bay and the Sacramento/San Joaquin River Delta

    USGS Publications Warehouse

    Johns, C.; Luoma, S.N.

    1990-01-01

    Arsenic concentrations were determined in fine-grained, oxidized, surface sediments and in two benthic bivalves, Corbicula sp. and Macoma balthica, within San Francisco Bay, the Sacramento/San Joaquin River Delta, and selected rivers not influenced by urban or industrial activity. Arsenic concentrations in all samples were characteristic of values reported for uncontaminated estuaries. Small temporal fluctuations and low arsenic concentrations in bivalves and sediments suggest that most inputs of arsenic are likely to be minor and arsenic contamination is not widespread in the Bay.

  7. Earthquake-induced sediment failures on a 0.25o slope, Klamath River delta, California.

    USGS Publications Warehouse

    Field, M.E.; Gardner, J.V.; Jennings, A.E.; Edwards, B.D.

    1982-01-01

    On Nov. 8, 1980, a major earthquake (magnitude 6.5-7.2) occurred 60 km off the coast of N California. A survey of the area using high-resolution seismic-reflection and side-scan sonar equipment revealed the presence of extensive sediment failure and flows in a zone about 1 km wide and 20 km long that trends parallel to the shelf on the very gently sloping (less than 0.25o) Klamath River delta.-from Authors

  8. Validation of a Parcel-Based Reduced-Complexity Model for River Delta Formation (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, M.; Geleynse, N.; Passalacqua, P.; Edmonds, D. A.; Kim, W.; Voller, V. R.; Paola, C.

    2013-12-01

    Reduced-Complexity Models (RCMs) take an intuitive yet quantitative approach to represent processes with the goal of getting maximum return in emergent system-scale behavior with minimum investment in computational complexity. This approach is in contrast to reductionist models that aim at rigorously solving the governing equations of fluid flow and sediment transport. RCMs have had encouraging successes in modeling a variety of geomorphic systems, such as braided rivers, alluvial fans, and river deltas. Despite the fact that these models are not intended to resolve detailed flow structures, questions remain on how to interpret and validate the output of RCMs beyond qualitative behavior-based descriptions. Here we present a validation of the newly developed RCM for river delta formation with channel dynamics (Liang, 2013). The model uses a parcel-based 'weighted-random-walk' method that resolves the formation of river deltas at the scale of channel dynamics (e.g., avulsions and bifurcations). The main focus of this validation work is the flow routing model component. A set of synthetic test cases were designed to compare hydrodynamic results from the RCM and Delft3D, including flow in a straight channel, around a bump, and flow partitioning at a single bifurcation. Output results, such as water surface slope and flow field, are also compared to field observations collected at Wax Lake Delta. Additionally, we investigate channel avulsion cycles and flow path selection in an alluvial fan with differential styles of subsidence and compare model results to laboratory experiments, as a preliminary effort in pairing up numerical and experimental models to understand channel organization at process scale. Strengths and weaknesses of the RCM are discussed and potential candidates for model application identified.

  9. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  10. Measurement comparison of gas phase pollutants during field campaign in Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Shao, M.; Zeng, L.; Hu, M.; Zhang, Y.

    2005-12-01

    Pearl River delta, an economically developed region in Guangdong province China, has been suffering from serious ground-level ozone pollution. To understand the formation mechanisms of the photochemical smog in this area, a field measurement campaign involving 12 separate institutes, was performed from Oct. 1 to Nov. 4, 2004. Measurements of gas phase pollutants, performed by the different research groups using several different methods, were inter-compared. Ambient SO2, O3 and NO were measured by Peking University and Hong Kong Polytechnic University using the same methods: chemiluminescence for NOx, pulsed fluorescence for SO2, and UV photometric method for O3. VOC speciation was accomplished using canister sampling followed by GC-MS measurement by Peking University and on-line GC-FID technology by National Central University in Taiwan. Ambient concentrations of HONO, the photolysis of which is the most important source of OH radical in Pearl River delta, was measured by two wet chemical methods: one from Energy Research Foundation of the Netherlands and one developed in Peking University. Based on these inter-comparisons, the co-variation of O3, NO and VOCs at an urban site and one rural site in Pearl River delta and estimates of the relative contributions to OH production from photolysis of O3, HONO and HCHO will be presented.

  11. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Miner, Michael D.; Kulp, Mark A.; Fitzgerald, Duncan M.; Flocks, James G.; Weathers, H. Dallon

    2009-12-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (~0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ~1.6 × 109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ~41,400 m2 to ~139,500 m2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends.

  12. Delta lobe degradation and hurricane impacts governing large-scale coastal behavior, South-central Louisiana, USA

    USGS Publications Warehouse

    Miner, M.D.; Kulp, M.A.; FitzGerald, D.M.; Flocks, J.G.; Weathers, H.D.

    2009-01-01

    A large deficit in the coastal sediment budget, high rates of relative sea-level rise (???0.9 cm/year), and storm-induced current and wave erosion are forcing barrier shoreface retreat along the periphery of the Mississippi River delta plain. Additionally, conversion of interior wetlands to open water has increased the bay tidal prism, resulting in degradation of barrier islands due to inlet widening, formation of new inlets, and sediment sequestration at ebb-tidal deltas. Single-beam bathymetric surveys along a 165-km stretch of south-central Louisiana barrier coast, from Raccoon Point in Terrebonne Parish to Sandy Point in Plaquemines Parish, were conducted in 2006. These data, combined with historical bathymetry from three time periods (dating to the 1880s), provide a series of digital elevation models that were used to calculate sediment volumetric changes and determine long-term erosional-depositional trends. Dominant patterns during the 125-year period include (1) erosion of ???1.6????????109 m3 from the shoreface, forcing up to 3 km of shoreface retreat, (2) sediment deposition in coastal bights and at ebb-tidal deltas, and (3) a combined increase in tidal inlet cross-sectional area from ???41,400 m2 to ???139,500 m 2. Bathymetric and shoreline change datasets separated by shorter time periods (sub-annual) demonstrate that these long-term trends are driven by processes associated with major hurricane impacts, and that rates of shoreface erosion are an order of magnitude greater during active hurricane seasons compared to long-term trends. ?? 2009 Springer-Verlag.

  13. BAY DELTA CROSS CHANNEL OPERATIONAL STUDIES

    EPA Science Inventory

    The Delta Cross Channel was constructed in 1953 to deliver low-salinity water from the Sacramento River in Northern California to the South Delta where it is pumped to the San Francisco Bay Area and other parts of the State for public consumption and to the San Joaquin Valley for...

  14. South Fork Clearwater River Habitat Enhancement, Crooked and Red Rivers : Annual Report, 1989.

    SciTech Connect

    Baer, William H.

    1990-01-01

    In 1983, the Nez Perce National Forest and the Bonneville Power Administration entered into an interagency agreement to enhance and improve habitat for two anadromous fish species, spring chinook salmon (Oncorhynchus tshawyscha) and summer steelhead trout (Onchorhyncus mykiss), in the South Fork Clearwater River tributaries. The South Fork Clearwater River was dammed in 1927 for hydroelectric development. Anadromous fish runs were virtually eliminated until the dam was removed in 1962. To complicate the problem, upstream spawning and rearing habitats were severely impacted by dredge and hydraulic mining, road building, timber harvest, and over-grazing. Fish habitat improvement projects under the above contract are being carried out in two major tributaries to the South Fork Clearwater River. Both the Red River and the Crooked River projects began in 1983 and will be completed in 1990. 12 figures., 1 tab.

  15. Connecting the historic 2011 Mississippi River flood to marsh sedimentation on the Delta

    NASA Astrophysics Data System (ADS)

    Lutken, C.; D'Emidio, M.; Falcini, F.; Horton, B. P.; Jerolmack, D. J.; Khan, N. S.; Li, C.; Macelloni, L.; McKee, K. L.

    2011-12-01

    The 2011 Mississippi River flood was arguably the largest in history. Although the massive inundation resulting from the flood was devastating for residents on the Delta, sediment carried to sea by the swollen river had the potential to combat wetland loss in some areas. There is currently much debate regarding how, and to what degree, sediment from the Mississippi and Atchafalaya Rivers contributes to maintaining and building fragile coastal marshes. This historic flood presented a rare and time-sensitive opportunity to determine the impact of a geologically-significant flood event on coastal sedimentation patterns and rates. We present a multi-disciplinary and multi-institutional effort to use the 2011 Mississippi flood to connect the dots between river dynamics, coastal dynamics, and marsh maintenance. We performed a coupled satellite analysis, boat survey and surface sediment sampling approach to characterize if and how sediments from this historic flood contributed to deposition and maintenance of Mississippi Delta coastal marshes. Sea surface temperature, height and color from satellite data have been used to track mixing and transport of river plume sediments; the boat survey measured the currents and sediment concentrations of the Mississippi plume in-situ during the peak of the flood; and a helicopter survey sampled marsh sediments after the flood subsided, allowing determination of flood-induced deposition rates and also sediment provenance. Preliminary results show that the Mississippi River injected sediment into the Gulf and did not contribute greatly to wetland development because of its narrow, focused jet. The Atchafalaya River plume spread diffusely across the landscape, and sediments reaching the sea were trapped within the coastal zone because the weak jet was incapable of penetrating the coastal current. Significant sedimentation occurred around the Atchafalaya, demonstrating that the flood contributed to wetland maintenance.

  16. Cenozoic tectonic evolution and petroleum exploration in Perl River Mouth basin, South China Sea

    SciTech Connect

    Chi Yukun; Xu Shice )

    1990-06-01

    The Pearl River Mouth basin is a large Cenozoic continental margin basin that is rich in hydrocarbon potential. Fluvial-lake sequences were deposited before Oligocene, but all were covered by Miocene marine clastic and carbonate rocks. Both paleo-Pearl River delta system and reef/bank carbonate system were widely developed. At the early stage of the evolution, two subsidence belts and one uplift between them distributed in NE regional direction; grabens occurred in the north belt and depressions in the south belt. Tectonic movement was stronger in the east than the west. The main production zones have been drilled both in Miocene sandstone and carbonate rocks. As the exploration activities are developing, the basin will be one of the most significant China offshore oil production areas.

  17. Wave modelling south of the Danube Delta in the Black Sea

    NASA Astrophysics Data System (ADS)

    Rusu, Eugen; Butunoiu, Dorin

    2015-04-01

    A multilevel wave modelling system, based on SWAN (Simulating Waves Nearshore) spectral model, was implemented in the Black Sea and focused on the western coast. Model simulations have been performed for a 10-year time interval (1999-2008). Validations have been carried out against both satellite data and in situ measurements. A high resolution SWAN computational domain (100m x100m), which is focused on the coastal environment south of the Danube Delta, was also implemented. This coastal area includes Sacalin, which is a newly formed island in the Black Sea, south of the Saint George branch of the Danube. Initially, this was an island system, which consisted of two smaller islands, Greater Sacalin and Lesser Sacalin. In time, due to the enhanced sedimentary processes, the two islands merged into a single continuous landmass. The island has become the habitat of a great variety of rare species and for this reason it was declared an ecological reserve. In the high resolution computational domain, focused on the Sacalin Island, the effect of the currents induced by the Danube River outflow was also accounted in the model, together with some other processes specific to the coastal environment as diffraction, triad wave-wave interactions and wave induced set up. Considering the results of the ten-year SWAN model simulations with the modelling system covering the entire sea basin, the most relevant configurations of the environmental matrix, characteristic to this side of the sea, were defined. On this basis, by performing SWAN simulations in the high resolution coastal domain, the wave propagation patterns in the nearshore, together with some parameters related to the shoreline conditions, were evaluated. A great number of possible situations were analyzed. The most relevant correspond to different directions of the incoming waves (N, NE, E and SE, respectively) and significant wave energy conditions. The results provided by the modelling system indicate two different

  18. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Cahoon, Donald R.; White, David A.; Lynch, James C.

    2011-08-01

    Crevasse splay environments provide a mesocosm for evaluating wetland formation and maintenance processes on a decadal time scale. Site elevation, water levels, vertical accretion, elevation change, shallow subsidence, and plant biomass were measured at five habitats along an elevation gradient to evaluate wetland formation and development in Brant Pass Splay; an active crevasse splay of the Balize delta of the Mississippi River. The processes of vertical development (vertical accretion, elevation change, and shallow subsidence) were measured with the surface elevation table-marker horizon method. There were three distinct stages to the accrual of elevation capital and wetland formation in the splay: sediment infilling, vegetative colonization, and development of a mature wetland community. Accretion, elevation gain, and shallow subsidence all decreased by an order of magnitude from the open water (lowest elevation) to the forest (highest elevation) habitats. Vegetative colonization occurred within the first growing season following emergence of the mud surface. An explosively high rate of below-ground production quickly stabilized the loosely consolidated sub-aerial sediments. After emergent vegetation colonization, vertical development slowed and maintenance of marsh elevation was driven both by sediment trapping by the vegetation and accumulation of plant organic matter in the soil. Continued vertical development and survival of the marsh then depended on the health and productivity of the plant community. The process of delta wetland formation is both complex and nonlinear. Determining the dynamics of wetland formation will help in understanding the processes driving the past building of the delta and in developing models for restoring degraded wetlands in the Mississippi River delta and other deltas around the world.

  19. Sediment infilling and wetland formation dynamics in an active crevasse splay of the Mississippi River delta

    USGS Publications Warehouse

    Cahoon, Donald R.; White, David A.; Lynch, James C.

    2011-01-01

    Crevasse splay environments provide a mesocosm for evaluating wetland formation and maintenance processes on a decadal time scale. Site elevation, water levels, vertical accretion, elevation change, shallow subsidence, and plant biomass were measured at five habitats along an elevation gradient to evaluate wetland formation and development in Brant Pass Splay; an active crevasse splay of the Balize delta of the Mississippi River. The processes of vertical development (vertical accretion, elevation change, and shallow subsidence) were measured with the surface elevation table–marker horizon method. There were three distinct stages to the accrual of elevation capital and wetland formation in the splay: sediment infilling, vegetative colonization, and development of a mature wetland community. Accretion, elevation gain, and shallow subsidence all decreased by an order of magnitude from the open water (lowest elevation) to the forest (highest elevation) habitats. Vegetative colonization occurred within the first growing season following emergence of the mud surface. An explosively high rate of below-ground production quickly stabilized the loosely consolidated sub-aerial sediments. After emergent vegetation colonization, vertical development slowed and maintenance of marsh elevation was driven both by sediment trapping by the vegetation and accumulation of plant organic matter in the soil. Continued vertical development and survival of the marsh then depended on the health and productivity of the plant community. The process of delta wetland formation is both complex and nonlinear. Determining the dynamics of wetland formation will help in understanding the processes driving the past building of the delta and in developing models for restoring degraded wetlands in the Mississippi River delta and other deltas around the world.

  20. Collaborative Initiative toward Developing River Forecasting in South America

    NASA Astrophysics Data System (ADS)

    Cabrera, R.

    2015-12-01

    In the United States, river floods have been discussed as early as 1884. Following a disastrous flooding in 1903, Congress passed legislation and river and flood services became a separate division within the U.S. Weather Bureau. The first River Forecast Center started in 1946 and today the whole country is served by thirteen River Forecast Centers. News from Latin American and Caribbean Countries often report of devastating flooding. However, river forecast services are not fully developed yet. This presentation suggests the utilization of a multinational collaborative approach toward the development of river forecasts in order to mitigate flooding in South America. The benefit of an international strategy resides in the strength created by a team of professionals with different capabilities and expertise.

  1. Analysis of the Sediment Hydrograph of the alluvial deltas in the Apalachicola River, Florida

    NASA Astrophysics Data System (ADS)

    Daranpob, A.; Hagen, S.; Passeri, D.; Smar, D. E.

    2011-12-01

    Channel and alluvial characteristics in lowlands are the products of boundary conditions and driving forces. The boundary conditions normally include materials and land cover types, such as soil type and vegetation cover. General driving forces include discharge rate, sediment loadings, tides and waves. Deltas built up of river-transported sediment occur in depositional zones of the river mouth in flat terrains and slow currents. Total sediment load depends on two major abilities of the river, the river shear stress and capacity. The shear stress determines transport of a given sediment grain size, normally expressed as tractive force. The river capacity determines the total load or quantity of total sediments transported across a section of the river, generally expressed as the sediment loading rate. The shear stress and sediment loading rate are relatively easy to measure in the headwater and transfer zones where streams form a v-shape valley and the river begins to form defined banks compared to the deposition zone where rivers broaden across lower elevation landscapes creating alluvial forms such as deltas. Determinations of deposition and re-suspension of sediment in fluvial systems are complicated due to exerting tidal, wind, and wave forces. Cyclic forces of tides and waves repeatedly change the sediment transport and deposition rate spatially and temporally in alluvial fans. However, the influence decreases with water depth. Understanding the transport, deposition, and re-suspension of sediments in the fluvial zone would provide a better understanding of the morphology of landscape in lowland estuaries such as the Apalachicola Bay and its estuary systems. The Apalachicola River system is located in the Florida Panhandle. Shelf sedimentation process is not a strong influence in this region because it is protected by barrier islands from direct ocean forces of the Gulf of Mexico. This research explores the characteristic of suspended sediment loadings in

  2. Seasonal sediment transport and deposition in the Rajang River delta, Sarawak, East Malaysia

    NASA Astrophysics Data System (ADS)

    Staub, J. R.; Among, H. L.; Gastaldo, R. A.

    2000-06-01

    The Holocene Rajang River delta plain, which covers an area of 6500 km 2, has developed in a tropical, ever-wet climatic setting. Peat deposits, up to 15 m thick, occur in this delta plain. The tributary system to the delta is about 50,000 km 2 in area. Elevations exceed 2000 m in the drainage basin and hill slopes are steep. Rainfall in the region exceeds 370 cm/year, with highest rainfall levels or the "wet" season being coincident with the December-March monsoon. The monthly drainage-basin discharge is calculated to average about 3600 m 3/s, and the discharge normally ranges from 1000 to 6000 m 3/s. Spring tides in coastal areas range from 2.9 to 5.8 m. Tide data indicate that the tides are semidiurnal with a noticeable diurnal inequality. Vibracores recovered from bar forms in tidally influenced distributary channels contain laminated silts and sand-silt couplets that show evidence of rhythmic heterolithic stratification. Grain-size data indicate that these preserved delta plain siliciclastic sediments are the result of estuarine depositional processes that occur during intervals of reduced rainfall or the "dry" season (April-November). The number of laminae preserved per neap-spring cycle is the highest (≅18-20), and the average thickness is the greatest in the middle part of the delta plain. Distributary channels in this region normally contain low-salinity brackish water to freshwater. Vibracores recovered from delta front and prodelta sediments show evidence of heterolithic stratification, but rhythmicity is absent. Grain-size data indicate that preserved delta front and prodelta sediments are implaced by "wet" season processes (December-March) when fluvial flux and delta-plain erosion are at their maxima. Individual silt laminae and/or silt and sand interbeds are sometimes many centimeters thick, but average about 1 cm. These silt laminae and silt and sand interbeds or varves represent annual sedimentation events. These varves demonstrate that about 24

  3. Seismic definition of Lower Cretaceous delta, south Whale subbasin, offshore Newfoundland

    SciTech Connect

    Jayasinghe, N.R.; Stokes, R.E.

    1986-05-01

    Recognition of stratigraphic traps in areas where previous prospects were structural is a trend attributable partly to the availability of new, high-quality seismic data. In the South Whale subbasin, offshore Newfoundland, Canada, such a change in exploration philosophy is presently being evaluated. Exploratory drilling offshore eastern Canada began in 1966 in the South Whale subbasin. By the end of 1973, 13 wells were drilled in this subbasin; however, lack of success discouraged further drilling. These wells evaluated large, salt-related structures, well defined by seismic data. Although an adequate reservoir was encountered in a number of these wells, faulting associated with halokinesis may have resulted in petroleum migration out of the reservoir. Interpretation of recently acquired high-quality seismic data indicate a delta in the Lower Cretaceous Missisauga Formation in the study area. Seismic dip sections across the delta show a shingled progradation pattern suggesting a wave-dominated depositional environment. The delta comprises approximately 400 km/sup 2/, with closure in the eastern half. Data from wells in the area indicate that adequate source and sealing beds could be present. Furthermore, rocks of similar age in the nearby Avalon basin contain significant petroleum accumulations, the most notable being within the Hibernia oil field.

  4. Fish community persistence in Eastern North and South Dakota Rivers

    USGS Publications Warehouse

    Shearer, J.S.; Berry, C.R., Jr.

    2003-01-01

    Over the past 25 years, the James River in North and South Dakota has experienced records in minimum and maximum discharge. Our objectives were to compare: (1) the fish community in the main river after dry (1988-90) and wet (1993-2000) years, and (2) the fish community of both the main river and tributaries between dry (1975) and wet (1998-2000) years. In South Dakota in the main river, there were 10 families and 29 species after several dry years and 11 families and 35 species after several wet years. Percichthyidae was the additional family after the wet years. Basinwide, there were 41 species present after the dry 1970s and 50 species after the wet 1990s. Overall, 93% of the species collected in 1975 have persisted. Our results provide some support for the flood pulse concept, and the findings suggest that the fish community can be useful for biomonitoring of prairie streams.

  5. Sea-Floor Mapping and Benthic Habitat GIS for the Elwha River Delta Nearshore, Washington

    USGS Publications Warehouse

    Cochrane, Guy R.; Warrick, Jonathan A.; Sagy, Yael; Finlayson, David; Harney, Jodi

    2008-01-01

    From March 1531, 2005, more than 252 km (19.5 km2) of seafloor offshore of the Elwha River Delta in the central Strait of Juan de Fuca was mapped by the USGS Coastal and Marine Geology Program. The purpose of this nearshore mapping was to (1) obtain high resolution bathymetry and acoustic reflectance properties of the seabed, (2) examine and record geologic characteristics of the seafloor, and (3) construct maps of sea-floor geomorphology and habitat. Substrate distribution was characterized with video-supervised statistical classification of the sonar data. Substrate of the survey was dominated by mixed sand-gravel and sand. Numerous boulder reefs were observed west of the river mouth within Freshwater Bay, whereas the sea-floor immediately adjacent to the river mouth was dominated by sand.

  6. Discontinuities in braided patterns: The River Rhône from Geneva to the Camargue delta before river training

    NASA Astrophysics Data System (ADS)

    Bravard, Jean-Paul

    2010-05-01

    This study presents the upstream-downstream complexity of the Rhone, which earlier was a braided river. The fluvial patterns of the Rhône ca. 1860-70 are discussed, i.e. at the end of the Little Ice Age, which was also the beginning of the period of river dredging for improving navigation in the channel (1840-1930) and before the development of a chain of hydroelectric dams (1892-1986) on the river. Flowing across Switzerland and France to the Camargue delta on the Mediterranean, the Rhône drains the western part of the Alps in Europe. Befitting a large river flowing from the mountains, the Rhône was braided along most of its course, due to large quantities of coarse sediments formerly contributed by tributaries from the Alps, Jura Mountains, and Massif Central. The paper begins with a summary of palaeo-environmental studies on the Rhône, which show that the river experienced several events of fluvial metamorphosis during the Holocene. The reaches, which were braided during the late 19th century, alternated between meandering and braided patterns during this period due to the high sensitivity of the channel pattern to external variables such as changing water and sediment discharges. A discussion on the methods used to describe different aspects of the braided pattern of the Rhône from 1860 to 1870, using large-scale maps follows. Discrete reaches on the river are identified using slope, downstream variations of discharge, and stream power. These can be attributed to three factors: the tributaries (large supplies of bed load are brought by the Arve, the Ain, the Drôme, the Ardèche and the Durance rivers), Quaternary tectonics, and the along-channel distance from tributary confluences. Finally, the study assesses the pre-modern conditions of the Rhône for restoring selected reaches on the modern river.

  7. Millennial-scale Variation in East Asian Summer Monsoon Front Position Deduced from Provenance Changes in Yangtze River Delta Sediments

    NASA Astrophysics Data System (ADS)

    Tada, R.; Ke, W.; Saito, K.; Zheng, H.; Irino, T.; Chao, L.; He, M.; Sugisaki, S.; Kuboki, Y.; Suzuki, Y.; Uchida, M.

    2014-12-01

    Spatio-temporal variability of East Asian summer monsoon (EASM) precipitation on millennial timescale during the Holocene is of major interest to climatologists. Recent studies on the variability of EASM precipitation during the Holocene focus on its high resolution reconstruction using stalagmite's δ18O record. However, stalagmite's δ18O does not necessarily reflect EASM precipitation intensity and information on spatial precipitation pattern is difficult to obtain.Yangtze River drainage occupies major part of South China and lies oblique to EASM front direction. Consequently, when EASM front penetrated deep(shallow) into China, more precipitation occurred in the upper(lower) reaches. Because over 96% of the sediment discharge from Yangtze is transported as suspension, it is possible to estimate relative contribution of precipitation between the lower and upper reaches from the provenance of suspended particles.Here we use ESR intensity of quartz in fine silt fraction from Yangtze River Delta core to detect changes in heavy precipitation area within Yangtze River drainage. ESR intensity reflects the average age of source rocks. Since Mesozoic rocks are widely exposed in the upper reaches whereas Proterozoic rocks are exposed in the lower reaches, it is possible to detect relative contribution of suspended sediments from the upper vs. lower reaches. Our study on ESR intensity on modern Yangtze River sediments suggests that we can distinguish the suspended sediments from the upper vs. lower reaches, and that their mixing ratio reflects the relative ratio of the water from the two areas. We will present the result and demonstrate its implication.

  8. Soil Organic Carbon Stocks in Arctic Deltaic Sediments: Investigations in the Lena River Delta.

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Desyatkin, A.; Pfeiffer, E.-M.

    2012-04-01

    The soil organic carbon stock (SSOC) of deltaic sediments in arctic permafrost regions is known to be significant but is insufficiently investigated so far. Previous SSOC studies were conducted mainly in the comparatively well studied Mackenzie River Delta (area: 13,000 km2) in Canada. The few studies from other arctic delta regions report only the gravimetric carbon (C) contents and are limited to the active layer depth at the time of sampling. Since C deposits in permafrost regions are likely to become a future C source, more detailed investigations of the presently frozen likely carbon-rich sediment and soil layers in other arctic delta regions are of importance. Our investigations were performed on Samoylov Island in the southern-central part of the Lena River Delta (32,000 km2) which is the largest arctic delta and the fifth largest delta worldwide. Samoylov Island is representative for the Lena River Delta's first terrace and the active floodplains. Within this study a new portable Snow-Ice-Permafrost-Research-Establishment (SIPRE) auger was used during a spring field session to obtain 1 m deep frozen soil cores (n = 37) distributed over all known soil and vegetation units. These cores are analyzed for bulk contents of nitrogen (N) and C, ice content and bulk density (BD) and to determine the SSOC including the rarely investigated currently permanently frozen layers up to 1 m depth on Samoylov Island. Our study provides evidence for high SSOC for a depth of 1 m for the investigated area ranging between 6 kg m2 and 54 kg m2. Considering the spatial extent of different soil units on the two geomorphological units of Samoylov Island, the area-weighted average SSOC were 31 kg m2 (n = 31) for the first terrace and 15 kg m2 (n = 6) for the active floodplain. For the correspondent soil units of Turbels and Orthels in circumpolar permafrost regions, Tarnocai et al. 2009 reported a mean SSOC of 27 kg m2 (min: 0.1 kg m2, max: 126 kg m2) for a depth of 1 m. For up

  9. Modern sediment characteristics and accumulation rates from the delta front to prodelta of the Yellow River (Huanghe)

    NASA Astrophysics Data System (ADS)

    Zhou, Liangyong; Liu, Jian; Saito, Yoshiki; Gao, Maosheng; Diao, Shaobo; Qiu, Jiandong; Pei, Shaofeng

    2016-08-01

    Since 1976, the main channel of the Yellow River (Huanghe) has been on the east side of the delta complex, and the river has prograded a broad new delta lobe in Laizhou Bay of the Bohai Sea. In 2012, extensive bathymetric and high-resolution seismic profiles were conducted and sediment cores were collected off the new delta lobe. This study examined delta sedimentation and morphology along a profile across the modern subaqueous Yellow River delta and into Laizhou Bay, by analyzing sediment radionuclides (137Cs, 210Pb and 7Be), sedimentary structure, grain-size composition, organic carbon content, and morphological changes between 1976 and 2012. The change in the bathymetric profile, longitudinal to the river's course, reveals subaqueous delta progradation during this period. The subbottom boundary between the new delta lobe sediment and the older seafloor sediment (before the 1976 course shift) was identified in terms of lithology and radionuclide distributions, and recognized as a downlap surface in the seismic record. The accumulation rate of the new delta lobe sediment is estimated to be 5-18.6 cm year-1 on the delta front slope, 2 cm year-1 at the toe of the slope, and 1-2 cm year-1 in the shelf areas of Laizhou Bay. Sediment facies also change offshore, from alternations of gray and brown sediment in the proximal area to gray bioturbated fine sediment in the distal area. Based on 7Be distribution, the shorter-term deposition rate was at least 20 cm year-1 in the delta front.

  10. Association between annual river flood pulse and paediatric hospital admissions in the Mekong Delta area.

    PubMed

    Phung, Dung; Huang, Cunrui; Rutherford, Shannon; Chu, Cordia; Wang, Xiaoming; Nguyen, Minh

    2014-11-01

    The Mekong Delta is the most vulnerable region to extreme climate and hydrological conditions however the association between these conditions and children's health has been little studied. We examine the association between annual river flood pulse and paediatric hospital admissions in a Vietnam Mekong Delta city. Daily paediatric hospital admissions (PHA) were collected from the City Paediatric Hospital, and daily river water level (RWL) and meteorological data were retrieved from the Southern Regional Hydro-Meteorological Centre from 2008 to 2011. We evaluated the association between annual river flood pulse (>=90th percentile of RWL) and PHA using the Poisson distributed lag model, controlling for temperature, relative humidity, day of week, seasonal and long-term trends. The seasonal pattern of PHA was examined using harmonic and polynomial regression models. The cumulative risk ratios estimated for a 15-day period following an extreme RWL was 1.26 (95%CI, 1.2-1.38) for all age groups, 1.27 (95%CI, 1.23-1.30) for under five-years and 1.15 (95%CI, 1.07-1.20) for school-aged children, 1.24 (95%CI, 1.21-1.27) for all-causes, 1.18 (95%CI, 1.12-1.21) for communicable infection, 1.66 (95%CI, 1.57-1.74) for respiratory infection and 1.06 (95%CI, 1.01-1.1) for other diseases. The peak PHA risk is in the September-October period corresponding to the highest RWL, and the PHA-RWL association was modified by temperature. An increase in PHA is significantly associated with annual river flood, and the pattern of PHA is seasonally correspondent to the RWL. These findings combined with projected changes in climate conditions suggest important implications of climate change for human health in the Mekong Delta region. PMID:25282279