Science.gov

Sample records for river habitat improvement

  1. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    SciTech Connect

    St. Hilaire, Danny R.

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  2. Umatilla River Subbasin Fish Habitat Improvement Project, 1989 Annual Report.

    SciTech Connect

    Bailey, Timothy D.

    1989-01-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the Funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: procurement of 17 cooperative lease agreements with private landowners, design and layout of 8.6 miles of Riparian enclosure fence and 3.0 miles of instream structures, development of five fencing contracts and six instream work contracts. Results include implementation of 10 miles of fencing and 3 miles of instream work. Other activities undertaken during this report period are: data collection from 90 habitat monitoring transects, collection and summarization of temperature data, photopoint establishment, coordination with numerous agencies and tribes and education of all age groups on habitat improvement and protection.

  3. Lemhi River Habitat Improvement Study, 1985 Final Report.

    SciTech Connect

    Dorratcaque, Dennis E.

    1986-02-01

    The objective was to develop methods for improving anadromous fish passage in the Lemhi River in east central Idaho. Alternatives assessed include flow concentration, fish screen improvement, groundwater augmentation, groundwater irrigation, water withdrawal reduction, return flow improvement, sprinkler irrigation, storage, and trap and haul. (ACR)

  4. Umatilla River Subbasin Fish Habitat Improvement Project, 1990 Annual Report.

    SciTech Connect

    Bailey, Timothy D.; Rimbach, Gregory P.

    1991-03-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the Funding source For the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: procurement of 6 cooperative lease agreements and one lease addendum with private landowners, design and layout of 4.4 miles of riparian exclosure fence and 1.75 miles of instream structures, development of three fencing contracts and three instream work contracts. Results include implementation of 3 miles of fencing and 3.7 miles of instream work. Other activities undertaken during this report period are: weekly inspection and maintenance of fencing projects, collection and summarization of temperature data, photopoint establishment, coordination with numerous agencies and tribes and education of high school students on habitat improvement and preservation.

  5. Umatilla River Subbasin Fish Habitat Improvement; 1992 Annual Report.

    SciTech Connect

    Bailey, Timothy D.; Rimbach, Gregory P.

    1993-03-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: (1) procurement of one cooperative lease agreement and one access easement with private landowners, (2) design and layout of 1.3 miles of riparian exclosure fence and 1.4 miles of instream structure maintenance, and (3) development of one fencing contract and three instream work contracts. Results include implementation of 1.9 miles of fencing, 1.4 miles of instream maintenance work, reconstruction of 0.75 miles of flood damaged fence, inspection and routine maintenance of 13.5 miles of fence, and planting of grasses, legumes and shrubs along 4.6 miles of stream. Other activities undertaken during this report period are: collection and summarization of temperature data, establishment and data collection from habitat monitoring transects, electrofishing surveys and spawning ground counts, photopoint establishment, coordination with numerous agencies and tribes and education of high school students on habitat improvement and preservation.

  6. Umatilla River Subbasin Fish Habitat Improvement; 1995 Annual Report.

    SciTech Connect

    Laws, Troy S.

    1996-06-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife`s Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) Flood damage assessment of project leases after the May 1995 and November 1995 floods, (2) reconstruction of 0.75 miles of riparian fence, (3) inspection and routine maintenance of 14.8 miles of fence, (4) collection of approximately 55,000 native willow and cottonwood cuttings and installation of approximately 21,600 of these material, (5) implementation of two bioengineering projects and initiation of a third project, (6) installation of approximately 30 tree/rootwads for fish habitat enhancement, (7) removal of an abandoned flood irrigation dam/fish barrier, (8) collection and summarization of physical and biological monitoring data, and (9) extensive interagency coordination.

  7. Umatilla River Subbasin Fish Habitat Improvement; 1994 Annual Report.

    SciTech Connect

    Laws, Troy S.

    1995-06-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife`s Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: 1) Flood damage assessment of project leases after the May 1994 flood, 2) reconstruction of 1.25 miles of high tensile steel fence, 3) inspection and routine maintenance of 14.8 miles of fence, 4) collection of approximately 6,600 cottonwood and willow cuttings for transplanting in spring of 1995, 5) establishment of three bioengineered habitat restoration demonstration projects, 6) Implementation of a streambank stabilization workshop (bioengineering techniques) for Umatilla Basin residents and resource agency personnel, 7) collection and summarization of physical and biological monitoring data, and 8) extensive interagency coordination.

  8. Umatilla River Subbasin Fish Habitat Improvement; 1993 Annual Report.

    SciTech Connect

    Bailey, Timothy D.; Laws, Troy S.

    1994-05-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife`s Umatilla Basin Habitat Improvement Project. Major activities undertaken during this report period included: (1) procurement of one access easement with a private landowner, (2) design, layout, and implementation of 3.36 miles of instream structure maintenance, (3) inspection and routine maintenance of 15.1 miles of fence, (4) revegetation along 3.36 miles of stream, (5) collection and summarization of physical and biological monitoring data, (6) extensive interagency coordination, and (7) environmental education activities with local high school students.

  9. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement C, White River Habitat Inventory, 1983 Annual Report.

    SciTech Connect

    Heller, David

    1984-04-01

    More than 130 miles of stream fish habitat was inventoried and evaluated on the Mt. Hood National Forest during the first year of this multi-year project. First year tasks included field inventory and evaluation of habitat conditions on the White River and tributary streams thought to have the highest potential for supporting anadromous fish populations. All streams inventoried were located on the Mt. Hood National Forest. The surveyed area appears to contain most of the high quality anadromous fish habitat in the drainage. Habitat conditions appear suitable for steelhead, coho, and chinook salmon, and possibly sockeye. One hundred and twenty-four miles of potential anadromous fish habitat were identifed in the survey. Currently, 32 miles of this habitat would be readily accessible to anadromous fish. An additional 72 miles of habitat could be accessed with only minor passage improvement work. About 20 miles of habitat, however, will require major investment to provide fish passage. Three large lakes (Boulder, 14 acres; Badger, 45 acres; Clear, 550 acres) appear to be well-suited for rearing anadromous fish, although passage enhancement would be needed before self-sustaining runs could be established in any of the lakes.

  10. Umatilla River Subbasin Fish Habitat Improvement; 1991 Annual Report.

    SciTech Connect

    Bailey, Timothy D.; Rimbach, Gregory P.

    1992-01-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the funding source for the Oregon Department of Fish and Wildlife`s Umatilla Basin Habitat Improvement Project. In May of this year a thirty year flood event occurred in the Umatilla Basin that resulted in major changes to the year`s statement of work and to the future direction of the program. All projects in the Birch Creek drainage sustained damage to either fencing or instream work, with severe damages on about 1/3 of the project areas. As a result of flooding, and subsequent maintenance demands, all new project implementation in the Birch Creek drainage was cancelled; the entire implementation season was spent repairing flood damages in the Birch Creek drainage. The major activities undertaken during this report period were: (a) construction of O.5 miles of riparian corridor fence on Meacham Creek, (b) performing intensive instream maintenance on 7.25 miles of Mainstem Birch and East Birch creeks, (c) performing major fence maintenance on 1.8 miles of flood damaged riparian corridor fence, (d) rebuilding of O.5 miles of flood destroyed fence, and 54 stream crossing fences, (e) retrofitting of three miles of high tensile fence with an extended electric wire, and (f) spending considerable time working with landowners to resolve flood related problems and come to agreement on project maintenance activities. Other activities undertaken during this report period were: weekly inspection and maintenance of fencing projects, collection and summarization of temperature data, photopoint picture taking, procurement of instream work permits, and coordination with numerous agencies and tribes.

  11. Natural Propagation and Habitat improvement, Volume 2B, Washington, Similkameen River Habitat Inventory, 1983 Final Report.

    SciTech Connect

    Unknown Author

    1984-04-01

    During the summer low flow period, a habitat assessment of the Similkameen, Tulameen, Ashnola and Pasayten rivers in British Columbia and Washington State was conducted between August 10 and October 10, 1983. The biophysical survey assessed 400 km (250 mi) of stream at 77 stations. Fish sampling was conducted at each station to assess the resident fish populations and standing crop. Rainbow trout populations and standing crops were found to be very low. Large populations of mountain whitefish and bridgelip suckers were present in the manstem Similkameen River below Similkameen Falls. High densities of sculpins and longnose dace were found throughout the system except for sculpins above the falls, where none were captured. Approximately 961,000 m/sup 2/ (1,150,000 yd/sup 2/) of spawnable area for steelhead trout were estimated for the entire system which could accommodate 98,000 spawners. Nearly 367,000 m/sup 2/ (439,000 yd/sup 2/) of chinook salmon spawnable area was also estimated, capable of accommodating 55,000 chinook. Rearing area for steelhead trout smolts was estimated for the whole system at 1.8 million m/sup 2/ (2.2 million yd/sup 2/). Chinook salmon smolt rearing area was estimated at 700,000 m/sup 2/ (837,000 yd/sup 2/). Rearing area was found to be a limiting factor to anadromous production in a Similkameen River system. Smolt production from the system was estimated 610,000 steelhead trout and between 1.6 million and 4.8 million chinook salmon. No water quality, temperature or flow problems for anadromous salmonids were evident from the available data and the habitat inventory. In addition to an impassable falls on the Tulameen River at river mile 32.5, only two other areas of difficult passage exist in the system, Similkameen Falls (a series of chutes) and the steep, narrow lower section of the Ashnola River. 51 references, 18 figures, 25 tables.

  12. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    SciTech Connect

    St. Hilaire, Danny R.

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  13. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    SciTech Connect

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D.

    2005-01-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.

  14. Middle Fork and Upper Salmon River Habitat Improvement Implementation Plan, FY 1988-1992.

    SciTech Connect

    Andrews, John; Everson, Larry B.

    1988-02-01

    This document presents an implementation plan for completing the phase II portion of the Middle Fork and Upper Salmon River Habitat Improvement Agreement. Underseeding of spawning adult salmon and steelhead, high instream sediment levels, a lack of habitat diversity in the form of overhanging riparian vegetation and edge, and barriers to both adult and juvenile anadromous fish migration were identified as the principal factors limiting anadromous fish production in the project area. Underseeding is being addressed in other projects sponsored and funded by the Bonneville Power Administration while this implementation plan lays out a schedule for resolving the other identified limiting factors. The primary goal of this program is to increase the quality and quantity of anadromous fish habitat (spring chinook and summer steelhead) with an emphasis on the survival of the wild stocks. This goal will be achieved by reducing the impact of sediment loading, improving riparian vegetation, eliminating passage barriers, and increasing habitat diversity. Meeting the above goal will provide off-site mitigation under the manadate of the pacific northwest electric power planning and conservation act of 1980. Project implementation will follow measures in the Northwest Power Council's Columbia River Fish and Wildlife Program. 9 refs., 3 figs., 5 tabs.

  15. Applications of genetic data to improve management and conservation of river fishes and their habitats

    USGS Publications Warehouse

    Scribner, Kim T; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.

    2015-01-01

    Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.

  16. Annual Progress Report Fish Research Project Oregon : Project title, Evaluation of Habitat Improvements -- John Day River.

    SciTech Connect

    Olsen, Erik A.

    1984-01-01

    This report summarizes data collected in 1983 to evaluate habitat improvements in Deer, Camp, and Clear creeks, tributaries of the John Day River. The studies are designed to evaluate changes in abundance of spring chinook and summer steelhead due to habitat improvement projects and to contrast fishery benefits with costs of construction and maintenance of each project. Structure types being evaluated are: (1) log weirs, rock weirs, log deflectors, and in stream boulders in Deer Creek; (2) log weirs in Camp Creek; and (3) log weir-boulder combinations and introduced spawning gravel in Clear Creek. Abundance of juvenile steelhead ranged from 16% to 119% higher in the improved (treatment) area than in the unimproved (control) area of Deer Creek. However, abundance of steelhead in Camp Creek was not significantly different between treatment and control areas. Chinook and steelhead abundance in Clear Creek was 50% and 25% lower, respectively in 1983, than the mean abundance estimated in three previous years. The age structure of steelhead was similar between treatment and control areas in Deer and Clear creeks. The treatment area in Camp Creek, however, had a higher percentage of age 2 and older steelhead than the control. Steelhead redd counts in Camp Creek were 36% lower in 1983 than the previous five year average. Steelhead redd counts in Deer Creek were not made in 1983 because of high streamflows. Chinook redds counted in Clear Creek were 64% lower than the five year average. Surface area, volume, cover, and spawning gravel were the same or higher than the corresponding control in each stream except in Deer Creek where there was less available cover and spawning gravel in sections with rock weirs and in those with log deflectors, respectively. Pool:riffle ratios ranged from 57:43 in sections in upper Clear Creek with log weirs to 9:91 in sections in Deer Creek with rock weirs. Smolt production following habitat improvements is estimated for each stream

  17. Field Review of Fish Habitat Improvement Projects in the Grande Ronde and John Day River Basins of Eastern Oregon.

    SciTech Connect

    Beschta, Robert L.; Platts, William S.; Kauffman, J. Boone

    1991-10-01

    The restoration of vegetation adapted to riparian environments and the natural succession of riparian plant communities is necessary to recreate sustainable salmonid habitat and should be the focal point for fish habitat improvement programs. In mid-August of 1991, a field review of 16 Salmon habitat improvement sites in the Grande Ronde and John Day River Basins in Eastern Oregon was undertaken. The review team visited various types of fish habitat improvements associated with a wide range of reach types, geology, channel gradients, stream sizes, and vegetation communities. Enhancement objectives, limiting factors, landuse history, and other factors were discussed at each site. This information, in conjunction with the reviewer's field inspection of portions of a particular habitat improvement project, provided the basis for the following report. This report that follows is divided into four sections: (1) Recommendations, (2) Objectives, (3) Discussion and Conclusions, and (4) Site Comments. The first section represents a synthesis of major recommendations that were developed during this review. The remaining sections provide more detailed information and comments related to specific aspects of the field review.

  18. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    SciTech Connect

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  19. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  20. Natural Propagation and Habitat Improvement, Volume I, Oregon Supplement 5: White River Falls Fish Passage, 1983 Annual Report.

    SciTech Connect

    Lindsay, Robert

    1984-04-01

    Biological and physical characteristics of White River drainage were studied in 1983 to determine the feasibility of introducing anadromous salmonids into the watershed. Access to White River by anadromous fish is presently blocked by waterfalls located 3.4 km from the confluence with the Deschutes River. Mortality of juvenile chinook salmon from a 43 m free fall at White River Falls does not appear to be significant during high flows (300 to 500 cfs) but may be significant at low flows (115 to 150 cfs). At low flow the recapture of fish released in the south channel above the falls was 54% lower than the recapture of control fish released below the falls. The recapture of two releases in the north channel was 37% lower than the recapture of control groups. We surveyed 94 km of the lower reaches of 7 tributaries below the boundary of the Mt. Hood National Forest. We identified 8325 m/sup 2/ of anadromous spawning gravel of which 52% was good quality, 20 water withdrawals for irrigation that took a total of 33 cfs of water, 13 barriers to upstream migration of which 3 were waterfalls of 3.1 to 7.6 m, and 138 major holding and rearing pools. Maximum water temperatures of 25/sup 0/C or greater and diurnal fluctuations of around 10/sup 0/C were recorded in the lower reaches of several streams. The maximum water temperature in upper reaches of streams above the forest boundary was 13 to 14/sup 0/C. Habitat improvement opportunities identified in surveys of the lower reaches included barrier modifications for upstream passage, in-stream structures to develop pools and retain gravels, structures to reduce bank erosion, and streamside fensing to protect riparian zones. 10 references, 34 figures, 20 tables.

  1. Natural Propagation and Habitat Improvement, Volume I, Oregon, 1984 Final and Annual Reports.

    SciTech Connect

    Miller, Rod

    1986-02-01

    This volume contains reports on habitat improvement and fisheries enhancement projects conducted in the following subbasins: (1) Clackamas River; (2) Hood River; :(3) Deschutes River; (4) John Day River; (5) Umatilla River; and (6) Grande Ronde River. (ACR)

  2. Natural Propagation and Habitat Improvement, Volume 1, Oregon, Supplement B, White River Falls Fish Passage, 1983 Annual Report.

    SciTech Connect

    United States. Bonneville Power Administration.

    1984-04-01

    White River Falls are located in north central Oregon approximately 25 miles south of the City of The Dalles. The project site is characterized by a series of three natural waterfalls with a combined fall of 180 ft. In the watershed above the falls are some 120 miles of mainstem habitat and an undetermined amount of tributary stream habitat that could be opened to anadromous fish, if passage is provided around the falls. The purpose of this project is to determine feasibility of passage, select a passage scheme, and design and construct passage facilities. This report provides information on possible facilities that would pass adult anadromous fish over the White River Falls. 25 references, 29 figures, 12 tables. (ACR)

  3. Hungry Horse Dam Fisheries Mitigation : Fish Passage and Habitat Improvement in the Upper Flathead River Basin, 1991-1996 Progress Report.

    SciTech Connect

    Knotek, W.Ladd; Deleray, Mark; Marotz, Brian L.

    1997-08-01

    In the past 50 years, dramatic changes have occurred in the Flathead Lake and River system. Degradation of fishery resources has been evident, in part due to deterioration of aquatic habitat and introduction of non-endemic fish and invertebrate species. Habitat loss has been attributed to many factors including the construction and operation of Hungry Horse Dam, unsound land use practices, urban development, and other anthropogenic and natural disturbances. Fish migration has also been limited by barriers such as dams and impassible culverts. Cumulatively, these factors have contributed to declines in the distribution and abundance of native fish populations. Recovery of fish populations requires that a watershed approach be developed that incorporates long-term aquatic habitat needs and promotes sound land use practices and cooperation among natural resource management agencies. In this document, the authors (1) describe completed and ongoing habitat improvement and fish passage activities under the Hungry Horse Fisheries Mitigation Program, (2) describe recently identified projects that are in the planning stage, and (3) develop a framework for identifying prioritizing, implementing, and evaluating future fish habitat improvement and passage projects.

  4. Clackamas/Hood River Habitat Enhancement Program, 1987 Annual Report.

    SciTech Connect

    MacDonald, Ken; Cain, Thomas C.; Heller, David A.

    1988-03-01

    Fisheries habitat improvement work is being done on priority drainages in the Clackamas and Rood River sub-basins under program measure 704(c), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program. This report describes the work completed in 1987 for Bonneville Power Administration (BPA) project number 84-11, the Clackamas/Hood River Habitat Enhancement Program. The program is composed of six projects: Collawash River Habitat Improvement Project; Collawash River Falls Passage Improvement Project, Oak Grove Fork Habitat Improvement Project; Lake Branch/West Fork Hood River Habitat Improvement Project; Fifteenmile Creek Habitat Improvement Project; and Abundance, Behavior, and Habitat Utilization by Coho Salmon and Steelhead Trout in Fish Creek, Oregon, As Influenced by Habitat Enhancement. This ongoing program was initiated in 1984, although some of the projects were begun with BPA funding support as early as 1983. The projects are complemented by a variety of habitat improvement and management activities funded from a variety of Forest Service sources. This report describes the activities implemented for five of the six projects. A separate annual report on the 1987 habitat improvement and monitoring/evaluation efforts in the Fish Creek drainage has been prepared. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Project work in 1987 primarily focused on increasing the quantity and quality of available rearing habitat, and improving access at passage barriers. The underlying theme of the improvement work has been to increase habitat diversity through the introduction of ''structure''. Structure provided by logs and boulders serves to deflect, pond, or otherwise disrupt flow patterns within a stream channel. This alteration of flow patterns results in formation of an increased number of habitat niches (i.e. pools, glides, alcoves, etc. ) in which a

  5. A Wildlife Habitat Improvement Plan.

    ERIC Educational Resources Information Center

    Rogers, S. Elaine

    The document presents an overview of Stony Acres, a "sanctuary" for wildlife as well as a place for recreation enjoyment and education undertakings. A review of the history of wildlife habitat management at Stony Acres and the need for continued and improved wildlife habitat management for the property are discussed in Chapter I. Chapter II…

  6. South Fork Clearwater River Habitat Enhancement, Nez Perce National Forest.

    SciTech Connect

    Siddall, Phoebe

    1992-04-01

    In 1984, the Nez Perce National forest and the Bonneville Power Administration entered into a contractual agreement which provided for improvement of spring chinook salmon and summer steelhead trout habitat in south Fork Clearwater River tributaries. Project work was completed in seven main locations: Crooked River, Red River, Meadow Creek Haysfork Gloryhole, Cal-Idaho Gloryhole, Fisher Placer and Leggett Placer. This report describes restoration activities at each of these sites.

  7. Salmon River Habitat Enhancement, 1989 Annual Report.

    SciTech Connect

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  8. Home on the Big River: Great River Habitat Quality Indices

    EPA Science Inventory

    EPA’s Environmental Monitoring and Assessment Program sampled the Upper Mississippi, Missouri and Ohio Rivers from 2004 through 2006 as part of an integrated assessment of ecological condition. We developed fish habitat indices by dividing the components of habitat into four ca...

  9. South Fork Clearwater River Habitat Enhancement, Crooked and Red Rivers : Annual Report, 1989.

    SciTech Connect

    Baer, William H.

    1990-01-01

    In 1983, the Nez Perce National Forest and the Bonneville Power Administration entered into an interagency agreement to enhance and improve habitat for two anadromous fish species, spring chinook salmon (Oncorhynchus tshawyscha) and summer steelhead trout (Onchorhyncus mykiss), in the South Fork Clearwater River tributaries. The South Fork Clearwater River was dammed in 1927 for hydroelectric development. Anadromous fish runs were virtually eliminated until the dam was removed in 1962. To complicate the problem, upstream spawning and rearing habitats were severely impacted by dredge and hydraulic mining, road building, timber harvest, and over-grazing. Fish habitat improvement projects under the above contract are being carried out in two major tributaries to the South Fork Clearwater River. Both the Red River and the Crooked River projects began in 1983 and will be completed in 1990. 12 figures., 1 tab.

  10. Salmon River Habitat Enhancement, 1984 Annual Report.

    SciTech Connect

    Konopacky, Richard C.

    1986-04-01

    This report has four volumes: a Tribal project annual report (Part 1) and three reports (Parts 2, 3, and 4) prepared for the Tribes by their engineering subcontractor. The Tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved habitat and fish inventories in Bear Valley Creek, Valley County, Idaho that will be used to evaluate responses to ongoing habitat enhancement. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur within the traditional Treaty (Fort Bridger Treaty of 1868) fishing areas of the Shoshone-Bannock Tribes, Fort Hall Reservation, Idaho. Subproject III involved habitat and fish inventories (pretreatment) and habitat problem identification on the Yankee Fork of the Salmon River (including Jordan Creek). Subproject IV during 1985 involved habitat problem identification in the East Fork of the Salmon River and habitat and fish inventories (pretreatment) in Herd Creek, a tributary to the East Fork.

  11. Salmon River Habitat Enhancement. 1990 Annual Report

    SciTech Connect

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  12. Long-term effect of instream habitat-improvement structures on channel morphology along the Blackledge and Salmon rivers, Connecticut, USA.

    PubMed

    Thompson, Douglas M

    2002-02-01

    Habitat-improvement structures on the Blackledge and Salmon rivers date back to the 1930s and 1950s. Forty of these structures were investigated to determine their long-term impact on channel morphology. These structures include designs that continue to be used in modern restoration efforts. During the intervening period since these structures were introduced, several major floods have affected the two channels. The floods include three flows in excess of the 50-year event, including the flood of record, which has an estimated recurrence interval of almost 300 years. Despite the extreme flooding, many structures were discovered in varying conditions of operation. Grade-control structures and low-flow deflectors generally create some low-flow habitat (P = 0.815) but do not produce the depth of water predicted by design manuals (P < 0.0001). Unintended erosion has developed in response to many of the channel modifications especially along the outside of meanders. In addition, the mode of failure of grade-control structures has created localized channel widening with associated bank erosion. Meanwhile, cover structures have produced a 30% reduction in streamside vegetation with over 75% less overhead cover than unaltered reaches. Based on these results, it is important for prospective designers to carefully consider the long-term impacts of instream structures when developing future channel-restoration projects. PMID:11815827

  13. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  14. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  15. Hood River Production Program : Hood River Fish Habitat Protection, Restoration, and Monitoring Plan.

    SciTech Connect

    Coccoli, Holly; Lambert, Michael

    2000-02-01

    Effective habitat protection and rehabilitation are essential to the long-term recovery of anadromous fish populations in the Hood River subbasin. This Habitat Protection, Restoration, and Monitoring Plan was prepared to advance the goals of the Hood River Production Program (HRRP) which include restoring self-sustaining runs of spring chinook salmon and winter and summer steelhead. The HRPP is a fish supplementation and monitoring and evaluation program initiated in 1991 and funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council Fish and Wildlife Program. The HRPP is a joint effort of the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO) and Oregon Department of Fish and Wildlife (ODFW). Using recent watershed assessment and federal watershed analysis reports, this Plan reviews the historic and current condition of riparian, instream and upland habitats; natural watershed processes; anadromous and resident fish populations; identifies limiting factors, and indicates those subbasin areas that need protection or are likely to respond to restoration. Primary habitat restoration needs were identified as (1) improved fish screening and upstream adult passage at water diversions; (2) improved spawning gravel availability, instream habitat structure and diversity; and (3) improved water quality and riparian conditions. While several early action projects have been initiated in the Hood River subbasin since the mid 1990s, this Plan outlines additional projects and strategies needed to protect existing high quality habitat, correct known fish survival problems, and improve the habitat capacity for natural production to meet HRPP goals.

  16. Salmon River Habitat Enhancement, Part 1, 1984 Annual Report.

    SciTech Connect

    Konopacky, Richard C.

    1985-06-01

    This volume contains reports on subprojects involving the determining of alternatives to enhance salmonid habitat on patented land in Bear Valley Creek, Idaho, coordination activities for habitat projects occurring on streams within fishing areas of the Shoshone-Bannock Indian Tribes, and habitat and fish inventories in the Salmon River. Separate abstracts have been prepared for individual reports. (ACR)

  17. Physical habitat and sediment in the lower Virgin River

    USGS Publications Warehouse

    Milhous, R.T.

    2004-01-01

    The Virgin River in southwestern Utah and adjacent Arizona and Nevada is habitat for a number of endangered and threatened species of fish. The river also has significant loads of sediment that change the characteristic of the stream channel with time. The Virgin River transports large quantities of sand. Some sections of the river store the sand in the stream bed following a high stream flow event; the sediment is then removed by lower streamflows that can cause a wave of sand to pass through river channels in other sections of the river. The Hurricane Bridge on the Virgin River had a sand wave that passed through the channel during a low flow event that followed a high flow event. This paper demonstrates that antecedent conditions are important in the analysis of physical habitat in sand-bed rivers because the relation between the streamflows and habitat will change depending on these antecedent conditions.

  18. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  19. Oak Grove Fork Habitat Improvement Project, 1988 Annual Report.

    SciTech Connect

    Bettin, Scott

    1989-04-01

    The Lower Oak Grove Fork of the Clackamas River is a fifth-order tributary of the Clackamas River drainage supporting depressed runs of coho and chinook salmon, and summer and winter steelhead. Habitat condition rating for the Lower Oak Grove is good, but smelt production estimates are below the average for Clackamas River tributaries. Limiting factors in the 3.8 miles of the Lower Oak Grove supporting anadromous fish include an overall lack of quality spawning and rearing habitat. Beginning in 1986. measures to improve fish habitat in the Lower Oak Grove were developed in coordination with the Oregon Department of Fish and Wildlife (ODF&W) and Portland General Electric (PGE) fisheries biologists. Prior to 1986, no measures had been applied to the stream to mitigate for PGE's storage and regulation of flows in the Oak Grove Fork (Timothy Lake, Harriet Lake). Catchable rainbow trout are stocked by ODF&W two or three times a year during the trout fishing season in the lowermost portion of the Oak Grove Fork near two Forest Service campgrounds (Ripplebrook and Rainbow). The 1987 field season marked the third year of efforts to improve fish habitat of the Lower Oak Grove Fork and restore anadromous fish production. The efforts included the development of an implementation plan for habitat improvement activities in the Lower Oak Grove Fork. post-project monitoring. and maintenance of the 1986 improvement structures. No new structures were constructed or placed in 1987. Fiscal year 1988 brought a multitude of changes which delayed implementation of plans developed in 1987. The most prominent change was the withdrawal of the proposed Spotted Owl Habitat Area (SOHA) which overlapped the Oak Grove project implementation area. Another was the change in the Forest Service biologist responsible for implementation and design of this project.

  20. Riparian habitat on the Humboldt River, Deeth to Elko, Nevada

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Ridd, M. K.

    1983-01-01

    A map inventory of the major habitat types existing along the Humbolt River riparian zone in Nevada is described. Through aerialphotography, 16 riparian habitats are mapped that describe the ecological relationships between soil and vegetation types, flooding and soil erosion, and the various management practices employed to date. The specific land and water management techniques and their impact on the environment are considered.

  1. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  2. Causes and consequences of habitat fragmentation in river networks.

    PubMed

    Fuller, Matthew R; Doyle, Martin W; Strayer, David L

    2015-10-01

    Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality. Most fragmentation research has focused on terrestrial habitats, but theories and generalizations developed in terrestrial habitats do not always apply well to river networks. For example, terrestrial habitats are usually conceptualized as two-dimensional, whereas rivers often are conceptualized as one-dimensional or dendritic. In addition, river flow often leads to highly asymmetric effects of barriers on habitat and permeability. New approaches tailored to river networks can be applied to describe the network-wide effects of multiple barriers on both connectivity and habitat quality. The net effects of anthropogenic fragmentation on freshwater biodiversity are likely underestimated, because of time lags in effects and the difficulty of generating a single, simple signal of fragmentation that applies to all aquatic species. We conclude by presenting a decision tree for managing freshwater fragmentation, as well as some research horizons for evaluating fragmented riverscapes. PMID:26267672

  3. Morphodynamic effects on the habitat of juvenile cyprinids (Chondrostoma nasus) in a restored Austrian lowland river.

    PubMed

    Hauer, Christoph; Unfer, Günther; Schmutz, Stefan; Habersack, Helmut

    2008-08-01

    At the Sulm River, an Austrian lowland river, an ecologically orientated flood protection project was carried out from 1998-2000. Habitat modeling over a subsequent 3-year monitoring program (2001-2003) helped assess the effects of river bed embankment and of initiating a new meander by constructing a side channel and allowing self-developing side erosion. Hydrodynamic and physical habitat models were combined with fish-ecological methods. The results show a strong influence of riverbed dynamics on the habitat quality and quantity for the juvenile age classes (0+, 1+, 2+) of nase (Chondrostoma nasus), a key fish species of the Sulm River. The morphological conditions modified by floods changed significantly and decreased the amount of weighted usable areas. The primary factor was river bed aggradation, especially along the inner bend of the meander. This was a consequence of the reduced sediment transport capacity due to channel widening in the modeling area. The higher flow velocities and shallower depths, combined with the steeper bank angle, reduced the Weighted Useable Areas (WUAs) of habitats for juvenile nase. The modeling results were evaluated by combining results of mesohabitat-fishing surveys and habitat quality assessments. Both, the modeling and the fishing results demonstrated a reduced suitability of the habitats after the morphological modifications, but the situation was still improved compared to the pre-restoration conditions at the Sulm River. PMID:18437454

  4. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    SciTech Connect

    Geist, D.R. |; Dauble, D.D.

    1998-09-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.

  5. A Study of the St. Lawrence River Ecological Habitat

    ERIC Educational Resources Information Center

    Mesires, Maria

    2010-01-01

    Save the River, a grassroots advocacy group established in 1978, lobbies for policies to preserve the upper St. Lawrence River and uses the community's help to keep an eye on the existing habitats. Recently, they procured the Fresh Sound Foundation grant to support the development of new K-12 ecology curricula by local area teachers to educate…

  6. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1986 Final and Annual Reports.

    SciTech Connect

    Stuart, Amy

    1987-01-01

    This report describes activities implemented for fisheries habitat improvement work on priority drainages in the Clackamas and Hood River sub-basins. Separate abstracts have been prepared for the reports on individual projects. (ACR)

  7. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and photo

  8. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 2001 Annual Report.

    SciTech Connect

    Shaw, R. Todd; Sexton, Amy D.

    2003-02-01

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2001 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla Subbasin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Projects continued to be maintained on 49 private properties, one 25-year Non-Exclusive Bureau of Indian Affairs' Easement was secured, six new projects implemented and two existing project areas improved to enhance anadromous fish habitat. New project locations included sites on the mid Umatilla River, upper Umatilla River, Mission Creek, Cottonwood Creek and Buckaroo Creek. New enhancements included: (1) construction of 11,264 feet of fencing between River Mile 43.0 and 46.5 on the Umatilla River, (2) a stream bank stabilization project implemented at approximately River Mile 63.5 Umatilla River to stabilize 330 feet of eroding stream bank and improve instream habitat diversity, included construction of eight root wad revetments and three boulder J-vanes, (3) drilling a 358-foot well for off-stream livestock watering at approximately River Mile 46.0 Umatilla River, (4) installing a 50-foot bottomless arch replacement culvert at approximately River Mile 3.0 Mission Creek, (5) installing a Geoweb stream ford crossing on Mission Creek (6) installing a 22-foot bottomless arch culvert at approximately River Mile 0.5 Cottonwood Creek, and (7) providing fence materials for construction of 21,300 feet of livestock exclusion fencing in the Buckaroo Creek Drainage. An approximate total of 3,800 native willow cuttings and 350 pounds of native grass seed was planted at new upper Umatilla River, Mission Creek and Cottonwood Creek project sites. Habitat improvements implemented at existing project sites included

  9. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilities in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360

  10. Data Collection and Simulation of Ecological Habitat and Recreational Habitat in the Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.

    2015-01-01

    Time-series analyses were used to investigate changes in habitat availability with increased water withdrawals of 10, 20, and almost 50 percent (48.6 percent) up to the 2040 amounts projected by local water supply plans. Adult and sub-adult smallmouth bass frequently had habitat availability outside the normal range for habitat conditions during drought years, yet 10- or 20-percent increases in withdrawals did not contribute to a large reduction in habitat. When withdrawals were increased by 50 percent, there was an additional decrease in habitat. During 2002 drought scenarios, reduced habitat availability for sub-adult redbreast sunfish or river chub was only slightly evident with 50-percent increased withdrawal scenarios. Recreational habitat represented by canoeing decreased lower than normal during the 2002 drought. For a recent normal year, like 2012, increased water-withdrawal scenarios did not affect habitat availability for fish such as adult and sub-adult smallmouth bass, sub-adult redbreast sunfish, or river chub. Canoeing habitat availability was within the normal range most of 2012, and increased water-withdrawal scenarios showed almost no affect. For both ecolo

  11. A spatial model of white sturgeon rearing habitat in the lower Columbia River, USA

    USGS Publications Warehouse

    Hatten, J.R.; Parsley, M.J.

    2009-01-01

    Concerns over the potential effects of in-water placement of dredged materials prompted us to develop a GIS-based model that characterizes in a spatially explicit manner white sturgeon Acipenser transmontanus rearing habitat in the lower Columbia River, USA. The spatial model was developed using water depth, riverbed slope and roughness, fish positions collected in 2002, and Mahalanobis distance (D2). We created a habitat suitability map by identifying a Mahalanobis distance under which >50% of white sturgeon locations occurred in 2002 (i.e., high-probability habitat). White sturgeon preferred relatively moderate to high water depths, and low to moderate riverbed slope and roughness values. The eigenvectors indicated that riverbed slope and roughness were slightly more important than water depth, but all three variables were important. We estimated the impacts that fill might have on sturgeon habitat by simulating the addition of fill to the thalweg, in 3-m increments, and recomputing Mahalanobis distances. Channel filling simulations revealed that up to 9 m of fill would have little impact on high-probability habitat, but 12 and 15 m of fill resulted in habitat declines of ???12% and ???45%, respectively. This is the first spatially explicit predictive model of white sturgeon rearing habitat in the lower Columbia River, and the first to quantitatively predict the impacts of dredging operations on sturgeon habitat. Future research should consider whether water velocity improves the accuracy and specificity of the model, and to assess its applicability to other areas in the Columbia River.

  12. Habitat Evaluation Procedures (HEP) Report; Priest River Project, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 140.73 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 60.05 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland meadow habitat provides 7.39 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 71.13 HUs for mallard, yellow warbler, and white-tailed deer. Open water habitat provides 2.16 HUs for Canada goose and mallard. The objective of using HEP at the Priest River Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  13. Movement and habitat use by radio-tagged paddlefish in the upper Mississippi River and tributaries

    USGS Publications Warehouse

    Zigler, S.J.; Dewey, M.R.; Knights, B.C.; Runstrom, A.L.; Steingraeber, M.T.

    2003-01-01

    We used radio telemetry to evaluate the movement and habitat use of paddlefish Polyodon spathula in the upper Mississippi River and two tributary rivers. Radio transmitters were surgically implanted into 71 paddlefish in Navigation Pools 5A and 8 of the upper Mississippi River, the Chippewa River, and the Wisconsin River during fall 1994 through fall 1996. Radiotagged paddlefish were located through summer 1997. The range of paddlefish movement was typically low during all seasons except spring, but some paddlefish moved throughout the 420-km extent of the study area. Paddlefish tagged in the Chippewa River were closely linked with the upper Mississippi River, as substantial portions of the population inhabited the adjacent Navigation Pool 4 each spring; paddlefish in the Wisconsin River, however, rarely ventured out of that tributary. The use of aquatic area types by paddlefish varied among the study reaches. A cartographic model of paddlefish habitat suitability was developed for Navigation Pool 8 based on geographic information systems (GIS) coverages of bathymetry and current velocity. The value of paddlefish habitat in the cartographic model increased with depth and decreased with current velocity. For example, areas modeled as excellent corresponded to regions classified as having both deep water (greater than or equal to6.0 m) and negligible (<5 cm/s) current velocities. Our study suggests that aquatic area types are an inadequate basis for making sound management decisions regarding the critical habitats of paddlefish in complex riverine systems because such strata rely on gross geomorpological features rather than on the physicochemical variables that fish use to choose habitats. The development of systemic GIS coverages of such variables could improve the understanding of fish habitat selection and management in the upper Mississippi River.

  14. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    NASA Astrophysics Data System (ADS)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    in the upper reaches of the river. This study represents an improved approach over more commonly applied assessments that focus on the impact of impoundment on wetted area or river length. Simpler approaches often lack ecological and hydrological detail leading to over- or underestimation of the impacts of river regulation on connectivity depending on the relative quality of available habitat. Our work aims to integrate hydrological and ecological aspects into a spatially explicit connectivity framework. Such an approach can help to better identify those areas most important to the conservation of fish habitat, inform sustainable management of hydropower schemes, and aid cost-efficient river restoration and management efforts.

  15. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1991 Annual Report.

    SciTech Connect

    Scheeler, Carl A.

    1993-01-01

    The Umatilla habitat improvement program targets the improvement of water quality and restoration of riparian areas, holding, spawning,and rearing habitats of steelhead, spring and fall Chinook and coho salmon. This report covers work accomplished by the Confederated Tribes of the Umatilla Indian Reservation from April 1991 through May 1992. This program is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (Measure 704 (d)(1) 34.02) as partial mitigation for construction of hydroelectric dams and the subsequent losses of anadromous fish throughout the Columbia River system.

  16. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  17. Evaluation of models and data for assessing whooping crane habitat in the central Platte River, Nebraska

    USGS Publications Warehouse

    Farmer, Adrian H.; Cade, Brian S.; Terrell, James W.; Henriksen, Jim H.; Runge, Jeffery T.

    2005-01-01

    The primary objectives of this evaluation were to improve the performance of the Whooping Crane Habitat Suitability model (C4R) used by the U.S. Fish and Wildlife Service (Service) for defining the relationship between river discharge and habitat availability, and to assist the Service in implementing improved model(s) with existing hydraulic files. The C4R habitat model is applied at the scale of individual river cross-sections, but the model outputs are scaledup to larger reaches of the river using a decision support “model” comprised of other data and procedures. Hence, the validity of the habitat model depends at least partially on how its outputs are incorporated into this larger context. For that reason, we also evaluated other procedures including the PHABSIM data files, the FORTRAN computer programs used to implement the model, and other parameters used to simulate the relationship between river flows and the availability of Whooping Crane roosting habitat along more than 100 miles of heterogeneous river channels. An equally important objective of this report was to fully document these related procedures as well as the model and evaluation results so that interested parties could readily understand the technical basis for the Service’s recommendations.

  18. Aquatic habitats in relation to river flow in the Apalachicola River floodplain, Florida

    USGS Publications Warehouse

    Light, Helen M.; Darst, Melanie R.; Grubbs, J.W.

    1998-01-01

    This study is part of a larger effort to identify fresh water needs throughout the region and develop a mechanism for basinwide water management. Quantitative estimates of the amount of aquatic habitat in the floodplain in relation to river flow are presented. Plates show streams, lakes, and floodplain forests connected to the main river channel at selected flows; an analysis of long-term flow record in the Apalachicola River; and a review of the literature regarding fishes in floodplains of the Apalachicola River and other rivers of the Eastern United States. Examples show how this report can be used to assess impacts of flow alterations on aquatic habitats and fishes.

  19. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    SciTech Connect

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of

  20. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Critical habitat for Snake River sockeye... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.205 Critical habitat...

  1. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Critical habitat for Snake River sockeye... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.205 Critical habitat...

  2. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Critical habitat for Snake River sockeye... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT § 226.205 Critical habitat...

  3. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 3 Table 3 to Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake...

  4. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 3 Table 3 to Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake...

  5. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS DESIGNATED CRITICAL HABITAT Pt. 226, Table 3 Table 3 to Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake...

  6. Diversity and Community Composition of Vertebrates in Desert River Habitats

    PubMed Central

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  7. Diversity and Community Composition of Vertebrates in Desert River Habitats.

    PubMed

    Free, C L; Baxter, G S; Dickman, C R; Lisle, A; Leung, L K-P

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  8. Bald eagle habitat suitability on Melton Hill Reservoir and the Clinch River

    SciTech Connect

    Buehler, D.A.

    1994-09-01

    The area around Melton Hill Reservoir and sections of the Clinch River along the Oak Ridge Reservation (ORR) provide suitable habitat for bald eagles for both breeding and wintering activities. Primary limitations on habitat suitability appear to be human activity in aquatic habitats and along shoreline areas, and human development along shoreline areas. ORR provides the majority of the suitable habitat because shoreline development is very limited. Four eagle management strategies discussed for ORR include planning development away from high-quality habitats, allowing forest stands near water to mature, conducting timber stand improvement to foster growth and development in pines and hardwoods, and using introductions to foster the development of a breeding population. The primary objective of this project was to make a qualitative assessment of bald eagle habitat suitability along Melton Hill Reservoir and the Clinch River and in adjacent areas on the ORR, including the proposed Advanced Neutron Source site. This survey`s aim was to provide ORR managers with an indication of whether suitable habitat exists and, if so, where it occurs on ORR. This information should provide the basis for incorporating eagle management into the overall ORR land management plan.

  9. Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.

    SciTech Connect

    Everest, Fred H.; Hohler, David B.; Cain, Thomas C.

    1988-03-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

  10. Habitat Complexity Metrics to Guide Restoration of Large Rivers

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; McElroy, B. J.; Elliott, C.; DeLonay, A.

    2011-12-01

    Restoration strategies on large, channelized rivers typically strive to recover lost habitat complexity, based on the assumption complexity and biophysical capacity are directly related. Although definition of links between complexity and biotic responses can be tenuous, complexity metrics have appeal because of their potential utility in quantifying habitat quality, defining reference conditions and design criteria, and measuring restoration progress. Hydroacoustic instruments provide many ways to measure complexity on large rivers, yet substantive questions remain about variables and scale of complexity that are meaningful to biota, and how complexity can be measured and monitored cost effectively. We explore these issues on the Missouri River, using the example of channel re-engineering projects that are intended to aid in recovery of the pallid sturgeon, an endangered benthic fish. We are refining understanding of what habitat complexity means for adult fish by combining hydroacoustic habitat assessments with acoustic telemetry to map locations during reproductive migrations and spawning. These data indicate that migrating sturgeon select points with relatively low velocity but adjacent to areas of high velocity (that is, with high velocity gradients); the integration of points defines pathways which minimize energy expenditures during upstream migrations of 10's to 100's of km. Complexity metrics that efficiently quantify migration potential at the reach scale are therefore directly relevant to channel restoration strategies. We are also exploring complexity as it relates to larval sturgeon dispersal. Larvae may drift for as many as 17 days (100's of km at mean velocities) before using up their yolk sac, after which they "settle" into habitats where they initiate feeding. An assumption underlying channel re-engineering is that additional channel complexity, specifically increased shallow, slow water, is necessary for early feeding and refugia. Development of

  11. Umatilla River Basin Anadromus Fish Habitat Enhancement Project : 1994 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    1994-05-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program, Section 7.6-7.8 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing cooperative instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower l/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River in the vicinity of Gibbon, Oregon. In 1993, the project shifted emphasis to a comprehensive watershed approach, consistent with other basin efforts, and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. During the 1994-95 project period, a one river mile demonstration project was implemented on two privately owned properties on Wildhorse Creek. This was the first watershed improvement project to be implemented by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) off of the Reservation. Four 15 year riparian easements and two right-of-way agreements were secured for enhancement of one river mile on Wildhorse Creek and l/2 river mile on Meacham Creek. Enhancements implemented between river mile (RM) 9.5 and RM 10.5 Wildhorse Creek included: (1) installation of 1.43 miles of smooth wire high tensile fence line and placement of 0.43 miles of fence posts and structures to restrict livestock from the riparian corridor, (2) construction of eighteen sediment retention structures in the stream channel to speed riparian recovery by elevating the stream grade, slowing water velocities and

  12. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    SciTech Connect

    Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.; Zimmerman, Shon A.; Thom, Ronald M.; Wright, Cynthia L.

    2012-03-22

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  13. Habits and Habitats of Fishes in the Upper Mississippi River

    USGS Publications Warehouse

    Norwick, R.; Janvrin, J.; Zigler, S.; Kratt, R.

    2011-01-01

    The Upper Mississippi River consists of 26 navigation pools that provide abundant habitat for a host of natural resources, such as fish, migratory waterfowl, non-game birds, deer, beaver, muskrats, snakes, reptiles, frogs, toads, salamanders, and many others. Of all the many different types of animals that depend on the river, fish are the most diverse with over 140 different species. The sport fishery is very diverse with at least 25 species commonly harvested. Fish species, such as walleyes, largemouth bass, bluegills, and crappies are favorites of sport anglers. Others such as common carp, buffalos, and channel catfish, are harvested by commercial anglers and end up on the tables of families all over the country. Still other fishes are important because they provide food for sport or commercial species. The fishery resources in these waters contribute millions of dollars to the economy annually. Overall, the estimate impact of anglers and other recreational users exceeds $1.2 billion on the Upper Mississippi River. The fisheries in the various reaches of the river of often are adversely affected by pollution, urbanization, non-native fishes, navigation, recreational boating, fishing, dredging, and siltation. However, state and federal agencies expend considerable effort and resources to manage fisheries and restore river habitats. This pamphlet was prepared to help you better understand what fishery resources exist, what the requirements of each pecies are, and how man-induced changes that are roposed or might occur could affect them.

  14. Clackamas/Hood River Habitat Enhancement Project; Implementation Plan, 1988-1992 Technical Report.

    SciTech Connect

    Medel, Ron; Hohler, David B.; MacDonald, Ken

    1988-01-01

    An Implementation Plan and Statement of Work is provided for high priority work in the Clackamas. Hood River and Fifteenmile sub-basins. These documents describe fish habitat improvement opportunities that can be implemented by the 1991 deadline established by the Northwest Power Planning Council. The Clackamas/Hood River Enhancement Program is an on-going project initiated in 1984. It is being cooperatively funded by the Bonneville Power Administration and the Wt. Hood National Forest. Species for management emphasis include spring chinook and coho salmon, and summer and winter steelhead trout. Improvement activities are designed to improve access at passage barriers and increase the quality and quantity of available rearing habitat. Project work will result in improved access to about 12.5 miles of high quality habitat, creation of nearly 70,000 square feet of off-channel habitat, and the addition of structure to approximately 32 miles of stream. At completion of the project, annual production capability from these two sub-basins will be increased by 85-100,000 smolts. Details of a monitoring and evaluation effort consistent with measure 200(d)(l) of the Council's Fish and Wildlife Program are also provided.

  15. The San Marcos River Habitat Conservation Plan: Using HCP's as a Tool for Ecological Restoration

    NASA Astrophysics Data System (ADS)

    Winters, J. M.; Howard, M. S.; Arsuffi, T. L.

    2005-05-01

    The San Marcos River in San Marcos, Hays County, Texas is a biologically unique system with several listed species found in the headwaters. Flowing from the Edwards Aquifer and the second largest spring system in Texas, the water is clear and thermally constant. The physical and biological character of the habitat within and surrounding the river has been severely degraded by human activity. As a means of dealing with the continued disturbance and finding a balance between human needs and conservation, the San Marcos River Habitat Conservation Plan was written as provided by Section 10(a) of the Endangered Species Act. The plan provides habitat mitigation for the fountain darter (Etheostoma fonticola), Comal Springs riffle beetle, (Heterelmis comalensis), and San Marcos salamander (Eurycea nana), while allowing for incidental take resulting from specific restoration and management projects. We used a science-based ecological/experimental approach to address some of the problems and optimize solutions, including restoration of stream banks damaged from overuse, planning for permanent access points and trails, removal of silt deposits caused by extensive flood control structures, wet-pond construction, managing flow, and the control of submerged and emergent non-native vegetation to improve habitat and enhance recreation.

  16. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    NASA Astrophysics Data System (ADS)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small

  17. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  18. Tamarisk control, water salvage, and wildlife habitat restoration along rivers in the western United States

    USGS Publications Warehouse

    Shafroth, Patrick B.

    2006-01-01

    The great abundance of tamarisk along western rivers has led resource managers to seek to control it for various reasons, including a desire to (1) increase the flow of water in streams that might otherwise be lost to evapotranspiration (ET) (evapotranspiration is the combination of water lost as vapor from a soil or open water surface [evaporation] and water lost from the surface of the plant, usually from the stomata [transpiration]); (2) restore native riparian vegetation (here, “riparian” refers to the banks and flood plains of rivers, or shorelines of reservoirs or lakes); and (3) improve wildlife habitat.

  19. Do management actions to restore rare habitat benefit native fish conservation? Distribution of juvenile native fish among shoreline habitats of the Colorado River

    USGS Publications Warehouse

    Dodrill, Michael J.; Yackulic, Charles B.; Gerig, Brandon; Pine, William E., III; Korman, Josh; Finch, Colton

    2015-01-01

    Many management actions in aquatic ecosystems are directed at restoring or improving specific habitats to benefit fish populations. In the Grand Canyon reach of the Colorado River, experimental flow operations as part of the Glen Canyon Dam Adaptive Management Program have been designed to restore sandbars and associated backwater habitats. Backwaters can have warmer water temperatures than other habitats, and native fish, including the federally endangered humpback chub Gila cypha, are frequently observed in backwaters, leading to a common perception that this habitat is critical for juvenile native fish conservation. However, it is unknown how fish densities in backwaters compare with that in other habitats or what proportion of juvenile fish populations reside in backwaters. Here, we develop and fit multi-species hierarchical models to estimate habitat-specific abundances and densities of juvenile humpback chub, bluehead suckerCatostomus discobolus, flannelmouth sucker Catostomus latipinnis and speckled dace Rhinichthys osculus in a portion of the Colorado River. Densities of all four native fish were greatest in backwater habitats in 2009 and 2010. However, backwaters are rare and ephemeral habitats, so they contain only a small portion of the overall population. For example, the total abundance of juvenile humpback chub in this study was much higher in talus than in backwater habitats. Moreover, when we extrapolated relative densities based on estimates of backwater prevalence directly after a controlled flood, the majority of juvenile humpback chub were still found outside of backwaters. This suggests that the role of controlled floods in influencing native fish population trends may be limited in this section of the Colorado River

  20. Habitat use of non-native burbot in a western river

    USGS Publications Warehouse

    Klein, Zachary B.; Quist, Michael; Rhea, Darren T.; Senecal, Anna C.

    2015-01-01

    Burbot, Lota lota (Linnaeus), were illegally introduced into the Green River drainage, Wyoming in the 1990s. Burbot could potentially alter the food web in the Green River, thereby negatively influencing socially, economically, and ecologically important fish species. Therefore, managers of the Green River are interested in implementing a suppression program for burbot. Because of the cost associated with the removal of undesirable species, it is critical that suppression programs are as effective as possible. Unfortunately, relatively little is known about the habitat use of non-native burbot in lotic systems, severely limiting the effectiveness of any removal effort. We used hurdle models to identify habitat features influencing the presence and relative abundance of burbot. A total of 260 burbot was collected during 207 sampling events in the summer and autumn of 2013. Regardless of the season, large substrate (e.g., cobble, boulder) best predicted the presence and relative abundance of burbot. In addition, our models indicated that the occurrence of burbot was inversely related to mean current velocity. The efficient and effective removal of burbot from the Green River largely relies on an improved understanding of the influence of habitat on their distribution and relative abundance.

  1. Effects of Flooding and Tamarisk Removal on Habitat for Sensitive Fish Species in the San Rafael River, Utah: Implications for Fish Habitat Enhancement and Future Restoration Efforts

    NASA Astrophysics Data System (ADS)

    Keller, Daniel L.; Laub, Brian G.; Birdsey, Paul; Dean, David J.

    2014-09-01

    Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish.

  2. Effects of flooding and tamarisk removal on habitat for sensitive fish species in the San Rafael River, Utah: implications for fish habitat enhancement and future restoration efforts.

    PubMed

    Keller, Daniel L; Laub, Brian G; Birdsey, Paul; Dean, David J

    2014-09-01

    Tamarisk removal is a widespread restoration practice on rivers in the southwestern USA, but impacts of removal on fish habitat have rarely been investigated. We examined whether tamarisk removal, in combination with a large spring flood, had the potential to improve fish habitat on the San Rafael River in southeastern Utah. We quantified habitat complexity and the distribution of wood accumulation in a tamarisk removal site (treated) and a non-removal site (untreated) in 2010, 1 year prior to a large magnitude and long-duration spring flood. We used aerial imagery to analyze river changes in the treated and untreated sites. Areas of channel movement were significantly larger in the treated site compared to the untreated site, primarily because of geomorphic characteristics of the channel, including higher sinuosity and the presence of an ephemeral tributary. However, results suggest that tamarisk removal on the outside of meander bends, where it grows directly on the channel margins, can promote increased channel movement. Prior to the flood, wood accumulations were concentrated in sections of channel where tamarisk had been removed. Pools, riffles, and backwaters occurred more frequently within 30 m upstream and downstream of wood accumulations compared to areas within 30 m of random points. Pools associated with wood accumulations were also significantly larger and deeper than those associated with random points. These results suggest that the combination of tamarisk removal and wood input can increase the potential for channel movement during spring floods thereby diversifying river habitat and improving conditions for native fish. PMID:24993795

  3. ASSOCIATION AMONG INVERTEBRATES AND HABITAT INDICATORS FOR LARGE RIVERS IN THE MIDWEST

    EPA Science Inventory

    Six reaches in each of two large rivers (one each in Kentucky and Ohio) were sampled using a prototype benthic macroinvertebrate sampling technique. The intent was to better understand the relationship between large river macroinvertebrate assemblages and habitat features. This...

  4. Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.

    2010-01-01

    Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides

  5. Fish Habitat Improvement Projects in the Fifteenmile Creek and Trout Creek Basins of Central Oregon: Field Review and Management Recommendations.

    SciTech Connect

    Kauffman, J. Boone

    1993-07-01

    A field review of stream habitat improvement project sites in the lower Deschutes River Basin was conducted by riparian ecology, fisheries, and hydrology specialists. Habitat management objectives, limiting factors, project implementation, land use history, and other factors were discussed at each site. This information, in conjunction with the reviewer`s field inspections of portions of a particular habitat project, provided the basis for this report.

  6. Camas Creek (Meyers Cove) Anadromous Species Habitat Improvement: Annual Report 1990.

    SciTech Connect

    Seaberg, Glen

    1990-06-01

    Populations of wild salmon and steelhead in the Middle Fork of the Salmon River are at historical lows. Until passage and flow problems associated with Columbia River dams are corrected to reduce mortalities of migrating smolts, continuance of habitat enhancements that decrease sediment loads, increase vegetative cover, remove passage barriers, and provide habitat diversity is imperative to maintain surviving populations of these specially adapted fish. In 1987-1988, 4.3 miles of fence was constructed establishing a riparian livestock exclosure. One end-gap and two water-crossing corridors were constructed in 1989 to complete the fence system. Areas within the exclosure have been fertilized to promote tree and shrub root growth and meadow recovery. A stream crossing ford was stabilized with angular cobble. Streambank stabilization/habitat cover work was completed at three sites and three additional habitat structures were placed. Extensive inventories were completed to identify habitat available to anadromous fish. Streambank stabilization work was limited to extremely unstable banks, minimizing radical alterations to an active stream channel. Enhancement activities will improve spawning, incubation, and rearing habitat for wild populations of steelhead trout and chinook salmon. Anadromous species population increases resulting from these enhancement activities will provide partial compensation for downstream losses resulting from hydroelectric developments on the Columbia River system. 10 refs., 11 figs., 5 tabs.

  7. Estimating flow rates to optimize winter habitat for centrarchid fish in mississippi river (USA) backwaters

    USGS Publications Warehouse

    Johnson, B.L.; Knights, B.C.; Barko, J.W.; Gaugush, R.F.; Soballe, D.M.; James, W.F.

    1998-01-01

    The backwaters of large rivers provide winter refuge for many riverine fish, but they often exhibit low dissolved oxygen levels due to high biological oxygen demand and low flows. Introducing water from the main channel can increase oxygen levels in backwaters, but can also increase current velocity and reduce temperature during winter, which may reduce habitat suitability for fish. In 1993, culverts were installed to introduce flow to the Finger Lakes, a system of six backwater lakes on the Mississippi River, about 160 km downstream from Minneapolis, Minnesota. The goal was to improve habitat for bluegills and black crappies during winter by providing dissolved oxygen concentrations > 3 mg/L, current velocities < 1 cm/s, and temperatures < 1??C. To achieve these conditions, we used data on lake volume and oxygen demand to estimate the minimum flow required to maintain 3 mg/L of dissolved oxygen in each lake. Estimated flows ranged from 0.02 to 0.14 m3/s among lakes. Data gathered in winter 1994 after the culverts were opened, indicated that the estimated flows met habitat goals, but that thermal stratification and lake morphometry can reduce the volume of optimal habitat created.

  8. Comparing Remote Sensing Techniques in Detecting Salmonid Habitat, Salmon River, Oregon

    NASA Astrophysics Data System (ADS)

    Shintani, C. M.

    2015-12-01

    Many restoration projects in the Pacific Northwest are implemented to improve habitat quality, quantity, and complexity for fish. Although numerous engineered log structures have been constructed in the hopes of achieving these goals, relatively few projects have been rigorously monitored to determine their success. This research seeks to compare the utility and application between photogrammetric and spectral depth approaches in detecting fish habitat in order to determine which method is more accurate and affordable for monitoring channel bathymetry. While each of these techniques has been individually studied, previous research has not directly compared and quantified their differences. Channel bathymetry data were collected by combining pre- and post-restoration digital photographs of the Salmon River in Northeast Clackamas County, Oregon, using structure-from-motion (SfM). The resulting 3D point cloud will be used to estimate water depths using photogrammetry and spectral depth. The photogrammetric method applies a refraction correction to the extracted water depth from the SfM topography to derive water depth. A regression between the surveyed water depth values and digital number values of surface pixels will derive depth. The resulting water depths from these two methods will be compared to the surveyed water depths for their accuracy and precision, particularly in critical salmonid habitats. The quantification of these differences will be an important contribution to river restoration science as it will allow for more accurate measurement and monitoring of changes in fish habitat. In the future, these data will be used in an eco-hydraulic River2D model to simulate changes in salmonid habitat availability after restoration.

  9. Habitat and Hydrology Condition Indices for the Upper Mississippi, Missouri, and Ohio Rivers

    EPA Science Inventory

    Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Upper Mississippi River, the Fort Peck and Garrison reaches of the Upper Missouri River, the Missouri National Recreational River, and the channelized Lower Missouri River, and the O...

  10. Multi-scale Hydroacoustic Remote Sensing of Sturgeon and Their Habitats in A Large, Turbid River

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Delonay, A.; Vishy, C.; Elliott, C. M.; Reuter, J. M.; Chojnacki, K. A.

    2009-12-01

    Restoration and management of the Lower Missouri River (LMOR) to support recovery of the endangered pallid sturgeon (Scaphirhynchus albus) requires quantifying habitats used during all life stages in order to isolate specific habitats (if any) that present bottlenecks to reproduction and survival. All life stages of the pallid sturgeon take place in deep, turbid rivers where direct observation of habitat selection, movement, and behavior are impossible. Female pallid sturgeon reproduce only once every 3-5 years, but during a reproductive season they may migrate 10’s to 100’s of kilometers to spawn in patches of only several 100’s of square meters over a period of several hours. The broad ranges of spatial and temporal scales involved in understanding how particular life stages relate to their environment, as well as the technical challenges of working in a large river, dictate application of a multi-scale, remote-sensing approach. At the scale of the entire LMOR (1300 km), extensive hydroacoustic mapping using single-beam bathymetry, acoustic Doppler current profiling (ADCP), and substrate classification has been used to quantify the fundamental biophysical capacity of river segments in terms of frequency distributions of hydraulic variables. Coordinated telemetric tracking of reproductive fish provides an understanding of home range and habitat selection at reach to segment scales, over timeframes commensurate with 3-5 year reproductive cycles. Intensive reach-scale hydroacoustic mapping using multibeam bathymetry, ADCP, and high-resolution sidescan sonar, combined with intensive telemetric tracking, provide coincident measures of habitat availability and selection for upstream-migrating and spawning fish during reproductive seasons. These assessments measure habitat variables at sub-meter to bedform scales, commensurate with the scale at which fish occupy their habitat. For example, dual-frequency identification sonar (DIDSON) imagery indicates that during

  11. Umatilla River Basin Fish Habitat Enhancement : FY 1990 Annual Report.

    SciTech Connect

    Northrop, Michael

    1990-01-01

    During the summer of 1990, construction continued on the Bonneville Power Administration funded anadromous fish habitat enhancement project in the Umatilla River sub-basin, Umatilla County, State of Oregon. Work started on 5/1/90 and ended 10/30/90. A total of five large log weirs, eight large rock weirs, 17 associated weir structures, 19 small to medium rock deflectors, four bank and island reinforcements, three rock flow controls, 19 woody debris placements, and 85 individual boulders were constructed in the South Fork of the Umatilla River. In addition, one large rock weir was constructed at the confluence of the North and South Forks of the Umatilla River, and repair work was completed on 33 structures in Thomas Creek. Also, 300 cubic yards of rock and some logs and woody material were moved on site for use in 1991. Preconstruction activity consisted of moving approximately 1,500 cubic yards of large boulders, and dive log truck loads of woody material to the construction site. Project monitoring consisted of sediment sampling above and below the project area and, mapping and photographing and structures. 7 figs.

  12. Natural Propagation and Habitat Improvement, Volume 2, Idaho, 1984 Final and Annual Reports.

    SciTech Connect

    Hair, Don

    1986-01-01

    In 1984, and under the auspices of the Northwest Power Planning Council, the Clear-water National Forest and the Bonneville Power Administration entered into a contractual agreement to improve anadromous fish habitat in Lolo Creek. This was to be the second and final year of instream enhancement work in Lolo Creek, a major tributary to the Clearwater River. The project was again entitled Lolo Creek Habitat Improvement (No.84-6) which was scheduled from April 1, 1984, through March 31, 1985. Project costs were not to exceed $39,109. The following report is a description of the project objectives, methodology, results, and conclusions of this year's work, based on the knowledge and experience gained through 2 years of enhancement work. The primary objective was to partially mitigate the juvenile and adult anadromous fish losses accrued through hydroelectric development in the Columbia and Snake River systems by enhancing the spawning and rearing habitats of selected Clearwater River tributaries for spring chinook salmon and summer steelhead trout. The enhancement was designed to ameliorate the ''limiting production factors'' by the in-stream placement of habitat structures that would positively alter the pool-riffle structure and increase the quality of over-winter habitat.

  13. 75 FR 38768 - Ashley National Forest, UT, High Uintas Wilderness-Colorado River Cutthroat Trout Habitat...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Forest Service Ashley National Forest, UT, High Uintas Wilderness--Colorado River Cutthroat Trout Habitat...) populations to suitable habitats within the High Uintas Wilderness. Implementation of this proposal would... nonnative fish is necessary to enhance habitat and restore genetically pure CRCT populations to...

  14. On sediment and habitat in the Upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Milhous, Robert T.

    1998-01-01

    The Upper Animas River watershed in southwestern Colorado is located in the San Juan mountains and has been intensively mined. Active mining has essentially ceased but the impact of past mining on the aquatic ecosystem continues. This paper presents initial results from a study to determine the characteristics of the physical habitat for aquatic animals and the sediment characteristics as related to the habitat. The habitat for trout is limited by high streamflows and by winter conditions. Only the winter habitat limits are considered. The characteristics of the sediment in the river limit the winter habitat along with metals within the substrate.

  15. Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.

    SciTech Connect

    Ashley, Paul

    2004-11-01

    A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).

  16. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon, Hanford Reach, Columbia River : Final Report 1995 - 1998.

    SciTech Connect

    Geist, David R.

    1999-05-01

    This report summarizes results of research activities conducted from 1995 through 1998 on identifying the spawning habitat requirements of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River. The project investigated whether traditional spawning habitat models could be improved in order to make better predictions of available habitat for fall chinook salmon in the Snake River. Results suggest models could be improved if they used spawning area-specific, rather than river-specific, spawning characteristics; incorporated hyporheic discharge measurements; and gave further consideration to the geomorphic features that are present in the unconstrained segments of large alluvial rivers. Ultimately the recovery of endangered fall chinook salmon will depend on how well we are able to recreate the characteristics once common in alluvial floodplains of large rivers. The results from this research can be used to better define the relationship between these physical habitat characteristics and fall chinook salmon spawning site selection, and provide more efficient use of limited recovery resources. This report is divided into four chapters which were presented in the author's doctoral dissertation which he completed through the Department of Fisheries and Wildlife at Oregon State University. Each of the chapters has been published in peer reviewed journals or is currently under review. Chapter one is a conceptual spawning habitat model that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Chapter two describes the comparison of the physical factors associated with fall chinook salmon redd clusters located at two sites within the Reach. Spatial point pattern analysis of redds showed that redd clusters averaged approximately 10 hectares in area and their locations were consistent from year to

  17. Salmon spawning habitat rehabilitation on the Merced River, California: An evaluation of project planning and performance

    SciTech Connect

    Kondolf, G.M.; Vick, J.C.; Ramirez, T.M.

    1996-11-01

    From 1986 to 1995, over US$2.5 million has been spent or allocated for projects to modify channel conditions to improve spawning habitat for chinook salmon Oncorhynchus tshawytscha in the Merced. Tuolumne, and Stanislaus rivers, tributaries to the San Joaquin River, California. The authors evaluated the planning, design and performance of the Riffle 1B reconstruction on the Merced River. This typical of the nine individual riffle reconstructions completed to date. involving excavation of the existing channel bed (here, to 0.6 m) and back-filling with smaller gravels believed to be more suitable for salmon spawning. Project documents were reviewed, agency staff interviewed, and field surveys conducted to document channel conditions in 1994 for comparison with the project as constructed in 1990. The project planning and design did not consider the site`s geomorphic context nor processes of erosion and sediment transport under the current flow regime. As a consequence, spawning-sized gravel placed in the channel was scoured and transported through the site at a flow with a return period of 1.5 years. The need for spawning habitat enhancement in the Merced River is questionable, but if such projects are to be built, the authors recommend that the project planning and design consider the site`s geomorphic context and acknowledge the need for and provide funds for project maintenance, and that the performance of completed projects be systematically monitored and evaluated. 32 refs., 8 figs., 1 tab.

  18. Assessment of Habitat and Streamflow Requirements for Habitat Protection, Usquepaug-Queen River, Rhode Island, 1999-2000

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.

    2003-01-01

    The relations among stream habitat and hydrologic conditions were investigated in the Usquepaug?Queen River Basin in southern Rhode Island. Habitats were assessed at 13 sites on the mainstem and tributaries from July 1999 to September 2000. Channel types are predominantly low-gradient glides, pools, and runs that have a sand and gravel streambed and a forest or shrub riparian zone. Along the stream margins,overhanging brush, undercut banks supported by roots, and downed trees create cover; within the channel, submerged aquatic vegetation and woody debris create cover. These habitat features decrease in quality and availability with declining streamflows, and features along stream margins generally become unavailable once streamflows drop to the point at which water recedes from the stream banks. Riffles are less common, but were identified as critical habitat areas because they are among the first to exhibit habitat losses or become unavailable during low-flow periods. Stream-temperature data were collected at eight sites during summer 2000 to indicate the suitability of those reaches for cold-water fish communities. Data indicate stream temperatures provide suitable habitat for cold-water species in the Fisherville and Locke Brook tributaries and in the mainstem Queen River downstream of the confluence with Fisherville Brook. Stream temperatures in the Usquepaug River downstream from Glen Rock Reservoir are about 6?F warmer than in the Queen River upstream from the impoundment. These warmer temperatures may make habitat in the Usquepaug River marginal for cold-water species. Fish-community composition was determined from samples collected at seven sites on tributaries and at three sites on the mainstem Usquepaug?Queen River. Classification of the fish into habitat-use groups and comparison to target fish communities developed for the Quinebaug and Ipswich Rivers indicated that the sampled reaches of the Usquepaug?Queen River contained most of the riverine fish

  19. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  20. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1985 Annual and Final Reports.

    SciTech Connect

    McDonald, Ken

    1986-10-01

    The Hot Springs Fork of the Collawash River is a major sub-drainage in the Clackamas River drainage. Emphasis species for natural production are spring chinook, coho salmon, and winter steelhead. Increased natural production appears limited by a lack of quality rearing habitat. Habitat complexity over approximately 70% of accessible area to anadromous fish has been reduced over the last 40 years by numerous factors. Natural passage barriers limit anadromous fish access to over 7 miles of high quality habitat. In the first year of a multi-year effort to improve fish habitat in the Hot Springs Fork drainage, passage enhancement on two tributaries and channel rehabilitation on one of those tributaries was completed. Three waterfalls on Nohorn Creek were evaluated and passage improved on the uppermost waterfall to provide steelhead full access to 2.4 miles of good quality habitat. The work was completed in October 1985 and involved blasting three jump pools and two holding pools into the waterfall. On Pansy Creek, four potential passage barriers were evaluated and passage improvement work conducted on two logjams and one waterfall. Minor modifications were made to a waterfall to increase flow into a side channel which allows passage around the waterfall. Channel rehabilitation efforts on Pansy Creek (RM 0.0 to 0.3) to increase low flow pool rearing habitat and spawning habitat including blasting five pools into areas of bedrock substrate and using a track-mounted backhoe to construct instream structures. On site materials were used to construct three log sills, three boulder berms, a boulder flow deflector, and five log and boulder structures. Also, an alcove was excavated to provide overwinter rearing habitat. Pre-project monitoring consisting of physical and biological data collection was completed in the project area.

  1. Remote identification of maternal polar bear (Ursus maritimus) denning habitat on the Colville River Delta, Alaska

    NASA Astrophysics Data System (ADS)

    Blank, Justin J.

    High resolution digital aerial photographs (1 foot pixel size) of the Colville River Delta, Alaska were examined in 3D, with the use of a digital photogrammetric workstation. Topographic features meeting the criteria required for adequate snow accumulation, and subsequent construction of terrestrial polar bear maternal dens, were identified and digitized into an ArcGIS line shapefile. Effectiveness, efficiency, and accuracy were improved when compared to previous polar bear denning habitat efforts which utilized contact photo prints and a pocket stereoscope in other geographic areas of northern Alaska. Accuracy of photograph interpretation was systematically evaluated visually from the air with the use of a helicopter and physically on the ground. Results show that the mapping efforts were successful in identifying den habitat 91.3% of the time. Knowledge denning habitat can improve and inform decision making by managers and regulators when considering travel and development in the study area. An understanding of polar bear denning habitat extent and location will be a crucial tool for planning activities within the study area in a way that minimizes conflicts with maternal dens.

  2. Assessing the impacts of river regulation on native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats in the upper Flathead River, Montana, USA

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Jones, Leslie A.; Kotter, D.; Miller, William J.; Geise, Doran; Tohtz, Joel; Marotz, Brian

    2012-01-01

    Hungry Horse Dam on the South Fork Flathead River, Montana, USA, has modified the natural flow regimen for power generation, flood risk management and flow augmentation for anadromous fish recovery in the Columbia River. Concern over the detrimental effects of dam operations on native resident fishes prompted research to quantify the impacts of alternative flow management strategies on threatened bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) habitats. Seasonal and life‐stage specific habitat suitability criteria were combined with a two‐dimensional hydrodynamic habitat model to assess discharge effects on usable habitats. Telemetry data used to construct seasonal habitat suitability curves revealed that subadult (fish that emigrated from natal streams to the river system) bull trout move to shallow, low‐velocity shoreline areas at night, which are most sensitive to flow fluctuations. Habitat time series analyses comparing the natural flow regimen (predam, 1929–1952) with five postdam flow management strategies (1953–2008) show that the natural flow conditions optimize the critical bull trout habitats and that the current strategy best resembles the natural flow conditions of all postdam periods. Late summer flow augmentation for anadromous fish recovery, however, produces higher discharges than predam conditions, which reduces the availability of usable habitat during this critical growing season. Our results suggest that past flow management policies that created sporadic streamflow fluctuations were likely detrimental to resident salmonids and that natural flow management strategies will likely improve the chances of protecting key ecosystem processes and help to maintain and restore threatened bull trout and westslope cutthroat trout populations in the upper Columbia River Basin.

  3. Field Review of Fish Habitat Improvement Projects in Central Idaho.

    SciTech Connect

    Beschta, Robert L.; Griffith, Jack; Wesche, Thomas A.

    1993-05-01

    The goal of this field review was to provide information to the Bonneville Power Administration (BPA) regarding previous and ongoing fish habitat improvement projects in central Idaho. On July 14, 1992, the review team met at the Sawtooth National Recreation Area office near Ketchum, Idaho, for a slide presentation illustrating several habitat projects during their construction phases. Following the slide presentation, the review team inspected fish habitat projects that have been implemented in the last several years in the Stanley Basin and adjacent valleys. At each site the habitat project was described to the field team and a brief period for project inspection followed. The review team visited approximately a dozen sites on the Challis, Sawtooth, and Boise National Forests over a period of approximately two and a half days. There are two objectives of this review namely to summarize observations for specific field sites and to provide overview commentary regarding the BPA habitat improvement program in central Idaho.

  4. Habitat persistence for sedentary organisms in managed rivers: the case for the federally endangered dwarf wedgemussel (Alasmidonta heterodon) in the Delaware River

    USGS Publications Warehouse

    Maloney, Kelly O.; Lellis, William A.; Bennett, Randy M.; Waddle, Terry J.

    2012-01-01

    habitat, indicating either that additional suitable habitat is available or the need to improve habitat criteria. At one site, persistent beds (beds where mussels were routinely collected) were located at sites with stable substratum, whereas marginal beds (beds where mussels were infrequently collected or that were lost following a large flood event) were located in scoured areas. 5. Taken together, these model results support a multifaceted approach, which incorporates the effects of low and high flow stressors, to quantify habitat suitability for mussels and other sedentary taxa. Models of persistent habitat can provide a more holistic environmental flow assessment of rivers.

  5. Natural Propagation and Habitat Improvement Idaho: Lolo Creek and Upper Lochsa, Clearwater National Forest.

    SciTech Connect

    Espinosa, F.A. Jr.; Lee, Kristine M.

    1991-01-01

    In 1983, the Clearwater National Forest and the Bonneville Power Administration (BPA) entered into a contractual agreement to improve anadromous fish habitat in selected tributaries of the Clearwater River Basin. This agreement was drawn under the auspices of the Northwest Power Act of 1980 and the Columbia River basin Fish and Wildlife Program (section 700). The Program was completed in 1990 and this document constitutes the Final Report'' that details all project activities, costs, accomplishments, and responses. The overall goal of the Program was to enhance spawning, rearing, and riparian habitats of Lolo Creek and major tributaries of the Lochsa River so that their production systems could reach full capability and help speed the recovery of salmon and steelhead within the basin.

  6. Salmon River Habitat Enhancement, Part 1 of 2, 1986 Annual Report.

    SciTech Connect

    Richards, Carl

    1987-03-01

    The tribal project annual report contains reports for four subprojects within Project 83-359. Subproject I involved fish inventories in Bear Valley Creek, Idaho, that will be used in conjunction with 1984 and 1985 fish and habitat pre-treatment (baseline) data to evaluate effects of habitat enhancement on the habitat and fish community in Bear Valley Creek overtime. Subproject II is the coordination/planning activities of the Project Leader in relation to other BPA-funded habitat enhancement projects that have or will occur in the upper-Salmon River basin. Subproject III involved fish inventories (pre-treatment) in the Yankee Fork drainage of the Salmon River, and habitat problem identification on Fivemile and Ramey Creek. Subproject IV involved baseline habitat and fish inventories on the East Fork of the Salmon River, Herd Creek and Big-Boulder Creek. Individual abstracts have been prepared for the four subproject reports. 20 refs., 37 figs., 22 tabs.

  7. Assessing Essential Fish Habitat in Freshwater Environments Using Otolith Chemistry: Spring River, AR.

    NASA Astrophysics Data System (ADS)

    Bickford, N. A.; Hamilton, B.; Hannigan, R. E.

    2002-12-01

    The identification of essential fish habitat within freshwater systems is critical to the management of the game fish populations. In order to accurately assess habitat we investigated the physical and chemical hydrological controls on game fish abundances and distributions with the 92-km reach of the Spring River of Arkansas. The hydrology of the river was integrated in to the chemical analyses of otolith chemistry of game fish from habitats throughout the river. Identified spatial and temporal variations in metal concentration within the Spring River are an important factor in the recognition of essential fish habitat. In the Spring River, where spatial and temporal metal concentration variations are significant, otolith chemistry has the potential to serve as a marker of essential habitat in much the same way as in estuarine and marine settings. Using otolith chemistry to identify essential habitat in freshwater systems has the potential to revolutionize ecological management strategies. Fish otolith chemistry shows both inter-species variations and spatial variations. Spatial variations in the otolith chemistry as recorded over the life of the fish allow identification of the nursery habitat and feeding range of game fish. Using otolith chemistry, particularly variations in trace element composition rather than the traditional major element ratios (i.e., Mg/Ca), we are able to identify essential habitats and provide managers data needed for conservation and preservation of these habitats.

  8. John Day River Subbasin Fish Habitat Enhancement Project, 1991 Annual Report.

    SciTech Connect

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1993-05-01

    The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring chinook and summer steelhead within the subbasin through habitat enhancement and access improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in northeast Oregon. It is the goal of this program to preserve and enhance the unique genetic component of the stocks. By attaining this goal we will be able to rebuild fish runs in other Columbia River tributaries in the future, if desired. During 1991, 5 leases were signed adding 5.25 miles of stream to the program. Fence construction included 9.95 miles of riparian fence and 15 livestock water crossings. We constructed 3 log wiers for adult salmon holding, added 280 ft. of new channel, and placed 274 fish habitat boulders, 6 trees and 31 rootwads for juvenile rearing. We constructed 15 stream deflectors and 274 linear feet of bank riprap for streambank stabilization.

  9. John Day River Sub-Basin Fish Habitat Enhancement Project; 2008 Annual Report

    SciTech Connect

    Powell, Russ M.; Alley, Pamela D.; Goin Jr, Lonnie

    2009-07-15

    Work undertaken in 2008 included: (1) Seven new fence projects were completed thereby protecting approximately 10.97 miles of streams with 16.34 miles of riparian fence; (2) Renewal of one expired lease was completed thereby continuing to protect 0.75 miles of stream with 1.0 mile of riparian fence. (3) Maintenance of all active project fences (106.54 miles), watergaps (78), spring developments (33) were checked and repairs performed; (3) Planted 1000 willow/red osier on Fox Creek/Henslee property; (4) Planted 2000 willows/red osier on Middle Fork John Day River/Coleman property; (5) Planted 1000 willow/red osier cuttings on Fox Creek/Johns property; (6) Since the initiation of the Fish Habitat Project in 1984 we have 126.86 miles of stream protected using 211.72 miles of fence protecting 5658 acres. The purpose of the John Day Fish Habitat Enhancement Program is to enhance production of indigenous wild stocks of spring Chinook and summer steelhead within the sub basin through habitat protection, enhancement and fish passage improvement. The John Day River system supports the largest remaining wild runs of spring chinook salmon and summer steelhead in Northeast Oregon.

  10. Project river recovery: restoration of braided gravel-bed river habitat in New Zealand's high country.

    PubMed

    Caruso, Brian S

    2006-06-01

    Ecological restoration is increasingly becoming a primary component of broader environmental and water resources management programs throughout the world. The New Zealand Department of Conservation implemented Project River Recovery (PRR) in 1991 to restore unique braided gravel-bed river and wetland habitat in the Upper Waitaki Basin in New Zealand's high country of the South Island, which has been severely impacted by hydroelectric power development. These braided rivers are highly dynamic, diverse, and globally important ecosystems and provide critical habitat to numerous native wading and shore bird species, including several threatened species such as the black stilt. The objective of this study was to review and summarize PRR after more than 10 years of implementation to provide information and transfer knowledge to other nations and restoration programs. Site visits were conducted, discussions were held with key project staff, and project reports and related literature were reviewed. Primary components of the program include pest plant and animal control, wetland construction and enhancement, a significant research and monitoring component, and public awareness. The study found that PRR is an excellent example of an ecological restoration program focusing on conserving and restoring unique habitat for threatened native bird species, but that also includes several secondary objectives. Transfer of knowledge from PRR could benefit ecological restoration programs in other parts of the world, particularly riverine floodplain and braided river restoration. PRR could achieve even greater success with expanded goals, additional resources, and increased integration of science with management, especially broader consideration of hydrologic and geomorphologic effects and restoration opportunities. PMID:16508798

  11. Habitat availability vs. flow rate for the Pecos River, Part 1 : Depth and velocity availability.

    SciTech Connect

    James, Scott Carlton; Schaub, Edward F.; Jepsen, Richard Alan; Roberts, Jesse Daniel

    2004-02-01

    The waters of the Pecos River in New Mexico must be delivered to three primary users: (1) The Pecos River Compact: each year a percentage of water from natural river flow must be delivered to Texas; (2) Agriculture: Carlsbad Irrigation District has a storage and diversion right and Fort Sumner Irrigation District has a direct flow diversion right; and, (3) Endangered Species Act: an as yet unspecified amount of water is to support Pecos Bluntnose Shiner Minnow habitat within and along the Pecos River. Currently, the United States Department of Interior Bureau of Reclamation, the New Mexico Interstate Stream Commission, and the United States Department of the Interior Fish and Wildlife Service are studying the Pecos Bluntnose Shiner Minnow habitat preference. Preliminary work by Fish and Wildlife personnel in the critical habitat suggest that water depth and water velocity are key parameters defining minnow habitat preference. However, river flows that provide adequate preferred habitat to support this species have yet to be determined. Because there is a limited amount of water in the Pecos River and its reservoirs, it is critical to allocate water efficiently such that habitat is maintained, while honoring commitments to agriculture and to the Pecos River Compact. This study identifies the relationship between Pecos River flow rates in cubic feet per second (cfs) and water depth and water velocity.

  12. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    NASA Astrophysics Data System (ADS)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    We illustrate an approach to quantify patterns in hydraulic habitat composition and local heterogeneity applicable at low cost over very large river extents, with selectable reach window scales. Ongoing developments in remote sensing and geographical information science massively improve efficiencies in analyzing earth surface features. With the development of new satellite sensors and drone platforms and with the lowered cost of high resolution multispectral imagery, fluvial geomorphology is experiencing a revolution in mapping streams at high resolution. Exploiting the power of aerial or satellite imagery is particularly useful in a riverscape research framework (Fausch et al., 2002), where high resolution sampling of fluvial features and very large coverage extents are needed. This study presents a satellite remote sensing method that requires very limited field calibration data to estimate over various scales ranging from 1 m to many tens or river kilometers (i) spatial composition metrics for key hydraulic mesohabitat types and (ii) reach-scale wetted habitat heterogeneity indices such as the hydromorphological index of diversity (HMID). When the purpose is hydraulic habitat characterization applied over long river networks, the proposed method (although less accurate) is much less computationally expensive and less data demanding than two dimensional computational fluid dynamics (CFD). Here, we illustrate the tools based on a Worldview 2 satellite image of the Kiamika River, near Mont Laurier, Quebec, Canada, specifically over a 17-km river reach below the Kiamika dam. In the first step, a high resolution water depth (D) map is produced from a spectral band ratio (calculated from the multispectral image), calibrated with limited field measurements. Next, based only on known river discharge and estimated cross section depths at time of image capture, empirical-based pseudo-2D hydraulic rules are used to rapidly generate a two-dimensional map of flow velocity

  13. Clackamas/Hood River Habitat Enhancement Program, 1988 Annual Report.

    SciTech Connect

    Bettin, Scott

    1989-04-01

    The Collawash Falls Fish Passage Project began in August of 1987, and resulted in completion of Phase I of the construction of the fish passage facility. A core team of Forest Service personnel. led by fish passage specialists from R-10, Alaska, excavated a trench in the bedrock face of the falls that is approximately 95 feet long, 8 feet deep and 10 feet wide. Implementation of Phase II of the project was put on hold in July of 1988. when 50 yards of rock from the adjacent headwall sloughed into the trench. During September and October of 1988 the larger rocks were reduced in size by blasting. High water flows in November moved the blasted rock from the trench. The project is being done by the Mt. Hood National Forest with funds supplied by the Bonneville Power Administration (BPA) under the NWPPC's Fish and Wildlife Program, Measure 703(c). Action Item 4.2, in consultation with the Oregon Department of Fish and Wildlife (ODF&W). Successful modification of the Collawash Falls will allow anadromous fish full access to over 10 miles of acknowledged high quality spawning and rearing habitat. The total anadromous fish production benefits gained from utilization of this habitat, assuming a 10 year project life with a 4% discount factor is $1,690,019.00. In 1974, several partial barriers to anadromous fish in the form of small falls and cataracts located immediately above the trench, were modified for full passage by blasting. This work conducted by the Forest Service was fully successful in allowing fish passage through all but the main barrier in Collawash Falls. Other Collawash River fisheries projects include the 1984 construction of a fish liberation access site above the falls for the PGE/ODFW spring chinook trap and haul program. Funding for the project came from revenues generated by an adjacent Forest Service timber sale. In summer of 1985, 30,000 spring chinook presmolts were stocked at this liberation site. In spring of 1987. 10,000 coho pre-smolts were

  14. Removal of small dams and its influence on physical habitat for salmonids in a Norwegian river

    NASA Astrophysics Data System (ADS)

    Fjeldstad, Hans-Petter; Barlaup, Bjørn; Stickler, Morten; Alfredsen, Knut; Gabrielsen, Sven-Erik

    2010-05-01

    While research and implementation of upstream migration solutions is extensive, and indeed often successful, full scale restoration projects and investigations of their influence on fish biology are rare in Norway. Acid deposition in Norwegian catchments peaked in the 1980's and resulted in both chronically and episodically acidified rivers and Salmonids in River Nidelva, one of the largest cathments in southern Norway, where extinct for decades. During this period hydropower development in the river paid limited attention to aquatic ecology. Weirs were constructed for esthetic purposes in the late 1970's and turned a 3 km stretch into a lake habitat, well suited for lake dwelling fish species, but unsuited for migration, spawning and juvenile habitat for salmonids. Since 2005, continuous liming to mitigate acidification has improved the water quality and a program for reintroduction of Atlantic salmon has been implemented. We used hydraulic modeling to plan the removal of two weirs on a bypass reach of the river. The 50 meters wide concrete weirs were blasted and removed in 2007, and ecological monitoring has been carried out in the river to assess the effect of weir removal. Topographic mapping, hydraulic measurements and modeling, in combination with biological surveys before and after the removal of the weirs, has proved to represent a powerful method for design of physical habitat adjustments and assessing their influence on fish biology. The model results also supported a rapid progress of planning and executing of the works. While telemetry studies before weir removal suggested that adult migration past the weirs was delayed with several weeks the fish can now pass the reach with minor obstacles. Spawning sites were discovered in the old bed substrate and were occupied already the first season after water velocities increased to suitable levels for spawning. Accordingly, the densities of Atlantic salmon juveniles have shown a marked increased after the

  15. Habitat selection and productivity of least terns on the lower Platte River, Nebraska

    USGS Publications Warehouse

    Kirsch, Eileen M.

    1996-01-01

    Least terns (Sterna antillarum) were studied on the lower Platte River, Nebraska, where this endangered population nests on natural sandbar habitat and on sandpit sites created by gravel dredging adjacent to the river. Theoretically terns should select habitats according to habitat suitability. However, the introduction of sandpits and conversion of tallgrass prairies along the river banks to agriculture, residential, and wooded areas may have affected terns' abilities to distinguish suitable habitat or the suitability of nesting habitats in general. I examined habitat selection and productivity of least terns to determine if terns selected habitat according to suitability (as indicated by productivity), what factors affected habitat selection and productivity, and if estimated productivity could support this population. Available habitats of both types were characterized and quantified using aerial videography (1989-90), and habitat use was assessed from census data (1987-90). Productivity of adults and causes and correlates of egg and chick mortality were estimated (1987-90). Population trend was assessed with a deterministic model using my estimates of productivity and a range of survival estimates for Laridae reported in the literature. Terns tended to use river sites with large midstream sandbars and a wide channel, and large sandpit sites with large surface areas of water relative to unused sites on both habitats. Number of sites and area of sand available were estimated using discriminant function analysis of variables quantified from video scenes of both habitats. Terns apparently did not use all potentially available sandbar and sandpit sites because discriminant function factor scores for used and unused sites overlapped broadly for both habitats. Terns did not prefer 1 habitat over the other. Although proportions of available sites used were greater on sandpits than on the river, proportions of available sand used did not differ between habitats

  16. Use of Normalized Difference Vegetation Index (NDVI) habitat models to predict breeding birds on the San Pedro River, Arizona

    USGS Publications Warehouse

    McFarland, Tiffany Marie; van Riper, Charles, III

    2013-01-01

    Successful management practices of avian populations depend on understanding relationships between birds and their habitat, especially in rare habitats, such as riparian areas of the desert Southwest. Remote-sensing technology has become popular in habitat modeling, but most of these models focus on single species, leaving their applicability to understanding broader community structure and function largely untested. We investigated the usefulness of two Normalized Difference Vegetation Index (NDVI) habitat models to model avian abundance and species richness on the upper San Pedro River in southeastern Arizona. Although NDVI was positively correlated with our bird metrics, the amount of explained variation was low. We then investigated the addition of vegetation metrics and other remote-sensing metrics to improve our models. Although both vegetation metrics and remotely sensed metrics increased the power of our models, the overall explained variation was still low, suggesting that general avian community structure may be too complex for NDVI models.

  17. Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes

    PubMed Central

    Scharsack, Jörn P; Kalbe, Martin; Harrod, Chris; Rauch, Gisep

    2007-01-01

    Freshwater populations of three-spined sticklebacks (Gasterosteus aculeatus) in northern Germany are found as distinct lake and river ecotypes. Adaptation to habitat-specific parasites might influence immune capabilities of stickleback ecotypes. Here, naive laboratory-bred sticklebacks from lake and river populations were exposed reciprocally to parasite environments in a lake and a river habitat. Sticklebacks exposed to lake conditions were infected with higher numbers of parasite species when compared with the river. River sticklebacks in the lake had higher parasite loads than lake sticklebacks in the same habitat. Respiratory burst, granulocyte counts and lymphocyte proliferation of head kidney leucocytes were increased in river sticklebacks exposed to lake when compared with river conditions. Although river sticklebacks exposed to lake conditions showed elevated activation of their immune system, parasites could not be diminished as effectively as by lake sticklebacks in their native habitat. River sticklebacks seem to have reduced their immune-competence potential due to lower parasite diversity in rivers. PMID:17426014

  18. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon...

  19. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon...

  20. Assessment of Least Tern and Piping Plover Habitats on the Missouri River Using Remote Sensing

    USGS Publications Warehouse

    Strong, Larry L.

    2007-01-01

    The primary goal of this study is to develop a cost-effective method to inventory, map, estimate, monitor, and evaluate least tern and piping plover habitats for four segments of the Missouri River using remotely sensed imagery.

  1. Habitat Evaluation Procedures (HEP) Report : Priest River, 2004-2005 Technical Report.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Priest River property, an acquisition completed by the Kalispel Tribe of Indians in 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Priest River Project provides a total of 105.41 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 26.95 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Grassland habitat provides 23.78 HUs for Canada goose and mallard. Scmb-shrub vegetation provides 54.68 HUs for mallard, yellow warbler, and white-tailed deer.

  2. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007 Annual Report.

    SciTech Connect

    Sobocinski, Kathryn; Johnson, Gary; Sather, Nichole

    2008-03-17

    community characteristics, including species composition, abundance, and temporal and spatial distributions. (1c) Estimate the stock of origin for the yearling and subyearling Chinook salmon captured at the sampling sites using genetic analysis. (1d) Statistically assess the relationship between salmonid abundance and habitat parameters, including ancillary variables such as temperature and river stage. (2) Acoustic Telemetry Monitoring-Assess feasibility of applying Juvenile Salmon Acoustic Telemetry System (JSATS) technology to determine migration characteristics from upriver of Bonneville Dam through the study area (vicinity of the Sandy River delta/Washougal River confluence). (2a) Determine species composition, release locations, and distributions of JSATS-tagged fish. (2b) Estimate run timing, residence times, and migration pathways for these fish. Additionally, both objectives serve the purpose of baseline research for a potential tidal rechannelization project on the Sandy River. The U.S. Forest Service, in partnership with the Bonneville Power Administration and the U.S. Army Corps of Engineers, is currently pursuing reconnection of the east (relict) Sandy River channel with the current channel to improve fish and wildlife habitat in the Sandy River delta. Our study design and the location of sampling sites in this reach provide baseline data to evaluate the potential restoration.

  3. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  4. Habitat values for artificial oyster ( Crassostrea ariakensis) reefs compared with natural shallow-water habitats in Changjiang River estuary

    NASA Astrophysics Data System (ADS)

    Quan, Weimin; Zheng, Lin; Li, Beijun; An, Chuanguang

    2013-09-01

    Oyster reefs have an equivalent, complex 3-dimensional structure to vegetated habitats and may provide similar functions in estuarine environments. Nevertheless, few studies have compared oyster reefs with adjacent natural shallow-water habitats. Here the resident benthic macroinvertebrate communities in an artificial oyster ( Crassostrea ariakensis) reef and in adjacent natural estuarine shallow-water habitats (salt marsh, intertidal mudflat, and subtidal soft bottom) in the Changjiang (Yangtze) River estuary were described. The mean total densities and biomass, Margalef's species richness, Pielou's evenness and Shannon-Weaver biodiversity indices of the resident benthic macroinvertebrate communities differed significantly among the habitats. Significantly higher densities and biomass of benthic macroinvertebrates occurred in the oyster reef compared with the other three habitats. Ordination plots showed a clear separation in benthic macroinvertebrate communities among the four habitat types. The results demonstrated that the artificial oyster reef supported distinct and unique benthic communities, playing an important role in the complex estuarine habitat by supplying prey resources and contributing to biodiversity. In addition, the results suggested that the oyster reef had been restored successfully.

  5. 76 FR 76337 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Lost River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ...We, the U.S. Fish and Wildlife Service (Service), propose to designate critical habitat for the Lost River sucker (Deltistes luxatus) and shortnose sucker (Chasmistes brevirostris) under the Endangered Species Act of 1973, as amended (Act). In total, we are proposing as critical habitat approximately 146 miles (234 kilometers) of streams and 117,848 acres (47,691 hectares) of lakes and......

  6. FROM DATA TO INFORMATION: DEVELOPMENT OF INTEGRATIVE HABITAT INDICES FOR GREAT RIVER ECOSYSTEMS

    EPA Science Inventory

    This research will look at ways to combine data from the EMAP-GRE 2004 and 2005 sampling seasons of the Missouri, Upper Mississippi, and Ohio Rivers into habitat indices that can be used to compare erosion potential, storm runoff retention ability, riparian habitat quality, and h...

  7. IMPLICATIONS OF INTER-HABITAT VARIATION FOR MONITORING GREAT RIVER ECOSYSTEMS: EMAP-UMR EXPERIENCE

    EPA Science Inventory

    Great River ecosystems (GREs) are complex mosaics of habitats that vary at multiple scales. GRE monitoring designs can capture some but not all of this variation. Each discrete habitat, however defined, must either be sampled as a separate strata or "resource population", combine...

  8. Discrete choice modeling of shovelnose sturgeon habitat selection in the Lower Missouri River

    USGS Publications Warehouse

    Bonnot, T.W.; Wildhaber, M.L.; Millspaugh, J.J.; DeLonay, A.J.; Jacobson, R.B.; Bryan, J.L.

    2011-01-01

    Substantive changes to physical habitat in the Lower Missouri River, resulting from intensive management, have been implicated in the decline of pallid (Scaphirhynchus albus) and shovelnose (S. platorynchus) sturgeon. To aid in habitat rehabilitation efforts, we evaluated habitat selection of gravid, female shovelnose sturgeon during the spawning season in two sections (lower and upper) of the Lower Missouri River in 2005 and in the upper section in 2007. We fit discrete choice models within an information theoretic framework to identify selection of means and variability in three components of physical habitat. Characterizing habitat within divisions around fish better explained selection than habitat values at the fish locations. In general, female shovelnose sturgeon were negatively associated with mean velocity between them and the bank and positively associated with variability in surrounding depths. For example, in the upper section in 2005, a 0.5ms-1 decrease in velocity within 10m in the bank direction increased the relative probability of selection 70%. In the upper section fish also selected sites with surrounding structure in depth (e.g., change in relief). Differences in models between sections and years, which are reinforced by validation rates, suggest that changes in habitat due to geomorphology, hydrology, and their interactions over time need to be addressed when evaluating habitat selection. Because of the importance of variability in surrounding depths, these results support an emphasis on restoring channel complexity as an objective of habitat restoration for shovelnose sturgeon in the Lower Missouri River. ?? 2011 Blackwell Verlag, Berlin.

  9. Discrete choice modeling of shovelnose sturgeon habitat selection in the Lower Missouri River

    USGS Publications Warehouse

    Bonnot, T.W.; Wildhaber, M.L.; Millspaugh, J.J.; DeLonay, A.J.; Jacobson, R.B.; Bryan, J.L.

    2011-01-01

    Substantive changes to physical habitat in the Lower Missouri River, resulting from intensive management, have been implicated in the decline of pallid (Scaphirhynchus albus) and shovelnose (S. platorynchus) sturgeon. To aid in habitat rehabilitation efforts, we evaluated habitat selection of gravid, female shovelnose sturgeon during the spawning season in two sections (lower and upper) of the Lower Missouri River in 2005 and in the upper section in 2007. We fit discrete choice models within an information theoretic framework to identify selection of means and variability in three components of physical habitat. Characterizing habitat within divisions around fish better explained selection than habitat values at the fish locations. In general, female shovelnose sturgeon were negatively associated with mean velocity between them and the bank and positively associated with variability in surrounding depths. For example, in the upper section in 2005, a 0.5 m s-1 decrease in velocity within 10 m in the bank direction increased the relative probability of selection 70%. In the upper section fish also selected sites with surrounding structure in depth (e.g., change in relief). Differences in models between sections and years, which are reinforced by validation rates, suggest that changes in habitat due to geomorphology, hydrology, and their interactions over time need to be addressed when evaluating habitat selection. Because of the importance of variability in surrounding depths, these results support an emphasis on restoring channel complexity as an objective of habitat restoration for shovelnose sturgeon in the Lower Missouri River.

  10. A hierarchical spatial framework and database for the national river fish habitat condition assessment

    USGS Publications Warehouse

    Wang, L.; Infante, D.; Esselman, P.; Cooper, A.; Wu, D.; Taylor, W.; Beard, D.; Whelan, G.; Ostroff, A.

    2011-01-01

    Fisheries management programs, such as the National Fish Habitat Action Plan (NFHAP), urgently need a nationwide spatial framework and database for health assessment and policy development to protect and improve riverine systems. To meet this need, we developed a spatial framework and database using National Hydrography Dataset Plus (I-.100,000-scale); http://www.horizon-systems.com/nhdplus). This framework uses interconfluence river reaches and their local and network catchments as fundamental spatial river units and a series of ecological and political spatial descriptors as hierarchy structures to allow users to extract or analyze information at spatial scales that they define. This database consists of variables describing channel characteristics, network position/connectivity, climate, elevation, gradient, and size. It contains a series of catchment-natural and human-induced factors that are known to influence river characteristics. Our framework and database assembles all river reaches and their descriptors in one place for the first time for the conterminous United States. This framework and database provides users with the capability of adding data, conducting analyses, developing management scenarios and regulation, and tracking management progresses at a variety of spatial scales. This database provides the essential data needs for achieving the objectives of NFHAP and other management programs. The downloadable beta version database is available at http://ec2-184-73-40-15.compute-1.amazonaws.com/nfhap/main/.

  11. Quantifying the co-evolution of morphology, hydraulics and spawning habitat in a recently restored gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Wydzga, A. M.; Dunne, T.

    2008-12-01

    An emergent paradigm within restoration science is that restoration of natural physical processes is the best way to restore habitat for native organisms in degraded rivers. This concept, which underpins many restoration projects, is based on the notion that the establishment of an actively migrating, alluvial river channel-floodplain system will provide a number of desired ecological functions, each related to specific physical processes that occur at the habitat-scale. Here we quantify the rates of morphologic change, channel migration and the development of high-quality habitat, using a recently restored gravel-bed reach of the Merced River, California, USA. DEM-derived differences in bed elevation indicate that sediment storage accelerated processes of bar-building, pool scour, and bank erosion, leading to more asymmetric cross- sectional geometry. The volume of sediment stored on developing point bars was correlated with the migration distance of the outer bank, whereas in bends that have not accumulated sediment there has been little erosion, suggesting that channel migration was influenced by sediment supply as well as by channel curvature. The documented channel changes have had marked results on flow hydraulics, leading to decreased velocities over riffles and increased velocities in pools during low flow spawning conditions. Habitat modeling indicates that the quality of Chinook salmon (Oncorhynchus tshawytscha) spawning habitat has improved following the initial channel construction. These changes in morphology, hydraulics and habitat availability occurred primarily during two sustained periods of overbank flow. Collectively, these results highlight the importance of overbank flows and a sediment supply sufficient for bar growth in meander migration and creating channel complexity and high-quality habitat.

  12. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic

  13. Predicting the effects of proposed Mississippi River diversions on oyster habitat quality; application of an oyster habitat suitability index model

    USGS Publications Warehouse

    Soniat, Thomas M.; Conzelmann, Craig P.; Byrd, Jason D.; Roszell, Dustin P.; Bridevaux, Joshua L.; Suir, Kevin J.; Colley, Susan B.

    2013-01-01

    In an attempt to decelerate the rate of coastal erosion and wetland loss, and protect human communities, the state of Louisiana developed its Comprehensive Master Plan for a Sustainable Coast. The master plan proposes a combination of restoration efforts including shoreline protection, marsh creation, sediment diversions, and ridge, barrier island, and hydrological restoration. Coastal restoration projects, particularly the large-scale diversions of fresh water from the Mississippi River, needed to supply sediment to an eroding coast potentially impact oyster populations and oyster habitat. An oyster habitat suitability index model is presented that evaluates the effects of a proposed sediment and freshwater diversion into Lower Breton Sound. Voluminous freshwater, needed to suspend and broadly distribute river sediment, will push optimal salinities for oysters seaward and beyond many of the existing reefs. Implementation and operation of the Lower Breton Sound diversion structure as proposed would render about 6,173 ha of hard bottom immediately east of the Mississippi River unsuitable for the sustained cultivation of oysters. If historical harvests are to be maintained in this region, a massive and unprecedented effort to relocate private leases and restore oyster bottoms would be required. Habitat suitability index model results indicate that the appropriate location for such efforts are to the east and north of the Mississippi River Gulf Outlet.

  14. Natural Propagation and Habitat Improvement, Volume 2, Idaho, 1985 Annual and Final Reports.

    SciTech Connect

    Hair, Don

    1986-09-01

    The individual reports in this volume have been separately abstracted for inclusion in the data base. The reports describe fish habitat enhancement projects on the Lochsa River, Eldorado and Camas Creeks, and the Clearwater River. (ACR)

  15. Evaulation of the Quality of an Aquatic Habitat on the Drietomica River

    NASA Astrophysics Data System (ADS)

    Stankoci, Ivan; Jariabková, Jana; Macura, Viliam

    2014-03-01

    The ecological status of a river is influenced by many factors, of which the most important are fauna and flora; in this paper they are defined as a habitat. During the years 2004, 2005, 2006 and 2011, research on the hydroecological quality of a habitat was evaluated in the reference section of the Drietomica River. Drietomica is a typical representative river of the Slovak flysch area and is located in the region of the White Carpathians in the northwestern part of Slovakia. In this article the results of modeling a microhabitat by means of the Instream Flow Incremental Methodology (IFIM) are presented. For the one-dimensional modeling, the River Habitat Simulation System (RHABSIM) was used to analyse the interaction between a water flow, the morphology of a riverbed, and the biological components of the environment. The habitat ´s hydroecological quality was evaluated after detailed ichthyological, topographical and hydro-morphological surveys. The main step was assessing the biotic characteristics of the habitat through the suitability curves for the Brown trout (Salmo trutta m. fario). Suitability curves are a graphic representation of the main biotic and abiotic preferences of a microhabitat's components. The suitability curves were derived for the depth, velocity, fish covers and degree of the shading. For evaluating the quality of the aquatic habitat, 19 fish covers were closely monitored and evaluated. The results of the Weighted Usable Area (WUA = f (Q)) were evaluated from a comprehensive assessment of the referenced reach of the Drietomica River.

  16. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    SciTech Connect

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  17. Assessment of Habitat, Fish Communities, and Streamflow Requirements for Habitat Protection, Ipswich River, Massachusetts, 1998-99

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Parker, Gene W.

    2001-01-01

    The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and

  18. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota

    PubMed Central

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability / ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well

  19. Impacts of the Columbia River Hydroelectric System on Mainstem Habitats of Fall Chinook Salmon

    SciTech Connect

    Dauble, Dennis D.; Hanrahan, Timothy P.; Geist, David R.; Parsley, Michael J.

    2003-08-01

    Salmonid habitats in mainstem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13 and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the mainstem Columbia River and 163 km of the mainstem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment, more bars and islands, and had lower water surface slopes than areas not extensively used. Because flows in the mainstem are now highly regulated, the pre-development alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes, specifically sustained peak flows for scouring, is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries and tailrace spawning areas, and hatcheries) be considered.

  20. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  1. Natural Propagation and Habitat Improvement, Volume III, Idaho, 1982/1983 Final and Annual Reports.

    SciTech Connect

    Espinosa, Jr., F.

    1984-04-01

    In 1983 and under the auspices of the Northwest Power Act, the Clearwater National Forest and Bonneville Power Administration entered into an agreement to improve anadromous fish habitat in three major tributaries of the Clearwater River in Idaho. Phase I (FY 83) habitat enhancement was initiated and completed on Lolo, Crooked Fork, and White Sand Creeks. Enhancement of Lolo Creek involved the placement of 145 structures that were designed to alter the pool/riffle structure, increase diversity and cover, and purge in-stream sediment over 8.5 miles of stream length. Log weirs, organic debris, and boulder clusters were featured in the enhancement design. For the Lolo Project, the average unit cost was $186/structure. Spring chinook salmon was the primary target species and were observed utilizing the enhanced habitat in September. Enhancement of the upper Lochsa River tributaries involved the placement of 263 structures of which 200 were felled riparian trees and 63 were anchored organic debris. Enhancement occurred over 9.1 miles of stream reaches and was designed to increase diversity, cover, and spawning habitat. Depressed stocks of spring chinook salmon and summer steelhead trout were the focal points of the enhancement. The average cost per structure equaled $91/unit. Because of a mixed ownership pattern and in-channel variables, only 50 percent of the total stream distance was available for enhancement. 6 references, 68 figures.

  2. Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.

  3. Regional Analysis of River Conductivity Maps Salinity Driven Aquatic Habitat Degradation Potential Throughout New England

    NASA Astrophysics Data System (ADS)

    Zuidema, S.; Wollheim, W. M.; Green, M.; Mineau, M.; Stewart, R. J.; Volitis, E.

    2014-12-01

    test the influence of changing winter temperatures, summer storm events, and build-out scenarios. Regional maps of predicted salt impairment will identify river reaches at highest risk for reduced aquatic biodiversity and locate communities that would engender greatest habitat improvement through mitigation activities.

  4. Concept Paper for Real-Time Temperature and Water QualityManagement for San Joaquin River Riparian Habitat Restoration

    SciTech Connect

    Quinn, Nigel W.T.

    2004-12-20

    The San Joaquin River Riparian Habitat Restoration Program (SJRRP) has recognized the potential importance of real-time monitoring and management to the success of the San Joaquin River (SJR) restoration endeavor. The first step to realizing making real-time management a reality on the middle San Joaquin River between Friant Dam and the Merced River will be the installation and operation of a network of permanent telemetered gauging stations that will allow optimization of reservoir releases made specifically for fish water temperature management. Given the limited reservoir storage volume available to the SJJRP, this functionality will allow the development of an adaptive management program, similar in concept to the VAMP though with different objectives. The virtue of this approach is that as management of the middle SJR becomes more routine, additional sensors can be added to the sensor network, initially deployed, to continue to improve conditions for anadromous fish.

  5. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks.

    PubMed

    Huang, Yun; Chain, Frédéric J J; Panchal, Mahesh; Eizaguirre, Christophe; Kalbe, Martin; Lenz, Tobias L; Samonte, Irene E; Stoll, Monika; Bornberg-Bauer, Erich; Reusch, Thorsten B H; Milinski, Manfred; Feulner, Philine G D

    2016-02-01

    The observation of habitat-specific phenotypes suggests the action of natural selection. The three-spined stickleback (Gasterosteus aculeatus) has repeatedly colonized and adapted to diverse freshwater habitats across the northern hemisphere since the last glaciation, while giving rise to recurring phenotypes associated with specific habitats. Parapatric lake and river populations of sticklebacks harbour distinct parasite communities, a factor proposed to contribute to adaptive differentiation between these ecotypes. However, little is known about the transcriptional response to the distinct parasite pressure of those fish in a natural setting. Here, we sampled wild-caught sticklebacks across four geographical locations from lake and river habitats differing in their parasite load. We compared gene expression profiles between lake and river populations using 77 whole-transcriptome libraries from two immune-relevant tissues, the head kidney and the spleen. Differential expression analyses revealed 139 genes with habitat-specific expression patterns across the sampled population pairs. Among the 139 differentially expressed genes, eight are annotated with an immune function and 42 have been identified as differentially expressed in previous experimental studies in which fish have been immune challenged. Together, these findings reinforce the hypothesis that parasites contribute to adaptation of sticklebacks in lake and river habitats. PMID:26749022

  6. Fish habitat characterization and quantification using lidar and conventional topographic information in river survey

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén

    2007-10-01

    This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.

  7. Hierarchical controls on patterns of habitat and species diversity in river networks

    NASA Astrophysics Data System (ADS)

    Beechie, T.; Pess, G.

    2007-12-01

    Patterns of habitat heterogeneity and species diversity in river networks are constrained by a nested hierarchy of physical controls. Large-scale, long-term controls set bounds for habitat and biological expression, whereas short-term and smaller-scale processes determine conditions at a point in time. At the river basin scale, geologic and topographic controls constrain reach attributes such as channel slope and channel confinement, which in turn constrains finer scale habitat structure. Overlain on this geologic template are down-valley trends in relative sediment supply that cause a systematic shift in channel-floodplain dynamics. At the reach-scale, channel slope is a primary control on habitat types (e.g., pools, riffles, ponds) in single thread channels, but local bed load and wood supply influence local habitat diversity. In floodplain reaches, diversity of habitat types is controlled mainly by the rate of lateral channel movement and floodplain turnover, which decrease down-valley with decreasing bed load supply. These controls drive two important aspects of environmental complexity, which in turn drive biological diversity in river networks: diversity of patch ages, and diversity of patch types. Ecological theory suggests that floodplain forest communities will be most diverse in floodplain reaches with intermediate rates of floodplain turnover, and reach-level aquatic communities will be most diverse in mid-network where habitat heterogeneity is highest.

  8. Classification of upper Mississippi River pools based on contiguous aquatic/geomorphic habitats

    USGS Publications Warehouse

    Koel, Todd M.

    2001-01-01

    Navigation pools of the upper Mississippi River (UMR) vary greatly in terms of available contiguous aquatic/geomorphic habitats. These habitats are critical for the biotic diversity and overall productivity of the floodplain corridor of each pool. In this study, similarities among pools 4-26 and an open river reach (river kilometer 47-129) of the UMR were determined from multivariate analysis of eleven habitat types that were hydrologically-contiguous (non-leveed). Isolated floodplain habitats were not included in final analyses because this isolation limits their contribution to overall riverine productivity, in part due to a lack of hydrological connectivity to the main channel during the flood pulse. Cluster analysis based on simple Euclidean distance was used to produce two major pool groups and five pool subgroups. Important habitat variables in defining pool groups, as interpreted from principal components analysis (PCA) axis 1, were contiguous floodplain shallow aquatic area and contiguous impounded area. The habitat variable most important in defining pool subgroups, as interpreted from PCA axis 2, was tertiary channel. Most notably, pool 6 was more similar to pools 14-24 than other upper pools, and pools 19 and 25 were more similar to pools 4-13 than other lower pools. These results were quite different from those of two previous investigators, primarily because only areas of non-isolated aquatic habitat were considered.

  9. Monitoring and mapping selected riparian habitat along the lower Snake River

    SciTech Connect

    Downs, J. L; Tiller, B. L; Witter, M.; Mazaika, R.

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  10. Habitat Evaluation Procedures (HEP) Report : Oleson Tracts of the Tualatin River National Wildlife Refuge, 2001-2002 Technical Report.

    SciTech Connect

    Allard, Donna; Smith, maureen; Schmidt, Peter

    2004-09-01

    Located in the northern Willamette River basin, Tualatin River National Wildlife Refuge (Refuge) was established in 1992 with an approved acquisition boundary to accommodate willing sellers with potentially restorable holdings within the Tualatin River floodplain. The Refuge's floodplain of seasonal and emergent wetlands, Oregon ash riparian hardwood, riparian shrub, coniferous forest, and Garry oak communities are representative of remnant plant communities historically common in the Willamette River valley and offer an opportunity to compensate for wildlife habitat losses associated with the Willamette River basin federal hydroelectric projects. The purchase of the Oleson Units as additions to the Refuge using Bonneville Power Administration (BPA) funds will partially mitigate for wildlife habitat and target species losses incurred as a result of construction and inundation activities at Dexter and Detroit Dams. Lands acquired for mitigation of Federal Columbia River Power System (FCRPS) impacts to wildlife are evaluated using the Habitat Evaluation Procedures (HEP) methodology, which quantifies how many Habitat Units (HUs) are to be credited to BPA. HUs or credits gained lessen BPA's debt, which was formally tabulated in the FCRPS Loss Assessments and adopted as part of the Northwest Power and Conservation Council's Fish and Wildlife Program as a BPA obligation (NWPCC, 1994 and 2000). There are two basic management scenarios to consider for this evaluation: (1) Habitats can be managed without restoration activities to benefit wildlife populations, or (2) Habitats can be restored using a number of techniques to improve habitat values more quickly. Without restoration, upland and wetland areas may be periodically mowed and disced to prevent invasion of exotic vegetation, volunteer trees and shrubs may grow to expand forested areas, and cooperative farming may be employed to provide forage for migrating and wintering waterfowl. Abandoned cropland would comprise

  11. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Willamette River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the basis to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  12. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Yakima River Basin, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1996-01-01

    of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  13. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    SciTech Connect

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement

  14. Modeling Investigation of Spring Chinook Salmon Habitat in San Joaquin River Restoration Program

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ramires, J.

    2013-12-01

    As the second longest river in California, the San Joaquin River (SJR) is a vital natural resource to numerous residents and industries and provides an array of activities within Central Valley, home to some of California's most productive agricultural areas. Originating in the high Sierra Nevada, mainly from snowmelt and runoff, and passing through the middle sections including Fresno and Madera counties, eventually the SJR conjoins with the Sacramento River, constructing the largest river delta on the west coast of North America. Along with human necessities, the river used to be crucial for the propagation and survivability of Chinook salmon and other aquatic and wildlife. However, the SJR has experienced hydraulic disconnection throughout certain reaches due to extensive water diversion. Indigenous salmon populations have been degraded over the years due to insufficient flows and anthropogenic activities. In 2006, to maintain salmon and other fish populations to a point of self-sustainment, the San Joaquin River Restoration Project (SJRRP) was established to restore flows along the SJR from Friant Dam to the confluence of the Merced River by routing the original SJR in different pathways. One of the major tasks of the SJRRP, so called 'Reach 4B Project', was to modify and improve channel capacity of reach 4B, east side bypass and Mariposa bypass of the SJR. Multiple scenarios for the alteration and modification of the SJR water pathway were designed to ensure fish passage by retrofitting existing channels and to provide adequate flow throughout the study area. The goal of the SJRRP project 4B was to provide an efficient passage for adult Chinook salmon to spawning beds further upstream and a safe route for yearling to the delta. The objective of this research project is to characterize the stream properties (current velocities, depth, etc.) of each proposed alternative in Project 4B2 under the same upstream conditions using a modeling method. A depth

  15. Microplastic is an abundant and distinct microbial habitat in an urban river.

    PubMed

    McCormick, Amanda; Hoellein, Timothy J; Mason, Sherri A; Schluep, Joseph; Kelly, John J

    2014-10-21

    Recent research has documented microplastic particles (< 5 mm in diameter) in ocean habitats worldwide and in the Laurentian Great Lakes. Microplastic interacts with biota, including microorganisms, in these habitats, raising concerns about its ecological effects. Rivers may transport microplastic to marine habitats and the Great Lakes, but data on microplastic in rivers is limited. In a highly urbanized river in Chicago, Illinois, USA, we measured concentrations of microplastic that met or exceeded those measured in oceans and the Great Lakes, and we demonstrated that wastewater treatment plant effluent was a point source of microplastic. Results from high-throughput sequencing showed that bacterial assemblages colonizing microplastic within the river were less diverse and were significantly different in taxonomic composition compared to those from the water column and suspended organic matter. Several taxa that include plastic decomposing organisms and pathogens were more abundant on microplastic. These results demonstrate that microplastic in rivers are a distinct microbial habitat and may be a novel vector for the downstream transport of unique bacterial assemblages. In addition, this study suggests that urban rivers are an overlooked and potentially significant component of the global microplastic life cycle. PMID:25230146

  16. Residence Times of Juvenile Salmon and Steelhead in Off-Channel Tidal Freshwater Habitats, Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Ploskey, Gene R.; Sather, Nichole K.; Teel, D. J.

    2015-05-01

    We estimated seasonal residence times of acoustic-tagged juvenile salmonids in off-channel, tidal freshwater habitats of the Columbia River near the Sandy River delta (rkm 198; 2007, 2008, 2010, and 2011) and Cottonwood Island (rkm 112; 2012).

  17. Umatilla River Basin Anadromous Fish Habitat Enhancement Project: 1990 Annual Report.

    SciTech Connect

    Scheeler, Carl A.

    1991-01-01

    The Umatilla habitat improvement program is funded under the Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program measure 704 (d) (1) 34.02, and targets the improvement of water quality and the restoration of riparian areas, spawning and rearing habitat of steelhead, spring and fall chinook and coho salmon. The Confederated Tribes of the Umatilla Indian Reservation are responsible for enhancing stream reaches within the Reservation boundaries as guided by an implementation plan developed cooperatively with the Oregon Department of Fish and Wildlife and the USDA Forest Service, Umatilla National Forest. Treatment areas included the lower 4 miles of Meacham Creek, the lower {1/4} mile of Boston Canyon Creek, and the Umatilla River between RM 78.5 and 80. The upper {1/2} of the Meacham Creek project area including Boston Canyon Creek, which were initially enhanced during 1989, were reentered for maintenance and continued enhancements. Approximately 2400 cu. yds. of boulders and 1000 cu. yds. of riprap was used in the construction of in-stream, stream bank and flood plain structures and in the anchoring of large organic debris (LOD) placements. In-stream structures were designed to increase instream cover and channel stability and develop of a defined thalweg to focus low summer flows. Flood plain structures were designed to reduce sediment inputs and facilitate deposition on flood plains. Riparian recovery was enhanced through the planting of over 1000 willow cuttings and 400 lbs. of grass seed mix and through the exclusion of livestock from the riparian corridor with 4.5 miles of high tensile smooth wire fence. Photo documentation and elevational transects were used to monitor changes in channel morphology and riparian recovery at permanent standardized points throughout the projects. Water quality (temperature and turbidity) data was collected at locations within the project area and in tributaries programmed for future enhancements.

  18. SWAT and River-2D Modelling of Pinder River for Analysing Snow Trout Habitat under Different Flow Abstraction Scenarios

    NASA Astrophysics Data System (ADS)

    Nale, J. P.; Gosain, A. K.; Khosa, R.

    2015-12-01

    Pinder River, one of major headstreams of River Ganga, originates in Pindari Glaciers of Kumaon Himalayas and after passing through rugged gorges meets Alaknanda at Karanprayag forming one of the five celestial confluences of Upper Ganga region. While other sub-basins of Upper Ganga are facing severe ecological losses, Pinder basin is still in its virginal state and is well known for its beautiful valleys besides being host to unique and rare biodiversity. A proposed 252 MW run-of-river hydroelectric project at Devsari on this river has been a major concern on account of its perceived potential for egregious environmental and social impacts. In this context, the study presented tries to analyse the expected changes in aquatic habitat conditions after this project is operational (with different operation policies). SWAT hydrological modelling platform has been used to derive stream flow simulations under various scenarios ranging from the present to the likely future conditions. To analyse the habitat conditions, a two dimensional hydraulic-habitat model 'River-2D', a module of iRIC software, is used. Snow trout has been identified as the target keystone species and its habitat preferences, in the form of flow depths, flow velocity and substrate condition, are obtained from diverse sources of related literature and are provided as Habitat Suitability Indices to River-2D. Bed morphology constitutes an important River-2D input and has been obtained, for the designated 1 km long study reach of Pinder upto Karanprayag, from a combination of actual field observations and supplemented by SRTM 1 Arc-Second Global digital elevation data. Monthly Weighted Usable Area for three different life stages (Spawning, Juvenile and Adult) of Snow Trout are obtained corresponding to seven different flow discharges ranging from 10 cumec to 1000 cumec. Comparing the present and proposed future river flow conditions obtained from SWAT modelling, losses in Weighted Usable Area, for the

  19. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem

    SciTech Connect

    Duberstein, Corey A.; Downs, Janelle L.

    2008-11-06

    Emergent sandbar habitat (ESH) in the Missouri River Mainstem System is a critical habitat element for several federally listed bird species: the endangered interior least tern (Sterna antillarum) and the threatened Northern Great Plains piping plover (Charadrius melodus). The Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River and is responsible under the Endangered Species Act (ESA) to take actions within its authorities to conserve listed species. To comply with the 2000 USFWS BiOp and the 2003 amended USFWS BiOp, the Corps has created habitats below Gavins Point Dam using mechanical means. Initial monitoring indicates that constructed sandbars provide suitable habitat features for nesting and foraging least terns and piping plovers. Terns and plovers are using constructed sandbars and successfully reproducing at or above levels stipulated in the BiOp. However, whether such positive impacts will persist cannot yet be adequately assessed at this time.

  20. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    SciTech Connect

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  1. Bull Trout Population and Habitat Surveys in the Middle Fork Willamette and McKenzie Rivers, Annual Report 2002.

    SciTech Connect

    Seals, Jason; Reis, Kelly

    2003-10-01

    Bull trout in the Willamette River Basin were historically distributed throughout major tributaries including the Middle Fork Willamette and McKenzie rivers. Habitat degradation, over-harvest, passage barriers, fish removal by rotenone, and hybridization and competition with non-native brook trout are all likely factors that have led to the decline of bull trout in the Willamette Basin (Ratliff and Howell 1992). The U.S. Fish and Wildlife Service listed the Columbia River bull trout population segment as Threatened under the federal Endangered Species Act in 1998. Four bull trout populations were isolated in the upper Willamette River following the construction of flood control dams on the South Fork McKenzie River, McKenzie River, and Middle Fork Willamette River that created Cougar, Trail Bridge, and Hills Creek reservoirs. Buchanan et al. (1997) described the population in the main stem McKenzie as 'of special concern', the South Fork McKenzie population as 'high risk of extinction', the population above Trail Bridge Reservoir as 'high risk of extinction', and bull trout in the Middle Fork Willamette as 'probably extinct'. Various management efforts such as strict angling regulations and passage improvement projects have been implemented to stabilize and rehabilitate bull trout habitat and populations in the McKenzie River over the past 10 years. Since 1997, bull trout fry from Anderson Creek on the upper McKenzie River have been transferred to the Middle Fork Willamette basin above Hills Creek Reservoir in an attempt to re-establish a reproducing bull trout population. This project was developed in response to concerns over the population status and management of bull trout in the McKenzie and Middle Fork Willamette Rivers by the Oregon Department of Fish and Wildlife during the early 1990s. The project was conducted under measure 9.3G(2) of the Columbia Basin Fish and Wildlife Program to monitor the status, life history, habitat needs, and limiting factors for

  2. River-margin habitat of Ardipithecus ramidus at Aramis, Ethiopia 4.4 million years ago

    NASA Astrophysics Data System (ADS)

    Gani, M. Royhan; Gani, Nahid D.

    2011-12-01

    The nature and type of landscape that hominins (early humans) frequented has been of considerable interest. The recent works on Ardipithecus ramidus, a 4.4 million years old hominin found at Middle Awash, Ethiopia, provided critical information about the early part of human evolution. However, habitat characterization of this basal hominin has been highly contested. Here we present new sedimentological and stable isotopic (carbon and oxygen) data from Aramis, where the in situ, partial skeleton of Ar. ramidus (nicknamed 'Ardi') was excavated. These data are interpreted to indicate the presence of major rivers and associated mixed vegetations (grasses and trees) in adjacent floodplains. Our finding suggests that, in contrast to a woodland habitat far from a river, Ar. ramidus lived in a river-margin forest in an otherwise savanna (wooded grassland) landscape at Aramis, Ethiopia. Correct interpretation of habitat of Ar. ramidus is crucial for proper assessment of causes and mechanisms of early hominin evolution, including the development of bipedalism.

  3. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

    USGS Publications Warehouse

    Ruhl, H.A.; Rybicki, N.B.

    2010-01-01

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  4. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.

    PubMed

    Ruhl, Henry A; Rybicki, Nancy B

    2010-09-21

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay. PMID:20823243

  5. Physiological characterization of juvenile Chinook salmon utilizing different habitats during migration through the Columbia River Estuary.

    PubMed

    Hanson, Kyle C; Ostrand, Kenneth G; Glenn, Richard A

    2012-11-01

    Although off-channel habitats in the estuaries of large rivers impart many benefits to fish that rear within them, it is less clear how these habitats benefit migrating anadromous species that utilize these habitats for short periods of time. We evaluated the physiological correlates (nutritional condition, growth, and smoltification) of habitat utilization (main-channel vs. off-channel) by juvenile Chinook salmon Oncorhynchus tshawytscha during emigration. Fish from the off-channel had higher condition factor scores and relative weights than fish from the main-channel throughout the study period. Plasma triglyceride and protein concentrations were significantly different between habitat types and across the sampling period, suggesting that fish utilizing the off-channel habitats were compensating for energy losses associated with emigration as compared to main-channel fish. Growth potential (RNA to DNA ratio) did not vary by habitat or sampling period, presumably due to short residency time. There were no differences in osmoregulatory capacity (gill Na(+), K(+)-ATPase activity) based on habitat type. Our results indicate that short-term off-channel habitat use may mitigate for energy declines incurred during migration, but likely does not impart significant gains in energy stores or growth. PMID:22842392

  6. Upstream migration of Pacific lampreys in the John Day River, Oregon: Behavior, timing, and habitat use

    USGS Publications Warehouse

    Robinson, T. Craig; Bayer, J.M.

    2005-01-01

    Adult Pacific lamprey migration and habitat preferences for over-winter holding and spawning, and larval rearing in tributaries to the Columbia River are not well understood. The John Day River is one such tributary where larval and adult stages of this species have been documented, and its free-flowing character provided the opportunity to study migration of Pacific lampreys unimpeded by passage constraints. Forty-two adult Pacific lampreys were captured in the John Day River near its mouth during their upstream migration. Pacific lampreys were surgically implanted with radio transmitters and released onsite, and tracked by fixed-site, aerial, and terrestrial telemetry methods for nearly one year. Adults moved upstream exclusively at night, with a mean rate of 11.1 ?? 6.3 km/day. They halted upstream migration by September, and held a single position for approximately six months in the lateral margins of riffles and glides, using boulders for cover. More than half of Pacific lampreys resumed migration in March before ending movement in early May. Pacific lampreys that resumed migration in spring completed a median of 87% of their upstream migration before over-winter holding. Upon completing migration. Pacific lampreys briefly held position before beginning downstream movement at the end of May. Though not directly observed, halting migration and movement downstream were likely the result of spawning and death. Gains in adult Pacific lamprey passage through the Columbia River hydrosystem and tributaries may be made by improvements that would expedite migration during spring and summer and increase the quantity and variety of cover and refuge opportunities. ?? 2005 by the Northwest Scientific Association. All rights reserved.

  7. Physical Aquatic Habitat Assessment, Fort Randall Segment of the Missouri River, Nebraska and South Dakota

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.; DeLonay, Aaron J.

    2004-01-01

    This study addressed habitat availability and use by endangered pallid sturgeon (Scaphirhynchus albus) in the Fort Randall segment of the Missouri River. Physical aquatic habitat - depth, velocity, and substrate - was mapped in 15 sites in Augsust and October of 2002. Habitat assessments were compared with fish locations using radio telemetry. Results indicate that pallid sturgeon preferentially use locations in the Fort Randall segment deeper than the average available habitat, with prominent usage peaks aat 3.5-4.0 m and 6-6.5 m, compared to the modal availability at 3-3.5 m. The fish use habitats with a modal velocity of 80 cm/s; the used velocities appear to be in proportion to their availability. Fish located preferentially over sand substrate and seemed to avoid mud and submerged vegetation.

  8. Umatilla Basin Habitat Improvement Project; 1990 Annual Report.

    SciTech Connect

    Bailey, Timothy D.; Rimbach, Gregory P.

    1991-03-01

    This annual report is in fulfillment of contract obligations with Bonneville Power Administration which is the Funding source For the Oregon Department of Fish and Wildlife's Umatilla Basin Habitat Improvement Project. The major activities undertaken during this report period were: procurement of 6 cooperative lease agreements and one lease addendum with private landowners, design and layout of 4.4 miles of riparian exclosure fence and 1.75 miles of instream structures, development of three fencing contracts and three instream work contracts. Results include implementation OF 3 miles of fencing and 3.7 miles of instream work. Other activities undertaken during this report period are: weekly inspection and maintenance of fencing projects, collection and summarization of temperature data, photopoint establishment, coordination with numerous agencies and tribes and education of high school students on habitat improvement and preservation.

  9. Sandy River Delta Habitat Restoration Project, Annual Report 2001.

    SciTech Connect

    Kelly, Virginia; Dobson, Robin L.

    2002-11-01

    The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland with components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years but shortly after FS

  10. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    SciTech Connect

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  11. Red River Stream Improvement Final Design Nez Perce National Forest.

    SciTech Connect

    Watershed Consulting, LLC

    2007-03-15

    This report details the final stream improvement design along the reach of Red River between the bridge below Dawson Creek, upstream for approximately 2 miles, Idaho County, Idaho. Geomorphic mapping, hydrologic profiles and cross-sections were presented along with existing fish habitat maps in the conceptual design report. This information is used to develop a stream improvement design intended to improve aquatic habitat and restore riparian health in the reach. The area was placer mined using large bucket dredges between 1938 and 1957. This activity removed most of the riparian vegetation in the stream corridor and obliterated the channel bed and banks. The reach was also cut-off from most valley margin tributaries. In the 50 years since large-scale dredging ceased, the channel has been re-established and parts of the riparian zone have grown in. However, the recruitment of large woody debris to the stream has been extremely low and overhead cover is poor. Pool habitat makes up more than 37% of the reach, and habitat diversity is much better than the project reach on Crooked River. There is little large woody debris in the stream to provide cover for spawning and juvenile rearing, because the majority of the woody debris does not span a significant part of the channel, but is mainly on the side slopes of the stream. Most of the riparian zone has very little soil or subsoil left after the mining and so now consists primarily of unconsolidated cobble tailings or heavily compacted gravel tailings. Knapweed and lodgepole pine are the most successful colonizers of these post mining landforms. Tributary fans which add complexity to many other streams in the region, have been isolated from the main reach due to placer mining and road building.

  12. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  13. Habitat Evaluation Procedures (HEP) Report : Malheur River Wildlife Mitigation, 2000-2002 Technical Report.

    SciTech Connect

    Gonzalez, Daniel; Wenick, Jess

    2002-02-06

    (ISRP). Program participants are responsible for creating management plans for each of the 52 subbasins. Upon approval by the Council, the management plan is then incorporated into the Program. In 1998, the Tribe submitted two land acquisition proposals for funding through Bonneville's Wildlife Mitigation Program, the Logan Valley and Malheur River Wildlife Mitigation Projects. After several months of rigorous scrutiny and defense of its project presentations, the Tribe was awarded both acquisitions. In February of 2000, the Tribe and BPA entered into a Memorandum of Agreement (MOA) to fund the acquisition and management of Logan Valley and the Malheur River Projects. In April and November of 2000, the Tribe acquired the Logan Valley property (Project) and the Malheur River Wildlife Mitigation Project, respectively. The MOA requires the Tribe to dedicate the Project to wildlife habitat protection. Project management must be consistent with the term and conditions of the MOA and a site-specific management plan (Plan) that is to be prepared by the Tribe. The Malheur River Wildlife Mitigation Project (Denny Jones Ranch) allows the Tribe to manage 6,385 acres of meadow, wetland, and sagebrush steppe habitats along the Malheur River. The deeded property includes seven miles of the Malheur River, the largest private landholding along this waterway between Riverside and Harper. The property came with approximately 938 acres of senior water rights and 38,377 acres of federal and state grazing allotments. The project will benefit a diverse population of fish, wildlife, and plant species. Objectives include reviving and improving critical habitat for fish and wildlife populations, controlling/ eradicating weed populations, improving water quality, maintaining Bureau of Land Management (BLM) allotments, and preserving cultural resources. Before the Tribe acquired the project site, a combination of high levels of cattle stocking rates, management strategy, and a disruption of

  14. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    SciTech Connect

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  15. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2001 Data Report.

    SciTech Connect

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-03-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0{sup +}, 1{sup +} and 2{sup +} age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m{sup 2} (range 0.9 to 24.0 fish/100m{sup 2}). This compares to 17.2 fish/100m{sup 2} (+20%) for the previous year. Fry (0{sup +}) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are

  16. Abundance and distribution of immature mosquitoes in urban rivers proximate to their larval habitats.

    PubMed

    Ma, Minghai; Huang, Minsheng; Leng, Peien

    2016-11-01

    Whether ecological restoration of polluted urban rivers would provide suitable breeding habitats for some mosquitoes was not clear yet. It was therefore important to determine how altered river conditions influence mosquito ecology. Monthly data on water quality and larval density were obtained to determine the effects of river systems on the distribution and abundance of immature mosquitoes in two coastal cities in Eastern China. In total, 5 species within two genera of mosquitoes were collected and identified in habitat with vegetation from three positive rivers. Culex pipiens pallens was the most abundant and widely distributed species. A new species (Culex fuscanus) was reported in certain districts. Physico-chemical parameters of river water were important, but not the only, set of influences on immature mosquito breeding. Aquatic vegetation could increase the likelihood of mosquito breeding while artificial aeration might prevent the approach of mosquitoes. Slow-moving water might be a new potential marginal habitat type for some Culex and Aedes albopictus. Variation of river system with ecological restoration might influence the abundance and distribution of immature mosquitoes. PMID:27515809

  17. Harlem River water quality improvement

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2011-12-01

    Harlem River is a navigable tidal strait, which flows 8 miles connecting the Hudson River and the East River. In wet weather condition, there is untreated sewage mixed rainfall discharged to the river directly at CSO's discharge point. These raw sewer contain bacteria such as Fecal Coliform, E. Coli, Entercocci those can cause illness. There are total 37 CSOs dicharge point along the Harlem River. Water samples were collected from five sites and analyzed on a weekly basis in spring from March to May 2011, and on a monthly basis in July and August. Results showed that ammonia concentrations were ranged from 0.25 to 2.2 mg/L, and there was an increased pattern in summer when temperature increases; soluble reactive phosphorus (SRP) ranged from 0.04 to 0.2 mg/L; total P (TP) ranged from 0.03 to 0.7 mg/L; organic P (OP) ranged from 0.006 to 0.5 mg/L. In rain storm (wet weather condition), untreated sewer discharged into the river with distinguished higher nutrient concentrations (ammonia=2.9 mg/L, TP=3.1 mg/L, OP=2.9 mg/L) and extremely high bacteria levels (fecal coliform-millions, countless colonies; E. Coli-thousands). Results showed spatial variations among the five sites, seasonal variations from spring to summer, and variations under different weather conditions (temperature, storms). The raw sewer discharge during heavy rainstorms resulted in higher nutrients and bacteria levels, and the water quality was degraded.

  18. Habitat use of American eel (Anguilla rostrata) in a tributary of the Hudson River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.

    2013-01-01

    American eel Anguilla rostrata populations are declining over much of their native range. Since American eels spend extended periods in freshwater, understanding their habitat requirements while freshwater residents is important for the management and conservation of this species. As there is little information on American eel habitat use in streams, the ontogenetic, diel, and seasonal habitat use as well as habitat selectivity of three size groups (i.e. ≤199 mm total length, 200–399 mm, ≥400 mm) of eel were examined in a tributary of the Hudson River. American eels in Hannacroix Creek exhibited ontogenetic, diel, and seasonal variation in habitat use as well as habitat selection. During both summer and autumn all sizes of American eels used larger substrate and more cover during the day. American eels ≤199 mm exhibited the strongest habitat selection, whereas eels 200–399 mm exhibited the least. During the autumn all sizes of American eels occupied slower depositional areas where deciduous leaf litter accumulated and provided cover. This may have important implications for in-stream and riparian habitat management of lotic systems used by American eel.

  19. HYDRAULIC PROPERTY OF THE HABITAT OF ACHEILOGNATHUS LONGIPINNIS IN THE LOWER REACH OF THE YODO RIVER

    NASA Astrophysics Data System (ADS)

    Noji, Takahiro; Aya, Shirou; Baba, Aoi

    This paper deals with the hydraulic and hydrologic properties of the habitat of fish in a river and surrounding area. It especially focuses on the habitat of the Acheilognathus Longipinnis in the lower reach of the Yodo River, because the restoration of its habitat is the most important and urgent work for the Yodo River eco-system. The estimation of flood disturbance required for the life history of the fish was examined in the Akagawa sand bar and Shirokita Embayments, where both areas were its most important habitat 40 years ago, through the return period of the magnitude of the flood discharge, the frequency of the water surface elevation, which were obtained by the statistics of the water surface elevation records, and the magnitude of the order of the velocity and the shear velocity and their distributions, which were obtained through the 2-D numerical simulation. The results will be usable for the selection of the location of the newly constructed habitat, and its design.

  20. Effects of proposed water supply withdrawals on fish habitat in the Piney River

    SciTech Connect

    Hill, D.M.; Hauser, G.E.

    1986-01-01

    It has been proposed that the city of Dickson, Tennessee, be allowed to locate a new municipal raw water intake on the West Fork Piney River immediately above the confluence of the East and West Forks. The objective of this project was to predict the impact of withdrawing 2 and 4 mgd from the West Fork Piney River on the suitable habitat of important sport and forage fish species in the Piney River. Field measurements of depth, velocity, substrate, and cover at two representative sites were combined with a hydraulic and habitat model to determine habitat impacts. The hydraulic model was used to simulate depth and velocity with and without the proposed water supply withdrawals under average and drought flow conditions. Target species selected to represent the fishes of the Piney River in this analysis were rainbow trout, smallmouth bass, rock bass, stonerollers, and rainbow darters. The maximum impact of the proposed withdrawals was on stonerollers. Using average flows during the critical period, stonerollers are projected to suffer a 14% decrease in suitable adult habitat with a 2 mgd withdrawal and a 27% decrease with a 4 mgd withdrawal at one of the sites analyzed. These percentages increase to 27% and 29% for withdrawals of 2 mgd and 2.25 mgd during drought conditions on the upstream site and 44% and 47% on the lower site.

  1. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    SciTech Connect

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  2. HABITAT ASSESSMENT USING A RANDOM PROBABILITY BASED SAMPLING DESIGN: ESCAMBIA RIVER DELTA, FLORIDA

    EPA Science Inventory

    Smith, Lisa M., Darrin D. Dantin and Steve Jordan. In press. Habitat Assessment Using a Random Probability Based Sampling Design: Escambia River Delta, Florida (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems...

  3. DISTRIBUTION OF AQUATIC OFF-CHANNEL HABITATS AND ASSOCIATED RIPARIAN VEGETATION, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    The extent of aquatic off-channel habitats such as secondary and side channels, sloughs, and alcoves, have been reduced more than 50% since the 1850s along the upper main stem of the Willamette River, Oregon, USA. Concurrently, the hydrogeomorphic potential, and associated flood...

  4. EFFECTS OF HABITAT DEGRADATION ON BIOLOGICAL ENDPOINTS IN THE SOUTH FORK BROAD RIVER BASIN, GEORGIA

    EPA Science Inventory

    Many of the streams of the lower Piedmont ecoregion in Georgia have been negatively impacted to some degree by habitat degradation due primarily to sedimentation. The South Fork of the Broad River watershed has been designated as sediment impacted under Section 303(d) of the Clea...

  5. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    SciTech Connect

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  6. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    USGS Publications Warehouse

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and

  7. Juvenile river herring habitat use and marine emigration trends: comparing populations.

    PubMed

    Turner, Sara M; Limburg, Karin E

    2016-01-01

    Juvenile habitat use and early life migratory behaviors of successfully recruited adult fish provide unique insight into critical habitats for a population, and this information allows restoration plans to be tailored to maximize benefits. Retrospective analysis of adult otolith chemistry combined with fish-otolith growth models were used to assess juvenile nursery habitat selection and size at egress to adult habitats (marine waters) for anadromous alewife and blueback herring from 20 rivers throughout the eastern US. Between-species differences in the size of emigrants were small, with blueback herring found in freshwater nurseries ~ 8% more frequently than alewives, and alewives using a combination of freshwater and estuarine nurseries ~ 9% more than bluebacks. Estuarine nursery use was more common in populations at lower latitudes. No clear trends in sizes of emigrants or habitat use were observed between the species in watersheds where both co-occur. Principal component analysis of latitude, watershed area, estuary area, accessible river kilometers, and percentage of the watershed in urban use indicated that the combined effects of these watershed characteristics were correlated with size at egress. These results highlight the considerable plasticity in early life habitat use among populations of anadromous fishes as well as the effect of watershed characteristics on early life migration timing and strategies. PMID:26369780

  8. Use of similar habitat by cutthroat trout and brown trout in a regulated river during winter

    USGS Publications Warehouse

    Dare, M.R.; Hubert, W.A.

    2003-01-01

    Few differences in habitat use were observed between cutthroat trout and brown trout during winter in the Shoshone River, a regulated river in northwestern Wyoming. Radio-tagged fish of 20-30 cm total length were found in pool habitat five to six times more frequently than would be expected if they were using pools in proportion to pool availability. Nevertheless, run habitat was most frequently used by both species. The microhabitat characteristics at locations of each species were similar when in both pools and runs, however, habitat use was variable suggesting that a variety of microhabitats were suitable over-wintering habitat. Brown trout were more frequently associated with boulder cover than were cutthroat trout. Cutthroat trout used large pools that provided refuge from high water velocities more frequently that brown trout. Cutthroat trout and brown trout were found at similar distances from the bank except in late February when cutthroat trout were farther from the bank. Both species moved frequently during the winter, but cutthroat trout showed a greater propensity than brown trout to move long distances. This study suggests that during a mild winter in a stable environment, these species were able to overwinter successfully in a variety of habitats.

  9. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    SciTech Connect

    Volkman, Jed; Sexton, Amy D.

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  10. Channel dynamics and habitat complexity in a meandering, gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Pecquerie, L.; Dunne, T.

    2009-12-01

    River channel dynamics play an important role in creating and maintaining diverse habitat conditions for multiple life stages of aquatic organisms. As a result, many river restoration projects seek to re-establish ecosystems in which an enhanced degree of habitat complexity is sustained through natural fluvial processes of flow, sediment transport, and channel change. Few field cases have effectively quantified the evolution of channel morphology and habitat complexity in restored rivers, however, and the outcomes of restoration actions remain difficult to predict. Our objective was to quantify the extent to which morphology, flow complexity and salmonid spawning and rearing habitat develop from the simplified initial conditions commonly observed in re-configured meandering channels. Using a time-series of topographic data, we measured rates of morphologic change in a recently restored gravel-bed reach of the Merced River, California, USA. We constructed two-dimensional (2D) hydrodynamic models to quantify how the evolving morphology influenced hydraulic conditions, flow complexity and suitability for Chinook salmon spawning and rearing. Following two large flood events, point bar development led to order-of-magnitude increases in modeled flow complexity, as quantified via the metrics of kinetic energy gradient, vorticity and hydraulic strain. On a bend-averaged scale, morphologic changes produced up to a two-fold increase in flow circulation, indicating a direct linkage between geomorphic processes and the development of habitat complexity at both the local (1.0 m2 grid cell) and meander wavelength scale. Habitat modeling indicated that the availability of Chinook salmon spawning habitat has increased over time, whereas the majority of the reach provides low-medium quality rearing habitat for juvenile salmonids, primarily due to a lack of low velocity refuge zones. These results demonstrate the ability of geomorphic processes to increase flow complexity and

  11. Integrative Acoustic Mapping Reveals Hudson RIver Sediment Processes an Habitats

    NASA Astrophysics Data System (ADS)

    Nitsche, F. O.; Bell, R.; Carbotte, S. M.; Ryan, W. B. F.; Slagle, A.; Chillrud, S.; Kenna, T.; Flood, R.; Ferrini, V.; Cerrato, R.; McHugh, C.; Strayer, D.

    2005-06-01

    Rivers and estuaries around the world are the focus of human settlements and activities. Needs for clean water, ecosystem preservation, commercial navigation, industrial development, and recreational access compete for the use of estuaries, and management of these resources requires a detailed understanding of estuarine morphology and sediment dynamics. This article presents an overview of the first estuary-wide study of a heavily used estuary, the Hudson River, based on high-resolution acoustic mapping of the river bottom. The integration of three high-resolution acoustic methods with extensive sampling reveals an unexpected complexity of bottom features and allows detailed classification of the benthic environment in terms of riverbed morphology, sediment type, and sedimentary processes.

  12. Assessment of chevron dikes for the enhancement of physical-aquatic habitat within the Middle Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Remo, J. W.; Pinter, N.

    2012-12-01

    Along the Middle Mississippi River (MMR), rehabilitation of aquatic habitat is being undertaken using river-training structures such as the blunt-nose chevron dike. Chevron dikes were initially designed to concentrate flow and thus facilitate river navigation, but this new river-training structure is now justified, in part, as a tool for creating aquatic habitat and promoting habitat heterogeneity. The ability of chevrons to create and diversify physical-aquatic habitat has not been verified. In this study, we used 2-D hydrodynamic modeling and reach-scale habitat metrics to assess changes in physical habitat and habitat heterogeneity for pre-chevron and post-chevron along a 2- km reach of the Mississippi River at St. Louis, MO. A historic reference condition (circa 1890) was also modeled to compare physical habitat in a less engineered river channel versus the new physical-habitat patches created by chevron-dike enhancement. This modeling approach quantified changes in habitat availability and diversity among selected reference conditions for a wide range of in-channel flows. Depth-velocity habitat classes were used for assessment of change in physical-habitat patches, and spatial statistical tools were employed to evaluate the reach-scale habitat patch diversity. Modeling of post-chevron channel conditions revealed increases in deep to very deep (>3.0 m) areas of slow moving (<0.6 m/s) water downstream of these structures under emergent flow conditions (≤ 1.5 x mean annual flow[MAF]) relative to pre-construction conditions. Chevron construction increased potential over-wintering habitat (deep [>3.0 m], low velocity [<0.6 m/s]) by up to 7.6 ha. The addition of the chevrons to the river channel also created some (0.8-3.8 ha) shallow-water habitat (0-1.5 m depth with a 0-0.6 m/s velocity) for flows ≤2.0 x MAF and contributed to an 8-35% increase in physical-habitat diversity compared to pre-chevron channel conditions. Comparison of the historic reference

  13. Habitat use by a Midwestern U.S.A. riverine fish assemblage: effects of season, water temperature and river discharge

    USGS Publications Warehouse

    Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.

    2006-01-01

    The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.

  14. Defining and Identifying Functional Habitat to Inform Species Recovery on a Large Regulated River

    NASA Astrophysics Data System (ADS)

    Erwin, S.; Jacobson, R. B.; Elliott, C. M.; Gemeinhardt, T.; Welker, T.; DeLonay, A. J.; Chojnacki, K.

    2014-12-01

    Goals and objectives for the restoration of aquatic ecosystems often focus on species recovery, but often the primary tools available to managers involve the manipulation of flow regime and physical habitat. Management decisions thus rely on hypotheses about the links between management actions, the response of physical habitat, and the assumed response of a target organism. Ongoing efforts to inform management of the Missouri River as part of Missouri River Restoration Project are focused on the recovery of three endangered species, including the pallid sturgeon (Scaphirhynchus albus), which is endemic to the Mississippi River basin. Recovery of the pallid sturgeon is hampered by uncertainties surrounding the definition and dynamics of ecologically significant habitats for the fish across a range of life stages. Of special interest are constructed side-channel chutes. Construction of these features has emerged as one of the primary restoration techniques used on the Lower Missouri River, yet much remains to be learned about the effectiveness of these chutes in the effort to recover pallid sturgeon. It remains unclear whether these constructed features provide habitat that may be beneficial to the species and for which life stages. Biologists hypothesize that these areas may be critical for larval retention, refugia, food production, foraging, or spawning. We present the integration of a suite of data - high-resolution hydroacoustic data, hydrodynamic modeling, biotic inventories, and laboratory experiments - designed to refine our understanding of habitat dynamics critical during the early life stages of the pallid sturgeon. We present our findings in the context of ongoing restoration activities in the basin and describe how fundamental science exploring habitat dynamics may be incorporated within the existing adaptive management framework.

  15. A model of the effects of flow fluctuations on fall Chinook salmon spawning habitat availability in the Columbia River

    SciTech Connect

    Geist, David R.; Murray, Christopher J.; Hanrahan, Timothy P.; Xie, YuLong

    2008-12-01

    Previously we reported that about 30% to 60% of the area predicted to be used by fall Chinook salmon (Oncorhynchus tshawytscha) for spawning in the Hanford Reach of the Columbia River did not contain redds. One explanation for the overprediction of habitat was that our model did not incorporate streamflow fluctuation. Daily fluctuation in flow caused by load-following operations (power generation to meet short-term electrical demand) at Priest Rapids Dam, situated at the upper end of the Hanford Reach, changes the hydraulic characteristics to which fish respond in selecting redd sites. The purpose of the study described here was to examine the effect of flow changes on spawning habitat modeling and, in particular, to look at the connection between spawning and the variability and persistence of habitat variables caused by rapid changes in flow resulting from load-following operations at Priest Rapids Dam. We found that spawning habitat use by fall Chinook salmon was consistent with previous fall Chinook salmon studies in the Reach. Dynamic variables that were based on hourly time series were used to account for the variability in habitat as a result of flow fluctuations. The analysis showed that the proportion of velocities that fell within the range of 1.0 to 2.5 m/s differed significantly between locations that were predicted to be spawning by the logistic regression model where spawning actually occurred and locations that were predicted to be spawning where spawning did not occur. However, the resulting sequential logistic regression model that incorporated the dynamic variables did not provide significant improvement in the percentage of errors for areas predicted to be spawning; the model’s overprediction errors still ranged from 63% to 78%. We suggest that while flow fluctuation may affect spawning habitat and individual fish behavior, the high correlation between time-averaged velocities and the proportion of hourly velocities that fell within the most

  16. A scientific basis for restoring fish spawning habitat in the St. Clair and Detroit Rivers of the Laurentian Great Lakes

    USGS Publications Warehouse

    Manny, Bruce A.; Roseman, Edward F.; Kennedy, Gregory W.; Boase, James C.; Craig, Jaquelyn; Bennion, David H.; Read, Jennifer; Vaccaro, Lynn; Chiotti, Justin A.; Drouin, Richard; Ellison, Roseanne

    2015-01-01

    Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision-making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive-feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.

  17. A Bayesian spawning habitat suitability model for American shad in southeastern United States rivers

    USGS Publications Warehouse

    Hightower, Joseph E.; Harris, Julianne E.; Raabe, Joshua K.; Brownell, Prescott; Drew, C. Ashton

    2012-01-01

    Habitat suitability index models for American shad Alosa sapidissima were developed by Stier and Crance in 1985. These models, which were based on a combination of published information and expert opinion, are often used to make decisions about hydropower dam operations and fish passage. The purpose of this study was to develop updated habitat suitability index models for spawning American shad in the southeastern United States, building on the many field and laboratory studies completed since 1985. We surveyed biologists who had knowledge about American shad spawning grounds, assembled a panel of experts to discuss important habitat variables, and used raw data from published and unpublished studies to develop new habitat suitability curves. The updated curves are based on resource selection functions, which can model habitat selectivity based on use and availability of particular habitats. Using field data collected in eight rivers from Virginia to Florida (Mattaponi, Pamunkey, Roanoke, Tar, Neuse, Cape Fear, Pee Dee, St. Johns), we obtained new curves for temperature, current velocity, and depth that were generally similar to the original models. Our new suitability function for substrate was also similar to the original pattern, except that sand (optimal in the original model) has a very low estimated suitability. The Bayesian approach that we used to develop habitat suitability curves provides an objective framework for updating the model as new studies are completed and for testing the model's applicability in other parts of the species' range.

  18. Relations among habitat characteristics, exotic species, and turbid-river cyprinids in the Missouri River drainage of Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2004-01-01

    We used data from 91 stream reaches in the Missouri River drainage of Wyoming to determine whether abiotic and biotic factors were related to the abundance of four cyprinid species associated with turbid-river environments: flathead chub Platygobio gracilis, sturgeon chub Macrhybopsis gelida, plains minnow Hybognathus placitus, and western silvery minnow H. argyritis. The abundance of these cyprinids was positively related to the percentage of fine substrate in a reach and inversely related to the percentage of gravel substrate, the percentage of large rocky substrate, and the abundance of exotic piscivores. Differences in substrate composition and abundance of exotic piscivores were largely explained by the presence and location of large, mainstem impoundments. Reaches without any large impoundments in their watershed had a high percentage of fine substrate, high catch rates of turbid-river cyprinids, few exotic piscivores, and little gravel or large rocky substrate. Reaches with a downstream impoundment (i.e., within 200 km) had habitat characteristics similar to those without impoundments but had few turbid-river cyprinids and many exotic piscivores. Reaches with an upstream impoundment (i.e., within 200 km) had little fine substrate, a high percentage of large rocky substrate, few turbid-river cyprinids, and many exotic piscivores. Our results suggest that impoundments have had a substantial influence on the distribution and abundance of cyprinid species adapted to hydrologically dynamic, turbid prairie streams and that conserving these species is dependent on maintaining natural flow and sediment transport regimes and on reducing habitat suitability for exotic piscivores.

  19. Use of remote-sensing techniques to survey the physical habitat of large rivers

    USGS Publications Warehouse

    Edsall, Thomas A.; Behrendt, Thomas E.; Cholwek, Gary; Frey, Jeffery W.; Kennedy, Gregory W.; Smith, Stephen B.

    1997-01-01

    Remote-sensing techniques that can be used to quantitatively characterize the physical habitat in large rivers in the United States where traditional survey approaches typically used in small- and medium-sized streams and rivers would be ineffective or impossible to apply. The state-of-the-art remote-sensing technologies that we discuss here include side-scan sonar, RoxAnn, acoustic Doppler current profiler, remotely operated vehicles and camera systems, global positioning systems, and laser level survey systems. The use of these technologies will permit the collection of information needed to create computer visualizations and hard copy maps and generate quantitative databases that can be used in real-time mode in the field to characterize the physical habitat at a study location of interest and to guide the distribution of sampling effort needed to address other habitat-related study objectives. This report augments habitat sampling and characterization guidance provided by Meador et al. (1993) and is intended for use primarily by U.S. Geological Survey National Water Quality Assessment program managers and scientists who are documenting water quality in streams and rivers of the United States.

  20. Movement and habitat use of stocked juvenile paddlefish in the Ohio River system, Pennsylvania

    USGS Publications Warehouse

    Barry, P.M.; Carline, R.F.; Argent, D.G.; Kimmel, W.G.

    2007-01-01

    In 2002 and 2003 we released a total of 66 hatchery-reared, juvenile paddlefish Polyodon spathula (249-318 mm eye-to-fork length) in Pennsylvania's upper Ohio River system and tracked them with radiotelemetry in two different pools of the Ohio and Allegheny rivers to determine (1) poststocking survival, (2) whether release site influences survival, (3) dispersal distance and direction of movement, and (4) habitat selection. Survival was fair (mean = 78% in 2002 and 67% in 2003) for 0.23-0.43-kg paddlefish after 9 weeks. In 2003, fish stocked in the upstream half of the pool had a greater survival (100%) after 63 d than those stocked in the downstream half (44%). Within 4 d of stocking, 77% of juvenile paddlefish were located in tailwaters, and fish found these habitats regardless of stocking location. Habitat measurements at all postdispersal locations had median depths of 5.2 and 6.1 m in 2002 and 2003, respectively, and median near-surface velocities of 0.17 and 0.12 m/s. Fish selected tailwater habitats and avoided habitats with disturbance from commercial barge traffic in both years. ?? Copyright by the American Fisheries Society 2007.

  1. Characterizing physical habitats in rivers using map-derived drivers of fluvial geomorphic processes

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Lerner, David N.

    2012-10-01

    New understanding of fluvial geomorphological processes has successfully informed flood mitigation strategies and rehabilitation schemes in recent years. However well established geomorphological assessments are location-specific and demanding in terms of resource and expertise required, and their routine application for regional or national river characterization, although desirable, is unlikely at present. This paper proposes a framework based on GIS procedures, empirical relationships and the self organized map for the analysis and classification of map-derived drivers of fluvial morphological processes. The geomorphic controls analysed are: channel gradient and hydrology, specific stream power, river order and floodplain extent. The case study is a gravel bed river in England. Using the self organized map, we analyse patterns of these controls along the river longitudinal profile and identify clusters of similar configuration. The reciprocal relationships that emerge amongst the geomorphic controls reflect the hierarchical nature of fluvial systems and are consistent with the current theoretical understanding of fluvial processes. Field observations from the River Habitat Survey are used to prove the influence of geomorphic drivers on reach-scale morphological forms. Six clusters are identified which describe six distinctive channel types. These proved to be characterized by distinctive configurations of geomorphic drivers and specific sets of physical habitat features. The method successfully characterizes the notable transitions in channel character along the river course. The framework is suitable for regional or national scale assessments through automatic GIS and statistical procedures with moderate effort.

  2. The concept of habitat diversity between and within ecosystems applied to river side-arm restoration.

    PubMed

    Amoros, C

    2001-12-01

    Since returning an ecosystem to its pristine state may not be realistic in every situation, the concept of habitat diversity is proposed to help decision-makers in defining realistic restoration objectives. In order to maintain habitat diversity and enhance the long-term success of restoration, process-oriented projects should be preferred to species-oriented ones. Because the hydrogeomorphological processes that influence biodiversity operate at different spatiotemporal scales, three scales are considered: river sectors, floodplain waterbodies, and mesohabitats within each waterbody. Based on a bibliographical review, three major driving forces are proposed for incorporation into the design of restoration projects: (1) flow velocity and flood disturbances, (2) hydrological connectivity, and (3) water supply. On the sector scale, increased habitat diversity between waterbodies can be achieved by combining various intensities of these driving forces. On the waterbody scale, increased habitat diversity within the ecosystem can be achieved by varying water depth, velocity, and substrate. The concept is applied to a Rhĵne River sector (France) where three terrestrialized side arms will be restored. Two were designed to be flood scoured, one having an additional supply of groundwater, the other being connected to the river at both ends. The third cannot be scoured by floods because of upstream construction and would be supplied by river backflow through a downstream connection. Habitat diversity within the ecosystem is exemplified on one side arm through the design of a sinuous pathway combined with variation of water depth, wetted width, and substrate grain size. Self-colonization of the side arms is expected owing to the restoration of connectivity to upstream sources of potential colonizers. PMID:11915968

  3. Linking landscapes and habitat suitability scores for diadromous fish restoration in the susquehanna river basin

    USGS Publications Warehouse

    Kocovsky, P.M.; Ross, R.M.; Dropkin, D.S.; Campbell, J.M.

    2008-01-01

    Dams within the Susquehanna River drainage, Pennsylvania, are potential barriers to migration of diadromous fishes, and many are under consideration for removal to facilitate fish passage. To provide useful input for prioritizing dam removal, we examined relations between landscape-scale factors and habitat suitability indices (HSIs) for native diadromous species of the Susquehanna River. We used two different methods (U.S. Fish and Wildlife Service method: Stier and Crance [1985], Ross et al. [1993a, 1993b, 1997], and Pardue [1983]; Pennsylvania State University method: Carline et al. [1994]) to calculate HSIs for several life stages of American shad Alosa sapidissima, alewives Alosa pseudoharengus, and blueback herring Alosa aestivalis and a single HSI for American eels Anguilla rostrata based on habitat variables measured at transects spaced every 5 km on six major Susquehanna River tributaries. Using geographical information systems, we calculated land use and geologic variables upstream from each transect and associated those data with HSIs calculated at each transect. We then performed canonical correlation analysis to determine how HSIs were linked to geologic and land use factors. Canonical correlation analysis identified the proportion of watershed underlain by carbonate rock as a positive correlate of HSIs for all species and life stages except American eels and juvenile blueback herring. We hypothesize that potential mechanisms linking carbonate rock to habitat suitability include increased productivity and buffering capacity. No other consistent patterns of positive or negative correlation between landscape-scale factors and HSIs were evident. This analysis will be useful for prioritizing removal of dams in the Susquehanna River drainage, because it provides a broad perspective on relationships between habitat suitability for diadromous fishes and easily measured landscape factors. This approach can be applied elsewhere to elucidate relationships

  4. Hydrologic modification to improve habitat in riverine lakes: Management objectives, experimental approach, and initial conditions

    USGS Publications Warehouse

    Johnson, Barry L.; Barko, John W.; Gerasimov, Yuri; James, William F.; Litvinov, Alexander; Naimo, Teresa J.; Wiener, James G.; Gaugush, Robert F.; Rogala, James T.; Rogers, Sara J.

    1996-01-01

    The Finger Lakes habitat-rehabilitation project is intended to improve physical and chemical conditions for fish in six connected back water lakes in Navigation Pool 5 of the upper Missouri River. The primary management objective is to improve water temperature, dissolved oxygen concentration and current velocity during winter for bluegills, Lepomis macrochirus, and black crappies, Pomoxis nigromaculatus, two of the primary sport fishes in the lakes. The lakes will be hydrologically altered by Installing culverts to Introduce controlled flows of oxygenated water into four lakes, and an existing unregulated culvert on a fifth lake will be equipped with a control gate to regulate inflow. These habitat modifications constitute a manipulative field experiment that will compare pre-project (1991 to summer 1993) and post-project (fall 1993 to 1996) conditions in the lakes, including hydrology, chemistry, rooted vegetation, and fish and macroinvertebrate communities. Initial data indicate that the Finger Lakes differ in water chemistry, hydrology, and macrophyte abundance. Macroinvertebrate communities also differed among lakes: species diversity was highest in lakes with dense aquatic macrophytes. The system seems to support a single fish community, although some species concentrated in individual lakes at different times. The introduction of similar flows into five of the lakes will probably reduce the existing physical and chemical differences among lakes. However, our ability to predict the effects of hydrologic modification on fish populations is limited by uncertainties concerning both the interactions of temperature, oxygen and current in winter and the biological responses of primary and secondary producers. Results from this study should provide guidance for similar habitat-rehabilitation projects in large rivers.

  5. Clicking in Shallow Rivers: Short-Range Echolocation of Irrawaddy and Ganges River Dolphins in a Shallow, Acoustically Complex Habitat

    PubMed Central

    Jensen, Frants H.; Rocco, Alice; Mansur, Rubaiyat M.; Smith, Brian D.; Janik, Vincent M.; Madsen, Peter T.

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1–2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes. PMID:23573197

  6. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges River dolphins in a shallow, acoustically complex habitat.

    PubMed

    Jensen, Frants H; Rocco, Alice; Mansur, Rubaiyat M; Smith, Brian D; Janik, Vincent M; Madsen, Peter T

    2013-01-01

    Toothed whales (Cetacea, odontoceti) use biosonar to navigate their environment and to find and catch prey. All studied toothed whale species have evolved highly directional, high-amplitude ultrasonic clicks suited for long-range echolocation of prey in open water. Little is known about the biosonar signals of toothed whale species inhabiting freshwater habitats such as endangered river dolphins. To address the evolutionary pressures shaping the echolocation signal parameters of non-marine toothed whales, we investigated the biosonar source parameters of Ganges river dolphins (Platanista gangetica gangetica) and Irrawaddy dolphins (Orcaella brevirostris) within the river systems of the Sundarban mangrove forest. Both Ganges and Irrawaddy dolphins produced echolocation clicks with a high repetition rate and low source level compared to marine species. Irrawaddy dolphins, inhabiting coastal and riverine habitats, produced a mean source level of 195 dB (max 203 dB) re 1 µPapp whereas Ganges river dolphins, living exclusively upriver, produced a mean source level of 184 dB (max 191) re 1 µPapp. These source levels are 1-2 orders of magnitude lower than those of similar sized marine delphinids and may reflect an adaptation to a shallow, acoustically complex freshwater habitat with high reverberation and acoustic clutter. The centroid frequency of Ganges river dolphin clicks are an octave lower than predicted from scaling, but with an estimated beamwidth comparable to that of porpoises. The unique bony maxillary crests found in the Platanista forehead may help achieve a higher directionality than expected using clicks nearly an octave lower than similar sized odontocetes. PMID:23573197

  7. An Ecosystem-Based Approach to Habitat Restoration Projects with Emphasis on Salmonids in the Columbia River Estuary, 2003 Technical Report.

    SciTech Connect

    Johnson, G.; Thom, R.; Whiting, A.

    2003-11-01

    Habitat restoration in the Columbia River estuary (CRE) is an important off-site mitigation action in the 2000 Biological Opinion (BiOp), an operation of the Federal Columbia River Power System. The CRE, defined as the tidally influenced stretch of river from the mouth to Bonneville Dam 146 miles upstream, is part of the migration pathway for anadromous fish in the Columbia Basin, including salmon listed under the Endangered Species Act (ESA). Salmon in various stages of life, from fry to adults, use tidal channels and wetlands in the CRE to feed, find refuge from predators, and transition physiologically from freshwater to saltwater. Over the last 100 years, however, the area of some wetland habitats has decreased by as much as 70% because of dike and levee building, flow regulation, and other activities. In response to the decline in available habitat, the BiOp's Reasonable and Prudent Alternative (RPA) included mandates to 'develop a plan addressing the habitat needs of juvenile salmon and steelhead in the estuary' (RPA Action 159) and 'develop and implement an estuary restoration program with a goal of protecting and enhancing 10,000 acres of tidal wetlands and other key habitats' (RPA Action 160). To meet Action 159 and support Action 160, this document develops a science-based approach designed to improve ecosystem functions through habitat restoration activities in the CRE. The CRE habitat restoration program's goal and principles focus on habitat restoration projects in an ecosystem context. Since restoration of an entire ecosystem is not generally practical, individual habitat restoration projects have the greatest likelihood of success when they are implemented with an ecosystem perspective. The program's goal is: Implementation of well-coordinated, scientifically sound projects designed to enhance, protect, conserve, restore, and create 10,000 acres of tidal wetlands and other key habitats to aid rebuilding of ESA-listed salmon populations and native

  8. Impact of the Gezhouba and Three Gorges Dams on habitat suitability of carps in the Yangtze River

    NASA Astrophysics Data System (ADS)

    Yi, Yujun; Wang, Zhaoyin; Yang, Zhifeng

    2010-06-01

    SummaryThe Gezhouba Dam and Three Gorges Project are the two largest hydraulic projects in the middle reach of the Yangtze River. Although these projects have yielded benefits to local communities by providing flood control, water supply, and safe navigation, they also have changed the physical habitat of the Yangtze River. As a consequence, aquatic organisms, including rare species and fishes with economic value, have been affected. The Yangtze River's four major carp species (YFMCS)—black carp ( Mylopharyngodon piceus), grass carp ( Ctenop haryngodon idellus), silver carp ( Hypoph thal michthys molitrix), and big-head carp ( Aristichyths nobilis)—have significant importance to the fresh water fishery in China. According to field surveys, the percentage of the YFMCS in the total catch of fish from Tongting Lake has gradually reduced. The percentages were 22%, 14.1%, 11.84%, and 8.5% in 1963, 1980-1982, 1997, and 2002, respectively. These reductions in species population are mainly attributed to the loss of spawning ground caused by dam construction. Considering the spawning characteristics of the YFMCS, a habitat suitability index model (HSI) has been established. A one-dimensional (1-D) mathematical model was also developed to simulate and predict aspects of the physical habitat situation for the YFMCS. By coupling the habitat suitability curves and the 1-D mathematical model, a HSI model for the YFMCS was established. The HSI model was validated by comparing measured data with predictions from the model. These comparisons show that the computed results agree well with the measured results. The HSI model for the YFMCS is used to suggest a minimum instream flow and suitable daily discharge increase during the reproduction season for the carp species. The minimum discharge needed for the YFMCS in the middle reach of the Yangtze River is 3000 m 3/s. Different daily discharge increases are required for different initial discharges, too small or too large of an

  9. Channel morphodynamics and habitat recovery in a river reach affected by gravel-mining (River Ésera, Ebro basin)

    NASA Astrophysics Data System (ADS)

    Lopez-Tarazon, J. A.; Lobera, G.; Andrés-Doménech, I.; Martínez-Capel, F.; Muñoz-Mas, R.; Vallés, F.; Tena, A.; Vericat, D.; Batalla, R. J.

    2012-04-01

    Physical processes in rivers are the result of the interaction between flow regime and hydraulics, morphology, sedimentology and sediment transport. The frequency and magnitude of physical disturbance (i.e. bed stability) control habitat integrity and, consequently, ecological diversity of a particular fluvial system. Most rivers experience human-induced perturbations that alter such hydrosedimentary equilibrium, thus affecting the habitat of aquatic species. A dynamic balance may take long time to be newly attained. Within this context, gravel mining is well known to affect channel characteristics mostly at the local scale, but its effect may also propagate downstream and upstream. Sedimentary forms are modified during extraction and habitat features are reduced or even eliminated. Effects tend to be most acute in contrasted climatic environments, such as the Mediterranean areas, in which climatic and hydrological variability maximises effects of impacts and precludes short regeneration periods. Present research focuses on the evolution of a river reach, which has experienced an intense gravel extraction. The selected area is located in the River Ésera (Ebro basin), where interactions between morphodynamics and habitat recovery are examined. Emphasis is put on monitoring sedimentary, morphological and hydraulic variables to later compare pre (t0) and post (t1, t2... tn) extraction situations. Methodology for all time monitoring steps (i.e. ti) includes: i) characterization of grain size distribution at all of the different hydromorphological units within the reach; ii) description of channel morphology (together with changes before and after floods) by means of close-range aerial photographs, which are taken with a digital camera attached to a 1m3 helium balloon (i.e. BLIMP); and iii) determination of flow parameters from 2D hydraulic modelling that is based on detailed topographical data obtained from Leica® GNSS/GPS and robotic total station, and River

  10. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  11. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    USGS Publications Warehouse

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  12. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer...

  13. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the USGS publication and maps may be... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer...

  14. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem 2004-2009

    SciTech Connect

    Duberstein, Corey A.

    2011-04-01

    The U.S. Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River Main Stem Reservoir System. Management of the Missouri River has generally reduced peak river flows that form and maintain emergent sandbar habitat. Emergent sandbars provide non-vegetated nesting habitat for the endangered interior least tern (Sternula antillarum athalassos) and the threatened Northern Great Plains piping plover (Charadrius melodus). Since 2000, piping plover nesting habitat within the Gavins Point Reach, Garrison Reach, Lake Oahe, and Lake Sakakawea has fledged the majority of piping plovers produced along the Missouri River system. Habitats within Lewis and Clark Lake have also recently become important plover production areas. Mechanical construction of emergent sandbar habitat (ESH) within some of these reaches within the Missouri River began in 2004. Through 2009, 11 sandbar complexes had been constructed (10 in Gavins Point Reach, 1 in Lewis and Clarke Lake) totaling about 543 ac of piping plover and interior least tern nesting habitat. ESH Construction has resulted in a net gain of tern and plover nesting habitat. Both terns and plovers successfully nest and fledge young on constructed sandbars, and constructed habitats were preferred over natural habitats. Natural processes may limit the viability of constructed sandbars as nesting habitat. Continued research is needed to identify if changes in constructed sandbar engineering and management increase the length of time constructed habitats effectively function as nesting habitat. However, the transfer of information from researchers to planners through technical research reports may not be timely enough to effectively foster the feedback mechanisms of an adaptive management strategy.

  15. Home on the Big River, Part II: Great River Habitat Quality Indices

    EPA Science Inventory

    USEPA’s EMAP sampled the Upper Mississippi, Missouri, and Ohio Rivers from 2004 through 2006 as part of an integrated assessment of ecological condition. These Great Rivers are important human recreational destinations and transportation corridors, and represent significant wild...

  16. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

    2010-08-01

    This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

  17. Habitat Evaluation and Monitoring in the Columbia River Basin, Final Report.

    SciTech Connect

    Everson, Larry B.; Campbell, Charles J.; Craven, Richard E.; Welsh, Thomas L.

    1986-12-01

    The law established the Northwest Power Planning Council to prepare and adopt a regional conservation and electric power plan, and a program to protect, mitigate, and enhance fish and wildlife. The objectives are the development of regional plans and programs related to energy conservation, renewable resources, other resources, and protecting mitigating, and enhancing fish and wildlife resources and to protect, mitigate, and enhance the fish and wildlife, including related spawning grounds and habitat, of the Columbia River and its tributaries. 4 refs.

  18. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    SciTech Connect

    Volkman, Jed; Sexton, Amy D.

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  19. Relationships Between Landscape Habitat Variables and Chinook Salmon Production in the Columbia River Basin, 1999 Annual Report.

    SciTech Connect

    Thompson, William L.; Lee, Danny C.

    1999-09-01

    This publication concerns the investigation of potential relationships between various landscape habitat variables and estimates of fish production from 25 index stocks of spring/summer chinook salmon with the Columbia River Basin.

  20. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2002-2003.

    SciTech Connect

    Sears, Sheryl

    2004-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  1. Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project, Annual Report 2001-2002.

    SciTech Connect

    Sears, Sheryl

    2003-01-01

    The construction of Chief Joseph and Grand Coulee Dams completely and irrevocably blocked anadromous fish migrations to the Upper Columbia River. Historically this area hosted vast numbers of salmon returning to their natal waters to reproduce and die. For the native peoples of the region, salmon and steelhead were a principle food source, providing physical nourishment and spiritual sustenance, and contributing to the religious practices and the cultural basis of tribal communities. The decaying remains of spawned-out salmon carcasses contributed untold amounts of nutrients into the aquatic, aerial, and terrestrial ecosystems of tributary habitats in the upper basin. Near the present site of Kettle Falls, Washington, the second largest Indian fishery in the state existed for thousands of years. Returning salmon were caught in nets and baskets or speared on their migration to the headwater of the Columbia River in British Columbia. Catch estimates at Kettle Falls range from 600,000 in 1940 to two (2) million around the turn of the century (UCUT, Report No.2). The loss of anadromous fish limited the opportunities for fisheries management and enhancement exclusively to those actions addressed to resident fish. The Lake Roosevelt Rainbow Trout Habitat/Passage Improvement Project is a mitigation project intended to enhance resident fish populations and to partially mitigate for anadromous fish losses caused by hydropower system impacts. This substitution of resident fish for anadromous fish losses is considered in-place and out-of-kind mitigation. Upstream migration and passage barriers limit the amount of spawning and rearing habitat that might otherwise be utilized by rainbow trout. The results of even limited stream surveys and habitat inventories indicated that a potential for increased natural production exists. However, the lack of any comprehensive enhancement measures prompted the Upper Columbia United Tribes Fisheries Center (UCUT), Colville Confederated

  2. Habitats of Weak Salmon Stocks of the Snake River Basin and Feasible Recovery Measures : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 1 of 11.

    SciTech Connect

    Chapman, D.W.; Witty, Kenneth L.

    1993-06-01

    This report describes spawning aggregations of Snake River salmon listed under the Endangered Species Act, and numerical status of aggregations. It summarizes habitat quality and problems between the natal area and the open ocean. It reviews critical habitat designation, identifies mitigative measures and suggests monitoring and research.

  3. HOME ON THE BIG RIVER: ASSESSING HABITAT CONDITION IN THE GREAT RIVERS OF THE CENTRAL UNITED STATES, 1ST PRESENTATION IN 2007

    EPA Science Inventory

    This research looks at ways to combine data from the EMAP-GRE 2004 and 2005 sampling seasons on the Missouri, Upper Mississippi, and Ohio Rivers into habitat indices that can be used to compare littoral and riparian habitat quality and human disturbance impacts in the north centr...

  4. Numerical Model of Channel and Aquatic Habitat Response to Sediment Pulses in Mountain Rivers of Central Idaho

    NASA Astrophysics Data System (ADS)

    Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.

    2006-12-01

    Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural

  5. Using side-scan sonar to characterize and map physical habitat and anthropogenic underwater features in the St. Louis River.

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in the large St. Louis River Estuary. We are using side-scan sonar (SSS), first developed in the 1960s to remotely sense underwater habitat features from reflected acoustic signals (backscatt...

  6. Transportation infrastructure, river confinement, and impacts on floodplain and channel habitat, Yakima and Chehalis rivers, Washington, U.S.A.

    NASA Astrophysics Data System (ADS)

    Blanton, Paul; Marcus, W. Andrew

    2013-05-01

    Although floodplain roads and railroads are recognized as confining features with potentially large environmental impacts, few studies have explored the linkages between these structures and the natural disturbance regime that creates and maintains channel and riparian habitat. This study compares paired floodplain reaches with or without transportation infrastructure confining the riparian zone along the Yakima and Chehalis rivers in Washington State. Channel and floodplain habitat were degraded in the artificially confined reaches. Confined channels were narrower, simpler in planform, and relatively devoid of depositional surfaces such as bars and islands. Floodplains adjacent to confined channels exhibited degraded riparian forest and less refugium habitat such as side channels, ponds, and alcoves important for endangered salmonids and other biota. The results support hypotheses about how human modification of the floodplain landscape disrupts the flow regime and connectivity along riparian corridors. Neither simple buffer zones nor metrics such as valley width index adequately capture the disturbance-based landscape processes that drive riparian and channel habitat integrity. Future studies and indices of valley confinement, a critical driver of fluvial geomorphic processes, need to pay closer attention to artificial confinement of the channel, the riparian zone, and the active floodplain surfaces in order to portray the true constraints on fluvial processes.

  7. Diet and habitat use by age-0 deepwater sculpins in northern Lake Huron, Michigan and the Detroit River

    USGS Publications Warehouse

    Roseman, Edward F.

    2014-01-01

    Deepwater sculpins (Myoxocephalus thompsonii) are an important link in deepwater benthic foodwebs of the Great Lakes. Little information exists about deepwater sculpin spawning habits and early life history ecology due to difficulty in sampling deep offshore habitats. Larval and age-0 deepwater sculpins collected in northern Lake Huron and the Detroit River during 2007 were used to improve our understanding of their habitat use, diet, age, and growth. Peak larval density reached 8.4/1000 m3 in the Detroit River during April and was higher than that in Lake Huron. Offshore bottom trawls at DeTour and Hammond Bay first collected benthic age-0 deepwater sculpins in early September when fish were ≥ 25 mm TL. Otolith analysis revealed that hatch dates for pelagic larvae occurred during late March and larvae remained pelagic for 40 to 60 days. Diet of pelagic larvae (10–21 mm TL) was dominated by calanoid copepods at all sample locations. Diets of benthic age-0 fish varied by location and depth: Mysis and chironomids were prevalent in fish from Hammond Bay and the 91 m site at DeTour, but only chironomids were found in fish from the 37 m DeTour site. This work showed that nearshore epilimnetic sites were important for pelagic larvae and an ontogenetic shift from pelagic planktivore to benthivore occurred at about 25 mm TL in late summer. Age analysis showed that larvae remained pelagic long enough to be transported through the St. Clair–Detroit River system, Lake Erie, and the Niagara River, potentially contributing to populations in Lake Ontario.

  8. Migration and habitats of diadromous Danube River sturgeons in Romania: 1998-2000

    USGS Publications Warehouse

    Kynard, B.; Suciu, R.; Horgan, M.

    2002-01-01

    Upstream migrant adults of stellate sturgeon, Acipenser stellatus (10 in 1998, 43 in 1999) and Russian sturgeon, A. gueldenstaedtii (three in 1999) were captured at river km (rkm) 58-137, mostly in the spring, and tagged with acoustic tags offering a reward for return. The overharvest was revealed by tag returns (38% in 1998, 28% in 1999) and by harvest within 26 days (and before reaching spawning grounds) of the six stellate sturgeon tracked upstream. A drop-back of > 50% of the tagged sturgeon, some to the Black Sea, shows a high sensitivity to interruption of migration and capture/handling/holding. Harvesting and dropback prevented tracking of sturgeon to spawning sites. Gillnetting and tracking of stellate sturgeon showed that the autumn migration ended in early October (river temperature 16??C) and identified a likely wintering area at river km (rkm) 75-76 (St George Branch). Thus, fishery harvesting after early October captures wintering fish, not migrants. Rare shoreline cliffs in the lower river likely create the only rocky habitat for sturgeon spawning. A survey for potential spawning habitats found five sites with rocky substrate and moderate water velocity, all ???rkm 258. Drift netting caught early life-stages of 17 fish species and one sturgeon, a beluga, Huso huso, larva likely spawned at ???rkm 258. All diadromous Danube sturgeons likely spawn at ???rkm 258.

  9. Marine Habitat Use by Anadromous Bull Trout from the Skagit River, Washington

    USGS Publications Warehouse

    Hayes, Michael C.; Rubin, Steve P.; Reisenbichler, Reginald; Goetz, Fred A.; Jeanes, Eric; McBride, Aundrea

    2011-01-01

    Acoustic telemetry was used to describe fish positions and marine habitat use by tagged bull trout Salvelinus confluentus from the Skagit River, Washington. In March and April 2006, 20 fish were captured and tagged in the lower Skagit River, while 15 fish from the Swinomish Channel were tagged during May and June. Sixteen fish tagged in 2004 and 2005 were also detected during the study. Fish entered Skagit Bay from March to May and returned to the river from May to August. The saltwater residency for the 13 fish detected during the out-migration and return migration ranged from 36 to 133 d (mean ± SD, 75 ± 22 d). Most bull trout were detected less than 14 km (8.5 ± 4.4 km) from the Skagit River, and several bay residents used the Swinomish Channel while migrating. The bull trout detected in the bay were associated with the shoreline (distance from shore, 0.32 ± 0.27 km) and occupied shallow-water habitats (mean water column depth, Zostera sp.) vegetation classes made up more than 70% of the area used by bull trout. Our results will help managers identify specific nearshore areas that may require further protection to sustain the unique anadromous life history of bull trout.

  10. Movement and habitat use of green sturgeon Acipenser medirostris in the Rogue River, Oregon, USA

    USGS Publications Warehouse

    Erickson, D.L.; North, J.A.; Hightower, J.E.; Weber, J.; Lauck, L.

    2002-01-01

    Green sturgeon (Acipenser medirostris) movement patterns and habitat use within the Rogue River, Oregon were evaluated using radio telemetry. Nineteen specimens ranging from 154 to 225 cm total length were caught by gill netting and tagged with radio transmitters during May-July 2000. One tagged green sturgeon was verified as a female near spawning condition. Individual green sturgeons spent more than 6 months in fresh water and traveled as far as river kilometer (rkm) 39.5. Green sturgeon preferred specific holding sites within the Rogue River during summer and autumn months. These sites were typically deep (> 5 m) low-gradient reaches or off-channel coves. Home ranges within holding sites were restricted. All tagged individuals emigrated from the system to the sea during the autumn and winter, when water temperatures dropped below 10??C and flows increased. This species is extremely vulnerable to habitat alterations and overfishing because it spawns in only a few North American rivers and individuals reside within extremely small areas for extended periods of time.

  11. Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?

    PubMed

    Kefford, Ben J; Buchwalter, David; Cañedo-Argüelles, Miguel; Davis, Jenny; Duncan, Richard P; Hoffmann, Ary; Thompson, Ross

    2016-03-01

    Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680

  12. Sea-Floor Mapping and Benthic Habitat GIS for the Elwha River Delta Nearshore, Washington

    USGS Publications Warehouse

    Cochrane, Guy R.; Warrick, Jonathan A.; Sagy, Yael; Finlayson, David; Harney, Jodi

    2008-01-01

    From March 1531, 2005, more than 252 km (19.5 km2) of seafloor offshore of the Elwha River Delta in the central Strait of Juan de Fuca was mapped by the USGS Coastal and Marine Geology Program. The purpose of this nearshore mapping was to (1) obtain high resolution bathymetry and acoustic reflectance properties of the seabed, (2) examine and record geologic characteristics of the seafloor, and (3) construct maps of sea-floor geomorphology and habitat. Substrate distribution was characterized with video-supervised statistical classification of the sonar data. Substrate of the survey was dominated by mixed sand-gravel and sand. Numerous boulder reefs were observed west of the river mouth within Freshwater Bay, whereas the sea-floor immediately adjacent to the river mouth was dominated by sand.

  13. Impacts of flow regulation on freshwater pearl mussel (Margaritifera margaritifera) habitat in a Scottish montane river.

    PubMed

    Addy, Stephen; Cooksley, Susan L; Sime, Iain

    2012-08-15

    The River Moriston in NW Scotland is a cobble-gravel bedded river that has been dammed and regulated for hydroelectric power (HEP) since 1956. The river supports a functional population of the critically endangered freshwater pearl mussel (Margaritifera margaritifera) in the lower part. In contrast the population in the upper reach is sparse and shows no signs of juvenile recruitment, leading to speculation that hydrological and geomorphic changes associated with HEP have degraded the habitat they depend on. A combination of historical analysis, field mapping and geomorphic survey of channel and active bar sites was used to assess habitat changes and current quality. During the post-dam period, the naturally stability of much of the channel has increased, active bars have been stabilised through vegetation colonisation, riparian tree cover has increased and the active channel width has significantly reduced locally (>50%); adjustments that are indicative of a reduction in the incidence of competent flows caused by flow regulation. However area and stability of habitat for freshwater pearl mussels have not been reduced greatly. The channel sites examined are characterised by mixed cobble-gravel substrates (D(50) range=46-188 mm), predicted to be highly stable, that provide suitable habitat for adult freshwater pearl mussels. However a degree of bed compaction at one site was observed that could be limiting the recruitment of juvenile mussels. It is hypothesised that the sparse, non-functional status of the freshwater pearl mussel population reflects significant historical pearl fishing and the limitation of recovery due to HEP related pressures of fish migration obstruction and bed compaction. The implications of these factors for conservation of the species are discussed. PMID:22750177

  14. Resource Pulses in Desert River Habitats: Productivity-Biodiversity Hotspots, or Mirages?

    PubMed Central

    Free, Carissa L.; Baxter, Greg S.; Dickman, Christopher R.; Leung, Luke K. P.

    2013-01-01

    Resource pulses in the world's hot deserts are driven largely by rainfall and are highly variable in both time and space. However, run-on areas and drainage lines in arid regions receive more water more often than adjacent habitats, and frequently sustain relatively high levels of primary productivity. These landscape features therefore may support higher biotic diversity than other habitats, and potentially act as refuges for desert vertebrates and other biota during droughts. We used the ephemeral Field River in the Simpson Desert, central Australia, as a case study to quantify how resources and habitat characteristics vary spatially and temporally along the riparian corridor. Levels of moisture and nutrients were greater in the clay-dominated soils of the riverine corridor than in the surrounding sand dunes, as were cover values of trees, annual grasses, other annual plants and litter; these resources and habitat features were also greater near the main catchment area than in the distal reaches where the river channel runs out into extensive dune fields. These observations confirm that the riverine corridor is more productive than the surrounding desert, and support the idea that it may act as a refuge or as a channel for the ingress of peri-desert species. However, the work also demonstrates that species diversity of invertebrates and plants is not higher within the river corridor; rather, it is driven by rainfall and the accompanying increase in annual plants following a rain event. Further research is required to identify the biota that depend upon these resource pulses. PMID:24124446

  15. Relationship among fish assemblages and main-channel-border physical habitats in the unimpounded Upper Mississippi River

    USGS Publications Warehouse

    Barko, V.A.; Herzog, D.P.; Hrabik, R.A.; Scheibe, J.S.

    2004-01-01

    Large rivers worldwide have been altered by the construction and maintenance of navigation channels, which include extensive bank revetments, wing dikes, and levees. Using 7 years of Long-Term Resource Monitoring Program (LTRMP) data collected from the unimpounded upper Mississippi River, we investigated assemblages in two main-channel-border physical habitats-those with wing dikes and those without wing dikes. Fishes were captured using daytime electrofishing, mini-fyke netting, large hoop netting, and small hoop netting. Our objectives were to (1) assess associations among fish species richness, physical measurements, and main-channel-border physical habitats using stepwise multiple regression and indicator variables; (2) identify abundant adult and young-of-year (age-0) families in both physical habitats to further investigate assemblage composition; and (3) calculate standardized species richness estimates within each physical habitat for adult and age-0 fishes to provide additional information on community structure. We found species richness was greater at wing dikes for both adult and age-0 fishes when compared with main channel borders. Stepwise multiple regression revealed significant relationships between adult species richness and passive gear deployment (e.g,, hoop nets and mini-fyke nets), physical habitat type, and river elevation, as well as interactions between physical habitat and passive gears, and physical habitat and transparency (i.e., Secchi depth). This model explained 56% of the variance in adult species richness. Approximately 15% of the variation in age-0 species richness was explained by the sample period, sample date, transparency, physical habitat, and depth of gear deployment. Long-term impacts of river modifications on fishes have not been well documented in many large river systems and warrant further study. The findings from this study provide baseline ecological information on fish assemblages using main channel borders in the

  16. Habitat associations of small fishes around islands in the upper Mississippi River

    USGS Publications Warehouse

    Johnson, Barry L.; Jennings, Cecil A.

    1998-01-01

    In large rivers, islands provide a variety of habitat types and increase habitat heterogeneity. Creating or modifying islands with dredged sediments from channel maintenance operations provides an opportunity to enhance habitat features that might promote certain fish communities or general fish abundance. To determine associations between fish species and habitat features of islands, we sampled fish by seining at 62 sites around 20 islands in the upper Mississippi River from Winona, Minnesota, to Prairie du Chien, Wisconsin (180 km). Habitat characteristics were divided into macrohabitat features associated with islands, such as island shape, location, or maximum depth around the island, and mesohabitat features of sites, such as depth, sediment type, and vegetation abundance. Cluster analysis of islands based on macrohabitat features identified four clusters distinguished primarily by water depth and distance from the main channel. Mean fish density did not differ among island clusters. Cluster analysis of sites based on mesohabitat features produced four clusters distinguished primarily by vegetation abundance. Mean densities of most fish taxa were highest in clusters with moderate or dense vegetation and lowest in the cluster with no vegetation. For the eight most abundant fish species, multiple-regression analysis of density on mesohabitat features across all sites indicated that all species were positively correlated with vegetation abundance, which explained 7-49% of variation in density. Our results suggest that mesohabitat features of sites were more important than macrohabitat features of islands in determining density of small fishes and that modifications that increase the abundance of vegetation around islands are most likely to increase fish density.

  17. Fish abundances in shoreline habitats and submerged aquatic vegetation in a tidal freshwater embayment of the Potomac River.

    PubMed

    Kraus, Richard T; Jones, R Christian

    2012-05-01

    Submerged aquatic vegetation (SAV) is considered an important habitat for juvenile and small forage fish species, but many long-term recruitment surveys do not effectively monitor fish communities in SAV. To better understand the impact of recent large increases of SAV on the fish community in tidal freshwater reaches of the Potomac River, we compared traditional seine sampling from shore with drop ring sampling of SAV beds (primarily Hydrilla) in a shallow water (depths, <1.5 m) embayment, Gunston Cove. To accomplish this, we developed species-specific catch efficiency values for the seine gear and calculated area-based density in both shoreline and SAV habitats in late summer of three different years (2007, 2008, and 2009). For the dominant species (Fundulus diaphanus, Lepomis macrochirus, Etheostoma olmstedi, Morone americana, Lepomis gibbosus, and Fundulus heteroclitus), density was nearly always higher in SAV, but overall, species richness was highest in shoreline habitats sampled with seines. Although historical monitoring of fish in Gunston Cove (and throughout Chesapeake Bay) is based upon seine sampling (and trawl sampling in deeper areas), the high densities of fish and larger areal extent of SAV indicated that complementary sampling of SAV habitats would produce more accurate trends in abundances of common species. Because drop ring samples cover much less area than seines and may miss rare species, a combination of methods that includes seine sampling is needed for biodiversity assessment. The resurgence of SAV in tidal freshwater signifies improving water quality, and methods we evaluated here support improved inferences about population trends and fish community structure as indicators of ecosystem condition. PMID:21713468

  18. Using side-scan sonar to characterize and map physical habitat and anthropogenic underwater features in the St. Louis River

    EPA Science Inventory

    Characterizing underwater habitat and other features is difficult and costly, especially in large river systems. The St. Louis River is the largest US tributary to Lake Superior and the lower portion consists of a 48.5 km2 complex of wetlands, tributaries, and bays. We surveyed 8...

  19. Flow and sediment-transport modeling of Kootenai River White Sturgeon Spawning Habitat.

    NASA Astrophysics Data System (ADS)

    McDonald, R. R.; Nelson, J.; Barton, G.; Paragamian, V.

    2004-12-01

    The population of White Sturgeon in the Kootenai River downstream of Libby Dam in Montana and Idaho has declined since the construction of the dam in 1972. The White Sturgeon was listed as endangered in 1994 and an 11.2 mile reach of the river, downstream of Bonners Ferry, Idaho was designated as Critical Habitat in 2001. It is hypothesized that hydro-electric and flood control operations have contributed to poor spawning habitat and recruitment of juvenile fish. The successful incubation of eggs requires a stable and coarse bed material. Currently the sturgeon are spawning in a reach of poor substrate consisting of dunes up to 2 meters in amplitude and composed of fine sand while a short distance upstream there is suitable substrate of coarse gravel. We present here the preliminary results of a flow and sediment-transport modeling effort to aid in an understanding of both the current spawning habitat of the White Sturgeon and the potential to artificially enhance the current spawning habitat or to influence the sturgeon to move upstream to more suitable habitat. A 2.5 dimensional flow model was constructed for an 8-kilometer reach of the designated Critical Habitat. The modeled reach consists of several broad meanders and a mid channel island. The substrate is composed of fine sand with a median grain size of 0.22mm and has large dunes up to 2m in amplitude at relatively lows flows of 200 cms that wash out to a plane bed at around 600 cms. The model has been calibrated to a range of historical flow conditions from 170 cms to 1709 cms and verified against 16 ADCP velocity cross-section profiles collected during a period of steady flow at 554 cms. The model predicts well most of the salient features of the velocity field including the magnitude and location of the secondary flow, using a simple constant value for roughness. However for a few reaches of the river the bed forms and their spatial variability in size are shown to significantly affect the flow and the

  20. Natural Propagation and Habitat Improvement, Volume I, Oregon, Supplement A: Habitat Enhancement Evaluation of Fish and Wash Creeks, 1983 Annual Report.

    SciTech Connect

    Everest, Fred

    1984-04-01

    Habitat improvements for anadromous salmonids on Fish Creek in the upper Clackamas Basin were evaluated. The primary objectives of the evaluation effort include: (1) evaluate and quantify the changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements; (2) evaluate and quantify the changes in fish populations and biomass resulting from habitat improvements; and (3) evaluate the cost-effectiveness of habitat improvements developed with BPA and KV funds on Fish Creek. This report integrates data for the evaluation efforts collected in the Fish Creek Basin in 1982 and 1983. 3 references, 34 figures, 23 tables.

  1. Habitat used by juvenile lake sturgeon (Acipenser fulvescens) in the North Channel of the St. Clair River (Michigan, USA)

    USGS Publications Warehouse

    Boase, James C.; Manny, Bruce A.; Donald, Katherine A.L.; Kennedy, Gregory W.; Diana, James S.; Thomas, Michael V.; Chiotti, Justin A.

    2014-01-01

    Lake sturgeon (Acipenser fulvescens) occupy the St. Clair River, part of a channel connecting lakes Huron and Erie in the Laurentian Great Lakes. In the North Channel of the St. Clair River, juvenile lake sturgeon (3–7 years old and 582–793 mm in length) were studied to determine movement patterns and habitat usage. Fourteen juveniles were implanted with ultrasonic transmitters and tracked June–August of 2004, 2005 and 2006. Telemetry data, Geographic Information System software, side-scan sonar, video images of the river bottom, scuba diving, and benthic substrate samples were used to determine the extent and composition of habitats they occupied. Juvenile lake sturgeon habitat selection was strongly related to water depth. No fish were found in 700 mm in length selected sand and gravel areas mixed with zebra mussels and areas dominated by zebra mussels, while fish < 700 mm used these habitat types in proportion to their availability.

  2. Aquatic habitat change in the Arkansas river after the development of a lock-and-dam commercial navigation system

    USGS Publications Warehouse

    Schramm, H.L., Jr.; Minnis, R.B.; Spencer, A.B.; Theel, R.T.

    2008-01-01

    The McClellan-Kerr Arkansas River Navigation System (MKARNS), completed in 1971, required the construction of 17 locks and dams and associated navigation works to make the Arkansas and Verdigris Rivers navigable for barge traffic from the Mississippi River to Catoosa, Oklahoma. We used a Geographic Information System to assess habitat changes in the 477-km portion of this system within Arkansas from 1973 to 1999. Total aquatic area declined by 9% from 42 404 to 38 655 ha. Aquatic habitat losses were 1-17% among pools. Greatest habitat losses occurred in diked secondary channels (former secondary channels with flow reduced by rock dikes) and backwaters adjacent to the main channel. Most of the area of dike pools (aquatic habitat downstream of rock dikes), diked secondary channels and adjacent backwaters were <0.9 m deep. Copyright ?? 2008 John Wiley & Sons, Ltd.

  3. Use of Aquaculture Ponds and Other Habitats by Autumn Migrating Shorebirds Along the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Lehnen, Sarah E.; Krementz, David G.

    2013-08-01

    Populations of many shorebird species are declining; habitat loss and degradation are among the leading causes for these declines. Shorebirds use a variety of habitats along interior migratory routes including managed moist soil units, natural wetlands, sandbars, and agricultural lands such as harvested rice fields. Less well known is shorebird use of freshwater aquaculture facilities, such as commercial cat- and crayfish ponds. We compared shorebird habitat use at drained aquaculture ponds, moist soil units, agricultural areas, sandbars and other natural habitat, and a sewage treatment facility in the in the lower Mississippi River Alluvial Valley (LMAV) during autumn 2009. Six species: Least Sandpiper ( Calidris minutilla), Killdeer ( Charadrius vociferous), Semipalmated Sandpiper ( Calidris pusilla), Pectoral Sandpiper ( C. melanotos), Black-necked Stilt ( Himantopus himantopus), and Lesser Yellowlegs ( Tringa flavipes), accounted for 92 % of the 31,165 individuals observed. Sewage settling lagoons (83.4, 95 % confidence interval [CI] 25.3-141.5 birds/ha), drained aquaculture ponds (33.5, 95 % CI 22.4-44.6 birds/ha), and managed moist soil units on public lands (15.7, CI 11.2-20.3 birds/ha) had the highest estimated densities of shorebirds. The estimated 1,100 ha of drained aquaculture ponds available during autumn 2009 provided over half of the estimated requirement of 2,000 ha by the LMAV Joint Venture working group. However, because of the decline in the aquaculture industry, autumn shorebird habitats in the LMAV may be limited in the near future. Recognition of the current aquaculture habitat trends will be important to the future management activities of federal and state agencies. Should these aquaculture habitat trends continue, there may be a need for wildlife biologists to investigate other habitats that can be managed to offset the current and expected loss of aquaculture acreages. This study illustrates the potential for freshwater aquaculture to

  4. Anadronous Fish Habitat Enhancement for the Middle Fork and Upper Salmon River, 1988 Annual Report.

    SciTech Connect

    Andrews, John

    1990-01-01

    The wild and natural salmon and steelhead populations in the Middle Fork and Upper Salmon River are at a critical low. Habitat enhancement through decreasing sediment loads, increasing vegetative cover, removing passage barriers, and providing habitat diversity is imperative to the survival of these specially adapted fish, until passage problems over the Columbia River dams are solved. Personnel from the Boise and Sawtooth National Forests completed all construction work planned for 1988. In Bear Valley, 1573 feet of juniper revetment was constructed at eleven sites, cattle were excluded from 1291 feet of streambanks to prevent bank breakdown, and a small ephemeral gully was filled with juniper trees. Work in the Upper Salmon Drainage consisted of constructing nine rock sills/weirs, two rock deflectors, placing riprap along forty feet of streambank, construction of 2.1 miles of fence on private lands, and opening up the original Valley Creek channel to provide spring chinook passage to the upper watershed. A detailed stream survey of anadromous fish habitat covering 72.0 miles of streams in the Middle Fork Sub-basin was completed.

  5. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    SciTech Connect

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  6. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    SciTech Connect

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2) develop

  7. Fish habitat regression under water scarcity scenarios in the Douro River basin

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the

  8. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.

    SciTech Connect

    Cope, R.S.; Morris, K.J.

    2001-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  9. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    SciTech Connect

    Cope, R.S.

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  10. Aquatic habitat modifications in La Plata River basin, Patagonia and associated marine areas.

    PubMed

    Mugetti, Ana Cristina; Calcagno, Alberto Tomás; Brieva, Carlos Alberto; Giangiobbe, María Silvia; Pagani, Andrea; Gonzalez, Silvia

    2004-02-01

    This paper describes the environmental characteristics and situation of aquatic habitats and communities in southern continental and maritime areas of southeastern South America (Patagonian Shelf GIWA Subregion), resulting from an overall assessment carried out within the framework of a GIWA project, mostly on the basis of publicly available data. The main focus of the analysis was on the current situation of transboundary water resources and anthropogenic impacts. In the inland waters, habitat and community modifications result, principally, from dams and reservoirs built in the main watercourses for hydroelectric power generation and other uses. The transformation of lotic environments into lentic ones have affected habitats and altered biotic communities. In the La Plata River basin, invasive exotic species have displaced native ones. Habitats in the ocean have been degraded, as their biodiversity becomes affected by overfishing and pollution. This article includes a discussion on the causal chain and the policy options elaborated for the Coastal Ecosystem of Buenos Aires province and the Argentinean-Uruguayan Common Fishing Zone, where fishing resources are shared by both countries. PMID:15083653

  11. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  12. Linking habitat use of Hudson River striped bass to accumulation of polychlorinated biphenyl congeners

    SciTech Connect

    Ashley, J.T.F.; Secor, D.H.; Zlokovitz, E.; Wales, S.Q.; Baker, J.E.

    2000-03-15

    Since 1976, the commercial striped bass fishery in the Hudson River (NY) has been closed due to total polychlorinated biphenyl (t-PCB) concentrations that exceed the US Food and Drug Administration's advisory level of 2 {micro}g/g-wet weight. Extensive monitoring of Hudson River striped bass demonstrated much more variability in t-PCB levels among individual striped bass than could be explained by their age, sex, or lipid contents. To investigate the possible role of differential habitat use among subpopulations of striped bass in controlling their PCB exposures, 70 fish collected throughout the Hudson River estuary and Long Island Sound in 1994--1995 were analyzed for PCB congeners, and their lifetime migration behaviors were estimated by otolith microchemistry. The mean salinity encountered during the fish's last growth season prior to capture was inversely correlated with the t-PCB body burden. Striped bass permanently residing in fresh and oligohaline portions of the estuary adjacent to known PCB sources had elevated t-PCB levels and congeneric patterns with higher proportions of di-, tri-, and tetrachlorobiphenyls. Conversely, fish spending the majority of their life in more saline waters of the estuary or migrating frequently throughout the salinity gradient contained lower PCB levels composed of more highly chlorinated congeners. The approach used in this study allows habitat use to be incorporated into exposure assessments for anadromous fish species such as striped bass.

  13. Regulated flushing in a gravel-bed river for channel habitat maintenance: A Trinity River fisheries case study

    NASA Astrophysics Data System (ADS)

    Nelson, R. Wayne; Dwyer, John R.; Greenberg, Wendy E.

    1987-08-01

    The operation of Trinity and Lewiston Dams on the Trinity River in northern California in the United States, combined with severe watershed erosion, has jeopardized the existence of prime salmonid fisheries. Extreme streamflow depletion and stream sedimentation below Lewiston have resulted in heavy accumulation of coarse sediment on riffle gravel and filling of streambed pools, causing the destruction of spawning, nursery, and overwintering habitat for prized chinook salmon ( Salmo gairdnerii) and steelhead trout ( Oncorhynchus tschawytscha). Proposals to restore and maintain the degraded habitat include controlled one-time remedial peak flows or annual maintenance peak flows designed to flush the spawning gravel and scour the banks, deltas, and pools. The criteria for effective channel restoration or maintenance by streambed flushing and scouring are examined here, as well as the mechanics involved. The liabilities of releasing mammoth scouring-flushing flows approximating the magnitude that preceded reservoir construction make this option unviable. The resulting damage to fish habitat established under the postproject streamflow regime, as well as damage to human settlements in the floodplain, would be unacceptable, as would the opportunity costs to hydroelectric and irrigation water users. The technical feasibility of annual maintenance flushing flows depends upon associated mechanical and structural measures, particularly instream maintenance dredging of deep pools and construction of a sediment control dam on a tributary where watershed erosion is extreme. The cost effectiveness of a sediment dam with a limited useful economic life, combined with perpetual maintenance dredging, is questionable.

  14. Assesment of future river habitat suitability under climate change scenarios in a mesoscale Alpine watershed of Italy (Serio River, Italian Alps)

    NASA Astrophysics Data System (ADS)

    Groppelli, B.; Confortola, G.; Soncini, A.; Bocchiola, D.; Rosso, R.

    2011-12-01

    We merge hydraulic river modelling, use of suitability functions for fish guild colonization and hydrological modelling of catchment response to investigate future (until 2100) hydrological cycle and fish habitat suitability for an Alpine catchment in Italy, Serio river (drainage area 450 Km2, average altitude 1300 m a.s.l., main channel length ca. 36 km). Based upon detailed river channel morphology data for 73 river sections and direct local investigation we then set up and tune a quasi 2-D (i.e. with floodplains) hydraulic model for in channel flows hydraulics, depending upon daily in stream discharge. We then evaluate distributed values of hydraulic variables and therein composite habitat suitability indexes CS for a representative target species (brown trout, Salmo Trutta Fario L.), resulting into usable wetted area WUA for fish colonization. We consider both juvenile JUV and adults AD, and we evaluate the frequency (days in a year/season) of yearly/seasonal, spatially distributed and bulk (whole stream) habitat quality. We then provide synthetic indicators of (yearly/seasonal) suitability level and duration within the river. We then set up a minimal (T, P), properly tuned hydrological model able to mimick Serio river's hydrological cycle. We then use downscaled future precipitation and temperature from three general circulation models, GCMs (PCM, CCSM3, and HadCM3) available within the IPCC's data base chosen for the purpose based upon previous studies, to feed our hydrological model and provide projected hydrological regime of the catchment, together with modified habitat suitability. We then comment upon modified flow regime, habitat suitability as obtained and related uncertainty. The proposed results may be of use for river managers and may provide a template for investigation about future river habitat quality pending climate change.

  15. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    SciTech Connect

    Geist, David

    2005-09-01

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be

  16. Sensitivity of river fishes to climate change: The role of hydrological stressors on habitat range shifts.

    PubMed

    Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa

    2016-08-15

    Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative

  17. A model to locate potential areas for lake sturgeon spawning habitat construction in the St. Clair–Detroit River System

    USGS Publications Warehouse

    Bennion, David; Manny, Bruce A.

    2014-01-01

    In response to a need for objective scientific information that could be used to help remediate loss of fish spawning habitat in the St. Clair River and Detroit River International Areas of Concern, this paper summarizes a large-scale geographic mapping investigation. Our study integrates data on two variables that many riverine fishes respond to in selecting where to spawn in these waters (water flow velocity and water depth) with available maps of the St. Clair–Detroit River System (SC–DRS). Our objectives were to locate and map these two physical components of fish habitat in the St. Clair and Detroit rivers and Lake St. Clair using a geographic information system (GIS) and to identify where, theoretically, fish spawning habitat could be remediated in these rivers. The target fish species to which this model applies is lake sturgeon (Acipenser fulvescens), but spawning reefs constructed for lake sturgeon in this system have been used for spawning by 17 species of fish. Our analysis revealed areas in each river that possessed suitable water velocity and depth for fish spawning and therefore could theoretically be remediated by the addition of rock-rubble substrate like that used at two previously remediated sites in the Detroit River at Belle Isle and Fighting Island. Results of our analysis revealed that only 3% of the total area of the SC–DRS possesses the necessary combination of water depth and high flow velocity to be indicated by the model as potential spawning habitat for lake sturgeon.

  18. Effect of ice formation and streamflow on salmon incubation habitat in the lower Bradley River, Alaska

    USGS Publications Warehouse

    Rickman, R.L.

    1996-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate salmon egg incubation habitat. The study that determined this minimum flow did not account for the effects of ice formation on habitat. An investigation was made during periods of ice formation. Hydraulic properties and field water-quality data were measured in winter only from March 1993 to April 1995 at six transects in the lower Bradley River. Discharge in the lower Bradley River ranged from 42.6 to 73.0 cubic feet per second (average 57 cubic feet per second) with ice conditions ranging from near ice free to 100 percent ice cover. Stream water velocity and depth were adequate for habitat protection for all ice conditions and discharges. No relation was found between percent ice cover and mean velocity and depth for any given discharge and no trends were found with changes in discharge for a given ice condition. Velocity distribution within each transect varied significantly from one sampling period to the next. Mean depth and velocity at flows of 40 cubic feet per second or less could not be predicted. No consistent relation was found between the amount of wetted perimeter and percent ice cover. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface and intragravel-water dissolved-oxygen levels were adequate for all flows and ice conditions. No apparent relation was found between dissolved-oxygen levels and streamflow or ice conditions. Excellent oxygen exchange was indicated throughout the study reach. Stranding potential of salmon fry was found to be low throughout the study reach. The limiting factors for determining the minimal acceptable flow limit appear to be stream-water velocity and depth, although specific limits could not be estimated because of the high flows that occurred during this study.

  19. The Changing Geomorphic Template of Native Fish Habitat of the Lower San Rafael River, Utah

    NASA Astrophysics Data System (ADS)

    Fortney, S. T.; Dean, D. J.; Schmidt, J. C.

    2010-12-01

    The physical template of the aquatic ecosystem of the lower San Rafael River (UT) changed dramatically during the 20th century. 1938 aerial photographs depict a channel comprised of multiple threads with numerous bars. The river has since been transformed into a single-thread channel with a low width-to-depth ratio. The drastic changes in the channel geometry have resulted in severely degraded habitat conditions. Despite these changes in habitat quality and quantity, roundtail chub, flannelmouth sucker, and bluehead sucker are still found in isolated patches of complex habitat. Three factors are primarily responsible for changes in the channel geomorphology: (1) reduced magnitude and duration of the spring snowmelt flood, (2) dense establishment of tamarisk (Tamarix spp) throughout the alluvial valley, and (3) continued supply of fine sediment from ephemeral tributaries. We determined the degree and rate of geomorphic change by analyzing spatially-rich data extracted from aerial photographs and temporally-rich data recorded at USGS gage 09328500. We evaluated channel morphologic processes by interpreting stratigraphy in floodplain trenches and dated these alluvial deposits using dendro-geomorphic techniques. We correlated the flood record to floodplain deposits, thus determining the role of floods in shaping the present channel. Aerial photography analysis shows that a 10-km reach cumulatively narrowed 62% during a span of 44 years. Between 1949 and 1970, the channel cross-section at USGS gage 09328500 narrowed by 60% and incised its bed approximately 1.2 m. Rating relations since the 1980’s provide corroborative evidence that channel narrowing and reduction in channel capacity continues; today, parts of the channel bed are on bedrock, thereby preventing further incision. Stratigraphy observed in a 40-m long trench demonstrates that the channel has narrowed by oblique and vertical accretion processes. Dendrogeomorphic results elucidate the relative role of

  20. Assessing habitat use by breeding great blue herons (Ardea herodias) on the upper Mississippi River, USA

    USGS Publications Warehouse

    Kirsch, E.M.; Ickes, B.; Olsen, D.A.

    2008-01-01

    Approximately 7,610 to 3,175 pairs of Great Blue Herons (Ardea herodias) nested along 420 river km of the Uppert Mississippi River (UMR) from 1993 to 2003. Numbers declined precipitously in the mid-1990s stabilizing somewhat in the early 2000s. The average number of nests in colonies was 349 (SD = 283). Annual colony turn over rate for the eleven year period was 0.15 and ranged from 0.06 to 0.29 each year. The number of years that a colony was active was positively correlated with the average number of nests present while the colony was active. Of the eight colonies active in 1993 that averaged more than 349 nests, four were abandoned by 2003. Only one colony grew to greater than 349 nests during the study period. Custer et al. (2004) suggested that herons on the UMR may be limited by forage resources or foraging habitat and social factors, as evidenced by the even spacing of colonies that reflects the maximum feeding range of herons on the river. To rule out nesting and foraging habitat limitation, landscape habitat features of terrestrial and aquatic areas were examined for colony areas and areas without colonies. Available fish monitoring data were used to examine potential interactions between herons and forage resources. Colony areas did not differ from areas without colonies in any habitat feature. Indices of potential heron forage fish increased from 1993 to 2002, although low indices of fish abundance in 1993 were likely influenced by flood conditions that year. Although fish availability to herons is related to flows and water levels, available data suggested that herons did not negatively impact their potential forage base. Numbers of herons were not correlated with indices of fish abundance from the preceding year on a pool-wide scale. Indices of fish abundance were higher within 5 km of colonies than farther than 5 km from colonies, and indices of fish abundance increased from June through August both near and far from colonies. Numbers of herons and

  1. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  2. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960) inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  3. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Clearwater, Salmon, Weiser, and Payette River Basins, 1934-1942, Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    used to assess pool and substrate conditions. This data is available from the Bonneville Power Administration. The Bureau of Fisheries survey is unique because it is the only long-term data set that quantifies fish habitat in a manner that is replicable over time; no other similar work is known to exist. Other surveys, such as Thompson and Haas (1960), inventoried extensive areas in a manner that was mostly qualitative, subjectively estimating physical characteristics like bank cover and stream shading. Spawning, rearing, and resting habitat were not systematically quantified to allow comparisons over time. Knowledge of the past and present quantity and quality of anadromous fish habitat in the Columbia River Basin is essential to any effort to enhance fish populations. Habitat condition is a key element in monitoring and evaluating progress towards the doubling goal. Integration of this information into the Columbia River Fish and Wildlife Plan can provide the baseline information to greatly enhance understanding of past, present, and future habitat conditions in the basin to provide for improved management decisions.

  4. John Day River Sub-Basin Fish Habitat Enhancement Project; 1998 Annual Report.

    SciTech Connect

    Neal, Jeff A.; Jerome, James P.; Delano, Kenneth H.

    1999-02-01

    During 1998, three new projects were completed improving 1.8 miles of stream and riparian habitat. Protection for these reaches required the construction of 3.2 miles of riparian fence and 7 livestock water gaps. A previously leased property on the Mainstream was converted from apriarian pasture to a corridor fence after no significant recovery had occurred.

  5. Urbanization effects on fishes and habitat quality in a southern Piedmont river basin

    USGS Publications Warehouse

    Walters, D.M.; Freeman, Mary C.; Leigh, D.S.; Freeman, B.J.; Pringle, C.P.

    2005-01-01

    We quantified the relationships among urban land cover, fishes, and habitat quality to determine how fish assemblages respond to urbanization and if a habitat index can be used as an indirect measure of urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient (5?37% urban land cover) in the Etowah River basin, Georgia. Fish assemblages, sampled by electrofishing standardized stream reaches, were assessed using species richness, density, and species composition metrics. Habitat quality was scored using the Rapid Habitat Assessment Protocol (RHAP) of the U.S. Environmental Protection Agency. Urban land cover (including total, high-, and low-density urban) was estimated for the drainage basin above each reach. A previous study of these sites indicated that stream slope and basin area were strongly related to local variation in assemblage structure. We used multiple linear regression (MLR) analysis to account for this variation and isolate the urban effect on fishes. The MLR models indicated that urbanization lowered species richness and density and led to predictable changes in species composition. Darters and sculpin, cyprinids, and endemics declined along the urban gradient whereas centrarchids persisted and became the dominant group. The RHAP was not a suitable indicator of urban effects because RHAP-urban relationships were confounded by an overriding influence of stream slope on RHAP scores, and urban-related changes in fish assemblage structure preceded gross changes in stream habitat quality. Regression analysis indicated that urban effects on fishes accrue rapidly (<10 years) and are detectable at low levels (~5?10% urbanization). We predict that the decline of endemics and other species will continue and centrarchid-dominated streams will become more common as development proceeds within the Etowah basin.

  6. Urbanization effects on fishes and habitat quality in a southern piedmont river basin

    USGS Publications Warehouse

    Walters, D.M.; Freeman, Mary C.; Leigh, D.S.; Freeman, B.J.; Pringle, C.M.

    2005-01-01

    We quantified the relationships among urban land cover, fishes, and habitat quality to determine how fish assemblages respond to urbanization and if a habitat index can be used as an indirect measure of urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient (5-37% urban land cover) in the Etowah River basin, Georgia. Fish assemblages, sampled by electrofishing standardized stream reaches, were assessed using species richness, density, and species composition metrics. Habitat quality was scored using the Rapid Habitat Assessment Protocol (RHAP) of the U.S. Environmental Protection Agency. Urban land cover (including total, high-, and low-density urban) was estimated for the drainage basin above each reach. A previous study of these sites indicated that stream slope and basin area were strongly related to local variation in assemblage structure. We used multiple linear regression (MLR) analysis to account for this variation and isolate the urban effect on fishes. The MLR models indicated that urbanization lowered species richness and density and led to predictable changes in species composition. Darters and sculpin, cyprinids, and endemics declined along the urban gradient whereas centrarchids persisted and became the dominant group. The RHAP was not a suitable indicator of urban effects because RHAP-urban relationships were confounded by an overriding influence of stream slope on RHAP scores, and urban-related changes in fish assemblage structure preceded gross changes in stream habitat quality. Regression analysis indicated that urban effects on fishes accrue rapidly (<10 years) and are detectable at low levels (-5-10% urbanization). We predict that the decline of endemics and other species will continue and centrarchid-dominated streams will become more common as development proceeds within the Etowah basin. ?? 2005 by the American Fisheries Society.

  7. A comparison of American Oystercatcher reproductive success on barrier beach and river island habitats in coastal North Carolina

    USGS Publications Warehouse

    McGowan, C.P.; Simons, T.R.; Golder, W.; Cordes, J.

    2005-01-01

    American Oystercatcher (Haematopus palliatus) numbers along the east coast of the United States are declining in some areas and expanding in others. Researchers have suggested that movement from traditional barrier beach habitats to novel inland habitats and coastal marshes may explain some of these changes, but few studies have documented oystercatcher reproductive success in non-traditional habitats. This study compares the reproductive success of the American Oystercatcher on three river islands in the lower Cape Fear River of North Carolina with that of birds nesting on barrier island beach habitat of Cape Lookout National Seashore. There were 17.6 times more oystercatcher breeding pairs per kilometer on the river island habitat than barrier beach habitat. The Mayfield estimate of daily nest content survival was 0.97 (S.E. ?? 0.0039) on river islands, significantly higher than 0.92 (S.E. ?? 0.0059) on barrier islands. The primary identifiable cause of nest failure on the river islands was flooding while the main cause of nest failure on the barrier islands was mammalian predation. Fledging success was equally low at both study sites. Only 0.19 chicks fledged per pair in 2002, and 0.21 chicks fledged per pair in 2003 on the river islands and 0.14 chicks fledged per pair in 2002 and 0.20 chicks fledged per pair in 2003 on the barrier islands. Many questions are still unanswered and more research is needed to fully understand the causes of chick mortality and the functional significance of non-traditional nesting habitats for the American Oystercatcher in the eastern United States.

  8. Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium nipponense).

    PubMed

    Tzeng, Tzong-Der; Pao, Yueh-Yang; Chen, Po-Cheng; Weng, Francis Cheng-Hsuan; Jean, Wen Dar; Wang, Daryi

    2015-01-01

    The gut microbial community is one of the richest and most complex ecosystems on earth, and the intestinal microbes play an important role in host development and health. Next generation sequencing approaches, which rapidly produce millions of short reads that enable the investigation on a culture independent basis, are now popular for exploring microbial community. Currently, the gut microbiome in fresh water shrimp is unexplored. To explore gut microbiomes of the oriental river prawn (Macrobrachium nipponense) and investigate the effects of host genetics and habitats on the microbial composition, 454 pyrosequencing based on the 16S rRNA gene were performed. We collected six groups of samples, including M. nipponense shrimp from two populations, rivers and lakes, and one sister species (M. asperulum) as an out group. We found that Proteobacteria is the major phylum in oriental river prawn, followed by Firmicutes and Actinobacteria. Compositional analysis showed microbial divergence between the two shrimp species is higher than that between the two populations of one shrimp species collected from river and lake. Hierarchical clustering also showed that host genetics had a greater impact on the divergence of gut microbiome than host habitats. This finding was also congruent with the functional prediction from the metagenomic data implying that the two shrimp species still shared the same type of biological functions, reflecting a similar metabolic profile in their gut environments. In conclusion, this study provides the first investigation of the gut microbiome of fresh water shrimp, and supports the hypothesis of host species-specific signatures of bacterial community composition. PMID:26168244

  9. Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium nipponense)

    PubMed Central

    Chen, Po-Cheng; Weng, Francis Cheng-Hsuan; Jean, Wen Dar; Wang, Daryi

    2015-01-01

    The gut microbial community is one of the richest and most complex ecosystems on earth, and the intestinal microbes play an important role in host development and health. Next generation sequencing approaches, which rapidly produce millions of short reads that enable the investigation on a culture independent basis, are now popular for exploring microbial community. Currently, the gut microbiome in fresh water shrimp is unexplored. To explore gut microbiomes of the oriental river prawn (Macrobrachium nipponense) and investigate the effects of host genetics and habitats on the microbial composition, 454 pyrosequencing based on the 16S rRNA gene were performed. We collected six groups of samples, including M. nipponense shrimp from two populations, rivers and lakes, and one sister species (M. asperulum) as an out group. We found that Proteobacteria is the major phylum in oriental river prawn, followed by Firmicutes and Actinobacteria. Compositional analysis showed microbial divergence between the two shrimp species is higher than that between the two populations of one shrimp species collected from river and lake. Hierarchical clustering also showed that host genetics had a greater impact on the divergence of gut microbiome than host habitats. This finding was also congruent with the functional prediction from the metagenomic data implying that the two shrimp species still shared the same type of biological functions, reflecting a similar metabolic profile in their gut environments. In conclusion, this study provides the first investigation of the gut microbiome of fresh water shrimp, and supports the hypothesis of host species-specific signatures of bacterial community composition. PMID:26168244

  10. Habitat Evaluation Procedures (HEP) Report; Big Island - The McKenzie River, Technical Report 1998-2001.

    SciTech Connect

    Sieglitz, Greg

    2001-03-01

    The Big Island site is located in the McKenzie River flood plain, containing remnant habitats of what was once more common in this area. A diverse array of flora and fauna, representing significant wildlife habitats, is present on the site. Stands of undisturbed forested wetlands, along with riparian shrub habitats and numerous streams and ponds, support a diversity of wildlife species, including neotropical migratory songbirds, raptors, mammals, reptiles, and amphibians (including two State-listed Sensitive Critical species). The project is located in eastern Springfield, Oregon (Figure 1). The project area encompasses 187 acres under several ownerships in Section 27 of Township 17S, Range 2W. Despite some invasion of non-native species, the site contains large areas of relatively undisturbed wildlife habitat. Over several site visits, a variety of wildlife and signs of wildlife were observed, including an active great blue heron rookery, red-Legged frog egg masses, signs of beaver, and a bald eagle, Wildlife habitat values resulting from the purchase of this site will contribute toward the goal of mitigating for habitat lost as outlined in the Bonneville Power Administration's (BPA) Mitigation and Enhancement Plan for the Willamette River Basin. Under this Plan, mitigation goals and objectives were developed as a result of the loss of wildlife habitat due to the construction of Federal hydroelectric facilities in the Willamette River Basin. Results of the Habitat Evaluation Procedures (HEP) will be used to: (1) determine the current habitat status of the study area and habitat enhancement potential of the site consistent with wildlife mitigation goals and objectives; and (2) develop a management plan for the area.

  11. Determining Physical Fish Habitat in Large Rivers with Multibeam Sonar: An Example with Pallid Sturgeon in the Lower Missouri River

    NASA Astrophysics Data System (ADS)

    Delonay, A. J.; McElroy, B. J.; Jacobson, R. B.; Thorsby, M. R.

    2010-12-01

    Fish in large rivers require a range of fluvial environments to complete their life cycles. Conditions in these environments often preclude the direct observation of physical habitats and how fish use them to perform vital life functions. Multibeam sonar provides excellent capability for the determination of characteristics of physical habitats in order to relate them to their biotic uses and ecological functions. The endangered pallid sturgeon (Scaphirhynchus albus) is a rheophilic benthic fish and one of the dominant predators in the Lower Missouri River. Within its preferred main-channel and channel-border habitats, bed topography (roughness) is a primary determinant of physical habitat for pallid sturgeon. Beyond its importance as the habitat terrain, bed topography is intimately tied to other physical characteristics: existence of flow refugia, migration pathways, magnitude of sediment flux, substrate texture, and turbulence conditions. Development of a detailed understanding of what constitutes effective spawning habitat is critical to management of the species because of concerns that habitat quantity or quality may be limiting reproduction. Here we present data collected from a spring 2010 spawning location over the duration of the spawning event. A reproductive female pallid sturgeon implanted with an acoustic transmitter was tracked 48 km to an upstream apex where the fish is presumed to have spawned. Positional data were combined with data on the fish’s ambient temperature and pressure from data storage tags implanted in the fish. The resulting depth estimates from pressure data allow for three-dimensional assessments of the sturgeon's position co-registered with multibeam bathymetric data. From the bathymetry, we estimated the topographic roughness in the vicinity of the fish by evaluating topographic variability. This roughness approximates the characteristic height of local bed forms. We also compared fish locations and multibeam bathymetry with

  12. The Detroit River: Effects of contaminants and human activities on aquatic plants and animals and their habitats

    USGS Publications Warehouse

    Manny, Bruce A.; Kenaga, David

    1991-01-01

    Despite the extensive urbanization of its watershed, the Detroit River still supports diverse fish and wildlife populations. Conflicting uses of the river for waste disposal, water withdrawals, shipping, recreation, and fishing require innovative management. Chemicals added by man to the Detroit River have adversely affected the health and habitats of the river's plants and animals. In 1985, as part of an Upper Great Lakes Connecting Channels Study sponsored by Environment Canada and the U.S. Environmental Protection Agency, researchers exposed healthy bacteria, plankton, benthic macroinvertebrates, fish, and birds to Detroit River sediments and sediment porewater. Negative impacts included genetic mutations in bacteria; death of macroinvertebrates; accumulation of contaminants in insects, clams, fish, and ducks; and tumor formation in fish. Field surveys showed areas of the river bottom that were otherwise suitable for habitation by a variety of plants and animals were contaminated with chlorinated hydrocarbons and heavy metals and occupied only by pollution-tolerant worms. Destruction of shoreline wetlands and disposal of sewage and toxic substances in the Detroit River have reduced habitat and conflict with basic biological processes, including the sustained production of fish and wildlife. Current regulations do not adequately control pollution loadings. However, remedial actions are being formulated by the U.S. and Canada to restore degraded benthic habitats and eliminate discharges of toxic contaminants into the Detroit River.

  13. Changes in Salmon Spawning Habitat Distributions Following Rapid and Gradual Channel Adjustments in the Cedar River, Washington

    NASA Astrophysics Data System (ADS)

    Timm, R. K.; Wissmar, R. C.; Berge, H.; Foley, S.

    2005-05-01

    Anthropogenic controls on rivers such as dams, hardened banks, and land uses limit the interactions between main river channel and floodplain ecosystems and contribute to decreased habitat diversity. These system controls dampen the frequency and magnitude of natural disturbances that contibute to physical habitat structure and variability. Under natural and altered disturbance regimes river systems are expected to exhibit resiliency. However, in some cases, disturbances cause fluctuations in the trajectory of the mean system state that can have implications for river recovery in the short- and long-term by changing the spatial and temporal dimensions of available habitat relative to specific biological requirements. Historic and contemporary salmon spawning data are analyzed in the context of changing disturbance regimes in the Cedar River, Washington. Historic data are presented for active channel conditions and spawning fish distributions. Contemporary data are presented for an intensively studied reach that received a landslide that deposited approximately 50,000 m3 of sediment in the main channel, temporarily damming the river. Biologically, the spatio-temporal spawning distributions of Chinook (Oncorhynchus tshawytcha) and sockeye (O. nerka) salmon responded to modifications of physical habitat.

  14. Methods for Quantifying Shallow-Water Habitat Availability in the Missouri River

    SciTech Connect

    Hanrahan, Timothy P.; Larson, Kyle B.

    2012-04-09

    As part of regulatory requirements for shallow-water habitat (SWH) restoration, the U.S. Army Corps of Engineers (USACE) completes periodic estimates of the quantity of SWH available throughout the lower 752 mi of the Missouri River. To date, these estimates have been made by various methods that consider only the water depth criterion for SWH. The USACE has completed estimates of SWH availability based on both depth and velocity criteria at four river bends (hereafter called reference bends), encompassing approximately 8 river miles within the lower 752 mi of the Missouri River. These estimates were made from the results of hydraulic modeling of water depth and velocity throughout each bend. Hydraulic modeling of additional river bends is not expected to be completed for deriving estimates of available SWH. Instead, future estimates of SWH will be based on the water depth criterion. The objective of this project, conducted by the Pacific Northwest National Laboratory for the USACE Omaha District, was to develop geographic information system methods for estimating the quantity of available SWH based on water depth only. Knowing that only a limited amount of water depth and channel geometry data would be available for all the remaining bends within the lower 752 mi of the Missouri River, the intent was to determine what information, if any, from the four reference bends could be used to develop methods for estimating SWH at the remaining bends. Specifically, we examined the relationship between cross-section channel morphology and relative differences between SWH estimates based on combined depth and velocity criteria and the depth-only criterion to determine if a correction factor could be applied to estimates of SWH based on the depth-only criterion. In developing these methods, we also explored the applicability of two commonly used geographic information system interpolation methods (TIN and ANUDEM) for estimating SWH using four different elevation data

  15. Patterns of fish assemblage structure and habitat use among main- and side-channel environments in the lower Kootenai River, Idaho

    USGS Publications Warehouse

    Watkins, Carson J.; Stevens, Bryan S.; Quist, Michael; Shepard, Bradley B.; Ireland, Susan C.

    2015-01-01

    The lower Kootenai River, Idaho, was sampled during the summers of 2012 and 2013 to evaluate its fish assemblage structure at seven sites within main- and side-channel habitats where large-scale habitat rehabilitation was undertaken. Understanding the current patterns of fish assemblage structure and their relationships with habitat is important for evaluating the effects of past and future rehabilitation projects on the river. Species-specific habitat associations were modeled, and the variables that best explained the occurrence and relative abundance of fish were identified in order to guide future habitat rehabilitation so that it benefits native species. The results indicated that the side-channel habitats supported higher species richness than the main-channel habitats and that nonnative fishes were closely associated with newly rehabilitated habitats. This research provides valuable insight on the current fish assemblages in the Kootenai River and the assemblage-level responses that may occur as a result of future rehabilitation activities.

  16. Effects of stream acidification and habitat on fish populations of a North American river

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2001-01-01

    Water quality, physical habitat, and fisheries at sixteen reaches in the Neversink River Basin were studied during 1991-95 to identify the effects of acidic precipitation on stream-water chemistry and on selected fish-species populations, and to test the hypothesis that the degree of stream acidification affected the spatial distribution of each fish-species population. Most sites on the East Branch Neversink were strongly to severely acidified, whereas most sites on the West Branch were minimally to moderately acidified. Mean density of fish populations ranged from 0 to 2.15 fish/m2; biomass ranged from 0 to 17.5 g/m2. Where brook trout were present, their population density ranged from 0.04 to 1.09 fish/m2, biomass ranged from 0.76 to 12.2 g/m2, and condition (K) ranged from 0.94 to 1.07. Regression analyses revealed strong relations (r2 ?? 0.41 to 0.99; p ??? 0.05) between characteristics of the two most common species (brook trout and slimy sculpin) populations and mean concentrations of inorganic monomeric aluminum (Alim), pH, Si, K+, NO3/-, NH4/+, DOC, Ca2+, and Na+; acid neutralizing capacity (ANC); and water temperature. Stream acidification may have adversely affected fish populations at most East Branch sites, but in other parts of the Neversink River Basin these effects were masked or mitigated by other physical habitat, geochemical, and biological factors.

  17. Assessment of habitat of wildlife communities on the Snake River, Jackson, Wyoming

    USGS Publications Warehouse

    Schroeder, Richard L.; Allen, Arthur W.

    1992-01-01

    The composition of the wildlife community in western riparian habitats is influenced by the horizontal and vertical distribution of vegetation, the physical complexity of the channel, and barriers to movement along the corridor. Based on information from the literature and a workshop, a model was developed to evaluate the wildlife community along the Snake River near Jackson, Wyoming. The model compares conditions of the current or future years with conditions in 1956, before constructions of levees along the river. Conditions in 1956 are assumed to approximate the desirable distribution of plant cover types and the associated wildlife community and are used as a standard of comparison in the model. The model may be applied with remotely sensed data and is compatible with a geographic information systems analysis. In addition to comparing existing or future conditions with conditions in 1956, the model evaluated floodplain and channel complexity and assesses anthropogenic disturbance and its potential effect on the quality of wildlife habitat and movements of wildlife in the riparian corridor.

  18. Long-term Monitoring of Spawning Habitat Rehabilitation Projects in a Regulated River

    NASA Astrophysics Data System (ADS)

    Wheaton, J. M.; Brasington, J.; Darby, S. E.; Merz, J.; Pasternack, G.; Sear, D.; Vericat, D.

    2009-04-01

    Monitoring geomorphic changes in response to river restoration interventions through the use of repeat topographic surveying is becoming more common in long-term monitoring programs. Repeat montitoring surveys are often preformed before and immediately following construction, and then on some defined interval (typically annually) or event-basis. How uncertainties in these surveys are managed to decipher what changes can be taken as meaningful adjustments of the project and/or geomorphic changes versus just noise in the data requires careful consideration. Moreover, once the reliability of the data is reasonably well understood, how to interpret the changes and segregate the resulting sediment budgets has not received adequate attention in the literature. Here, eight repeat topographic surveys from four different spawning habitat rehabilitation projects on the heavily Mokelumne River of California, are used to demonstrate the utility of applying some new methods for accounting for DEM reliability uncertainties and budget segregation techniques. The significance of recorded geomorphic changes are related to spawning and incubating Chinook salmon (Oncorhynchus tshawytsch) to explore questions such as: 1) the impact of a large flood on incubating salmonids embryos; 2) the influence of high-flow dam releases on physical habitat quality; and 3) documenting changes that took place specifically where salmon spawned. The results highlight some simple but interpretively powerful techniques for linking ecohydraulic and geomorphic field monitoring data at a scale relevant to salmon.

  19. Characterization of eco-hydraulic habitats for examining biogeochemical processes in rivers

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; O'Connor, B. L.; Harvey, J. W.

    2009-12-01

    Spatial variability in biogeochemical reaction rates in streams is often attributed to sediment characteristics such as particle size, organic material content, and biota attached to or embedded within the sediments. Also important in controlling biogeochemical reaction rates are hydraulic conditions, which influence mass transfer of reactants from the stream to the bed, as well as hyporheic exchange within near-surface sediments. This combination of physical and ecological variables has the potential to create habitats that are unique not only in sediment texture but also in their biogeochemical processes and metabolism rates. In this study, we examine the two-dimensional (2D) variability of these habitats in an agricultural river in central Iowa. The streambed substratum was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae, benthic organic material, and coarse woody debris. Hydraulic conditions were quantified using a calibrated 2D model, and hyporheic exchange was assessed using a scaling relationship based on sediment and hydraulic characteristics. Point-metabolism rates were inferred from measured sediment dissolved oxygen profiles using an effective diffusion model and compared to traditional whole-stream measurements of metabolism. The 185 m study reach had contrasting geomorphologic and hydraulic characteristics in the upstream and downstream portions of an otherwise relatively straight run of a meandering river. The upstream portion contained a large central gravel bar (50 m in length) flanked by riffle-run segments and the downstream portion contained a deeper, fairly uniform channel cross-section. While relatively high flow velocities and gravel sediments were characteristic of the study river, the upstream island bar separated channels that differed with sandy gravels on one side and cobbley gravels on the other. Additionally, green algae was almost exclusively found in riffle

  20. Assessment of Shallow-Water Habitat Availability in Modified Dike Structures, Lower Missouri River, 2004

    USGS Publications Warehouse

    Jacobson, Robert B.; Elliott, Caroline M.; Johnson, Harold E., III

    2004-01-01

    This study documented the effects of wing-dike notching on the availabilit of shallow water habitat in the Lower Missouri River. Five wing dikes were surveyed in late May 2004 after they were notched in early May as part of shallow-water habitat (SWH) rehabilitation activities undertaken by the U.S. Army Corps of Engineers. Surveys included high-resolution hydroacoustic depth, velocity, and substrate mapping. Relations of bottom elevations within the wing dike fields to index discharges and water-surface elevations indicate that little habitat meeting the SWH definition was created immediately following notching. This result is not unexpected, as significant geomorphic adjustment may require large flow events. Depth, velocity, and substrate measurements in the post-rehabilitation time period provide baseline data for monitoring ongoing changes. Differences in elevation and substrate were noted at all sites. Most dike fields showed substantial aggradation and replacement of mud substrate with sandier sediment, although the changes did not result in increased availability of SWH at the index discharge. It is not known how much of the elevation and substrate changes can be attributed directly to notching and how much would result from normal sediment transport variation.

  1. Fish community structure in natural and engineered habitats in the Kansas river

    USGS Publications Warehouse

    White, K.; Gerken, J.; Paukert, C.; Makinster, A.

    2010-01-01

    We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.

  2. Fish community structure in natural and engineered habitats in the Kansas River

    USGS Publications Warehouse

    White, K.; Gerken, J.; Paukert, Craig P.; Makinster, Andrew S.

    2010-01-01

    We investigated fish assemblage structure in engineered (rip-rap) and natural habitats (log jams and mud banks) in the Kansas River USA to determine if natural structures had higher abundance and diversity of fishes at a local spatial scale. A total of 439 randomly selected sites were boat electrofished from May to August 2005 and 2006. Mean species diversity and richness were significantly higher in rip-rap than log jams and mud banks. Mean relative abundance (CPUE; number of fish collected per hour electrofishing) of six of the 15 most common fishes (>1% of total catch) were most abundant in rip-rap, two were most abundant in log jams, and none in mud banks. Rip-rap had the highest relative abundance of fluvial specialist and macrohabitat generalists, whereas mean CPUE of fluvial dependents was highest in log jams. Although a discriminant function analysis indicated that nine size classes (eight species) discriminated among three habitat types, the high misclassification rate (38%) suggested a high degree of fish assemblage overlap among the habitats. Although previous work has suggested that engineered structures (rip-rap) and urbanization are linked to reduced biotic diversity or reduced growth of fish species, our results suggest that at a local scale rip-rap may not have the same negative impacts on fish assemblages.

  3. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  4. Delineating forested river habitats and riparian floodplain hydrology with LiDAR

    NASA Astrophysics Data System (ADS)

    Vondrasek, Chris

    Rivers and the riparian forest corridor comprise a valuable freshwater ecosystem that has been altered by human activities including timber management, road building, and other land conversions. The habitats of river dependent species in the Pacific Northwest, in particular salmon have often been degraded by these activities. Many salmon runs have become threatened with extinction and have been Endangered Species Act listed. New conservation planning and policies have developed around protecting freshwater habitats and restoring more natural river processes. In WA State, timber landowners, officials from State and Federal agencies, Native tribes, and other stakeholders developed Forest Practice rules and codified a Habitat Conservation Plan with dual goals of providing regulatory surety for timber land owners and helping to recover the threatened salmon runs in forested watersheds. Conserving critical stream ecological functions and potential fish habitats throughout watersheds while managing and regulating timber harvest across the State requires accurate and up-to-date delineation and mapping of channels, tributaries, and off-channel wetlands. Monitoring the effectiveness of protection efforts is necessary but can also be difficult. Agency staff and resources are limited for both day-to-day implementation of Forest Practice rules and adaptive management. The goal of this research has been to develop efficient and accessible methods to delineate wetlands, side-channels, tributaries, and pools and backwaters created by large log jams in forested watersheds. It was also essential to use publicly available LiDAR data and to model these waters at ecologically meaningful flows. I tested a hydraulic model at a 2-year and 50-year flows, and a relative height above river surface model and compared them. I completed two additional remote sensing investigations to correlate channel movement and the locations of off-channel wetlands: an analysis of historical aerial imagery

  5. Fifteenmile Basin Habitat Improvement Project: 1990 Annual Report.

    SciTech Connect

    Asbridge, Gary M.

    1993-12-01

    U.S.D.A. Forest Service activities in the Fifteenmile basin during 1990 involved the placement of 84 log structures in a two mile reach of Fifteenmile Creek (RM 45.4-47.4) by a combination of falling trees into the channel, bucking in blowdown trees spanning the creek, and winching in existing blowdown and log segments from newly fallen trees. The primary project objective on Fifteenmile Creek was to increase physical habitat diversity and rearing habitat for age l+ winter steelhead trout. USFS personnel also conducted spring spawning surveys in sections of Ramsey and Eightmile Creeks, physical habitat pre-project monitoring in the above project reach, water temperature monitoring, and macroinvertebrate sampling.

  6. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1992 Annual Report.

    SciTech Connect

    Scheeler, Carl A.; Shaw, R.Todd

    1994-01-01

    The Umatilla habitat improvement program targets improvement of water quality and the restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall Chinook and coho salmon. The Confederated Tribes of the Umatilla Indian Reservation are responsible for enhancing stream reaches within the Reservation boundaries as guided by an implementation plan developed cooperatively with the Oregon Department of Fish and Wildlife and the U.S.D.A. Forest Service, Umatilla National Forest. Enhancements included the construction of nine boulder deflectors, two boulder weirs with pools, and 4 instream boulder placements. Instream cover was improved through the placement of 38 instream cover trees that were cabled to anchor boulders and four rootwads placed and anchored in pools. High tensile fence was constructed along 1.2 miles of stream bank to exclude livestock from riparian areas.

  7. Digital Map of Surficial Geology, Wetlands, and Deepwater Habitats, Coeur d'Alene River Valley, Idaho

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Jackson, Berne L.; Brandt, Theodore R.; Derkey, Pamela D.; Munts, Steven R.

    1999-01-01

    The Coeur d'Alene (CdA) River channel and its floodplain in north Idaho are mostly covered by metal-enriched sediments, partially derived from upstream mining, milling and smelting wastes. Relative to uncontaminated sediments of the region, metal-enriched sediments are highly enriched in silver, lead, zinc, arsenic, antimony and mercury, copper, cadmium, manganese, and iron. Widespread distribution of metal-enriched sediments has resulted from over a century of mining in the CdA mining district (upstream), poor mine-waste containment practices during the first 80 years of mining, and an ongoing series of over-bank floods. Previously deposited metal-enriched sediments continue to be eroded and transported down-valley and onto the floodplain during floods. The centerpiece of this report is a Digital Map Surficial Geology, Wetlands and Deepwater Habitats of the Coeur d'Alene (CdA) River valley (sheets 1 and 2). The map covers the river, its floodplain, and adjacent hills, from the confluence of the North and South Forks of the CdA River to its mouth and delta front on CdA Lake, 43 linear km (26 mi) to the southwest (river distance 58 km or 36 mi). Also included are the following derivative theme maps: 1. Wetland System Map; 2. Wetland Class Map; 3. Wetland Subclass Map; 4. Floodplain Map; 5. Water Regime Map; 6. Sediment-Type Map; 7. Redox Map; 8. pH Map; and 9. Agricultural Land Map. The CdA River is braided and has a cobble-gravel bottom from the confluence to Cataldo Flats, 8 linear km (5 mi) down-valley. Erosional remnants of up to four alluvial terraces are present locally, and all are within the floodplain, as defined by the area flooded in February of 1996. High-water (overflow) channels and partly filled channel scars braid across some alluvial terraces, toward down-valley marshes and (or) oxbow ponds, which drain back to the river. Near Cataldo Flats, the river gradient flattens, and the river coalesces into a single channel with a large friction

  8. Diel movement and habitat use by paddlefish in Navigation Pool 8 of the upper Mississippi River

    USGS Publications Warehouse

    Zigler, Steven J.; Dewey, Michael R.; Knights, Brent C.

    1999-01-01

    We studied diel movement and habitat use by paddlefish Polyodon spathula implanted with radio transmitters in Navigation Pool 8 of the upper Mississippi River. We radio-tracked five paddlefish during three randomly chosen 24-h periods each month in May, Aug, and Oct 1995. Paddlefish were located by boat one to three times every 3 h during each 24-h period. At each location, geographic coordinates were determined with a global positioning system receiver using the Precise Positioning Service, and depth was measured with a depth sounder. Location coordinates were plotted with ARC/INFO software on a Geographic Information System land–water coverage. Movement distances were calculated as the linear distance between sequential locations. Radio-tagged paddlefish usually remained in a secondary channel that had low current velocity during all seasons, whereas main channel, main channel border, tailwater, and backwater habitats were seldom used. Paddlefish strongly selected areas that were deep; about 62% of paddlefish locations were in areas with more than 6 m of depth, although this habitat constituted only 14.5% of the total study area. However, paddlefish used significantly shallower areas during the night than during the day. Paddlefish moved significantly larger distances at night than during the day in spring and fall, but differences in movement among diel periods during summer were not significant. Our research suggests that radiotelemetry studies that need to determine depth use or movement of paddlefish during small time scales may need to incorporate a diel component. However, study objectives to determine use of general habitat types by radio-marked paddlefish can be adequately met by tracking during the day.

  9. Effects of flow alterations on trout habitat in the Cumberland River below Wolf Creek Dam, Kentucky. Final report

    SciTech Connect

    Martin, J.L.; Curtis, L.T.; Nestler, John M.

    1986-11-01

    This report relates quality of fish habitat to flow conditions (discharge) in the Cumberland River below Wolf Creek Dam, Kentucky. Fish species' life stages targeted for investigation included juvenile brown trout, adult brown trout, adult rainbow trout, and adult brook trout. The Physical Habitat Simulation Systems (PHABSIM) was used to evaluate effects of flow variations on fish habitat, to allow evaluation of fishery effects of various design and operational alternatives, and to provide information to assist in the overall management of this natural resource for power generation and fishery benefits.

  10. Geomorphic and Ecologic Interactions of Large Wood and Pacific Salmonid Redds Across Habitat Units on a Regulated California River

    NASA Astrophysics Data System (ADS)

    Senter, A. E.; Pasternack, G. B.

    2007-12-01

    Large wood pieces (LW, >1 m length, >10 cm diameter) are important components of geomorphic and ecologic dynamics within river systems. Physical presence of LW within a bankful channel can influence flow, sediment deposition and scour patterns, and storage of organic matter, whereas ecologic elements of LW include hydraulic variability, habitat, and nutrient sources for aquatic species. In regulated rivers hydrologic connectivity has been lost and ecosystem dynamics disrupted, yet lower reaches continue to serve as habitat, and now as headwaters, for a myriad of species including anadromous salmonids returning to spawn and complete their life-cycles. Regardless of condition, lower reaches of regulated rivers must serve as ecosystem hotspots in response to anthropogenic manipulations of the watershed. In this research, interactions between large wood, Pacific salmonid redds, and aquatic habitat units (i.e. riffle, run, glide, and pool as defined by depth and velocity) were explored in a regulated, mid-sized (i.e. channel width is greater than most tree heights), Mediterranean-climate (i.e. smaller, softer-wood trees dominate the landscape) river draining a portion of the Sierra Nevada of California. Because watershed connectivity has been severed, riparian zones highly altered, and LW removal remains common, LW levels are thought to be very low in regulated ecosystems. The study hypothesis was that a dynamic and healthy ecosystem might have areas of low, optimal, and overabundances of wood, which would correlate to low, optimal, and low redd abundances, respectively. On the other hand, in an ecosystem where connectivity is diminished, an increase in the amount of LW may potentially convert otherwise unsuitable spawning habitat to highly preferred spawning habitat. In exploring the dynamics of wood and redds at the habitat unit scale, characteristics of 530 LW pieces, locations of 650 redds, and habitat units along a 7.5 km reach directly below a dam were mapped

  11. Stream habitat and water-quality information for sites in the Buffalo River Basin and nearby basins of Arkansas, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Stream-habitat and water-quality information are presented for 52 sites in the Buffalo River Basin and adjacent areas of the White River Basin. The information was collected during the summers of 2001 and 2002 to supplement fish community sampling during the same time period.

  12. Habitat Fragmentation and Species Extirpation in Freshwater Ecosystems; Causes of Range Decline of the Indus River Dolphin (Platanista gangetica minor)

    PubMed Central

    Braulik, Gill T.; Arshad, Masood; Noureen, Uzma; Northridge, Simon P.

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world’s most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world’s most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin’s range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin. PMID:25029270

  13. Habitat fragmentation and species extirpation in freshwater ecosystems; causes of range decline of the Indus river dolphin (Platanista gangetica minor).

    PubMed

    Braulik, Gill T; Arshad, Masood; Noureen, Uzma; Northridge, Simon P

    2014-01-01

    Habitat fragmentation of freshwater ecosystems is increasing rapidly, however the understanding of extinction debt and species decline in riverine habitat fragments lags behind that in other ecosystems. The mighty rivers that drain the Himalaya - the Ganges, Brahmaputra, Indus, Mekong and Yangtze - are amongst the world's most biodiverse freshwater ecosystems. Many hundreds of dams have been constructed, are under construction, or are planned on these rivers and large hydrological changes and losses of biodiversity have occurred and are expected to continue. This study examines the causes of range decline of the Indus dolphin, which inhabits one of the world's most modified rivers, to demonstrate how we may expect other vertebrate populations to respond as planned dams and water developments come into operation. The historical range of the Indus dolphin has been fragmented into 17 river sections by diversion dams; dolphin sighting and interview surveys show that river dolphins have been extirpated from ten river sections, they persist in 6, and are of unknown status in one section. Seven potential factors influencing the temporal and spatial pattern of decline were considered in three regression model sets. Low dry-season river discharge, due to water abstraction at irrigation barrages, was the principal factor that explained the dolphin's range decline, influencing 1) the spatial pattern of persistence, 2) the temporal pattern of subpopulation extirpation, and 3) the speed of extirpation after habitat fragmentation. Dolphins were more likely to persist in the core of the former range because water diversions are concentrated near the range periphery. Habitat fragmentation and degradation of the habitat were inextricably intertwined and in combination caused the catastrophic decline of the Indus dolphin. PMID:25029270

  14. Snake River Sockeye Salmon Habitat and Limnological Research : 2005 Annual Report.

    SciTech Connect

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.; Gilliland, Kim

    2006-07-14

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2005 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee spawning in Fishhook and Alturas Lake creeks; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  15. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    SciTech Connect

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  16. Effects of channel modification on fish habitat in the upper Yellowstone River: Final report to the USACE, Omaha

    USGS Publications Warehouse

    Bowen, Zachary H.; Bovee, Ken D.; Waddle, Terry J.

    2003-01-01

    A two-dimensional hydrodynamic simulation model was coupled with a geographic information system (GIS) to produce a variety of habitat classification maps for three study reaches in the upper Yellowstone River basin in Montana. Data from these maps were used to examine potential effects of channel modification on shallow, slow current velocity (SSCV) habitats that are important refugia and nursery areas for young salmonids. At low flows, channel modifications were found to contribute additional SSCV habitat, but this contribution was negligible at higher discharges. During runoff, when young salmonids are most vulnerable to downstream displacement, the largest areas of SSCV habitat occurred in side channels, point bars, and overbank areas. Because of the diversity of elevations in the existing Yellowstone River, SSCV habitat tends to be available over a wide range of discharges. Based on simulations in modified and unmodified sub-reaches, channel simplification results in decreased availability of SSCV habitat, particularly during runoff. The combined results of the fish population and fish habitat studies present strong evidence that during runoff, SSCV habitat is most abundant in side channel and overbank areas and that juvenile salmonids use these habitats as refugia. Channel modifications that result in reduced availability of side channel and overbank habitats, particularly during runoff, will probably cause local reductions in juvenile abundances during the runoff period. Effects of reduced juvenile abundances during runoff on adult numbers later in the year will depend on (1) the extent of channel modification, (2) patterns of fish displacement and movement, (3) longitudinal connectivity between reaches that contain refugia and those that do not, and (4) the relative importance of other limiting factors.

  17. Assessment of the Fishery Improvement Opportunities on the Pend Oreille River, Appendices, 1990 Annual Report.

    SciTech Connect

    Ashe, Becky L.; Lillengreen, Kelly L.; Vella, John J.

    1991-03-01

    This report is a compilation of the seven appendices to DOE/BP/39339--4 the annual report for FY 1990. These appendices contain the supporting numerical data for the study. The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreilla River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the third and final year of the study. The objectives of the third year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; each species growth rate, feeding habits, abundance of preferred prey, and migration patterns; and the seasonal movement patterns and habitat utilization of largemouth bass.

  18. Assessment of the Fshery Improvement Opportunities on the Pend Oreille River, 1990 Annual Report.

    SciTech Connect

    Ashe, Becky L.; Lillengreen, Kelly L.; Vella, John J.

    1991-03-01

    The purpose of this study was to assess the fishery improvement opportunities on the Box Canyon portion of the Pend Oreilla River. This three year study was initiated as part of the Northwest Power Planning Council's 1987 Columbia River Basin Fish and Wildlife Program. This report contains the findings of the third and final year of the study. The objectives of the third year of the study were to determine the relative abundance of each species in the river and sloughs; the population levels in five selected tributaries and, if possible, for fish in the river and sloughs; each species growth rate, feeding habits abundance preferred prey, and migration patterns; and the seasonal movement patterns and habitat utilization of largemouth bass. 64 refs., 8 figs., 263., tabs.

  19. A Groundwater flow Model of the Colorado River Delta to Support Riparian Habitat Restoration in Northern Mexico

    NASA Astrophysics Data System (ADS)

    Maddock, T.; Feirstein, E.; Baird, K. J.; Ajami, H.

    2007-05-01

    Quantification of groundwater flow dynamics and of the interactions among groundwater, surface water, and riparian vegetation, represent key components in the development of a balanced restoration plan for functional riparian ecosystems. A groundwater model was developed using MODFLOW 2000 to support of riparian restoration along the Colorado River Delta (Mexico: Baja California, Sonora). The Colorado River is widely recognized as one of the most modified and allocated rivers in the United States. For over 50 years flows into the Delta were severely reduced by the requirements of an emergent American West. However, subsequent to discharge pulses associated with the filling of Lake Powell, and the increased precipitation that accompanied ENSO cycles, a semblance of a native riparian habitat has been observed in the Delta since the 1980's (Zamora- Arroyo et al. 2001). The Delta and the riparian ecosystems of the region have since become the focus of a substantial body of multidisciplinary research. The research goal is to understand water table dynamics with particular attention to stream-aquifer interactions and groundwater behavior in the root zone. Groundwater reliant transpiration requirements were quantified for a set of dominant native riparian species using the Riparian ET (RIP-ET) package, an improved MODFLOW evapotranspiration (ET) module. RIP-ET simulates ET using a set of eco-physiologically based curves that more accurately represents individual plant species, reflects habitat complexity, and deals spatially with plant and water table distribution. When used in conjunction with a GIS based postprocessor (RIP-GIS.net), RIP-ET provides the basis for mapping groundwater conditions as they relate to user-specified plant groups. This explicit link between groundwater and plant sustainability is a driver to restoration design and allows for scenario modeling of various hydrologic conditions. Groundwater requirements determined in this research will be used by

  20. Snake River Sockeye Salmon Habitat and Limnological Research; 1998 Annual Report.

    SciTech Connect

    Lewis, Bert; Griswold, Robert G.; Taki, Doug

    2000-05-01

    In March of 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an inter-agency effort to save the Redfish Lake stock of O. nerka from extinction. This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the calendar year of 1998. Project objectives included; (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka released from the captive rearing program into Pettit and Alturas lakes; (2) fertilize Redfish, Pettit, and Alturas lakes; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) control the number of spawning kokanee in Fishhook Creek; (6) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity. Results by objective are summarized.

  1. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  2. Geomorphic Classification and Evaluation of Channel Width and Emergent Sandbar Habitat Relations on the Lower Platte River, Nebraska

    USGS Publications Warehouse

    Elliott, Caroline M.

    2011-01-01

    This report presents a summary of geomorphic characteristics extracted from aerial imagery for three broad segments of the Lower Platte River. This report includes a summary of the longitudinal multivariate classification in Elliott and others (2009) and presents a new analysis of total channel width and habitat variables. Three segments on the lower 102.8 miles of the Lower Platte River are addressed in this report: the Loup River to the Elkhorn River (70 miles long), the Elkhorn River to Salt Creek (6.9 miles long), and Salt Creek to the Missouri River (25.9 miles long). The locations of these segments were determined by the locations of tributaries potentially significant to the hydrology or sediment supply of the Lower Platte River. This report summarizes channel characteristics as mapped from July 2006 aerial imagery including river width, valley width, channel curvature, and in-channel habitat features. In-channel habitat measurements were not made under consistent hydrologic conditions and must be considered general estimates of channel condition in late July 2006. Longitudinal patterns in these features are explored and are summarized in the context of the longitudinal multivariate classification in Elliott and others (2009) for the three Lower Platte River segments. Detailed descriptions of data collection and classification methods are described in Elliott and others (2009). Nesting data for the endangered interior least tern (Sternula antillarum) and threatened piping plover (Charadrius melodus) from 2006 through 2009 are examined within the context of the multivariate classification and Lower Platte River segments. The widest reaches of the Lower Platte River are located in the segment downstream from the Loup River to the Elkhorn River. This segment also has the widest valley and highest degree of braiding of the three segments and many large vegetated islands. The short segment of river between the Elkhorn River and Salt Creek has a fairly low valley

  3. Evidence of the St. Clair-Detroit River system as a dispersal corridor and nursery habitat for transient larval burbot

    USGS Publications Warehouse

    McCullough, Darrin E.; Roseman, Edward F.; Keeler, Kevin M.; DeBruyne, Robin L.; Pritt, Jeremy J.; Thompson, Patricia A.; Ireland, Stacey A.; Ross, Jason E.; Bowser, Dustin; Hunter, Robert D.; Castle, Dana Kristina; Fischer, Jason; Provo, Stacy A.

    2015-01-01

    Burbot Lota lota are distributed across the Laurentian Great Lakes where they occupy a top piscivore role. The St. Clair-Detroit River System is known to provide a migration corridor as well as spawning and nursery habitat for many indigenous fishes of economic and ecological significance. However, knowledge is scant of the early life history of burbot and the importance of this system in their dispersal, survival, and recruitment. In order to assess the role of the St. Clair-Detroit River System to burbot ecology, we collected larval burbot during ichthyoplankton surveys in this system from 2010 to 2013 as part of a habitat restoration monitoring program. More and larger burbot larvae were found in the St. Clair River than in the lower Detroit River, although this may be due to differences in sampling methods between the two rivers. Consistent with existing studies, larval burbot exhibited ontogenesis with a distinct transition from a pelagic zooplankton-based diet to a benthic macroinvertebrate-based diet. Our results demonstrate that the St. Clair-Detroit Rivers provide food resources, required habitat, and a migration conduit between the upper and lower Great Lakes, but the contribution of these fish to the lower lakes requires further examination.

  4. Swimming performance of larval robust redhorse Moxostoma robustum and low-velocity habitat modeling in the Oconee River, Georgia

    USGS Publications Warehouse

    Ruetz, C. R., III; Jennings, C.A.

    2000-01-01

    The robust redhorse Moxostoma robustum occurs in an 85-km stretch of the Oconee River, Georgia, downstream of a hydropower dam. The population consists primarily of older individuals and recruitment in recent years has been minimal. Operation of the hydropower dam may have affected recruitment negatively by displacing newly hatched larvae downstream and away from nursery habitats. Our null hypothesis was that larval robust redhorse can tolerate water velocities that occur in the Oconee River during peak river discharge related to hydropower generation. We measured swimming speeds for three size-classes of larvae (means: 13.1, 16.2, and 20.4 mm total length) and modeled low-velocity habitat (i.e., as defined by larval swimming speeds) in the Oconee River. We used logistic regression to calculate prolonged swimming speeds (i.e., water velocity at which 50% of fish failed to swim for 1 h) for each size-class and to predict the proportion of larvae in the water column that could maintain their position in the river. Prolonged swimming speeds were 6.9, 10.6, and 11.7 cm/s for 13.1-, 16.2-, and 20.4-mm fish, respectively. Habitat modeling suggested that low-velocity areas were present in the river and that there was not a strong relationship between low-velocity habitat and discharge. However, low-velocity habitats were dynamic during fluctuating discharge, and the ability of larval robust redhorse to access these dynamic areas is unknown. ?? Copyright by the American Fisheries Society 2000.

  5. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2001-2002.

    SciTech Connect

    Vaivoda, Alexis

    2003-11-01

    This report summarizes the project implementation and monitoring of all habitat activities that occurred over Fiscal Year 2002 (FY 02). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 02. A description of the progress during FY 02 and reasoning for deviation from the original tasks and timeline are given. OBJECTIVE 1--Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administration oversight and coordination of the habitat statement of work, budget, subcontracts and personnel was provided. OBJECTIVE 2--Develop, coordinate, and implement the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document is utilized for many purposes including: drafting the Watershed Action Plan, ranking projects for funding, and prioritizing projects to target in the future. This document was updated and revised to reflect changes to fish habitat and needs in the Hood River basin based upon other documents and actions taken in the basin. OBJECTIVE 3--Assist Middle Fork Irrigation District in developing an alternative irrigation water source on Evans Creek (Hutson pond and Evans Creek diversion), eliminating the need for irrigation diversion dams which happen to be partial fish barriers. Upon completion, this project will restore 2.5 miles of access for winter steelhead, coho salmon, and resident trout habitat. This objective was revised and included in the FY 03 Statement of Work for Project No. 1998-021-00. During FY 02 the final engineering was completed on this project. However, due to a lengthy permitting process and NMFS consultation, this project was inadvertently delayed. Project completion is expected in July 2003. OBJECTIVE 4--Assist the Farmers Irrigation District (FID) in construction and

  6. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary, Annual Report of Research.

    SciTech Connect

    Bottom, Daniel L.; Simenstad, Charles A.; Campbell, Lance

    2009-05-15

    In 2002 with support from the U.S. Army Corps of Engineers (USACE), an interagency research team began investigating salmon life histories and habitat use in the lower Columbia River estuary to fill significant data gaps about the estuary's potential role in salmon decline and recovery . The Bonneville Power Administration (BPA) provided additional funding in 2004 to reconstruct historical changes in estuarine habitat opportunities and food web linkages of Columbia River salmon (Onchorhynchus spp.). Together these studies constitute the estuary's first comprehensive investigation of shallow-water habitats, including selected emergent, forested, and scrub-shrub wetlands. Among other findings, this research documented the importance of wetlands as nursery areas for juvenile salmon; quantified historical changes in the amounts and distributions of diverse habitat types in the lower estuary; documented estuarine residence times, ranging from weeks to months for many juvenile Chinook salmon (O. tshawytscha); and provided new evidence that contemporary salmonid food webs are supported disproportionately by wetland-derived prey resources. The results of these lower-estuary investigations also raised many new questions about habitat functions, historical habitat distributions, and salmon life histories in other areas of the Columbia River estuary that have not been adequately investigated. For example, quantitative estimates of historical habitat changes are available only for the lower 75 km of the estuary, although tidal influence extends 217 km upriver to Bonneville Dam. Because the otolith techniques used to reconstruct salmon life histories rely on detection of a chemical signature (strontium) for salt water, the estuarine residency information we have collected to date applies only to the lower 30 or 35 km of the estuary, where fish first encounter ocean water. We lack information about salmon habitat use, life histories, and growth within the long tidal

  7. Assessing predation risks for small fish in a large river ecosystem between contrasting habitats and turbidity conditions

    USGS Publications Warehouse

    Dodrill, Michael J.; Yard, Mike; Pine, William E., III

    2016-01-01

    This study examined predation risk for juvenile native fish between two riverine shoreline habitats, backwater and debris fan, across three discrete turbidity levels (low, intermediate, high) to understand environmental risks associated with habitat use in a section of the Colorado River in Grand Canyon, AZ. Inferences are particularly important to juvenile native fish, including the federally endangered humpback chub Gila cypha. This species uses a variety of habitats including backwaters which are often considered important rearing areas. Densities of two likely predators, adult rainbow trout Oncorhynchus mykiss and adult humpback chub, were estimated between habitats using binomial mixture models to examine whether higher predator density was associated with patterns of predation risk. Tethering experiments were used to quantify relative predation risk between habitats and turbidity conditions. Under low and intermediate turbidity conditions, debris fan habitat showed higher relative predation risk compared to backwaters. In both habitats the highest predation risk was observed during intermediate turbidity conditions. Density of likely predators did not significantly differ between these habitats. This information can help managers in Grand Canyon weigh flow policy options designed to increase backwater availability or extant turbidity conditions.

  8. Integrating SAS and GIS software to improve habitat-use estimates from radiotelemetry data

    USGS Publications Warehouse

    Kenow, K.P.; Wright, R.G.; Samuel, M.D.; Rasmussen, P.W.

    2001-01-01

    Radiotelemetry has been used commonly to remotely determine habitat use by a variety of wildlife species. However, habitat misclassification can occur because the true location of a radiomarked animal can only be estimated. Analytical methods that provide improved estimates of habitat use from radiotelemetry location data using a subsampling approach have been proposed previously. We developed software, based on these methods, to conduct improved habitat-use analyses. A Statistical Analysis System (SAS)-executable file generates a random subsample of points from the error distribution of an estimated animal location and formats the output into ARC/INFO-compatible coordinate and attribute files. An associated ARC/INFO Arc Macro Language (AML) creates a coverage of the random points, determines the habitat type at each random point from an existing habitat coverage, sums the number of subsample points by habitat type for each location, and outputs tile results in ASCII format. The proportion and precision of habitat types used is calculated from the subsample of points generated for each radiotelemetry location. We illustrate the method and software by analysis of radiotelemetry data for a female wild turkey (Meleagris gallopavo).

  9. Habitat Evaluation Procedures (HEP) Report; Sandy River Delta, Technical Report 2000-2002.

    SciTech Connect

    Rocklage, Ann; Ratti, John

    2002-02-01

    requisites (e.g., food and nesting cover) for that species. These variables are evaluated with vegetation sampling, and/or through the interpretation of aerial photographs and the like. Variable values are assigned a numerical score. The score may be based on a categorical rating (e.g . , different vegetation types receive different scores based on their importance for that species) or may be the result of a linear relationship (e.g., the score increases with the variable value; Figure 1). Variable scores are then input into a mathematical formula, which results in an HSI score. The HSI score ranges from 0-1, with 0 representing poor-quality habitat and 1 optimal habitat. HSI models assume a positive, linear relationship between wildlife-species density and the HSI score. For example, with an HSI score of 1, we assume that a species will be present at its highest density. Models can be projected into the future by changing variable values and observing the corresponding changes in HSI scores. Most models are relatively simple, but some are complex. These models have come under considerable scrutiny in the last several years, particularly concerning the validity of model assumptions (Van Horne 1983, Laymon and Barrett 1986, Hobbs and Hanley 1990, Kellner et al. 1992). Regardless of criticisms, these models may be used with success when there is an understanding and acceptance of model limitations. Each model should be evaluated as to its applicability in a given situation. Model validation, where results have on-the-ground verification, is highly recommended. Specific objectives of this project were to (1) conduct avian surveys and measure the present vegetation at the Sandy River Delta, (2) input the vegetation data into HSI models for 5 avian species, (3) evaluate the current habitat suitability for these species, and (4) predict species responses to potential changes in vegetation, resulting from the removal of reed canarygrass and/or Himalayan blackberry.

  10. A community-level, mesoscale analysis of fish assemblage structure in shoreline habitats of a large river using multivariate regression trees

    NASA Astrophysics Data System (ADS)

    Wilkes, Martin; Maddock, Ian; Link, Oscar; Habit, Evelyn

    2015-04-01

    Despite the numerous advantages over traditional methods ascribed to community-level analyses, including the ability to rapidly predict the abundance of multiple species and the integration of complex biological interactions, very few applications to the mesoscale of river habitats can be found in the extant literature. Most previous work has been based on single species, species-by-species modelling or reduced dimensionality approaches. Community-level analyses have especially good properties for improving the understanding of habitat associations in large rivers where biological interactions are most intense and applications of the mesohabitat concept relatively sparse. This chapter seeks to identify quantitative relationships between key environmental variables and community structure using a particular type of community-level technique known as multivariate regression trees in order to test the ecological basis for applications of the mesohabitat concept in large rivers. Mesohabitats were mapped and their environmental characteristics recorded along a reach of the San Pedro River, Chile, which is inhabited by a highly endemic fish community. A representative portion of the mesohabitats were selected for fish sampling and multivariate regression trees produced to predict community structure based on combinations of environmental variables. The analyses showed that fish assemblages were distinct at the mesoscale, with flow depth, bank materials, cover and woody debris the key predictor variables. The results support the application of the mesohabitat concept in this geographical context and establish a basis for predicting the community structure of any mesohabitat along the reach.

  11. Assessment of Salmonids and Their Habitat Conditions in the Walla Walla River Basin within Washington, Annual Report 2002-2003.

    SciTech Connect

    Mendel, Glen; Trump, Jeremy; Gembala, Mike

    2003-09-01

    This study began in 1998 to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. Stream flows in the Walla Walla Basin continue to show a general trend that begins with a sharp decline in discharge in late June, followed by low summer flows and then an increase in discharge in fall and winter. Manual stream flow measurements at Pepper bridge showed an increase in 2002 of 110-185% from July-September, over flows from 2001. This increase is apparently associated with a 2000 settlement agreement between the U.S. Fish and Wildlife Service (USFWS) and the irrigation districts to leave minimum flows in the river. Stream temperatures in the Walla Walla basin were similar to those in 2001. Upper montane tributaries maintained maximum summer temperatures below 65 F, while sites in mid and lower Touchet and Walla Walla rivers frequently had daily maximum temperatures well above 68 F (high enough to inhibit migration in adult and juvenile salmonids, and to sharply reduce survival of their embryos and fry). These high temperatures are possibly the most critical physiological barrier to salmonids in the Walla Walla basin, but other factors (available water, turbidity or sediment deposition, cover, lack of pools, etc.) also play a part in salmonid survival, migration, and breeding success. The increased flows in the Walla Walla, due to the 2000 settlement agreement, have not shown consistent improvements to stream temperatures. Rainbow/steelhead (Oncorhynchus mykiss) trout represent the most common salmonid in the basin. Densities of Rainbow/steelhead in the Walla Walla River from the Washington/Oregon stateline to Mojonnier Rd. dropped slightly from 2001, but are still considerably higher than before the 2000 settlement agreement. Other salmonids including; bull trout (Salvelinus confluentus), chinook salmon (Oncorhynchus tshawytscha), mountain whitefish (Prosopium williamsoni), and brown trout (Salmo

  12. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    SciTech Connect

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation between

  13. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    SciTech Connect

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  14. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    SciTech Connect

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  15. Development of a stream habitat index for use with an Index of Biotic Integrity in the St. Croix River Basin, Minnesota

    USGS Publications Warehouse

    Goldstein, R.M.; Lorenz, D.L.; Niemela, Scott

    2000-01-01

    More than 70 streams in the St. Croix River Basin in Minnesota were sampled for fish community composition and physical habitat during 1996–98. A habitat index was developed based on measurements, field observations, and land use. The objective was to develope a habitat index for use to evaluate water quality and the effects of nonpoint-source effects not associated with habitat degradation. Core habitat variables were determined with a concurrence analysis using principal components of two subsets of sites with pristine or least affected habitat. Although core habitat variables differed slightly between data sets, sufficient similarities allowed development of an index. The index (the sum of pluses or minuses dependent on the variable’s correlation to biotic integrity), composed of 12 core habitat variables in 5 classification groups (hydrology, geomorphology, substrate, instream habitat, and riparian/land use), was able to distinguish sites with low Index of Biotic Integrity scores not related to habitat degradation.

  16. John Day River Subbasin Fish Habitat Enhancement Project, 2001 Annual Report.

    SciTech Connect

    Powell, Russ M.; Delano, Kenneth H.; Jerome, James P.

    2002-07-01

    Work undertaken in 2001 included: (1) 3335 structure posts were pounded on six new projects thereby protecting 10 miles of stream (2) Completion of 1000 ft. of barbed wire fence and one watergap on the Middle Fork of the John Day River/ Forrest property. (3) Fence removal of 5010 ft. of barbed wire fence on the Meredith project. (4) Maintenance of all active project fences (66 miles), watergaps (76), spring developments (32) and plantings were checked and repairs performed. (5) Since the initiation of the Fish Habitat Project in 1984 we have 63.74 miles of stream protected using 106.78 miles of fence. With the addition of the Restoration and Enhancement Projects we have 180.64 miles of fence protecting 120.6 miles of stream.

  17. Distribution of Potential Spawning Habitat for Sturgeon in the Lower Missouri River, 2003-06

    USGS Publications Warehouse

    Laustrup, Mark S.; Jacobson, Robert B.; Simpkins, Darin G.

    2007-01-01

    We surveyed the Lower Missouri River downstream from Gavins Point Dam near Yankton, South Dakota, to St. Louis, Missouri, during low water conditions in 2003-06 to identify and map coarse substrate deposits and bedrock exposures that might serve as spawning areas for sturgeon and other fishes. More than 330 deposits were identified, including tributary fans, bars, and habitat-enhancement projects. The location and extent of riverside bedrock exposures immediately adjacent to the channel also were mapped. Field surveys identified 48 bedrock exposures whereas the analysis of aerial orthophotographs identified an additional 65 exposures for a total of 113. Maps illustrating the distribution of deposits and their density were developed to aid researchers studying reproductive ecology of sturgeon and other lithophilic fishes.

  18. Determination of selenium in fish from designated critical habitat of the Gunnison River, Colorado, summer 2011

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.

    2012-01-01

    This report presents results for the summer 2011 sampling of muscle plugs from common carps (Cyprinus Linnaeus), roundtail chub (Gila robusta), and bonytail chub (Gila elegans) inhabiting critical habitat in the Gunnison River in Western Colorado. Total selenium in fish muscle plugs was determined by instrumental neutron activation analysis. Total selenium concentrations (range and mean ± standard deviation) in micrograms per gram dry weight for each species were as follows: common carp: 8.5 to 35, 13 ± 7.8; roundtail chub: 5.5 to 11.2, 7.3 ± 1.6; bonytail chub: 0.8 to 8.6, 3.9 ± 4.2. Selenium concentrations in muscle plugs from 4 out of 15 roundtail chub, all 15 common carp, and 2 out of 5 bonytail chub exceeded the 8 micrograms per gram dry weight toxicity guideline for selenium in fish muscle tissue.

  19. A Multi-Scale Approach to Investigating the Red-Crowned Crane-Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation.

    PubMed

    Cao, Mingchang; Xu, Haigen; Le, Zhifang; Zhu, Mingchang; Cao, Yun

    2015-01-01

    The red-crowned crane (Grus japonensis (Statius Müller, 1776)) is a rare and endangered species that lives in wetlands. In this study, we used variance partitioning and hierarchical partitioning methods to explore the red-crowned crane-habitat relationship at multiple scales in the Yellow River Delta Nature Reserve (YRDNR). In addition, we used habitat modeling to identify the cranes' habitat distribution pattern and protection gaps in the YRDNR. The variance partitioning results showed that habitat variables accounted for a substantially larger total and pure variation in crane occupancy than the variation accounted for by spatial variables at the first level. Landscape factors had the largest total (45.13%) and independent effects (17.42%) at the second level. The hierarchical partitioning results showed that the percentage of seepweed tidal flats were the main limiting factor at the landscape scale. Vegetation coverage contributed the greatest independent explanatory power at the plot scale, and patch area was the predominant factor at the patch scale. Our habitat modeling results showed that crane suitable habitat covered more than 26% of the reserve area and that there remained a large protection gap with an area of 20,455 ha, which accounted for 69.51% of the total suitable habitat of cranes. Our study indicates that landscape and plot factors make a relatively large contribution to crane occupancy and that the focus of conservation effects should be directed toward landscape- and plot-level factors by enhancing the protection of seepweed tidal flats, tamarisk-seepweed tidal flats, reed marshes and other natural wetlands. We propose that efforts should be made to strengthen wetland restoration, adjust functional zoning maps, and improve the management of human disturbance in the YRDNR. PMID:26065417

  20. A Multi-Scale Approach to Investigating the Red-Crowned Crane–Habitat Relationship in the Yellow River Delta Nature Reserve, China: Implications for Conservation

    PubMed Central

    Cao, Mingchang; Xu, Haigen; Le, Zhifang; Zhu, Mingchang; Cao, Yun

    2015-01-01

    The red-crowned crane (Grus japonensis (Statius Müller, 1776)) is a rare and endangered species that lives in wetlands. In this study, we used variance partitioning and hierarchical partitioning methods to explore the red-crowned crane–habitat relationship at multiple scales in the Yellow River Delta Nature Reserve (YRDNR). In addition, we used habitat modeling to identify the cranes’ habitat distribution pattern and protection gaps in the YRDNR. The variance partitioning results showed that habitat variables accounted for a substantially larger total and pure variation in crane occupancy than the variation accounted for by spatial variables at the first level. Landscape factors had the largest total (45.13%) and independent effects (17.42%) at the second level. The hierarchical partitioning results showed that the percentage of seepweed tidal flats were the main limiting factor at the landscape scale. Vegetation coverage contributed the greatest independent explanatory power at the plot scale, and patch area was the predominant factor at the patch scale. Our habitat modeling results showed that crane suitable habitat covered more than 26% of the reserve area and that there remained a large protection gap with an area of 20,455 ha, which accounted for 69.51% of the total suitable habitat of cranes. Our study indicates that landscape and plot factors make a relatively large contribution to crane occupancy and that the focus of conservation effects should be directed toward landscape- and plot-level factors by enhancing the protection of seepweed tidal flats, tamarisk-seepweed tidal flats, reed marshes and other natural wetlands. We propose that efforts should be made to strengthen wetland restoration, adjust functional zoning maps, and improve the management of human disturbance in the YRDNR. PMID:26065417

  1. The impact of run-off change on physical instream habitats and its response to river morphology

    NASA Astrophysics Data System (ADS)

    Hauer, Christoph; Habersack, Helmut

    2010-05-01

    Rivers have already been substantially altered by human activity. Channelization, flow regulation, or changes in land use, especially urbanization, significantly alter the water discharge, sediment transport, and morphology of rivers. The impacts of these anthropogenic measures (disturbances) on river morphology and instream habitats were frequently investigated by the scientific community over the last decades. However, there are forms of disturbances (often induced by climate change) which cause at the beginning only a slight but (over the years) a continuous degradation of aquatic habitats (and river morphology). In the presented study the impact of such disturbances caused by climate change on summer run-off was investigated within the Gr. Mühl River catchment, Austria. So far, various studies have documented the impact of run-off change on river morphology and/or sediment load. Further the impact of run-off change on aquatic ecology (target fish species) have been documented throughout various scientific papers. However, there is a lack of knowledge how (climate induced) run-off changes affect instream aquatic habitats concerning various morphological patterns (e.g. riffle-pool morphology vs. plane bed river). Thus, the aim of the presented study was to link the impacts of climate change (e.g. reduced summer run-off) to various morphological types (riffle-pool, plane bed) using habitat modelling (2-dimensional) as integrative evaluation method. As target fish species sub-adult/adult grayling was selected due to the fact, that Thymallus thymallus features especially high sensitivity in water depth (microhabitat use). Further grayling was one the historically dominant fish species for the hyporhithral catchment of the Gr. Mühl River. Within the catchment 80% of the total river length are determined as plane bed river and 20 % as riffle-pool reaches (situated in former fine material deposits). Six reaches (3 plane-bed, 3 riffle-pool) were selected and surveyed

  2. Predicted changes in subyearling fall Chinook salmon rearing and migratory habitat under two drawdown scenarios for John Day Reservoir, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    We evaluated the potential effects of two different drawdown scenarios on rearing and migration habitat of subyearling fall Chinook salmon Oncorhynchus tshawytscha in John Day Reservoir on the Columbia River. We compared habitats at normal operating pool elevation with habitats at drawdown to spillway crest elevation and drawdown to the historical natural river elevation for two flows (4,417 and 8,495 m3/s). Using two-dimensional hydrodynamic modeling and a predictive habitat model, we determined the quantity and spatial distribution of rearing habitat and predicted water velocities. We predicted that the most habitat area would occur under normal pool elevation, but 93% of habitat was located in the upper third of the reservoir. Although less habitat area was predicted under drawdown to the spillway crest and the natural river, it was distributed more homogeneously throughout the study area. Habitat connectivity, patch size, and percent of suitable shoreline were greatest under drawdown to the natural river elevation. Mean cross-sectional water velocity and the variation in velocity increased with increasing level of reservoir drawdown. Water velocities under drawdown to the natural river were about twice as high as those under drawdown to spillway crest and five times higher than those under normal pool. The variability in water velocity, which may provide cues to fish migration, was highest under drawdown to the natural river and lowest under normal pool elevation. The extent to which different drawdown scenarios would be effective in John Day Reservoir depends in part on restoring normative riverine processes.

  3. Summary Report for Bureau of Fisheries Stream Habitat Surveys: Cowlitz River Basin, 1934-1942 Final Report.

    SciTech Connect

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Cowlitz River basin, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead. The purpose of the survey was, as described by Rich, [open quotes]to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes[close quotes]. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946. Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin.

  4. Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon, Database and Documentation (1997-2001)

    EPA Science Inventory

    The database from the Ecological Functions of Off-Channel Habitats of the Willamette River, Oregon project (OCH Project) contains data collected from 1997 through 2001 from multiple research areas of the project, and project documents such as the OCH Research Plan, Quality Assura...

  5. John Day River Subbasin Fish Habitat Enhancement Project, 2005-2006 Annual Report.

    SciTech Connect

    Powell, Russ M.; Alley, Pamela D.; Delano, Kenneth H.

    2006-03-01

    Work undertaken in 2005 included: (1) Four new fence projects were completed thereby protecting 7.55 miles of stream with 9.1 miles of new riparian fence (2) Fence removal 1.7 miles of barbed wire. (3) Completed three spring developments (repair work on two BLM springs on Cottonwood Creek (Dayville), 1 solar on Rock Creek/ Collins property). (4) Dredge tail leveling completed on 0.9 miles of the Middle Fork of the John Day River (5) Cut, hauled and placed 30 junipers on Indian Creek/Kuhl property for bank stability. (6) Collected and planted 1500 willow cuttings on Mountain Creek/Jones property. (7) Conducted steelhead redd counts on Lake Cr./Hoover property and Cottonwood Cr./Mascall properties (8) Seeded 200 lbs of native grass seed on projects where the sites were disturbed by fence construction activities. (9) Maintenance of all active project fences (72.74 miles), watergaps (60), spring developments (30) were checked and repairs performed. (10) Since the initiation of the Fish Habitat Program in 1984 we have installed 156.06 miles of riparian fence on leased property protecting 88.34 miles of anadromous fish bearing stream. With the addition of the Restoration and Enhancement Projects from 1996-2001, where the landowner received the materials, built and maintained the project we have a total of 230.92 miles of fence protecting 144.7 miles of stream and 3285 acres of riparian habitat.

  6. Large flood on a mountain river subjected to restoration: effects on aquatic habitats, channel morphology and valley infrastructure

    NASA Astrophysics Data System (ADS)

    Hajdukiewicz, Hanna; Wyżga, Bartłomiej; Mikuś, Paweł; Zawiejska, Joanna; Radecki-Pawlik, Artur

    2016-04-01

    The Biała River, Polish Carpathians, was considerably modified by channelization and channel incision in the twentieth century. To restore the Biała, establishing an erodible corridor was proposed in two river sections located in its mountain and foothill course. In these sections, longer, unmanaged channel reaches alternate with short, channelized reaches; and channel narrowing and incision increases in the downstream direction. In June 2010 an 80-year flood occurred on the river; and this study aims at determining its effects on physical habitat conditions for river biota, channel morphology, and valley-floor infrastructure. Surveys of 10 pairs of closely located, unmanaged and channelized cross sections, performed in 2009 and in the late summer 2010, allowed us to assess the flood-induced changes to physical habitat conditions. A comparison of channel planforms determined before (2009) and after (2012) the flood provided information on the degree of channel widening as well as changes in the width of particular elements of the river's active zone in eight stretches of the Biała. The impact of the flood on valley-floor infrastructure was confronted with the degree of river widening in unmanaged and channelized river reaches. Before the flood, unmanaged cross sections were typified by finer bed material and greater lateral variability in depth-averaged and near-bed flow velocity than channelized cross sections. The flood tended to equalize habitat conditions in both types of river cross sections, obliterating differences (in particular physical habitat parameters) between channelized and unmanaged channel reaches. River widening mostly reflected an increase in the area of channel bars, whereas the widening of low-flow channels was less pronounced. A comparison of channel planform from 2009 and 2012 indicated that intense channel incision typical of downstream sections limited river widening by the flood. Active channel width increased by half in the unmanaged

  7. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  8. Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1986-02-01

    Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

  9. Wildlife and Wildlife Habitat Loss Assessment at Dexter Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Dexter Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the project. Preconstruction, post-construction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Dexter Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 445 acres of riparian habitat. Impacts resulting from the Dexter Project included the loss of year-round habitat for black-tailed deer, red fox, mink, beaver, western gray squirrel, ruffed grouse, ring-necked pheasant, California quail, wood duck and nongame species. Bald eagle, osprey, and greater scaup were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Dexter Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  10. Effects of water use and land use on streamflow and aquatic habitat in the Sudbury and Assabet River Basins, Massachusetts

    USGS Publications Warehouse

    Zarriello, Phillip J.; Parker, Gene W.; Armstrong, David S.; Carlson, Carl S.

    2010-01-01

    Water withdrawals from surface-water reservoirs and groundwater have affected streamflow in the Sudbury and Assabet River Basins. These effects are particularly evident in the upper Sudbury River Basin, which prompted the need to improve the understanding of water resources and aquatic habitat in these basins. In 2004, the U.S. Geological Survey, in cooperation with the Massachusetts Department of Conservation and Recreation, developed a precipitation-runoff model that uses Hydrologic Simulation Program-FORTRAN (HSPF) to evaluate the effects of water use and projected future water-use and land-use change on streamflow. As part of this study, the aquatic habitat in the basins and the effects of streamflow alteration also were evaluated. Chapter 1 of the report covers the development of the HSPF model that focuses on the upper Sudbury River Basin (106 square miles) but covers the entire Sudbury and Assabet River Basins (339 square miles). The model was calibrated to an 11-year period (1993-2003) using observed or estimated streamflow at four streamgages. The model was then used to simulate long-term (1960-2004) streamflows to evaluate the effects of average 1993-2003 water use and projected 2030 water-use and land-use change over long-term climatic conditions. Simulations indicate that the average 1993-2003 withdrawals most altered streamflow relative to no withdrawals in small headwater subbasins where the ratios of mean annual withdrawals to mean annual streamflow are the highest. The effects of withdrawals are also appreciable in other parts of the upper Sudbury River Basin as a result of the perpetuation of the effects of large withdrawals in upstream reaches or in subbasins that also have a high ratio of withdrawal to streamflow. The simulated effects of potential 2030 water-use and land-use change indicate small decreases in flows as a result of increased water demands, but these flow alterations were offset as a result of decreased evapotranspiration

  11. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.

    PubMed

    Papadaki, Christina; Soulis, Konstantinos; Muñoz-Mas, Rafael; Martinez-Capel, Francisco; Zogaris, Stamatis; Ntoanidis, Lazaros; Dimitriou, Elias

    2016-01-01

    The climate change in the Mediterranean area is expected to have significant impacts on the aquatic ecosystems and particular in the mountain rivers and streams that often host important species such as the Salmo farioides, Karaman 1938. These impacts will most possibly affect the habitat availability for various aquatic species resulting to an essential alteration of the water requirements, either for dams or other water abstractions, in order to maintain the essential levels of ecological flow for the rivers. The main scope of this study was to assess potential climate change impacts on the hydrological patterns and typical biota for a south-western Balkan mountain river, the Acheloos. The altered flow regimes under different emission scenarios of the Intergovernmental Panel on Climate Change (IPCC) were estimated using a hydrological model and based on regional climate simulations over the study area. The Indicators of Hydrologic Alteration (IHA) methodology was then used to assess the potential streamflow alterations in the studied river due to predicted climate change conditions. A fish habitat simulation method integrating univariate habitat suitability curves and hydraulic modeling techniques were used to assess the impacts on the relationships between the aquatic biota and hydrological status utilizing a sentinel species, the West Balkan trout. The most prominent effects of the climate change scenarios depict severe flow reductions that are likely to occur especially during the summer flows, changing the duration and depressing the magnitude of the natural low flow conditions. Weighted Usable Area-flow curves indicated the limitation of suitable habitat for the native trout. Finally, this preliminary application highlighted the potential of science-based hydrological and habitat simulation approaches that are relevant to both biological quality elements (fish) and current EU Water policy to serve as efficient tools for the estimation of possible climate

  12. An Ecosystem-Based Restoration Plan with Emphasis on Salmonid Habitats in the Lower Columbia River and Estuary

    SciTech Connect

    Johnson, Gary E.; Thom, Ronald M.; Whiting, Allan H.; Sutherland, George B.; Berquam, Taunja J.; Ebberts, Blaine; Ricci, Nicole M.; Southard, John A.; Wilcox, Jessica D.

    2003-10-14

    The Bonneville Power Administration (BPA), in coordination with the U. S. Army Corps of Engineers (COE) and NOAA Fisheries, originated this project (BPA Project No. 2002-076; Contract No. DE-AC06-76RL01830, Release No. 652-24). Their intent was to develop a useful habitat restoration plan for the lower Columbia River and estuary to help guide restoration efforts and fulfill Reasonable and Prudent Alternative Action 159 of the 2000 National Marine Fisheries Service Biological Opinion on operation of the Federal Columbia River Power System. This document focuses on salmon habitat, although its ecosystem-based approach necessarily affects other species as well. Salmon habitat restoration is best undertaken within the context of other biota and physical processes using an ecosystem perspective. The anticipated audience for the plan includes entities responsible for, interested in, or affected by habitat restoration in the lower Columbia River and estuary. Timeframes to apply this plan extend from the immediate (2003-2004) to the near-term (2005-2006) to the long-term (2007 and beyond). We anticipate and encourage that the plan be revised as new knowledge and experience are attained. A team comprised of the Columbia River Estuary Study Taskforce (CREST), the Lower Columbia River Estuary Partnership (Estuary Partnership), and Pacific Northwest National Laboratory (PNNL) wrote this document. The BPA and the COE, as the responsible Action Agencies, provided technical oversight. The Estuary Partnership's Science Work Group, NOAA Fisheries Habitat Conservation Division, Northwest Power Planning Council (NPPC) staff, and state and tribal fisheries management agencies reviewed drafts. The Independent Scientific Advisory Board of the NPPC reviewed and commented on the 90% draft. Revisions were incorporated into the final draft document subsequently released for public review. Extensive efforts were made to ensure a sound technical and policy basis and to solicit input from all

  13. Freshwater mussel population status and habitat quality in the Clinch River, Virginia and Tennessee, USA: a featured collection

    USGS Publications Warehouse

    Zipper, Carl E.; Beaty, Braven; Johnson, Gregory C.; Jones, Jess W.; Krstolic, Jennifer Lynn; Ostby, Brett J.K.; Wolfe, William J.; Donovan, Patricia

    2014-01-01

    The Clinch River of southwestern Virginia and northeastern Tennessee is arguably the most important river for freshwater mussel conservation in the United States. This featured collection presents investigations of mussel population status and habitat quality in the Clinch River. Analyses of historic water- and sediment-quality data suggest that water column ammonia and water column and sediment metals, including Cu and Zn, may have contributed historically to declining densities and extirpations of mussels in the river's Virginia sections. These studies also reveal increasing temporal trends for dissolved solids concentrations throughout much of the river's extent. Current mussel abundance patterns do not correspond spatially with physical habitat quality, but they do correspond with specific conductance, dissolved major ions, and water column metals, suggesting these and/or associated constituents as factors contributing to mussel declines. Mussels are sensitive to metals. Native mussels and hatchery-raised mussels held in cages in situ accumulated metals in their body tissues in river sections where mussels are declining. Organic compound and bed-sediment contaminant analyses did not reveal spatial correspondences with mussel status metrics, although potentially toxic levels were found. Collectively, these studies identify major ions and metals as water- and sediment-quality concerns for mussel conservation in the Clinch River.

  14. Consistent trophic patterns among fishes in lagoon and channel habitats of a tropical floodplain river: Evidence from stable isotopes

    NASA Astrophysics Data System (ADS)

    Roach, Katherine A.; Winemiller, Kirk O.; Layman, Craig A.; Zeug, Steven C.

    2009-07-01

    The relationship between food web dynamics and hydrological connectivity in rivers should be strongly influenced by annual flood pulses that affect primary production dynamics and movement of organic matter and consumer taxa. We sampled basal production sources and fishes from connected lagoons and the main channel of a low-gradient, floodplain river within the Orinoco River Basin in Venezuela. Stable isotope analysis was used to model the contribution of four basal production sources to fishes, and to examine patterns of mean trophic position during the falling-water period of the annual flood cycle. IsoSource, a multi-source mixing model, indicated that proportional contributions from production sources to fish assemblages were similar in lagoons and the main channel. Although distributions differed, the means for trophic positions of fish assemblages as well as individual species were similar between the two habitats. These findings contradict recent food web studies conducted in temperate floodplain rivers that described significant differences in trophic positions of fishes from slackwater and floodplain versus main channel habitats. Low between-habitat trophic variation in this tropical river probably results from an extended annual flood pulse (ca. 5 mo.) that allows mixing of sestonic and allochthonous basal production sources and extensive lateral movements of fishes throughout the riverscape.

  15. Biomechanics of Riparian Plant Species Common to the Platte River and Implications for Management of Habitat for Endangered Species. (Invited)

    NASA Astrophysics Data System (ADS)

    Bankhead, N. L.; Thomas, R. E.; Simon, A.

    2010-12-01

    Improving riparian habitat for endangered species in the central Platte River fundamentally relies upon re-creating a dynamic, braided stream channel. The diversion and storage of water for agricultural, municipal and industrial uses has caused significant alteration of the hydrologic regime of the central Platte River, allowing the colonization and proliferation of vegetation that has effectively created semi-permanent islands, narrowed the active channel and reduced available habitat. Attempts to remove vegetation by spraying and disking for the purpose of re-creating a dynamic braided channel are costly and time consuming. Alternative plans to remove vegetation by modifying the hydrologic regime must be based on a fundamental understanding and quantification of the effects of vegetation on in-stream hydraulics, the effects of in-stream hydraulics on vegetation and the effects of the biomechanical properties of the plant on the substrate. This study aims to investigate the resistance of bar-top vegetation to removal by the drag forces exerted on the stems and leaves of partly or completely submerged plants with different rooting depths. In the first phase, we measured the forces required to remove 1 to 2 year-old Phragmites, reed canary grass, cottonwood and sandbar willow plants from sandbars in the Platte River. In addition, root tensile strength tests were carried out for each species and over a range of root diameters. The mean plant pullout or breaking force ranged from 31.9 N for young cottonwood saplings to 156 N for Phragmites. The mean rooting depths of cottonwoods and sandbar willows were 0.14 and 0.12 m, respectively, and during testing it was observed that largely intact rootballs were removed from the substrate. Therefore, it is possible that 1 to 2 year-old cottonwoods and sandbar willows could be removed by flows of sufficient magnitude and duration to scour such depths of sediment. Conversely, Phragmites plants had deep rhizome networks that broke

  16. Greater Green River Basin Production Improvement Project

    SciTech Connect

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  17. Assessment of Lower Missouri River Physical Aquatic Habitat and Its Use by Adult Sturgeon (Genus Scaphirhynchus), 2005-07

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; DeLonay, Aaron J.

    2009-01-01

    This report presents an exploratory analysis of habitat availability and use by adult Scaphirhynchus sturgeon on the Lower Missouri River from Gavins Point Dam, South Dakota, to the junction with the Mississippi River. The analysis is based on two main data sources collected from 2005 to 2007: (1) a compilation of 153 reach-scale habitat maps (mean reach length, 2.4 kilometers) derived from boat-collected hydroacoustic data and (2) a sturgeon location dataset from which 378 sturgeon telemetry locations are associated with the maps (within 7 days of the mapping and within 10 percent of the discharge). The report focuses on: (1) longitudinal patterns of geomorphic and hydraulic characteristics revealed by the collection of reach maps; (2) assessment of environmental characteristics at sturgeon locations in the context of the mapped reaches; and (3) consideration of spatial distribution of habitat conditions that sturgeon appear to select. Longitudinal patterns of geomorphology, hydraulics, and associated habitats relate strongly to the engineered state of the river. Reaches within each of the following river sections tended to share similar geomorphic, hydrologic, and hydraulic characteristics: the Minimally Engineered section (Gavins Point Dam to Sioux City, Iowa), the Upstream Channelized section (Sioux City, Iowa, to the junction with the Kansas River), and the Downstream Channelized section (Kansas River to the junction with the Mississippi River). Adult sturgeon occupy nearly the full range of available values for each continuous variable assessed: depth, depth slope, depth-averaged velocity, velocity gradient, and Froude number (a dimensionless number relating velocity to depth). However, in the context of habitat available in a reach, sturgeon tend to select some areas over others. Reproductive female shovelnose sturgeon (Scaphirhynchus platorynchus), in particular, were often found in parts of the reach with one or more of the following characteristics: high

  18. Comparison of subyearling fall chinook salmon's use of riprap revetments and unaltered habitats in Lake Wallula of the Columbia river

    USGS Publications Warehouse

    Garland, R.D.; Tiffan, K.F.; Rondorf, D.W.; Clark, L.O.

    2002-01-01

    Subyearling fall chinook salmon's Oncorhynchus tshawytscha use of unaltered and riprap habitats in Lake Wallula of the Columbia River was determined with point abundance data collected by electrofishing in May 1994 and 1995. We documented the presence or absence of subyearlings at 277 sample sites and collected physical habitat information at each site. Based on logistic regression, we found that the probability of fish presence was greater in unaltered shoreline habitats than in riprap habitats. Substrate size was the most important factor in determining fish presence, with dominant substrates larger than 256 mm having the lowest probability of fish presence. Water velocity, also included in our model due to its biological importance, was not a significant factor affecting presence or absence (P = 0.1102). The correct prediction rate of fish presence or absence in our sample sites using cross validation was 67%. Our model showed that substrate was the most important factor determining subyearling habitat use, but the model did not include other habitat variables known to be important to subyearlings in more diverse systems. We suggest that resource managers consider alternative methods of bank stabilization that are compatible with the habitat requirements of the fish that use them.

  19. Age-0 Lost River sucker and shortnose sucker nearshore habitat use in Upper Klamath Lake, Oregon: A patch occupancy approach

    USGS Publications Warehouse

    Burdick, S.M.; Hendrixson, H.A.; VanderKooi, S.P.

    2008-01-01

    We examined habitat use by age-0 Lost River suckers Deltistes luxatus and shortnose suckers Chasmistes brevirostris over six substrate classes and in vegetated and nonvegetated areas of Upper Klamath Lake, Oregon. We used a patch occupancy approach to model the effect of physical habitat and water quality conditions on habitat use. Our models accounted for potential inconsistencies in detection probability among sites and sampling occasions as a result of differences in fishing gear types and techniques, habitat characteristics, and age-0 fish size and abundance. Detection probability was greatest during mid- to late summer, when water temperatures were highest and age-0 suckers were the largest. The proportion of sites used by age-0 suckers was inversely related to depth (range = 0.4-3.0 m), particularly during late summer. Age-0 suckers were more likely to use habitats containing small substrate (64 mm) and habitats with vegetation than those without vegetation. Relatively narrow ranges in dissolved oxygen, temperature, and pH prevented us from detecting effects of these water quality features on age-0 sucker nearshore habitat use.

  20. Sandy River Delta Habitat Restoration : Annual Report, January 2008 - March 2009.

    SciTech Connect

    Dobson, Robin

    2009-09-11

    During the period 2008-2009, there were 2 contracts with BPA. One (38539) was dealing with the restoration work for 2007 and the other (26198) was an extension on the 2006 contract including the NEPA for Dam removal on the old channel of the Sandy River. For contract 38539, the Sandy River Delta Habitat Restoration project continued its focus on riparian hardwood reforestation with less emphasis on wetlands restoration. Emphasis was placed on Sundial Island again due to the potential removal of the dike and the loss of access in the near future. AshCreek Forest Management was able to leverage additional funding from grants to help finance the restoration effort; this required a mid year revision of work funded by BPA. The revised work not only continued the maintenance of restored hardwood forests, but was aimed to commence the restoration of the Columbia River Banks, an area all along the Columbia River. This would be the final restoration for Sundial Island. The grant funding would help achieve this. Thus by 2011, all major work will have been completed on Sundial Island and the need for access with vehicles would no longer be required. The restored forests continued to show excellent growth and development towards true riparian gallery forests. Final inter-planting was commenced, and will continue through 2010 before the area is considered fully restored. No new wetland work was completed. The wetlands were filled by pumping in early summer to augment the water levels but due to better rainfall, no new fuel was required to augment existing. Monitoring results continued to show very good growth of the trees and the restoration at large was performing beyond expectations. Weed problems continue to be the most difficult issue. The $100,000 from BPA planned for forest restoration in 2008, was augmented by $25,000 from USFS, $120,000 from OR150 grant, $18,000 from LCREP, and the COE continued to add $250,000 for their portion. Summary of the use of these funds are

  1. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    SciTech Connect

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  2. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    SciTech Connect

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  3. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    SciTech Connect

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  4. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.

    SciTech Connect

    Mendel, Glen Wesley; Trump, Jeremy; Karl, David

    2002-12-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

  5. Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin of Washington : 2000 Annual Report.

    SciTech Connect

    Mendel, Glen Wesley; Karl, David; Coyle, Terrence

    2001-11-01

    Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about the threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77. 12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of their habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2000 field season (March to November, 2000).

  6. Distribution, persistence, and hydrologic characteristics of salmon spawning habitats in clearwater side channels of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.

    2011-01-01

    Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.

  7. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    USGS Publications Warehouse

    Starks, T. A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  8. Feeding ecology and energetic relationships with habitat of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictis olivaris, in the lower Mississippi River, U.S.A.

    USGS Publications Warehouse

    Eggleton, M.A.; Schramm, H.L., Jr.

    2004-01-01

    We examined feeding of blue catfish, Ictalurus furcatus, and flathead catfish, Pylodictis olivaris, collected from floodplain lake, secondary (side) river channel, and main river channel habitats in the lower Mississippi River (LMR), U.S.A. We described the feeding ecology of two large river catfish species within the context of whether off-channel habitats in the LMR (i.e., floodplain lakes and secondary channels) potentially provided energetic benefits to these fishes as purported in contemporary theory on the ecology of large rivers. We used diet composition and associated caloric densities of prey consumed as indicators of energetic benefit to catfishes. Differences in diet among habitats were strong for blue catfish, but weak for flathead catfish; consumed foods generally differed among habitats in caloric (energy) content. Caloric densities of consumed foods were generally greatest in floodplain lakes, least in the main river channel, and intermediate in secondary river channels. Strong between-year variation in diet was observed, but only for blue catfish. Blue catfish fed disproportionately on lower-energy zebra mussels in the main river channel during 1997, and higher-energy chironomids and oligochaetes in floodplain lakes during 1998. Results suggested that although off-channel habitats potentially provided greater energetic return to catfishes in terms of foods consumed, patterns of feeding and subsequent energy intake may vary annually. Energetic benefits associated with off-channel habitats as purported under contemporary theory (e.g., the 'flood-pulse concept') may not be accrued by catfishes every year in the LMR.

  9. A thermal profile method to identify potential ground-water discharge areas and preferred salmonid habitats for long river reaches

    USGS Publications Warehouse

    Vaccaro, J.J.; Maloy, K.J.

    2006-01-01

    The thermal regime of riverine systems is a major control on aquatic ecosystems. Ground water discharge is an important abiotic driver of the aquatic ecosystem because it provides preferred thermal structure and habitat for different types of fish at different times in their life history. In large diverse river basins with an extensive riverine system, documenting the thermal regime and ground-water discharge is difficult and problematic. A method was developed to thermally profile long (5-25 kilometers) river reaches by towing in a Lagrangian framework one or two probes that measure temperature, depth, and conductivity. One probe is towed near the streambed and, if used, a second probe is towed near the surface. The probes continuously record data at 1-3-second intervals while a Global Positioning System logs spatial coordinates. The thermal profile provides valuable information about spatial and temporal variations in habitat, and, notably, indicates ground-water discharge areas. This method was developed and tested in the Yakima River Basin, Washington, in summer 2001 during low flows in an extreme drought year. The temperature profile comprehensively documents the longitudinal distribution of a river's temperature regime that cannot be captured by fixed station data. The example profile presented exhibits intra-reach diversity that reflects the many factors controlling the temperature of a parcel of water as it moves downstream. Thermal profiles provide a new perspective on riverine system temperature regimes that represent part of the aquatic habitat template for lotic community patterns.

  10. Fall and winter habitat use and movement by Columbia River redband trout in a small stream in Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Bennett, David H.; Marotz, B.

    2001-01-01

    We used radiotelemetry to quantify the movements and habitat use of resident adult Columbia River redband trout Oncorhynchus mykiss gairdneri (hereafter, redband trout) from October to December 1997 in South Fork Callahan Creek, a third-order tributary to Callahan Creek in the Kootenai River drainage in northwestern Montana. All redband trout (N = 23) were consistently relocated in a stream reach with moderate gradient (2.3%) near the site of original capture. Some fish (N = 13) displayed sedentary behavior, whereas others were mobile (N = 10). The mean total distance moved during the study for all fish combined was 64 m (SD = 105 m; range, 0–362 m), and the mean home range from October through December was 67 m (SD = 99 m; range, 5–377 m). Thirteen redband trout made short upstream and downstream movements (mean total movement = 134 m; range, 8–362 m) that were related to habitat use. Mobile fish commonly migrated to complex pools that spanned the entire channel width (primary pools). Eight of 10 fish that did not change habitat location occupied primary pools, whereas the remaining 2 fish occupied lateral pools. Fish commonly overwintered in primary pools dominated by cobble and boulder substrates that contained large woody debris. As water temperatures decreased from 3.2–6.3°C in October to 0–3.8°C in November and December, we found a 29% average increase (46–75%) in the proportional use of primary pool habitats. The lack of extensive movement and small home ranges indicate that adult redband trout found suitable overwintering habitat in deep pools with extensive amounts of cover within a third-order mountain stream. Resource managers who wish to protect overwintering habitat features preferred by redband trout throughout their limited range in streams affected by land management practices could apply strategies that protect and enhance pool habitat and stream complexity.

  11. Relations Among Geology, Physiography, Land Use, and Stream Habitat Conditions in the Buffalo and Current River Systems, Missouri and Arkansas

    USGS Publications Warehouse

    Panfil, Maria S.; Jacobson, Robert B.

    2001-01-01

    This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more

  12. Hood River Fish Habitat Project; Confederated Tribes of the Warm Springs Reservation of Oregon, Annual Report 2002-2003.

    SciTech Connect

    Vaivoda, Alexis

    2004-02-01

    This report summarizes the project implementation and monitoring of all habitat activities in the Hood River basin that occurred over the October 1, 2002 to September 30, 2003 period (FY 03). Some of the objectives in the corresponding statement of work for this contract were not completed within FY 03. A description of the progress during FY 03 and reasoning for deviation from the original tasks and timeline are provided. OBJECTIVE 1 - Provide coordination of all activities, administrative oversight and assist in project implementation and monitoring activities. Administrative oversight and coordination of the habitat statement of work, budget, subcontracts, personnel, implementation, and monitoring was provided. OBJECTIVE 2 - Continue to coordinate, implement, and revise, as needed, the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan. The Hood River Fish Habitat Protection, Restoration, and Monitoring Plan was completed in 2000 (Coccoli et al., 2000). This document was utilized for many purposes including: drafting the Watershed Action Plan (Coccoli, 2002), ranking projects for funding, and prioritizing projects to target in the future. This document has been reviewed by many, including stakeholders, agencies, and interested parties. The Hood River Watershed Group Coordinator and author of the Hood River Fish Habitat Protection, Restoration, and Monitoring Plan, Holly Coccoli, has updated and revised the plan. Changes will be reflected in the Hood River Subbasin Plan, and after submission of the Subbasin Plan, a formally revised version of the Monitoring Plan will be put out for review. This will more specifically address changes in the Hood River subbasin since 2000, and reflect changes to fish habitat and needs in the Hood River subbasin regarding monitoring. OBJECTIVE 3 - Evaluate and monitor the habitat, accessibility, and presence of winter steelhead, coho salmon, and resident trout upstream of the Middle Fork Irrigation District water

  13. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  14. Umatilla River Basin, Anadromous Fish Habitat Enhancement Project : Annual Report 1989.

    SciTech Connect

    Scheeler, Carl A.

    1990-03-01

    The Umatilla habitat improvement program targets the improvement of water quality and the restoration of riparian areas, spawning and rearing habitat of steelhead, spring and fall chinook and coho salmon. The channelization of Meacham Creek by the Union Pacific Railroad combined with poor riparian livestock management created extreme channel instability and bedload movement within the project area. The resulting loss of riparian vegetation caused an increase in water temperatures, evaporative losses and sediment loading from upland sites. Four leases and nine right-of-way agreements were procured for the restoration of 2 miles of stream channel on Meacham Creek and lower Boston Canyon Creek. Treatments included: sloping of gravel deposits to reduce channel braiding and develop a more stable channel configuration, placement of rock and wood structures to reduce erosion of stream banks and encourage the deposition of fines for the establishment of riparian vegetation, placement of instream boulders, weirs and large organic debris to increase holding and hiding cover and to encourage the development of a stable thalweg, and the enhancement of riparian vegetation through planting of hardwood cuttings and grass and forb seeds. Baseline data on stream flows, water temperature and suspended sediments, and channel morphology was collected.

  15. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    SciTech Connect

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  16. Butterfly (papilionoidea and hesperioidea) assemblages associated with natural, exotic, and restored riparian habitats along the lower Colorado River, USA

    USGS Publications Warehouse

    Nelson, S.M.; Andersen, D.C.

    1999-01-01

    Butterfly assemblages were used to compare revegetated and natural riparian areas along the lower Colorado River. Species richness and correspondence analyses of assemblages showed that revegetated sites had fewer biological elements than more natural sites along the Bill Williams River. Data suggest that revegetated sites do not provide resources needed by some members of the butterfly assemblage, especially those species historically associated with the cottonwood/willow ecosystem. Revegetated sites generally lacked nectar resources, larval host plants, and closed canopies. The riparian system along the regulated river segment that contains these small revegetated sites also appears to have diminished habitat heterogeneity and uncoupled riparian corridors. Revegetated sites were static environments without the successional stages caused by flooding disturbance found in more natural systems. We hypothesize that revegetation coupled with a more natural hydrology is important for restoration of butterfly assemblages along the lower Colorado River. Copyright ?? 1999 John Wiley & Sons, Ltd.

  17. An annotated bibliography of selected guides for stream habitat improvement in the Pacific Northwest

    USGS Publications Warehouse

    Keim, R.F.; Price, A.B.; Hardin, T. S.; Skaugset, Arne E.; Bateman, D.S.; Gresswell, R.E.; Tesch, S. D.

    2004-01-01

    This annotated bibliography is a response to widespread interest in stream habitat improvement in the Pacific Northwest by land managers, governmental and nongovernmental organizations, and the lay public. Several guides to stream habitat improvement have been written in the past, but may not be easily accessible to people from diverse backgrounds. This annotated bibliography reviews 11 guides to stream habitat improvement so that readers can find literature appropriate to their needs. All reviews begin with summaries of the contents, stated audiences, and goals of each guide. Reviews also include subjective comments on the strengths and weaknesses of each guide. Finally, this bibliography includes recommendations of guides and combinations of guides judged most useful for a range of purposes. 

  18. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats of the Lower Columbia River, 2007–2010

    SciTech Connect

    Johnson, Gary E.; Storch, Adam; Skalski, J. R.; Bryson, Amanda J.; Mallette, Christine; Borde, Amy B.; Van Dyke, E.; Sobocinski, Kathryn L.; Sather, Nichole K.; Teel, David; Dawley, Earl M.; Ploskey, Gene R.; Jones, Tucker A.; Zimmerman, Shon A.; Kuligowski, D. R.

    2011-03-01

    The TFM study was designed to investigate the ecology and early life history of juvenile salmonids within shallow (<5 m) tidal freshwater habitats of the LCRE. We started collecting field data in June 2007. Since then, monthly sampling has occurred in the vicinity of the Sandy River delta (rkm 192–208) and at other sites and times in lower river reaches of tidal freshwater (rkm 110 to 141). This report provides a comprehensive synthesis of data covering the field period from June 2007 through April 2010.

  19. Hydrologic conditions, habitat characteristics, and occurrence of fishes in the Apalachicola River floodplain, Florida; second annual report of progress, October 1993-September 1994

    USGS Publications Warehouse

    Light, Helen M.; Darst, Melanie R.; Grubbs, J.W.

    1995-01-01

    This report describes progress and interim results of the second year of a 4-year study. The purpose of the 4-year study is to describe aquatic habitat types in the Apalachicola River floodplain and quantify the amount of habitat inundated by the river at various stages. Final results will be used to determine possible effects of altered flows on floodplain habitats and their associated fish communities. The study is being conducted by the U.S. Geological Survey in cooperation with the Northwest Florida Water Management District as part of a comprehensive study of water needs throughout two large river basins in Florida, Georgia, and Alabama. By the end of the second year, approxi- mately 80 to 90 percent of field data collection was completed. Water levels at 56 floodplain and main channel locations at study sites were read numerous times during low water and once or twice during high water. Rating curves estimating the relationship between stage at a floodplain site and flow of the Apalachicola River at Chattahoochee are presented for 3 sites in the upper river. Elevation, substrate type, and amount of vegetative structure were described at 27 cross sections representing eight different floodplain tributary types at upper, middle, and lower river study sites. A summary of substrate and structure information from all cross sections is presented. Substrate and structure characteristics of floodplain habitats inundated when river flow was at record low flow, mean annual low flow, and mean flow are described for 3 cross sections in the upper river. Digital coverage of high-altitude infra-red aerial photography was processed for use in a Geographic Information System which will be used to map aquatic habitats in the third year of the study. A summary of the literature on fish utilization of floodplain habitats is described. Eighty-one percent of the species collected in the main channel of the Apalachicola River are known to occur in floodplain habitats of eastern

  20. Modeling to Support the Development of Habitat Targets for Piping Plovers on the Missouri River

    SciTech Connect

    Buenau, Kate E.

    2015-05-05

    Report on modeling and analyses done in support of developing quantative sandbar habitat targets for piping plovers, including assessment of reference, historical, dams present but not operated, and habitat construction calibrated to meet population viability targets.

  1. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea)

    NASA Astrophysics Data System (ADS)

    Choy, Eun Jung; An, Soonmo; Kang, Chang-Keun

    2008-06-01

    The benthic macroinvertebrates of the Nakdong River estuary were sampled at three different habitats: two salt marsh ( Scirpus triqueter and Phragmites australis) beds and a bare intertidal flat. Fishes were sampled in the main channel. The trophic importance of marsh vascular plants, microphytobenthos, and riverine and channel particulate organic matter to macroinvertebrate and fish production was studied using stable carbon and nitrogen isotope tracers. There was a dramatic change in coverage of macrophytes (salt marshes and seagrass) after the construction of an estuarine barrage in 1987 in the Nakdong River estuary, with the S. triqueter bed increasing, the P. australis bed decreasing, and Zostera marina habitats being nearly lost. Although the invertebrate δ 13C were within a narrower range than those of the primary producers, the values varied considerably among consumers in these habitats. However, the isotope signatures of consumers showed similarities among different habitats. Cluster analysis based on their isotopic similarity suggested that the isotope variability among species was related more to functional feeding groups than to habitats or taxonomic groups. While δ 13C values of suspension feeders were close to that of the channel POM (mainly phytoplankton), other benthic feeders and predators had δ 13C similar to that of microphytobenthos. Isotopic mixing model estimates suggest that algal sources, including microphytobenthos and phytoplankton, play an important role in supporting the benthic food web. Despite the huge productivity of emergent salt marshes, the contribution of the marsh-derived organic matter to the estuarine food webs appears to be limited to some nutrition for some invertebrates just within marsh habitats, with little on the bare intertidal flats or in the channel fish communities. Isotope signatures of the channel fishes also confirm that algal sources are important in supporting fish nutrition. Our findings suggest that

  2. Improving wildlife habitat model performance: Sensitivity to the scale and detail of vegetation measurements

    NASA Astrophysics Data System (ADS)

    Roberts, Lance Jay, Jr.

    Monitoring the impacts of resource use and landscape change on wildlife habitat over large areas is a daunting assignment. Forest land managers could benefit from linking the frequent decisions of resource use (timber harvesting) with a system of wildlife habitat accounting, but to date these tools are not widely available. I examined aspects of wildlife habitat modeling that: (in Chapter 2) could potentially lead to the establishment of wildlife habitat accounting within a resource decision support tool, (in Chapter 3) improve our theoretical understanding and methods to interpret the accuracy of wildlife habitat models, (in Chapter 4) explore the effects of vegetation classification systems on wildlife habitat model results, and (in Chapter 5) show that forest structural estimates from satellite imagery can improve potential habitat distribution models (GAP) for forest bird species. The majority of the analyses in this dissertation were done using a forest resource inventory developed by the State of Michigan (IFMAP). Paired with field vegetation and bird samples from sites across the lower peninsula of Michigan, we compared the relative accuracy of wildlife habitat relationship models built with plot-scale vegetation samples and stand-scale forest inventory maps. Recursive partitioning trees were used to build wildlife habitat models for 30 bird species. The habitat distribution maps from the Michigan Gap Analysis (MIGAP) were used as a baseline for comparison of model accuracy results. Both the plot and stand-scale measurements achieved high accuracy and there were few large differences between plot and stand-scale models for any individual species. Where the plot and stand-scale models were different, they tended to be species associated with mixed habitats. This may be evidence that scale of vegetation measurement has a larger influence on species associated with edges and ecotones. Habitat models that were built solely with land cover data were less accurate

  3. PAH metabolites, GST and EROD in European eel (Anguilla anguilla) as possible indicators for eel habitat quality in German rivers.

    PubMed

    Kammann, Ulrike; Brinkmann, Markus; Freese, Marko; Pohlmann, Jan-Dag; Stoffels, Sandra; Hollert, Henner; Hanel, Reinhold

    2014-02-01

    The stock of the European eel (Anguilla anguilla L.) continues to decline and has reached a new minimum in 2011. Poor health status of the spawners due to organic contaminants is one of the possible causes for this dramatic situation. Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants, which are rapidly metabolized in vertebrates. EROD (ethoxyresorufin-O-deethylase) and GST (glutathione-S-transferase) are two enzymes involved in PAH detoxification in fish. In this study, PAH metabolites as well as EROD and GST activity in a large, comprising dataset of more than 260 migratory and pre-migratory eels from five large German river basin districts were used to describe PAH exposure and its metabolism as possible indicators for the habitat quality for eels. Eel from the river Elbe appear to be moderately contaminated with PAH. Highest mean values of PAH metabolites were analysed in fish from the river Rhine. However, the results suggest that contaminants such as PAH are metabolized in the fish and may have contributed to EROD activity in eels caught from the Elbe estuary to 600 km upstream. Since the eel's onset of cessation of feeding is closely linked to maturation and migration, we propose bile pigments as new indicators contributing to identify the proportion of migratory eel, which is crucial information for eel management plans. We showed that PAH metabolites normalized to bile pigments as well as EROD could be used to describe the habitat quality and might be suitable parameters in search for suitable stocking habitats. PMID:24085514

  4. Factors Affecting the Reproduction, Recruitment, Habitat, and Population Dynamics of Pallid Sturgeon and Shovelnose Sturgeon in the Missouri River

    USGS Publications Warehouse

    Korschgen, Carl E., (Edited By)

    2007-01-01

    For more than a hundred years, human activities have modified the natural forces that control the Missouri River and its native fish fauna. While the ecological effects of regulation and channel engineering are understood in general, the current understanding is not sufficient to guide river restoration and management. The U.S. Geological Survey (USGS) is in the third year of a multiagency research effort to determine the ecological requirements for reproduction and survival of the endangered pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorhynchus) in the Missouri River. The multidisciplinary research strategy includes components of behavior, physiology, habitat use, habitat availability, and population modeling of all life stages. Shovelnose sturgeon are used to design the strategy because they are closely related to the pallid sturgeon and are often used as a surrogate species to develop new research tools or to examine the effects of management actions or environmental variables on sturgeon biology and habitat use. During fiscal years 2005 and 2006, the U.S. Army Corps of Engineers (USACE) provided funds to USGS for tasks associated with the Comprehensive Sturgeon Research Program (CSRP) and for tasks associated with evaluation of the Sturgeon Response to Flow Modifications (SRFM). Because work activities of CSRP and SRFM are so integrated, we are providing information on activities that have been consolidated at the task level. These task activities represent chapters in this report.

  5. Characterization of habitats based on algal periphyton biomass in the upper Paraná River floodplain, Brazil.

    PubMed

    Leandrini, Ja; Fonseca, Ia; Rodrigues, L

    2008-08-01

    Considering the relevant role played by the hydrological regime on the structure and functioning of floodplains, this study aims at characterizing different types of aquatic environments according to periphyton biomass and evaluating the influence of the fluviometric levels of the Paraná River and other forcing functions upon the periphytic community. Periphyton (chlorophyll a) was analyzed in 28 habitats, during the years 2000 and 2001, in high and low water seasons. Both years were characterized by lacking the characteristic high water season. The Principal Components Analysis revealed two groups. The first component was positively associated with hydrometric level, electric conductivity, pH and transparency, and negatively with total nitrogen and total phosphorus, dissolved organic carbon and turbidity. The second component separated the habitats of Paraná River in the period of low waters from other environments, mainly for hydrometric level and high transparency values. Periphytic biomass of the habitats demonstrated that the maintenance of the functional integrity of the Upper Paraná River floodplain is closely related to its hydrologic cycle. PMID:18833470

  6. Predicted effects of hydropower uprate on trout habitat in the Cumberland River, Downstream of Wolf Creek Dam, Kentucky. Final report

    SciTech Connect

    Nestler, J.M.; Gore, J.A.; Curtis, L.T.; Martin, J.L.

    1988-08-01

    The US Army Engineer District, Nashville (ORN), regulates flows in the Cumberland River at Wolf Creek Dam to provide for hydropower generation and flood control. The ORN is considering uprating the Wolf Creek Dam powerhouse to meet future demands for power in the region by replacing existing turbines with new units having higher capacity. With the proposed new units, maximum hydropower discharge will increase with a concomitant decrease in duration of generation. This report describes and quantifies the effects of hydropower uprating on downstream habitat of adult rainbow trout, juvenile brown trout, and adult brown trout using Instream Flow Incremental Methodology concepts. The relative downstream habitat impacts of hydropower uprate are assessed by contrasting existing and uprate release schedules under the following three hydrologic conditions: low flow (90% exceedance), average flow (50% exceedance), and high flow (10% exceedance). In general, predicted habitat availability for adult rainbow trout and adult brown trout decreases under uprate release schedules for low- and average-flow hydrologic conditions. Under high-flow conditions, habitat availability for the adult-life stages increases. Habitat for juvenile brown trout is generally negligible under both existing and uprate release schedules, and consistent patterns were not observed.

  7. Commerical harvest of western juniper and habitat improvement

    SciTech Connect

    Nader, G.; Young, J.A.

    1994-12-31

    Western juniper makes excellent stove wood, but the woodlands are located to far from population centers to make shipment of the relatively low density wood economically feasible. The fibers of juniper wood have been shown in laboratory tests to possess excellent characteristics for the manufacture of molded wood fiber products. The size and growth form of the trees precludes the large scale production of dimensional lumber. The abundant essential oils in the foliage may have commercial value. Certainly the waste from any harvesting and manufacturing process with western juniper would be rich in potential energy. What is proposed is the development of a manufacturing process from western juniper biomass, and using the monetary value of this material to pay for the cost of range improvement on the harvested woodlands. The development of such a commercial operation is venture capitalism at its highest level. The potential rewards are the solving of a major environmental problem while providing jobs in rural areas.

  8. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  9. Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2007

    SciTech Connect

    Sobocinski, Kathryn L.; Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Jones, Tucker A.; Mallette, Christine; Dawley, Earl M.; Skalski, John R.; Teel, David; Moran, Paul

    2008-03-18

    This document is the first annual report for the study titled “Ecology of Juvenile Salmonids in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta in the Lower Columbia River.” Hereafter, we refer to this research as the Tidal Freshwater Monitoring (TFM) Study. The study is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, U.S. Army Corps of Engineers, U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act as a result of operation of the Federal Columbia River Power System (FCRPS). The project is performed under the auspices of the Northwest Power and Conservation Council’s Columbia Basin Fish and Wildlife Program.

  10. Identification of American shad spawning sites and habitat use in the Pee Dee River, North Carolina and South Carolina

    USGS Publications Warehouse

    Harris, Julianne E.; Hightower, Joseph E.

    2011-01-01

    We examined spawning site selection and habitat use by American shad Alosa sapidissima in the Pee Dee River, North Carolina and South Carolina, to inform future management in this flow-regulated river. American shad eggs were collected in plankton tows, and the origin (spawning site) of each egg was estimated; relocations of radio-tagged adults on spawning grounds illustrated habitat use and movement in relation to changes in water discharge rates. Most spawning was estimated to occur in the Piedmont physiographic region within a 25-river-kilometer (rkm) section just below the lowermost dam in the system; however, some spawning also occurred downstream in the Coastal Plain. The Piedmont region has a higher gradient and is predicted to have slightly higher current velocities and shallower depths, on average, than the Coastal Plain. The Piedmont region is dominated by large substrates (e.g., boulders and gravel), whereas the Coastal Plain is dominated by sand. Sampling at night (the primary spawning period) resulted in the collection of young eggs (≤1.5 h old) that more precisely identified the spawning sites. In the Piedmont region, most radio-tagged American shad remained in discrete areas (average linear range = 3.6 rkm) during the spawning season and generally occupied water velocities between 0.20 and 0.69 m/s, depths between 1.0 and 2.9 m, and substrates dominated by boulder or bedrock and gravel. Tagged adults made only small-scale movements with changes in water discharge rates. Our results demonstrate that the upstream extent of migration and an area of concentrated spawning occur just below the lowermost dam. If upstream areas have similar habitat, facilitating upstream access for American shad could increase the spawning habitat available and increase the population's size.

  11. Coastal processes of the Elwha River delta: Chapter 5 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Stevens, Andrew W.; Miller, Ian M.; Gelfenbaum, Guy

    2011-01-01

    To understand the effects of increased sediment supply from dam removal on marine habitats around the Elwha River delta, a basic understanding of the region’s coastal processes is necessary. This chapter provides a summary of the physical setting of the coast near the Elwha River delta, for the purpose of synthesizing the processes that move and disperse sediment discharged by the river. One fundamental property of this coastal setting is the difference between currents in the surfzone with those in the coastal waters offshore of the surfzone. Surfzone currents are largely dictated by the direction and size of waves, and the waves that attack the Elwha River delta predominantly come from Pacific Ocean swell from the west. This establishes surfzone currents and littoral sediment transport that are eastward along much of the delta. Offshore of the surfzone the currents are largely influenced by tidal circulation and the physical constraint to flow provided by the delta’s headland. During both ebbing and flooding tides, the flow separates from the coast at the tip of the delta’s headland, and this produces eddies on the downstream side of the headland. Immediately offshore of the Elwha River mouth, this creates a situation in which the coastal currents are directed toward the east much more frequently than toward the west. This suggests that Elwha River sediment will be more likely to move toward the east in the coastal system.

  12. Landscape history improves detection of marginal habitats on semi-natural grasslands.

    PubMed

    Pitkänen, Timo P; Kumpulainen, J; Lehtinen, J; Sihvonen, M; Käyhkö, N

    2016-01-01

    Semi-natural grassland habitats have markedly declined from their historical coverage, thus causing substantial losses for agricultural biodiversity and establishing a consequent need to spot the remaining habitat patches. These patches are generally remnants of once larger habitat areas, formed by uninterrupted and low-intensity management for centuries, but then later being isolated and fragmented into smaller pieces. In the light of this development, past landscape phases have a crucial role for the present existence of semi-natural grasslands. The importance of historical factors has been indicated in many studies but evaluation of their added value, or actual site-specific effects compared to observations of only the present landscape characteristics, is not generally provided. As data related to the past is often difficult to obtain, tedious to process and challenging to interpret, assessment of its advantages and related effects - or consequences of potential exclusion - would be needed. In this study, we used maximum entropy approach to model the distribution of Fumewort (Corydalis solida) which in the study area is a good indicator of valuable semi-natural habitats. We constructed three different models - one based on only the contemporary environment with expected indicators of habitat stability, one solely on the historical landscape phases and long-term dynamics, and one combining variables from the past and the present. Predictions of the three models were validated and compared with each other, followed by an analysis indicating the similarity of model results with known Fumewort occurrences. Our results indicate that present landscapes may provide workable surrogates to delineate larger core habitats, but utilization of historical data markedly improves the detection of small outlying patches. These conclusions emphasize the importance of previous landscape phases particularly in detecting marginal semi-natural grassland habitats, existing in

  13. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    SciTech Connect

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surface was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.

  14. Velocity estimation using a Bayesian network in a critical-habitat reach of the Kootenai River, Idaho

    NASA Astrophysics Data System (ADS)

    Palmsten, Margaret L.; Todd Holland, K.; Plant, Nathaniel G.

    2013-09-01

    Numerous numerical modeling studies have been completed in support of an extensive recovery program for the endangered white sturgeon (Acipenser transmontanus) on the Kootenai River near Bonner's Ferry, ID. A technical hurdle in the interpretation of these model results is the transfer of information from the specialist to nonspecialist such that practical decisions utilizing the numerical simulations can be made. To address this, we designed and trained a Bayesian network to provide probabilistic prediction of depth-averaged velocity. Prediction of this critical parameter governing suitable spawning habitat was obtained by exploiting the dynamic relationships between variables derived from model simulations with associated parameter uncertainties. Postdesign assessment indicates that the most influential environmental variables in order of importance are river discharge, depth, and width, and water surface slope. We demonstrate that the probabilistic network not only reproduces the training data with accuracy similar to the accuracy of a numerical model (root-mean-squared error of 0.10 m/s), but that it makes reliable predictions on the same river at times and locations other than where the network was trained (root mean squared error of 0.09 m/s). Additionally, the network showed similar skill (root mean square error of 0.04 m/s) when predicting velocity on the Apalachicola River, FL, a river of similar shape and size to the Kootenai River where a related sturgeon population is also threatened.

  15. Habitat use and movement patterns by adult saugers from fall to summer in an unimpounded small-river system

    USGS Publications Warehouse

    Kuhn, K.M.; Hubert, W.A.; Johnson, K.; Oberlie, D.; Dufek, D.

    2008-01-01

    The Little Wind River drainage in Wyoming is a relatively small unimpounded river system inhabited by native saugers Sander canadensis. Radio telemetry was used to assess habitat use and movement patterns by adult saugers in the river system from fall through early summer. Fifty-four adult saugers were captured during fall 2004, surgically implanted with radio transmitters, and tracked through mid-July 2005. Tagged saugers selected large and deep pools. Such pools were abundant throughout the Little Wind River system and led to saugers being widely dispersed from fall to early spring. During fall, winter, and early spring, tagged saugers remained sedentary and moved short distances among pools in close proximity to each other. Longer movements by tagged saugers occurred from mid-spring to early summer, and were associated with both upstream and downstream movements to and from two river segments believed to be used for spawning. During early summer, most saugers returned to locations where they had been tagged the previous fall and had spent the winter. Our results provide evidence that preservation of the sauger fishery in the Wind River system will depend on maintaining fish passage throughout the portion of the watershed inhabited by saugers and preserving natural fluvial processes that maintain large and deep pools. ?? Copyright by the American Fisheries Society 2008.

  16. Quantifying fluid and bed dynamics for characterizing benthic physical habitat in large rivers

    USGS Publications Warehouse

    Gaeuman, D.; Jacobson, R.B.

    2007-01-01

    Sturgeon use benthic habitats in and adjacent to main channels where environmental conditions can include bedload sediment transport and high near-bed flow velocities. Bed velocity measurements obtained with acoustic Doppler instruments provide a means to assess the concentration and velocity of sediment moving near the streambed, and are thus indicative of the bedload sediment transport rate, the near-bed flow velocity, and the stability of the substrate. Acoustic assessments of benthic conditions in the Missouri River were conducted at scales ranging from the stream reach to individual bedforms. Reach-scale results show that spatially-averaged bed velocities in excess of 0.5 m s-1 frequently occur in the navigation channel. At the local scale, bed velocities are highest near bedform crests, and lowest in the troughs. Low-velocity zones can persist in areas with extremely high mean bed velocities. Use of these low-velocity zones may allow sturgeon to make use of portions of the channel where the average conditions near the bed are severe. To obtain bed velocity measurements of the highest possible quality, it is necessary to extract bottom-track and GPS velocity information from the raw ADCP data files on a ping-by-ping basis. However, bed velocity measured from a point can also be estimated using a simplified method that is more easily implemented in the context of routine monitoring. The method requires only the transect distance and direction data displayed in standard ADCP data-logging software. Bed velocity estimates obtained using this method are usually within 5-10% of estimates obtained from ping-by-ping processing. ?? 2007 Blackwell Verlag.

  17. Variation in the population structure of Yukon River chum and coho salmon: Evaluating the potential impact of localized habitat degradation

    USGS Publications Warehouse

    Olsen, J.B.; Spearman, W.J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.

    2004-01-01

    We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.

  18. Effects of ice formation on hydrology and water quality in the lower Bradley River, Alaska; implications for salmon incubation habitat

    USGS Publications Warehouse

    Rickman, Ronald L.

    1998-01-01

    A minimum flow of 40 cubic feet per second is required in the lower Bradley River, near Homer, Alaska, from November 2 to April 30 to ensure adequate habitat for salmon incubation. The study that determined this minimum flow did not account for the effects of ice formation on habitat. The limiting factor for determining the minimal acceptable flow limit appears to be stream-water velocity. The minimum short-term flow needed to ensure adequate salmon incubation habitat when ice is present is about 30 cubic feet per second. For long-term flows, 40 cubic feet per second is adequate when ice is present. Long-term minimum discharge needed to ensure adequate incubation habitat--which is based on mean velocity alone--is as follows: 40 cubic feet per second when ice is forming; 35 cubic feet per second for stable and eroding ice conditions; and 30 cubic feet per second for ice-free conditions. The effects of long-term streamflow less than 40 cubic feet per second on fine-sediment deposition and dissolved-oxygen interchange could not be extrapolated from the data. Hydrologic properties and water-quality data were measured in winter only from March 1993 to April 1998 at six transects in the lower Bradley River under three phases of icing: forming, stable, and eroding. Discharge in the lower Bradley River ranged from 33.3 to 73.0 cubic feet per second during all phases of ice formation and ice conditions, which ranged from ice free to 100 percent ice cover. Hydrostatic head was adequate for habitat protection for all ice phases and discharges. Mean stream velocity was adequate for all but one ice-forming episode. Velocity distribution within each transect varied significantly from one sampling period to the next. No relation was found between ice phase, discharge, and wetted perimeter. Intragravel-water temperature was slightly warmer than surface-water temperature. Surface- and intragravel-water dissolved-oxygen levels were adequate for all ice phases and discharges. No

  19. White River Falls Fish Passage Project, Tygh Valley, Oregon : Final Technical Report, Volume II, Appendix A, Fisheries Habitat Inventory.

    SciTech Connect

    Oregon. Dept. of Fish and Wildlife; Mount Hood National Forest

    1985-06-01

    Stream habitat inventories on 155 stream miles in the White River drainage on the Mt. Hood National Forest are summarized in this report. Inventory, data evaluation, and reporting work were accomplished within the framework of the budgetary agreements established between the USDA Forest Service, Mt. Hood National Forest, and the Bonneville Power Administration, in the first 2 years of a multiyear program. One hundred forty-two stream miles of those inventoried on the Forest appear suitable for anadromous production. The surveyed area appears to contain most or all of the high quality fish habitat which would be potentially available for anadromous production if access is provided above the White River Falls below the Forest boundary. About 34 stream miles would be immediately accessible without further work on the Forest with passage at the Falls. Seventy-two additional miles could be made available with only minor (requiring low investment of money and planning) passage work further up the basin. Thirty-six miles of potential upstream habitat would likely require major investment to provide access.

  20. Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.

    SciTech Connect

    Sather, NK; Johnson, GE; Storch, AJ

    2009-07-06

    The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River

  1. Identifying Impacts of Hydropower Regulation on Salmonid Habitats to Guide River Restoration for Existing Schemes and Mitigate Adverse Effects of Future Developments

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Geris, J.; Malcolm, I.; Wilkinson, M.; Soulsby, C.

    2015-12-01

    A decrease in longitudinal connectivity in riverine ecosystems resulting from the construction of transverse barriers has been identified as a major threat to biodiversity. For example, Atlantic Salmon (Salmo salar) have a seasonal variety of hydraulic habitat requirements for their different life stages. However, hydropower impoundments impact the spatial and temporal connectivity of natural habitat along many salmon rivers in ways that are not fully understood. Yet, these changes may affect the sustainability of habitat at local and regional scales and so ultimately the conservation of the species. Research is therefore needed both to aid the restoration and management of rivers impacted by previous hydropower development and guide new schemes to mitigate potentially adverse effects. To this end we assessed the effects of hydropower development on the flow related habitat conditions for different salmon life stages in Scottish rivers at different spatial scales. We used GIS techniques to map the changes in structural connectivity at regional scales, applying a weighting for habitat quality. Next, we used hydrological models to simulate past and present hydrologic conditions that in turn drive reach-scale hydraulic models to assess the impacts of regulation on habitat suitability in both space and time. Preliminary results indicate that: 1) impacts on connectivity depend on the location of the barrier within the river network; 2) multiple smaller barriers may have a potentially lower impact than a single larger barrier; 3) there is a relationship between habitat and connectivity where losing less but more suitable habitat potentially has a disproportionally large impact; 4) the impact of flow regulation can lead to a deterioration of habitat quality, though the effects are spatially variable and the extent of the impact depends on salmon life stage. This work can form a basis for using natural processes to perform targeted and cost-effective restoration of rivers.

  2. Physical factors and their influence on the mussel fauna of a main channel border habitat of the upper Mississippi River

    USGS Publications Warehouse

    Holland Bartels, L. E.

    1990-01-01

    The habitats of mussel species in a portion of the main stem of Navigation Pool 10 of the upper Mississippi River were examined. Population composition, abundance, and sediment and current preferences were measured at 186 sites in the East Channel of the pool. Although total mussel abundance varied significantly as a function of sediment and current (p less than or equal to 0.05), abundance could be predicted in only 44% of sites by discriminant analysis models. Accurate prediction of abundance for most species also was poor. Species showed little discrimination in choosing main channel habitats, but could be broadly classified into species preferring fine to medium-fine sands (e.g., Truncilla truncata and Potamilus alatus) or coarser sands (e.g., Lampsilis cardium and Truncilla donaciformis). The endangered Lampsilis higginsi was found in a broad range of habitats similar to those occupied by many of the more common species, suggesting factors other than loss of adult habitat for the rarity of this species.

  3. Habitat features affect bluehead sucker, flannelmouth sucker, and roundtail chub across a headwater tributary system in the Colorado River Basin

    USGS Publications Warehouse

    Bower, M.R.; Hubert, W.A.; Rahel, F.J.

    2008-01-01

    We assessed the distributions of three species of conservation concern, bluehead sucker (Catostomus discobolus), flannelmouth sucker (Catostomus latipinnis), and roundtail chub (Gila robusta), relative to habitat features across a headwater tributary system of the Colorado River basin in Wyoming. We studied the upper Muddy Creek watershed, Carbon County, portions of which experience intermittent flows during late summer and early fall. Fish and habitat were sampled from 57 randomly-selected, 200-m reaches and 416 habitat units (i.e., pools, glides, or runs) during the summer and fall of 2003 and 2004. Among reaches, the occurrences of adults and juveniles of all three species were positively related to mean wetted width and the surface area of pool habitat, and the occurrences of adult bluehead sucker and roundtail chub were also positively related to the abundance of rock substrate. Only juvenile bluehead sucker appeared to be negatively influenced by the proportion of a reach that was dry at the time of sampling. Within individual pools, glides, and runs, the occurrences of adults and juveniles of all three species were positively related to surface area and maximum depth, and occurrences of bluehead sucker and flannelmouth sucker juveniles were more probable in pools than in glides or runs.

  4. A Comparison of Streamside Habitat Assessments and Water Quality Indicators in the Lower Flint River Basin: Do They Agree?

    NASA Astrophysics Data System (ADS)

    Cressman, K. A.; Opsahl, S. P.; Muenz, T. K.; Golladay, S. W.

    2005-05-01

    Habitat assessment protocols using factors such as bank stability, riparian land use, and riparian buffer width have been developed by both the USFWS and the EPA. These assessments are standardized, so information about a stream system can be shared among organizations. Both protocols are being used, in conjunction with measurements of water quality parameters such as suspended solids, phosphate, nitrate/nitrite, ammonia, fecal coliform abundance, and caffeine, at sites throughout the Flint River Basin. In agricultural areas without a riparian buffer, increased fertilization could result in elevated nutrient levels in streams. In areas with intact riparian zones, reduced inputs of agricultural runoff are expected. Because the EPA habitat assessment results in a numerical score for each site, this study provides an opportunity to determine whether physical habitat scores correlate with water quality indicators over a gradient of disturbance. Preliminary results do not indicate a relationship between habitat scores and water quality parameters. One possible explanation is that groundwater transport represents a mechanism by which excess nitrogen can bypass the riparian buffer. Therefore, effects of land use on water quality in Coastal Plain streams may not be apparent from streamside assessments.

  5. Upstream Migration of Pacific Lampreys in the John Day River : Behavior, Timing, and Habitat Use : Annual Report 2000.

    SciTech Connect

    Bayer, Jennifer M.; Seelye, James G.; Robinson, T. Craig

    2001-04-12

    Historic accounts and recent observations of Pacific lampreys (Lampetra tridentata) at mainstem Columbia River dams indicate the number of Pacific lampreys migrating upriver has decreased dramatically over the last 60 years. Consequently, state, federal, and tribal governments have recently expressed concern for this species. Little is known about the biological and ecological characteristics of habitats suitable for upstream migrating Pacific lampreys. If rehabilitation efforts are to be done effectively and efficiently, we must gain knowledge of factors limiting survival and reproduction of Pacific lampreys. From data gathered in the first year of this project, we can for the first time, describe the timing, extent, and patterns of movements for Pacific lampreys. We have tested methods and gained information that will allow us to refine our objectives and approach in future work. Knowledge of behavior, timing, and the resulting quantification of habitat use will provide a means to assess the suitability of overwintering and spawning habitats and allow the establishment of goals for recovery projects. Further research is necessary, including multiple years of data collection, tracking of movement patterns through the spawning season, and more rigorously examining habitat use.

  6. Hood River and Pelton Ladder Monitoring and Evaluation Project and Hood River Fish Habitat Project : Annual Progress Report 1999-2000.

    SciTech Connect

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    2001-02-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin. This annual report summarizes work for two consecutive contract periods: the fiscal year (FY) 1999 contract period was 1 October, 1998 through 30 September, 1999 and 1 October, 1999 through 30 September, 2000 for FY 2000. Work implemented during FY 1999 and FY 2000 included (1) acclimation of hatchery spring chinook salmon and hatchery summer and winter steelhead smolts, (2) spring chinook salmon spawning ground surveys on the West Fork Hood River (3) genetic analysis of steelhead and cutthroat [contractual service with the ODFW], (4) Hood River water temperature studies, (5) Oak Springs Hatchery (OSH) and Round Butte Hatchery (RBH) coded-wire tagging and clipping evaluation, (6) preparation of the Hood River Watershed Assessment (Coccoli et al., December 1999) and the Fish Habitat Protection, Restoration, and Monitoring Plan (Coccoli et al., February 2000), (7) project implementation of early action habitat protection and restoration projects, (8) Pelton Ladder evaluation studies, (9) management oversight and guidance to BPA and ODFW engineering on HRPP facilities, and (10) preparation of an annual report summarizing project objectives for FY 1999 and FY 2000.

  7. EFFECT OF URBANIZATION ON FISH ASSEMBLAGES AND HABITAT QUALITY IN A PIEDMONT RIVER BASIN

    EPA Science Inventory

    We quantified the relationships among urbanization, fishes, and habitat quality to determine how assemblags respond to urbanization and if a habitat quality assessment reflects urban effects on stream ecosystems. We sampled 30 wadeable streams along an urban gradient in the Etow...

  8. Kootenai River Fisheries Investigations; Chapter 3 : Mainstem Habitat Use and Recruitment Estimates of Rainbow Trout, 1996 Annual Report.

    SciTech Connect

    Fredericks, James P.; Hendricks, Steve

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June.

  9. Metals, boron, and selenium in Neosho Madtom habitats in the Neosho River in Kansas, U.S.A.

    PubMed

    Allen, G T; Blackford, S H; Tabor, V M; Cringan, M S

    2001-01-01

    In 1991 and 1992 we determined the levels of metals, arsenic, boron, and selenium in the Neosho River drainage in southeastern Kansas, the primary habitat for the threatened Neosho madtom (Noturus placidus). We evaluated concentrations in sediments, mussels (Quadrula pustulosa and Q. metanevra), and fish (Percina phoxocephala, Cyprinus carpio, and Ictiobus bubalus) from three sites on the Neosho River and one site on the Cottonwood River. We also evaluated contaminant concentrations in C. carpio composite samples collected by the Kansas Department of Health and Environment (KDHE) at two additional locations on the Neosho River in 1990-92. Sediments were contaminated by lead. Concentrations of selenium, boron, and most metals in mussels were low to normal for biota. Arsenic levels in mussels and fish suggest low-level contamination of biota. Aluminum, barium, manganese and strontium concentrations were much higher in mussels than in fish. Five fish composite samples had cadmium concentrations that indicate chronic deleterious effects on biota. Lead concentrations in six fish samples were elevated. Mercury concentrations in most large fish composites exceeded concentration for protection of animals that might consume them. We believe that reductions in cadmium, lead, and mercury contamination, in particular, would benefit aquatic life in the river. PMID:11214445

  10. Heavy metal spatial variation, bioaccumulation, and risk assessment of Zostera japonica habitat in the Yellow River Estuary, China.

    PubMed

    Lin, Haiying; Sun, Tao; Xue, Sufeng; Jiang, Xiangli

    2016-01-15

    Globally, seagrass habitats are decreasing due to both natural and environmental contaminations by human activities, including heavy metal pollution. To expand the global seagrass detection network, this study reports the spatial distributions of Zostera japonica seagrass habitats in the Yellow River Estuary, China. In addition, heavy metal concentrations of Z. japonica tissue, sediment, and surface seawater were analyzed to determine the bioaccumulation and consequent ecological risk to Z. japonica habitats due to the effects of heavy metals. It was found that concentrations of heavy metals were 1.00-2.03 times higher in seagrass-rooted sediment than in adjacent non-seagrass sediment, except for Mn (with a factor of 0.99). Pb and Hg concentrations in sediments exceeded background values more than the other heavy metals, by factors of 1.74 and 1.24, respectively. Metal concentrations in the surrounding seawater were 2.60-4.63 times higher at seagrass sites than at non-seagrass sites, except for Hg (factor of 0.97). Metal concentrations were much higher in seagrass tissues than in the sediment (e.g., bioconcentration factor of Cd is 30.95). Pb concentrations in water may cause the greatest adverse reactions among aquatic organisms, while As, Cr, Hg, Mn and Cu in sediments may occasionally cause negative ecological effects. Z. japonica showed higher bioaccumulation of Cd and Pb in the above-ground tissues. Among other recent studies of seagrasses from other parts of the world, Cd concentrations are similar to the results of the present study, but Pb concentration in present study is higher than in other studies. In conclusion, Pb and As in the surrounding environment present potential risks to the seagrass habitats of the Yellow River Estuary, China. PMID:26410718

  11. 76 FR 65744 - Draft Environmental Assessment and Draft Habitat Conservation Plan for Lower Colorado River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    .... SUMMARY: The Lower Colorado River Authority Transmission Services Corporation (applicant) has applied to...) related to the potential issuance of an incidental take permit (ITP) to Lower Colorado River Authority... Colorado River Authority Transmission Services Corporation in Central Texas AGENCY: Fish and...

  12. River Temperature Dynamics and Habitat Characteristics as Predictors of Salmonid Abundance using Fiber-Optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Gryczkowski, L.; Gallion, D.; Haeseker, S.; Bower, R.; Collier, M.; Selker, J. S.; Scherberg, J.; Henry, R.

    2011-12-01

    Salmonids require cool water for all life stages, including spawning and growth. Excessive water temperature causes reduced growth and increased disease and mortality. During the summer, salmonids seek local zones of cooler water as a refuge from elevated temperatures. They also prefer specific habitat features such as boulders and overhanging vegetation. The purpose of this study is to determine whether temperature dynamics or commonly measured fish habitat metrics best explain salmonid abundance. The study site was a 2-kilometer reach of the Walla Walla River near Milton-Freewater, OR, USA, which provides habitat for the salmonids chinook salmon (Oncorhynchus tshawytscha), steelhead/rainbow trout (Oncorhynchus mykiss), mountain whitefish (Prosopium williamsoni), and the endangered bull trout (Salvelinus confluentus). The Walla Walla River is listed as an impaired water body under section 303(d) of the Clean Water Act due to temperature. The associated total maximum daily load (TMDL) calls for temperatures to be below 18 °C at all times for salmonid rearing and migration; however, river temperatures surpassed 24 °C in parts of the study reach in 2009. The two largest factors contributing to the warmer water are reduced riparian vegetation, which decreases shading and increases direct solar radiation, and decreased summer flows caused by diversions and irrigation for agriculture. Fiber-optic distributed temperature sensing has emerged as a unique and powerful tool for ecological applications because of its high spatial and temporal resolution. In this study, meter-scale temperature measurements were obtained at 15-minute intervals along the length of the study reach, allowing for the detection and quantification of cold water inflows during the summer of 2009. The cold water inflows were classified as groundwater or hyporheic sources based on the diurnal temperature patterns. Snorkel surveys were conducted in mid-July and mid-August, 2009 to enumerate salmonid

  13. Habitat conservation and creation: Invoking the flood-pulse concept to enhance fisheries in the lower Mississippi River

    USGS Publications Warehouse

    Schramm, H.L., Jr.; Eggleton, M.A.; Mayo, R.M.

    2000-01-01

    Analysis of four years of growth data failed to identify a single temperature or hydrologic variable that consistently accounted for variation in annual growth of catfishes (Ictaluridae). Instead, a composite variable that measured duration of floodplain inundation when water temperature exceeded minima for active feeding was directly related to growth. Results indicated that floodplain inundation have provided little direct energetic benefit to fishes when water temperatures were sub-optimal for active feeding, but floodplain resources were exploited when thermal conditions were sufficient for active feeding and growth. Thus, the flood-pulse concept applies to the lower Mississippi River (LMR) when modified to consider temperature. Managing the existing leveed floodplain to prolong inundation, increase water temperatures during spring flooding, and maintain connectivity of floodplain habitats with the main river channel should benefit fish production in the LMR.

  14. Habitat measurement and modeling in the Green and Yampa Rivers: Project Report to Natural Resource Preservation Program December 2001

    USGS Publications Warehouse

    Bowen, Z.H.; Bovee, K.D.; Waddle, T.J.; Modde, T.; Kitcheyan, C.

    2001-01-01

    Populations of the endangered razorback sucker (Xyrauchen texanus) in the middle Green River have declined since closer of Flaming Gorge Dam in 1962. The apparent cause for the decline is a lack of successful recruitment. Recruitment failure has been attributed to habitat alteration and competition and predation by exotic fishes on early life stages of razorback sucker. This study was conducted to evaluate two of the potential reproductive bottlenecks that might limit recruitment of razorback sucker in the Green River Drainage; (1) reduced larvae production due to sediment deposition on spawning areas, and (2) reduced survival of larvae or juveniles due to lack of timely access to rood-rich backwater and floodplain habitatsa?|

  15. Freshwater fish faunas, habitats and conservation challenges in the Caribbean river basins of north-western South America.

    PubMed

    Jiménez-Segura, L F; Galvis-Vergara, G; Cala-Cala, P; García-Alzate, C A; López-Casas, S; Ríos-Pulgarín, M I; Arango, G A; Mancera-Rodríguez, N J; Gutiérrez-Bonilla, F; Álvarez-León, R

    2016-07-01

    The remarkable fish diversity in the Caribbean rivers of north-western South America evolved under the influences of the dramatic environmental changes of neogene northern South America, including the Quechua Orogeny and Pleistocene climate oscillations. Although this region is not the richest in South America, endemism is very high. Fish assemblage structure is unique to each of the four aquatic systems identified (rivers, streams, floodplain lakes and reservoirs) and community dynamics are highly synchronized with the mono-modal or bi-modal flooding pulse of the rainy seasons. The highly seasonal multispecies fishery is based on migratory species. Freshwater fish conservation is a challenge for Colombian environmental institutions because the Caribbean trans-Andean basins are the focus of the economic development of Colombian society, so management measures must be directed to protect aquatic habitat and their connectivity. These two management strategies are the only way for helping fish species conservation and sustainable fisheries. PMID:27401480

  16. Habitats and trophic relationships of Chironomidae insect larvae from the Sepotuba River basin, Pantanal of Mato Grosso, Brazil.

    PubMed

    Butakka, C M M; Grzybkowska, M; Pinha, G D; Takeda, A M

    2014-05-01

    Benthic habitats are linked by physical processes and are essential elements in assessing of the distribution dynamics of Chironomidae dipteran insects and their role in aquatic ecosystems. This work presents results of distribution patterns of chironomids larvae in 38 sites that are abundant in the study site, inhabiting the substrate of the main river channel, rapids, tributary brook, floodplain lakes and reservoir along the Sepotuba River from its mouth at the Paraguay River to the headwater region. A total of 1,247 larvae was registered. The most abundant taxa were Polypedilum (Tripodura) sp. (25.2%), Cricotopus sp.3 (23.0%) and Tanytarsus sp. (15.0%). Fissimentum desiccatum were found only in the reservoir; Fissimentum sp.2 and Tanytarsus cf. T. obiriciae sp.2 in floodplain lakes, and Goeldichironomus sp. in the main channel. The low diversity of the sites S06 and S35 is caused by the near-exclusive presence of the species Cricotopus sp.3, alone or together with one or another taxon (Tanytarsus sp., Djalmabatista sp.3). Collectors-filterers represent 16%, collectors-gatherers 15%, predators 11% and scrapers only 1%. The predators dominated in the secondary channel (±88 ind/m2), corresponding to 40% of the total of this group. Cryptochironomus sp.2 (34%) and Ablasbemyia gr. annulata (26%) were the most abundant among the predators. The differences along the river course are decisive for the formation of distinct or discontinuous communities and the limits become obvious though the interrelations between the populations in the community, as for instance, competition for food and habitats. PMID:25166324

  17. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 2000.

    SciTech Connect

    Sear, Sheri

    2001-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  18. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project Annual Report 1999.

    SciTech Connect

    Jones, Charles D.

    2000-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection- 1990-91) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation-1992-96). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI

  19. Lake Roosevelt Rainbow Trout : Habitat/Passage Improvement Project : Annual Report 1998.

    SciTech Connect

    Jones, Charles D.

    1999-02-01

    Lake Franklin D. Roosevelt was created with the completion of the Grand Coulee Dam in 1942. The lake stretches 151 miles up-stream to the International border between the United States and Canada at the 49th parallel. Increased recreational use, subsistence and sport fishing has resulted in intense interest and possible exploitation of the resources within the lake. Previous studies of the lake and its fishery have been limited. Early studies indicate that natural reproduction within the lake and tributaries are not sufficient to support a rainbow trout (Onchoryhnchus mykiss) fishery (Scholz et. al., 1988). These studies indicate that the rainbow trout population may be limited by lack of suitable habitat for spawning and rearing (Scholz et. al., 1988). The initial phase of this project (Phase I, baseline data collection) was directed at the assessment of limiting factors such as quality and quantity of available spawning gravel, identification of passage barriers, and assessment of other limiting factors. Population estimates were conducted using the Seber/LeCren removal/depletion method. After the initial assessment of stream parameters, several streams were selected for habitat/passage improvement projects (Phase II, implementation). At the completion of project habitat improvements, the final phase (Phase III, monitoring) began. This phase will assess changes and gauge the success achieved through the improvements. The objective of the project is to correct passage barriers and improve habitat conditions of selected tributaries to Lake Roosevelt for adfluvial rainbow trout that utilize tributary streams for spawning and rearing. Streams with restorable habitats were selected for improvements. Completion of improvement efforts should increase the adfluvial rainbow trout contribution to the resident fishery in Lake Roosevelt. Personnel of three co-operating agencies, the Confederated Tribes of the Colville Reservation (CCT), the Spokane Tribe of Indians (STI) and

  20. Dams in the Mekong River Basin: Options for Improved Sediment and Fish Passage

    NASA Astrophysics Data System (ADS)

    Wild, T. B.; Loucks, D. P.

    2014-12-01

    The Mekong River and its tributaries comprise one of the most productive fish habitats in the world today. The economic value of the Mekong fishery in Lao PDR, Cambodia and Vietnam is among the highest in the world, providing income and food security to tens of millions of people. However, the construction of multiple dams in the basin will reduce sediment discharge, which will adversely impact nutrient transport and habitat quality and availability, and disrupt fish migration routes. Thus, of considerable interest is the identification of alternatives to the location, design and operation of planned hydropower dams that could improve sediment passage, enable migratory fish passage, and sustain fish production for local use. This paper describes the results of simulation studies designed to identify and evaluate such alternatives, as well as their potential impact on hydropower production. Dam sites in Cambodia and Lao PDR on tributaries and on the mainstream Mekong River will be discussed. Evaluations of sediment management techniques such as flushing, sluicing and bypassing will be discussed. This study is intended to inform decision makers in Cambodia, Lao PDR and Vietnam about potential alternatives to current plans as they prepare decisions regarding the development of over 100 hydropower dams throughout the basin.

  1. An estimate of chinook salmon (Oncorhynchus tshawytscha) spawning habitat and redd capacity upstream of a migration barrier in the upper Columbia River

    SciTech Connect

    Hanrahan, Timothy P.; Dauble, Dennis D.; Geist, David R.

    2004-02-01

    Chief Joseph Dam on the Columbia River is the upstream terminus for anadromous fish, due to its lack of fish passage facilities. Management agencies are currently evaluating the feasibility of reintroducing anadromous fish upriver of Chief Joseph Dam. We evaluated the physical characteristics of potential fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat in the upper section of Chief Joseph Reservoir. The objective of this study was to estimate the quantity and location of potential spawning habitat, and secondly to determine the redd capacity of the area based on spawning habitat characteristics. We used a geomorphic approach to first identify specific segments with the highest potential for spawning. The suitability of these segments for spawning was then estimated through the use of empirical physical data and modeled hydraulic data. We estimated 5% (48.7 ha) of the study area contains potentially suitable fall chinook salmon spawning habitat. Potential spawning habitat is primarily limited by water too deep and secondly by water velocities too low, the combination of which results in 20% (9.6 ha) of the potential spawning habitat being characterized as high quality. Estimates of redd capacity within potential spawning habitat range from 207? 1599 redds, based on proportional use of potential habitat and varying amounts of channelbed used by spawning salmon. The results of our study provide fisheries managers significant insight into one component of the complex issue of reintroducing anadromous fish to the Columbia River upstream of Chief Joseph Dam.

  2. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network.

    PubMed

    Isaak, Daniel J; Luce, Charles H; Rieman, Bruce E; Nagel, David E; Peterson, Erin E; Horan, Dona L; Parkes, Sharon; Chandler, Gwynne L

    2010-07-01

    Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions, but downscaling is difficult in complex terrains given diverse microclimates and mediation of stream heat budgets by local conditions. We compiled a stream temperature database (n = 780) for a 2500-km river network in central Idaho to assess possible trends in summer temperatures and thermal habitat for two native salmonid species from 1993 to 2006. New spatial statistical models that account for network topology were parameterized with these data and explained 93% and 86% of the variation in mean stream temperatures and maximas, respectively. During our study period, basin average mean stream temperatures increased by 0.38 degrees C (0.27 degrees C/decade), and maximas increased by 0.48 degrees C (0.34 degrees C/decade), primarily due to long-term (30-50 year) trends in air temperatures and stream flows. Radiation increases from wildfires accounted for 9% of basin-scale temperature increases, despite burning 14% of the basin. Within wildfire perimeters, however, stream temperature increases were 2-3 times greater than basin averages, and radiation gains accounted for 50% of warming. Thermal habitat for rainbow trout (Oncorhynchus mykiss) was minimally affected by temperature increases, except for small shifts towards higher elevations. Bull trout (Salvelinus confluentus), in contrast, were estimated to have lost 11-20% (8-16%/decade) of the headwater stream lengths that were cold enough for spawning and early juvenile rearing, with the largest losses occurring in the coldest habitats. Our results suggest that a warming climate has begun to affect thermal conditions in streams and that impacts to

  3. Lotic aquatic ecosystems of the Savannah River Plant: Impact evaluation, habitat analyses and the lower food chain communities: Volume 1

    SciTech Connect

    Firth, P.; O'Hop, J.R.; Coler, B.; Green, R.A.

    1986-04-01

    This report documents a study of animal habitat and the lower food chain communities in the streams and swamps of the Savannah River Plant (SRP). The purpose of the study was to assess the impacts of SRP operations on the lotic (flowing water) ecosystems on the plant site and on portions of the Savannah River. The 1985 survey year included the period between 1 October 1984 and 30 September 1985. Forty-seven stations located on five drainage basins within the SRP boundaries and on the Savannah River were sampled. The drainage basins were: Upper Three Runs Creek (3 sites), Beaver Dam Creek-Four Mile Creek (5 and 7 sites, respectively), Pen Branch (5 sites), Steel Creek-Meyers Branch system (12 and 2 sites, respectively), and Lower Three Runs Creek (5 sites). The remaining eight sites were on the Savannah River, upstream and downstream of creek mouths. Fifteen of the sites were thermal due to heated effluents from D-area power plant (discharging to Beaver Dam Creek), C-reactor (discharging to Four Mile Creek), or K-reactor (discharging to Pen Branch). 224 refs., 20 figs., 131 tabs.

  4. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  5. Integrating remotely acquired and field data to assess effects of setback levees on riparian and aquatic habitat in glacial-melt water rivers

    USGS Publications Warehouse

    Konrad, C.P.; Black, R.W.; Voss, F.; Neale, C. M. U.

    2008-01-01

    Setback levees, in which levees are reconstructed at a greater distance from a river channel, are a promising restoration technique particularly for alluvial rivers with broad floodplains where river-floodplain connectivity is essential to ecological processes. Documenting the ecological outcomes of restoration activities is essential for assessing the comparative benefits of different restoration approaches and for justifying new restoration projects. Remote sensing of aquatic habitats offers one approach for comprehensive, objective documentation of river and floodplain habitats, but is difficult in glacial rivers because of high suspended-sediment concentrations, braiding and a lack of large, well-differentiated channel forms such as riffles and pools. Remote imagery and field surveys were used to assess the effects of recent and planned setback levees along the Puyallup River and, more generally, the application of multispectral imagery for classifying aquatic and riparian habitats in glacial-melt water rivers. Airborne images were acquired with a horizontal ground resolution of 0.5 m in three spectral bands (0.545-0.555, 0.665-0.675 and 0.790-0.810 ??m) spanning from green to near infrared (NIR) wavelengths. Field surveys identified river and floodplain habitat features and provided the basis for a comparative hydraulic analysis. Broad categories of aquatic habitat (smooth and rough water surface), exposed sediment (sand and boulder) and vegetated surfaces (herbaceous and deciduous shrub/forest) were classified accurately using the airborne images. Other categories [e.g. conifers, boulder, large woody debtis (LWD)] and subdivisions of broad categories (e.g. riffles and runs) were not successfully classified either because these features did not form large patches that could be identified on the imagery or their spectral reflectances were not distinct from those of other habitat types. Airborne imagery was critical for assessing fine-scale aquatic habitat

  6. Feeding habitat characteristics of the great blue heron and great egret nesting along the Upper Mississippi River, 1995-1998

    USGS Publications Warehouse

    Custer, Christine M.; Suarez, S.A.; Olsen, D.A.

    2004-01-01

    The Great Blue Heron (Ardea herodias) and Great Egret (Ardea alba) nested in eight colonies along the Upper Mississippi River, USA, and individual birds were followed by airplane to feeding sites during the nesting seasons in 1995-1998. Both species used braided channel/backwater habitats for feeding more than expected, based on availability, and open pool and main navigation channel less than expected. Most individuals of both species fed 10 km away. Habitat and distance need to be considered simultaneously when assessing habitat quality for herons and egrets. The Great Blue Heron flew farther to feeding sites during the care-of-young period than during incubation and the Great Egret showed the opposite pattern. The Great Blue Heron tended to feed solitarily; only 10% of the feeding flights ended at a location where another heron was already present. About one-third of Great Egret feeding flights ended at a location with another egret already present. Colony placement on the landscape seemed to be a function of the feeding radius of each colony.

  7. Historic Habitat Opportunities and Food-Web Linkages of Juvenile Salmon in the Columbia River Estuary and Their Implications for Managing River Flows and Restoring Estuarine Habitat, Physical Sciences Component, Progress Report.

    SciTech Connect

    Jay, David A.

    2009-08-03

    Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, one with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending

  8. Bedload entrainment in low-gradient paraglacial coastal rivers of Maine, U.S.A.: Implications for habitat restoration

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Castele, Michael R.; Wright, Jed R.

    2009-02-01

    The rivers of coastal Maine flow through mainstem lakes and long low-gradient reaches that break the continuum of bedload transport expected in nonparaglacial landscapes. Stream erosion of glacial deposits supplies coarse sediment to these systems. The land use history includes intensive timber harvest and associated dam construction, which may have altered the frequency of substrate-mobilizing events. These watersheds are vital habitat for the last remaining wild anadromous Atlantic salmon in the United States. Future adjustments in channel morphology and habitat quality (via natural stream processes or restoration projects) depend on erosion, transport, and deposition of coarse sediment. These factors motivate our study of competence at four sites in the Sheepscot and Narraguagus watersheds. Three of the four sites behaved roughly similarly, with particle entrainment during intervals that include winter ice and spring flood conditions, and relatively minor bed mobilization during moderate floods in the summer and fall (with a recurrence interval of 2-3 years). The fourth site, on the Sheepscot River mainstem, exhibits more vigorous entrainment of marked particles and more complex three-dimensional channel morphology. This contrast is partially due to local geomorphic conditions that favor high shear stresses (particularly relatively steep gradient), but also likely to nourishment of the bedload saltation system by recruitment from an eroding glacial deposit upstream. Our results suggest that the frequency and magnitude of bedload transport are reach specific, depending on factors including local channel geometry, upstream sediment supply and transport, and formation of anchor ice. This presents a challenge for stream practitioners in this region: different reaches may require contrasting management strategies. Our results underscore the importance of understanding channel processes at a given site and assessing conditions upstream and downstream as a prerequisite

  9. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  10. Sedimentary links and the spatial organization of Atlantic salmon ( Salmo salar) spawning habitat in a Canadian Shield river

    NASA Astrophysics Data System (ADS)

    Davey, Chad; Lapointe, Michel

    2007-01-01

    The segmenting of gravel-bed rivers flowing through mountain valleys into a number of discrete 'sedimentary links', each characterized by downstream fining of alluvium, is a relatively recent concept which offers promise to model the large-scale spatial organisation of many types of aquatic habitat (reproductive, feeding, refuge, etc), strongly dependent on dominant bed sediment calibre. Although, so far, the ecological application of the concept has mainly focused on benthic invertebrates, here we illustrate its application to fish (Atlantic salmon; Salmo salar). Moreover, the link concept has also been primarily applied to alpine river environments where link formation is triggered by point sources (mainly tributaries) supplying coarser sediment. However, somewhat lower relief, mountain valley landscapes of North Eastern Canada are often structured into sedimentary links triggered by non-point, 'supply zones' of coarse sediments, originating in bedrock canyon reaches or valley bottom deposits of glacial drift. Here, we propose an adaptation and extension of the original, sedimentary link concept to such landscapes and test its utility along one such system, the Ste Marguerite River (SMR), a salmon river draining the Canadian Shield in the Saguenay region of Québec. We first discuss a simple field and office based method of link delineation. Then we discuss potential sources of minor, sublink scale grain size variability and their effects on how sedimentary links are defined. Lastly, we demonstrate the usefulness of the link structure to model the distribution of Atlantic salmon spawning habitat (a habitat that depends critically on bed texture). Our results indicate that a revised sedimentary link typology is needed to describe longitudinal grain size patterns where non-point, valley-segment scale sources of coarse sediment are important and that consideration of the research purpose and scale is important in defining meaningful link units. We also show that

  11. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    SciTech Connect

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  12. Hood River and Pelton Ladder Evaluation Studies and Hood River Fish Habitat Project, 1998 Annual Progress Report.

    SciTech Connect

    Lambert, Michael B.; McCanna, Joseph P.; Jennings, Mick

    1999-12-01

    The Hood River subbasin is home to four species of anadromous salmonids: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), steelhead (Oncorhynchus mykiss), and sea run cutthroat trout (Salmo clarki). Indigenous spring chinook salmon were extirpated during the late 1960's. The naturally spawning spring chinook salmon currently present in the subbasin are progeny of Deschutes stock. Historically, the Hood River subbasin hatchery steelhead program utilized out-of-basin stocks for many years. Indigenous stocks of summer and winter steelhead were listed in March 1998 by National Marine Fisheries Service (NMFS) under the Endangered Species Act (ESA) as a ''Threatened'' Species along with similar genetically similar steelhead in the Lower Columbia Basin.

  13. Emergent Sandbar Construction for Least Terns on the Missouri River: Effects on Forage Fishes in Shallow-Water Habitats

    USGS Publications Warehouse

    Stucker, J.H.; Buhl, D.A.; Sherfy, M.H.

    2011-01-01

    Emergent sandbars on the Missouri River are actively managed for two listed bird species, piping plovers and interior least terns. As a plunge-diving piscivore, endangered least terns rely on ready access to appropriately sized slender-bodied fish: <52mm total length for adults and <34mm total length for young chicks. As part of a multi-agency recovery programme, aimed at enhancing nesting habitat for plovers and terns, the U.S. Army Corps of Engineers mechanically created several emergent sandbars on the Missouri River. However, it was unknown whether sandbar construction is a benefit or a detriment to forage abundance for least terns. Therefore, we studied the shallowwater (<1.5 m) fish community near river and mechanically created emergent sandbars during three nesting seasons (2006-2008). We sampled every 2 weeks each year from late May to July within 15-16 areas to document the relative abundance, species richness and size classes of fish. Fish relative abundance was negatively related to depth. Catches were dominated by schooling species, including emerald shiner, sand shiner, spotfin shiner and bigmouth buffalo. Significant inter-annual differences in relative abundance were observed, with generally increasing trends in intra-seasonal relative abundance of shiners and the smallest size classes of fish (<34 mm). Significant differences in the fish communities between the sandbar types were not detected in this study. Results suggest that mechanical sandbar habitats host comparable fish communities at similar levels of relative abundance. Further analyses are required to evaluate if the levels of fish relative abundance are adequate to support least tern foraging and reproduction.

  14. Modelling effects of discharge on habitat quality and dispersal of juvenile humpback chub (Gila cypha) in the Colorado River, Grand Canyon

    USGS Publications Warehouse

    Korman, J.; Wiele, S.M.; Torizzo, M.

    2004-01-01

    A two-dimensional hydrodynamic model was applied to seven study reaches in the Colorado River within Grand Canyon to examine how operation of Glen Canyon Dam has affected availability of suitable shoreline habitat and dispersal of juvenile humpback chub (Gila cypha). Suitable shoreline habitat typically declined with increasing discharges above 226-425 m3/s, although the response varied among modelled reaches and was strongly dependent on local morphology. The area of suitable shoreline habitat over cover types that are preferred by juvenile humpback chub, however, stayed constant, and in some reaches, actually increased with discharge. In general, changes in discharge caused by impoundment tended to decrease availability of suitable shoreline habitat from September to February, but increased habitat availability in spring (May-June). Hourly variation in discharge from Glen Canyon Dam substantially reduced the amount of persistent shoreline habitat at all reaches. Changes in suitable shoreline habitat with discharge were shown to potentially bias historical catch per unit effort indices of native fish abundance up to fourfold. Physical retention of randomly placed particles simulating the movement of juvenile humpback chub in the study reaches tended to decline with increasing discharge, but the pattern varied considerably due to differences in the local morphology among reaches and the type of swimming behaviour modelled. Implications of these results to current hypotheses about the effects of Glen Canyon Dam on juvenile humpback chub survival in the mainstern Colorado River are discussed. ?? 2004 John Wiley and Sons, Ltd.

  15. A comparison of macroinvertebrate and habitat methods of data collection in the Little Colorado River Watershed, Arizona 2007

    USGS Publications Warehouse

    Spindler, Patrice; Paretti, Nick V.

    2007-01-01

    The Arizona Department of Environmental Quality (ADEQ) and the U.S. Environmental Protection Agency (USEPA) Ecological Monitoring and Assessment Program (EMAP), use different field methods for collecting macroinvertebrate samples and habitat data for bioassessment purposes. Arizona’s Biocriteria index was developed using a riffle habitat sampling methodology, whereas the EMAP method employs a multi-habitat sampling protocol. There was a need to demonstrate comparability of these different bioassessment methodologies to allow use of the EMAP multi-habitat protocol for both statewide probabilistic assessments for integration of the EMAP data into the national (305b) assessment and for targeted in-state bioassessments for 303d determinations of standards violations and impaired aquatic life conditions. The purpose of this study was to evaluate whether the two methods yield similar bioassessment results, such that the data could be used interchangeably in water quality assessments. In this Regional EMAP grant funded project, a probabilistic survey of 30 sites in the Little Colorado River basin was conducted in the spring of 2007. Macroinvertebrate and habitat data were collected using both ADEQ and EMAP sampling methods, from adjacent reaches within these stream channels.


    All analyses indicated that the two macroinvertebrate sampling methods were significantly correlated. ADEQ and EMAP samples were classified into the same scoring categories (meeting, inconclusive, violating the biocriteria standard) 82% of the time. When the ADEQ-IBI was applied to both the ADEQ and EMAP taxa lists, the resulting IBI scores were significantly correlated (r=0.91), even though only 4 of the 7 metrics in the IBI were significantly correlated. The IBI scores from both methods were significantly correlated to the percent of riffle habitat, even though the average percent riffle habitat was only 30% of the stream reach. Multivariate analyses found that the percent riffle

  16. Habitat preferences of Ukrainian brook lamprey Eudontomyzon mariae ammocoetes in the lowland rivers of Central Europe.

    PubMed

    Jażdżewski, M; Marszał, L; Przybylski, M

    2016-02-01

    The pattern of microhabitat preferences of Ukrainian brook lamprey Eudontomyzon mariae ammocoetes was examined in two rivers of central Poland: the Pilica River (the Vistula River basin) and the Grabia River (the Odra River basin). A comparison of abiotic factors of the rivers revealed differences in water speed and principal components: PC1 (determining gradient from decreasing medium sand to the increasing share of three fractions of gravel), PC2 (a gradient from the declining share of very coarse and coarse sand fractions to the growing content of fine sand) and PC3 (correlated with an increasing proportion of silt). The sites did not differ significantly in terms of water depth. Relative abundance and frequency of ammocoete occurrence in the Grabia River were higher than in the Pilica River. Only speed, PC1 and PC2 made a significant contribution to the prediction of larval occurrence. Eudontomyzon mariae larvae preferred substrata with a reduced amount of medium sand and increased content of gravel (PC1) as well as with a lower content of coarse sand and higher proportion of fine-grained sand (PC2). The ammocoetes also preferred areas with a water speed of 0·2 m s(-1) but avoided speeds ≥ 0·6 m s(-1). The abundance of E. mariae was affected by water speed, as well as by all PCs. The mean ± s.e. optimal current speed was 0·265 ± 0·007 m s(-1), while abundance decreased with increasing amounts of gravel (PC1) and increased with increasing amounts of fine sand and silt in the bottom substratum (PC2 and PC3). Comparison of ammocoete microhabitat use in the Pilica and Grabia Rivers showed the lack of differences in distribution in the preferred values of current speed, PC1 and PC2. PMID:26511588

  17. Natural and anthropogenic influences on a red-crowned crane habitat in the Yellow River Delta Natural Reserve, 1992-2008.

    PubMed

    Wang, Hong; Gao, Jay; Pu, Ruiliang; Ren, Liliang; Kong, Yan; Li, He; Li, Ling

    2014-07-01

    This study aims to assess the relative importance of natural and anthropogenic variables on the change of the red-crowned crane habitat in the Yellow River Nature Reserve, East China using multitempopral remote sensing and geographic information system. Satellite images were used to detect the change in potential crane habitat, from which suitable crane habitat was determined by excluding fragmented habitat. In this study, a principal component analysis (PCA) with seven variables (channel flow, rainfall, temperature, sediment discharge, number of oil wells, total length of roads, and area of settlements) and linear regression analyses of potential and suitable habitat against the retained principal components were applied to explore the influences of natural and anthropogenic factors on the change of the red-crowned crane habitat. The experimental results indicate that suitable habitat decreased by 5,935 ha despite an increase of 1,409 ha in potential habitat from 1992 to 2008. The area of crane habitat changed caused by natural drivers such as progressive succession, retrogressive succession, and physical fragmentation is almost the same as that caused by anthropogenic forces such as land use change and behavioral fragmentation. The PCA and regression analyses revealed that natural factors (e.g., channel flow, rainfall, temperature, and sediment discharge) play an important role in the crane potential habitat change and human disturbances (e.g., oil wells, roads, and settlements) jointly explain 51.8 % of the variations in suitable habitat area, higher than 48.2 % contributed by natural factors. Thus, it is vital to reduce anthropogenic influences within the reserve in order to reverse the decline in the suitable crane habitat. PMID:24526617

  18. Scale-dependent effects of river habitat quality on benthic invertebrate communities--Implications for stream restoration practice.

    PubMed

    Stoll, Stefan; Breyer, Philippa; Tonkin, Jonathan D; Früh, Denise; Haase, Peter

    2016-05-15

    Although most stream restoration projects succeed in improving hydromorphological habitat quality, the ecological quality of the stream communities often remains unaffected. We hypothesize that this is because stream communities are largely determined by environmental properties at a larger-than-local spatial scale. Using benthic invertebrate community data as well as hydromorphological habitat quality data from 1087 stream sites, we investigated the role of local- (i.e. 100 m reach) and regional-scale (i.e. 5 km ring centered on each reach) stream hydromorphological habitat quality (LQ and RQ, respectively) on benthic invertebrate communities. The analyses showed that RQ had a greater individual effect on communities than LQ, but the effects of RQ and LQ interacted. Where RQ was either good or poor, communities were exclusively determined by RQ. Only in areas of intermediate RQ, LQ determined communities. Metacommunity analysis helped to explain these findings. Species pools in poor RQ areas were most depauperated, resulting in insufficient propagule pressure for species establishment even at high LQ (e.g. restored) sites. Conversely, higher alpha diversity and an indication of lower beta dispersion signals at mass effects occurring in high RQ areas. That is, abundant neighboring populations may help to maintain populations even at sites with low LQ. The strongest segregation in species co-occurrence was detected at intermediate RQ levels, suggesting that communities are structured to the highest degree by a habitat/environmental gradient. From these results, we conclude that when restoring riverine habitats at the reach scale, restoration projects situated in intermediate RQ settings will likely be the most successful in enhancing the naturalness of local communities. With a careful choice of sites for reach-scale restoration in settings of intermediate RQ and a strategy that aims to expand areas of high RQ, the success of reach-scale restoration in promoting the

  19. Improving predictive mapping of deep-water habitats: Considering multiple model outputs and ensemble techniques

    NASA Astrophysics Data System (ADS)

    Robert, Katleen; Jones, Daniel O. B.; Roberts, J. Murray; Huvenne, Veerle A. I.

    2016-07-01

    In the deep sea, biological data are often sparse; hence models capturing relationships between observed fauna and environmental variables (acquired via acoustic mapping techniques) are often used to produce full coverage species assemblage maps. Many statistical modelling techniques are being developed, but there remains a need to determine the most appropriate mapping techniques. Predictive habitat modelling approaches (redundancy analysis, maximum entropy and random forest) were applied to a heterogeneous section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the spatial arrangement of habitat patches were calculated. The predictive maps were based on remotely operated vehicle (ROV) imagery transects high-resolution autonomous underwater vehicle (AUV) sidescan backscatter maps. Area under the curve (AUC) and accuracy indicated similar performances for the three models tested, but performance varied by species assemblage, with the transitional species assemblage showing the weakest predictive performances. Spatial predictions of habitat suitability differed between statistical approaches, but niche similarity metrics showed redundancy analysis and random forest predictions to be most similar. As one statistical technique could not be found to outperform the others when all assemblages were considered, ensemble mapping techniques, where the outputs of many models are combined, were applied. They showed higher accuracy than any single model. Different statistical approaches for predictive habitat modelling possess varied strengths and weaknesses and by examining the outputs of a range of modelling techniques and their differences, more robust predictions, with better described variation and areas of uncertainties, can be achieved. As improvements to prediction outputs can be achieved without additional costly data collection, ensemble mapping approaches have clear value for spatial management.

  20. REGIONAL ASSESSMENT OF LAND USE IMPACTS ON STREAM CHANNEL HABITAT IN THE MIDDLE COLUMBIA RIVER BASIN

    EPA Science Inventory

    Many human land uses and land cover modifications (e.g., logging, grazing, roads) tend to increase erosion, leading to an increase in fine sediment supplied to streams and potentially degrading aquatic habitat for benthic organisms. This study evaluated potential human impacts o...

  1. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  2. Wildlife and Wildlife Habitat Loss Assessment at Detroit Big Cliff Dam and Reservoir Project, North Santiam River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Detroit/Big Cliff Dam and Reservoir Project (Detroit Project) on the North Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric-related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1939, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each time period were determined. Ten wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Detroit Project extensively altered or affected 6324 acres of land and river in the North Santiam River drainage. Impacts to wildlife centered around the loss of 1,608 acres of conifer forest and 620 acres of riparian habitat. Impacts resulting from the Detroit Project included the loss of winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, river otter, beaver, ruffed grouse, pileated woodpecker, spotted owl, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Detroit Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  3. Composition of fish communities in relation to stream acidification and habitat in the Neversink River, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Lawrence, G.B.

    2000-01-01

    The effects of acidification in lotic systems are not well documented. Spatial and temporal variability of habitat and water quality complicate the evaluation of acidification effects in streams and river. The Neversink River in the Catskill Mountains of southeastern New York, the tributaries of which vary from well buffered to severely acidified, provided an opportunity to investigate the external and magnitude of acidification effects on fish communities of headwater systems. Composition of fish communities, water quality, stream hydrology, stream habitat, and physiographic factors were characterized from 1991 to 1995 at 16 first- to fourth-order sites in the basin. Correlation and regression analyses were used to develop empirical models and to assess the relations among fish species richness, total fish density, and total biomass and environmental variables. Chronic and episodic acidification and elevated concentrations of inorganic monomeric aluminum were common, and fish populations were rare or absent from several sites in the upper reaches of the basin; as many as six fish species were collected from sites in the lower reaches of the basin. Species distribution and species richness were most highly related to stream pH, acid-neutralizing capacity (ANC), inorganic monomeric aluminum (Al(im)), calcium (Ca)2+, and potassium (K)+ concentrations, site elevation, watershed drainage area, and water temperature. Fish density was most highly related to stream pH, Al(im), ANC, K+, Ca2+, and magnesium (Mg)2+ concentrations. Fish biomass, unlike species richness and fish density, was most highly related to physical habitat characteristics, water temperature, and concentrations of Mg2+ and silicon. Acidity characteristics were of secondary importance to fish biomass at all but the most severely acidified sites. Our results indicate that (1) the total biomass of fish communities was not seriously affected at moderately to strongly acidified sites; (2) species richness

  4. Evaluation of Fall Chinook and Chum Salmon Spawning Habitat near Ives and Pierce Islands in the Columbia River, Progress Report 1999-2001.

    SciTech Connect

    Garland, Rodney; Tiffan, Kenneth; Rondorf, Dennis

    2003-09-01

    The area around Ives Island below Bonneville Dam on the Columbia River supports spawning populations of chum and fall chinook salmon. Because this area is sensitive to water level fluctuations caused by changes in discharge from Bonneville Dam and from tidal cycles, we initiated a study to quantify flow-dependent changes in available spawning habitat for chum and fall chinook salmon. We conducted surveys to characterize the substrates available in the Ives Island study area. Detailed bathymetry was also obtained to serve as a foundation for two-dimension hydrodynamic modeling, which was used to estimate water velocities, depths, and wetted area over a range of simulated flows. Habitat surveys were conducted and logistic regression was used to identify physical habitat variables that were important in determining the presence of chum and fall chinook salmon redds. The physical habitat data were analyzed using the logistic regression models to create probability coverages for the presence of redds in a Geographic Information System. There was generally good agreement between chum and fall chinook salmon redd locations and areas where we predicted suitable spawning habitat. We found that at Columbia River discharges less than 120 kcfs, an important chum salmon spawning area below the mouth of Hamilton Creek could only be supported by discharge from Hamilton Creek. Chum salmon did not appear to spawn in proportion to habitat availability, however our predictive model did not include all variables known to be important to chum salmon redd-site selection. Fall chinook salmon spawning habitat was less sensitive to flow and the main channel of the Columbia River along Pierce Island was predicted to contain sufficient habitat at all modeled flows.

  5. Freshwater inflow requirements for the protection of the critical habitat and the drinking water sources in the Yangtze River Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Yang, Z. F.; Sun, T.; Chen, B.; Chen, G. Q.

    2009-05-01

    Freshwater inflow requirements (FIRs for short), which considered the requirements for protection of drinking water sources as well as the first-grade state protection wildlife (Acipenser sinensis) in larval periods, were analyzed in this paper for the Yangtze River Estuary, China. Based on the different levels of salinity objectives and the relationship between salinity and the freshwater inflows, the FIRs for the Yangtze River Estuary were determined. The estuary FIRs were determined based on the habitat ecosystem health from April to November with minimum and medium levels, from March to December with high level; and on the requirement of protection of drinking water sources in other months of the year, accordingly. Combined the salinity objectives of drinking water sources and critical habitat in the Yangtze River Estuary, the FIRs for the estuary are calculated to be 938.2 × 109, 729.4 × 109 and 615.5 × 109 m3 in the whole year with different levels, which is equal to 100.8%, 78.4% and 66.2% of the average annual river discharge for the Yangtze River Estuary, respectively. Annual river discharges can satisfy the medium and minimum levels of FIRs for the estuary. However, the temporal variation of the actual runoff has distinct difference from the FIRs for the estuary in critical periods (May, July and August) for the habitat ecosystem, 5% of the FIRs for the estuary should be maintained from December to February for protection of drinking water sources.

  6. Salmon Life Histories, Habitat, and Food Webs in the Columbia River Estuary: An Overview of Research Results, 2002-2006.

    SciTech Connect

    Bottom, Daniel L.; Anderson, Greer; Baptisa, Antonio

    2008-08-01

    From 2002 through 2006 we investigated historical and contemporary variations in juvenile Chinook salmon Oncorhynchus tshawytscha life histories, habitat associations, and food webs in the lower Columbia River estuary (mouth to rkm 101). At near-shore beach-seining sites in the estuary, Chinook salmon occurred during all months of the year, increasing in abundance from January through late spring or early summer and declining rapidly after July. Recently emerged fry dispersed throughout the estuary in early spring, and fry migrants were abundant in the estuary until April or May each year. Each spring, mean salmon size increased from the tidal freshwater zone to the estuary mouth; this trend may reflect estuarine growth and continued entry of smaller individuals from upriver. Most juvenile Chinook salmon in the mainstem estuary fed actively on adult insects and epibenthic amphipods Americorophium spp. Estimated growth rates of juvenile Chinook salmon derived from otolith analysis averaged 0.5 mm d-1, comparable to rates reported for juvenile salmon Oncorhynchus spp. in other Northwest estuaries. Estuarine salmon collections were composed of representatives from a diversity of evolutionarily significant units (ESUs) from the lower and upper Columbia Basin. Genetic stock groups in the estuary exhibited distinct seasonal and temporal abundance patterns, including a consistent peak in the Spring Creek Fall Chinook group in May, followed by a peak in the Western Cascades Fall Chinook group in July. The structure of acanthocephalan parasite assemblages in juvenile Chinook salmon from the tidal freshwater zone exhibited a consistent transition in June. This may have reflected changes in stock composition and associated habitat use and feeding histories. From March through July, subyearling Chinook salmon were among the most abundant species in all wetland habitat types (emergent, forested, and scrub/shrub) surveyed in the lower 100 km of the estuary. Salmon densities

  7. Seasonal and diel movements and habitat use of robust redhorses in the Lower Savannah River, Georgia and South Carolina

    USGS Publications Warehouse

    Grabowski, T.B.; Isely, J.J.

    2006-01-01

    The robust redhorse Moxostoma robustum is a large riverine catostomid whose distribution is restricted to three Atlantic Slope drainages. Once presumed extinct, this species was rediscovered in 1991. Despite being the focus of conservation and recovery efforts, the robust redhorse's movements and habitat use are virtually unknown. We surgically implanted pulse-coded radio transmitters into 17 wild adults (460-690 mm total length) below the downstream-most dam on the Savannah River and into 2 fish above this dam. Individuals were located every 2 weeks from June 2002 to September 2003 and monthly thereafter to May 2005. Additionally, we located 5-10 individuals every 2 h over a 48-h period during each season. Study fish moved at least 24.7 ?? 8.4 river kilometers (rkm; mean ?? SE) per season. This movement was generally downstream except during spring. Some individuals moved downstream by as much as 195 rkm from their release sites. Seasonal migrations were correlated to seasonal changes in water temperature. Robust redhorses initiated spring upstream migrations when water temperature reached approximately 12??C. Our diel tracking suggests that robust redhorses occupy small reaches of river (???1.0 rkm) and are mainly active diurnally. Robust redhorses were consistently found in association with woody debris and gravel streambed sediments along the outer edge of river bends. Fish exhibited a high degree of fidelity to both overwintering and spawning areas. Our observations of long-distance seasonal migrations suggest that successful robust redhorse conservation efforts may require an ecosystem management approach. ?? Copyright by the American Fisheries Society 2006.

  8. Biological, habitat, and water quality conditions in the upper Merced River drainage, Yosemite National Park, California, 1993-1996

    USGS Publications Warehouse

    Brown, Larry R.; Short, Terry M.

    1999-01-01

    The general conclusion from these studies is that water quality in the upper Merced River was very good from 1993-1996, despite high levels of human activities in some areas. Fish communities did not appear to be a useful indicator of habitat and water quality because of low species richness and the apparent importance of physical barriers in determining species distributions. Measurements of fish densities and size-distributions might be useful, but would be logistically difficult. Benthic algae and benthic invertebrates do appear to be useful in monitoring environmental conditions. Benthic algae may be more sensitive than benthic invertebrates to small environmental differences within years. Benthic algae were also more responsive than benthic invertebrates to differences in discharge between years. Thus, benthic invertebrates may be more useful in comparing environmental conditions between years, independent of discharge conditions.

  9. An Assessment of Habitat Quality Using Dissolved Oxygen Concentrations in Floodplain Water Bodies in Relation to River Flow and Mainstem Connectivity

    NASA Astrophysics Data System (ADS)

    Stofleth, J.; Andrews, E. S.; White, J. Q.

    2011-12-01

    The floodplains of the Apalachicola River, Florida include an intricate network of sloughs, lakes and wetlands. These floodplain water bodies provide essential spawning and nursery areas for a diverse array of aquatic organisms. The frequency and duration of Apalachicola River flows sufficient to hydraulically connect and thereby activate these floodplain features has decreased over time due to upstream dams, diversions, and modification to the channel geometry (incision and widening). The main objective of this study is to characterize the relationship between a key water quality parameter, dissolved oxygen (DO), to the hydraulic connectivity of the ecologically-important large slough systems within the Apalachicola River floodplain over a range of flow conditions. When DO concentrations drop, the quality of habitat for fish, invertebrates and other aquatic organisms are impacted. Hydraulic connection between the river and the floodplain sloughs contributes markedly to DO levels in the sloughs. To characterize the relationship between hydraulic connectivity and water quality, water level, DO, and temperature data were continuously monitored within four (4) major floodplain sloughs, one (1) oxbow lake, and mainstem (control) from August 2009 to January 2011. A comparison was made between statistically representative DO concentrations (daily mean, diurnal range, daily minimum and maximum) for each site and in the river. River discharge was estimated at each site from nearby gages. By examining distinct changes in DO signatures with increasing flow, it was possible to determine the approximate flow at which the sloughs and oxbow lakes begin to become activated or hydraulically connected (flowing condition) to the mainstem of the Apalachicola River, and at what flow rates these floodplain wetlands become fully connected. Based on this data, we drew conclusions about the availability of suitable habitat for native fish species in these slough systems across a range of

  10. Data Collected to Support Monitoring of Constructed Emergent Sandbar Habitat on the Missouri River Downstream from Gavins Point Dam, South Dakota and Nebraska, 2004-06

    USGS Publications Warehouse

    Thompson, Ryan F.; Johnson, Michaela R.; Andersen, Michael J.

    2007-01-01

    The U.S. Army Corps of Engineers has constructed emergent sandbar habitat on sections of the Missouri River bordering South Dakota and Nebraska downstream from Gavins Point Dam to create and enhance habitat for threatened and endangered bird species. Two areas near river miles 761.3 and 769.8 were selected for construction of emergent sandbar habitat. Pre- and postconstruction data were collected by the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, to evaluate the success of the habitat management techniques. Data collected include pre- and postconstruction channel-geometry data (bathymetric and topographic) for areas upstream from, downstream from, and within each construction site. Water-velocity data were collected for selected parts of the site near river mile 769.8. Instruments and methods used in data collection, as well as quality-assurance and quality-control measures, are described. Geospatial channel-geometry data are presented for transects of the river channel as cross sections and as geographical information system shapefiles. Geospatial land-surface elevation data are provided for part of each site in the form of a color-shaded relief map. Geospatial water-velocity data also are provided as color-shaded maps and geographical information system shapefiles.

  11. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    USGS Publications Warehouse

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  12. Water Quality, Habitat, and Biological Conditions at Selected Sites in the Highly Urbanized Santa Ana River Basin, California

    NASA Astrophysics Data System (ADS)

    Burton, C. A.; Brown, L. R.

    2001-12-01

    The Santa Ana River Basin of southern California is highly urbanized and is affected by habitat loss, habitat alteration, and changes in water quality of the river and tributary streams. Nineteen sites, selected to represent the range in water source (mountain runoff, ground-water discharge, urban runoff, treated waste water), were sampled during summer 2000, to assess macroinvertebrate community structure and various measures of water quality. Sites were characterized on the basis of water source because much of the water in Santa Ana Basin is imported and does not typically originate within the watershed boundaries. Artificial substrates were employed for biological samples to minimize the effect of channel environments--natural, channelized but unlined, and concrete-lined-- as a confounding variable. The number of benthic macroinvertebrate genera ranged from five to 20 taxa per site. Pesticides were detected at 16 of 19 sites; the number of detections per site ranged from two to nine. Diazinon was the most commonly detected pesticide and was found at 13 of the 16 sites. Volatile organic compounds (VOCs) were detected at 9 of 10 sites; the number of detections ranged from 1 to 10 per site. Chloroform and bromodichloromethane, the most commonly detected VOCs, were found at six sites each. Results from a Microtox toxicity test using extracts from semi-permeable membrane devices installed at 14 sites indicated potential toxicity at 10 of the sites. Results suggest that water source and channel modifications associated with urbanization have altered water quality and associated ecological communities in the streams of the Santa Ana Basin.

  13. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    PubMed

    Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Olden, Julian D; Peterson, Erin E; Volk, Carol J; Lawrence, David J

    2012-10-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species-juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)-in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69-95%, 51-87%, and 86-100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus. PMID:22827880

  14. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    USGS Publications Warehouse

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  15. Two-Dimensional Modeling of Time-Varying Hydrodynamics and Juvenile Chinook Salmon Habitat in the Hanford Reach of the Columbia River

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.; McMichael, Geoffrey A.

    2007-10-10

    The Hanford Reach is the only remaining unimpounded reach of the Columbia River in the United States above Bonneville Dam. Discharge in the Hanford Reach is regulated by several dams and is often subject to rapid changes. Sharp flow reductions have led to the stranding or entrapment, and subsequent mortality, of juvenile chinook salmon (Oncorynchus tshawytscha) and other important fish species within the Hanford Reach. A multi-block two-dimensional depth-averaged hydrodynamic model was used to simulate time-varying river velocity and stage in a 37~km portion of the Hanford Reach. Simulation results were used to estimate time-varying juvenile chinook salmon habitat area, and the part of that habitat affected by discharge fluctuations. Affected habitat area estimates were made for the chinook salmon rearing period of four years. These estimates were used, along with other important factors, to establish a statistical relationship between discharge fluctuation and juvenile chinook salmon mortality.

  16. Comparative effects on trout habitat of hydropower modification with and without reregulation in the Cumberland River below Wolf Creek Dam, Kentucky. Final report

    SciTech Connect

    Curtis, L.T.; Nestler, J.M.; Martin, J.L.

    1987-03-01

    The U.S. Army Engineer District, Nashville regulates flows in the Cumberland River at Wolf Creek Dam to provide for hydropower generation and flood control. To meet future demands for power in the region, the ORN is considering optimizing the generating capability at Wolf Creek Dam by both uprating existing turbines and adding more generating capability. Reregulation of the increased releases from Wolf Creek Dam is under consideration to alleviate the flow fluctuations associated with the upgrade. This report describes and quantifies the effects on trout habitat of hydropower modification and peaking operation at Wolf Creek Dam on trout habitat in the reach of the Cumberland River between Wolf Creek Dam and the site of the reregulation dam both with and without reregulation. The results of this comparison indicate that reregulation will generally have a beneficial impact on trout habitat, primarily because the backwater effects caused by the reregulation dam reduce the water velocities associated with peak discharge.

  17. Combining scales in habitat models to improve conservation planning in an endangered vulture

    NASA Astrophysics Data System (ADS)

    Mateo-Tomás, Patricia; Olea, Pedro P.

    2009-07-01

    Predictive modelling of species' distributions has been successfully applied in conservation ecology, but effective conservation requires predictive and accurate models. The combination of different scales to build habitat models might improve their predictive ability and hence their usefulness for conservation, but this approach has rarely been evaluated. We developed habitat-occupancy models combining scales from nest-site to landscape for a key population at the northwestern edge of the distribution of the globally endangered Egyptian vulture ( Neophron percnopterus). We used generalised linear models (GLM) and an information-theoretic approach to identify the best combination of scales and resolutions for explaining occurrence. Those models that combined nest-site and landscape scales improved the predictive ability compared with the scale-specific ones. The best combined model had a very high predictive ability when used against an independent dataset (92% correct classifications). Egyptian vultures preferred to nest in caves with vegetation at the entrance that were situated at the base of long cliffs, provided that these cliffs are embedded within low-lying, heterogeneous areas with little topographic irregularity and with little human disturbance. The density of sheep around the nest positively influenced Egyptian vulture presence. Conservation of the studied population should focus on minimising human disturbance and on promoting sustainable development through conservation of traditional pastoralism. Our findings highlight the importance of developing region-specific multiscale models in order to design effective conservation strategies. The approach described here may be applied similarly in other populations and species.

  18. Estuarine and Tidal Freshwater Habitat Cover Types Along the Lower Columbia River Estuary Determined from Landsat 7 Enhanced Thematic Mapper (ETM+) Imagery, Technical Report 2003.

    SciTech Connect

    Garono, Ralph; Robinson, Rob

    2003-10-01

    Developing an understanding of the distribution and changes in estuarine and tidal floodplain ecosystems is critical to the management of biological resources in the lower Columbia River. Columbia River plants, fish, and wildlife require specific physicochemical and ecological conditions to sustain their populations. As habitats are degraded or lost, this capability is altered, often irretrievably; those species that cannot adapt are lost from the ecosystem. The Lower Columbia River Estuary Partnership (Estuary Partnership) completed a comprehensive ecosystem protection and enhancement plan for the lower Columbia River and estuary in 1999 (Jerrick, 1999). The plan identified habitat loss and modification as a critical threat to the integrity of the lower Columbia River ecosystem and called for a habitat inventory as a key first step in its long term restoration efforts. In 2000, the Estuary Partnership initiated a multiphase project to produce a spatial data set describing the current location and distribution of estuarine and tidal freshwater habitat cover types along the lower Columbia River from the river mouth to the Bonneville Dam using a consistent methodology and data sources (Fig. 1). The first phase of the project was the development of a broadbrush description of the estuarine and tidal freshwater habitat cover classes for the entire study area ({approx}146 river miles) using Landsat 7 ETM+ satellite imagery. Phase II of the project entailed analysis of the classified satellite imagery from Phase I. Analysis of change in landcover and a summary of the spatial relationships between cover types are part of Phase II. Phase III of the project included the classification of the high resolution hyperspectral imagery collected in 2000 and 2001 for key focal areas within the larger study area. Finally, Phase IV consists of this final report that presents results from refining the Landsat ETM+ classification and provides recommendations for future actions

  19. Wildlife and Wildlife Habitat Loss Assessment at Cougar Dam and Reservoir Project, South Fork McKenzie River, Oregon; 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Cougar Dam and Reservoir Project on the South Fork McKenzie River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1953, 1965, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Cougar Project extensively altered or affected 3096 acres of land and river in the McKenzie River drainage. Impacts to wildlife centered around the loss of 1587 acres of old-growth conifer forest and 195 acres of riparian hardwoods. Impacts resulting from the Cougar Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the effected area to support wildlife was greatly altered as a result of the Cougar Project. Loses or grains in the potential of the habitat to support wildlife will exist over the life of the project.

  20. An Assessment of Pulsed Flows on Foothill Yellow-legged Frog Habitat Hydraulics in a Regulated River using Two-Dimensional Hydrodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Yarnell, S.; Lind, A.; Kupferberg, S.

    2007-12-01

    We used a freely available two-dimensional model, River2D, to evaluate changes in habitat suitability and availability for Foothill yellow-legged frog egg masses and tadpoles during pulsed flow events. Two study sites in Northern California, one on the unregulated South Fork Eel River and the other on the regulated North Fork Feather River, were selected for modeling. Simulated depths and velocities agreed well with measured field values. When coupled with a definition of breeding habitat suitability that encompassed the variability of field- measured values and the range of error within the model output, the model accurately predicted suitable breeding locations throughout the survey reach. Using data on percentages of egg mass and tadpole loss associated with increased velocities, we assessed several scenarios of how pulsed flows affected habitat availability and suitability. In a seasonal (spring) pulse scenario, lower discharges provided the greatest weighted usable area for breeding, but higher initial discharges provided the greatest buffering capacity against lethal increases in velocity. In an aseasonal (summer) pulse scenario, only 20-30% of the suitable tadpole habitat in the unregulated site and <5% of the suitable habitat in the regulated site remained suitable during the pulse regardless of initial flow level. In both scenarios, the unregulated study site provided 2-3 times the buffering capacity of the regulated site. This was likely due to differences in channel morphology; the regulated site had an entrenched channel with steep banks, while the unregulated site had an asymmetric cross-sectional shape where shallow overbank areas provided refuge from high velocities as flows fluctuated. This type of model-based methodology that can evaluate effects from flow fluctuation on individuals and local habitat conditions for multiple life stages would be useful for managing Foothill yellow-legged frog or similar aquatic species in regulated river systems.