Science.gov

Sample records for river mainstem facilities

  1. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  2. TRIBUTARY AND MAINSTEM WATER QUALITY MONITORING OF THE MIDDLE SNAKE RIVER

    EPA Science Inventory

    The Idaho Department of Health and Welfare, Division of Environmental Quality conducted water quality sampling in the mainstem and major tributaries of the Snake River between Twin Falls Reservoir and Upper Salmon Falls Dam. Sampling was conducted at nine river mainstem stations ...

  3. Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network.

    PubMed

    Uno, Hiromi; Power, Mary E

    2015-10-01

    Animal migrations can link ecosystems across space. We discovered an aquatic insect that migrates between a river mainstem and its tributaries, and provides an important trophic subsidy for tributary predators. A mayfly, Ephemerella maculata, rears in a warm, sunlit productive river mainstem, then migrates as adults to cool, shaded unproductive tributaries where they oviposit and die. This migration tripled insect flux into a tributary for 1 month in summer. A manipulative field experiment showed that this E. maculata subsidy nearly tripled the growth of the young of the year steelhead trout (Oncorhynchus mykiss) in the recipient tributary over the summer months, and was more important than terrestrial invertebrate subsidies, which have been considered the primary food source for predators in small, forested creeks. By delivering food subsidies from productive but warming river mainstems to cool but food-limited tributaries, aquatic insect migrations could enhance resilience to cool-water predators in warming river networks. PMID:26248587

  4. Impacts of the Columbia River Hydroelectric System on Mainstem Habitats of Fall Chinook Salmon

    SciTech Connect

    Dauble, Dennis D.; Hanrahan, Timothy P.; Geist, David R.; Parsley, Michael J.

    2003-08-01

    Salmonid habitats in mainstem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13 and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the mainstem Columbia River and 163 km of the mainstem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment, more bars and islands, and had lower water surface slopes than areas not extensively used. Because flows in the mainstem are now highly regulated, the pre-development alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes, specifically sustained peak flows for scouring, is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries and tailrace spawning areas, and hatcheries) be considered.

  5. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  6. Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.

    SciTech Connect

    Conner, William P.

    1989-01-01

    Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum water temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.

  7. Mainstem Clearwater River study: Assessment for Salmonid Spawning, Incubation, and Rearing.

    SciTech Connect

    Arnsberg, Billy D.; Connor, William P.; Connor, Edward; Pishl, Markley J.; Whitman, Marc A.

    1992-04-01

    The Nez Perce Tribe sub-contracted with EBASCO Environmental to develop capabilities for predicting fish habitat conditions in the lower mainstem clearwater River under a limited range of discharge regimes from Dworshak Dam. The Nez Perce Tribe used this information to analyze a range of discharges from Dworshak Dam for anadromous fish habitat requirements. The Tribe's analysis does not necessarily reflect views of EBASCO Environmental. Flow analyses provided to the Bonneville Power Administration and/or US Army Corps of Engineers within this report on the lower mainstem Clearwater River shall in no way limit or influence future water rights claims or flow recommendations made by the Nez Perce Tribe for any purposes. Flows analyzed in this report are independent of conditions for upstream or downstream anadromous fish migration and of any other purposes not specifically stated.

  8. Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.

    2010-01-01

    Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides

  9. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    SciTech Connect

    Rawding, Dan; Hillson, Todd D.

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The five assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but batch

  10. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem

    SciTech Connect

    Duberstein, Corey A.; Downs, Janelle L.

    2008-11-06

    Emergent sandbar habitat (ESH) in the Missouri River Mainstem System is a critical habitat element for several federally listed bird species: the endangered interior least tern (Sterna antillarum) and the threatened Northern Great Plains piping plover (Charadrius melodus). The Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River and is responsible under the Endangered Species Act (ESA) to take actions within its authorities to conserve listed species. To comply with the 2000 USFWS BiOp and the 2003 amended USFWS BiOp, the Corps has created habitats below Gavins Point Dam using mechanical means. Initial monitoring indicates that constructed sandbars provide suitable habitat features for nesting and foraging least terns and piping plovers. Terns and plovers are using constructed sandbars and successfully reproducing at or above levels stipulated in the BiOp. However, whether such positive impacts will persist cannot yet be adequately assessed at this time.

  11. Mainstem Clearwater River study: Assessment for Salmonid Spawning, Incubation, and Rearing.

    SciTech Connect

    Conner, William P.; Pishl, Markley J.; Whitman, Marc A.

    1990-06-01

    This is the second annual progress report for studies conducted by the Nez Perce Tribe to evaluate the potential for increasing fall chinook salmon (Oncorhynchus tshawytscha) populations and establishing summer chinook salmon spawning in the lower 57.5 km of the mainstem Clearwater River (LMCR) of Idaho. The report presents study methods and preliminary results for the 1988--1989 phase of the study. The overall study plan was designed to quantitatively evalulate the available spawning, incubation and rearing habitat for fall and summer chinook salmon. We also studied steelhead trout (O. mykiss) rearing habitat since there is a stable population of these fish in the LMCR's tributaries and their parr are known to rear periodically in the mainstem. Resident fish were studied to assess the potential for habitat overlap with that of anadromous fish. Based on these findings the Nez Perce Tribe could determine chinook salmon habitat conditions for selected stocks under existing flow and temperature regimes and consult with the US Army Corps of Engineering concerning the effects of Dworshak Dam operation on flows and measures to restore or establish stocks identified in this study. 38 refs., 25 figs., 4 tabs.

  12. Swath altimetry measurements of the mainstem Amazon River: measurement errors and hydraulic implications

    NASA Astrophysics Data System (ADS)

    Wilson, M. D.; Durand, M.; Jung, H. C.; Alsdorf, D.

    2014-08-01

    The Surface Water and Ocean Topography (SWOT) mission, scheduled for launch in 2020, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations. In this paper, we aimed to (i) characterize and illustrate in two-dimensions the errors which may be found in SWOT swath measurements of terrestrial surface water, (ii) simulate the spatio-temporal sampling scheme of SWOT for the Amazon, and (iii) assess the impact of each of these on estimates of water surface slope and river discharge which may be obtained from SWOT imagery. We based our analysis on a "virtual mission" for a 300 km reach of the central Amazon (Solimões) River at its confluence with the Purus River, using a hydraulic model to provide water surface elevations according to SWOT spatio-temporal sampling to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. We thereby obtained water surface elevation measurements for the Amazon mainstem as may be observed by SWOT. Using these measurements, we derived estimates of river slope and discharge and compared them to those obtained directly from the hydraulic model. We found that cross-channel and along-reach averaging of SWOT measurements using reach lengths of greater than 4 km for the Solimões and 7.5 km for Purus reduced the effect of systematic height errors, enabling discharge to be reproduced accurately from the water height, assuming known bathymetry and friction. Using cross-section averaging and 20 km reach lengths, results show Nash-Sutcliffe model efficiency values of 0.99 for the Solimões and 0.88 for the Purus, with 2.6 and 19.1% average overall error in discharge, respectively.

  13. Limnological and fishery studies on Lake Sharpe, a main-stem Missouri River reservoir

    USGS Publications Warehouse

    June, Fred C.; Beckman, L.G.; Elrod, J.H.; O'Bryan, G.K.; Vogel, D.A.

    1987-01-01

    Lake Sharpe, the most recent of six main-stem Missouri River reservoirs to be impounded, began to fill in November 1963 and became fully operational in July 1966. At full pool it is 137 km long, and has a surface area of 22,600 ha and a volume of 2.34 km". It is operated as a flow-through power generation system that reregulates discharges from upstream Lake Oahe. Major changes in the water-management regimen during 1966-75 were increased summer discharges beginning in 1969 and increased peaking operations beginning in 1973. Lake Sharpe had a relatively short aging process because it filled rapidly, the water level remained relatively stable, and the waterexchange rate was high. Consequently, most physical, chemical, and biological characteristics were remarkably uniform during 1966–75. The temperature regimen was largely governed by inflow from Lake Oahe. Although the water mass warmed during summer, thermal stratification was generally transient, limited to the lower reservoir, and more common during periods of relatively low discharge rates in 1966–68 than in later years. Variation in turbidity was striking; the midsection of the reservoir was generally most turbid. Chemical ion composition of the water tended to be uniform; observed differences were localized and associated with tributary inflows. Phytoplankton abundance reached its highest levels during 1970–75. Composition of the zooplankton community changed during 1966–75; the abundance of cyclopoid copepods decreased and that of calanoid copepods and cladocerans increased. Total abundance varied during the 10-year period, but without apparent trend. Variation in abundance appeared to be associated with discharge rate, water temperature, and turbidity. The benthic community in 1967-68 consisted mostly of chironomid larvae, which were uniformly distributed over the length of the reservoir.

  14. Juvenile densities relative to water regime in mainstem reservoirs of the Tennessee River, USA

    USGS Publications Warehouse

    Miranda, L.E.; Lowery, D.R.

    2007-01-01

    Successful reproduction and development of strong year classes of fish in storage reservoirs are commonly associated with reproductive seasons of high water level and extensive flooding. Responses to flooding are likely to be less pronounced or altogether different in mainstem navigation reservoirs that experience limited water level fluctuation. In these reservoirs, water regime characteristics such as timing of flooding, instability of water level, and water retention could supersede the effects of water level. We examined existing data to identify aspects of the water regime that have detectable consequence on juveniles of selected taxa in a sequence of four reservoirs of the Tennessee River that exhibited relatively small annual rises. Empirical models relating density of selected age-0 centrarchids to water regime suggested that descriptors of spring and summer flow through the reservoirs, water level instability, and summer water level were better related to juvenile densities than was spring water level. Different water regimes had different effects on the study species, and presumably other species in the fish communities. Therefore, a diversity of water regimes rather than a rigid rule curve is likely most beneficial to the long-term permanence of the fish assemblages of the study reservoirs. Fixed rule curves produce drawdown zones devoid of vegetation consisting primarily of mudflats of limited ecological value to floodplain species, and maintenance of water levels within the rule curve force operational drops and rises that adversely affect littoral spawners. In developing water management plans, regulatory agencies should consider incorporating managed randomness into rule curves. ?? 2007 Blackwell Publishing Asia Pty Ltd.

  15. Kootenai River Fisheries Investigations; Chapter 3 : Mainstem Habitat Use and Recruitment Estimates of Rainbow Trout, 1996 Annual Report.

    SciTech Connect

    Fredericks, James P.; Hendricks, Steve

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June.

  16. Status and trends monitoring of the mainstem Columbia River: sample frame development and review of programs relevant to the development of an integrated approach to monitoring

    USGS Publications Warehouse

    Counihan, Timothy D.; Hardiman, Jill M.; Waste, Stephen

    2013-01-01

    Implementing an Integrated Status and Trends Monitoring program (ISTM) for the mainstem Columbia River will help identify trends in important natural resources and help us understand the long-term collective effects of management actions. In this report, we present progress towards the completion of a stepwise process that will facilitate the development of an ISTM for the mainstem Columbia River. We discuss planning and regulatory documents that can be used to identify monitoring goals and objectives and present existing monitoring and research activities that should be considered as the development of a Columbia River ISTM proceeds. We also report progress towards the development of sample frames for the Columbia and Snake Rivers and their floodplains. The sample frames were formulated using Digital Elevation Models (DEM’s) of the river channel and upland areas and a Generalized Random-Tessellation Stratified (GRTS) algorithm for an area based resource to generate “master sample(s).” Working with the Pacific Northwest Aquatic Monitoring Partnership (PNAMP) we facilitated the transfer of the sample frames to the PNAMP “Monitoring Sample Designer” tool. We then discuss aspects of response and survey designs as they pertain to the formulation of a mainstem Columbia River ISTM. As efforts to formulate an ISTM for the mainstem Columbia River proceed, practitioners should utilize the extensive literature describing the planning and implementation of fish and wildlife mitigation and recovery efforts in the Columbia River Basin. While we make progress towards establishing an ISTM framework, considerable work needs to be done to formulate an ISTM program for the mainstem Columbia River. Long-term monitoring programs have been established for other large rivers systems; scientists that have experience planning, implementing, and maintaining large river monitoring efforts such as those in the Colorado, Illinois, and Mississippi Rivers should be consulted and

  17. The influence of the Amazonian floodplain ecosystems on the trace element dynamics of the Amazon River mainstem (Brazil).

    PubMed

    Viers, Jérôme; Barroux, Guénaël; Pinelli, Marcello; Seyler, Patrick; Oliva, Priscia; Dupré, Bernard; Boaventura, Geraldo Resende

    2005-03-01

    The purpose of this paper is to forecast the role of riverine wetlands in the transfer of trace elements. One of the largest riverine wetlands in the world is the floodplain (várzea) of the Amazon River and its tributaries (Junk and Piedade, 1997). The central Amazon wetlands are constituted by a complex network of lakes and floodplains, named várzeas, that extend over more than 300,000 km2 (Junk, W.J., The Amazon floodplain--a sink or source for organic carbon? In Transport of Carbon and Minerals in Major World Rivers, edited by E.T. Degens, S. Kempe, R. Herrera, SCOPE/UNEP; 267-283, 1985.) and are among the most productive ecosystems in the world due to the regular enrichment in nutrients by river waters In order to understand if the adjacent floodplain of Amazon River have a significant influence on the trace element concentrations and fluxes of the mainstem, the concentrations of selected elements (i.e., Al, Mn, Fe, Co, Cu, Mo, Rb, Sr, Ba, and U) have been measured in the Amazon River water (Manacapuru Station, Amazonas State, Brazil) and in lake waters and plants (leaves) from a várzea(Ilha de Marchantaria, Amazonas State, Brazil) during different periods of the hydrological cycle. Four plant species (two perennial species: Pseudobombax munguba and Salix humboldtiana, and two annual herbaceous plants: Echinochloa polystachya and Eichhornia crassipes) were selected to represent the ecological functioning of the site. Time series obtained for dissolved Mn and Cu (<0.20 microm) in Amazon River water could not be explained by tributary mixing or instream processes only. Therefore, the contribution of the waters transiting the floodplains should be considered. These results suggest that the chemical composition of the waters draining these floodplains is controlled by reactions occurring at sediment-water and plant-water interfaces. Trace elements concentrations in the plants (leaves) vary strongly with hydrological seasonality. Based on the concentration data

  18. What Does a Mean Really Mean? Interpreting Mainstem Detrital CRN Data in Transient Landscapes, South Fork Eel River, CA

    NASA Astrophysics Data System (ADS)

    Crosby, B. T.; Rowland, J. C.

    2011-12-01

    In landscapes with steady, uniform erosion rates, mainstem detrital cosmogenic radionuclide (CRN) concentrations are expected to reflect basin-wide erosion rates. In this study, we use both field and numerical experiments to provide new insight into how these rates will vary in over space and time during transient landscape adjustment. Our field data come from the South Fork Eel River (SFER) in Northern California where well-aligned knickpoints and terraces along the mainstem and tributary channels define a clear boundary between an incised, actively adjusting lowland and an unadjusted relict upland landscape. This transient adjustment is most complete in the lower portion of the basin and becomes progressively less extensive upstream, consistent with an upstream propagating wave of adjustment. To test if detrital CRN erosion rates would reflect this transient adjustment, we collected 9 sand samples along the mainstem SFER at sites distributed between the headwaters and the basin outlet. CRN erosion rates increase systematically down the mainstem from 0.22 to 0.52 mm/yr. This gradual increase in erosion rate reflects the progressive dilution of relict high CRN concentrations by low CRN concentration sediment from the rapidly eroding, adjusting regions downstream. Using a simple, two member sediment mixing model, we find that CRN concentrations should decrease in a non-linear manner as the proportion of the basin in the adjusting state increases. In order to test this non-linear dilution theory, we use the mapped boundary between the relict and adjusting regions in the SFER to quantify, for each mainstem sample site, the fraction of upstream drainage area that is in a relict state. Because the adjustment is relatively immature, our samples only range from 75% to 98% relict, but fall along the predicted mixing line. Because detrital CRN erosion rate data from any field site only provides a single snapshot of contemporary erosion rates, we employ the CHILD numerical

  19. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River

    PubMed Central

    Smith, Maria W.; Davis, Richard E.; Youngblut, Nicholas D.; Kärnä, Tuomas; Herfort, Lydie; Whitaker, Rachel J.; Metcalf, William W.; Tebo, Bradley M.; Baptista, António M.; Simon, Holly M.

    2015-01-01

    Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs) produced ∼100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e., the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria) and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary. PMID:26483785

  20. Community structure of age-0 fishes in paired mainstem and created shallow-water habitats in the Lower Missouri River

    USGS Publications Warehouse

    Starks, T. A.; Long, James M.; Dzialowski, Andrew R.

    2016-01-01

    Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts. 

  1. Metagenomic evidence for reciprocal particle exchange between the mainstem estuary and lateral bay sediments of the lower Columbia River.

    PubMed

    Smith, Maria W; Davis, Richard E; Youngblut, Nicholas D; Kärnä, Tuomas; Herfort, Lydie; Whitaker, Rachel J; Metcalf, William W; Tebo, Bradley M; Baptista, António M; Simon, Holly M

    2015-01-01

    Lateral bays of the lower Columbia River estuary are areas of enhanced water retention that influence net ecosystem metabolism through activities of their diverse microbial communities. Metagenomic characterization of sediment microbiota from three disparate sites in two brackish lateral bays (Baker and Youngs) produced ∼100 Gbp of DNA sequence data analyzed subsequently for predicted SSU rRNA and peptide-coding genes. The metagenomes were dominated by Bacteria. A large component of Eukaryota was present in Youngs Bay samples, i.e., the inner bay sediment was enriched with the invasive New Zealand mudsnail, Potamopyrgus antipodarum, known for high ammonia production. The metagenome was also highly enriched with an archaeal ammonia oxidizer closely related to Nitrosoarchaeum limnia. Combined analysis of sequences and continuous, high-resolution time series of biogeochemical data from fixed and mobile platforms revealed the importance of large-scale reciprocal particle exchanges between the mainstem estuarine water column and lateral bay sediments. Deposition of marine diatom particles in sediments near Youngs Bay mouth was associated with a dramatic enrichment of Bacteroidetes (58% of total Bacteria) and corresponding genes involved in phytoplankton polysaccharide degradation. The Baker Bay sediment metagenome contained abundant Archaea, including diverse methanogens, as well as functional genes for methylotrophy and taxonomic markers for syntrophic bacteria, suggesting that active methane cycling occurs at this location. Our previous work showed enrichments of similar anaerobic taxa in particulate matter of the mainstem estuarine water column. In total, our results identify the lateral bays as both sources and sinks of biogenic particles significantly impacting microbial community composition and biogeochemical activities in the estuary. PMID:26483785

  2. Effect of Main-stem Dams on Zooplankton Communities of the Missouri River (USA)

    EPA Science Inventory

    We examined the distribution and abundance of zooplankton from 146 sites on the Missouri River and found large shifts in the dominance of major taxa between management zones of this regulated river. Crustacean zooplankton were dominant in the inter-reservoir zone of the river, an...

  3. A predictive model for anti-degradation monitoring of the Delaware River mainstem

    EPA Science Inventory

    The non-tidal portion of the Delaware River can be considered to be in minimally disturbed condition, but there is increasing pressure on the watershed. Thus, the primary goal of this research was to develop a monitoring tool that can be used by the Delaware River Basin Commissi...

  4. Quantifying floodplain and mainstem channel response to the removal of the Elwha River dams using "old school" techniques

    NASA Astrophysics Data System (ADS)

    Pess, G. R.; McHenry, M.; Peters, R.; Beechie, T. J.; Duda, J. J.; Liermann, M. C.; Bakke, P. D.; Morley, S. A.; McMillan, J. R.; Denton, K.

    2012-12-01

    In 2011 a multi-year deconstruction of two long-standing, high-head dams began on the Elwha River, Washington State. Over the past decade, we have been monitoring a variety of ecosystem attributes in the Elwha River basin to establish baseline conditions prior to one of the largest watershed restoration projects in the US. Our study design is tailored to the Elwha's geomorphic template, as different channel types are expected to respond differently to the large amount of sediment that will be released. A primary focus of this effort has been on the 28 km of floodplain channels below the dams (for every 1km of main stem habitat there is 1.35km of floodplain channel). Another focus has been on main stem channel features such as pool and riffle habitat, which are critical habitats for salmonids and other biota. How will these floodplain channels and mainstem channel features react to the large amount of sediment that is being released? We have used simple field techniques such as longitudinal profiles of floodplain channels, pebble counts, turbidity measurements, and the amount of sediment accumulation in pools and riffles to document baseline as well as "during dam removal" conditions. Early results indicate increased turbidity downstream of dams throughout deconstruction, suggesting there will be dramatic increases in fine sediment accumulations once dam removal is completed. We plan to continue using inexpensive methods to quantify the geomorphic and ecological change following dam removal in the Elwha River basin. These findings have direct implications for other dam removal projects.

  5. Temporal and Water Column Variability in Particulate Organic Carbon Composition on the Amazon River Main-stem

    NASA Astrophysics Data System (ADS)

    Rosengard, S.; Galy, V.; Spencer, R. G.; McNichol, A. P.

    2015-12-01

    The Amazon River exports ~14 teragrams (0.014 gigatons) of particulate organic carbon (POC) to the Atlantic coast each year, ~15% of the global riverine carbon source to the oceans. Understanding the source and fate of this exported POC is complicated by (1) hydrodynamic sorting of suspended particles in the river cross-section, and (2) seasonality in discharge over the hydrological cycle. Here, we characterize suspended POC composition down the water column (surface-to-bed) and through time (rising discharge in April 2014, falling discharge in July 2014) to assess the extent of and mechanism underlying this variability. Depth-specific sampling of the river cross-section took place at Óbidos, the most downstream gauging station on the main-stem, and was coupled to an Acoustic Doppler Current Profiler to calculate export fluxes at both times. Between April and July, raw water discharge increased from 150,000 to 250,000 m3/s. Bulk compositional features (e.g., % OC, δ13C, C/N) varied with both hydrodynamic sorting and seasonality, while thermal stability, derived from ramped oxidation of the suspended sediments, did not differ with depth or season. Compound-specific δ 13C of extracted lipids varied seasonally, as well. We plan to supplement these preliminary data with measurements of POC 14C content across space and time. The observations thus far suggest that the variability in suspended POC composition with depth and season is dominated by physical changes in source. Moreover, the similarities in thermal stability suggest that POC reactivity, and relatedly, its fate downstream and ultimately in the coastal ocean, is relatively invariant across these variable sources.

  6. CHANGES IN FISH ASSEMBLAGE STRUCTURE IN THE MAINSTEM WILLAMETTE RIVER, OREGON

    EPA Science Inventory

    The Willamette River has a mean annual discharge of 680 m3s-1. In the 1940s it was polluted by organic wastes, resulting in low dissolved oxygen concentrations and floating and benthic sludge deposits that hindered salmon migration and navigation. Following basin-wide secondary...

  7. Contrasting biogeochemical characteristics of right-bank tributaries of the Oubangui River, and a comparison with the mainstem river (Congo basin, Central African Republic).

    NASA Astrophysics Data System (ADS)

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-05-01

    The Oubangui is a major right-bank tributary of the Congo River, draining an area of ~500,000 km² of mainly wooded savannahs. Here, we describe data on the physico-chemical characteristics and biogeochemistry of contrasting tributaries within the central Oubangui catchment collected during 3 field surveys between 2010 and 2012, with land use ranging from wooded savannahs to humid tropical rainforest. Compared to data from two years of sampling at high temporal resolution on the mainstem river in Bangui (Central African Republic), these tributaries show a remarkably wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity and total alkalinity (TA)) in rivers draining dense rainforests to those more typical for (sub)tropical savannah systems. Based on carbon stable isotope data (δ13C), the majority of sites show a corresponding dominance of C3-derived organic matter, with a tendency for increased C4 contributions the more turbid sites such as the Mpoko River. δ13C of dissolved organic carbon (DOC) were generally similar to those of particulate organic carbon (POC) across the different tributaries. δ13C of dissolved inorganic carbon (DIC) ranged between -28.1 ‰ in low-TA rainforest (blackwater) rivers to -5.8 ‰ in the mainstem Oubangui. These variations were strongly correlated to both partial pressure of CO2 (pCO2) and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the dominant weathering regime (silicate versus carbonate weathering) on DIC and CO2 fluxes. All tributaries were consistently oversaturated in dissolved greenhouse gases (CH4, N2O, and CO2) with respect to atmospheric equilibrium, with highest levels observed in rivers draining rainforest vegetation. The high diversity observed within this subcatchment of the Congo River basin is equivalent to that observed in much larger, heterogeneous catchments, and underscores the importance of

  8. Bedrock River Incision Following Aggradation: Observations from the Waipaoa River Regarding Tributary Response to Mainstem Incision and the Role of Paleotopography

    NASA Astrophysics Data System (ADS)

    Crosby, B. T.; Whipple, K. X.

    2005-12-01

    Following a period of valley-filling aggradation, the form and extent of subsequent alluvial and bedrock incision is governed by the pre-aggradation topography and the position of the channel at the time of incision. We present findings from an extensive along-stream survey of the Waihuka Stream, a tributary to the Waipaoa River on the North Island of New Zealand. Never glaciated, this basin aggraded 5 to 25 m of coarse alluvial sediment during the last glacial period, creating an extensive and distinctive valley-fill surface. ~18 ka, aggradation ceased and a subsequent pulse of fluvial incision abandoned the aggradational surface. At present, the river gorge is incised 25 to 60 m into alluvial fill and mudstone bedrock beneath the top of the aggradational surface. Using a laser range-finder and GPS-enabled GIS surveying tool, we surveyed ~17 km of the Waihuka Stream (4.8×106 m2 to 6.3×107 m2). We collected a longitudinal profile and the relative elevations of fill and strath surfaces exposed in channel banks. We also surveyed a total of ~9 km in 14 tributaries to the Waihuka. Drainage areas of tributaries ranged between 5×105 m2 and 9.9×106 m2. In the Waihuka, we find that the amount of bedrock incision depends on whether the incising channel locally lowered through alluvial fill to reoccupy the preaggradation channel or whether it locally had to cut an entirely new valley into bedrock. Reaches dominated by bedrock incision were observed where alluvial fan deposits laterally shifted the mainstem channel out of the paleovalley and against the opposite bedrock hillslope. The along-stream variation in bed erodability forced by whether the re-incising channel encountered bedrock or alluvium had a significant effect on the propagation of the incision signal into tributaries. Where the channel dominantly re-incised alluvial fill, tributaries have stepped but not dramatically over-steepened longitudinal profiles that appear to be adjusting to the new base-level. In

  9. An Assessment of Habitat Quality Using Dissolved Oxygen Concentrations in Floodplain Water Bodies in Relation to River Flow and Mainstem Connectivity

    NASA Astrophysics Data System (ADS)

    Stofleth, J.; Andrews, E. S.; White, J. Q.

    2011-12-01

    The floodplains of the Apalachicola River, Florida include an intricate network of sloughs, lakes and wetlands. These floodplain water bodies provide essential spawning and nursery areas for a diverse array of aquatic organisms. The frequency and duration of Apalachicola River flows sufficient to hydraulically connect and thereby activate these floodplain features has decreased over time due to upstream dams, diversions, and modification to the channel geometry (incision and widening). The main objective of this study is to characterize the relationship between a key water quality parameter, dissolved oxygen (DO), to the hydraulic connectivity of the ecologically-important large slough systems within the Apalachicola River floodplain over a range of flow conditions. When DO concentrations drop, the quality of habitat for fish, invertebrates and other aquatic organisms are impacted. Hydraulic connection between the river and the floodplain sloughs contributes markedly to DO levels in the sloughs. To characterize the relationship between hydraulic connectivity and water quality, water level, DO, and temperature data were continuously monitored within four (4) major floodplain sloughs, one (1) oxbow lake, and mainstem (control) from August 2009 to January 2011. A comparison was made between statistically representative DO concentrations (daily mean, diurnal range, daily minimum and maximum) for each site and in the river. River discharge was estimated at each site from nearby gages. By examining distinct changes in DO signatures with increasing flow, it was possible to determine the approximate flow at which the sloughs and oxbow lakes begin to become activated or hydraulically connected (flowing condition) to the mainstem of the Apalachicola River, and at what flow rates these floodplain wetlands become fully connected. Based on this data, we drew conclusions about the availability of suitable habitat for native fish species in these slough systems across a range of

  10. Spatial and seasonal patterns in water quality in an embayment-mainstem reach of the tidal freshwater Potomac River, USA: a multiyear study.

    PubMed

    Jones, R Christian; Kelso, Donald P; Schaeffer, Elaine

    2008-12-01

    Spatial and temporal patterns in water quality were studied for seven years within an embayment-river mainstem area of the tidal freshwater Potomac River. The purpose of this paper is to determine the important components of spatial and temporal variation in water quality in this study area to facilitate an understanding of management impacts and allow the most effective use of future monitoring resources. The study area received treated sewage effluent and freshwater inflow from direct tributary inputs into the shallow embayment as well as upriver sources in the mainstem. Depth variations were determined to be detectable, but minimal due mainly to the influence of tidal mixing. Results of principal component analysis of two independent water quality datasets revealed clear spatial and seasonal patterns. Interannual variation was generally minimal despite substantial variations in tributary and mainstem discharge among years. Since both spatial and seasonal components were important, data were segmented by season to best determine the spatial pattern. A clear difference was found between a set of stations located within one embayment (Gunston Cove) and a second set in the nearby Potomac mainstem. Parameters most highly correlated with differences were those typically associated with higher densities of phytoplankton: chlorophyll a, photosynthetic rate, pH, dissolved oxygen, BOD, total phosphorus and Secchi depth. These differences and their consistency indicated two distinct water masses: one in the cove harboring higher algal density and activity and a second in the river with lower phytoplankton activity. A second embayment not receiving sewage effluent generally had an intermediate position. While this was the most consistent spatial pattern, there were two others of a secondary nature. Stations closer to the effluent inputs in the embayment sometimes grouped separately due to elevated ammonia and chloride. Stations closer to tributary inflows into the embayment

  11. Water type and suitability of Oklahoma surface waters for public supply and irrigation; Part I, Arkansas river mainstem and Verdigris Neosho, and Illinois river basins through 1978

    USGS Publications Warehouse

    Stoner, J.D.

    1981-01-01

    Water-quality data in the Arkansas River mainstem and the Verdigris, Neosho, and Illinois River basins within Oklahoma, through 1978, were examined for water type and suitability for public water supply and for irrigation use. Of 147 stations with available data, 68 stations or 46 percent were considered to have sufficient data for analysis. The classification of water type was based on the relation of the major ions: calcium, magnesium, sodium, carbonate, bicarbonate, sulfate, and chloride to each other within the range of measured specific conductance. The suitability for use as a public supply was based on the concentration distribution of selected constituents. The constituents selected were those with maximum contaminant levels established by regulation, or constituents for which recommended maximum limits have been established and for which historic data are available. The irrigation classification method of Wilcox was used to relate sodium, calcium, and magnesium concentrations and the salinity distribution to the use of the water for irrigation. Where data were available, the chance of phytotoxic effects by boron was discussed.

  12. Water type and suitability of Oklahoma surface waters for public supply and irrigation Part 4: Red River mainstem and North Fork Red River basin through 1979

    USGS Publications Warehouse

    Stoner, Jerry D.

    1981-01-01

    Water-quality data for the Red River mainstem and the North Fork Red River basin within Oklahoma, through 1979, were examined for water type and suitability for public water supply and irrigation use. Of 96 stations with available data, 53 stations or 55 percent were considered to have sufficient data for analysis. The classification of water type was based on the relation of the major ions: calcium, magnesium, sodium, carbonate, bicarbonate, sulfate, and chloride to each other within the range of measured specific conductance. The suitability of the water for use as a public supply was based on the concentration distribution of selected constituents. The constituents selected were those with maximum contaminant levels established by regulation, or constituents for which recommended maximum limits have been established and for which historic data are available. The irrigation-classification method of Wilcox was used to relate sodium, calcium, and magnesium concentrations and the salinity distribution to the use of the water for irrigation. If data are available, the chance of phytotoxic effects by boron is discussed.

  13. Spatial variability and temporal dynamics of greenhouse gas (CO2, CH4, N2O) concentrations and fluxes along the Zambezi River mainstem and major tributaries

    NASA Astrophysics Data System (ADS)

    Teodoru, C. R.; Nyoni, F. C.; Borges, A. V.; Darchambeau, F.; Nyambe, I.; Bouillon, S.

    2014-11-01

    Spanning over 3000 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. As part of a~broader study on the riverine biogeochemistry in the Zambezi River basin, we present data on greenhouse gas (GHG, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) concentrations and fluxes collected along the Zambezi River, reservoirs and several of its tributaries during 2012 and 2013 and over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity along the aquatic continuum. All GHGs concentrations showed high spatial variability (coefficient of variation: 1.01 for CO2, 2.65 for CH4 and 0.21 for N2O). Overall, there was no unidirectional pattern along the river stretch (i.e. decrease or increase towards the ocean), as the spatial heterogeneity of GHGs appeared to be determined mainly by the connectivity with floodplains and wetlands, and the presence of man-made structures (reservoirs) and natural barriers (waterfalls, rapids). Highest CO2 and CH4 concentrations in the mainstream river were found downstream of extensive floodplains/wetlands. Undersaturated CO2 conditions, in contrast, were characteristic for the surface waters of the two large reservoirs along the Zambezi mainstem. N2O concentrations showed the opposite pattern, being lowest downstream of floodplains and highest in reservoirs. Among tributaries, highest concentrations of both CO2 and CH4 were measured in the Shire River whereas low values were characteristic for more turbid systems such as the Luangwa and Mazoe rivers. The interannual variability in the Zambezi River was relatively large for both CO2 and CH4, and significantly higher concentrations (up to two fold) were measured during wet seasons compared to the dry season. Interannual variability of N2O was less pronounced but generally higher

  14. What is the minimum number of sites needed for precisely assessing the ecological status of mainstem rivers?

    EPA Science Inventory

    We evaluated the number of sites that would yield relatively precise estimates of physical, chemical, and biological condition for six raftable rivers 100-200 km long and 20-120 m wide. We used a probability design to select 20 sites on each of two rivers in Washington and four ...

  15. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem 2004-2009

    SciTech Connect

    Duberstein, Corey A.

    2011-04-01

    The U.S. Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River Main Stem Reservoir System. Management of the Missouri River has generally reduced peak river flows that form and maintain emergent sandbar habitat. Emergent sandbars provide non-vegetated nesting habitat for the endangered interior least tern (Sternula antillarum athalassos) and the threatened Northern Great Plains piping plover (Charadrius melodus). Since 2000, piping plover nesting habitat within the Gavins Point Reach, Garrison Reach, Lake Oahe, and Lake Sakakawea has fledged the majority of piping plovers produced along the Missouri River system. Habitats within Lewis and Clark Lake have also recently become important plover production areas. Mechanical construction of emergent sandbar habitat (ESH) within some of these reaches within the Missouri River began in 2004. Through 2009, 11 sandbar complexes had been constructed (10 in Gavins Point Reach, 1 in Lewis and Clarke Lake) totaling about 543 ac of piping plover and interior least tern nesting habitat. ESH Construction has resulted in a net gain of tern and plover nesting habitat. Both terns and plovers successfully nest and fledge young on constructed sandbars, and constructed habitats were preferred over natural habitats. Natural processes may limit the viability of constructed sandbars as nesting habitat. Continued research is needed to identify if changes in constructed sandbar engineering and management increase the length of time constructed habitats effectively function as nesting habitat. However, the transfer of information from researchers to planners through technical research reports may not be timely enough to effectively foster the feedback mechanisms of an adaptive management strategy.

  16. Optical properties and bioavailability of dissolved organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East Siberia

    NASA Astrophysics Data System (ADS)

    Frey, Karen E.; Sobczak, William V.; Mann, Paul J.; Holmes, Robert M.

    2016-04-01

    The Kolyma River in northeast Siberia is among the six largest Arctic rivers and drains a region underlain by vast deposits of Holocene-aged peat and Pleistocene-aged loess known as yedoma, most of which is currently stored in ice-rich permafrost throughout the region. These peat and yedoma deposits are important sources of dissolved organic matter (DOM) to inland waters that in turn play a significant role in the transport and ultimate remineralization of organic carbon to CO2 and CH4 along the terrestrial flow-path continuum. The turnover and fate of terrigenous DOM during offshore transport largely depends upon the composition and amount of carbon released to inland and coastal waters. Here, we measured the ultraviolet-visible optical properties of chromophoric DOM (CDOM) from a geographically extensive collection of waters spanning soil pore waters, streams, rivers, and the Kolyma River mainstem throughout a ˜ 250 km transect of the northern Kolyma River basin. During the period of study, CDOM absorption coefficients were found to be robust proxies for the concentration of DOM, whereas additional CDOM parameters such as spectral slopes (S) were found to be useful indicators of DOM quality along the flow path. In particular, the spectral slope ratio (SR) of CDOM demonstrated statistically significant differences between all four water types and tracked changes in the concentration of bioavailable DOC, suggesting that this parameter may be suitable for clearly discriminating shifts in organic matter characteristics among water types along the full flow-path continuum across this landscape. However, despite our observations of downstream shifts in DOM composition, we found a relatively constant proportion of DOC that was bioavailable ( ˜ 3-6 % of total DOC) regardless of relative water residence time along the flow path. This may be a consequence of two potential scenarios allowing for continual processing of organic material within the system, namely (a

  17. Assessment of Subyearling Chinook Salmon Survival through the Federal Hydropower Projects in the Main-Stem Columbia River

    SciTech Connect

    Skalski, J. R.; Eppard, M. B.; Ploskey, Gene R.; Weiland, Mark A.; Carlson, Thomas J.; Townsend, Richard L.

    2014-07-11

    High survival through hydropower projects is an essential element in the recovery of salmonid populations in the Columbia River. It is also a regulatory requirement under the 2008 Federal Columbia River Power System (FCRPS) Biological Opinion (BiOp) established under the Endangered Species Act. It requires dam passage survival to be ≥0.96 and ≥0.93 for spring and summer outmigrating juvenile salmonids, respectively, and estimated with a standard error ≤ 0.015. An innovative virtual/paired-release design was used to estimate dam passage survival, defined as survival from the face of a dam to the tailrace mixing zone. A coordinated four-dam study was conducted during the 2012 summer outmigration using 14,026 run-of-river subyearling Chinook salmon surgically implanted with acoustic micro-transmitter (AMT) tags released at 9 different locations, and monitored on 14 different detection arrays. Each of the four estimates of dam passage survival exceeded BiOp requirements with values ranging from 0.9414 to 0.9747 and standard errors, 0.0031 to 0.0114. Two consecutive years of survival estimates must meet BiOp standards in order for a hydropower project to be in compliance with recovery requirements for a fish stock.

  18. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  19. Basal Resources in Backwaters of the Colorado River Below Glen Canyon Dam-Effects of Discharge Regimes and Comparison with Mainstem Depositional Environments

    USGS Publications Warehouse

    Behn, Katherine E.; Kennedy, Theodore A.; Hall, Robert O., Jr.

    2010-01-01

    Eight species of fish were native to the Colorado River before the closure of Glen Canyon Dam, but only four of these native species are currently present. A variety of factors are responsible for the loss of native fish species and the limited distribution and abundance of those that remain. These factors include cold and constant water temperatures, predation and competition with nonnative fish species, and food limitation. Backwaters are areas of stagnant flow in a return-current channel and are thought to be critical rearing habitat for juvenile native fish. Backwaters can be warmer than the main channel and may support higher rates of food production. Glen Canyon Dam is a peaking hydropower facility and, as a result, has subdaily variation in discharge because of changes in demand for power. Stable daily discharges may improve the quality of nearshore rearing habitats such as backwaters by increasing warming, stabilizing the substrate, and increasing food production. To evaluate whether backwaters have greater available food resources than main-channel habitats, and how resource availability in backwaters is affected by stable flow regimes, we quantified water-column and benthic food resources in backwaters seasonally for 1 year using both standing (organic matter concentration/density; chlorophyll a concentration/density; zooplankton concentration; benthic invertebrate density and biomass) and process measurements (chamber estimates of ecosystem metabolism). We compared backwater resource measurements with comparable data from main-channel habitats, and compared backwater data collected during stable discharge with data collected when there was subdaily variation in discharge. Rates of primary production in backwaters (mean gross primary production of 1.7 g O2/m2/d) and the main channel (mean gross primary production of 2.0 g O2/m2/d) were similar. Benthic organic matter standing stock (presented as ash-free dry mass-AFDM) was seven times higher in backwaters

  20. Application of sediment characteristics and transport conditions to resource management in selected main-stem reaches of the Upper Colorado River, Colorado and Utah, 1965-2007

    USGS Publications Warehouse

    Williams, Cory A.; Schaffrath, Keelin R.; Elliott, John G.; Richards, Rodney J.

    2013-01-01

    The Colorado River Basin provides habitat for 14 native fish, including 4 endangered species protected under the Federal Endangered Species Act of 1973. These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of non-native fish, resulted in large reductions in the numbers and range of the four species through loss of habitat and stream function. Understanding how stream conditions and habitat change in response to alterations in streamflow is important for water administrators and wildlife managers and can be determined from an understanding of sediment transport. Characterization of the processes that are controlling sediment transport is an important first step in identifying flow regimes needed for restored channel morphology and the sustained recovery of endangered fishes within these river systems. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, Argonne National Laboratory, Western Area Power Administration, and Wyoming State Engineer’s Office, began a study in 2004 to characterize sediment transport at selected locations on the Colorado, Gunnison, and Green Rivers to begin addressing gaps in existing datasets and conceptual models of the river systems. This report identifies and characterizes the relation between streamflow (magnitude and timing) and sediment transport and presents the findings through discussions of (1) suspended-sediment transport, (2) incipient motion of streambed material, and (3) a case study of sediment-transport conditions for a reach of the Green River identified as a razorback sucker spawning habitat (See report for full abstract).

  1. Characteristics of sediment data and annual suspended-sediment loads and yields for selected lower Missouri River mainstem and tributary stations, 1976-2008

    USGS Publications Warehouse

    Heimann, David C.; Rasmussen, Patrick P.; Cline, Teri L.; Pigue, Lori M.; Wagner, Holly R.

    2010-01-01

    Suspended-sediment data from 18 selected surface-water monitoring stations in the lower Missouri River Basin downstream from Gavins Point Dam were used in the computation of annual suspended-sediment and suspended-sand loads for 1976 through 2008. Three methods of suspended-sediment load determination were utilized and these included the subdivision method, regression of instantaneous turbidity with suspended-sediment concentrations at selected stations, and regression techniques using the Load Estimator (LOADEST) software. Characteristics of the suspended-sediment and streamflow data collected at the 18 monitoring stations and the tabulated annual suspended-sediment and suspended-sand loads and yields are presented.

  2. Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally-Produced Spring Chinook Salmon, 1996 Annual Report : Fish Research Project, Oregon.

    SciTech Connect

    Sankovich, Paul; Keefe, MaryLouise; Carmichael, Richard W.

    1997-01-01

    This is the fifth year of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally-produced chinook salmon (Oncorhynchus tshawytscha), from northeast Oregon streams. The goal of this project is to develop an understanding of interpopulation and interannual variation in several early life history characteristics of naturally-produced chinook salmon from the Grande Ronde and Imnaha River subbasins. This project provides information useful in the recovery of listed Snake River spring/summer chinook salmon. Specific populations included in the study are (1) Catherine Creek, (2) upper Grande Ronde River, (3) Lostine River, (4) Imnaha River, (5) Wenaha River, and (6) Minam River. In this document, we present findings from research completed in 1996. Naturally-produced chinook salmon populations in the Grande Ronde and Imnaha River subbasins have declined drastically in recent years due in part to habitat alterations and hydropower development. Declines have continued despite extensive mitigation efforts, including fish passage improvements, artificial production, supplementation, and habitat modification (BPA Division of Fish and Wildlife 1990). Snake River spring/summer chinook salmon (hereafter referred to as chinook salmon), which include naturally-produced chinook salmon in the Grande Ronde and Imnaha River subbasins, have been listed under the Endangered Species Act of 1973 as threatened or endangered since 1992.

  3. Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally Produced Spring Chinook Salmon, Annual Reports 1993, 1994, 1995 : Fish Research Project, Oregon.

    SciTech Connect

    Walters, Timothy R.; Carmichael, Richard W.; Keefe, MaryLouise

    1996-04-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995.

  4. Predicting the thermal effects of dam removal on the Klamath River.

    PubMed

    Bartholow, John M; Campbell, Sharon G; Flug, Marshall

    2004-12-01

    The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the river's water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the river's seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the river's thermal regime during certain conditions for over 200 km of the mainstem. PMID:15726283

  5. Savannah River Site Surplus Facilities Available for Reuse

    SciTech Connect

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-09-14

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction.

  6. Mixed waste disposal facilities at the Savannah River Site

    SciTech Connect

    Wells, M.N.; Bailey, L.L.

    1991-12-31

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

  7. Mixed waste disposal facilities at the Savannah River Site

    SciTech Connect

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

  8. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    NASA Astrophysics Data System (ADS)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  9. Potential effects of dams on migratory fish in the Mekong River: lessons from salmon in the Fraser and Columbia Rivers.

    PubMed

    Ferguson, John W; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region. PMID:20924582

  10. New instrument calibration facility for the DOE Savannah River Site

    SciTech Connect

    Wilkie, W.H.; Polz, E.J.

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  11. Savannah River National Laboratory Underground Counting Facility

    NASA Astrophysics Data System (ADS)

    Brown, Tim

    2006-10-01

    The SRNL UCF is capable of detecting extremely small amounts of radioactivity in samples, providing applications in forensics, environmental analyses, and nonproliferation. Past customers of the UCF have included NASA, (Long Duration Exposure Facility) the IAEA, (Iraq), and nonproliferation concerns. The SRNL UCF was designed to conduct ultra-low level gamma-ray analyses for radioisotopes at trace levels. Detection sensitivity is enhanced by background reduction, high detector efficiency, and long counting times. Backgrounds from cosmic-rays, construction materials, and radon are reduced by counting underground, active and passive shielding, (pre-WWII steel) and situation behind a Class 10,000 clean facility. High-detection efficiency is provided by a well detector for small samples and three large HPGe detectors. Sample concentration methods such as ashing or chemical separation are also used. Count times are measured in days. Recently, two SCUREF programs were completed with the University of South Carolina to further enhance UCF detection sensitivity. The first developed an ultra-low background HPGe detector and the second developed an anti-cosmic shield that further reduces the detector background. In this session, we will provide an overview status of the recent improvements made in the UCF and future directions for increasing sensitivity.

  12. FACILITY DEACTIVATION AND DECOMMISSIONING AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Gilmour, J; William Austin, W; Cathy Sizemore, C

    2007-01-31

    In February 2002, the U.S. Department of Energy initiated actions to expedite Cleanup, focus on significant and early risk reduction, and reduce costs at the Savannah River Site (SRS). In response SRS started on a project focused on completing the decommissioning of inactive facilities in T, D, and M Areas, areas that on the perimeter of the Site, by the end of 2006. In June 2003, the Department of Energy Savannah River Operations Office (DOE-SR), the South Carolina Department of Health and Environmental Control (SCDHEC), and the Environmental Protection Agency, Region 4 (EPA-4) endorsed a Memorandum of Agreement (MOA) concerning cleanup at the Savannah River Site (SRS). The vision of the Agreement is that SRS will reduce its operations footprint to establish a buffer zone at the perimeter if the Site, while the central core area of the Site will be reserved for continuing or future long-term operations. DOE-SR, EPA-4, and SCDHEC agreed that establishing this buffer zone and appropriately sequencing environmental restoration and decommissioning activities can lead to greater efficiency and accelerate completion of entire site areas. This vision is embodied in the concept of Area Completion--which integrated operations, deactivation and decommissioning (D&D), and soils and groundwater cleanup into a time-phased approach to completing all the work necessary to address the Cold War legacy. D&D addresses the ''footprint'' of the building or structure, while the soils and groundwater project addresses any environmental remediation that may be required in the underlying and surrounding soils and groundwater. Since then, {approx}250 facilities have been decommissioned at the SRS, ranging from guard stations to nuclear fuel production facilities.

  13. Consolidated Incineration Facility, Savannah River Site. Environmental Assessment

    SciTech Connect

    Not Available

    1992-12-01

    This environmental assessment (EA) was prepared by the US Department of Energy (DOE) to assess the potential impacts associated with the siting, construction, and operation of the proposed Consolidated Incineration Facility (CIF), at the Savannah River Site, Aiken, South Carolina. The text of the document is unchanged from the EA issued in June 1992, with the following three exceptions: (1) Section 2.1 refers to recent solid waste forecast information; (2) Section 4.5.1 deletes the reference to dioxin emission standards; and (3) a footnote to Section 4.6.2 includes the results of a morr, conservative risk factor. An additional appendix has also been added to the EA. Appendix B presents comments received on the June 1992 EA and the Proposed FONSI from federal, state, and local agencies, interest groups, and individuals. Appendix B also contains both general and specific DOE responses to these comments.

  14. Startup of Savannah River`s Defense Waste Processing Facility to produce radioactive glass

    SciTech Connect

    Bennett, W.M.

    1997-08-06

    The Savannah River Site (SRS) began production of radioactive glass in the Defense Waste Process Facility (DWPF) in 1996 following an extensive test program discussed earlier. Currently DWPF is operating in a `sludge only` mode to produce radioactive glass consisting of washed high-level waste sludge and glass frit. Future operations will produce radioactive glass consisting of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of processing activities to date, operational problems encountered since entering radioactive operations, and the programs underway to solve them.

  15. Design control for the Savannah River Site Consolidated Incineration Facility

    SciTech Connect

    Walker, R.E.; Rider, R.L.

    1991-12-31

    The initiation, development, and control of the design for the Consolidated Incineration Facility at the US Department of Energy Savannah River Site has been, from the inception, a precisely and formally controlled process. A plan was developed and implemented to ensure output properly aligned with approved design criteria and conformed to applicable regulations throughout the design process. The key element of design control was the technical baseline which established the benchmark against which all changes to the design was evaluated. During the conceptual design phase of the project, design criteria were written to reflect the project objectives and functional requirements. Governmental regulations were reviewed to determine permitting and licensing actions required. Hazards assessments were performed to establish design classifications. The resulting design criteria, permitting requirements, and facility classifications were incorporated into the design plan which provided the basis for subsequent design activities. As the project proceeded through the various design phases, design control was maintained according to the design plan. Review of all design products was performed by the project team routinely. Formal independent design reviews were accomplished prior to releasing the design for construction. Alignment between criteria and design output was verified periodically throughout the design process. A formal design change control board was invoked to effect design changes impacting technical baselines. All changes to design initiated following issue for construction also were subject to procedural control.

  16. Design control for the Savannah River Site Consolidated Incineration Facility

    SciTech Connect

    Walker, R.E.; Rider, R.L. )

    1991-01-01

    The initiation, development, and control of the design for the Consolidated Incineration Facility at the US Department of Energy Savannah River Site has been, from the inception, a precisely and formally controlled process. A plan was developed and implemented to ensure output properly aligned with approved design criteria and conformed to applicable regulations throughout the design process. The key element of design control was the technical baseline which established the benchmark against which all changes to the design was evaluated. During the conceptual design phase of the project, design criteria were written to reflect the project objectives and functional requirements. Governmental regulations were reviewed to determine permitting and licensing actions required. Hazards assessments were performed to establish design classifications. The resulting design criteria, permitting requirements, and facility classifications were incorporated into the design plan which provided the basis for subsequent design activities. As the project proceeded through the various design phases, design control was maintained according to the design plan. Review of all design products was performed by the project team routinely. Formal independent design reviews were accomplished prior to releasing the design for construction. Alignment between criteria and design output was verified periodically throughout the design process. A formal design change control board was invoked to effect design changes impacting technical baselines. All changes to design initiated following issue for construction also were subject to procedural control.

  17. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    SciTech Connect

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel

    2009-04-03

    A new project began in 2005 to monitor the biological and physical effects of improved operations of Hungry Horse and Libby Dams, Montana, called for by the Northwest Power and Conservation Council (NPCC) Mainstem Amendment. This operating strategy was designed to benefit resident fish impacted by hydropower and flood control operations. Under the new operating guidelines, July through September reservoir drafts will be limited to 10 feet from full pool during the highest 80% of water supply years and 20 feet from full pool during the lowest 20% of water supply (drought) years. Limits were also established on how rapidly discharge from the dams can be increased or decreased depending on the season. The NPCC also directed the federal agencies that operate Libby and Hungry Horse Dams to implement a new flood control strategy (VARQ) and directed Montana Fish, Wildlife & Parks to evaluate biological responses to this operating strategy. The Mainstem Amendment operating strategy has not been fully implemented at the Montana dams as of June 2008 but the strategy will be implemented in 2009. This report highlights the monitoring methods used to monitor the effects of the Mainstem Amendment operations on fishes, habitat, and aquatic invertebrates upstream and downstream of Libby Dam. We also present initial assessments of data and the effects of various operating strategies on physical and biological components of the systems upstream and downstream of Libby Dam. Annual electrofishing surveys in the Kootenai River and selected tributaries, along with gill net surveys in the reservoir, are being used to quantify the impacts of dam operations on fish populations upstream and downstream of Libby Dam. Scales and otoliths are being used to determine the age structure and growth of focal species. Annual population estimates and tagging experiments provide estimates of survival and growth in the mainstem Kootenai River and selected tributaries. Radio telemetry will be used to

  18. Radiological safety evaluation for a Savannah River Site Waste Transfer Facility. Revision 1

    SciTech Connect

    Ades, M.J.

    1994-01-01

    This paper describes a radiological safety evaluation performed in support of operation of a typical Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste from and to various waste processing, storage, and treatment facilities.

  19. Protect Anadromous Salmonids in the Mainstem Corridor, Monitoring and Evaluation, Annual Report 200-2001.

    SciTech Connect

    Vigg, Steven; Johnson, John

    2002-02-01

    In this annual Monitoring & Evaluation (M&E) report to the Bonneville Power Administration (BPA), we summarize significant activities and performance measures resultant from enhanced protection by Columbia River Inter-Tribal Fisheries Enforcement (CRITFE) in the mainstem corridor (BPA Project 2000-056). This report covers the Fiscal Year (FY) 2000 performance period -- May 15, 2000 to May 14, 2001. Quarterly progress reports have previously been submitted to BPA and are posted on the M&E Web site (www.Eco-Law.net) -- for the time period April-December 2000 (Vigg 2000b,c,d) and for the period January-June 2001 (Vigg 2001a,b). We also present comprehensive data representing the first quarter of year 2000 in this report for a pre-project comparison. In addition, we have analyzed specific annual enforcement statistics to evaluate trends during the baseline period 1996-2000. Additional statistics and more years of comprehensive baseline data are now being summarized, and will be presented in future M&E annual reports--to provide a longer time series for evaluation of trends in input, output and outcome performance standards.

  20. D&D Characterization of the 232-F Old Tritium Facility at the Savannah River Site

    SciTech Connect

    Scallon, K.L.; England, J.L.

    1995-01-17

    The 232-F ``Old Tritium Facility`` operated in the 1950s as the first tritium production facility at the Savannah River Site (SRS). In 1957, the 232-F operation ceased with tritium production turned over to a larger, technologically improved facility at SRS. The 232-F Facility was abandoned in 1958 and the process areas have remained contaminated with radiological, hazardous and mixed constituents. Decontamination and decommissioning (D&D) of the 232-F Facility is scheduled to occur in the years 1995-1996. This paper presents the D&D characterization efforts for the 232-F Facility.

  1. 78 FR 263 - Safety Zones; TEMCO Grain Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-03

    ... Acronyms DHS Department of Homeland Security ] FR Federal Register NPRM Notice of Proposed Rulemaking A... Willamette Rivers, respectively, approximately between the navigable channel and the facility described... with this rulemaking. You may also visit the Docket Management Facility in Room W12-140 on the...

  2. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    SciTech Connect

    Cochnauer, Tim; Claire, Christopher

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

  3. Facility siting as a decision process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    1995-12-31

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.

  4. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  5. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  6. WATER QUALITY REPORT, PALOUSE RIVER, WASHINGTON, 1970-1971

    EPA Science Inventory

    Accumulated water quality monitoring data indicates that Palouse River mainstem and south fork waters (17060108) suffer severe pollution problems throughout the year. South fork stations were more seriously affected. Coliform levels were generally far in excess of water quality...

  7. Economic analysis of temperature reduction in a large river floodplain: An exploratory study of the WIllamette River, Oregon

    EPA Science Inventory

    This paper examines ecosystem restoration practices that focus on water temperature reductions in the upper mainstem Willamette River, Oregon, for the benefit of endangered salmonids and other native cold-water species. The analysis integrates hydrologic, natural science and eco...

  8. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    SciTech Connect

    Not Available

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  9. 77 FR 1743 - Facility Operating License Amendment From Florida Power Corporation, Crystal River Nuclear...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Facility Operating License Amendment From Florida Power Corporation, Crystal River Nuclear Generating Plant, Unit 3 AGENCY: Nuclear Regulatory Commission. ACTION: License amendment; opportunity to request a hearing, petition for leave to...

  10. ENERGY FACILITY SITING PROCEDURES, CRITERIA, AND PUBLIC PARTICIPATION IN THE OHIO RIVER BASIN ENERGY STUDY REGION

    EPA Science Inventory

    The report was prepared in support of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. Findings are presented on the adequacy of current review procedures, criteria, and public participation in energy facility siting (EFS) for nuclear and co...

  11. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    SciTech Connect

    Sexton, Lindsay; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  12. Audit of the deactivation, decontamination, and disposal of surplus facilities at the Savannah River Site

    SciTech Connect

    1997-10-23

    Westinghouse Savannah River Company (Westinghouse) is responsible for managing the Department of Energy`s (Department) surplus facilities at the Savannah River Site (Site). In Fiscal Year (FY) 1996, the Site had 162 surplus facilities and anticipated that 118 more would become surplus within the next 5 years. The objective of this audit was to determine whether the Savannah River Operations Office (Operations Office) and Westinghouse had economically and promptly deactivated, decontaminated, and disposed of surplus facilities at the Site. Departmental regulations require that surplus facilities be deactivated, decontaminated, and disposed of economically and promptly. However, Westinghouse only disposed of one facility and did not completely deactivate or decontaminate any of the 162 facilities identified as surplus at the Site in FY 1996. This occurred because the Operations Office did not compile a Site-wide list, establish priorities, or provide sufficient funding for the deactivation, decontamination, and disposal of surplus facilities. As a result, the Department incurred unnecessary costs for the surveillance and maintenance of surplus facilities. For example, the Department could have avoided annual costs of about $1.3 million in surveillance and maintenance costs by spending $1.2 million to perform a deactivation project on the P-Reactor process-water storage tanks. The Operations Office could have funded the project out of its unobligated FY 1996 operating funds. However, it returned the unobligated funds to the Department`s Headquarters at the end of the fiscal year. The Operations Office concurred with the finding and recommendations and initiated corrective action.

  13. Design and construction of the defense waste processing facility project at the Savannah River Plant

    SciTech Connect

    Baxter, R G

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

  14. Environmental Assessment for the new Whole Body Counter facility at the Savannah River Site

    SciTech Connect

    Not Available

    1993-01-01

    The U.S. Department of Energy proposes to construct and operate a new in-vivo counting facility at the Savannah River Site for the monitoring of employees for internal radionuclides. The proposed facility, titled the new Whole Body Counter (WBC) facility, would house both the existing and additional new invivo counting equipment and facility support operations. The proposed facility would be sited and located in an area of the SRS in which background radiation levels are sufficiently low to assure accurate in-vivo counts and a location that would assure ease of access for occupational workers. This Environmental Assessment has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CPR Parts 1500-1508). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. The proposed action has independent utility to the Savannah River operations and will be necessary to support plant activities regardless of the makeup of the future mission at the site. As such, the proposed new WBC facility is treated as part of the preliminary Reconfiguration Programmatic Environmental Impact Statement ``No Action`` alternative.

  15. Dismantlement and decontamination of a plutonium-238 facility at the Savannah river site

    SciTech Connect

    Smith, R.H.; Hootman, H.E.

    1994-01-01

    Very little documented decontamination and decommissioning (D&D) experience exists on which to project cleanup costs and schedules for plutonium facilities at DOE sites. A plutonium-238 processing facility at Savannah River Site (SRS) has been undergoing D&D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been accumulated, and the project has demonstrated effective methods of performing D&D work under conditions of high contamination. Some data is presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned {open_quotes}Integrated D&D Demonstration{close_quotes} managed by EM-50 to develop and demonstrate technology for D&D and surplus facilities deactivation.

  16. Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume II of V; 1992 Annual Report.

    SciTech Connect

    Hutchison, Bill

    1993-05-01

    Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 7 FTE's. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An l8 inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40 F. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55 to 60 F and 70 cfs of flow. The hatchery facility consists of 11 chinook raceways, 24 steelhead raceways, 2 adult holding ponds, a covered spawning area with 2 live wells and 60 concrete rearing vats. There are 40 double stacks of Heath-type incubators and each vat also has an incubation jar. All facility units are in excellent condition. Clearwater Hatchery also supports satellite facilities at Red River, Crooked River and Powell. The Red River satellite facility is located approximately 15 miles east of Elk City, Idaho. It is approximately 186 miles upstream from Lower Granite Dam and 618 miles from the mouth of the Columbia River. It was first built in 1974 by the Columbia River Project and then remodeled by the U.S. Army Corps of Engineers in 1986. Red River is supplied by gravity flow from an intake located at the bottom of the South Fork of Red River, 225 yards upstream from the facility. Water rights allow for 10 cfs and during low flows in the summer about 5 cfs is available. Temperatures range from 40 F in the spring to 71 F in early August. The facility consists of two adult holding ponds, a removable tripod and panel weir, and a rearing pond

  17. Clay Cap Test Program for the Mixed Waste Management Facility closure at the Savannah River Site

    SciTech Connect

    Newell, J.W. , Inc., Charlotte, NC )

    1989-01-01

    A 58 acre low-level radioactive waste disposal facility at the Savannah River Site, a Department of Energy facility near Aiken, South Carolina, requires closure with a RCRA clay cap. A three-foot thick can requiring 300,000 cubic yards of local Tertiary Kaolin clay with an in-situ permeability of less than or equal to 1 {times} 10{sup -7} centimeters per second is to be constructed. The Clay Cap Test Program was conducted to evaluate the source, lab permeability, in-situ permeability, compaction characteristics, representative kaolin clays from the Aiken, SC vicinity. 11 refs., 8 figs., 1 tab.

  18. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    SciTech Connect

    Not Available

    1988-02-26

    This report contains appendix 2 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, Laboratory permeability, and compaction characteristics representative of Kaolin clays from the aiken, South Carolina vicinity. Included in this report are daily field reports Nos. 1 to 54. (KJD)

  19. Characterization and reclamation assessment for the central shops diesel storage facility at Savannah River Site

    SciTech Connect

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.W.

    1994-12-31

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful cleanups. Using innovative approaches, the central Shops Diesel Storage Facility at the Savannah River Site (SRS) was characterized to determine the extent of subsurface diesel fuel contamination. Effective bioremediation techniques for cleaning up of the contaminant plume were established.

  20. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect

    Smith, M.; Iverson, D.

    2010-12-08

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  1. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  2. Timing, Frequency and Environmental Conditions Associated with Mainstem–Tributary Movement by a Lowland River Fish, Golden Perch (Macquaria ambigua)

    PubMed Central

    Koster, Wayne M.; Dawson, David R.; O’Mahony, Damien J.; Moloney, Paul D.; Crook, David A.

    2014-01-01

    Tributary and mainstem connections represent important links for the movement of fish and other biota throughout river networks. We investigated the timing, frequency and environmental conditions associated with movements by adult golden perch (Macquaria ambigua) between the mainstem of the mid-Murray River and a tributary, the Goulburn River, in south-eastern Australia, using acoustic telemetry over four years (2007–2011). Fish were tagged and released in autumn 2007–2009 in the mid-Murray (n = 42) and lower Goulburn (n = 37) rivers within 3–6 km of the mid-Murray-lower Goulburn junction. 38% of tagged fish undertook mainstem–tributary movements, characterised mostly by temporary occupation followed by return of fish to the original capture river. Approximately 10% of tagged fish exhibited longer-term shifts between the mainstem and tributary. Movement of fish from the tributary into the mainstem occurred primarily during the spawning season and in some years coincided with the presence of golden perch eggs/larvae in drift samples in the mainstem. Many of the tributary-to-mainstem movements occurred during or soon after changes in flow. The movements of fish from the mainstem into the tributary were irregular and did not appear to be associated with spawning. The findings show that golden perch moved freely across the mainstem–tributary interface. This demonstrates the need to consider the spatial, behavioural and demographic interdependencies of aquatic fauna across geographic management units such as rivers. PMID:24788137

  3. Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes

    PubMed Central

    Vidal, Luciana O.; Abril, Gwenäel; Artigas, Luiz F.; Melo, Michaela L.; Bernardes, Marcelo C.; Lobão, Lúcia M.; Reis, Mariana C.; Moreira-Turcq, Patrícia; Benedetti, Marc; Tornisielo, Valdemar L.; Roland, Fabio

    2015-01-01

    We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2–23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality. PMID:26483776

  4. Hydrological pulse regulating the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes.

    PubMed

    Vidal, Luciana O; Abril, Gwenäel; Artigas, Luiz F; Melo, Michaela L; Bernardes, Marcelo C; Lobão, Lúcia M; Reis, Mariana C; Moreira-Turcq, Patrícia; Benedetti, Marc; Tornisielo, Valdemar L; Roland, Fabio

    2015-01-01

    We evaluated in situ rates of bacterial carbon processing in Amazonian floodplain lakes and mainstems, during both high water (HW) and low water (LW) phases (p < 0.05). Our results showed that bacterial production (BP) was lower and more variable than bacterial respiration, determined as total respiration. Bacterial carbon demand was mostly accounted by BR and presented the same pattern that BR in both water phases. Bacterial growth efficiency (BGE) showed a wide range (0.2-23%) and low mean value of 3 and 6%, (in HW and LW, respectively) suggesting that dissolved organic carbon was mostly allocated to catabolic metabolism. However, BGE was regulated by BP in LW phase. Consequently, changes in BGE showed the same pattern that BP. In addition, the hydrological pulse effects on mainstems and floodplains lakes connectivity were found for BP and BGE in LW. Multiple correlation analyses revealed that indexes of organic matter (OM) quality (chlorophyll-a, N stable isotopes and C/N ratios) were the strongest seasonal drivers of bacterial carbon metabolism. Our work indicated that: (i) the bacterial metabolism was mostly driven by respiration in Amazonian aquatic ecosystems resulting in low BGE in either high or LW phase; (ii) the hydrological pulse regulated the bacterial heterotrophic metabolism between Amazonian mainstems and floodplain lakes mostly driven by OM quality. PMID:26483776

  5. Patterns of Ground Water Movement in a Portion of the Willamette River Floodplain, Oregon

    EPA Science Inventory

    In reaches unconstrained by revetments, the Willamette River and its floodplain along its lowland mainstem is a continually evolving system. Several channel reconstruction and restoration projects have been implemented or planned in order to obtain beneficial services along the r...

  6. Environmental Assessment for the ammunition storage facility at the Savannah River Site

    SciTech Connect

    Not Available

    1992-12-01

    The Savannah River Site (SRS), a DOE national defense facility. The SRS maintains an armed and uniformed protective force that performs patrol, guard, and monitoring activities on site. A safe, secure storage facility is needed for the storage of weapons, small arms ammunition, and explosives that may be used in carrying out such activities. This Environmental Assessment assesses the potential environmental and related safety impacts of constructing a small storage facility to replace the existing facility being used to store these munitions. Constructing a new storage facility is necessary to enable SRS to meet DOE requirements and any other applicable standards including DOE Order-6430.1A, General Design Criteria; - 5632.7, Protective Forces; - DOE Manuals-DOE/TIC 11268, Manual for Prediction of Blast and Fragment Loading for Structures; - DOE/EV 06194-5, and Explosives Safety Manual. Additionally, this action is needed because the present facility, the Building 217-F vault, does not comply with the above criteria for storage of munitions and explosives, and has been cited with seven occupational safety violations by DOE safety engineers. The most serious noted violations are due to the existing lack of appropriate storage space: munitions stacked directly against masonry walls, weapons stored in the same magazine as the munitions, inoperable ventilation system, inadequate air circulation, and the existence of electrical fans and switchgear within the magazine.

  7. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    SciTech Connect

    Not Available

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  8. COLUMBIA/SNAKE RIVER TEMPERATURE TOTAL MAXIMUM DAILY LOAD (TMDL)

    EPA Science Inventory

    EPA and the States of Idaho, Oregon and Washington are working in coordination with the Columbia River Tribes to establish a temperature TMDL for the mainstems of the Columbia and Snake Rivers. Both rivers are on state 303(d) lists of impaired waters for exceedances of water qua...

  9. Critical Protection Item classification for a waste processing facility at Savannah River Site

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

  10. Radiological safety evaluation for a Waste Transfer Facility at Savannah River Site

    SciTech Connect

    Ades, M.J.

    1993-10-01

    This paper provides a review of the radiological safety evaluation performed for a Waste Transfer Facility (WTF) located at the Savannah River Site (SRS). This facility transfers liquid radioactive waste between various waste processing facilities and waste storage facilities. The WTF includes functional components such as the diversion box and the pump pits, waste transfer lines, and the outside yard service piping and electrical services. The WSRC methodology is used to evaluate the consequences of postulated accidents that result in the release of radioactive material. Such accidents include transfer line breaks, underground liquid pathway release, fire in pump tank cells and HEPA filters, accidents due to natural phenomena, and externally induced events. Chemical hazards accidents are not considered. The analysis results indicate that the calculated mean onsite and offsite radiological consequences are bounded by the corresponding WSRC dose limits for each accident considered. Moreover, the results show that the maximum onsite and offsite doses calculated for the WTF are lower than the maximum doses determined for the whole radioactive waste facility where the WTF is located.

  11. Dynamic simulation study of the Consolidated Incineration Facility (CIF) incinerator at the Savannah River Site

    SciTech Connect

    Hang, T.

    1992-01-01

    The Savannah River Site (SRS), operated by Westinghouse Savannah River Company for the US Department of Energy, plans to start up the Consolidated Incineration Facility (CIF) in 1995. The CIF will treat liquid and solid low-level radioactive, mixed, and hazardous wastes generated at SRS. A Fortran computer model was developed to simulate the transient responses of the CIF to fluctuations in solid waste feed. Of particular interest was the performance of two independent pressure control loops in maintaining system pressure. The model is capable of predicting the dynamic behavior of all components (rotary kiln, secondary combustion chamber, quencher, scrubber cyclone, mist eliminator, HEPA filters, and ID fans). This paper summarizes the model development and results of the simulation study.

  12. Environmental Assessment for the Independent Waste Handling Facility, 211-F at the Savannah River Site

    SciTech Connect

    1995-08-01

    Currently, liquid Low Activity Waste (LAW) and liquid High Activity Waste (HAW) are generated from various process operational facilities/processes throughout the Savannah River Site (SRS) as depicted on Figure 2-1. Prior to storage in the F-Area tank farm, these wastes are neutralized and concentrated to minimize their volume. The Waste Handling Facility (211-3F) at Building 211-F Complex (see Figure 2-2) is the only existing facility onsite equipped to receive acidic HAW for neutralization and volume reduction processing. Currently, Building 221-F Canyon (see Figure 2-2) houses the neutralization and evaporation facilities for HAW volume reduction and provides support services such as electric power and plant, process, and instrument air, waste transfer capabilities, etc., for 21 1-F operations. The future plan is to deactivate the 221-F building. DOE`s purpose is to be able to process the LAW/HAW that will continue to be generated on site. DOE needs to establish an alternative liquid waste receipt and treatment capability to support site facilities with a continuing mission. The desire is for Building 211-F to provide the receipt and neutralization functions for LAW and HAW independent of 221-F Canyon. The neutralization capability is required to be part of the Nuclear Materials Stabilization Programs (NMSP) facilities since the liquid waste generated by the various site facilities is acidic. Tn order for Waste Management to receive the waste streams, the solutions must be neutralized to meet Waste Management`s acceptance criteria. The Waste Management system is caustic in nature to prevent corrosion and the subsequent potential failure of tanks and associated piping and hardware.

  13. Radiological surveys of naval facilities in the New London Harbor and on the Thames River, Connecticut

    SciTech Connect

    Semler, M.O.; Blanchard, R.L. )

    1991-12-01

    This report presents results of the surveys conducted by NAREL personnel to assess levels of environmental radioactivity resulting from maintenance and operation of nuclear-powered warships at the New London Submarine Base (NLSB). General Dynamics Electric Boat Division, Sound Signature Facility, and the State Pier, all located within New London, Connecticut, Harbor on the Thames River. The purpose of the survey was to determine if activities related to nuclear-powered warships resulted in release of radionuclides which may contribute to significant population exposure of contamination of the environment.

  14. Distribution and movement of juvenile paddlefish in a mainstem Missouri River reservoir

    USGS Publications Warehouse

    Roush, K.D.; Paukert, C.P.; Stancill, W.

    2003-01-01

    Hatchery-raised paddlefish (Polyodon spathula) were implanted with ultrasonic transmitters and tracked from August to November 1998 and March to November of 1999 and 2000 to determine diel movements and seasonal distribution in Lake Francis Case, South Dakota. Juvenile (340 to 432 mm eye to fork length) paddlefish (N=32) exhibited variable movement patterns but remained in the upper reservoir reaches throughout the three-year study. Movement rates ranged from 35 to 3,464 m/h with 90% of all locations in the upper third (51 km) of the reservoir. Increased movement rates were weakly correlated with increased water temperature (r=0.16, P=0.04). Daytime paddlefish movement peaked in July and August. However, diel movements were variable among seasons. In spring, movement rates did not differ among diel periods, whereas summer movements were lower during crepuscular periods and fall movements were lowest during the day. Although paddlefish were stocked at two locations in Lake Francis Case, they appeared to disperse and use reservoir areas similarly.

  15. Contaminants Of Emerging Concern Within The Mainstem Of The Ohio River And its Tributaries

    EPA Science Inventory

    Contaminants of emerging concern such as PPCPs, alkylphenols, EDCs, and PFCs in waterways have been of increasing public concern. The extent and persistence of their occurrence in surface waters remains unclear. Though there are many sources of these contaminants, research has ...

  16. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  17. Transporter Development for the Tritium Extraction Facility at the Savannah River Site

    SciTech Connect

    Gordon, J.

    1998-12-17

    The Commercial Light Water Reactor-Tritium Extraction Facility (CLWR-TEF) is planned for location at the Savannah River Site (SRS) as part of the US Department of Energy CLWR tritium production alternative. This new facility will rely on processes and equipment that are significantly different from those proven in the past or currently in use at SRS. For instance, the CLWR-TEF reference design employs remote modules to provide an inert processing atmosphere, secondary confinement for tritium and the primary confinement for particulate contamination. The primary component of this modular system is the Transporter. A Transporter mock-up was developed to demonstrate concept feasibility of the required processing functions (sealing, attachment/alignment and materials handling). The module design, the seal door selection, and the planned test program are discussed.

  18. Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Water Diversions on the Umatilla River; 1994 Annual Report.

    SciTech Connect

    Knapp, Suzanne M.

    1995-01-01

    We report on our progress from October 1993 through September 1994 in evaluating juvenile salmonid bypass facilities and juvenile salmonid passage through ladder facilities, and investigating passage conditions for juvenile fish at diversion dam facilities on the lower Umatilla River in northeastern Oregon. We also report on our progress in evaluating adult salmonid passage at and between dams on the lower Umatilla River and upriver migration using radio telemetry. Two principal studies are also included. Report A (ODFW): To evaluate the juvenile salmonid bypass facilities a Feed and Furnish canals, juvenile salmonid passage through fish ladders at Stanfield, Feed Canal, Westland, and Three Mile Falls dams, and the juvenile salmonid trap and haul procedures at Westland Canal. To investigate passage conditions at all passage facilities. Report B (CTUIR): To examine the passage of adult salmonids past diversions in the lower Umatilla River and their movement in the upper river after transport, using radio telemetry, and to assess factors for successful homing. These studies are part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin, including restoration of coho salmon (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tshawytscha), as well as enhancement of summer steelhead (Oncorhynchus mykiss).

  19. Natural Propagation and Habitat Improvement, Volume 1, Oregon, Supplement B, White River Falls Fish Passage, 1983 Annual Report.

    SciTech Connect

    United States. Bonneville Power Administration.

    1984-04-01

    White River Falls are located in north central Oregon approximately 25 miles south of the City of The Dalles. The project site is characterized by a series of three natural waterfalls with a combined fall of 180 ft. In the watershed above the falls are some 120 miles of mainstem habitat and an undetermined amount of tributary stream habitat that could be opened to anadromous fish, if passage is provided around the falls. The purpose of this project is to determine feasibility of passage, select a passage scheme, and design and construct passage facilities. This report provides information on possible facilities that would pass adult anadromous fish over the White River Falls. 25 references, 29 figures, 12 tables. (ACR)

  20. Velocity Measurements at Six Fish Screening Facilities in the Yakima River Basin, Washington, Summer 1988 : Annual Report.

    SciTech Connect

    Abernethy, C. Scott; Neitzel, Duane A.; Lusty, E. William

    1989-11-01

    The Bonneville Power Administration (BPA), the United States Bureau of Reclamation (USSR), and the Washington State Department of Ecology (WDOE) are funding the construction and evaluation of fish passage facilities and fish protection facilities at irrigation and hydroelectric diversions in the Yakima River Basin, Washington State. The program provides offsite enhancement to compensate for fish and wildlife losses caused by hydroelectric development throughout the Columbia River Basin, and addresses natural propagation of salmon to help mitigate the impact of irrigation in the Yakima River Basin. This report evaluates the flow characteristics of the screening facilities. Studies consisted of velocity measurements taken in front of the rotary drum screens and within the fish bypass systems during peak flows. Measurements of approach velocity and sweep velocity were emphasized in these studies; however, vertical velocity was also measured. 5 refs., 18 figs., 15 tabs.

  1. Rough order of magnitude cost estimate for immobilization of 50 MT of plutonium using existing facilities at the Savannah River site: alternative 12B

    SciTech Connect

    DiSabatino, A., LLNL

    1998-06-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 50 metric tons of plutonium using ceramic in an existing facility (221-F) at an Savannah River Site (SRS).

  2. Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346

    SciTech Connect

    Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D.

    2013-07-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

  3. Human error model adaptation and validation for Savannah River Site nonreactor facilities

    SciTech Connect

    Eide, S.A.; Benhardt, H.C.; Held, J.E.; Olsen, L.M.; Vail, R.E.

    1993-09-01

    As part of an overall effort to improve safety analysis methods for the Savannah River Site (SRS) nonreactor nuclear facilities, a comprehensive human reliability analysis (HRA) methodology has been developed and selectively validated. The HRA methodology covers a wide variety of human errors that may exist in risk analyses of the nonreactor nuclear facilities. Such risk analyses are an integral part of safety analysis reports (SARS) at the SRS, forming the basis for severe accident analysis and assisting in the identification of safety classes for equipment. Nonreactor nuclear facilities at the SRS include nuclear fuel fabrication and reprocessing, nuclear waste processing, and nuclear waste storage and disposal. The SRS HRA methodology improvement included both adaptation of existing human error models and validation of selected model results with SRS-specific data on actual human errors. The data were obtained from three existing SRS data bases: (1) Fuel Processing, (2) Fuel Fabrication, and (3) Waste Management. These three are part of the Risk Analysis Methodology (RAM) Fault Tree data banks. Events in these data banks are obtained from a wide variety of sources, including operator log books, occurrence reports, safety newsletters, and others. Validation of the human error models involved comparison with SRS-specific data and calibration of model results where appropriate.

  4. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    SciTech Connect

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of South Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling

  5. Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Water Diversions in the Umatilla River; 1993 Annual Report.

    SciTech Connect

    Knapp, Suzanne M.

    1994-03-01

    This report presents progress from October 1992 through September 1993 in evaluating juvenile fish bypass facilities at Three Mile Falls, Maxwell, Westland, and Feed Canal dams on the Umatilla River, and in evaluating adult fish passage in the lower Umatilla River. Also reported is an effort to evaluate delayed mortality and stress responses of juvenile salmonids resulting from trapping and transport at high temperatures. These studies are part of a program to rehabilitate anadromous fish stocks in the matilla River Basin, including restoration of coho salmon and chinook salmon, as well as enhancement of summer steelhead.

  6. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  7. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume III - Washington.

    SciTech Connect

    Colville Confederated Tribes; US Fish and Wildlife Service; Washington Department of Fish and Wildlife; Yakama Indian Nation

    1996-06-01

    Beaver Creek Hatchery is located on the Elochoman River about 10 miles upstream from the river mouth. The Elochoman River is a north bank tributary of the lower Columbia River, just downstream of Cathlamet, Washington. The facility consists of 10 intermediate raceways, 20 raceways, (1) earthen rearing pond, (2) adult holding ponds, and a hatchery building with 60 troughs. It is staffed with 4 FTE`s. Water rights total 16,013 gpm from three sources: Elochoman River, Beaver Creek and a well. Beaver Creek water is gravity flow while the other two sources are pumped. The Elochoman River is used in summer and fall while Beaver Creek water is used from mid-November through mid-May. Filtered well water (1 cfs) is used to incubate eggs and for early rearing of fry. Water use in summer is about 5,800 gpm. Gobar Pond, a 0.93-acre earthen rearing pond located on Gobar Creek (Kalama River tributary), is operated as a satellite facility.

  8. HOLDUP MEASUREMENTS FOR THREE VISUAL EXAMINATION AND TRU REMEDIATION GLOVEBOX FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Dewberry, R; Donald Pak, D

    2007-05-04

    Visual Examination (VE) gloveboxes are used to remediate transuranic waste (TRU) drums at three separate facilities at the Savannah River Site. Noncompliant items are removed before the drums undergo further characterization in preparation for shipment to the Waste Isolation Pilot Plant (WIPP). Maintaining the flow of drums through the remediation process is critical to the program's seven-days-per-week operation. Conservative assumptions are used to ensure that glovebox contamination from this continual operation is below acceptable limits. Holdup measurements using cooled HPGe spectrometers are performed in order to confirm that these assumptions are conservative. {sup 239}Pu is the main nuclide of interest; however, {sup 241}Pu, equilibrium {sup 237}Np/{sup 233}Pa and {sup 238}Pu (if detected) are typically assayed. At the Savannah River National Laboratory (SRNL) facility {sup 243,244,245}Cm are also generally observed and are always reported at either finite levels or at limits of detection. A complete assay at each of the three facilities includes a measure of TRU content in the gloveboxes and HEPA filters in the glovebox exhaust. This paper includes a description of the {gamma}-PHA acquisitions, of the modeling, and of the calculations of nuclide content. Because each of the remediation facilities is unique and ergonomically unfavorable to {gamma}-ray acquisitions, we have constructed custom detector support devices specific to each set of acquisitions. This paper includes a description and photographs of these custom devices. The description of modeling and calculations include determination and application of container and matrix photon energy dependent absorption factors and also determination and application of geometry factors relative to our detector calibration geometry. The paper also includes a discussion of our measurements accuracy using off-line assays of two SRNL HEPA filters. The comparison includes assay of the filters inside of 55-gallon

  9. Fish-passage facilities as ecological traps in large neotropical rivers.

    PubMed

    Pelicice, Fernando Mayer; Agostinho, Angelo Antonio

    2008-02-01

    At present most of the large rivers of South America are impounded. Management plans historically have relied on the construction of fish passages, specifically ladders, to mitigate the impact of these waterway blockages on fisheries and biodiversity. Nevertheless, the design of these facilities is not ecologically sound and they are not monitored continually. Consequently, the real role of South American fish passages in fisheries and biodiversity management is unclear and the results of some studies suggest that ladders are problematic in fish conservation. We examined the characteristics and negative aspects of fish passages within a larger context and considered the notion that these facilities are ecological traps in some Brazilian impoundments. Four conditions are required to characterize a fish passage as an ecological trap: (1) attractive forces leading fish to ascend the passage; (2) unidirectional migratory movements (upstream); (3) the environment above the passage has poor conditions for fish recruitment (e.g., the absence of spawning grounds and nursery areas); and (4) the environment below the passage has a proper structure for recruitment. When these conditions exist individuals move to poor-quality habitats, fitness is reduced, and populations are threatened. To exemplify this situation we analyzed two case studies in the upper Paraná River basin, Brazil, in which the four conditions were met and migratory fish populations were declining. If passages work as ecological traps, regional fisheries will be in danger of collapse and conservation policies toward biodiversity will become more difficult and ineffective. The situation demands the closing of the passage in conjunction with alternative management actions to preserve system functionality, especially the conservation of critical habitats downstream and the restoration of damaged habitats in the region. PMID:18254863

  10. Decommissioning an Active Historical Reactor Facility at the Savannah River Site - 13453

    SciTech Connect

    Bergren, Christopher L.; Long, J. Tony; Blankenship, John K.; Adams, Karen M.

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, where Management and Operations are performed by Savannah River Nuclear Solutions (SRNS). In 2004, DOE recognized SRS as structure within the Cold War Historic District of national, state and local significance composed of the first generation of facilities constructed and operated from 1950 through 1989 to produce plutonium and tritium for our nation's defense. DOE agreed to manage the SRS 105-C Reactor Facility as a potentially historic property due to its significance in supporting the U.S. Cold War Mission and for potential for future interpretation. This reactor has five primary areas within it, including a Disassembly Basin (DB) that received irradiated materials from the reactor, cooled them and prepared the components for loading and transport to a Separation Canyon for processing. The 6,317 square meter area was divided into numerous work/storage areas. The walls between the individual basin compartments have narrow vertical openings called 'slots' that permit the transfer of material from one section to another. Data indicated there was over 830 curies of radioactivity associated with the basin sediments and approximately 9.1 M liters of contaminated water, not including a large quantity of activated reactor equipment, scrap metal, and debris on the basin floor. The need for an action was identified in 2010 to reduce risks to personnel in the facility and to eliminate the possible release of contaminants into the environment. The release of DB water could potentially migrate to the aquifer and contaminate groundwater. DOE, its regulators [U. S. Environmental Protection Agency (USEPA)-Region 4 and the South Carolina Department of Health and Environmental Control (SCDHEC)] and the SC Historical Preservation Office (SHPO) agreed/concurred to perform a non-time critical removal

  11. 33 CFR 334.235 - Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Marine Corps Base Quantico (MCB Quantico) in vicinity of Marine Corps Air Facility (MCAF), restricted area. 334.235 Section 334.235 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED...

  12. Ictalurid populations in relation to the presence of a main-stem reservoir in a midwestern warmwater stream with emphasis on the threatened Neosho madtom

    USGS Publications Warehouse

    Wildhaber, M.L.; Tabor, V.M.; Whitaker, J.E.; Allert, A.L.; Mulhern, D.W.; Lamberson, P.J.; Powell, K.L.

    2000-01-01

    Ictalurid populations, including those of the Neosho madtom Noturus placidus, have been monitored in the Neosho River basin since the U.S. Fish and Wildlife Service listed the Neosho madtom as threatened in 1991. The Neosho madtom presently occurs only in the Neosho River basin, whose hydrologic regime, physical habitat, and water quality have been altered by the construction and operation of reservoirs. Our objective was to assess changes in ictalurid densities, habitat, water quality, and hydrology in relation to the presence of a main-stem reservoir in the Neosho River basin. Study sites were characterized using habitat quality as measured by substrate size, water quality as measured by standard physicochemical measures, and indicators of hydrologic alteration (IHA) as calculated from stream gauge information from the U.S. Geological Survey. Site estimates of ictalurid densities were collected by the U.S. Fish and Wildlife Service annually from 1991 to 1998, with the exception of 1993. Water quality and habitat measurements documented reduced turbidity and altered substrate composition in the Neosho River basin below John Redmond Dam. The effects of the dam on flow were indicated by changes in the short- and long-term minimum and maximum flows. Positive correlations between observed Neosho madtom densities and increases in minimum flow suggest that increased minimum flows could be used to enhance Neosho madtom populations. Positive correlations between Neosho madtom densities and increased flows in the winter and spring months as well as the date of the 1-d annual minimum flow indicate the potential importance of the timing of increased flows to Neosho madtoms. Because of the positive relationships that we found between the densities of Neosho madtoms and those of channel catfish Ictalurus punctatus, stonecats Noturus flavus, and other catfishes, alterations in flow that benefit Neosho madtom populations will probably benefit other members of the benthic fish

  13. Facility Utilization and Risk Analysis for Remediation of Legacy Transuranic Waste at the Savannah River Site - 13572

    SciTech Connect

    Gilles, Michael L.; Gilmour, John C.

    2013-07-01

    Savannah River Nuclear Solutions (SRNS) completed the Accelerated TRU Project for remediating legacy waste at the Savannah River Site with significant cost and schedule efficiencies due to early identification of resources and utilization of risk matrices. Initial project planning included identification of existing facilities that could be modified to meet the technical requirements needed for repackaging and remediating the waste. The project schedule was then optimized by utilization of risk matrices that identified alternate strategies and parallel processing paths which drove the overall success of the project. Early completion of the Accelerated TRU Project allowed SRNS to pursue stretch goals associated with remediating very difficult TRU waste such as concrete casks from the hot cells in the Savannah River National Laboratory. Project planning for stretch goals also utilized existing facilities and the risk matrices. The Accelerated TRU project and stretch goals were funded under the American Recovery and Reinvestment Act (ARRA). (authors)

  14. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    SciTech Connect

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  15. A PREDICTIVE MODEL FOR ANTI-DEGRADATION MONITORING OF THE DELAWARE RIVER

    EPA Science Inventory

    The non-tidal portion of the Delaware River consists of many large sections designated as Wild and Scenic Rivers and passes through two national parks. Although there is increasing pressure on the watershed, large sections of the mainstem of the river can be considered to be in m...

  16. Base flow, water quality, and streamflow gain and loss of the Buffalo River, Arkansas, and selected tributaries, July and August 2003

    USGS Publications Warehouse

    Moix, Matthew W.; Galloway, Joel M.

    2005-01-01

    A study of the Buffalo National River in north-central Arkansas was conducted between July 28-30 and August 13-15, 2003, to characterize the base-flow and water-quality characteristics and streamflow gain and loss in the Buffalo River. The study was separated into two time periods because of a precipitation event that occurred on the afternoon of July 30 causing appreciable storm runoff. Streamflow was separated to identify base-flow and surface-runoff components using the Base Flow Index hydrograph separation computer program. Base-flow separation analyses indicated annual variability in streamflow throughout the Buffalo River Basin. Based upon these analyses, total and base flow were below average for the mainstem of the river and Richland Creek during the 2003 water year. Waterquality samples were collected from 25 surface-water sites on the Buffalo River and selected tributaries. Most nutrient concentrations for the mainstem of the Buffalo River were near or below the minimum reporting level and were less than the median flow-weighted concentration for relatively undeveloped stream basins in the United States. Streamflow measurement data were collected at 44 locations along the mainstem of the Buffalo River and at points of inflow (prior to confluence with the mainstem) to identify gaining and losing reaches. Seven gaining and five losing reaches were identified for the Buffalo River. Additionally, surface flow on the mainstem of the Buffalo River was diverted to subsurface flow on the mainstem at two locations (river miles 73.6 and 131.6) where the mainstem was found to be dry. Reaches throughout the length of the river had calculated gains or losses that were less than the sum of measurement errors for the respective reaches of river.

  17. Intensive archaeological survey of the proposed Savannah River Ecology Laboratory Conference Center and Educational Facility, Savannah River Site, Aiken County, South Carolina

    SciTech Connect

    Stephenson, K.; Crass, D.C.; Sassaman, K.E.

    1993-02-01

    Documented in this report are the methods and results of an intensive archaeological survey for the proposed University of Georgia Savannah River Ecology Laboratory (SREL) Conference Center and Educational Facility on the DOE Savannah River Site (SRS). Archaeological investigations conducted by the Savannah River Archaeological Research Program (SRARP) on the 70-acre project area and associated rights-of-way consisted of subsurface testing at two previously recorded sites and the discovery of one previously unrecorded site. The results show that 2 sites contain archaeological remains that may yield significant information about human occupations in the Aiken Plateau and are therefore considered eligible for nomination to the National Register of Historic Places. Adverse impacts to these sites can be mitigated through avoidance.

  18. Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species

    PubMed Central

    Kooyman, Robert M.; Westoby, Mark

    2009-01-01

    Background and Aims Height gain plays an important role in plant life-history strategies and species coexistence. Here main-stem costs of height gain of saplings across species within a rainforest community are compared. Methods Scaling relationships of height to diameter at the sapling stage were compared among 75 woody rainforest plant species in subtropical eastern Australia using standardized major axis regression. Main-stem costs of height gain were then related to other functional traits that reflect aspects of species ecological strategies. Key Results Slopes (β) for the height–diameter (H–D) scaling relationship were close to 1·3, in line with previous reports and with theory. Main-stem volume to achieve 5 m in height varied substantially between species, including between species within groups based on adult height and successional status. The variation was largely independent of other species traits, being uncorrelated with mature plant height (Hmax) and with leaf size, and weakly negatively correlated with wood density and seed size. The relationship between volume to reach 5 m and wood density was too weak to be regarded as a trade-off. Estimated main-stem dry mass to achieve 5 m height varied almost three-fold across species, with wood density and stem volume contributing roughly equally to the variation. Conclusion The wide range in economy of sapling height gain reported here is presumed to be associated with a trade-off between faster growth and higher mortality rates. It is suggested that wide diameters would have a stronger effect in preventing main-stem breakage in the short term, while high wood density would have a stronger effect in sustaining stem strength over time. PMID:19635742

  19. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  20. Evaluation of Juvenile Fish Bypass and Adult Fish Facilities at Water Diversions in the Umatilla River; 1992 Annual Report.

    SciTech Connect

    Knapp, Suzanne M.

    1993-03-01

    We report on our progress from October 1991 through September 1992 in evaluating juvenile fish bypass facilities at Three Mile Falls and Westland dams on the Umatilla River. We also report on our progress from October 1991 through June 1992 in evaluating adult fish passage in the lower Umatilla River and adult fish passage facilities at Three Mile Falls Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). These are the study objectives addressed by ODFW and CTUIR: (1) Report A (ODFW): To evaluate the juvenile fish bypass facility in the West Extension Irrigation District Canal at Three Mile Falls Dam and document juvenile salmonid passage through the juvenile fish bypass facility and east-bank adult fish ladder. To measure velocity and develop trap designs at Westland Dam. (2) Report B (CTUIR): To examine the passage of adult salmonids at Three Mile Falls Dam. The study is part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin, including restoration of coho salmon (Oncorhynchus kisutch) and chinook salmon (Oncorhynchus tshawytscha), as well as enhancement of summer steelhead (Oncorhynchus mykiss).

  1. Possible explosive compounds in the Savannah River Site waste tank farm facilities

    SciTech Connect

    Hobbs, D.T.

    1992-03-15

    Based on a comparison of the known constituents in high-level nuclear waste stored at the Savannah River Site (SRS) and explosive compounds reported in the literature, only two classes of explosive compounds (metal NO{sub x} compounds and organic compounds) were identified as requiring further work to determine if they exist in the waste, and if so, in what quantities. Of the fourteen classes of explosive compounds identified as conceivably being present in tank farm operations, nine classes (metal fulminates, metal azides, halogen compounds, metal-amine complexes, nitrate/oxalate mixtures, metal oxalates, metal oxohalogenates, metal cyanides/cyanates, and peroxides) are not a hazard because these classes of compounds cannot be formed or accumulated in sufficient quantity, or they are not reactive at the conditions which exist in the tank farm facilities. Three of the classes (flammable gases, metal nitrides, and ammonia compounds and derivatives) are known to have the potential to build up to concentrations at which an observable reaction might occur. Controls have been in place for some time to limit the formation or control the concentration of these classes of compounds. A comprehensive list of conceivable explosive compounds is provided in Appendix 3.

  2. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O. ); Weir, T.J. )

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  3. Barge loading facilities in conjunction with wood chipping and sawlog mill, Tennessee River Mile 145. 9R: Environmental assessment

    SciTech Connect

    Not Available

    1990-08-01

    The purpose of this Environmental Assessment (EA) is to evaluate the environmental consequences of approving, denying, or adopting reasonable alternatives to a request for barge loading facilities. These facilities would serve a proposed wood chipping and sawlog products operation at Tennessee River Mile (TRM) 145.9, right descending bank, (Kentucky Lake), in Perry County, Tennessee. The site is located between Short Creek and Peters Landing. The applicant is Southeastern Forest Products, L.P. (SFP), Box 73, Linden, Tennessee and the proposed facilities would be constructed on or adjacent to company owned land. Portions of the barge terminal would be constructed on land over which flood easement rights are held by the United States of America and administered by the Tennessee Valley Authority (TVA). The US Army Corps of Engineers (CE) and TVA have regulatory control over the proposed barge terminal facilities since the action would involve construction in the Tennessee River which is a navigable water of the United States. The wood chipping and sawlog products facilities proposed on the upland property are not regulated by the CE or TVA. On the basis of the analysis which follows, it has been determined that a modified proposal (as described herein) would not significantly affect the quality of the human environment, and does not require the preparation of an environmental impact statement. 8 refs.

  4. Environmental Assessment for the construction and operation of the Health Physics Site Support Facility on the Savannah River Site

    SciTech Connect

    1995-07-01

    DOE has prepared an environmental assessment for the proposed construction and operation of the Health Physics Site Support Facility on the Savannah River Site. This (new) facility would meet requirements of the site radiological protection program and would ensure site compliance with regulations. It was determined that the proposed action is not a major Federal action significantly affecting the quality of the environment within the meaning of NEPA. Therefore, a finding of no significant impact is made, and no environmental impact statement is needed.

  5. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  6. Importance of reservoir tributaries to spawning of migratory fish in the upper Paraná River

    USGS Publications Warehouse

    da Silva, P.S.; Makrakis, Maristela Cavicchioli; Miranda, Leandro E.; Makrakis, Sergio; Assumpcao, L.; Paula, S.; Dias, João Henrique Pinheiro; Marques, H.

    2015-01-01

    Regulation of rivers by dams transforms previously lotic reaches above the dam into lentic ones and limits or prevents longitudinal connectivity, which impairs access to suitable habitats for the reproduction of many migratory fish species. Frequently, unregulated tributaries can provide important habitat heterogeneity to a regulated river and may mitigate the influence of impoundments on the mainstem river. We evaluated the importance of tributaries to spawning of migratory fish species over three spawning seasons, by comparing several abiotic conditions and larval fish distributions in four rivers that are tributaries to an impounded reach of the Upper Parana River, Brazil. Our study confirmed reproduction of at least 8 long-distance migrators, likely nine, out of a total of 19 occurring in the Upper Parana River. Total larval densities and percentage species composition differed among tributaries, but the differences were not consistent among spawning seasons and unexpectedly were not strongly related to annual differences in temperature and hydrology. We hypothesize that under present conditions, densities of larvae of migratory species may be better related to efficiency of fish passage facilities than to temperature and hydrology. Our study indicates that adult fish are finding suitable habitat for spawning in tributaries, fish eggs are developing into larvae, and larvae are finding suitable rearing space in lagoons adjacent to the tributaries. Our findings also suggest the need for establishment of protected areas in unregulated and lightly regulated tributaries to preserve essential spawning and nursery habitats.

  7. Operation of Bubblers in the Savannah River Site Defense Waste Processing Facility Melter - 12166

    SciTech Connect

    Hodges, Brandon C.; Iverson, Daniel C.; Diener, Glenn

    2012-07-01

    Savannah River Remediation (SRR) LLC acquired the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. In order to achieve the main goal of the contract, closing of High Level Waste (HLW) tanks, it was necessary to process more waste throughout the SRS liquid waste facilities. The Defense Waste Processing Facility (DWPF) would need to increase its production rate of radioactive waste glass filled canisters as a part of the plan to achieve this commitment. To attain the increased production rate, four bubblers were installed in the DWPF Melter in September 2010 to agitate the DWPF Melter glass pool. The four bubblers were designed to be installed in existing nozzles on the top-head of the DWPF Melter. The design and fabrication of the four (4) bubblers was accomplished through SRR critical subcontractor EnergySolutions LLC. In addition to the existing bubbler design, a new design concept has been approved and is in the process of fabrication. The new design will allow for the lower end (inside melter) of the bubbler to be replaced while the upper end (outside melter) of the bubbler is reused to minimize cost and waste at the DWPF. The bubblers have been operating in the DWPF Melter for approximately 1 year. The originally installed bubbler set was replaced in January 2011. The bubblers were visually examined once removed from the melter and showed minimal signs of wear. Material testing of the Inconel 690 is being performed to determine if the bubblers operational life can be extended. The use of the bubblers has changed the dynamics within the melter glass pool. This is shown through indications that the bubblers have increased the glass pool circulation. Overall, performance of the bubblers has been encouraging and the DWPF Melter has seen a significant improvement in its ability to process waste since the bubbler installation. The installation of the bubblers accomplished the goal of increasing the glass production capability of DWPF

  8. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Washington Department of Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  9. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    SciTech Connect

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  10. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, US Fish and Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs., 25 tabs.

  11. Spatial and temporal variability in nutrient concentrations in surface waters of the Chattahoochee River basin near Atlanta, Georgia, USA

    USGS Publications Warehouse

    Peters, N.E.; Buell, G.R.; Frick, E.A.

    1997-01-01

    Nutrient concentrations from the early 1970s through 1995 were evaluated at several sites along the Chattahoochee River and its tributaries near Atlanta, to determine general patterns and processes controlling nutrient concentrations in the river. A spatial analysis was conducted on data collected in 1994 and 1995 from an intensive nutrient study of the Chattahoochee River and its tributaries by the Georgia Department of Natural Resources, Environmental Protection Division. The 1994-1995 data show step increases in ammonium (NH4-N), nitrite plus nitrate (NO2 + NO3-N), and total-phosphorus (Tot-P) concentrations in the river. The step increases occur downstream of two wastewater treatment facilities (WWTFs) and Peachtree Creek, a small tributary inflow with degraded water quality draining a predominantly urban and industrial area. Median NO2 + NO3-N and Tot-P concentrations in the mainstem increase downstream of these inputs from 0.5 to 1 mg 1-1 and from 0.04 to 0.13 mg 1-1, respectively. NH4-N concentrations were typically low with 95% of the 2575 observations less than 0.2 mg 1-1 throughout the river system, except some high values (>1 mg 1-1) in some tributaries, particularly near the central part of Atlanta. High NH4-N concentrations are attributed to sewage discharge as they also are associated with high biological oxygen demand and faecal coliform bacteria concentrations. Nutrient concentrations vary temporally. An assessment of four sites, two mainstem and two tributaries, from 1970 to 1995 indicates a progressive increase and variability in NO2 + NO3-N concentrations during the period. The progressive increase in NO2 + NO3-N concentrations and their variability is similar to that reported for surface waters throughout the world and for which increased fertilizer usage has been attributed. Tot-P concentrations increase at mainstem sites through the middle to late 1980s and decrease markedly thereafter, due to improvements to WWTFs and a 1990 phosphate

  12. FACILITY UPGRADES FOR RECEIPT FROM ACTINIDE REMOVAL AND MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fellinger, T; Stephen Phillips, S; Benjamin Culbertson, B; Beverly02 Davis, B; Aaron Staub, A

    2007-02-13

    The Savannah River Site (SRS) is currently on an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). As a part of that program, two new processes will be brought on-line to assist in emptying the HLW tanks. These processes are in addition to the current sludge removal process and are called the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction (MCU) Process. In order to accept and process the streams generated from these two new processes, several facility modifications are required and are broken down into several projects. These projects are handling the facility modifications required for the Tank Farm (241-96H), and DWPF vitrification facility (221-S), and DWPF ancillary facilities (511-S, and 512-S). Additional modifications to the 221-S building were required to address the flammability concern from the solvent carryover from the MCU process. This paper will describe a summary of the modifications impacting the 511-S, 512-S, and the 221-S facilities in order to receive the new streams from the ARP and MCU processes at the DWPF.

  13. CONNECTICUT RIVER FISH TISSUE CONTAMINANT STUDY (2000): ECOLOGICAL AND HUMAN HEALTH RISK SCREENING

    EPA Science Inventory

    The study targeted commonly caught recreational fish, as well as other fish that are important in the river food chain. Smallmouth bass, white suckers and yellow perch were collected during 2000 from the mainstem of the Connecticut River and composite samples were analyzed for t...

  14. POTLATCH RIVER WATERSHED, LATAH, CLEARWATER, AND NEZ PERCE COUNTIES, IDAHO - BENEFICIAL USE RECONNAISSANCE PROJECT, 1994

    EPA Science Inventory

    This study was conducted during the 1994 summer to determine the beneficial uses and status of those uses in the Potlatch River watershed, Idaho (17060306). Data were collected on the mainstem, East Fork and West Fork Potlatch River, Little Potlatch and Middle Potlatch Creeks, B...

  15. Pit-Tag Studies with Juvenile Salmonids at the Chandler Canal Fish Collection Facility, Yakima River : Annual Report 1990.

    SciTech Connect

    Ruehle, Thomas E.; McCutcheon, Clinton Scott

    1994-09-01

    Juvenile salmonid survival studies planned for the Yakima Basin will require the release and recapture of large numbers of marked fish. Before these studies can be implemented, information is needed about potential recovery rates of marked fish at proposed sampling sites. The type of mark employed and the efficiency of the equipment used to capture and examine fish for marks must be evaluated since accurate survival estimates depend on their reliability. Recovery rates are expected to vary with species and life stage as well as environmental factors such as river flow and water temperature. The purpose of this study was to assess the mark-recovery capabilities of the Chandler facility and a mobile juvenile fish trap installed temporarily at West Richland, Washington near the mouth of the Yakima River.

  16. Design wind speeds for high hazard, moderate hazard, important/low hazard and general use facilities at the Savannah River Site

    SciTech Connect

    King, H.H.

    1989-09-11

    The design wind speeds for High Hazard, Moderate Hazard, Important/Low Hazard and General Use facilities at the Savannah River Site are developed below using the procedures and site-specific hazards model required by DOE Order 6430.1A. These are less than the previously required Design Wind Speeds and are: (1) High Hazard (Maximum Resistance) Facility, 185 mph; (2) Moderate Hazard (High Resistance) Facility, 37 mph; (3) Important/Low Hazard (Intermediate) Facility, 83 mph; and, (4) General Use (Standard) Facility, 78 mph.

  17. 1993 RCRA Part B permit renewal application, Savannah River Site: Volume 10, Consolidated Incineration Facility, Section C, Revision 1

    SciTech Connect

    Molen, G.

    1993-08-01

    This section describes the chemical and physical nature of the RCRA regulated hazardous wastes to be handled, stored, and incinerated at the Consolidated Incineration Facility (CIF) at the Savannah River Site. It is in accordance with requirements of South Carolina Hazardous Waste Management Regulations R.61-79.264.13(a) and(b), and 270.14(b)(2). This application is for permit to store and teat these hazardous wastes as required for the operation of CIF. The permit is to cover the storage of hazardous waste in containers and of waste in six hazardous waste storage tanks. Treatment processes include incineration, solidification of ash, and neutralization of scrubber blowdown.

  18. Finding of no significant impact for the tritium facility modernization and consolidation project at the Savannah River Site

    SciTech Connect

    1998-01-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1222) for the proposed modernization and consolidation of the existing tritium facilities at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issueing this Finding of No Significant Impact (FONSI).

  19. Sinking Coastlines: Land Subsidence at Aquaculture Facilities in the Yellow River Delta, China, measured with Differential Synthetic Aperture Radar (D-InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Tanaka, A.; Syvitski, J. P.

    2013-12-01

    Land subsidence in river deltas is a global problem. It heightens storm surges, salinates groundwater, intensifies river flooding, destabilizes infrastructure and accelerates shoreline retreat. Measurements of delta subsidence typically rely on point measures such as GPS devices, tide gauges or extensometers, but spatial coverage is needed to fully assess risk across river deltas. Differential Interferometric Synthetic Aperture Radar (D-InSAR) is a satellite-based technique that can provide maps of ground deformation with mm to cm-scale vertical resolution. We apply D-InSAR to the coast of the Yellow River Delta in China, which is dominated by aquaculture facilities and has experienced severe coastal erosion in the last twenty years. We extract deformation patterns from dry land adjacent to aquaculture facilities along the coast, allowing the first measurements of subsidence at a non-urban delta shoreline. Results show classic cones-of-depression surrounding aquaculture facilities, likely due to groundwater pumping. Subsidence rates are as high as 250 mm/y at the largest facility on the delta. These rates exceed local and global average sea level rise by nearly two orders of magnitude. If these rates continue, large aquaculture facilities in the area could induce more than a meter of relative sea level rise every five years. Given the global explosion in fish farming in recent years, these results also suggest that similar subsidence and associated relative sea level rise may present a significant hazard for other Asian megadeltas. False-color MODIS image of the Yellow River delta in September 2012. Water appears dark blue, highlighting the abundance of aquaculture facilities along the coast. Green land is primarily agricultural; brown is urban. Red boxes indicate locations of aquaculture facilities examined in this study. Figure from Higgins, S., Overeem, I., Tanaka, A., & Syvitski, J.P.M., (2013), Land Subsidence at Aquaculture Facilities in the Yellow River

  20. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    SciTech Connect

    Faler, Michael P.; Mendel, Glen; Fulton, Carl

    2008-11-20

    was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.

  1. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995 : Volume II, Oregon.

    SciTech Connect

    Oregon Department of Fish and Wildlife; US Fish and Wildlife Service

    1996-06-01

    Big Creek Hatchery is located 16 miles east of Astoria, Oregon and is approximately 3 miles upstream from Big Creek`s confluence with the Columbia River. The site elevation is approximately 75 feet above sea level. The facility includes 2 adult holding ponds, 30 raceways, 1 rearing pond, 64 troughs and 8 stacks of egg incubators. The adult collection and holding ponds are in poor condition and are inadequate to meet current program objectives. There are four water sources for the hatchery: Big Creek, Mill Creek and two springs. Current water rights total 36,158 gpm plus an additional 4.2 cfs reservoir water right. All water supplies are delivered by gravity but can be pumped for reuse if required. The facility is staffed with 9.25 FTE`s. Current practices at the hatchery are described.

  2. Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    2000-08-17

    A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

  3. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  4. Juvenile Salmonid Pit-Tag Studies at Prosser Dam and the Chandler Canal Fish Collection Facility, Yakima River, 1991 and 1992 Final Report.

    SciTech Connect

    Ruehle, Thomas E.; Sandford, Benjamin P.

    1996-01-01

    In 1991 and 1992, the National Marine Fisheries Service completed the second and third years of a 3-year study to estimate juvenile salmonid (Oncorhynchus spp.) timing and survival characteristics related to passage through the Prosser Dam complex, including the Chandler Canal and the Chandler fish collection facility, on the Yakima River. Yearling chinook (O. tshawyacha) and coho salmon (O. kisutch) were collected at the Chandler facility, PIT tagged, and released at various locations in the Yakima River, Chandler Canal, and the Chandler facility. Individual fish were subsequently detected at PIT-tag detection monitors at the Chandler facility and/or McNary Dam on the Columbia River. Survival through various reaches, PIT-tag detection efficiency, and Chandler Canal fish entrainment proportion parameters were estimated using maximum likelihood techniques. The research objectives in 1991 and 1992 were to: (1) assess the effects of passage through the Chandler Canal and the Chandler facility on the survival of juvenile salmonids, (2) determine the entrainment rate of juvenile salmonids into the Chandler Canal as a function of river flow, and (3) determine the efficiency and reliability of the PIT-tag monitoring system at the Chandler facility. The initial 1990 research plan was expanded in 1991 and 1992 to include several more release locations and many more release days.

  5. Ecological Assessment of Streams in the Powder River Structural Basin, Wyoming and Montana, 2005-06

    USGS Publications Warehouse

    Peterson, D.A.; Wright, P.R.; Edwards, G.P., Jr.; Hargett, E.G.; Feldman, D.L.; Zumberge, J.R.; Dey, Paul

    2009-01-01

    Energy and mineral development, particularly coalbed natural gas development, is proceeding at a rapid pace in the Powder River Structural Basin (PRB) in northeastern Wyoming. Concerns about the potential effects of development led to formation of an interagency working group of primarily Federal and State agencies to address these issues in the PRB in Wyoming and in Montana where similar types of resources exist but are largely undeveloped. Under the direction of the interagency working group, an ecological assessment of streams in the PRB was initiated to determine the current status (2005-06) and to establish a baseline for future monitoring. The ecological assessment components include assessment of stream habitat and riparian zones as well as assessments of macroinvertebrate, algal, and fish communities. All of the components were sampled at 47 sites in the PRB during 2005. A reduced set of components, consisting primarily of macroinvertebrate and fish community assessments, was sampled in 2006. Related ecological data, such as habitat and fish community data collected from selected sites in 2004, also are included in this report. The stream habitat assessment included measurement of channel features, substrate size and embeddedness, riparian vegetation, and reachwide characteristics. The width-to-depth ratio (bankfull width/bankfull depth) tended to be higher at sites on the main-stem Powder River than at sites on the main-stem Tongue River and at sites on tributary streams. The streambed substrate particle size was largest at sites on the main-stem Tongue River and smallest at sites on small tributary streams such as Squirrel Creek and Otter Creek. Total vegetative cover at the ground level, understory, and canopy layers ranged from less than 40 percent at a few sites to more than 90 percent at many of the sites. A bank-stability index indicated that sites in the Tongue River drainage were less at risk of bank failure than sites on the main-stem Powder River

  6. THE OHIO RIVER BASIN ENERGY FACILITY SITING MODEL. VOLUME II: SITES AND ON-LINE DATES

    EPA Science Inventory

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The siting model developed for ORBES is specifically designed for regional policy analysis. The region includes 423 counties in an area that consists of all ...

  7. THE OHIO RIVER BASIN ENERGY FACILITY SITING MODEL. VOLUME I: METHODOLOGY

    EPA Science Inventory

    This report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program supported by the Environmental Protection Agency. The siting model developed for ORBES is specifically designed for regional policy analysis. The region incl...

  8. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3A/5A/6A/6B/7A/9A

    SciTech Connect

    DiSabatino, A., LLNL

    1998-06-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in a new facility at Savannah River Site (SRS).

  9. Facility Siting as a Decision Process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    2001-07-24

    This document is based upon previous site selection exercises conducted for a variety of proposed facilities. It develops the logic and basis for the methods employed, and standardizes the process and terminology for future site selection efforts.

  10. Selected streamflow data for the Delaware River basin

    USGS Publications Warehouse

    Schopp, Robert D.; Gillespie, Brian D.

    1979-01-01

    Selected streamflow data for the Delaware River basin include runoff-precipitation relationships for 28 selected subbasins for the period 1941-70; low-flow frequency curves for four mainstem Delaware River sites; monthly comparative duration curves and twenty year hydrographs at Montague and Trenton, New Jersey; and flow duration tables based on observed daily streamflow for gaging stations near 21 proposed dam sites. (Woodard-USGS)

  11. Process centrifuge operating problems and equipment failures in canyon reprocessing facilities at the Savannah River Site

    SciTech Connect

    Durant, W.S.; Baughman, D.F.

    1990-03-01

    The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Site (SRS). At present, the data bank contains more than 230,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the canyon process centrifuges. This report contains a compilation of the centrifuge operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 11 refs., 2 figs., 4 tabs.

  12. Formic acid requirement for the Savannah River Site Defense Waste Processing Facility melter feed preparation

    SciTech Connect

    Hsu, C.W.

    1991-01-01

    The Westinghouse Savannah River Company (WSRC) will vitrify the high-level radioactive waste into a borosilicate glass wasteform using a slurry-fed, joule-heated melter. Formic acid is used to treat the sludge slurry for melter feed preparation. Both a minimum formate requirement and a maximum allowable formate level need to be established to adequately prepare the sludge for melter feed. The data from the Savannah River Laboratory (SRL) Scale Glass Melter (SGM), Integrated DWPF Melter System (IDMS), and research mini-melter runs were used for this purpose. The stoichiometry for major reactions during formic acid treatment was revised to reflect the more predominant chemical reactions and their yields. A minimum formic acid requirement was established according to this revised stoichiometry. Methods for determining the minimum level of formic acid were specified. An operating envelope that includes the maximum total formate level and the minimum nitrate levels, was also proposed. 5 refs., 3 figs., 4 tabs.

  13. Walla Walla River Basin Fish Habitat Enhancement Project, 2002-2003 Annual Report.

    SciTech Connect

    Volkman, Jed

    2005-12-01

    In 2002 and 2003, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts on private properties in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of this effort is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled nine properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and four properties on the mainstem Walla Walla River. Major accomplishments during the reporting period include the following: (1) Secured approximately $229,000 in project cost share; (2) Purchase of 46 acres on the mainstem Walla Walla River to be protected perpetually for native fish and wildlife; (3) Developed three new 15 year conservation easements with private landowners; (4) Installed 3000 feet of weed barrier tarp with new plantings within project area on the mainstem Walla Walla River; (5) Expanded easement area on Couse Creek to include an additional 0.5 miles of stream corridor and 32 acres of upland habitat; (6) Restored 12 acres on the mainstem Walla Walla River and 32 acres on Couse Creek to native perennial grasses; and (7) Installed 50,000+ new native plants/cuttings within project areas.

  14. Direct Tracheobronchopexy and Posterior Descending Aortopexy for Severe Left Mainstem Bronchomalacia Associated With Congenital Pulmonary Airway Malformation and Left Circumflex Aortic Arch.

    PubMed

    Baird, Christopher W; Prabhu, Sanjay; Buchmiller, Terry L; Smithers, Charles; Jennings, Russell

    2016-07-01

    Complex tracheobronchial obstruction and malacia can be associated with conotruncal and aortic arch anomalies. A circumflex aortic arch composed of a left aortic arch and right descending aorta is an extremely rare anomaly that can severely affect the distal trachea and mainstem bronchi, resulting in severe respiratory symptoms. We report the case of a patient with circumflex aortic arch and severe left mainstem bronchial obstruction and malacia in which the external aortic compression and residual bronchomalacia were addressed with direct bronchial and tracheal intervention. PMID:27343517

  15. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  16. Detecting the Signature of Permafrost Thaw in Arctic Rivers

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Mann, P. J.; Dittmar, T.; Eglinton, T. I.; Stubbins, A.

    2014-12-01

    Arctic permafrost soils contain vast quantities of ancient organic matter. Numerous studies have shown extensive permafrost thaw and degradation in the Arctic, but dissolved organic carbon (DOC) exported from the mouths of large Arctic rivers - which are expected to integrate processes and changes occurring through their watersheds - has been shown to be predominantly modern. This raises the question, where is the ancient DOC that is mobilized from permafrost thaw and the deepening of the active layer? This study examines DOC radiocarbon age, biolability and dissolved organic matter (DOM) composition via FT-ICR-MS in permafrost thaw streams and the Kolyma River mainstem (Northeast Siberia). Ancient permafrost thaw stream DOC is observed to be highly biolabile particularly in comparison to modern Kolyma River mainstem DOC. In conjunction with this high biolability the permafrost thaw stream DOM exhibits large changes in molecular structure, loss of hydrogen rich (energy rich) aliphatic molecules, and production of molecules in the classical area in van Krevelen space associated with riverine DOM. Modern Kolyma River mainstem DOM conversely appears very stable in bioincubations in comparison to ancient permafrost thaw DOM. Thus the apparent offset between mobilization of ancient permafrost derived organic matter and the current predominantly modern age of DOC at the mouth of major Arctic rivers may be explained due to microbial degradation of permafrost derived DOC within the river's hydrologic residence time.

  17. Savannah River Site Mixed Waste Management Facility Southwest Plume Tritium Phytoremediation Evaluating Irrigation Management Strategies Over 25 Years

    SciTech Connect

    Riah, Susan; Rebel, Karin

    2004-02-27

    To minimize movement of tritium into surface waters at the Mixed Waste Management Facility at the Savannah River Site, tritium contaminated seepage water is being retained in a constructed pond and used to irrigate forest acreage that lies above the pond and over the contaminated groundwater. Twenty five-year potential evapotranspiration and average precipitation are 1443 mm/year and 1127 mm/year, respectively, for the region in which the site is located. Management of the application of tritium contaminated irrigation water needs to be evaluated in the context of the large amount of rainfall relative to evapotranspiration, the strong seasonality in evapotranspiration, and intraannual and inter-annual variability in precipitation. A dynamic simulation model of water and tritium fluxes in the soil-plant-atmosphere continuum was developed to assess the efficiency (tritium transpired/tritium applied) of several irrigation management strategies.

  18. Phosphorus removal mechanisms at the Yellow River Sweetwater Creek Water Reclamation Facility, Gwinnett County, Georgia. Master's thesis

    SciTech Connect

    Borowy, J.T.

    1994-01-01

    This research investigated the capabilities of the Yellow River Sweetwater Creek Water Reclamation Facility in Gwinnett County, GA. to remove phosphorus biologically. Phosphorus levels and removal locations were analyzed in plant operational units (sampling events), while in reactor experiments (pilot studies), waste was subjected to various conditions to promote-biological phosphorus release and uptake. Analysis of plant conditions at the time of experimentation indicates that one-half of the plant phosphorus removal is accomplished biologically through incorporation of phosphorus in microbial cells during growth. It does not appear, however, that enhanced biological phosphorus removal (BPR) is possible due to wastestream characteristics and/or microbial population. It was noted that the basic anaerobic-aerobic sequence associated with enhanced BPR appears to be occurring with the secondary clarifier sludge blanket and return to compartment A of the nitrification basin.

  19. 78 FR 16302 - Crystal River Unit 3 Nuclear Generating Plant, Application for Amendment to Facility Operating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Consideration of Issuance of Amendment published in the Federal Register on January 11, 2012 (77 FR 1743), and a... published in the Federal Register on January 16, 2013 (78 FR 3458). However, by letter dated February 7... Florida, Citrus County. The proposed amendment would have revised the facility operating license and...

  20. 77 FR 74781 - Safety Zones; Columbia Grain and United Grain Corporation Facilities; Columbia and Willamette Rivers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... Acronyms DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zones; Columbia Grain and United Grain.... SUMMARY: The Coast Guard is establishing temporary safety zones around the Columbia Grain facility on...

  1. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Krementz, D

    2007-11-27

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested using MSM's to manipulate the various tools. Nitric acid is used in many of the decontamination processes performed in the REDC, where the tooling will be deployed. Although most of the tool components were fabricated/purchased with nitric acid and radioactive service in mind, some of the prototype parts must be replaced with parts that are more compatible with nitric acid/radioactive service. Several modifications to the various tools are needed to facilitate maintenance and replacement of failed components. Development of installation tools for replacement of 1-inch, 2-inch and multi-hole gaskets is being considered. Deployment of the existing system in the DWPF REDC is expected during FY

  2. Wildlife and Wildlife Habitat Loss Assessment Summary at Federal Hydroelectric Facilities; Willamette River Basin, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1986-02-01

    Habitat based assessments were conducted of the US Army Corps of Engineers' hydroelectric projects in the Willamette River Basin, Oregon, to determine losses or gains to wildlife and/or wildlife habitat resulting from the development and operation of the hydroelectric-related components of the facilities. Preconstruction, postconstruction, and recent vegetation cover types at the project sites were mapped based on aerial photographs. Vegetation cover types were identified within the affected areas and acreages of each type at each period were determined. Wildlife target species were selected to represent a cross-section of species groups affected by the projects. An interagency team evaluated the suitability of the habitat to support the target species at each project for each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the projects. The Willamette projects extensively altered or affected 33,407 acres of land and river in the McKenzie, Middle Fork Willamette, and Santiam river drainages. Impacts to wildlife centered around the loss of 5184 acres of old-growth conifer forest, and 2850 acres of riparian hardwood and shrub cover types. Impacts resulting from the Willamette projects included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, furbearers, spotted owls, pileated woodpeckers, and many other wildlife species. Bald eagles and ospreys were benefited by an increase in foraging habitat. The potential of the affected areas to support wildlife was greatly altered as a result of the Willamette projects. Losses or gains in the potential of the habitat to support wildlife will exist over the lives of the projects. Cumulative or system-wide impacts of the Willamette projects were not quantitatively assessed.

  3. Intensive archaeological survey of the proposed Central Sanitary Wastewater Treatment Facility, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect

    Stephenson, D.K.; Sassaman, K.E.

    1993-11-01

    The project area for the proposed Central Sanitary Wastewater Treatment Facility on the Savannah River Site includes a six-acre tract along Fourmile Branch and 18 mi of trunk line corridors. Archaeological investigations of the six-acre parcel resulted in the discovery of one small prehistoric site designated 38AK465. This cultural resource does not have the potential to add significantly to archaeological knowledge of human occupation in the region. The Savannah River Archaeological Research Program (SRARP) therefore recommends that 38AK465 is not eligible for nomination to the National Register of Historic Places (NRHP) and further recommends a determination of no effect. Archaeological survey along the trunk line corridors implicated previously recorded sites 38AK92, 38AK145, 38AK415, 38AK417, 38AK419, and 38AK436. Past disturbance from construction had severely disturbed 38AK92 and no archaeological evidence of 38AK145, 38AK419, and 38AK436 was recovered during survey. Lacking further evidence for the existence of these sites, the SRARP recommends that 38AK92, 38AK145, 38AK419, and 38AK436 are not eligible for nomination to the NRHP and thus warrant a determination of no effect. Two of these sites, 38Ak415 and 38AK417, required further investigation to evaluate their archaeological significance. Both of the sites have the potential to yield significant data on the prehistoric period occupation of the Aiken Plateau and the SRARP recommends that they are eligible for nomination to the NRHP. The Savannah River Archaeological Research Program recommends that adverse effects to sites 38AK415 and 38AK417 from proposed construction can be mitigated through avoidance.

  4. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993

    SciTech Connect

    1994-11-01

    Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  5. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    SciTech Connect

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports.

  6. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  7. Site selection modeling system for a production facility at Savannah River site

    SciTech Connect

    Shedrow, C.B.; Shedrow, D.M.

    1996-12-31

    The Savannah River site (SRS) is located along the Savannah River in southwestern South Carolina and encompasses an area of {approximately}832 km (198 344 acres). Major land covers include evergreen and deciduous forests, surface water, wetlands, and administrative/industrial areas. Less than 10% of the site`s surface area is developed. Several endangered and threatened species are found on the SRS, including the red-cockaded woodpecker, the southern bald eagle, the wood stork, and the smooth purple coneflower. With the cessation of the Cold War, the traditional defense-related missions at the SRS have been significantly reduced. The implementation of new missions at the SRS will require the utilization of effective siting and prioritization methodologies to ensure the best use of available land resources and protection of the environment. The objective of this paper is to describe the utilization of the Site Selection Modeling System (SSMS) for the selection of potential industrial development sites within the SRS. The SSMS is a raster geographic information system (GIS)-based system that integrates the graphical interface ArcView 2.1 with the GRID modeling functionality of ARC/INFO. The proposed industrial development being sited is a linear accelerator, which will be used for the accelerator production of tritium.

  8. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Fu, Yaning; Zhu, Zhaoyun; Liu, Shijie; Xie, Shuangwei; Xiao, Yang; Giesy, John P

    2014-07-01

    Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water. PMID:24747105

  9. Fish communities of the Buffalo River Basin and nearby basins of Arkansas and their relation to selected environmental factors, 2001-2002

    USGS Publications Warehouse

    Petersen, James C.

    2004-01-01

    The Buffalo River lies in north-central Arkansas and is a tributary of the White River. Most of the length of the Buffalo River lies within the boundaries of Buffalo National River, a unit of the National Park Service; the upper 24 river kilometers lie within the boundary of the Ozark National Forest. Much of the upper and extreme lower parts of the basin on the south side of the Buffalo River is within the Ozark National Forest. During the summers of 2001 and 2002, fish communities were sampled at 52 sites in the study area that included the Buffalo River Basin and selected smaller nearby basins within the White River Basin in north-central Arkansas. Water quality (including nutrient and bacteria concentrations) and several other environmental factors (such as stream size, land use, substrate size, and riparian shading) also were measured. A total of 56 species of fish were collected from sites within the Buffalo River Basin in 2001 and 2002. All 56 species also were collected from within the boundaries of Buffalo National River. Twenty-two species were collected from headwater sites on tributaries of the Buffalo River; 27 species were collected from sites within or immediately adjacent to the Ozark National Forest. The list of species collected from Buffalo National River is similar to the list of species reported by previous investigators. Species richness at sites on the mainstem of the Buffalo River generally increased in a downstream direction. The number of species collected (both years combined) increased from 17 at the most upstream site to 38 near the mouth of the Buffalo River. In 2001 and 2002, a total of 53 species of fish were collected from sites outside the Buffalo River Basin. Several fish community metrics varied among sites in different site categories (mainstem, large tributary, small tributary, headwater, and developed out-of-basin sites). Median relative abundances of stonerollers ranged from about 25 to 55 percent and were highest at

  10. DECOMMISSIONING OF THE 247-F FUEL MANUFACTURING FACILITY AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Santos, J; Stephen Chostner, S

    2007-05-22

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980s. The building layout is shown in Fig. 1. A photograph of the facility is shown in Fig. 2. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the cold war wound down, the need for naval fuel declined. Consequently, the facility was shut down and underwent initial deactivation. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping and equipment systems, a significant volume of liquid remained after initial deactivation was completed in 1990. At that time, a non-destructive assay of the process area identified approximately 17 (+/- 100%) kg of uranium held up in equipment and piping.

  11. Assessment of the quality of groundwater and the Little Wind River in the area of a former uranium processing facility on the Wind River Reservation, Wyoming, 1987 through 2010

    USGS Publications Warehouse

    Ranalli, Anthony J.; Naftz, David L.

    2014-01-01

    In 2010, the U.S Geological Survey (USGS), in cooperation with the Wind River Environmental Quality Commission (WREQC), began an assessment of the effectiveness of the existing monitoring network at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) site. The USGS used existing data supplied by the U.S. Department of Energy (DOE). The study was to determine (1) seasonal variations in the direction of groundwater flow in the area of the former uranium processing facility toward the Little Wind River, (2) the extent of contaminated groundwater among the aquifers and between the aquifers and the Little Wind River, (3) whether current monitoring is adequate to establish the effectiveness of natural attenuation for the contaminants of concern, and (4) the influence of groundwater discharged from the sulfuric-acid plant on water quality in the Little Wind River.

  12. Decommissioning of the 247-F Fuel Manufacturing Facility at the Savannah River Site (SRS)

    SciTech Connect

    Santos, Joseph K.; Chostner, Stephen M.

    2008-01-15

    Building 247-F at SRS was a roughly 110,000 ft{sup 2} two-story facility designed and constructed during the height of the cold war naval buildup to provide additional naval nuclear fuel manufacturing capacity in early 1980's. The manufacturing process employed a wide variety of acids, bases, and other hazardous materials. As the need for naval fuel declined, the facility was shut down and underwent initial deactivation, which was completed in 1990. All process systems were flushed with water and drained using the existing process drain valves. However, since these drains were not always installed at the lowest point in piping and equipment systems, a significant volume of liquid remained after initial deactivation. After initial deactivation, a non-destructive assay of the process area identified approximately 17 ({+-}100%) kg of uranium held up in equipment and piping. The facility was placed in Surveillance and Maintenance mode until 2003, when the decision was made to perform final deactivation, and then decommission the facility. The following lessons were learned as a result of the D and D of building 247-F. Successful D and D of a major radiochemical process building requires significant up-front planning by a team of knowledgeable personnel led by a strong project manager. The level of uncertainty and resultant risk to timely, cost effective project execution was found to be high. Examples of the types of problems encountered which had high potential to adversely impact cost and schedule performance are described below. Low level and sanitary waste acceptance criteria do not allow free liquids in waste containers. These liquids, which are often corrosive, must be safely removed from the equipment before it is loaded to waste containers. Drained liquids must be properly managed, often as hazardous or mixed waste. Tapping and draining of process lines is a dangerous operation, which must be performed carefully. The temptation to become complacent when

  13. Research and Recovery of Snake River Sockeye Salmon, 1994 Annual Report.

    SciTech Connect

    Kline, Paul A.

    1995-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribe and the Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. In 1994, the authors estimated the total September Redfish Lake O. nerka population at 51,529 fish (95% CI, {+-} 33,179). The Alturas Lake O. nerka population was estimated at 5,785 fish ({+-} 6,919). The total density and biomass of Alturas Lake was estimated at 27 fish/hectare ({+-} 33) and 0.7 kg/hectare, respectively. The total O. nerka population estimate for Pettit Lake was 14,743 fish ({+-} 3,683). Stanley Lake O. nerka total population size, density, and biomass was estimated at 2,695 fish ({+-} 963), 37 fish/hectare ({+-} 13), and 0.5 kg/hectare, respectively. Estimated numbers of O. nerka outmigrant smolts passing Redfish Lake Creek and Salmon River trapping sites increased in 1994. The authors estimated 1,820 (90% CI 1,229--2,671) and 945 (90% CI 331--13,000) smolts left Redfish and Alturas lakes, respectively. The total PIT tag detection rate at mainstem dams for Redfish Lake outmigrants was 21% in 1994. No Alturas Lake outmigrants were detected at any of the downstream facilities with detection capabilities (zero of 50 fish).

  14. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  15. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and vicinity, Savannah River Plant, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The hydrogeologic framework of the area around the Savannah River Plant, South Carolina consists of 2 to 3 separate water bearing units. In the northern half of the study area, the Barnwell and underlying McBean aquifers are considered one aquifer owing to the absence of the tan clay-confining unit between them. In the southern half of the study area they are separated by the tan clay into two aquifers. Underlying these aquifers, and separated from them by the green clay-confining unit, is the Congaree aquifer. Hydraulic conductivities of the aquifers range from 0.00000001 to 0.0001 ft/sec. Directions of groundwater flow in the Barnwell and McBean aquifers are to the north, with a component of flow directed downward across the green clay and into the Congaree aquifer. The direction of flow in the Congaree aquifer is to the northwest. Water in these aquifers evolves from an acidic (pH < 6.5) mixed-cation type in the Barnwell aquifer to an alkaline (pH > 8) calcium bicarbonate water in the Congaree aquifer. Laboratory experiments indicate that reactions between sediments of the Barnwell aquifer and a salt-solution waste to be stored at the study area would significantly reduce the permeability of the sediment, thereby limiting the movement of the waste in groundwater at the site. (USGS)

  16. Segment and Reach Scale Geomorphology and Associated Fish Assemblages in the Cheyenne River Basin

    NASA Astrophysics Data System (ADS)

    Duehr, J. P.; Hoagstrom, C. W.; Berry, C. R.

    2005-05-01

    We used bankfull width, maximum bankfull depth, reach slope, and median substrate particle size to characterize 58 stream reaches in the Cheyenne River Basin, South Dakota including the mainstem Belle Fourche and Cheyenne rivers and their tributaries. We collected fishes from all reaches to investigate correspondence between geomorphology and fish assemblage composition. Cluster analysis grouped 56 reaches into medium-river, small-river, flat-stream, and steep-stream groups. Small- and medium-river reaches were sequential along the lower mainstem Belle Fourche and Cheyenne rivers. Flat- and steep-stream reaches were intermixed among tributary streams and the upper mainstems. We collected a total of 38 fish species. Ten favored riverine reaches and 10 others favored flat- or steep-stream reaches. Species richness and faunal similarity (Morisita's Index) were highest in small-river reaches and lowest in flat- and steep-stream reaches. Small-river reaches had the most distinct fish assemblage with relatively high species richness and faunal similarity. Environmental harshness and isolation from stable (source) fish assemblages apparently reduced richness and faunal similarity among flat- and steep-stream fish assemblages. This suggests faunal composition of stream reaches would be difficult to predict despite habitat similarity.

  17. Savannah River Site RCRA Facility Investigation plan: Road A Chemical Basin

    SciTech Connect

    Not Available

    1989-06-01

    The nature of wastes disposed of at the Road A Chemical Basin (RACB) is such that some degree of soil contamination is probable. Lead has also been detected in site monitoring wells at concentrations above SRS background levels. A RCRA Facility Investigation (RFI) is proposed for the RACB and will include a ground penetrating radar (GPR) survey, collection and chemical and radiological analyses of soil cores, installation of groundwater monitoring wells, collection and chemical and radiological analyses of groundwater samples, and collection of chemical and radiological analyses of surface water and sediment samples. Upon completion of the proposed RFI field work and chemical and radiological analyses, and RFI report should be prepared to present conclusions on the nature and extent of contamination at the site, and to make recommendations for site remediation. If contamination is detected at concentrations above SRS background levels, a receptor analysis should be done to evaluate potential impacts of site contamination on nearby populations.

  18. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    SciTech Connect

    Not Available

    1988-02-26

    This report summarizes the information gathered in constructing the clay cap test section. The purpose of the test section was to determine compaction characteristics of four representative kaolin clays and demonstrate in-situ permeability for these clays of 1 {times} 10 {sup {minus}7} cm/sec or less. The final technical specifications with regard to maximum clod size, acceptable ranges of placement water content, lift thickness, and degree of compaction will be based on experience gained from the test section. The data derived from this study will also be used in the development of Quality Assurance (QA) and Quality Control (QC) methods to be used during actual cap construction of the Mixed Waste Management Facility (MWMF) Closure project. 7 tabs.

  19. Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of IV; Washington: Rocky Reach Hatchery Addendum, 1992 Annual Report.

    SciTech Connect

    Peck, Larry

    1993-08-01

    Rocky Reach Hatchery is located along the Columbia Paver, just downstream from Rocky Reach Dam. Site elevation is 800 feet above sea level. The Turtle Rock Island facility, located 2 miles upstream, is operated as a satellite facility (shared with the Washington Department of Wildlife). The facility is staffed with 2.75 FTE`S. The hatchery was originally designed as a mile-long spawning channel at Turtle Rock Island. Rearing units consist of eight vinyl raceways at Rocky Reach and four rearing ponds at Turtle Rock. Water rights are held by Chelan County PUD and total 3,613 gpm from the Columbia River. Water available for use in the Turtle Rock rearing ponds averages 12,000 gpm from the Columbia River. Rocky Reach Hatchery and the Turtle Rock satellite facility are owned by Chelan County PUD. They are operated as mitigation facilities for the fishery impacts caused by the construction and operation of Rocky Reach Dam. Rocky Reach Hatchery is used for incubation and early rearing of upriver bright (URB) fall chinook. Fingerlings are later transferred to the Turtle Rock facility for final rearing and release.

  20. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties. PMID:26179779

  1. Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil

    NASA Astrophysics Data System (ADS)

    Fantin-Cruz, Ibraim; Pedrollo, Olavo; Girard, Pierre; Zeilhofer, Peter; Hamilton, Stephen K.

    2015-12-01

    Facilities that produce hydroelectricity by diversion of part of the river's flow, which are often considered to have lower environmental impact than conventional hydropower dams, are being built in large numbers on river systems throughout the world, yet their cumulative impacts are not well understood. This study evaluated the hydrological effects of operation of a diversion hydropower facility on the Correntes River in Brazil (mean discharge 73 m3 s-1), which is potentially important because of the ecological implications for the floodplains of the Pantanal into which it flows. Many similar dams are built or proposed on rivers feeding the Pantanal. The 210-MW facility known as Ponte de Pedra diverts part of the river flow into a diversion channel in a nearly "run-of-river" design. The natural (reconstructed) and regulated (observed) flow regimes were characterized using Indicators of Hydrologic Alteration (IHA) and Flow Duration Curves (FDC). Seven parameters of IHA were significantly altered by the reservoir formation (magnitude of lowest monthly flow, minimum flows of 1, 3 and 7 days, maximum flow of 90 days and counts of high and low pulses). Among these, Principal Components Analysis identified the maximum flow of 90 days and the count of high flow pulses as integrators of hydrological alterations. The FDC showed that the reservoir also changed the seasonal regime of the flows, with greater changes in the lowest flow season. The reduction of river-floodplain connectivity and loss of associated ecosystem services are the major downstream ecological implications of this altered flow regime. To maintain the seasonal flooding regime while meeting the requirements for hydroelectric production, proposed limits for flow regime alterations are up to ±18% in low flow, ±24% in the rising limb and ±22% in high flow and the falling limb, relative to the natural flow. Operational changes to maintain flows with these limits could easily be implemented because the

  2. Possible explosive compounds in the Savannah River Site Tank Farm facilities. Revision 1

    SciTech Connect

    Hobbs, D.T.

    1995-04-27

    Since 1970, many studies have been conducted concerning the potential for explosive compounds in tank farm operations including ammonium nitrate, metal oxalates, and silver and mercury compounds. The study currently in progress is the most comprehensive to date, encompassing all previous studies and extending the scope to include all compounds that could be formed from the known species in SRS wastes. In addition to waste storage, the study also considers waste removal and waste processing operations. The total number of possible explosive compounds is so large that it would not be useful to list them all here. Instead, only those compounds are listed that are known to be present or could conceivably be formed from material that is known to be present in the waste. The general approach to the problem is: identify all of the constituents that are known to be present in the waste together with those that might be present from possible chemical and radiolytic reactions, determine the compounds that could be formed from these constituents, compare these compounds with those listed in the literature, and assess the formation and stability of these compounds against the conditions existing in the tank farm facilities.

  3. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina

    SciTech Connect

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs.

  4. Biotic integrity of the Boise River upstream and downstream from two municipal wastewater treatment facilities, Boise, Idaho, 1995-96

    USGS Publications Warehouse

    Mullins, William H.

    1999-01-01

    Aquatic biological communities were used to assess the biotic integrity of the Boise River upstream and downstream from the Lander Street and West Boise municipal wastewater treatment facilities (WTFs) in Boise, Idaho. Samples of epilithic periphyton, benthic macroinvertebrates, and fish were collected in late February and early March 1995, in late October 1996, and in early December 1996. Epilithic periphyton biomass, expressed as chlorophyll-a and ash-free dry weight, declined substantially between 1995 and 1996. Chlorophyll-a concentrations were higher at sites downstream from WTFs in both years, but differences in concentrations between sites upstream and downstream from WTFs were not statistically significant. High withinsite variance suggests that greater sampling intensity would improve statistical comparison. Index of Biotic Integrity (IBI) scores calculated for benthic macroinvertebrates were higher for the sites upstream from WTFs in 1995 and were the same for all sites in 1996. Similarly, IBI scores calculated for fish were higher for the sites upstream from WTFs in 1995, were higher for the site upstream from the Lander Street WTF in 1996, and were the same for sites upstream and downstream from the West Boise WTF in 1996. Two species of sculpin (Cottus) were abundant at the site upstream from both WTFs but were absent at all other sites downstream from WTFs in 1995 and composed only 2 percent of the total number of fish collected downstream from the Lander Street WTF in 1996.

  5. Dose reconstruction for an occupational cohort at the Savannah River nuclear facility: evaluation of a hybrid method.

    PubMed

    Hamra, Ghassan; Nylander-French, Leena A; Richardson, David

    2008-01-01

    The Savannah River Site (SRS) is the only nuclear facility in the United States that produces tritium, a radioactive isotope of hydrogen. The purpose of the study was to derive annual tritium dose estimates for SRS employees through the development of a job-exposure matrix. The proposed method is unique in that along with qualitative information on job, area and time of employment, it utilises recorded annual whole-body dose measures, when available, in order to estimate doses from tritium intakes of the monitored workers. Using information from 75 253 dose measures for the period 1954-1978, the average proportion of the whole-body dose that was due to tritium intake was calculated; these proportions were allowed to vary by job, area and time period. This information was used to assign tritium dose levels for 43 590 employment-years. The collective estimated tritium dose was 4319 mSv compared with the total known tritium dose of 17 382 mSv. The correlation (R2) of estimated tritium dose with known tritium dose was 0.68. PMID:18550516

  6. Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site

    SciTech Connect

    Not Available

    1991-10-01

    This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

  7. Feed Acceptance for the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect

    Jacobs, R.A.; Elder, H.H.

    1998-03-01

    The DWPF at the Department of Energy`s (DOE) Savannah River Site (SRS) began radioactive operations in December of 1995. The High Level Waste Tank Farm at SRS contains approximately thirty three million gallons of salt, supernate, and insoluble sludge wastes accumulated during more than three decades of weapons manufacture. In the DWPF, the radioactive components from this waste will ultimately be processed into a stable, borosilicate glass for long-term storage in a geological repository.The feeds to the DWPF are pretreated in a number of steps. Insoluble sludges, primarily aluminum, iron and other transition metals, are combined from several tanks, treated by caustic dissolution of aluminum and washed to remove soluble salts; these materials are removed to increase waste loading in the glass produced by the DWPF.The water soluble radioactive species in the salt and supernate, primarily cesium and actinides, are precipitated by sodium tetraphenylborate (NaTPB) or adsorbed onto sodium titanate. The resulting solids are also washed to remove excessive soluble salts before feeding to the DWPF. The soluble species removed by washing are disposed of as low level radioactive waste in a concrete form known as Saltstone. The presentation includes a brief overview of the High Level Waste system, pretreatment, and disposition of the various streams.The washed tetraphenylborate precipitates of cesium and potassium are hydrolyzed by copper catalyzed formic acid hydrolysis in the Salt Processing Cell (SPC) to yield soluble formates, boric acid, benzene and minor organic byproducts.The benzene and most of the organic byproducts are then steam stripped. The resulting aqueous hydrolysis product, including the still insoluble actinides adsorbed onto sodium titanate, is combined in the Chemical Processing Cell (CPC) with the insoluble sludge which has been treated with nitric acid and formic acid to remove mercury and to adjust the glass redox. Borosilicate glass frit is added and

  8. Probability of Liquefaction for Pit Disassembly and Conversion Facility (PDCF) Site, Savannah River Site

    SciTech Connect

    Lee, R.C.

    2003-09-30

    This report documents the probability of liquefaction (POL) for the Pit Disassembly and Conversion Facility (PDCF). The procedure for analysis of a critical layer of interest requires the following basic steps: (1) establish the probability of occurrence (POO) of ranges of 2.5 Hz bedrock motion based on a probabilistic seismic hazard assessment (PSHA); (2) define the critical layer that may be susceptible to liquefaction; (3) estimate distributions of cyclic stress ratio (CSR) (i.e., seismic demand) for the critical layer using site-specific soil properties corresponding to the bedrock motions; (4) estimate capacity of the critical layer based on site-specific cone penetration test (CPT) soundings and standard penetration test (SPT) blowcount data; and (5) sum the probability of liquefaction for each range of bedrock motion using empirical data correlating demand and capacity with liquefaction. The soil layer most susceptible to liquefaction is the critical layer. The critical layer is characterized by relatively low blowcount and low fines content and is established from soil layers below the water table. A key component for seismic demand is the establishment of the soil profile and it's uncertainty. The PDCF site is consistent with the 1997 SRS-specific model used to compute the site amplification database. Thus, previously derived site amplification functions reflecting the uncertainty in site properties and stratigraphy can be used to predict distributions of CSR given a specific earthquake magnitude and level of bedrock motion. The previously developed site amplification database reflects uncertainty in site response based on the large database of site shear-wave velocity profiles. Consequently, for each level of bedrock motion (from the PSHA) the site amplification database is used to establish the distribution of the expected CSR (demand) in the critical layer.

  9. RADIONUCLIDE DATA PACKAGE FOR PERFORMANCE ASSESSMENT CALCULATIONS RELATED TO THE E-AREA LOW-LEVEL WASTE FACILITY AT THE SAVANNAH RIVER SITE.

    SciTech Connect

    Cook, J

    2007-03-20

    The Savannah River Site disposes of low-level radioactive waste within on-site engineered disposal facilities. The Savannah River Site must demonstrate that these disposals meet the requirements of DOE Order 435 . 1 through a process known as performance assessment (PA). The objective of this document is to provide the radionuclide -specific data needed for the PA calculations . This work is part of an on-going program to periodically review and update existing PA work as new data becomes available. Revision of the E -Area Low-Level Waste Facility PA is currently underway. The number of radionuclides selected to undergo detailed analysis in the PA is determined by a screening process. The basis of this process is described. Radionuclide-specific data for half-lives, decay modes, daughters, dose conversion factors and groundwater concentration limits are presented with source references and methodologies.

  10. Plant succession after hydrologic disturbance: Inferences from contemporary vegetation on a chronosequence of bars, Willamette River, Oregon, USA

    EPA Science Inventory

    Historic unconstrained, unregulated streamflow along the upper mainstem of the Willamette River, Oregon, produced a floodplain of coalescent bars supporting a mosaic of vegetation patches. We sampled the contemporary vegetation of 42 bars formed 3 to 64 + years ago in four, 1 km...

  11. UPPER MISSOURI RIVER ENVIRONMENTAL MONITORING AND ASSESSMENT PROGRAM (EMAP-UMR): 2000 PILOT STUDY FINDINGS AND FURTHER DIRECTION

    EPA Science Inventory

    The EPA Office of Research and Development's Mid-Continent Ecology Division has undertaken an EMAP study to assess the condition of selected resources of the Upper Missouri River mainstem (riverine) aquatic habitats, riparian habitats, and reservoirs. In 2000, we completed pilot ...

  12. Characterization of the extent of Mercury Contamination in the Androscoggin River from a former Chlor-alkali Facility, Berlin, New Hampshire

    NASA Astrophysics Data System (ADS)

    Chalmers, A.; Marvin-Dipasquale, M. C.; Rosiu, C.; Luce, D.; Coles, J.; Zimmerman, M.; Smith, T.

    2010-12-01

    From the late 1800s to the 1960s a chlor-alkali plant was used to produce chlorine gas for the papermaking industry in Berlin, New Hampshire. During operation of the chlor-alkali facility, elemental mercury (Hg) was released to the environment, contaminating soils and the underlying fractured rock. Investigations have revealed that elemental Hg continues to seep through bedrock fractures into the adjacent Androscoggin River. This study evaluates the extent and transformation of Hg contamination in the Androscoggin River by comparing a reference site 17 kilometers above the former chlor-alkali facility to 5 sites ranging from 1 to 16 km downstream from the facility. Total and methyl Hg (THg and MeHg, respectively), among other analytes, were characterized in surface water, pore water, sediment and biological tissue samples at each site. Bed sediment was also assessed for bio-available (tin-reducible) inorganic Hg (II) and microbial MeHg production potential rates. Acid extractable ferrous iron, crystalline and amorphous (poorly crystalline) ferric iron, total reduced sulfur, particle size, and organic content in bed sediment was analyzed to help explain spatial differences in MeHg production rates and bio-available Hg (II) among sites. The information provided by this study will help evaluate the extent of Hg contamination in the Androscoggin River, will improve our understanding of the controls on MeHg production in the Androscoggin River system, and will be used by the U.S. Environmental Protection Agency to support remediation of the chlor-alkali facility site.

  13. Intensive archeological survey of the proposed Saltcrete area of the Defense Waste Processing Facility, Savannah River Plant, Aiken County, South Carolina. Research manuscript series 172

    SciTech Connect

    Brooks, R.D.

    1981-06-01

    An intensive archeological survey of the proposed Saltcrete (200-Z) area of the Defense Waste Processing Facility on the Savannah River Plant, Aiken County, South Carolina was conducted. The purpose was to locate, describe and assess the archeological resources within the proposed construction area and to provide the Department of Energy with the recommendations as to the significance of the resources. This report presents a summary of the background, methods, results and recommendations resulting from the Saltcrete area intensive survey.

  14. Assessment of potential impacts of major groundwater contaminants to fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach, Columbia River

    SciTech Connect

    Geist, D.R.; Poston, T.M.; Dauble, D.D.

    1994-10-01

    Past operations of Hanford Site facilities have contaminated the groundwater adjacent to the Hanford Reach of the Columbia River, Washington, with various chemical and radiological constituents. The groundwater is hydraulically connected to the river and contains concentrations of contaminants that sometimes exceed federal and/or state drinking water standards or standards for the protection of aquatic life. For example, concentrations of chromium in shoreline seeps and springs at most 100 Area operable units exceed concentrations found to be toxic to fish. Nitrate and tritium concentrations in shoreline seeps are generally below drinking water standards and concentrations potentially toxic to aquatic life, but nitrate concentrations may be high enough to synergistically interact with and exacerbate chromium toxicity. The Hanford Reach also supports the largest run of fall chinook salmon (Oncorhynchus tshawytscha) in the Columbia River Basin. Numbers of fall chinook salmon returning to the Hanford Reach have increased relative to other mainstem populations during the last 30 years. Groundwater discharge appears to occur near some salmon spawning areas, but contaminants are generally not detectable in surface water samples. The concentration and potential toxicity of contaminants in the interstitial waters of the substrate where fall chinook salmon embryogenesis occurs are presently unknown. New tools are required to characterize the extent of groundwater contaminant discharge to the Hanford Reach and to resolve uncertainties associated with assessment of potential impacts to fall chinook salmon.

  15. Effect of the restricted use of phosphate detergent and upgraded wastewater-treatment facilities of water quality in the Chattahoochee River near Atlanta, Georgia

    USGS Publications Warehouse

    Wangsness, D.J.; Frick, E.A.; Buell, G.R.; DeVivo, J.C.

    1994-01-01

    Data compiled for the six largest waste-water treatment facilities in Metropolitan Atlanta, Georgia, indicate about an 83-percent reduction in the phosphorus load discharged to the Chattahoochee River from 1988 to 1993 because of restricted use of phosphate detergents and upgraded treatment of municipal wastewater. This reduction resulted in about a 54-percent decrease in the phosphorus load in the Chattahoochee River downstream of Atlanta during this time period. Phosphorus loads in animal manure and fertilizers applied to the land (nonpoint sources) are greater than loads discharged to the Chattahoochee River from wastewater-treatment facilities (point sources). However, only a fraction of the phosphorus applied to the land enters the surface waters and is bioavailable. Even though nonpoint sources of land applied phosphorus potentially are important sources to surface waters, point-source inputs from wastewater effluent are far greater. Phosphorus concentrations in wastewater effluent from three cities of Atlanta waste-water treatment facilities need to be reduced by about an additional 31 percent by 1996 to comply with Georgia Department of Natural Resources Environmental Protection Division regulations.

  16. Significance of river-aquifer interactions for reach-scale thermal patterns and trout growth potential in the Motueka River, New Zealand

    NASA Astrophysics Data System (ADS)

    Olsen, Dean A.; Young, Roger G.

    2009-02-01

    To assess whether reaches of the Motueka River (New Zealand) that gain water from groundwater were likely to represent significant cold-water refugia for brown trout during periods of high water temperatures, water temperature was monitored for more than 18 months in two gaining reaches of the Motueka River and three reaches that were predicted to be losing water to groundwater. These data were used to predict brown trout ( Salmo trutta) growth in gaining and losing reaches. Groundwater inputs had a small effect on water temperature at the reach-scale and modelling suggests that the differences observed were unlikely to result in appreciable differences in trout growth. Several coldwater patches were identified within the study reach that were up to 3.5°C cooler than the mainstem, but these were generally shallow and were unlikely to provide refuge for adult trout. The exception was Hinetai Spring, which had a mean water temperature of close to 16°C during the period January-March, when temperatures in the mainstem regularly exceeded 19°C. Trout were observed within the cold-water plume at the mouth of Hinetai Stream, which would allow them to thermoregulate when mainstem temperatures are unfavourable while still being able to capitalise on food resources available in the mainstem.

  17. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    SciTech Connect

    Hillson, Todd D.

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to

  18. Monitoring and Evaluation of Yearling Fall Chinook Salmon Released from Acclimation Facilities Upstream of Lower Granite Dam; 1998 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2004-01-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery (Snake River stock) yearling fall chinook salmon that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1998. The three fall chinook acclimation facilities are operated by the Nez Perce Tribe and located at Pittsburg Landing and Captain John Rapids on the Snake River and at Big Canyon Creek on the Clearwater River. Yearlings at the Big Canyon facility consisted of two size classes that are referred to in this report as 9.5 fish per pound (fpp) and 30 fpp. The Big Canyon 9.5 fpp were comparable to the yearlings at Pittsburg Landing, Captain John Rapids and Lyons Ferry Hatchery. A total of 9,942 yearlings were PIT tagged and released at Pittsburg Landing. PIT tagged yearlings had a mean fork length of 159.9 mm and mean condition factor of 1.19. Of the 9,942 PIT tagged fish released, a total of 6,836 unique tags were detected at mainstem Snake and Columbia River dams (Lower Granite, Little Goose, Lower Monumental and McNary). A total of 4,926 9.5 fpp and 2,532 30 fpp yearlings were PIT tagged and released at Big Canyon. PIT tagged 9.5 fpp yearlings had a mean fork length of 156.9 mm and mean condition factor of 1.13. PIT tagged 30 fpp yearlings had a mean fork length of 113.1 mm and mean condition factor of 1.18. Of the 4,926 PIT tagged 9.5 fpp yearlings released, a total of 3,042 unique tags were detected at mainstem Snake and Columbia River dams. Of the 2,532 PIT tagged 30 fpp yearlings released, a total of 1,130 unique tags were detected at mainstem Snake and Columbia River dams. A total of 1,253 yearlings were PIT tagged and released at Captain John Rapids. PIT tagged yearlings had a mean fork length of 147.5 mm and mean condition factor of 1.09. Of

  19. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Idaho Department of Fish and Game Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighting 4,853,306 pounds. 2 refs., 25 figs.

  20. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Oregon Department of Fish and Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs, 25 figs.

  1. Assessment of total nitrogen in the upper Connecticut River basin in New Hampshire, Vermont, and Massachusetts, December 2002-September 2005

    USGS Publications Warehouse

    Deacon, Jeffrey R.; Smith, Thor E.; Johnston, Craig M.; Moore, Richard B.; Blake, Laura J.; Weidman, Rebecca M.

    2006-01-01

    A study of total nitrogen concentrations and loads was conducted from December 2002 to September 2005 at 13 river sites in the upper Connecticut River Basin. Ten sites were selected to represent contributions of nitrogen from forested, agricultural, and urban land. Three sites were distributed spatially on the main stem of the Connecticut River to assess the cumulative total nitrogen loads. To further improve the understanding of the sources and concentrations and loads of total nitrogen in the upper Connecticut River Basin, ambient surface water-quality sampling was supplemented with sampling of effluent from 19 municipal and paper mill wastewater-treatment facilities. Mean concentrations of total nitrogen ranged from 0.19 to 2.8 milligrams per liter (mg/L) at river sampling sites. Instantaneous mean loads of total nitrogen ranged from 162 to 58,300 pounds per day (lb/d). Estimated mean annual loads of total nitrogen ranged from 49,100 to 21.6 million pounds per year (lb/yr) with about 30 to 55 percent of the loads being transported during the spring. The estimated mean annual yields of total nitrogen ranged from 1,190 to 7,300 pounds per square mile per year (lb/mi2)/yr. Mean concentrations of total nitrogen ranged from 4.4 to 30 mg/L at wastewater-treatment sampling sites. Instantaneous mean loads of total nitrogen from municipal wastewater-treatment facilities ranged from 36 to 1,780 lb/d. Instantaneous mean loads of total nitrogen from paper mill wastewater-treatment facilities ranged from 96 to 160 lb/d. The median concentration of total nitrogen was 0.24 mg/L at forested sites, 0.48 mg/L at agricultural sites, 0.54 mg/L at urban sites, 0.48 mg/L at main-stem sites, and 14 mg/L at wastewater-treatment sites. Concentrations of total nitrogen at forested sites were significantly less than at all other site types (p0.05) but were significantly greater (p<0.05) than at forested sites and significantly less than concentrations at wastewater-treatment sites (p<0

  2. Spatial design principles for sustainable hydropower development in river basins

    SciTech Connect

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatial decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.

  3. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGESBeta

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  4. A new species of Percina (Perciformes: Percidae) from the Apalachicola River drainage, southeastern United States

    USGS Publications Warehouse

    Freeman, Mary C.; Freeman, B.J.; Burkhead, N.M.; Straight, C.A.

    2008-01-01

    Percina crypta, the Halloween Darter, is described as a new species endemic to the Chattahoochee and Flint River systems in Georgia and Alabama. Percina crypta differs from sympatric Percina nigrofasciata in having narrowly separated dorsal saddles (inter-saddle spaces typically less than or equal to saddle width, compared to frequently wider than saddle width in P. nigrofasciata), in usually possessing a single modified scale between the pelvic bases (compared to two or more in P. nigrofasciata), and in having dark wide bands on pectoral-fin rays (versus pectoral fin clear, or with irregular dark marks or weak tessellations on fin rays in P. nigrofasciata). Phylogenetic relationships of P. crypta to other species of Percina are obscure. Percina crypta occurs in shoal and riffle habitats in the Chattahoochee and Flint River mainstems and in a few tributary systems, with the known extant range comprising four disjunct areas separated by mainstem impoundments and altered river reaches.

  5. Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium using existing facilities at the Savannah River site: alternatives 3B/5B/6C/6D/7B/9B

    SciTech Connect

    DiSabatino, A., LLNL

    1998-06-01

    The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium using ceramic in an existing facility (221-F) at Savannah River Site (SRS).

  6. Importance of floodplain connectivity to fish populations in the Apalachicola River, Florida

    USGS Publications Warehouse

    Burgess, O.T.; Pine, William E., III; Walsh, S.J.

    2013-01-01

    Floodplain habitats provide critical spawning and rearing habitats for many large-river fishes. The paradigm that floodplains are essential habitats is often a key reason for restoring altered rivers to natural flow regimes. However, few studies have documented spatial and temporal utilization of floodplain habitats by adult fish of sport or commercial management interest or assessed obligatory access to floodplain habitats for species' persistence. In this study, we applied telemetry techniques to examine adult fish movements between floodplain and mainstem habitats, paired with intensive light trap sampling of larval fish in these same habitats, to assess the relationships between riverine flows and fish movement and spawning patterns in restored and unmodified floodplain distributaries of the Apalachicola River, Florida. Our intent is to inform resource managers on the relationships between the timing, magnitude and duration of flow events and fish spawning as part of river management actions. Our results demonstrate spawning by all study species in floodplain and mainstem river habitat types, apparent migratory movements of some species between these habitats, and distinct spawning events for each study species on the basis of fish movement patterns and light trap catches. Additionally, Micropterus spp., Lepomis spp. and, to a lesser degree, Minytrema melanops used floodplain channel habitat that was experimentally reconnected to the mainstem within a few weeks of completing the restoration. This result is of interest to managers assessing restoration activities to reconnect these habitats as part of riverine restoration programmes globally.

  7. Evaluation of Juvenile Fish Bypass and Adult Fish Passage Facilities at Three-Mile Falls Dam; Umatilla River, Oregon, 1989 Annual Report.

    SciTech Connect

    Nigro, Anthony A.

    1990-09-01

    We report on our progress from October 1989 through September 1990 on evaluating juvenile fish bypass and adult fish passage facilities at Three Mile Falls Dam on the Umatilla River. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW) and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR). Study objectives addressed by ODFW and CTUIR are: (1) ODFW (Report A): Operate and evaluate the juvenile fish bypass system in the West Extension Irrigation District canal at Three Mile Falls Dam; and (2) CTUIR (Report 8): Examine the passage of adult salmonids at Three Mile Falls Dam. The study is part of a program to rehabilitate anadromous fish stocks in the Umatilla River Basin that includes restorations of coho salmon Oncorhynchus Wsutch and chinook salmon 0. tshawytscha and enhancement of summer steelhead 0. mytiss.

  8. Connecticut River Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Ballestero, T. P.

    2004-12-01

    The Connecticut River basin possesses some characteristics that make it unique for studying hydrologic issues that transcend scale. The watershed was first dramatically altered through natural processes (glaciation) and then heavily impacted by human stresses (dams, deforestation, acid precipitation/deposition), only to exhibit recent decades of return to a more natural state (reforestation, land conservation, stream restoration, pollution abatement, and dam removal). The watershed is sufficiently north to be classified as a cold region. More specifically to hydrology, the watershed exhibits the spectrum of flooding problems: ice dams, convective storms, hurricanes, rain on melting snow, and low pressure systems. The 28,000 square kilometer Connecticut River Watershed covers one third of the states of New Hampshire, Vermont, Massachusetts, and Connecticut. The >640-km long rivers' headwaters start on the Canadian border at the Fourth Connecticut Lake, and flows southward to discharge in Long Island sound. The lower 100 km of river are tidally influenced. The Connecticut River is responsible for 70 % of the freshwater inflow to Long Island Sound. The Connecticut River is a sixth order stream that exhibits a dendritic pattern in an elongated scheme. This setting therefore affords many first and second order streams in almost parallel fashion, flowing west or east towards the central Connecticut River spine. There are 38 major tributaries to the mainstem Connecticut River, and 26 of these tributaries drain greater than 250 square kilometers. There is in excess of 30,000 km of perennially flowing stream length in the watershed. For more information, see: http://www.unh.edu/erg/connho/

  9. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  10. Umatilla River Fish Passage Operations Project : Annual Progress Report October 2007 - September 2008.

    SciTech Connect

    Bronson, James P.; Loffink, Ken; Duke, Bill

    2008-12-31

    Threemile Falls Dam (Threemile Dam), located near the town of Umatilla, is the major collection and counting point for adult salmonids returning to the Umatilla River. Returning salmon and steelhead were enumerated at Threemile Dam from June 7, 2007 to August 11, 2008. A total of 3,133 summer steelhead (Oncorhynchus mykiss); 1,487 adult, 1,067 jack, and 999 subjack fall Chinook (O. tshawytscha); 5,140 adult and 150 jack coho (O. kisutch); and 2,009 adult, 517 jack, and 128 subjack spring Chinook (O. tshawytscha) were counted. All fish were enumerated at the east bank facility. Of the fish counted, 1,442 summer steelhead and 88 adult and 84 jack spring Chinook were hauled upstream from Threemile Dam. There were 1,497 summer steelhead; 609 adult, 1,018 jack and 979 subjack fall Chinook; 5,036 adult and 144 jack coho; and 1,117 adult, 386 jack and 125 subjack spring Chinook either released at, or allowed to volitionally migrate past, Threemile Dam. Also, 110 summer steelhead; 878 adult and 43 jack fall Chinook; and 560 adult and 28 jack spring Chinook were collected as broodstock for the Umatilla River hatchery program. In addition, there were 241 adult and 15 jack spring Chinook collected at Threemile Dam for outplanting in the South Fork Walla Walla River and Mill Cr, a tributary of the mainstem Walla Walla River. The Westland Canal juvenile facility (Westland), located near the town of Echo at river mile (RM) 27, is the major collection point for out-migrating juvenile salmonids and steelhead kelts. The canal was open for 158 days between February 11, 2008 and July 18, 2008. During that period, fish were bypassed back to the river 150 days and were trapped 6 days. There were also 2 days when fish were directed into and held in the canal forebay between the time the bypass was closed and the trap opened. An estimated 64 pounds of fish were transported from the Westland trapping facility. Approximately 25.8% of the fish transported were salmonids. In addition, one

  11. Evaluation of Juvenile Salmonid Bypass Facilities and Passage at Water Diversions on the Lower Umatilla River; 1991-1995 Final Report.

    SciTech Connect

    Cameron, William A.; Knapp, Suzanne M.; Carmichael, Richard W.

    1997-07-01

    Outdated juvenile and adult fish passage facilities were recently reconstructed at the five major irrigation dams on the lower Umatilla River, Oregon to meet National marine Fisheries Service (NMFS) design standards. Changes in design at juvenile fish bypass facilities included reduced mesh size on the rotating drum screens, larger screening area, a more oblique orientation of the drum screens to canal flow, improved screen seals, replacement of bypass portals with vertical slot bypass channels, and increased bypass pipe diameters. Weir-and-pool adult fish ladders and jump pools were replaced with vertical-slot ladders. From 1991--1995, they investigated injury and travel rate of juvenile fish moving through the facilities, and efficiency of screens in preventing fish entry into the canals. Water velocities in front of canal screens, at bypass channel entrances, and at ladder diffusers were measured to assess adherence to NMFS criteria and identify hydraulic patterns. Biological evaluations were conducted by releasing and recapturing marked yearling summer steelhead (Oncorhynchus mykiss), yearling spring chinook salmon (O. tshawytscha), and subyearling fall chinook salmon (O. tshawytscha) in varying locations within the fish passage facilities.

  12. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility.

    PubMed

    Hinck, Jo Ellen; Norstrom, Ross J; Orazio, Carl E; Schmitt, Christopher J; Tillitt, Donald E

    2009-02-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p'- and o,p'-DDT isomer concentrations and o,p'- versus p,p'-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p'-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife. PMID:18851891

  13. Persistence of organochlorine chemical residues in fish from the Tombigbee River (Alabama, USA): Continuing risk to wildlife from a former DDT manufacturing facility

    USGS Publications Warehouse

    Hinck, J.E.; Norstrom, R.J.; Orazio, C.E.; Schmitt, C.J.; Tillitt, D.E.

    2009-01-01

    Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations were measured in largemouth bass from the Tombigbee River near a former DDT manufacturing facility at McIntosh, Alabama. Evaluation of mean p,p???- and o,p???-DDT isomer concentrations and o,p???- versus p,p???-isomer proportions in McIntosh bass indicated that DDT is moving off site from the facility and into the Tombigbee River. Concentrations of p,p???-DDT isomers in McIntosh bass remained unchanged from 1974 to 2004 and were four times greater than contemporary concentrations from a national program. Total DDT in McIntosh bass exceeded dietary effect concentrations developed for bald eagle and osprey. Hexachlorobenzene, PCBs, and toxaphene concentrations in bass from McIntosh also exceeded thresholds to protect fish and piscivorous wildlife. Whereas concentrations of DDT and most other organochlorine chemicals in fish have generally declined in the U.S. since their ban, concentrations of DDT in fish from McIntosh remain elevated and represent a threat to wildlife.

  14. Methods for Valuation of Environmental Costs and Benefits of Hydroelectric Facilities : A Case Study of the Sultan River Project : Final Report.

    SciTech Connect

    BioSystems Analysis, Inc.

    1984-06-05

    The Bonneville Power Administration is required by the Pacific Northwest Electric Power Planning and Conservation Act (Public Law 96-501) to include quantifiable environmental costs and benefits of alternative electric power resources in determining their cost-effectiveness. In responding to this requirement, BPA has contracted to develop and test methodologies for valuing environmental costs of various types of power resources, including hydroelectric facilities. The purpose of this study is to develop and test valuation methods for hydroelectric facilities, using the Sultan River Project as a case study. The case study approach offers several advantages and some disadvantages which should be considered in interpreting this report. Its primary advantage lies in providing a real-world example against which to test theoretical valuation approaches. Using data that were actually collected for a project that has received detailed scrutiny from its sponsor and from numerous regulatory agencies allows more realistic formulation of valuation issues and also provides a better test of the practicality and usefulness of valuation methods. On the other hand, results derived from such an approach must be used with discretion. First and most obvious, both the features of a hydroproject and its environmental impacts may vary widely from site to site. Second, it cannot be assumed that the results of these test exercises for the Sultan River Project represent any kind of generic hydroelectric environmental cost. A third caution is directed to those who may be tempted to regard this report as a definitive estimate of the environmental costs of the Sultan River Project. It is not. A fourth important point is only external or residual environmental costs are developed in this report. Finally, it should be noted that these methodologies were developed to meet the needs of BPA's process for determining resource cost-effectiveness.

  15. Methane Emission from Tropical Rivers

    NASA Astrophysics Data System (ADS)

    Sawakuchi, H. O.; Rasera, M. F. F. L.; Krusche, A. V.; Ballester, M. V. R.

    2012-04-01

    Inland water is already known as an important source of methane to atmosphere. Methane is produced in anaerobic environments usually find in lakes and floodplain bottom sediment. It is the main reason that almost all information regarding methane flux come from this environments. However, while floodplain dries during low water season reducing methanogenesis, rivers keep the capacity to emit methane throughout the year. Here we present preliminary results of CH4 flux measurements done in 6 large tropical rivers within the Amazon basin. We measured 17 areas using floating chamber during dry (low water) season, between September and November of 2011, in Amazon river mainstem, Araguaia, Xingu, Tapajós, Madeira, and Negro Rivers. Measured fluxes of all rivers ranged from 59.3 to 2974.4 mmol m-2 yr-1. Geomorphologic structure of channels is one important factor that contributes to this high heterogeneity due to development of low flow velocity depositional settings allowing formation of anoxic zones in rivers. Hydraulic and sediment barriers in the confluence of river channels promote the generation of natural dams which function as a trap for the suspension load favoring the deposition of organic rich muds. This kind of environment is very different from common river channels and has a stronger potential of methane emission. Average values of our flux measurements for this two river environments show that depositional areas can have much higher fluxes than the main channel, 1089.6 and 163.1 mmol m-2 yr-1, respectively. Hence, CH4 flux from these depositional zones is similar to some tropical floodplain lakes and reservoirs. Although the low flux from channel, the area covered by water is very large resulting in a significant contribution to the regional methane emission to the atmosphere. Moreover, mapping the area of these depositional river zones will give us a better idea of the magnitude of methane flux from tropical rivers.

  16. Anthropogenic impacts on the optical characteristics and biodegradability of dissolved and particulate organic matter in the Han River watershed, South Korea

    NASA Astrophysics Data System (ADS)

    Shirina Begum, Most; Jin, Hyojin; Yoon, Tae Kyung; Park, Ji-Hyung

    2016-04-01

    To understand how anthropogenic perturbations such as dams and pollution modify the chemical characteristics and biological transformations of riverine organic matter during transit through urbanized watersheds, we compared the optical characteristics and biodegradability of dissolved organic matter (DOM) and particulate organic matter (POM) along different reaches and urban tributary streams of the Han River watershed during short-term incubations. Laboratory incubations were conducted for 5-7 days at 20-25 oC with filtered or unfiltered water samples collected from up-, mid-, and downstream reaches with different levels of anthropogenic perturbations and three urban streams along the downstream reach that receive effluents from waste water treatment facilities in the metropolitan Seoul. Optical parameters such as ultraviolet absorbance at 254 nm, absorption coefficients at 254 nm and 350 nm, fluorescence index, humic-like fluorescence, microbial humic-like fluorescence, and protein-like fluorescence, and spectral slope at 350-400 nm were significantly correlated with increasing concentration of biodegradable dissolved organic carbon (BDOC) in filtered and unfiltered sample along the Han River up-, mid-, down-, and urban streams. The concentrations of BDOC in the urban streams were 6-12 times higher than in the filtered and unfiltered main-stem river samples, with significantly higher values in presence of POM in the unfiltered samples than in the filtered samples. In a separate 5-day incubation experiment with the unfiltered water sample from a downstream location of the Han River and its urban tributary water in isolation or mixed , the rate of concurrent biodegradation of both DOM and POM, as measured by the cumulative rate of CO2 production, was higher in the mixture than the average rate of the separately incubated samples, indicating the priming effect of mixed organic materials on the biodegradation of allochthonous organic materials from the other site

  17. 78 FR 14842 - Crystal River Nuclear Generating Plant, Unit 3; Application for Renewal of License to Facility...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ... application in the Federal Register on March 9, 2009 (74 FR 10099). The FPC requested withdrawal of the... renewal, which was published in the Federal Register on June 3, 2011 (76 FR 32237). However, since the... COMMISSION Crystal River Nuclear Generating Plant, Unit 3; Application for Renewal of License to...

  18. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect

    Not Available

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  19. Geophysical bed sediment characterization of the Androscoggin River from the former Chlor-Alkali Facility Superfund Site, Berlin, New Hampshire, to the state border with Maine, August 2009

    USGS Publications Warehouse

    Degnan, James R.; Teeple, Andrew P.; Johnston, Craig M.; Marvin-DiPasquale, Mark C.; Luce, Darryl

    2011-01-01

    The former Chlor-Alkali Facility in Berlin, New Hampshire, was listed on the U.S. Environmental Protection Agency National Priorities List in 2005 as a Superfund site. The Chlor-Alkali Facility lies on the east bank of the Androscoggin River. Elemental mercury currently discharges from that bank into the Androscoggin River. The nature, extent, and the speciation of mercury and the production of methyl mercury contamination in the adjacent Androscoggin River is the subject of continuing investigations. The U.S. Geological Survey, in cooperation with Region I of the U.S. Environmental Protection Agency, used geophysical methods to determine the distribution, thickness, and physical properties of sediments in the Androscoggin River channel at a small area of an upstream reference reach and downstream from the site to the New Hampshire–Maine State border. Separate reaches of the Androscoggin River in the study area were surveyed with surface geophysical methods including ground-penetrating radar and step-frequency electromagnetics. Results were processed to assess sediment characteristics including grain size, electrical conductivity, and pore-water specific conductance. Specific conductance measured during surface- and pore-water sampling was used to help interpret the results of the geophysical surveys. The electrical resistivity of sediment samples was measured in the laboratory with intact pore water for comparison with survey results. In some instances, anthropogenic features and land uses, such as roads and power lines affected the detection of riverbed properties using geophysical methods; when this occurred, the data were removed. Through combining results, detailed riverbed sediment characterizations were made. Results from ground-penetrating radar surveys were used to image and measure the depth to the riverbed, depth to buried riverbeds, riverbed thickness and to interpret material-type variations in terms of relative grain size. Fifty two percent of the

  20. Seroepidemiology of Selected Arboviruses in Febrile Patients Visiting Selected Health Facilities in the Lake/River Basin Areas of Lake Baringo, Lake Naivasha, and Tana River, Kenya

    PubMed Central

    Lwande, Olivia; Orindi, Benedict; Irura, Zephania; Ongus, Juliette; Sang, Rosemary

    2015-01-01

    Abstract Introduction: Arboviruses cause emerging and re-emerging infections affecting humans and animals. They are spread primarily by blood-sucking insects such as mosquitoes, ticks, midges, and sandflies. Changes in climate, ecology, demographic, land-use patterns, and increasing global travel have been linked to an upsurge in arboviral disease. Outbreaks occur periodically followed by persistent low-level circulation. Aim: This study was undertaken to determine the seroepidemiology of selected arboviruses among febrile patients in selected lake/river basins of Kenya. Methods: Using a hospital-based cross-sectional descriptive survey, febrile patients were recruited and their serum samples tested for exposure to immunoglobulin M (IgM) and IgG antibodies against Crimean–Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), West Nile virus (WNV), and chikungunya virus (CHIKV). Samples positive for CHIKV and WNV were further confirmed by the plaque reduction neutralization test (PRNT). Results: Of the 379 samples examined, 176 were IgG positive for at least one of these arboviruses (46.4%, 95% confidence interval [CI] 41.4–51.5%). Virus-specific prevalence for CCHF, RVF, WN, and CHIK was 25.6%, 19.5%, 12.4%, and 2.6%, respectively. These prevalences varied significantly with geographical site (p<0.001), with Tana recording the highest overall arboviral seropositivity. PRNT results for Alphaviruses confirmed that the actual viruses circulating in Baringo were Semliki Forest virus (SFV) and CHIKV, o'nyong nyong virus (ONNV) in Naivasha, and SFV and Sindbis virus (SINDV) in Tana delta. Among the flaviviruses tested, WNV was circulating in all the three sites. Conclusion: There is a high burden of febrile illness in humans due to CCHFV, RVFV, WNV, and CHIKV infection in the river/lake basin regions of Kenya. PMID:25700043

  1. HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site

    SciTech Connect

    DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

    2005-03-11

    This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered

  2. Effects of the Operation of Hungry Horse Dam on the Kokanee Fishery in the Flathead River System, 1983 Annual Progress Report.

    SciTech Connect

    Fraley, John J.

    1983-11-01

    This study was undertaken to assess the effects of the operation of Hungry Horse Dam on the kokanee fishery in the Flathead River system. This annual report covers the 1982-1983 field season concerning the effects of Hungry Horse operations on kokanee abundance, migration, spawning, egg incubation and fry emergence in the Flathead River system. This report also addresses the expected recovery of the mainstem kokanee population under the flow regime recommended by the Department of Fish, Wildlife and Parks in 1982.

  3. Modeling the Vakhsh Cascade in the Amu Darya River Basin - Implementing Future Storage Facilities in a Hydrological Model for Impact Assessment

    NASA Astrophysics Data System (ADS)

    Steiner, J. F.; Siegfried, T.; Yakovlev, A.

    2014-12-01

    In the Amu Darya River Basin in Central Asia, the Vakhsh catchment in Tajikistan is a major source of hydropower energy for the country. With a number of large dams already constructed, upstream Tajikistan is interested in the construction of one more large dam and a number of smaller storage facilities with the prospect of supplying its neighboring states with hydropower through a newly planned power grid. The impact of new storage facilities along the river is difficult to estimate and causes considerable concern and consternation among the downstream users. Today, it is one of the vexing poster child studies in international water conflict that awaits resolution. With a lack of meteorological data and a complex topography that makes application of remote sensed data difficult it is a challenge to model runoff correctly. Large parts of the catchment is glacierized and ranges from just 500 m asl to peaks above 7000 m asl. Based on in-situ time series for temperature and precipitation we find local correction factors for remote sensed products. Using this data we employ a model based on the Budyko framework with an extension for snow and ice in the higher altitude bands. The model furthermore accounts for groundwater and soil storage. Runoff data from a number of stations are used for the calibration of the model parameters. With an accurate representation of the existing and planned reservoirs in the Vakhsh cascade we study the potential impacts from the construction of the new large reservoir in the river. Impacts are measured in terms of a) the timing and availability of new hydropower energy, also in light of its potential for export to South Asia, b) shifting challenges with regard to river sediment loads and siltation of reservoirs and c) impacts on downstream runoff and the timely availability of irrigation water there. With our coupled hydro-climatological approach, the challenges of optimal cascade management can be addressed so as to minimize detrimental

  4. Operation Plans for Anadromous Fish Production Facilities in the Columbia River Basin : Annual Report 1995, Volume I - Idaho.

    SciTech Connect

    Idaho Department of Fish and Game; US Fish and Wildlife Service; Nez Perce Tribe

    1996-06-01

    Clearwater Hatchery is located on the north bank of the North Fork of the Clearwater River, downstream from Dworshak Dam. It is approximately 72 miles from Lower Granite Dam, and 504 miles from the mouth of the Columbia River. Site elevation is approximately 994 feet above sea level. The hatchery is staffed with 8 FTE`s. Clearwater Hatchery has two pipelines from Dworshak Reservoir. One is attached to a floating platform and is capable of providing various temperatures at varying depths. The other is a stationary intake about 245 feet below the top of the dam. All water is gravity fed to the hatchery. An 18-inch intake pipe provides an estimated 10 cfs with temperature remaining constant at approximately 40T. The primary 42-inch intake pipe can draw water from 5 to 45 feet in depth with temperatures ranging from 55{degrees} to 60{degrees}F and 70 cfs of flow. This report describes the operations of the hatchery.

  5. A Wildlife Habitat Protection, Mitigation and Enhancement Plan for Eight Federal Hydroelectric Facilities in the Willamette River Basin: Final Report.

    SciTech Connect

    Preston, S.K.

    1987-05-01

    The development and operation of eight federal hydroelectric projects in the Willamette River Basin impacted 30,776 acres of prime wildlife habitat. This study proposes mitigative measures for the losses to wildlife and wildlife habitat resulting from these projects, under the direction of the Columbia River Basin (CRB) Fish and Wildlife Program. The CRB Fish and Wildlife Program was adopted in 1982 by the Northwest Power Planning Council, pursuant to the Northwest Power Planning Act of 1980. The proposed mitigation plan is based on the findings of loss assessments completed in 1985, that used a modified Habitat Evaluation Procedure (HEP) to assess the extent of impact to wildlife and wildlife habitat, with 24 evaluation species. The vegetative structure of the impacted habitat was broken down into three components: big game winter range, riparian habitat and old-growth forest. The mitigation plan proposes implementation of the following, over a period of 20 years: (1) purchase of cut-over timber lands to mitigate, in the long-term, for big game winter range, and portions of the riparian habitat and old-growth forest (approx. 20,000 acres); (2) purchase approximately 4,400 acres of riparian habitat along the Willamette River Greenway; and (3) three options to mitigate for the outstanding old-growth forest losses. Monitoring would be required in the early stages of the 100-year plan. The timber lands would be actively managed for elk and timber revenue could provide O and M costs over the long-term.

  6. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect

    Lambrecht, Bill; Dixon, Joe; Neuville, John R.

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  7. Evaluating Investment in Missouri River Restoration: The Missouri River Effects Analysis

    NASA Astrophysics Data System (ADS)

    Jacobson, R. B.; Fischenich, C. J.; Buenau, K. E.

    2014-12-01

    In excess of $700 million has been spent over the last 10 years on restoration of the Missouri River. During this time, restoration efforts have focused progressively on avoidance of jeopardy for three threatened or endangered species: interior least tern (Sternula antillarum), piping plover (Charadrius melodus), and the pallid sturgeon (Scaphirhynchus albus). In 2013, the US Army Corps of Engineers, the US Fish and Wildlife Service, and Missouri River stakeholders (through the Missouri River Recovery Implementation Committee) commissioned an Effects Analysis (EA; Murphy and Weiland, 2011) to evaluate the effects of this effort on the three species' populations and to project effects of future restoration. The EA includes synthesis of existing abiotic and biotic scientific information relating to species population processes, distributions, and habitat needs, as well as development of conceptual and quantitative models linking river context to its management and to species' responses. The EA also includes design of the next generation of hypothesis-driven science to support adaptive management of the species and the river. The Missouri River EA faces the challenge of evaluating how management of North America's largest reservoir storage system, 600 km of non-channelized mainstem, and nearly 1,200 km of channelized mainstem contribute to species' population dynamics. To support EA needs, the US Army Corps of Engineers is developing a new generation of reservoir simulation and routing models for the Missouri River basin, coupled with components to evaluate ecological and socio-economic metrics. The EA teams are developing coordinated models relating management to functional habitats and species' responses. A particular challenge faced by the EA is communicating the very different uncertainties in population dynamics between well-documented birds and the enigmatic fish, and the implications of this disparity in decision making, implementation, and adaptive management

  8. Inorganic and organic carbon spatial variability in the Congo River during high waters (December 2013)

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven; Teodoru, Cristian; Leporcq, Bruno; Descy, Jean-Pïerre; Darchambeau, François

    2014-05-01

    Rivers are important components of the global carbon cycle, as they transport terrestrial organic matter from the land to the sea, and emit CO2 to the atmosphere. In particular, tropical systems that account for 60% of global freshwater discharge to the oceans. In contrast with south American rivers, very little information is available for African rivers on their carbon flows and stocks, in particular the Congo river, the second largest river in the World in terms of freshwater discharge (1457 km3 yr-1) and in terms of drainage basin (3.75 106 km2) located the second largest tropical forest in the World. Here, we report a data-set of continuous (every minute) records of the partial pressure of CO2 (pCO2) (total of 10,000 records), and discrete samples of particulate (POC) and dissolved (DOC) organic carbon (total of 75 samples) in the mainstem and major tributaries of the Congo river, along the 1700 km stretch from Kisangani to Kinshasa (total river length = 4374 km), during the high water period (December 2013). The pCO2 dynamic range was high ranging from minimum values of 2000 ppm in white waters tributaries (higher turbidity, conductivity and O2, lower DOC), up to maximal values of 18,000 ppm in blackwaters tributaries (lower turbidity, conductivity and O2, higher DOC). In the mainstem, very strong horizontal (cross-section) gradients were imposed by the presence of blackwaters close to the riverbanks and the presence of whitewaters in the middle of the river. In the mainstem, a distinct horizontal (longitudinal) pattern was observed with pCO2 increasing, and conductivity and turbidity decreasing downstream.

  9. Determining sources of dissolved organic carbon and disinfection byproduct precursors to the McKenzie River, Oregon

    USGS Publications Warehouse

    Kraus, T.E.C.; Anderson, C.A.; Morgenstern, K.; Downing, B.D.; Pellerin, B.A.; Bergamaschi, B.A.

    2010-01-01

    This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous - derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 ?? 0.4 vs. 0.7 ?? 0.3 mg L-1) but comprised <5% of mainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R 2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs. Copyright ?? 2010 by the American Society of Agronomy.

  10. Hood River and Pelton Ladder Evaluation Studies, Annual Report 2000-2001.

    SciTech Connect

    Olsen, Erik

    2009-09-01

    devised based on various assumptions about (1) subbasin carrying capacity, (2) survival rates for selected life history stages, and (3) historic and current escapements of wild, natural, and hatchery stocks of anadromous salmonids to the Hood River subbasin. The Oregon Department of Fish and Wildlife began funding a monitoring and evaluation (M&E) project in December 1991 to collect the quantitative biological information needed to (1) more accurately assess the validity of these assumptions and (2) evaluate the proposed hatchery supplementation component of the HRPP. Bonneville Power Administration assumed funding of the M&E project in August 1992. The M&E project was initially confined to sampling anadromous salmonids escaping to an adult trapping facility operated at Powerdale Dam; which is located at River Mile (RM) 4.5 on the mainstem of the Hood River. Stock specific life history and biological data was collected to (1) monitor subbasin spawner escapements and (2) collect pre-implementation data critical to evaluating the newly proposed HRPP's potential biological impact on indigenous populations of resident fish. The scope of the M&E project was expanded in 1994 to collect the data needed to quantify (1) subbasin smolt production and carrying capacity, (2) smolt to adult survival rates, and (3) the spatial distribution of indigenous populations of summer and winter steelhead, spring and fall chinook salmon, and coho salmon. A creel was incorporated into the M&E project in December 1996 to evaluate the HRPP with respect to its defined subbasin and spawner escapement objectives for Hood River stocks of wild and hatchery summer and winter steelhead and for natural and Deschutes stock hatchery spring chinook salmon. In 1996, the M&E project also began monitoring streamflow at various locations in the Hood River subbasin. Streamflow data will be used to correlate subbasin smolt production with summer streamflows. Data collected from 1991-1999 is reported in the

  11. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    SciTech Connect

    L. D. Cecil; L. L. Knobel; J. R. Green; S. K. Frape

    2000-06-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water.

  12. Predictors of Poor Pregnancy Outcomes Among Antenatal Care Attendees in Primary Health Care Facilities in Cross River State, Nigeria: A Multilevel Model.

    PubMed

    Ameh, Soter; Adeleye, Omokhoa A; Kabiru, Caroline W; Agan, Thomas; Duke, Roseline; Mkpanam, Nkese; Nwoha, Doris

    2016-08-01

    Objectives Pregnancy carries a high risk for millions of women and varies by urban-rural location in Nigeria, a country with the second highest maternal deaths in the world. Addressing multilevel predictors of poor pregnancy outcomes among antenatal care (ANC) attendees in primary health care (PHC) facilities could reduce the high maternal mortality rate in Nigeria. This study utilised the "Risk Approach" strategy to (1) compare the risks of poor pregnancy outcomes among ANC attendees by urban-rural location; and (2) determine predictors of poor pregnancy outcomes among ANC attendees in urban-rural PHC facilities in Cross River State, Nigeria. Methods A cross-sectional survey was conducted in 2011 among 400 ANC attendees aged 15-49 years recruited through multistage sampling. Data on risk factors of poor pregnancy outcomes were collected using interviewer-administered questionnaires and clinic records. Respondents were categorised into low, medium or high risk of poor pregnancy outcomes, based on their overall risk scores. Predictors of poor pregnancy outcomes were determined by multilevel ordinal logistic regression. Results A greater proportion of the women in the rural areas were below the middle socio-economic quintile (75 vs. 4 %, p < 0.001), had no education (12 vs. 2 %, p < 0.001), and were in the 15-24 age group (58 vs. 35 %, p < 0.001) whereas women in the urban areas were older than 35 years (10 vs. 5 %, p < 0.001). The women attending antenatal care in the urban PHC facilities had a low overall risk of poor pregnancy outcomes than those in the rural facilities (64 vs. 50 %, p = 0.034). Pregnant women in the urban areas had decreased odds of being at high risk of poor pregnancy outcomes versus the combined medium and low risks compared with those in the rural areas (OR 0.55, 95 % CI 0.09-0.65). Conclusions for Practice Pregnant women attending antenatal care in rural PHC facilities are more at risk of poor pregnancy outcomes than those

  13. Review of Selected Documents Related to Flooding at City of Salisbury Facilities on the Yadkin River Upstream from High Rock Dam, North Carolina, September 2007

    USGS Publications Warehouse

    Bales, Jerad D.

    2007-01-01

    This report documents a review of the hydraulic and sediment-transport models developed by the City of Salisbury, Alcoa Power Generating, Inc., and the Federal Energy Regulatory Commission to address issues of flooding and sedimentation in the vicinity of Salisbury's water-supply intake 19.4 miles upstream from High Rock Dam. The objective of the review was to determine if the modeling results submitted by Salisbury clearly demonstrate that the presence of High Rock Dam has led to an increase in water levels at Salisbury facilities or, conversely, if the documents of Alcoa Power Generating, Inc., demonstrate that High Rock Dam has not had an effect on water levels at Salisbury facilities. No new data were collected as a part of the review, and the models developed by involved parties were not tested during the review. Some historical discharge-measurement notes and previously published reports were checked as part of the review. The one-dimensional hydraulic modeling results submitted by Alcoa Power Generating, Inc., did not assess the effects of changes in bathymetry on changes in flood levels at Salisbury's facilities because pre-impoundment conditions were not simulated. Hydraulic modeling performed by consultants for the City of Salisbury seems to indicate that both the presence of the dam in the absence of any post-impoundment sedimentation and changes in bathymetry between pre-impoundment and 1997 conditions have resulted in increased water levels relative to pre-impoundment conditions at Salisbury facilities on the Yadkin River for a fairly wide range of flows. The degree to which the dam and the changes in bathymetry have affected flood levels at the Salisbury facilities relative to pre-impoundment conditions is open to discussion because of uncertainty in topographic/bathymetric data and the absence of calibration and sensitivity testing of the hydraulic models. None of the three hydraulic models appears to have been calibrated to or tested against

  14. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  15. MODEL IMPLEMENTATION TO EVALUATE THE COLLECTIVE FUTURE RADIONUCLIDE RELEASES FROM MULTIPLE FACILITIES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Hiergesell, R.; Smith, F.; Hamm, L.; Phifer, M.; Swingle, R.

    2009-12-15

    A comprehensive Composite Analysis (CA) has been performed considering 152 sources of residual radioactive material at the Savannah River Site (SRS). As part of the CA a model was developed to perform deterministic base case calculations using the commercial GoldSim software. The model treated transport and decay of radionuclides as they are released at the source location and transported through the source region, vadose zone and aquifer to stream outcrops and from there to the Savannah River. A dose to the public was calculated assuming recreational use of stream water and residential use of river water. The specific results from the GoldSim modeling evaluation conducted as part of the CA indicate that the collective maximum dose resulting from the release of radionuclides from all 152 anticipated SRS End State sources of residual radionuclides demonstrate that maximum exposures expected to occur to any offsite MOP will not approach the 300 uSv/yr (30 mrem/yr) dose constraint, and in fact are currently estimated to be only 10% of this. For each of the POA's evaluated, the highest cumulative dose is realized at the Lower Three Runs POA and is calculated to be 29.7 uSv/yr (2.97 mrem/yr). The major dose contributing radionuclide for all of the POA's, with the exception of Upper Three Runs, was {sup 137}Cs in the contaminated streambed sediments. In Upper Three Runs {sup 237}Np from the H-Area Canyon Building was the major dose contributing radionuclide. The major exposure pathway for the SRS streams (where the Recreational Scenario was evaluated) was by the ingestion of fish. In the Savannah River, where the Residential Scenario was evaluated, ingestion of vegetation was the dominant exposure pathway. The uncertainty evaluation lends added assurance to the conclusion that the 30 mrem/yr dose constraint will not be exceeded, in that even at the 95th Percentile, this performance measure is not expected to be exceeded. It must also be added that these conclusions

  16. A model to relate environmental variation to NPDES permit violations at thermoelectric facilities on the Taunton River

    NASA Astrophysics Data System (ADS)

    Sheldon, Seth D.

    Large thermoelectric facilities are issued permits to discharge high volume, high temperature effluents as part of the National Pollutant Discharge Elimination System (NPDES). Once-through cooled power plants are especially dependent on large quantities of cool water to operate. When ambient temperatures are high or streamflow is very low, power plant managers must reduce (i.e., "dial back") energy generation in order to avoid violating their NPDES permit limitations. Sudden dial-back can have human health impacts when electricity is no longer available to provide cooling or other vital services. A superior system of electricity and environmental management would reduce the probability of future violations and/or dial-back by explicitly recognizing the facilities for which those events are highly likely. An original statistical model is presented and used to answer the following research questions: 1) Do electricity demand and natural environmental conditions influence withdrawal rates and effluent temperatures at once-through thermoelectric facilities? 2) Is it possible to estimate past withdrawal rates and effluent temperatures where reported observations are unavailable? 3) In the future, how often will power plant managers face the decision to dial-back generation or violate their plant's discharge permit? 5) What can be done to avoid such decisions and the resulting negative impacts? Two facilities in Massachusetts were chosen as representative case studies. Using public records, several decades of daily and monthly observations of environmental variables (e.g. ambient air temperature, streamflow) and monthly energy generation were tested against monthly observations of facility water withdrawal rates and maximum discharge temperatures using a multiple linear regression (MLR) approach. The MLR model successfully estimated monthly maximum discharge temperatures for both facilities using monthly average of daily high air temperatures and monthly net electricity

  17. Transport of short-chain perfluoroalkyl acids from concentrated fluoropolymer facilities to the Daling River estuary, China.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Zhu, Zhaoyun; Li, Qifeng; Zhang, Yueqing; Fu, Yaning; Xiao, Yang; Giesy, John P

    2015-07-01

    After global commercialization of short-chain perfluoroalkyl acids (PFAAs) as substitutes to conventional long-chain PFAAs by the major manufacturers, two fluorine industry parks for production of short-chain PFAAs located in the Daling River Basin of northern China have developed rapidly in the last few years. This study provides a systematic assessment of sources, emissions, transportation, and potential risks of the PFAAs in this area. The C4 perfluorobutane sulfonic acid (PFBS) and perfluorobutanoic acid (PFBA) were the predominant short-chain PFAAs in river water, with maximum concentrations of 2.90 and 1.35 μg/L, respectively. Park 1 equipped with a telomerization process was identified to be the source of linear and branched mixtures of PFBS, PFBA, and perfluorooctanoic acid (PFOA), while park 2 with an electrochemical fluorination process (ECF) was identified to be the source of linear and branched mixtures of PFBS and PFOA. Partition coefficients between water and sediment were consistent for C4-C8 perfluoroalkyl carboxylic acids (PFCAs) but directly proportional to C9-C11 PFCAs and perfluoroalkyl sulfonic acids (PFSAs). Analysis on the health risk of PFBS and PFBA suggested that they were not without risk since short chain PFAAs are known to be recalcitrant during water treatment. PMID:25616381

  18. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  19. Risk-based Prioritization of Facility Decommissioning and Environmental Restoration Projects in the National Nuclear Legacy Liabilities Program at the Chalk River Laboratory - 13564

    SciTech Connect

    Nelson, Jerel G.; Kruzic, Michael; Castillo, Carlos; Pavey, Todd; Alexan, Tamer; Bainbridge, Ian

    2013-07-01

    Chalk River Laboratory (CRL), located in Ontario Canada, has a large number of remediation projects currently in the Nuclear Legacy Liabilities Program (NLLP), including hundreds of facility decommissioning projects and over one hundred environmental remediation projects, all to be executed over the next 70 years. Atomic Energy of Canada Limited (AECL) utilized WorleyParsons to prioritize the NLLP projects at the CRL through a risk-based prioritization and ranking process, using the WorleyParsons Sequencing Unit Prioritization and Estimating Risk Model (SUPERmodel). The prioritization project made use of the SUPERmodel which has been previously used for other large-scale site prioritization and sequencing of facilities at nuclear laboratories in the United States. The process included development and vetting of risk parameter matrices as well as confirmation/validation of project risks. Detailed sensitivity studies were also conducted to understand the impacts that risk parameter weighting and scoring had on prioritization. The repeatable prioritization process yielded an objective, risk-based and technically defendable process for prioritization that gained concurrence from all stakeholders, including Natural Resources Canada (NRCan) who is responsible for the oversight of the NLLP. (authors)

  20. Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China.

    PubMed

    Zheng, Junyu; Yu, Yufan; Mo, Ziwei; Zhang, Zhou; Wang, Xinming; Yin, Shasha; Peng, Kang; Yang, Yang; Feng, Xiaoqiong; Cai, Huihua

    2013-07-01

    Industrial sector-based VOC source profiles are reported for the Pearl River Delta (PRD) region, China, based source samples (stack emissions and fugitive emissions) analyzed from sources operating under normal conditions. The industrial sectors considered are printing (letterpress, offset and gravure printing processes), wood furniture coating, shoemaking, paint manufacturing and metal surface coating. More than 250 VOC species were detected following US EPA methods TO-14 and TO-15. The results indicated that benzene and toluene were the major species associated with letterpress printing, while ethyl acetate and isopropyl alcohol were the most abundant compounds of other two printing processes. Acetone and 2-butanone were the major species observed in the shoemaking sector. The source profile patterns were found to be similar for the paint manufacturing, wood furniture coating, and metal surface coating sectors, with aromatics being the most abundant group and oxygenated VOCs (OVOCs) as the second largest contributor in the profiles. While OVOCs were one of the most significant VOC groups detected in these five industrial sectors in the PRD region, they have not been reported in most other source profile studies. Such comparisons with other studies show that there are differences in source profiles for different regions or countries, indicating the importance of developing local source profiles. PMID:23584189

  1. Heat as a Tracer to Examine Hydraulic Conductance Near the RussianRiver Bank Filtration Facility, Sonoma County, CA

    SciTech Connect

    Constantz, Jim; Su, Grace; Hatch, Christine

    2004-08-01

    Both the measurement of temperature and the simulation of heat and water transport have benefited from significant recent advances in data acquisition and computer resources. This has afforded the opportunity for routine use of heat as a tracer in a variety of hydrological regimes. Heat is particularly well suited for investigations of stream/groundwater exchanges. Dynamic temperature patterns between the stream and underlying sediments are typical, due to large stream surface area to volume ratios relative to other surface water bodies. Heat is a naturally occurring tracer, free from (real or perceived) issues of contamination associated with use of chemical tracers in stream environments. The use of heat as a tracer relies on the measurement of temperature gradients, and temperature is an extremely robust parameter to monitor. Temperature data is immediately available as opposed to chemical tracers, which often require significant laboratory analysis. In this work, we report on the progress in the use of heat as a tracer to determine the hydraulic conductance of the streambed along the middle reaches of the Russian River, located west of Santa Rosa, CA. The general hydrological setting is described and the unique matter in which the water resources are managed in an environment of increasing population, a rapid shift to agricultural crops requiring more irrigation, and a series of fishery related mandates.

  2. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    SciTech Connect

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  3. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. FY 1989--1990 annual report

    SciTech Connect

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  4. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    USGS Publications Warehouse

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  5. Bank Topography, Bathymetry, and Current Velocity of the Lower Elwha River, Clallam County, Washington, May 2006

    USGS Publications Warehouse

    Curran, Christopher A.; Konrad, Christopher P.; Dinehart, Randal L.; Moran, Edward H.

    2008-01-01

    The removal of two dams from the mainstem of the Elwha River is expected to cause a broad range of changes to the river and nearby coastal ecosystem. The U.S. Geological Survey has documented aspects of the condition of the river to allow analysis of ecological responses to dam removal. This report documents the bank topography, river bathymetry, and current velocity data collected along the lower 0.5 kilometer of the Elwha River, May 15-17, 2006. This information supplements nearshore and beach surveys done in 2006 as part of the U.S. Geological Survey Coastal Habitats in Puget Sound program near the Elwha River delta in the Strait of Juan de Fuca, Washington.

  6. The St. Johns River, Florida: a Unique Lentic/Lotic Waterbody on the Southeastern Coastal Plain.

    NASA Astrophysics Data System (ADS)

    Dobberfuhl, D. R.

    2005-05-01

    The St. Johns River is a 500-km, low-gradient, black water river located in northeast Florida. Tidal effects, reverse flow events, and numerous saline springs result in estuarine conditions sometimes extending far upstream. Invertebrate sampling has occurred aperiodically in the lower mainstem of the river since 1974. In general, fresher areas of the river exhibited higher taxa richness but relatively little difference in diversity. The river shows differences in invertebrate populations throughout the lower estuarine section related to salinity. The watershed is facing tremendous development pressure and is subsequently challenged by typical problems, although little historical change was detected using this 30-year dataset. However, data suggested that there was evidence of localized impairment to the benthic community. Finally, areas with submerged aquatic vegetation (SAV) demonstrated higher richness and diversity than comparable bare areas, underscoring the importance of SAV to the health and productivity of the river.

  7. Radiological dose assessment for the dismantlement and decommissioning option for the Heavy Water Components Test Reactor facility at the Savannah River Site, Aiken, South Carolina

    SciTech Connect

    Faillace, E.R.; Kamboj, S.; Yu, C.; Chen, S.Y.

    1997-10-01

    Potential maximum radiation dose rates for a 10,000-year horizon were calculated for the dismantlement and decommissioning option for the Heavy Water Components Test Reactor facility at the Savannah River Site. The residual radioactive material guidelines (RESRAD) computer code was used. The study will help determine if it is acceptable (in terms of DOE radiation dose limits) for activated and contaminated concrete to remain in the facility, along with embedded radioactive piping and radioactive equipment. Four cases were developed to evaluate potential doses; the cases vary with regard to the definitions of the sources. Case A considers the dose from the reactor biological shield; case B considers the dose from contaminated concrete rubble; case C considers the dose from contaminated concrete rubble, the reactor biological shield, and installed equipment; and case D considers the dose from contaminated cuttings brought to the surface following the perforation of a well through the contaminated zone in case C. Site-specific parameter values were used to estimate the radiation doses. The results indicate that neither the DOE dose limit of 100 mrem/yr nor the 15-mrem/yr dose constraint would be exceeded for any of the cases. The potential maximum dose rates for cases A, B, C, and D are 0.000028, 0.015, 0.018, and 0.17 mrem/yr, respectively. The drinking water pathway is the dominant contributor to the doses in cases A through C, and the external gamma pathway is the dominant contributor in case D. Carbon-14, uranium-234, uranium-238, and americium-241 are the principal radionuclides contributing to the doses in cases A through C. Cobalt-60, europium-152, and barium-133 are the important radionuclides in case D. A sensitivity analysis was performed to determine which parameters have the greatest impact on the estimated doses. 9 refs., 11 figs., 3 tabs.

  8. Effects of Glen Canyon Dam discharges on water velocity and temperatures at the confluence of the Colorado and Little Colorado Rivers and implications for habitat for young-of-year humpback chub (Gila cypha-

    USGS Publications Warehouse

    Protiva, Frank R.; Ralston, Barbara E.; Stone, Dennis M.; Kohl, Keith A.; Yard, Michael D.; Haden, G. Allen

    2010-01-01

    Water velocity and temperature are physical variables that affect the growth and survivorship of young-of-year (YOY) fishes. The Little Colorado River, a tributary to the Colorado River in Grand Canyon, is an important spawning ground and warmwater refuge for the endangered humpback chub (Gila cypha) from the colder mainstem Colorado River that is regulated by Glen Canyon Dam. The confluence area of the Little Colorado River and the Colorado River is a site where YOY humpback chub (size 30-90 mm) emerging from the Little Colorado River experience both colder temperatures and higher velocities associated with higher mainstem discharge. We used detailed surveying and mapping techniques in combination with YOY velocity and temperature preferenda (determined from field and lab studies) to compare the areal extent of available habitat for young fishes at the confluence area under four mainstem discharges (227, 368, 504, and 878 m3/s). Comparisons revealed that the areal extent of low-velocity, warm water at the confluence decreased when discharges exceeded 368 m3/s. Furthermore, mainstem fluctuations, depending on the rate of upramp, can affect velocity and temperature dynamics in the confluence area within several hours. The amount of daily fluctuations in discharge can result in the loss of approximately 1.8 hectares of habitat favorable to YOY humpback chub. Consequently, flow fluctuations and the accompanying changes in velocity and temperature at the confluence may diminish the recruitment potential of humpback chub that spawn in the tributary stream. This study illustrates the utility of multiple georeferenced data sources to provide critical information related to the influence of the timing and magnitude of discharge from Glen Canyon Dam on potential rearing environment at the confluence area of the Little Colorado River.

  9. The distribution of phosphorus in Popes Creek, VA, and in the Pocomoke River, MD: Two watersheds with different land management practices in the Chesapeake Bay Basin

    USGS Publications Warehouse

    Simon, N.S.; Bricker, O.P.; Newell, W.; McCoy, J.; Morawe, R.

    2005-01-01

    This paper compares phosphorus (P) concentrations in sediments from two watersheds, one with, and one without, intensive animal agriculture. The watersheds are in the coastal plain of the Chesapeake Bay and have similar physiographic characteristics. Agriculture in the Pocomoke River, MD, watershed supplied 2.7 percent of all broiler chickens produced in the USA in 1997. Poultry litter is an abundant, local source of manure for crops. Broiler chickens are not produced in the Popes Creek, VA, watershed and poultry manure is, therefore, not a major source of fertilizer. The largest concentrations of P in sediment samples are found in floodplain and main-stem bottom sediment in both watersheds. Concentrations of total P and P extracted with 1N HCl are significantly larger in main-stem bottom sediments from the Pocomoke River than in main-stem bottom sediments from Popes Creek. Larger concentrations of P are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Pocomoke River watershed than are associated with what are potentially redox sensitive iron oxyhydroxides in sediment samples from the Popes Creek watershed. Data for P and iron (Fe) concentrations in sediments from the Popes Creek watershed provide a numerical framework (baseline) with which to compare P and Fe concentrations in sediment from the Pocomoke River watershed. ?? Springer 2005.

  10. Columbia River Basin Fish and Wildlife Program Work Plan for Fiscal Year 1988.

    SciTech Connect

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1987-10-01

    The FY 1988 Columbia River Basin Fish and Wildlife Program Work Plan (Work Plan) presents Bonneville Power Administration's plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1988. The Work Plan focuses on individual Action Items found in the amended Program for which Bonneville Power Administration (BPA) has determined it has authority and responsibility to implement. The FY 1988 Work Plan emphasizes continuation of 95 ongoing projects, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. These continuing activities are summarized briefly by Program area: (1) mainstem passage; (2) artificial propagation; (3) natural propagation; (4) resident fish and wildlife; and (5) planning activities.

  11. Yellow perch larval survival studies and the potential effects of an ash storage facility in the Zekiah Swamp watershed, Wicomico River, Maryland

    SciTech Connect

    Buron, W.H.; Pinkney, A.E.; Gurley, J.

    1990-10-01

    Bioassay studies were conducted to determine if leachate from a coal ash depository was a potential factor in reducing abundance of yellow perch spawning stocks in Zekiah Swamp Run, a tributary of the Wicomico River, Maryland. In situ bioassays conducted in Zekiah Swamp Run in 1989 and 1990 using yellow perch yolk-sac larvae resulted in higher mortality upstream and downstream of the ash storage facility relative to reference stations in both years. Similar high mortality was observed at the upstream unaffected site and the downstream potentially affected site, suggesting that poor larval survival in these locations is a system-wide phenomenon. Analysis of water samples for metals, inorganic monomeric-aluminum, volatile organics, pH and measurements of physical parameters did not identify a specific cause for the high mortality observed. Surveys of the abundance and distribution of yellow perch egg strands during spring 1990 revealed that over 1,500 females spawned in a relatively restricted area in the vicinity of the fall line. In contrast to poor larval survival observed at upstream locations above the fall line, good survival was observed in bioassays conducted at a location below the fall line. Results to date are insufficient to establish the specific factors causing high mortality of larval yellow perch above the fall line. However, the ash storage site does not appear to be a contributing factor at the present time.

  12. Nearshore thermal gradients of the Colorado River near the Little Colorado River confluence, Grand Canyon National Park, Arizona, 2010

    USGS Publications Warehouse

    Ross, Rob; Grams, Paul E.

    2013-01-01

    Construction and operation of Glen Canyon Dam has dramatically impacted the flow of the Colorado River through Glen, Marble, and Grand Canyons. Extremes in both streamflow and water temperature have been suppressed by controlled releases from the dam. Trapping of sediment in Lake Powell, the reservoir formed by Glen Canyon Dam, has also dramatically reduced the supply of suspended sediment entering the system. These changes have altered the riverine ecosystem and the habitat of native species, including fish such as the endangered humpback chub (Gila cypha). Most native fish are adapted to seasonally warm water, and the continuous relatively cold water released by the dam is one of the factors that is believed to limit humpback chub growth and survival. While average mainstem temperatures in the Colorado River are well documented, there is limited understanding of temperatures in the nearshore environments that fish typically occupy. Four nearshore geomorphic unit types were studied between the confluence of the Colorado and Little Colorado Rivers and Lava Canyon in the summer and fall of 2010, for study periods of 10 to 27 days. Five to seven sites were studied during each interval. Persistent thermal gradients greater than the 0.2 °C accuracy of the instruments were not observed in any of the sampled shoreline environments. Temperature gradients between the shoreline and mainstem on the order of 4 °C, believed to be important to the habitat-seeking behavior of native or nonnative fishes, were not detected.

  13. Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume IV of V; 1992 Annual Report.

    SciTech Connect

    Peck, Larry

    1993-04-01

    Operational plans for Cowlitz, Elokomin, Grays River, Kalama Falls, Lewis River and Speelyai, Lower Kalama, Lyons Ferry, Methow, Priest Rapids, Ringold Springs, Rock Island, Toutle, Washougal, and Wells Salmon Hatcheries are individually described.

  14. Floodplain Modulation of Solute Fluxes from Mountainous Regions: the Amazonian Madre de Dios River Case Study

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; West, A. J.; Baronas, J. J.; Ponton, C.; Clark, K. E.; Feakins, S. J.; Galy, V.

    2015-12-01

    In many large river systems, solutes released by chemical weathering in mountainous regions are transported through floodplains before being discharged into the ocean. Chemical reactions within floodplains can both add and remove solutes, significantly modulating fluxes. Despite their importance in the relationship between tectonic uplift and solute fluxes to the ocean, many aspects of floodplain processes are poorly constrained since the chemistry of large rivers is also significantly affected by the mixing between multiple tributaries, which makes the separation and quantification of floodplain processes challenging. Here we explore how floodplain processes affect a suite of major and trace elements in the Madre de Dios River system in Peru. To separate floodplain processes from conservative mixing, we developed a tributary mixing model that uses water isotopic ratios and chloride concentrations measured in each tributary and upstream and downstream of each tributary confluence for all major tributaries along a floodplain reach. The results of the tributary mixing model allow for the chemical composition of the mainstem of the Madre de Dios River to be modeled assuming completely conservative mixing. Differences between the modeled and measured chemical composition of the mainstem are then used to identify and quantify the effects of floodplain processes on different solutes. Our results show that during both the wet and dry seasons, Li is removed and Ca, Mg, and Sr are added to the dissolved load during floodplain transit. Other solutes, like Na and SO4, appear to behave conservatively during floodplain transit. Likely, the removal of Li from the dissolved load reflects the precipitation of secondary silicate minerals in the floodplain. The release of Ca, Mg, and Sr likely reflects the dissolution of detrital carbonate minerals. Our analyses also show that tributaries with Andean headwaters contribute disproportionately to solute budgets while the water budget

  15. Hood River Production Master Plan.

    SciTech Connect

    O'Toole, Patty

    1991-07-01

    The Northwest Power Planning Council's 1987 Columbia River Fish and Wildlife Program authorizes the development of artificial production facilities to raise chinook salmon and steelhead for enhancement in the Hood, Umatilla, Walla Walla, Grande Ronde and Imnaha rivers and elsewhere. On February 26, 1991 the Council agreed to disaggregate Hood River from the Northeast Oregon Hatchery Project, and instead, link the Hood River Master Plan (now the Hood River Production Plan) to the Pelton Ladder Project (Pelton Ladder Master Plan 1991).

  16. Iatrogenic left main-stem dissection extending to the circumflex artery and retrogradely involving the left and non-coronary sinuses of Valsalva: iatrogenic aortocoronary dissection.

    PubMed

    Zwoliński, Radosław; Marcinkiewicz, Anna; Szymczyk, Konrad; Pietruszyński, Robert; Jaszewski, Ryszard

    2015-01-01

    We present the case of a 57-year-old female who experienced iatrogenic left main-stem (LMS) dissection during elective coronary angiography. The dissection immediately affected the circumflex artery (Cx), causing its total distal occlusion, and the left anterior descending artery (LAD), in which a metal stent, implanted six months earlier, provided blood flow. The dissection spread retrogradely to the left and non-coronary sinuses of Valsalva (SV). Ventricular fibrillation (VF) occurred but the patient was successfully defibrillated. The subsequent introduction of a catheter resulted in recurrent VF, again successfully defibrillated. Total arterial myocardial revascularisation with double skeletonised internal thoracic arteries was performed without complications and SV repair was avoided. At the one-year follow up, a control multi-slice CT (MSCT) angiography was conducted, revealing complete healing of the SV and LMS dissections. It also showed native blood flow, the left internal thoracic artery (LITA) graft to the Cx occlusion, and a patent right internal thoracic artery (RITA) graft implanted to the LAD. PMID:26659650

  17. Wind River Watershed Restoration, 2005-2006 Annual Report.

    SciTech Connect

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie

    2008-11-10

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2005 through March 2006 under Bonneville Power Administration (BPA) contract 22095. During this period, we collected temperature, flow, and habitat data to characterize habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). A statement of work (SOW) was submitted to BPA in March 2005 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  18. Historic changes in fish assemblage structure in midwestern nonwadeable rivers

    USGS Publications Warehouse

    Parks, Timothy P.; Quist, Michael C.; Pierce, Clay L.

    2014-01-01

    Historical change in fish assemblage structure was evaluated in the mainstems of the Des Moines, Iowa, Cedar, Wapsipinicon, and Maquoketa rivers, in Iowa. Fish occurrence data were compared in each river between historical and recent time periods to characterize temporal changes among 126 species distributions and assess spatiotemporal patterns in faunal similarity. A resampling procedure was used to estimate species occurrences in rivers during each assessment period and changes in species occurrence were summarized. Spatiotemporal shifts in species composition were analyzed at the river and river section scale using cluster analysis, pairwise Jaccard's dissimilarities, and analysis of multivariate beta dispersion. The majority of species exhibited either increases or declines in distribution in all rivers with the exception of several “unknown” or inconclusive trends exhibited by species in the Maquoketa River. Cluster analysis identified temporal patterns of similarity among fish assemblages in the Des Moines, Cedar, and Iowa rivers within the historical and recent assessment period indicating a significant change in species composition. Prominent declines of backwater species with phytophilic spawning strategies contributed to assemblage changes occurring across river systems.

  19. MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY

    SciTech Connect

    Bannochie, C; David Diprete, D; Ned Bibler, N

    2008-12-31

    This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

  20. Occurrence and Distribution of Organochlorine Compounds in Biological Tissue and Bed Sediment From Streams in the Trinity River Basin, Texas, 1992-93

    USGS Publications Warehouse

    Moring, J. Bruce

    1997-01-01

    This report describes the occurrence and distribution of organochlorine compounds in biological tissue and bed sediment from the Trinity River Basin study area of the National Water-Quality Assessment Program. Concentrations of organochlorine pesticides, polychlorinated biphenyls (PCBs), and other organochlorine compounds were determined in biological tissue and surficial bed sediment from 16 stream sites in the Trinity River Basin of east-central Texas. Asiatic clams (Corbicula fluminea) were collected at 10 sites, and fish, including blue catfish (Ictalurus furcatus), common carp (Cyprinus carpio), bluegill (Lepomis cyanellus), and yellow bullhead (Ameiurus natalis) were collected at all mainstem and two tributary sites. Thirty of the 36 compounds analyzed in biological tissue or surficial bed sediment were detected in one or both media. Overall, more organochlorine compounds were detected in bed sediment than in biological tissue; however, various chlordane isomers, DDT metabolites, and PCBs were detected more frequently in tissue than in sediment. The chlordane isomers and PCBs that were detected more frequently in biological tissue also were detected more frequently at urban sites than at agricultural sites. Organochlorine compound concentrations generally were highest in fish tissue from Trinity River mainstem sites. Fish tissue from the mainstem sites contained a higher percentage of lipids than did fish- and clam-tissue samples from the tributary sites.

  1. Influence of dams on river-floodplain dynamics in the Elwha River, Washington

    USGS Publications Warehouse

    Kloehn, K.K.; Beechie, T.J.; Morley, S.A.; Coe, H.J.; Duda, J.J.

    2008-01-01

    The Elwha dam removal project presents an ideal opportunity to study how historic reduction and subsequent restoration of sediment supply alter river-floodplain dynamics in a large, forested river floodplain. We used remote sensing and onsite data collection to establish a historical record of floodplain dynamics and a baseline of current conditions. Analysis was based on four river reaches, three from the Elwha River and the fourth from the East Fork of the Quinault River. We found that the percentage of floodplain surfaces between 25 and 75 years old decreased and the percentage of surfaces >75 years increased in reaches below the Elwha dams. We also found that particle size decreased as downstream distance from dams increased. This trend was evident in both mainstem and side channels. Previous studies have found that removal of the two Elwha dams will initially release fine sediment stored in the reservoirs, then in subsequent decades gravel bed load supply will increase and gradually return to natural levels, aggrading river beds up to 1 m in some areas. We predict the release of fine sediments will initially create bi-modal grain size distributions in reaches downstream of the dams, and eventual recovery of natural sediment supply will significantly increase lateral channel migration and erosion of floodplain surfaces, gradually shifting floodplain age distributions towards younger age classes.

  2. Agricultural chemical interchange between ground water and surface water, Cedar River basin, Iowa and Minnesota; a study description

    USGS Publications Warehouse

    Squillace, P.J.; Liszewski, M.J.; Thurman, E.M.

    1993-01-01

    A review of the data collected in the Cedar River basin, Iowa and Minnesota, indicates that atrazine is consistently detected in the main-stem river at concentrations greater than 0.10 microgram per liter even during periods of extended base flow. The primary source of atrazine in the river during these periods of base flow is not known. This study is designed to determine how atrazine and other agricultural chemicals move between ground water and surface water in an alluvial aquifer adjacent to a river. A site has been selected in an unfarmed area adjacent to the Cedar River near Bertram, Iowa, to determine how the concentrations of agricultural chemicals in the alluvial aquifer change as a result of bank storage of surface water. Research also is planned to determine the contribution of agricultural chemicals discharged by the alluvial aquifer into the river during base flow.

  3. Characterizing changes in streamflow under historical and current climates for the Russian River, California

    NASA Astrophysics Data System (ADS)

    Curtis, J.; Flint, L. E.

    2014-12-01

    Precipitation in California is naturally more variable than elsewhere in the United States, and climate change is expected to increase the frequency and severity of precipitation and streamflow anomalies. As part of a larger effort to assess flow conditions under historical, current, and future climates, we characterized the change in the Russian River's mainstem flows between two 30-year periods that represent historical (1951 to 1980) and current (1981 to 2010) climate conditions. Analyses included measured data from one mainstem gage (Ukiah) that represents natural flow conditions, and three mainstem gages (Hopland, Healdsburg, and Guerneville) regulated by diversion into the Russian River from the adjacent Eel River and by reservoir storage. Analysis of natural flows at the Ukiah gage under the current climate indicates statistically significant increases in low flow metrics that include: median monthly flows from July to October; number of zero flow days; and 1-, 3-, 5-, 7-, 30- and 90-day minimum flows. In contrast to the Ukiah gage, decreases in low flows under the current climate at the three regulated-streamflow gages varied with distance downstream. Statistically significant declines in median monthly flows occurred during the second period (1981-2010) from August to November at Hopland, September to November at Healdsburg and in October at Guerneville. Although mean annual flow declined at all four gages during the second period and median monthly low flows declined at the downstream gages, median monthly low flows and minimum flows at the Ukiah gage which represents natural flows increased during the driest months (July to October). Results from this study will be used to support ecological studies and water resource planning within the Russian River watershed. The relative importance of climate and watershed response on the quality and quantity of streamflow under historical and current climates will be assessed and results compared to analyses of

  4. Dams, floodplain land use, and riparian forest conservation in the semiarid Upper Colorado River Basin, USA

    USGS Publications Warehouse

    Andersen, D.C.; Cooper, D.J.; Northcott, K.

    2007-01-01

    Land and water resource development can independently eliminate riparian plant communities, including Fremont cottonwood forest (CF), a major contributor to ecosystem structure and functioning in semiarid portions of the American Southwest. We tested whether floodplain development was linked to river regulation in the Upper Colorado River Basin (UCRB) by relating the extent of five developed land-cover categories as well as CF and other natural vegetation to catchment reservoir capacity, changes in total annual and annual peak discharge, and overall level of mainstem hydrologic alteration (small, moderate, or large) in 26 fourth-order subbasins. We also asked whether CF appeared to be in jeopardy at a regional level. We classified 51% of the 57,000 ha of alluvial floodplain examined along >2600 km of mainstem rivers as CF and 36% as developed. The proportion developed was unrelated to the level of mainstem hydrologic alteration. The proportion classified as CF was also independent of the level of hydrologic alteration, a result we attribute to confounding effects from development, the presence of time lags, and contrasting effects from flow alteration in different subbasins. Most CF (68% by area) had a sparse canopy (???5% cover), and stands with >50% canopy cover occupied <1% of the floodplain in 15 subbasins. We suggest that CF extent in the UCRB will decline markedly in the future, when the old trees on floodplains now disconnected from the river die and large areas change from CF to non-CF categories. Attention at a basinwide scale to the multiple factors affecting cottonwood patch dynamics is needed to assure conservation of these riparian forests. ?? 2007 Springer Science+Business Media, LLC.

  5. Visualization of Flow Alternatives, Lower Missouri River

    USGS Publications Warehouse

    Jacobson, Robert B.; Heuser, Jeanne

    2002-01-01

    Background The U.S. Army Corps of Engineers (COE) 'Missouri River Master Water Control Manual' (Master Manual) review has resulted in consideration of many flow alternatives for managing the water in the river (COE, 2001; 1998a). The purpose of this report is to present flow-management alternative model results in a way that can be easily visualized and understood. This report was updated in October 2001 to focus on the specific flow-management alternatives presented by the COE in the 'Master Manual Revised Draft Environmental Impact Statement' (RDEIS; COE, 2001). The original version (February 2000) is available by clicking here. The COE, U.S. Fish and Wildlife Service (FWS), Missouri River states, and Missouri River basin tribes have been participating in discussions concerning water management of the Missouri River mainstem reservoir system (MRMRS), the Missouri River Bank Stabilization and Navigation Project, and the Kansas River reservoir system since 1986. These discussions include general input to the revision of the Master Manual as well as formal consultation under Section 7 of the Endangered Species Act. In 2000, the FWS issued a Biological Opinion that prescribed changes to reservoir management on the Missouri River that were believed to be necessary to preclude jeopardy to three endangered species, the pallid sturgeon, piping plover, and interior least tern (USFWS, 2000). The combined Missouri River system is large and complex, including many reservoirs, control structures, and free-flowing reaches extending over a broad region. The ability to assess future impacts of altered management scenarios necessarily involves complex, computational models that attempt to integrate physical, chemical, biological, and economic effects. Graphical visualization of the model output is intended to improve understanding of the differences among flow-management alternatives.

  6. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE 8118

    SciTech Connect

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2008-02-06

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature distribution and

  7. Feasibility Evaluation and Retrofit Plan for Cold Crucible Induction Melter Deployment in the Defense Waste Processing Facility at Savannah River Site

    SciTech Connect

    Barnes, A.B.; Iverson, D.C.; Adkins, B.J.; Tchemitcheff, E.

    2008-07-01

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 kHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 deg. C to 200 deg. C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined JHM. It can be operated at melt temperatures in excess of 2000 deg. C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured through a bottom drain, typically through a water-cooled slide valve that starts and stops the pour stream. To promote uniform temperature

  8. FEASIBILITY EVALUATION AND RETROFIT PLAN FOR COLD CRUCIBLE INDUCTION MELTER DEPLOYMENT IN THE DEFENSE WASTE PROCESSING FACILITY AT SAVANNAH RIVER SITE - 8118

    SciTech Connect

    Barnes, A; Dan Iverson, D; Brannen Adkins, B

    2007-11-15

    Cold crucible induction melters (CCIM) have been proposed as an alternative technology for waste glass melting at the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS) as well as for other waste vitrification facilities. Proponents of this technology cite high temperature operation, high tolerance for noble metals and aluminum, high waste loading, high throughput capacity, and low equipment cost as the advantages over existing Joule Heated Melter (JHM) technology. This paper describes the CCIM technology and identifies technical challenges that must be addressed in order to implement CCIMs in the DWPF. The CCIM uses induction heating to maintain molten glass at high temperature. A water-cooled helical induction coil is connected to an AC current supply, typically operating at frequencies from 100 KHz to 5 MHz. The oscillating magnetic field generated by the oscillating current flow through the coil induces eddy currents in conductive materials within the coil. Those oscillating eddy currents, in turn, generate heat in the material. In the CCIM, the induction coil surrounds a 'Cold Crucible' which is formed by metal tubes, typically copper or stainless steel. The tubes are constructed such that the magnetic field does not couple with the crucible. Therefore, the field generated by the induction coil couples primarily with the conductive medium (hot glass) within. The crucible tubes are water cooled to maintain their temperature between 100 C to 200 C so that a protective layer of molten glass and/or batch material, referred to as a 'skull', forms between them and the hot, corrosive melt. Because the protective skull is the only material directly in contact with the molten glass, the CCIM doesn't have the temperature limitations of traditional refractory lined Joule heated melters. It can be operated at melt temperatures in excess of 2000 C, allowing processing of high waste loading batches and difficult-to-melt compounds. The CCIM is poured

  9. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  10. Role of gas exchange in the inorganic carbon, oxygen, and /sup 222/Rn budgets of the Amazon River

    SciTech Connect

    Devol, A.H.; Quay, P.D.; Richey, J.E.; Martinelli, L.A.

    1987-01-01

    Dissolved oxygen, /sup 222/Rn, pCO/sub 2/, alkalinity, respiration rate, and discharge have been measured at eight mainstem and seven tributary stations during February-March 1984 in a 1700-km stretch of the Amazon River between Vargem Grande and Obidos in Brazil. Air-water gas exchange rates were estimated two ways: measurements of the flux of /sup 222/Rn int floating domes yielded an average boundary layer thickness of 78..mu..m, and oxygen mass balance calculations resulted in an average of 38..mu..m. Given a boundary layer thickness on the order of 50..mu..m, CO/sub 2/ loss to the atmosphere in the entire reach would have been 37.4 kmol s/sup -1/, which is about equal to the total tributary dissolved inorganic carbon (DIC) input and is about half of the total fluvial DIC input to the section. Thus, CO/sub 2/ evasion is a major component of Amazon River DIC balance. Because gas exchange within the section was rapid relative to water travel time through the section, a quasi-steady state was maintained between respiratory input and evasion of CO/sub 2/. Dissolved /sup 222/Rn activities in the mainstem varied from 3.5 to 8.3 dpm liter/sup -1/ and were always highly supersaturated with respect to the atmosphere. Dissolved radon was also not supported by decay of /sup 222/Ra in the mainstem. A /sup 222/Rn mass balance indicated that direct groundwater input into this stretch of the Amazon mainstem probably accounted for no more than 1% of water discharge.

  11. Effects of the flood of 1993 on the chemical characteristics of bed sediments in the Upper Mississippi River

    USGS Publications Warehouse

    Moody, J.A.; Sullivan, J.F.; Taylor, H.E.

    2000-01-01

    Concentrations of pollutants stored in the surficial bed sediments in the navigation pools of the Upper Mississippi River showed a general decrease after the record flood of 1993. Percent clay and total organic carbon in the surficial sediments decreased as a result of an increase in the proportion of coarser sediment. Decreases in pollutant concentration may have been a result of the dilution by coarser and relatively less polluted sediment that was mobilized and transported into the Upper Mississippi River from its tributaries or from mainstem locations upstream but outside of the sampling area.

  12. Assessment of Habitat, Fish Communities, and Streamflow Requirements for Habitat Protection, Ipswich River, Massachusetts, 1998-99

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Parker, Gene W.

    2001-01-01

    The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and

  13. Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.

    SciTech Connect

    Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S.; Honanie, Isadore

    2002-01-01

    We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

  14. Assessment of Habitat and Streamflow Requirements for Habitat Protection, Usquepaug-Queen River, Rhode Island, 1999-2000

    USGS Publications Warehouse

    Armstrong, David S.; Parker, Gene W.

    2003-01-01

    The relations among stream habitat and hydrologic conditions were investigated in the Usquepaug?Queen River Basin in southern Rhode Island. Habitats were assessed at 13 sites on the mainstem and tributaries from July 1999 to September 2000. Channel types are predominantly low-gradient glides, pools, and runs that have a sand and gravel streambed and a forest or shrub riparian zone. Along the stream margins,overhanging brush, undercut banks supported by roots, and downed trees create cover; within the channel, submerged aquatic vegetation and woody debris create cover. These habitat features decrease in quality and availability with declining streamflows, and features along stream margins generally become unavailable once streamflows drop to the point at which water recedes from the stream banks. Riffles are less common, but were identified as critical habitat areas because they are among the first to exhibit habitat losses or become unavailable during low-flow periods. Stream-temperature data were collected at eight sites during summer 2000 to indicate the suitability of those reaches for cold-water fish communities. Data indicate stream temperatures provide suitable habitat for cold-water species in the Fisherville and Locke Brook tributaries and in the mainstem Queen River downstream of the confluence with Fisherville Brook. Stream temperatures in the Usquepaug River downstream from Glen Rock Reservoir are about 6?F warmer than in the Queen River upstream from the impoundment. These warmer temperatures may make habitat in the Usquepaug River marginal for cold-water species. Fish-community composition was determined from samples collected at seven sites on tributaries and at three sites on the mainstem Usquepaug?Queen River. Classification of the fish into habitat-use groups and comparison to target fish communities developed for the Quinebaug and Ipswich Rivers indicated that the sampled reaches of the Usquepaug?Queen River contained most of the riverine fish

  15. Reprint of: Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change

    NASA Astrophysics Data System (ADS)

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua B.; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-10-01

    A substantial increase in fluvial sediment supply relative to transport capacity causes complex, large-magnitude changes in river and floodplain morphology downstream. Although sedimentary and geomorphic responses to sediment pulses are a fundamental part of landscape evolution, few opportunities exist to quantify those processes over field scales. We investigated the downstream effects of sediment released during the largest dam removal in history, on the Elwha River, Washington, USA, by measuring changes in riverbed elevation and topography, bed sediment grain size, and channel planform as two dams were removed in stages over two years. As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool-riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along

  16. Hydraulic Response of Colorado River Rapids to a Reworking Flood

    NASA Astrophysics Data System (ADS)

    Magirl, C. S.; Webb, R. H.

    2005-12-01

    Rapids on the Colorado River in Grand Canyon are formed primarily by the accumulation of coarse sediment from tributaries. Frequent debris-flow events in these tributaries contribute alluvium that constricts the river, accelerates local fluid velocities, increases the water-surface fall through the rapids, and raises the water-surface elevation in the upper pool. In turn, large main-stem floods rework fresh debris-fan deposits by removing the smaller coarse sediment and repositioning the largest particles into a stable matrix on the bed of the rapid. While morphologic changes to debris-fan surfaces in response to main-stem floods are widely studied in Grand Canyon, relatively little is known of the specific changes to the hydraulics of a given rapid. The turbulent and dangerous nature of rapids makes in-situ measurements challenging. The current study, however, successfully measured hydraulics within the core of several rapids. These rapids had been steepened by debris-flow event within the previous seven years. Using a boat-mounted fathometer and acoustic doppler velocimeter (ADV), point measurements of water-surface elevation, bathymetry, three-dimensional velocity, and turbulence were made at a collection of moderately-sized rapids in Grand Canyon. The boat was a 19-foot J-snout with a 50-hp Mercury outboard motor capable of maneuvering to nearly any location within each rapid. A three-person crew onboard operated the instrumentation. Two crewmembers on shore operated a survey instrument to continually record the boat position on the river. To characterize hydraulic changes in response to a main-stem flood, repeat measurements were made at each site both before and after the 1,200 m3/s controlled flood of November 2004. While this exercise is only a first step in quantifying the fluid dynamics within a rapid, the hydraulic data collected offers a unique insight into the response of coarse-grained alluvial deposits to floods in fast-moving bedrock

  17. Quality of the Ohio River and atmospheric deposition and its relation to corrosion of lock and dam facilities in the lower Ohio River basin near Paducah, Kentucky. Water Resources Investigation

    SciTech Connect

    White, K.D.

    1991-01-01

    The purpose of the report is to evaluate the quality of the Ohio River, atmospheric deposition, and corrosion product samples and their relation to corrosion of Lock and Dam 53 on the Ohio River near Paducah, Kentucky. Chemical determinations of river quality, atmospheric deposition, and corrosion product were performed on samples from Dam 53 and compared to similar determinations at Dam 52 (a control site 19 miles upstream) and to historical data from the region, where available. Statistical methods (summaries and applicable hypothesis tests) were used to help identify water-quality characteristics and environmental factors that have some potential for accelerating corrosion processes at Dam 53.

  18. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    SciTech Connect

    N /A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the release of tritium from

  19. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  20. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  1. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  2. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  3. 29 CFR 1917.126 - River banks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope...

  4. Wetland Hydraulics along the middle reach of the Congo River revealed by repeat-pass multi-temporal interferometric SAR

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Lee, H.; Jung, H. C.

    2014-12-01

    The Congo River originates from Southeastern part of Democratic Republic of Congo following a 4,375km semi-circular path to Atlantic, with average annual discharge of 40,200 m3/s. It is expected that the wetland hydraulics vary along the middle reach of the Congo River, including the floodplains with distinct boundary from the Kisangani to the intersection between the mainstem and the Lulonga River, and the vast wetlands in the Cuvette Centrale. In this study, we will use repeat-pass multi-temporal interferometric SAR measurement from ALOS PALSAR data to investigate spatial and temporal variations of dh/dt and examine how the dh/dt patterns are related to topographic relief from SRTM DEM. Early results over the wetlands in the Cuvette Centrale show that two distinct dh/dt patterns exist: rapid changes of dh/dt perpendicular to a narrow band of floodplains along the mainstem, and slow and diffuse dh/dt changes over the interfluvial wetlands. It indicates that the hydrodynamics of the interfluvial wetlands cannot be governed by the fluvial process of river-floodplain exchange. Comparison of dh/dt patterns over the Cuvette Centrale and the upper middle reach of the Congo River will enable us to understand how their wetlands and floodplains are filled and drained during high-water and low-water seasons.

  5. SURVEY OF COLUMBIA RIVER BASIN STREAMS FOR COLUMBIA PEBBLESNAIL Fluminicola columbiana AND SHORTFACE LANX Fisherola nuttalli

    SciTech Connect

    Neitzel, D. A.; Frest, T. J.

    1993-05-01

    At present, there are only two remaining sizable populations of Columbia pebblesnail Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington; the lower Salmon River and middle Snake River, Idaho; and possibly in Hells Canyon of the Snake River, Idaho, Washington, and Oregon; and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historical range. Large populations of the shortface lanx Fisherola nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach of the Columbia River, Washington; Hells Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde, Washington and Oregon; Imnaha and John Day rivers, Oregon; Bonneville Dam area of the Columbia River, Washington and Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River: Columbia pebblesnail to a population in the Hanford Reach plus six other sites that are separated by large areas of unsuitable habitat from those in the river's major mbutaries shortface lanx to two populations (in the Hanford Reach and near Bonneville Dam) plus nine other sites that are separated by large areas of unsuitable habitat from those in the river's major tributaries.

  6. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  7. Using Cottonwood Dendrochronology to Reconstruct River Discharge and Floodplain Dynamics, Yellowstone River, Montana

    NASA Astrophysics Data System (ADS)

    Schook, D. M.; Friedman, J. M.; Rathburn, S. L.

    2014-12-01

    Ecosystems and societies worldwide have evolved to depend upon the timing and magnitude of river discharge, and understanding past flows can help guide modern water management. We used tree rings of riparian plains cottonwoods (Populus deltoides subsp. monilifera) to reconstruct the history of flow variation and channel migration of a 20 km reach of the Yellowstone River in eastern Montana. Dendrochronological flow reconstructions commonly use upland trees, but our study highlights the improved resolution when floodplain trees are integrated into the data set . Our sample of 240 cottonwoods dating back to 1751 permits flow reconstruction of the Yellowstone to before the voyage of Lewis and Clark. Our tree ring series intercorrelation coefficient is 0.58, and the ring width index correlates to annual discharge at R = 0.67. Flow reconstruction indicates that the decades of highest (1820s, 1850s) and lowest (1830s, 1900s) flows all occurred prior to the instrumental record, revealing the value of an extended perspective. Cottonwood age distribution indicates that, like other western rivers, the rate of channel migration on the Yellowstone declined in the 20th century. However, the Yellowstone uniquely lacks mainstem dams and substantial water extractions, revealing the occurrence of hydrological and ecological change on a relatively natural river. Our study reach is the most geomorphically active of the entire 1100 km river between Yellowstone National Park and the Missouri River, but cottonwood age distribution reveals that trees that have established since the 1960s are underrepresented. The lack of younger cottonwood trees is likely caused by a decline in river migration rates, which may be attributed to i) climate change directly leading to a decline in fluvial processes driving river migration, ii) a decoupling in the timing of the snowmelt runoff receding limb and cottonwood seed release, or iii) both. Even on this relatively unmodified river, it appears that

  8. Conceptual Spawning Habitat Model to Aid in ESA Recovery Plans for Snake River Fall Chinook Salmon, 2002-2003 Annual Report.

    SciTech Connect

    Geist, David

    2005-09-01

    The goal of this project is to develop a spawning habitat model that can be used to determine the physical habitat factors that are necessary to define the production potential for fall chinook salmon that spawn in large mainstem rivers like the Columbia River's Hanford Reach and Snake River. This project addresses RPA 155 in the NMFS 2000 Biological Opinion: Action 155: BPA, working with BOR, the Corps, EPA, and USGS, shall develop a program to: (1) Identify mainstem habitat sampling reaches, survey conditions, describe cause-and-effect relationships, and identify research needs; (2) Develop improvement plans for all mainstem reaches; and (3) Initiate improvements in three mainstem reaches. During FY 2003 we continued to collect and analyze information on fall chinook salmon spawning habitat characteristics in the Hanford Reach that will be used to address RPA 155, i.e., items 1-3 above. For example, in FY 2003: (1) We continued to survey spawning habitat in the Hanford Reach and develop a 2-dimensional hydraulic and habitat model that will be capable of predicting suitability of fall chinook salmon habitat in the Hanford Reach; (2) Monitor how hydro operations altered the physical and chemical characteristics of the river and the hyporheic zone within fall chinook salmon spawning areas in the Hanford Reach; (3) Published a paper on the impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon (Dauble et al. 2003). This paper was made possible with data collected on this project; (4) Continued to analyze data collected in previous years that will ultimately be used to identify cause-and-effect relationships and identify research needs that will assist managers in the improvement of fall chinook habitat quality in main-stem reaches. During FY 2004 we plan to: (1) Complete preliminary reporting and submit papers based on the results of the project through FY 2004. Although we have proposed additional analysis of data be

  9. Early life history study of Grande Ronde River Basin chinook salmon. Annual progress report, September 1, 1994--August 31, 1995

    SciTech Connect

    Keefe, M.; Anderson, D.J.; Carmichasel, R.W.; Jonasson, B.C.

    1996-06-01

    The Grande Ronde River originates in the Blue Mountains in northeast Oregon and flows 334 kilometers to its confluence with the Snake River near Rogersburg, Washington. Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde basin also have been declining steadily and are substantially depressed from estimates of historic levels. It is estimated that prior to the construction of the Columbia and Snake River dams, more than 20,000 adult spring chinook salmon returned to spawn in the Grande Ronde River basin. A spawning escapement of 12,200 adults was estimated for the Grande Ronde River basin in 1957. Recent population estimates have been variable year to year, yet remain a degree of magnitude lower than historic estimates. In 1992, the escapement estimate for the basin was 1,022 adults (2.4 {times} number of redds observed). In addition to a decline in population abundance, a constriction of spring chinook salmon spawning distribution is evident in the Grande Ronde basin. Historically, 21 streams supported spawning chinook salmon, yet today the majority of production is limited to eight tributary streams and the mainstem upper Grande Ronde River. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. More than 80% of anadromous fish habitat in the upper Grande Ronde River is considered to be degraded.

  10. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    SciTech Connect

    Neitzel, D.A.; Frest, T.J.

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species` historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river`s major tributaries.

  11. Wind River Watershed Restoration 2004-2005 Annual Report.

    SciTech Connect

    Connolly, Patrick J.; Jezorek, Ian G.

    2008-11-10

    During 2004, researchers from U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. Juvenile salmonid population surveys were conducted within select study areas throughout the subbasin. We expanded our survey coverage of the mainstem Wind River to a reach in the vicinity of Carson National Fish Hatchery to assess effects of non-indigenous Chinook on native steelhead. These efforts add to a database of habitat and fish data collected in the Wind River since 1996. This research contributes to the Wind River Restoration Project, which includes active stream habitat restoration and monitoring of adult and juvenile steelhead populations. We maintained a network of 32 thermographs in the Wind River subbasin during 2004. Additionally, Underwood Conservation District provided us with data from seven thermographs that they maintained during 2004. Thermograph data are identifying areas with chronic high water temperatures and stream sections where high rates of warming are occurring. During 2004, water temperatures at 26 thermograph sites exceeded the 16 C limit for surface waters set by the Washington Department of Ecology. Water temperatures exceeded 20 C at five sites in the Trout Creek watershed. Our thermograph dataset includes information from as early as 1996 at some sites and has become a valuable long-term dataset, which will be crucial in determining bioenergetic relationships with habitat and life-histories. We have monitored salmonid populations throughout the Wind River subbasin by electrofishing and snorkeling. We electrofished four stream sections for population estimates during 2004. In these sections, and others where we simply collected fish without a population estimate, we tagged juvenile steelhead and Chinook salmon with Passive Integrated Transponder (PIT

  12. Distribution, persistence, and hydrologic characteristics of salmon spawning habitats in clearwater side channels of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.

    2011-01-01

    Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.

  13. Synoptic Discharge, Water-Property, and pH Measurements for Muddy River Springs Area and Muddy River, Nevada, February 7, 2001

    USGS Publications Warehouse

    Beck, David A.; Wilson, Jon W.

    2006-01-01

    On February 7, 2001, synoptic discharge measurements at selected sites along the Muddy River in Nevada, indicated three trends in discharge resulting from contributions of spring discharge, influences of diversionary flow, and contributions from shallow ground water. Effects from diversionary and tributary flow were local in nature and resulted in a net gain of 2.6 cubic feet per second throughout the measured reach. The minor increase in discharge may be the result of contributions from ground-water flow and measurement error. Comparison of 1963 and 2001 discharge measurements within the Muddy River Springs area indicated that discharge rates and trends from these source waters were similar. Along the mainstem of the Muddy River, water-temperature measurements indicated a net decrease of 8.8 degrees Celsius. Water samples collected and analyzed for specific conductance indicated a net increase of 390 microsiemens per centimeter at 25 degrees Celsius, whereas pH measurements remained relatively constant.

  14. Use of carboxylated microspheres to assess transport potential of Cryptosporidium parvum oocysts at the Russian River water supply facility, Sonoma County, California

    USGS Publications Warehouse

    Metge, D.W.; Harvey, R.W.; Anders, R.; Rosenberry, D.O.; Seymour, D.; Jasperse, J.

    2007-01-01

    Carboxylated microspheres were employed as surrogates to assess the transport potential of Cryptosporidium parvumoocysts during forced- and natural-gradient tests conducted in July and October 2004. The tests involved poorly-sorted, near-surface sediments where groundwater is pumped from an alluvial aquifer underlying the Russian River, Sonoma County, CA. In an off channel infiltration basin and within the river, a mixture (2-, 3-, and 5- ??m diameters) of fluorescently-labeled carboxylated microspheres and bromide tracers were used in two injection and recovery test to assess sediment removal efficiency for the microspheres. Bottom sediments varied considerably in their filtration efficiency for Cryptosporidium.

  15. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    SciTech Connect

    Neitzel, D.A. ); Frest, T.J. )

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries.

  16. Savannah River Laboratory monthly report, July 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  17. Savannah River Laboratory monthly report, July 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  18. Savannah River Laboratory monthly report, October 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  19. Savannah River Laboratory monthly report, October 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  20. Savannah River Laboratory monthly report, August 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. Savannah River Laboratory monthly report, August 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, November 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  3. Savannah River Laboratory monthly report, November 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, September 1991

    SciTech Connect

    Ferrell, J.M.

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, September 1991

    SciTech Connect

    Ferrell, J.M.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Coeur d'Alene Tribal Production Facility, Volume I of III, 2002-2003 Progress Report.

    SciTech Connect

    Anders, Paul

    2003-01-01

    In fulfillment of the NWPPC's 3-Step Process for the implementation of new hatcheries in the Columbia Basin, this Step 1 submission package to the Council includes four items: (1) Cover letter from the Coeur d'Alene Tribe, Interdisciplinary Team Chair, and the USFWS; (2) References to key information (Attachments 1-4); (3) The updated Master Plan for the Tribe's native cutthroat restoration project; and (4) Appendices. In support of the Master Plan submitted by the Coeur d'Alene Tribe the reference chart (Item 2) was developed to allow reviewers to quickly access information necessary for accurate peer review. The Northwest Power Planning Council identified pertinent issues to be addressed in the master planning process for new artificial production facilities. References to this key information are provided in three attachments: (1) NWPPC Program language regarding the Master Planning Process, (2) Questions Identified in the September 1997 Council Policy, and (3) Program language identified by the Council's Independent Scientific Review Panel (ISRP). To meet the need for off-site mitigation for fish losses on the mainstem Columbia River, in a manner consistent with the objectives of the Council's Program, the Coeur d'Alene Tribe is proposing that the BPA fund the design, construction, operation, and maintenance of a trout production facility located adjacent to Coeur d'Alene Lake on the Coeur d'Alene Indian Reservation. The updated Master Plan (Item 3) represents the needs associated with the re-evaluation of the Coeur d'Alene Tribe's Trout Production Facility (No.199004402). This plan addresses issues and concerns expressed by the NWPPC as part of the issue summary for the Mountain Columbia provincial review, and the 3-step hatchery review process. Finally, item 4 (Appendices) documents the 3-Step process correspondence to date between the Coeur d'Alene Tribe and additional relevant entities. Item 4 provides a chronological account of previous ISRP reviews

  7. Strategies and equipment for sampling suspended sediment and associated toxic chemicals in large rivers - with emphasis on the Mississippi River

    USGS Publications Warehouse

    Meade, R.H.; Stevens, H.H., Jr.

    1990-01-01

    A Lagrangian strategy for sampling large rivers, which was developed and tested in the Orinoco and Amazon Rivers of South America during the early 1980s, is now being applied to the study of toxic chemicals in the Mississippi River. A series of 15-20 cross-sections of the Mississippi mainstem and its principal tributaries is sampled by boat in downstream sequence, beginning upriver of St. Louis and concluding downriver of New Orleans 3 weeks later. The timing of the downstream sampling sequence approximates the travel time of the river water. Samples at each cross-section are discharge-weighted to provide concentrations of dissolved and suspended constituents that are converted to fluxes. Water-sediment mixtures are collected from 10-40 equally spaced points across the river width by sequential depth integration at a uniform vertical transit rate. Essential equipment includes (i) a hydraulic winch, for sensitive control of vertical transit rates, and (ii) a collapsible-bag sampler, which allows integrated samples to be collected at all depths in the river. A section is usually sampled in 4-8 h, for a total sample recovery of 100-120 l. Sampled concentrations of suspended silt and clay are reproducible within 3%.

  8. Temporal and spatial responses of river discharge to tectonic and climatic perturbations: Choshui River, Taiwan, and Typhoon Mindulle (2004)

    NASA Astrophysics Data System (ADS)

    Milliman, J. D.; Lee, T. Y.; Huang, J. C.; Kao, S. J.

    2015-03-01

    One reason that small mountainous rivers discharge disproportionately large quantities of sediment to the coastal ocean is because they are particularly susceptible to short-term episodic events, such as earthquakes and floods. The impact of such events, both temporally and spatially, however, has seldom been monitored. Here we report on the results of probably the most thorough monitoring of a flood ever undertaken: the effect of Typhoon Mindulle (2-4 July 2004) on the character of the water transported by the Choshui River, central western Taiwan, during which 74 million tons of sediment were discharged to the adjacent Taiwan Strait. Results from a series of 113 water samples obtained between 2nd and 4th July from five stations along the middle and lower reaches the river indicate that more than half of the suspended sediment was generated in nearby mountains before the river reached its flood plain. While the concentration of dissolved solids remained more or less constant along the mainstem of the river, the composition changed considerably, reflecting the imprints of local geology. An order-of-magnitude downstream increase in NO3- concentrations reflects the rapid draining of the Tsaoling landslide lake on the Chingshui River, as the 1999 earthquake-generated landslide dam was breached.

  9. Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.

    1998-11-10

    Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

  10. Vegetation and substrate on aeolian landscapes in the Colorado River corridor, Cataract Canyon, Utah

    USGS Publications Warehouse

    Draut, Amy E.; Gillette, Elizabeth R.

    2010-01-01

    Vegetation and substrate data presented in this report characterize ground cover on aeolian landscapes of the Colorado River corridor through Cataract Canyon, Utah, in Canyonlands National Park. The 27-km-long Cataract Canyon reach has undergone less anthropogenic alteration than other reaches of the mainstem Colorado River. Characterizing ecosystem parameters there provides a basis against which to evaluate future changes, such as those that could result from the further spread of nonnative plant species or increased visitor use. Upstream dams have less effect on the hydrology and sediment supply in Cataract Canyon compared with downstream reaches in Grand Canyon National Park. For this reason, comparison of these vegetation and substrate measurements with similar data from aeolian landscapes of Grand Canyon will help to resolve the effects of Glen Canyon Dam operations on the Colorado River corridor ecosystem.

  11. Arsenic data for streams in the uppper Missouri River Basin, Montana and Wyoming

    USGS Publications Warehouse

    Knapton, J.R.; Horpestad, A.A.

    1987-01-01

    Although large concentrations of arsenic originating from geothermal sources within Yellowstone National Park have been known to be present in the Madison River for many years, systematic monitoring throughout the upper Missouri River basin had not been done. Therefore, a monitoring network consisting of 24 stations was established for the purpose of measuring arsenic concentrations and determining arsenic discharge. Included were 5 sites on mainstems of the Madison and Missouri Rivers and 19 sites on major and some minor tributaries from Yellowstone National Park to Canyon Ferry Lake. Fifteen of the 24 stations were sampled 12 times from November 1985 to October 1986. The remaining stations were sampled twice during the year, at high flow and at low flow. Total recoverable arsenic discharge (loading) in pounds per day was calculated for each sample by multiplying total recoverable arsenic concentration by water discharge (obtained at time of sample collection) and a conversion factor. This report presents data resulting from the monitoring program. (USGS)

  12. Final Environmental Assessment and Finding of No Significant Impact: White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam

    SciTech Connect

    N /A

    2003-04-23

    Bonneville Power Administration (BPA) is proposing to fund the White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam Project. The project proposes to continue to carry out harvest monitoring and stock status updates coordinated with fisheries management planning, annual young-of-the year recruitment indexing, research, experimental artificial propagation, and transport of white sturgeon to less densely populated areas of the river(s). Additionally, release of hatchery-reared juveniles is proposed to evaluate release strategies. Actions will take place in the following Columbia River mainstem reaches: Bonneville, The Dalles, John Day, and McNary Reservoirs; Hanford Reach, as well as the Wanapum and Rock Island Reservoirs; and the following Snake River mainstem reaches: Ice Harbor, Lower Monumental and Little Goose Reservoirs. Spawning and rearing are undertaken at established hatcheries at McNary Dam and also the Abernathy Fish Technology Center. BPA has prepared an Environmental Assessment (EA) (DOE/EA-1367, April 2003) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and BPA is issuing this Finding of No Significant Impact (FONSI).

  13. A Dreissena Risk Assessment for the Colorado River Ecosystem

    USGS Publications Warehouse

    Kennedy, Theodore A.

    2007-01-01

    CRE, the risks of negative ecological impacts appear low. If Dreissena are able to attain moderate densities in Lees Ferry, estimates of filtration capacity indicate they are unlikely to substantially alter the composition (e.g., nutrient concentrations, suspended organic matter concentrations) of water exported from Lees Ferry. Further, a moderate density of Dreissena within Lees Ferry may actually increase food available to fishes by increasing habitat complexity and stimulating benthic production. If Dreissena attain moderate densities in the CRE mainstem, which seems unlikely, ecological impacts will probably be comparable to Lees Ferry-an increase in benthic production. Dreissena may have ecological impacts on the CRE, if they become established in Lake Powell and substantially alter the composition of water released from Glen Canyon Dam; however, it is unclear whether changes in the composition of water released from Glen Canyon Dam will have a net positive or negative impact on food availability in the CRE mainstem. The risk of Dreissena introduction to tributaries appears low. None of the tributaries have upstream lakes or reservoirs that could actually serve as a source population for Dreissena; reservoirs on the Little Colorado River may eventually support Dreissena, but they are far up in the watershed and the segment of river connecting them with the mainstem CRE is intermittent. If the CRE mainstem is colonized by Dreissena, there are no significant vectors for transporting them upstream into the tributaries. In addition, lethally high summer water temperatures make it unlikely that Dreissena will establish in many tributaries. Lake Powell is a logical focus for management and research efforts, given that maintenance of Dreissena populations within the CRE will require an upriver source population and the uncertainty associated with the downstream impact of changes in Lake Powell water quality.

  14. Hypothesis of historical effects from selenium on endangered fish in the Colorado River basin

    USGS Publications Warehouse

    Hamilton, S.J.

    1999-01-01

    Anthropogenic selenium contamination of aquatic ecosystems was first associated with cooling reservoirs of coal-fired power plants in the late 1970s, and later with drainage water from agricultural irrigation activities in the 1980s. In the 1990s, selenium contamination has been raised as a concern in the recovery of currently endangered fish in the Colorado River system. Widespread contamination from seleniferous drain waters from agriculture has been documented in the upper and lower Colorado River basins. Historically, irrigation started in the upper Colorado River basin in the late 1880s. In the 1930s, selenium concentrations in various drains, tributaries, and major rivers in the upper and lower Colorado River basins were in the 100s and 1000s of ??g/L. Native fish inhabiting large rivers such as the Colorado pikeminnow and razorback sucker were abundant before 1890, but became rare after 1910 to 1920, before the influence of mainstem reservoirs in the upper and lower Colorado River. A hypothesis is presented that selenium contamination of the tributaries and major rivers of the Colorado River basin in the 1890 to 1910 period caused the decline of the endangered fish and continues to inhibit their recovery. ?? 1999 by ASP.

  15. Distribution and movement of humpback chub in the Colorado River, Grand Canyon, based on recaptures

    USGS Publications Warehouse

    Paukert, C.P.; Coggins, L.G., Jr.; Flaccus, C.E.

    2006-01-01

    Mark-recapture data from the federally endangered humpback chub Gila cypha in the Colorado River, Grand Canyon, were analyzed from 1989 to 2002 to determine large-scale movement patterns and distribution. A total of 14,674 recaptures from 7,127 unique fish were documented; 87% of the recaptures occurred in the same main-stem river reach or tributary as the original captures, suggesting restricted distribution by most fish. A total of 99% of all recaptures were from in and around the Little Colorado River (LCR), a tributary of the Colorado River and primary aggregation and spawning location of humpback chub in Grand Canyon. Time at liberty averaged 394 d, but some fish were recaptured near their main-stem capture location over 10 years later. Proportionally fewer large (>300-mm) humpback chub exhibited restricted distribution than small (<200-mm) fish. However, several fish did move more than 154 km throughout Grand Canyon between capture and recapture, suggesting that limited movement occurs throughout Grand Canyon. The majority of the recaptured fish remained in or returned to the LCR or the Colorado River near the LCR. Although many large-river fishes exhibit extensive migrations to fulfill their life history requirements, most of the humpback chub in Grand Canyon appear to remain in or come back to the LCR and LCR confluence across multiple sizes and time scales. Detecting trends in the overall abundance of this endangered fish in Grand Canyon can probably be accomplished by monitoring the area in and around the LCR.

  16. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River

    USGS Publications Warehouse

    Galat, D.L.; Lipkin, R.

    2000-01-01

    Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used

  17. Modeling the effects of river flow on population dynamics of piping plovers (Charadrius melodus) and least terns (Sternula antillarum) nesting on the Missouri River

    SciTech Connect

    Buenau, Kate E.; Hiller, Tim L.; Tyre, Andrew J.

    2014-10-01

    Humans make extensive use of rivers and floodplains for economic benefits including agriculture, hydropower, commerce and recreation. Economic development of floodplains subsequently requires control of river levels to avoid flood damage. This process began in the Missouri River basin in the 1890s with the construction of a series of hydropower dams in Montana and escalated to new levels with the approval of the Pick-Sloan plan in the 1944 Flood Control Act. Maximizing these human uses of the river led to changes in and losses of hydrological and ecological processes, ultimately resulting in the federal listing of three fish and wildlife species under the Endangered Species Act: the pallid sturgeon (Scaphirhyncus albus; 1983), the piping plover (Charadrius melodus; 1984), and the interior population of least tern (Sternula antillarum; 1985). The listing of terns and plovers did not affect river management until the United States Army Corps of Engineers (USACE) proposed to modify the governing document of the Missouri River Mainstem System, the Master Manual, a process which was completed in 2003. Although there was little disagreement over the habitat conditions that terns and plovers used for nesting, there was substantial disagreement over the amount of habitat necessary for terns and plovers to meet population recovery goals. Answering this question requires forecasting species-specific population responses to dynamic habitat affected by both human actions (reservoir management and habitat restoration) and natural variability in precipitation. Piping plovers and least terns nest along the Missouri River from Fort Peck, Montana to just north of Sioux City, Iowa (Figure 1). Both species prefer to nest on sand and fine gravel substrates with no or sparse vegetation cover (Prindiville Gaines and Ryan, 1988; Sherfy et al., 2012), such as riverine sandbars (emergent sandbar habitat; ESH). Piping plovers also nest on reservoir shorelines that lack vegetation cover

  18. Influence of Cougar Reservoir Drawdown on Sediment and DDT Transport and Deposition in the McKenzie River Basin, Oregon, Water Years 2002-04

    USGS Publications Warehouse

    Anderson, Chauncey W.

    2007-01-01

    Construction of a selective withdrawal tower at Cougar Reservoir in the South Fork McKenzie River, Oregon, during 2002-05 resulted in a prolonged release of sediment and high-turbidity water to downstream reaches throughout the summer of 2002, with additional episodic releases during storms in the following winters. Suspended-sediment concentrations and loads at five continuously monitored turbidity and discharge gaging stations were estimated using regression methods. Deposition in salmonid spawning beds was measured using infiltration bags. Stations were located upstream and downstream of Cougar Reservoir in the South Fork McKenzie River, in the mainstem of the McKenzie River upstream of the South Fork and downstream of Blue River, and in Blue River downstream of Blue River Reservoir. During 2002, Cougar Reservoir released approximately 17,000 tons of suspended sediment into the South Fork McKenzie River, or more than twice the incoming load from the South Fork upstream of the reservoir. In 2003 and 2004, the release of sediment from Cougar Reservoir decreased to 10,900 and 4,100 tons, respectively. Although Cougar Reservoir likely was a substantial source of sediment to the lower reaches during water years 2002 and 2003, the lack of continuous turbidity monitoring at stations other than the South Fork McKenzie River prior to January 2003 prevents quantification of the actual contribution to the mainstem. During water year 2004, the only year with complete records at all sites, Cougar Reservoir released about 24 percent (4,100 tons) of the sediment load estimated on the mainstem near Vida (16,900 tons); however, the relative contribution of Cougar Reservoir is expected to have been substantially larger during 2002 and 2003 when the newly exposed river channel in the upper reaches of the reservoir was actively eroding and migrating. Deposition of fine (less than 0.063-millimeter diameter) sediment into spawning beds, measured with the use of deployed infiltration

  19. The formation and maintenance of single-thread tie channels entering floodplain lakes: observations from three diverse river systems

    SciTech Connect

    Rowland, Joel C; Dietrich, William E; Day, Geoff; Parker, Gary

    2009-01-01

    Tie channels connect rivers to floodplain lakes on many lowland rivers and thereby play a central role in floodplain sedimentology and ecology, yet they are generally unrecognized and little studied. here we report the results of field studies focused on tie channel origin and morphodynamics in three contrasting systems: the Middle Fly River, Papua New Guinea, the Lower Mississippi River, and Birch Creek in Alaska. Across these river systems, tie channels vary by an order of magnitude in size but exhibit the same characteristic morphology and appear to develop and evolve by a similar set of processes. In all three systems, the channels are characterized by a narrow, leveed single-thread morphology with maximum width approximately one tenth the width of the mainstem river. The channels typically have a V shaped cross-section, unlike most fluvial channels. These channels develop as lakes become isolated from the river by sedimentation. Narrowing of the connection between river and lake causes a sediment-laden jet to develop. Levees develop along the margins of the jet leading to channel emergence and eventual levee aggradation to the height of the mainstem levees. Bi-directional flow in these channels is common. Outflows from the lake scour sediment and prevent channel blockage. We propose that channel geometry and size are then controlled by a dynamic balance between channel narrowing by suspended sediment deposition and incision and widening by mass failure of banks during outflows. Tie channels are laterally stable and may convey flow for hundreds to a few thousand of years.

  20. The Reaches Project : Ecological and Geomorphic Dtudies Supporting Normative Flows in the Yakima River Basin, Washington, Final Report 2002.

    SciTech Connect

    Stanford, Jack A.; Lorang, Mark N.; Matson, Phillip L.

    2002-10-01

    The Yakima River system historically produced robust annual runs of chinook, sockeye, chum and coho salmon and steelhead. Many different stocks or life history types existed because the physiography of the basin is diverse, ranging from very dry and hot in the high desert of the lower basin to cold and wet in the Cascade Mountains of the headwaters (Snyder and Stanford 2001). Habitat diversity and life history diversity of salmonids are closely correlated in the Yakima Basin. Moreover, habitat diversity for salmonids and many other fishes maximizes in floodplain reaches of river systems (Ward and Stanford 1995, Independent Scientific Group 2000). The flood plains of Yakima River likely were extremely important for spawning and rearing of anadromous salmonids (Snyder and Stanford 2001). However, Yakima River flood plains are substantially degraded. Primary problems are: revetments that disconnect main and side channel habitats; dewatering associated with irrigation that changes base flow conditions and degrades the shallow-water food web; chemical and thermal pollution that prevents proper maturation of eggs and juveniles; and extensive gravel mining within the floodplain reaches that has severed groundwater-channel connectivity, increased thermal loading and increased opportunities for invasions of nonnative species. The Yakima River is too altered from its natural state to allow anything close to the historical abundance and diversity of anadromous fishes. Habitat loss, overharvest and dam and reservoir passage problems in the mainstem Columbia River downstream of the Yakima, coupled with ocean productivity variation, also are implicated in the loss of Yakima fisheries. Nonetheless, in an earlier analysis, Snyder and Stanford (2001) concluded that a significant amount of physical habitat remains in the five floodplain reaches of the mainstem river because habitat-structuring floods do still occur on the remaining expanses of floodplain environment. Assuming main

  1. Evidence of natural reproduction by Muskellunge in middle Tennessee rivers

    USGS Publications Warehouse

    Warren, Lila H.; Bettoli, Phillip William

    2014-01-01

    Native Esox masquinongy (Muskellunge) in the Cumberland River drainage, TN, were nearly extirpated in the 1970s due to decades of over-fishing and habitat degradation from coal mining, logging, and other land-use practices. In an effort to preserve the species in that drainage, a stocking program began in 1976 in the upper Caney Fork River system in middle Tennessee where Muskellunge were not native. A trophy Muskellunge fishery eventually developed, but it was unknown whether Muskellunge were reproducing in the upper Caney Fork River system or whether the fishery was wholly dependent on the stocking program. To establish evidence of natural reproduction, we used seines, backpack electrofishing, and boat electrofishing gear in 2012 to find age-0 Muskellunge in the upper Caney Fork River system. Natural reproduction of Muskellunge was documented in the mainstem Caney Fork River above Great Falls Dam and in 3 of its 4 major tributaries. Seventeen age-0 Muskellunge were collected and one other was observed, but not handled. Age-0 Muskellunge grew rapidly (1.80–2.34 mm/day), and the largest fish collected during the study reached a total length of 399 mm by 9 October 2012. A cessation of stocking for several years coupled with routine monitoring could reveal whether natural recruitment is sufficient to sustain the fishery.

  2. Consolidated Incineration Facility Tritium Emissions Monitoring

    SciTech Connect

    Dunn, D. L.; Aggus, J.R.

    1995-03-29

    The Savannah River Technology Center, a research and development facility at the US Department of Energy`s Savannah River Site, provides environmental and regulatory compliance support to onsite operations. A new consolidated Incinerator Facility at SRS is being built to treat hazardous and a combination of hazardous and radioactive (mixed) wastes.

  3. Relations among habitat characteristics, exotic species, and turbid-river cyprinids in the Missouri River drainage of Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Hubert, W.A.; Rahel, F.J.

    2004-01-01

    We used data from 91 stream reaches in the Missouri River drainage of Wyoming to determine whether abiotic and biotic factors were related to the abundance of four cyprinid species associated with turbid-river environments: flathead chub Platygobio gracilis, sturgeon chub Macrhybopsis gelida, plains minnow Hybognathus placitus, and western silvery minnow H. argyritis. The abundance of these cyprinids was positively related to the percentage of fine substrate in a reach and inversely related to the percentage of gravel substrate, the percentage of large rocky substrate, and the abundance of exotic piscivores. Differences in substrate composition and abundance of exotic piscivores were largely explained by the presence and location of large, mainstem impoundments. Reaches without any large impoundments in their watershed had a high percentage of fine substrate, high catch rates of turbid-river cyprinids, few exotic piscivores, and little gravel or large rocky substrate. Reaches with a downstream impoundment (i.e., within 200 km) had habitat characteristics similar to those without impoundments but had few turbid-river cyprinids and many exotic piscivores. Reaches with an upstream impoundment (i.e., within 200 km) had little fine substrate, a high percentage of large rocky substrate, few turbid-river cyprinids, and many exotic piscivores. Our results suggest that impoundments have had a substantial influence on the distribution and abundance of cyprinid species adapted to hydrologically dynamic, turbid prairie streams and that conserving these species is dependent on maintaining natural flow and sediment transport regimes and on reducing habitat suitability for exotic piscivores.

  4. Low PCB concentrations observed in American eel (Anguilla rostrata) in six Hudson River tributaries

    USGS Publications Warehouse

    Limburg, K.E.; Machut, L.S.; Jeffers, P.; Schmidt, R.E.

    2008-01-01

    We analyzed 73 eels, collected in 2004 and 2005 above the head of tide in six Hudson River tributaries, for total PCBs, length, weight, age, and nitrogen stable isotope ratios (??15N). Mean total PCB concentration (wet weight basis) was 0.23 ppm ?? 0.08 (standard error), with a range of 0.008 to 5.4 ppm. A majority of eels (84) had concentrations below 0.25 ppm, and only seven eels (10%) had concentrations exceeding 0.5 ppm. Those eels with higher PCB concentrations were ???12 yr; there was a weak correlation of PCB concentration with ??15N and also with weight. Compared to recent (2003) data from the mainstem of the Hudson River estuary, these results indicate that tributaries are generally much less contaminated with PCBs. We hypothesize that those tributary eels with high PCB concentrations were relatively recent immigrants from the mainstem. Given concern over the possible adverse effects of PCBs on eel reproduction, these tributaries may serve as refugia. Therefore, providing improved access to upland tributaries may be critically important to this species. ?? 2008 Northeastern Naturalist.

  5. Impact of Flow Regulation on Channel Morphology Around Tributary Junctions, West and White Rivers, Vermont

    NASA Astrophysics Data System (ADS)

    Renshaw, C.; Curtis, K.; Magilligan, F.; Dade, W.

    2008-12-01

    By resupplying the mainstem with water and sediment, tributaries are a primary mechanism for mitigating the impacts of flow regulation. As a result, morphological and ecological adjustments associated with flow regulation may be particularly pronounced at tributary junctions. Despite the extensive literature on how dams alter channel morphology, few studies have focused specifically on the relationship between flow regulation and consequent changes in bedload sediment transport at tributary junctions. Using historical aerial photographs, modern channel surveys, and flow modeling, we compare temporal changes between regulated and unregulated tributary junction morphology and sediment transport dynamics. In contrast to what has been observed along the Colorado River, where flow regulation has led to a reduction in the number and size of channel bars, we observe significant bar growth post-regulation along the West River in southern Vermont. In some cases exposed bar area increased more than 50 percent in the first three decades after regulation and coincides with a corresponding reduction in channel width. Revegetation of former floodplain surfaces has begun to reduce the exposed bar area. However, flow modeling indicates that the channel remains underfit with respect to the new flow regime, with the current 2- and 50-yr floods lacking sufficient competence to transport the bedload sediment discharged by tributaries. Thus even 50 years post regulation, additional morphological changes are still required for the mainstem channel to fully adjust to the new flow regime.

  6. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA

    USGS Publications Warehouse

    Ripley, J.; Iwanowicz, L.; Blazer, V.; Foran, C.

    2008-01-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. ?? 2008 SETAC.

  7. Utilization of protein expression profiles as indicators of environmental impairment of smallmouth bass (Micropterus dolomieu) from the Shenandoah River, Virginia, USA.

    PubMed

    Ripley, Jennifer; Iwanowicz, Luke; Blazer, Vicki; Foran, Christy

    2008-08-01

    The Shenandoah River (VA, USA), the largest tributary of the Potomac River (MD, USA) and an important source of drinking water, has been the site of extensive fish kills since 2004. Previous investigations indicate environmental stressors may be adversely modulating the immune system of smallmouth bass (Micropterus dolomieu) and other species. Anterior kidney (AK) tissue, the major site of blood cell production in fish, was collected from smallmouth bass at three sites along the Shenandoah River. The tissue was divided for immune function and proteomics analyses. Bactericidal activity and respiratory burst were significantly different between North Fork and mainstem Shenandoah River smallmouth bass, whereas South Fork AK tissue did not significantly differ in either of these measures compared with the other sites. Cytotoxic cell activity was highest among South Fork and lowest among North Fork AK leukocytes. The composite two-dimension gels of the North Fork and mainstem smallmouth bass AK tissues contained 584 and 591 spots, respectively. South Fork smallmouth bass AK expressed only 335 proteins. Nineteen of 50 proteins analyzed by matrix-assisted laser desorption ionization-time of flight were successfully identified. Three of the four identified proteins with increased expression in South Fork AK tissue were involved in metabolism. Seven proteins exclusive to mainstem and North Fork smallmouth bass AK and expressed at comparable abundances serve immune and stress response functions. The proteomics data indicate these fish differ in metabolic capacity of AK tissue and in the ability to produce functional leukocytes. The variable responses of the immune function assays further indicate disruption to the immune system. Our results allow us to hypothesize underlying physiological changes that may relate to fish kills and suggest relevant contaminants known to produce similar physiological disruption. PMID:18315392

  8. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  9. Watershed processes, fish habitat, and salmonid distribution in the Tonsina River (Copper River watershed), Alaska

    NASA Astrophysics Data System (ADS)

    Booth, D. B.; Ligon, F. K.; Sloat, M. R.; Amerson, B.; Ralph, S. C.

    2007-12-01

    The Copper River watershed is a critical resource for northeastern Pacific salmon, with annual escapements in the millions. The Tonsina River basin, a diverse 2100-km2 tributary to the Copper River that supports important salmonid populations, offers an opportunity to integrate watershed-scale channel network data with field reconnaissance of physical processes and observed distribution of salmonid species. Our long-term goals are to characterize habitats critical to different salmonid life stages, describe the geologic context and current geologic processes that support those habitats in key channel reaches, and predict their watershed-wide distribution. The overarching motivation for these goals is resource conservation, particularly in the face of increased human activity and long-term climate change. Channel geomorphology within the Tonsina River basin reflects inherited glacial topography. Combinations of drainage areas, slopes, channel confinement, and sediment-delivery processes are unique to this environment, giving rise to channel "types" that are recognizable but that do not occur in the same positions in the channel network as in nonglaciated landscapes. We also recognize certain channel forms providing fish habitat without analog in a nonglacial landscape, notably relict floodplain potholes from once-stranded and long-melted ice blocks. Salmonid species dominated different channel types within the watershed network. Sockeye salmon juveniles were abundant in the low-gradient, turbid mainstem; Chinook juveniles were also captured in the lower mainstem, with abundant evidence of spawning farther downstream. Coho juveniles were abundant in upper, relatively large tributaries, even those channels with cobble-boulder substrates and minimal woody debris that provide habitats more commonly utilized by Chinook in low-latitude systems. More detailed field sampling also revealed that patterns of species composition and abundance appeared related to small

  10. Hydrotechnical facilities within the Chernobyl nuclear power plant exclusion zone: impacts on hydrologic regime and plant growth patterns of floodplain water bodies of the Pripyat River.

    PubMed

    Gudkov, D I; Zub, L N; Savitsky, A L

    2003-01-01

    As result of the Chernobyl nuclear power plant accident the territory of the left-bank flood-lands of the Pripyat River have undergone intensive radionuclide contamination. With the purpose of preventing the washing away of radioactive substances, a complex of flood protection dams was constructed. This construction changed the hydrological regime of these territories and caused overgrowth by higher aquatic plants. Absence of a flowing mode of reservoirs, the stagnant phenomena during spring and seasonal high waters on the embank site have caused amplification of eutrophication processes, swamping and, connected with it, increase of water-marsh floristic complex in the structure of the vegetative cover. PMID:14653638

  11. Anchoring submersible ultrasonic receivers in river channels with stable substrate

    USGS Publications Warehouse

    Bettoli, Phillip William; Scholten, G.D.; Hubbs, D.

    2010-01-01

    We developed an anchoring system for submersible ultrasonic receivers (SURs) that we placed on the bottom of the riverine reaches of three main-stem reservoirs in the upper Tennessee River. Each anchor consisted of a steel tube (8.9 x 35.6 cm) welded vertically to a round plate of steel (5.1 x 40.6 cm). All seven SURs and their 57-kg anchors were successfully deployed and retrieved three times over 547 d by a dive team employing surface air-breathing equipment and a davit-equipped boat. All of the anchors and their SURs remained stationary over two consecutive winters on the hard-bottom, thalweg sites where they were deployed. The SUR and its anchor at the most downriver site experienced flows that exceeded 2,100 m(3)/s and mean water column velocities of about 0.9 m/s.

  12. Source of atrazine and desethylatrazine in a river, during base flow

    USGS Publications Warehouse

    Squillace, Paul J.; Thurman, E. Michael; Fischer, Edward E.; Soenksen, Phil J.

    1991-01-01

    A budget of atrazine and desethylatrazine loads was computed for a 116-kilometer reach of the Cedar River in Iowa to determine where these compounds enter the river during base-flow conditions. Loads were determined by measuring discharge and concentrations of the compounds for four main-stem sites along the Cedar River and for 27 tributaries on September 20-22, 1989. Tributaries contributed 17 percent of the increased atrazine load and 24 percent of the increased desethylatrazine load measured between the extreme upstream and downstream sites on the Cedar River. The remaining 76 to 83 percent of the increased loads were attributed to input along the groundwater's main stem. The ground-water samples were collected at depths from 1 to 2 meters beneath the river bottom where the ground water was determined to be moving toward the river. The sources of atrazine and desethylatrazine detected in the ground water may include bank storage of river water or ground-water recharge originating at some distance from the river.

  13. Ecological relevance of current water quality assessment unit designations in impaired rivers.

    PubMed

    Layhee, Megan; Sepulveda, Adam; Ray, Andrew; Mladenka, Greg; Van Every, Lynn

    2015-12-01

    Managers often nest sections of water bodies together into assessment units (AUs) to monitor and assess water quality criteria. Ideally, AUs represent an extent of waters with similar ecological, watershed, habitat and land-use conditions and no overlapping characteristics with other waters. In the United States, AUs are typically based on political or hydrologic boundaries rather than on ecologically relevant features, so it can be difficult to detect changes in impairment status. Our goals were to evaluate if current AU designation criteria of an impaired water body in southeastern Idaho, USA that, like many U.S. waters, has three-quarters of its mainstem length divided into two AUs. We focused our evaluation in southeastern Idaho's Portneuf River, an impaired river and three-quarters of the river is divided into two AUs. We described biological and environmental conditions at multiple reaches within each AU. We used these data to (1) test if variability at the reach-scale is greater within or among AUs and, (2) to evaluate alternate AU boundaries based on multivariate analyses of reach-scale data. We found that some biological conditions had greater variability within an AU than between AUs. Multivariate analyses identified alternative, 2- and 3-group, AUs that reduced this variability. Our results suggest that the current AU designations in the mainstem Portneuf River contain ecologically distinct sections of river and that the existing AU boundaries should be reconsidered in light of the ecological conditions measured at the reach scale. Variation in biological integrity within designated AUs may complicate water quality and biological assessments, influence management decisions or affect where monitoring or mitigation resources are directed. PMID:26210354

  14. Ecological relevance of current water quality assessment unit designations in impaired rivers

    USGS Publications Warehouse

    Layhee, Megan J.; Sepulveda, Adam; Ray, Andrew; Mladenka, Greg; Van Every, Lynn

    2016-01-01

    Managers often nest sections of water bodies together into assessment units (AUs) to monitor and assess water quality criteria. Ideally, AUs represent an extent of waters with similar ecological, watershed, habitat and land-use conditions and no overlapping characteristics with other waters. In the United States, AUs are typically based on political or hydrologic boundaries rather than on ecologically relevant features, so it can be difficult to detect changes in impairment status. Our goals were to evaluate if current AU designation criteria of an impaired water body in southeastern Idaho, USA that, like many U.S. waters, has three-quarters of its mainstem length divided into two AUs. We focused our evaluation in southeastern Idaho's Portneuf River, an impaired river and three-quarters of the river is divided into two AUs. We described biological and environmental conditions at multiple reaches within each AU. We used these data to (1) test if variability at the reach-scale is greater within or among AUs and, (2) to evaluate alternate AU boundaries based on multivariate analyses of reach-scale data. We found that some biological conditions had greater variability within an AU than between AUs. Multivariate analyses identified alternative, 2- and 3-group, AUs that reduced this variability. Our results suggest that the current AU designations in the mainstem Portneuf River contain ecologically distinct sections of river and that the existing AU boundaries should be reconsidered in light of the ecological conditions measured at the reach scale. Variation in biological integrity within designated AUs may complicate water quality and biological assessments, influence management decisions or affect where monitoring or mitigation resources are directed.

  15. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations. Savannah River Site 200-S Area

    SciTech Connect

    Randall, D.; Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; ``Just-in-Time`` precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  16. Linking River Morphology to Larval Drift of an Endangered Sturgeon

    NASA Astrophysics Data System (ADS)

    Bazzetta, L.; Jacobson, R. B.; Braaten, P. J.; Elliott, C. M.; Reuter, J. M.

    2009-12-01

    Computational models developed to calculate longitudinal advection and dispersion of contaminants in rivers have potential application in predicting larval drift. A critical component of this family of models is the longitudinal dispersion coefficient which parameterizes the processes that retain and distribute a contaminant along the river. Here we evaluate the potential for longitudinal dispersion coefficients to characterize larval drift of the endangered pallid sturgeon (Scaphirhynchus albus) in various segments of the free-flowing Missouri River ranging from Missouri to Montana. We randomly selected transects of acoustic Doppler current profiler (ADCP) flow velocity data from reach-scale datasets that were collected in the Missouri River from 2002-2008 under comparable discharge conditions. We used previously developed equations (Kim and others, 2007) to calculate a one-dimensional longitudinal dispersion coefficient for each ADCP transect. We compared the statistical distributions of these coefficients for 2 to 6 reaches chosen from each of six geomorphic segments of the Missouri. Distributional patterns indicate that dispersion coefficients relate to observed variation in hydrology and geomorphology of the channel at the segment scale. Although one-dimensional dispersion analysis demonstrates potential as a tool for estimating pallid sturgeon larval drift and habitat suitability in unchannelized portions of the Missouri River, the large spatial variation in calculated dispersion coefficients resulting from river-training structures (wing dikes) in the Lower Missouri complicates selection of appropriate values. Recent data indicating that pallid sturgeon larvae occur in greater concentration in the thalweg indicate that the majority of larvae may bypass these structures and their associated retentive eddies. A two-dimensional space-averaged dispersion calculation and analysis may more accurately characterize the potential drift times and distances of larval

  17. Integrated Hatchery Operations Team: Operations Plans for Anadromous Fish Production Facilities in the Columbia River Basin, Volume V of V; 1992 Annual Report.

    SciTech Connect

    Weld, Enair

    1993-04-01

    Virtually all fishery resources of the Columbia River Basin are affected by water resource development initiatives. Mitigation is an action taken to lessen or reduce impacts of projects on fishery resources. The Washington Department of Wildlife`s (WDW) mitigation goal has been one that replaces in-kind or substitutes fishery resources of equal value for those impacted. WDW mitigation efforts have focused on providing hatchery-reared fish of the proper strains needed to compensate for loss of naturally produced stocks. Stewardship of these resources is based on existing WDW policies. WDW policies are written statements designed to resolve a recurring management need or problem. They do not include program goals or organization statements. The existing policies which affect fish hatchery operations are described herein.

  18. Feasibility of Documenting and Estimating Adult Fish Passage at Large Hydroelectric Facilities in the Snake River Using Video Technology; 1992 Annual Report.

    SciTech Connect

    Hatch, Douglas R.; Pederson, David R.; Schartzberg, Mathew

    1993-03-01

    A field study was conducted at Lower Granite Dam on the Snake River in 1992 to evaluate the feasibility of using time-lapse video technology to document and estimate fish ladder passage of chinook salmon Oncorhynchus tshawytscha, sockeye salmon 0. nerka, and steelhead 0. mykiss using time-lapse video technology. High quality video images were produced with a time-lapse video system operating in 72 h mode from 1 May through 31 December, 1992 and fish were counted from 1 June through 15 December. From the video record we counted 15 sockeye salmon, 3,283 summer chinook salmon, 1,022 fall chinook salmon, and 125,599 steelhead. The composite count of target species generated from the video record was similar (p = 0.617) to the estimate made by on-site counters during identical time periods indicating that the two methods were precise. Comparisons of 24 h video counts and on-site (10 and 16 h) counts showed that a significant (p < 0.001) proportion of target salmonids migrated during the nighttime when on-site counts are not typically made at Lower Granite Dam. The mean sockeye salmon fork length measured from video images was 453 mm. Mean fork-lengths reported for Snake River sockeye salmon between 1953 and 1965 were much greater ({female} = 546 mm {male} = 577 mm). Cost comparisons showed that video costs were less than half those of on-site counting methods. The video method also included the collection of additional data. A computer software demonstration program was developed that graphically illustrated the possibilities of a completely automated, computerized fish counting and identification system.

  19. Spawning and abundance of fall chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, 1948--1988

    SciTech Connect

    Dauble, D.D.; Watson, D.G.

    1990-03-01

    The Hanford Reach of the Columbia River provides the only major spawning habitat for the upriver bright (URB) race of fall chinook salmon in the mainstem Columbia River. Hanford Site biologists have conducted aerial surveys of spawning salmon in the Hanford Reach since 1948. This report summarizes data on fall chinook salmon spawning in the Hanford Reach and presents a discussion of factors that may affect population trends. Most data are limited to fisheries agency reports and other working documents. Fisheries management practices in the Columbia River system have changed rapidly over the last decade, particularly under requirements of the Pacific Northwest Power Planning and Conservation Act of 1980. New information has been generated and included in this report. 75 refs., 17 figs., 11 tabs.

  20. Aquatic ecosystem condition: The Fraser River Action Plan approach

    SciTech Connect

    Tuominen, T.; Raymond, B.; Sekela, M.; Reynoldson, T.

    1995-12-31

    A major goal of the Canadian government`s Fraser River Action Plan (FRAP) is to clean up existing pollution problems in the Fraser River Basin. In support of this goal, the Environmental Quality Assessment Program is assessing the quality of the aquatic environment, particularly with respect to contaminants. The program, conducted from 1993 to 1998, is to establish a baseline condition for the aquatic ecosystem against which the success of clean up efforts can be measured. The FRAP approach is to use a combination of contaminant exposure or stressor indicators and organism ``effects`` indicators. The focus is on three components of the aquatic ecosystem: (1) bed sediment, (2) resident fish and (3) benthos. A priority for the program is integration of the three components, wherever possible. Bed sediments, as indicators of contaminant stress, are sampled at fourteen reaches in the river and major tributaries. Two species of resident fish are sampled and analyzed for condition factors, enzyme induction, histopathology and contaminant content at each of nine sites in the basin. The resident fish data are providing a measure of contaminant exposure and effect. Organism community effects will be assessed by a study which is classifying approximately 200 tributary and mainstem sites based on benthos community structure. For the first time in a large river system in Canada, this benthos study uses a multivariate approach which relates a suite of chemical and physical characteristics to benthos community structure.

  1. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  2. World-wide redistribution of 129Iodine from nuclear fuel reprocessing facilities:results from meteoric, river, and seawater tracer studies

    SciTech Connect

    Fehn, U; Moran, J E; Oktay, S; Santschi, P H; Schink, D R; Snyder, G

    1998-10-02

    Releases of the long-lived radioisotope of iodine, 129I from commercial nuclear fuel reprocessing facilities in England and France have surpassed natural, and even bomb test inventories. 129I/127I ratios measured in a variety of environmental matrices from Europe, North America and the southern hemisphere show the influence of fuel reprocessing-derived 129I, which is transported globally via the atmosphere. Transport and cycling of I and 129I in the hydrosphere and in soils are described based on a spatial survey of 129I in freshwater.

  3. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  4. Use of a portable electric barrier to estimate Chinook salmon escapement in a turbid Alaskan river

    USGS Publications Warehouse

    Palmisano, A.; Burger, C.V.

    1988-01-01

    We developed a portable electric barrier to aid in the capture of adult chinook salmon Oncorhynchus tshawytscha undergoing spawning migrations up a turbid stream in south-central Alaska. In 1981, we tagged and released 157 chinook salmon after diverting them from the main-stem Killey River into a conventional trap with the aid of the electric barrier. On the basis of returns of tagged salmon to Benjamin Creek, a clear-water tributary of the upper Killey River, we estimated spawners in the drainage to number 8,000 fish. Two different statistical approaches to the mark–recapture data yielded similar estimates. Through several modifications of the electric barrier, we were able to reduce mortality associated with the barrier's use.

  5. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    SciTech Connect

    Volkman, Jed; Sexton, Amy D.

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  6. Sediment Budgeting in Dam-Affected Rivers: Assessing the Influence of Damming, Tributaries, and Alluvial Valley Sediment Storage on Sediment Regimes

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; Dekker, F. J.; Riebe, C. S.

    2014-12-01

    Although sediment supply is recognized as a fundamental driver of fluvial processes, measuring how dams affect sediment regimes and incorporating such knowledge into management strategies remains challenging. To determine the influences of damming, tributary supply, and valley morphology and sediment storage on downstream sediment supply in a dryland river, the Bill Williams River (BWR) in western Arizona, we measured basin erosion rates using cosmogenic nuclide analysis of beryllium-10 (10Be) at sites upstream and downstream of a dam along the BWR, as well as from tributaries downstream of the dam. Riverbed sediment mixing calculations were used to test if the dam, which blocks sediment supply from the upper 85% of the basin's drainage area, increases the proportion of tributary sediment to residual upstream sediment in mainstem samples downstream of the dam. Erosion rates in the BWR watershed are more than twice as large in the upper catchment (136 t km-2 yr-1) than in tributaries downstream of Alamo Dam (61 t km-2 yr-1). Tributaries downstream of the dam have little influence on mainstem sediment dynamics. The effect of the dam on reducing sediment supply is limited, however, because of the presence of large alluvial valleys along the mainstem BWR downstream of the dam that store substantial sediment and mitigate supply reductions from the upper watershed. These inferences, from our 10Be derived erosion rates and mixing calculations, are consistent with field observations of downstream changes in bed material size, which suggest that sediment-deficit conditions are restricted to a 10 km reach downstream of the dam, and limited reservoir bathymetry data. Many studies have suggested that tributary sediment inputs downstream of dams play a key role in mitigating dam-induced sediment deficits, but here we show that in a dryland river with ephemeral tributaries, sediment stored in alluvial valleys can also play a key role and in some cases trumps the role of

  7. Development of water facilities in the Santa Ana River Basin, California, 1810-1968: a compilation of historical notes derived from many sources describing ditch and canal companies, diversions, and water rights

    USGS Publications Warehouse

    Scott, M.B.

    1977-01-01

    its tributaries for irrigation. The Santa Ana River had been a perennial stream, except in years of extreme drought, from its source in the mountains nearly to the Pacific Ocean. With the great increase in population and the accompanying use of water for irrigation, the river was no longer a perennial stream, and it was necessary to supplement the surface-water supply with ground water. Many wells were dug or drilled in the artesian areas of the upper basin; of those wells many originally flowed, but as ground-water pressures and levels declined, an increasing amount of pumping was required. Conservation measures were taken to store some of the surplus winter runoff for use during low runoff years and during summer periods of heavy demand. Conservation facilities included surface-storage reservoirs and water-spreading grounds or percolation basins for utilization of underground storage. The competition for water in the Santa Ana River basin has been accompanied by frequent litigation over water tights, and over the years these water rights have generally been established by court decree. Although the demand for water still increases, the water demand for agricultural use has declined since the mid-1940's in response to the rapid urbanization of agricultural areas. Since that date the continued expansion of communities has encroached significantly into the agricultural areas causing a decrease in water use for agriculture, a more than compensating increase in water use for municipal purposes, and a rapid change in the ownership of water rights. The urbanization of flood plains made floods potentially more damaging than they previously had been when the flood plains were used for agriculture. In recognition of this increased hazard, flood-control facilities such as reservoirs, debris basins, flood-conveyance channels, and levees have been constructed to reduce potential damage. Most of the construction has occurred since the devastating flood of March 1938. By the mid

  8. Anacostia River fringe wetlands restoration project: final report for the five-year monitoring program (2003 through 2007)

    USGS Publications Warehouse

    Krafft, Cairn C.; Hammerschlag, Richard S.; Guntenspergen, Glenn R.

    2009-01-01

    The 6-hectare (ha) freshwater tidal Anacostia River Fringe Wetlands (Fringe Wetlands) were reconstructed along the mainstem of the Anacostia River in Washington, DC (Photograph 1, Figure 1) during the summer of 2003. The Fringe Wetlands consist of two separate planting cells. Fringe A, located adjacent to Lower Kingman Island, on the west bank of the Anacostia River, occupies 1.6 ha; Fringe B, located on the east bank of the Anacostia River, occupies 4.4 ha. This project is the third in a series of freshwater tidal wetland reconstructions on the Anacostia River designed and implemented by the US Army Corps of Engineers (USACE) Baltimore District and District Department of the Environment (DDOE) on lands managed by the National Park Service (NPS). The first was Kenilworth Marsh, reconstructed in 1993 (Syphax and Hammerschlag 2005); the second was Kingman Marsh, reconstructed in 2000 (Hammerschlag et al. 2006). Kenilworth and Kingman were both constructed in low-energy backwaters of the Anacostia. However, the Fringe Wetlands, which were constructed on two pre-existing benches along the high-energy mainstem, required sheet piling to provide protection from erosive impacts of increased flow and volume of water associated with storm events during the establishment phase (Photograph 2). All three projects required the placement of dredged sediment materials to increase elevations enough to support emergent vegetation (Photograph 3). The purpose of all three wetland reconstruction projects was to restore pieces of the once extensive tidal freshwater marsh habitat that bordered the Anacostia River historically, prior to the dredge and fill operations and sea wall installation that took place there in the early to mid-1900's (Photograph 4).

  9. Assessment of potential effects of water produced from coalbed natural gas development on macroinvertebrate and algal communities in the Powder River and Tongue River, Wyoming and Montana, 2010

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Feldman, David L.

    2011-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency aquatic task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. Ecological assessments, made from 2005–08 under the direction of the task group, indicated biological condition of the macroinvertebrate and algal communities in the middle reaches of the Powder was lower than in the upper or lower reaches. On the basis of the 2005–08 results, sampling of the macroinvertebrate and algae communities was conducted at 18 sites on the mainstem Powder River and 6 sites on the mainstem Tongue River in 2010. Sampling-site locations were selected on a paired approach, with sites located upstream and downstream of discharge points and tributaries associated with coalbed natural gas development. Differences in biological condition among site pairs were evaluated graphically and statistically using multiple lines of evidence that included macroinvertebrate and algal community metrics (such as taxa richness, relative abundance, functional feeding groups, and tolerance) and output from observed/expected (O/E) macroinvertebrate models from Wyoming and Montana. Multiple lines of evidence indicated a decline in biological condition in the middle reaches of the Powder River, potentially indicating cumulative effects from coalbed natural gas discharges within one or more reaches between Flying E Creek and Wild Horse Creek in Wyoming. The maximum concentrations of alkalinity in the Powder River also occurred in the middle reaches. Biological condition in the upper and lower reaches of the Powder River was variable, with declines between some site pairs, such as upstream and downstream of Dry Fork and Willow Creek, and increases at others, such as upstream and downstream of Beaver Creek. Biological condition at site pairs on the Tongue River showed an increase in one case

  10. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1994 and FY-1995

    SciTech Connect

    1995-12-01

    The Savannah River Ecology Laboratory initiated ecological studies related to the construction of the DWPF on the SRS in FY-1979. Two areas have been used for biological surveys and long-term monitoring: the DWPF construction site (S-Area and Z-Area), and two control sites (Rainbow Bay and Tinker Creek). The Rainbow Bay study area and S-Area are located within 5 km of each other on the SRS, and both once contained Carolina bays which were very similar ecologically. One goal of the SREL`s faunal studies is to compare the natural variation in amphibian populations at the Rainbow Bay control site to the variation observed at the human-altered site (Sun Bay, formerly on the DWPF construction site). Pre-construction biological surveys included data on vegetation, birds, mammals, amphibians, reptiles, fish and several invertebrate groups. No species on the Federal Endangered or Threatened lists were found on either site, but several plants and animals of threatened or special-concern status in South Carolina were present and the gopher frog (Rana areolata) currently is being considered for federal listing. Continuing studies are directed towards assessing construction impacts on the biota and towares modeling the effects of alteration of wetland hydroperiod on the biota. Primary emphasis is being paced on evaluation the effectiveness of mitigation measures undertaken by DOE.

  11. Feasibility of Documenting and Estimating Adult Fish Passage at Large Hydroelectric Facilities in the Snake River Using Video Technology; 1993 Final Report.

    SciTech Connect

    Hatch, Douglas R.; Pederson, David R.; Fryer, Jeffrey

    1994-07-01

    Lower Granite Dam on the Snake River to evaluate the feasibility of using video technology to document and estimate fish ladder passage of chinook salmon Oncorhynchus tshawytscha, sockeye salmon O. nerka, and steelhead O. mykiss. A video system was to produced video images during salmon passage periods. A technician identified and counted fish images from the video record. Fish ladder passage estimates of target species made from the video record were similar to estimates made by on-site counters during daytime periods, indicating that the two methods were relatively precise. We also found that a significant percentage (6.4% and 8.3%) of target salmonids migrated during nighttime periods when on-site counts were not typically made during the two years of study. Analysis of the video record permitted verification of individual sockeye salmon identified and counted by on-site count personnel, and provided data useful to managers of this ESA-listed stock. Analysis of the video record also permitted collection of additional data such as length measurements of individual specimens, which was used to regulate a fishery located upstream.

  12. Biological inventory of the proposed site of the Defense Waste Processing Facility on the Savannah River Plant in Aiken, South Carolina. Annual report

    SciTech Connect

    Vitt, L.J.

    1981-10-01

    Continued inventories of biota at the Defense Waste Processing Facility (DWPF) site have resulted in the identification of indicator species (Representative Important Species) in addition to adding to our long-term data base on biota of the site. A large number of plant, insect, miscellaneous invertebrate, fish, amphibian, reptile, bird, and mammal species occur on the DWPF site. Of these, there are no nationally Threatened or Endangered species. Three plant species considered Threatened by the State of South Carolina occur on the DWPF site, and one of these, the spathulate seed box is known on the SRP only from Sun Bay, the Carolina bay located directly on the DWPF site. Mitigation attempts to relocate species are discussed. Monitoring will continue. (PSB)

  13. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

    PubMed Central

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-01-01

    The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. δ13C of dissolved inorganic carbon ranged between −28.1‰ and −5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin. PMID:24954525

  14. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin)

    NASA Astrophysics Data System (ADS)

    Bouillon, Steven; Yambélé, Athanase; Gillikin, David P.; Teodoru, Cristian; Darchambeau, François; Lambert, Thibault; Borges, Alberto V.

    2014-06-01

    The Oubangui is a major tributary of the Congo River. We describe the biogeochemistry of contrasting tributaries within its central catchment, with watershed vegetation ranging from wooded savannahs to humid rainforest. Compared to a 2-year monitoring record on the mainstem Oubangui, these tributaries show a wide range of biogeochemical signatures, from highly diluted blackwaters (low turbidity, pH, conductivity, and total alkalinity) in rainforests to those more typical for savannah systems. Spectral analyses of chromophoric dissolved organic matter showed wide temporal variations in the Oubangui compared to spatio-temporal variations in the tributaries, and confirm that different pools of dissolved organic carbon are mobilized during different hydrological stages. δ13C of dissolved inorganic carbon ranged between -28.1‰ and -5.8‰, and was strongly correlated to both partial pressure of CO2 and to the estimated contribution of carbonate weathering to total alkalinity, suggesting an important control of the weathering regime on CO2 fluxes. All tributaries were oversaturated in dissolved greenhouse gases (CH4, N2O, CO2), with highest levels in rivers draining rainforest. The high diversity observed underscores the importance of sampling that covers the variability in subcatchment characteristics, to improve our understanding of biogeochemical cycling in the Congo Basin.

  15. The Results From the First High-Pressure Melt Ejection Test Completed in the Molten Fuel Moderator Interaction Facility at Chalk River Laboratories

    SciTech Connect

    Nitheanandan, T.; Kyle, G.; O'Connor, R.; Sanderson, DB.

    2006-07-01

    A high-pressure melt ejection test using prototypical corium was conducted at Atomic Energy of Canada Limited Chalk River Laboratories. This test was planned by the CANDU Owners Group to study the potential for an energetic interaction between molten fuel and water under postulated single-channel flow-blockage events. The experiments were designed to address regulator concerns surrounding this very low probability postulated accident events in CANDU Pressurized Heavy Water Reactors. The objective of the experimental program is to determine whether a highly energetic 'steam explosion' and associated high-pressure pulse, is possible when molten material is finely fragmented as it is ejected from a fuel channel into the heavy-water moderator. The finely fragmented melt particles would transfer energy to the moderator as it is dispersed, creating a modest pressure pulse in the calandria vessel. The high-pressure melt ejection test consisted of heating up a {approx} 5 kg thermite mixture of U, U{sub 3}O{sub 8}, Zr, and CrO{sub 3} inside a 1.14-m length of insulated pressure tube. When the molten material reached the desired temperature of {approx} 2400 deg C, the pressure inside the tube was raised to 11.6 MPa, failing the pressure tube at a pre-machined flaw, and releasing the molten material into the surrounding tank of 68 deg C water. The experiment investigated the dynamic pressure history, debris size, and the effects of the material interacting with tubes representing neighbouring fuel channels. The measured mean particle size was 0.686 mm and the peak dynamic pressures were between 2.54 and 4.36 MPa, indicating that an energetic interaction between the melt and the water did not occur in the test. (authors)

  16. Identification of steelhead and resident rainbow trout progeny in the Deschutes River, Oregon, revealed with otolith microchemistry

    USGS Publications Warehouse

    Zimmerman, C.E.; Reeves, G.H.

    2002-01-01

    Comparisons of strontium:calcium (Sr:Ca) ratios in otolith primordia and freshwater growth regions were used to identify the progeny of steelhead Oncorhynchus mykiss (anadromous rainbow trout) and resident rainbow trout in the Deschutes River, Oregon. We cultured progeny of known adult steelhead and resident rainbow trout to confirm the relationship between Sr:Ca ratios in otolith primordia and the life history of the maternal parent. The mean (??SD) Sr:Ca ratio was significantly higher in the otolith primordia of the progeny of steelhead (0.001461 ?? 0.00029; n = 100) than in those of the progeny of resident rainbow trout (0.000829 ?? 0.000012; n = 100). We used comparisons of Sr:Ca ratios in the primordia and first-summer growth regions of otoliths to determine the maternal origin of unknown O. mykiss juveniles (n = 272) collected from rearing habitats within the main-stem Deschutes River and tributary rearing habitats and thus to ascertain the relative proportion of each life history morph in each rearing habitat. Resident rainbow trout fry dominated the bi-monthly samples collected from main-stem rearing habitats between May and November 1995. Steelhead fry dominated samples collected from below waterfalls on two tributaries in 1996 and 1998.

  17. The influence of river regulation and land use on floodplain forest regeneration in the semi-arid upper Colorado River Basin, USA

    USGS Publications Warehouse

    Northcott, K.; Andersen, D.C.; Cooper, D.J.

    2007-01-01

    Flow regulation effects on floodplain forests in the semi-arid western United States are moderately well understood, whereas effects associated with changes in floodplain land use are poorly documented. We mapped land cover patterns from recent aerial photos and applied a classification scheme to mainstem alluvial floodplains in 10 subjectively selected 4th order hydrologic units (subbasins) in the Upper Colorado River Basin (UCRB) in order to document land use patterns (floodplain development) and assess their effects on Fremont cottonwood forest (CF) regeneration. Three of the mainstem rivers were unregulated, five were moderately regulated and two were highly regulated. We classified polygons as Undeveloped (with two categories, including CF) and Developed (with five categories). We ground-truthed 501 randomly selected polygons (4-28% of the floodplain area in each subbasin) to verify classification accuracy and to search for cottonwood regeneration, defined as stands established since regulation began or 1950, whichever is most recent. From 40% to 95% of the floodplain area remained undeveloped, but only 19-70% of the floodplain area was classified as forest. Regeneration occupied a mean of 5% (range 1-17%) of the floodplain. The likelihood of the presence of regeneration in a polygon was reduced 65% by development and independently in a complex manner by flow regulation. Our analyses indicate that floodplain forests may be in jeopardy on both regulated and unregulated rivers and that information on historical forest extent is needed to better understand their current status in the UCRB. Conservation efforts need to be coordinated at a regional level and address the potentially adverse affects of both flow regulation and floodplain development.

  18. Total Mercury and Methylmercury in the Great Egg Harbor River Watershed, New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Barringer, J. L.; Riskin, M. L.; Szabo, Z.; Fischer, J. M.; Reilly, P. A.; Rosman, R.; Bonin, J. L.; Heckathorn, H. A.

    2007-12-01

    Hydrologic and biogeochemical conditions are important factors in the transport and distribution of mercury (Hg) in New Jersey Coastal Plain watersheds that contain extensive freshwater wetlands and where Hg bioaccumulation is of concern. U.S. Geological Survey studies found Hg concentrations in top predator fish from the Great Egg Harbor River mainstem that ranged from 2.9 to 4.5 mg/kg (dry wt.) and exceeded 10 ng/L in the watershed's acidic streams. An ongoing study with the N.J. Department of Environmental Protection indicates that atmospheric deposition of Hg to the wetlands and streams may be augmented by substantial contributions of Hg from ground water. Although background levels of Hg in water from the underlying aquifer typically are less than 10 ng/L, concentrations in water from more than 600 domestic wells in southern New Jersey have been shown to exceed the drinking-water maximum contaminant level of 2,000 ng/L. Therefore, to determine ground-water inputs to the streams, samples of ground water discharging to the tributaries and mainstem as well as streamwater samples collected during various flow conditions were analyzed for total Hg and methylmercury (MeHg). Total Hg concentrations in ground water discharging to the tributaries and mainstem were low to moderate (0.29-22 ng/L) in relatively undeveloped areas (including wetlands), but higher (36 and 177 ng/L) in two urban/suburban areas where much of the Hg was in particulate form. In recent and ongoing studies, total Hg concentrations in unfiltered samples of surface water, except those for one suburban tributary, have ranged from 2.13 to 37.7 ng/L. Concentrations in the suburban tributary have ranged from 50 ng/L during a dry period to 250 ng/L during a wet period. Hg concentrations in samples from a wetlands-embedded reach of the mainstem varied markedly with flow. In addition to increases in concentrations of total Hg, UV absorbance and concentrations of dissolved organic carbon also increased with

  19. Assessment of ecological conditions and potential effects of water produced from coalbed natural gas development on biological communities in streams of the Powder River structural basin, Wyoming and Montana, 2005-08

    USGS Publications Warehouse

    Peterson, David A.; Clark, Melanie L.; Foster, Katharine; Wright, Peter R.; Boughton, Gregory K.

    2010-01-01

    Ongoing development of coalbed natural gas in the Powder River structural basin in Wyoming and Montana led to formation of an interagency task group to address concerns about the effects of the resulting production water on biological communities in streams of the area. The interagency task group developed a monitoring plan and conducted sampling of macroinvertebrate, algal, and fish communities at 47 sites during 2005-08 to document current ecological conditions and determine existing and potential effects of water produced from coalbed natural gas development on biological communities. Macroinvertebrate, algal, and fish community composition varied between drainage basins, among sites within drainage basins, and by year. Macroinvertebrate communities of the main-stem Tongue River were characterized by higher taxa richness and higher abundance of Ephemeroptera, for example, compared to macroinvertebrate communities in plains tributaries of the Tongue River and the main-stem Powder River. Fish communities of the Tongue River were characterized by higher taxa richness and abundance of introduced species compared to the Powder River where native species were dominant. Macroinvertebrate community metric values from sites in the middle reach of the main-stem Powder River, from below Willow Creek to below Crazy Woman Creek, differed from metric values in the upper and lower reaches of the Powder River. Metrics indicative of communitywide differences included measures of taxa richness, relative abundance, feeding mode, and tolerance. Some of the variation in the macroinvertebrate communities could be explained by variation in environmental variables, including physical (turbidity, embeddedness, bed substrate size, and streamflow) and chemical (alkalinity and specific conductance) variables. Of these environmental variables, alkalinity was the best indicator of coalbed natural gas development because of the sodiumbicarbonate signature of the production water. Algal

  20. Quality of stormwater runoff in the Blue River basin, Missouri and Kansas, July-October 1981 and April-July 1982

    USGS Publications Warehouse

    Blevins, D.W.

    1986-01-01

    Stormwater-runoff sampling was done at three mainstem stations on the Blue River, Missouri, and three stations on urban tributaries. Concentrations of lead, iron, manganese, zinc, and ammonia nitrogen consistently exceeded Missouri water-quality standards. Many constituents were significantly correlated with large concentrations of suspended sediment from the agricultural areas in the upstream part of the basin. However, mean concentrations of lead increased 200% and mean concentrations of zinc increased 100% in the urban reach of Blue River for some storms. Combined sewer overflows along Brush Creek, one of the urban tributaries, caused large concentrations of nutrients, suspended sediment, metals, and 5-day biochemical oxygen demand in the initial runoff. After extended dry periods, surface flushing caused concentrations of lead and zinc to be largest during initial runoff at all three urban tributaries. However, large flushes of most constituents were not detected at the mainstem stations. The large percentage of impervious surfaces and lined channels in urban areas caused increased volumes of runoff per unit of drainage area and limited the availability of sediment to streams. Consequently, concentrations of most constituents were small, but the loads per unit of drainage area were large when compared with those in Blue River. (USGS)

  1. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  2. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  3. Fecal Coliform Removal by River Networks

    NASA Astrophysics Data System (ADS)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  4. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  5. Geology of the Arco-Big Southern Butte area, eastern Snake River Plain, and volcanic hazards to the radioactive waste management complex, and other waste storage and reactor facilities at the Idaho National Engineering Laboratory, Idaho

    USGS Publications Warehouse

    Kuntz, Mel A.; Kork, John O.

    1978-01-01

    The Arco-Big Southern Butte area of the eastern Snake River Plain, Idaho, includes a volcanic rift zone and more than 70 Holocene and late Quaternary basalt volcanoes. The Arco volcanic rift zone extends southeast for 50 km from Arco to about 10 km southeast of Big Southern Butte. The rift zone is the locus of extensional faults, graben, fissure basaltic volcanic vents, several rhyolite domes at Big Southern Butte, and a ferrolatite volcano at Cedar Butte. Limited radiometric age data and geological field criteria suggest that all volcanism in the area is younger than 700,000 years; at least 67 separate basaltic eruptions are estimated to have occurred within the last 200,000 years. The average volcanic recurrence interval for the Arco-Big Southern Butte area is approximately one eruption per 3,000 years. Radioactive waste storage and reactor facilities at the Idaho National Engineering Laboratory may be subject to potential volcanic hazards. The geologic history and inferred past volcanic events in the Arco-Big Southern Butte area provide a basis for assessing the volcanic hazard. It is recommended that a radiometric age-dating study be performed on rocks in cored drill holes to provide a more precise estimate of the eruption recurrence interval for the region surrounding and including the Radioactive Waste Management Complex. It is also recommended that several geophysical monitoring systems (dry tilt and seismic) be installed to provide adequate warning of future volcanic eruptions.

  6. Hydrological alteration along the Missouri River Basin: A time series approach

    USGS Publications Warehouse

    Pegg, M.A.; Pierce, C.L.; Roy, A.

    2003-01-01

    Human alteration of large rivers is common-place, often resulting in significant changes in flow characteristics. We used a time series approach to examine daily mean flow data from locations throughout the main-stem Missouri River. Data from a pre-alteration period (1925-1948) were compared with a post-alteration period (1967-1996), with separate analyses conducted using either data from the entire year or restricted to the spring fish spawning period (1 April-30 June). Daily mean flows were significantly higher during the post-alteration period at all locations. Flow variability was markedly reduced during the post-alteration period as a probable result of flow regulation and climatological shifts. Daily mean flow during the spring fish spawning period was significantly lower during the post-alteration period at the most highly altered locations in the middle portion of the river, but unchanged at the least altered locations in the upper and lower portions of the river. Our data also corroborate other analyses, using alternate statistical approaches, that suggest similar changes to the Missouri River system. Our results suggest human alterations on the Missouri River, particularly in the middle portion most strongly affected by impoundments and channelization, have resulted in changes to the natural flow regime.

  7. Suspended sediments of the modern Amazon and Orinoco rivers

    USGS Publications Warehouse

    Meade, R.H.

    1994-01-01

    The Amazon and Orinoco Rivers are massive transcontinental conveyance systems for suspended sediment. They derive about 90% of their sediment from the Andes that support their western headwaters, transport it for thousands of kilometers across the breadth of the continent and deposit it in the coastal zones of the Atlantic. At their points of maximum suspended-sediment discharge, the Amazon transports an average of 1100-1300 ?? 106 tons per year and the Orinoco transports about 150 ?? 106 tons per year. Relations of sediment discharge to water discharge are complicated by unusual patterns of seasonal storage and remobilization, increased storage and reduced transport of sediment in the middle Orinoco during periods of peak water discharge, and storage of suspended sediment in the lower Amazon during rising discharge and resuspension during falling discharge. Spatial distributions of suspended sediment in cross-sections of both rivers are typically heterogeneous, not only in the vertical sense but also in the lateral. The cross-channel mixing of tributary inputs into the mainstem waters is a slow process that requires several hundred kilometers of downriver transport to complete. Considerable fine-grained sediment is exchanged between rivers and floodplains by the combination of overbank deposition and bank erosion. ?? 1994.

  8. Wind River Watershed Restoration, 2006-2007 Annual Report.

    SciTech Connect

    Connolly, Patrick J.; Jezorek, Ian G.; Munz, Carrie S.

    2008-11-04

    This report summarizes work completed by U.S. Geological Survey's Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during the period April 2006 through March 2007 under Bonneville Power Administration (BPA) contract 26922. During this period, we collected temperature, flow, and habitat data to characterize physical habitat condition and variation within and among tributaries and mainstem sections in the Wind River subbasin. We also conducted electrofishing and snorkeling surveys to determine juvenile salmonid populations within select study areas throughout the subbasin. Portions of this work were completed with additional funding from U.S. Fish and Wildlife Service (USFWS) and the Lower Columbia Fish Enhancement Group (LCFEG). Funding from USFWS was for work to contribute to a study of potential interactions between introduced Chinook salmon Oncorhynchus tshawytscha and wild steelhead O. mykiss. Funding from LCFEG was for work to evaluate the effects of nutrient enrichment in small streams. A statement of work (SOW) was submitted to BPA in March 2006 that outlined work to be performed by USGS-CRRL. The SOW was organized by work elements, with each describing a research task. This report summarizes the progress completed under each work element.

  9. Defense Waste Processing Facility

    SciTech Connect

    Haselow, J.S.; Wilhite, E.L.; Stieve, A.L.

    1990-05-01

    The information contained in this report is intended to supplement the original Environmental Impact Statement (EIS) for the Defense Waste Processing Facility (DWPF). Since the original EIS in 1982, alterations have been made to he conceptual process that reduce the impact to the groundwater. This reduced impact is documented in this report along with an update of the understanding of seismology and geology of the Savannah River Site. 6 refs., 2 figs., 2 tabs.

  10. Amazon River

    Atmospheric Science Data Center

    2013-04-17

    article title:  Mouth of the Amazon River     View Larger Image ... over 6450 kilometers eastward across Brazil, the Amazon River originates in the Peruvian Andes as tiny mountain streams that eventually ...

  11. Nile River

    Atmospheric Science Data Center

    2013-04-15

    article title:  Nile River Fluctuations Near Khartoum, Sudan     ... history, the rising and falling waters of the mighty Nile River have directly impacted the lives of the people who live along its banks. ... the area around Sudan's capital city of Khartoum capture the river's dynamic nature. Acquired by the Multi-angle Imaging SpectroRadiometer ...

  12. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    article title:  Mississippi River Flooding during Spring 2001     ... South TIFF: 1024 x 724 The Mississippi River, from its source at Lake Itasca Minnesota to the Gulf of Mexico is ... 2348 miles long. Over the course of it's history, the mighty river has flooded many times. The largest flood recorded in the lower valley ...

  13. Niger River

    Atmospheric Science Data Center

    2013-04-15

    article title:  Niger River after the Rainy Season     View larger image The third largest river in Africa, the Niger, forms an inland delta in central Mali. This ... is situated near the top of the image, where the Niger River changes direction to flow more directly eastward. Six hundred years ago, ...

  14. Application of robotics in nuclear facilities

    SciTech Connect

    Byrd, J S; Fisher, J J

    1986-01-01

    Industrial robots and other robotic systems have been successfully applied at the Savannah River nuclear site. These applications, new robotic systems presently under development, general techniques for the employment of robots in nuclear facilities, and future systems are discussed.

  15. Assessing patterns of bed-material storage and flux on a mixed bedrock-alluvium river: Umpqua River Oregon, USA

    NASA Astrophysics Data System (ADS)

    Wallick, R.; Anderson, S.; Keith, M.; Cannon, C.; O'Connor, J. E.

    2010-12-01

    Gravel bed rivers in the Pacific Northwest and elsewhere provide an important source of commercial aggregate. Mining in-stream gravel, however, can alter channel and bar morphology, resulting in habitat degradation for aquatic species. In order to sustainably manage rivers subject to in-stream gravel extraction, regulatory agencies in Oregon have requested that the USGS complete a series of comprehensive geomorphic and sediment transport studies to provide context for regulatory-agency management of in-stream gravel extraction in Oregon streams. The Umpqua River in western Oregon poses special challenges to this type of assessment. Whereas most rivers subject to gravel extraction are relatively rich in bed-material sediment, the Umpqua River is a mixed bedrock-alluvium system draining a large (1,804 km2) basin; hence typical bed-material transport analyses and ecologic and geomorphic lessons of in-stream gravel extraction on more gravel-rich rivers have limited applicability. Consequently, we have relied upon multiple analyses, including comprehensive historical mapping, bedload transport modeling, and a GIS-based sediment yield analysis to assess patterns of bed-material transport and annual rates of bed-material flux. These analyses, combined with numerous historical accounts, indicate that since at least the 1840’s, the Umpqua River planform has been stable, as bar geometry is largely fixed by valley physiography and the channel itself is underlain mainly by bedrock. Preliminary estimates of annual bedload transport rates calculated for the period 1951-2008 from bed-material transport capacity relations at 42 bars along the South Umpqua and mainstem Umpqua Rivers vary from 0 to 600,000 metric tons per year, with this large spread reflecting variability in bar geometry and grainsize. Large stable bars are activated only during exceptionally large floods and have negligible transport during most years whereas smaller, low elevation bars serve as transient

  16. Do hurricanes leave unique sedimentological records in floodplain settings? Connecticut River, Tropical Storm Irene and past flood events

    NASA Astrophysics Data System (ADS)

    Yellen, B.; Woodruff, J. D.; Kratz, L. N.; Fallon, A.

    2012-12-01

    In late August, 2011, Tropical Storm Irene passed directly over the Connecticut River watershed causing several low order streams to swell beyond prior historical maximum discharges. Although resultant discharge on the mainstem Connecticut River only amounted to a one in seven year-sized event, its sediment load far exceeded the historical discharge to sediment concentration relationship. Gravity cores taken in off-channel ponds following the hydrograph peak clearly showed deposition of storm-mobilized grains. Samples collected from floodplain forest locations also showed significant accumulation. In both depositional settings, grainsize, lithology and percent organics of flood event deposition differed dramatically from background sedimentation. Long cores collected from these same settings suggest that similar deposits from historical storms of record from the past three centuries are preserved in the floodplain sediment record.; Landsat 5 true color image collected on September 2, 2011 - two days after Tropical Storm Irene left the region.

  17. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River; 1994 Annual Report.

    SciTech Connect

    Ashe, Becky L.; Miller, Alan C.; Kucera, Paul A.

    1995-01-01

    In 1994, the Nez Perce Tribe began a smolt monitoring study on the Imnaha River in cooperation with the Fish Passage Center (FPC). A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from March 1 to June 15, 1994. We PIT tagged and released 956 wild chinook salmon, 661 hatchery chinook salmon, 1,432 wild steelhead trout and 2,029 hatchery steelhead trout. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 62.2% for wild chinook salmon, 45.2% for hatchery chinook salmon, 51.3% for wild steelhead trout, and 34.3% for hatchery steelhead trout.

  18. Savannah River Technology Center monthly report

    SciTech Connect

    Ferrell, J.M.

    1993-09-01

    This is a monthly report published by Westinghouse Savannah River Company. Topics discussed in this progress report are: Terrazzo reservoir, Replacement Tritium Facility Final Safety Analysis Report, tritium processing and disposal, separation processes, environmental effects and future impacts, laboratory performance evaluation, groundwater characterization, mixed waste management facility, Raman Spectroscopy, waste processing, Defense Waste Processing Facility, mercury recycling, off-gas components testing, incineration facility blowdown solidification, and weld residual stress minimization study.

  19. Redd site selection and spawning habitat use by fall chinook salmon: The importance of geomorphic features in large rivers

    SciTech Connect

    Geist, D.R. |; Dauble, D.D.

    1998-09-01

    Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. The authors present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of the conceptual model. The authors suggest that traditional habitat models and the conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.

  20. Protect and Restore Red River Watershed, 2007-2008 Annual Report.

    SciTech Connect

    Bransford, Stephanie

    2009-05-04

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Red River Watershed of the South Fork Clearwater River in 2001. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. From completing a watershed assessment to two NEPA efforts and a final stream restoration design, we will begin the effort of restoring the mainstem channel of Red River to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed. Another major, and extremely, important component of this project is the Red River Meadow Conservation Easement. We have begun the process of pursuing a conservation easement on approximately 270 acres of prime meadow habitat (Red River runs through this meadow and is prime spawning and rearing habitat).

  1. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2002 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam in 2002. This was the seventh year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 479,358 yearlings released from the Fall Chinook Acclimation Project facilities exceeded the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,545 PIT tagged yearlings from Pittsburg Landing, 7,482 from Big Canyon and 2,487 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium to high with 43-62% of fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 146.7 mm (146.2-147.2 mm) at Captain John Rapids to 164.8 mm (163.5-166.1 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.14 at Pittsburg Landing and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 88.6% (86.0-91.1%) for Pittsburg Landing to 97.0% (92.4-101.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 54.3% (50.2-58.3%) for Big Canyon to 70.5% (65.4-75.5%) for Pittsburg Landing. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 8.1 river kilometers per

  2. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 1999 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 1999. This was the fourth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 453,117 yearlings released from the Fall Chinook Acclimation Project facilities not only slightly exceeded the 450,000 fish quota, but a second release of 76,386 yearlings (hereafter called Surplus) were acclimated at the Big Canyon facility and released about two weeks after the primary releases. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 9,941 PIT tagged yearlings from Pittsburg Landing, 9,583 from Big Canyon, 2,511 Big Canyon Surplus and 2,494 from Captain John Rapids. The Washington Department of Fish and Wildlife released 983 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low and did not appear to increase after transport to the acclimation facilities. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Pittsburg Landing and Lyons Ferry Hatchery and relatively high at Big Canyon and Captain John Rapids. Mean fork lengths (95% confidence interval) of the release groups ranged from 147.4 mm (146.7-148.1 mm) at Captain John Rapids to 163.7 mm (163.3-164.1 mm) at Pittsburg Landing. Mean condition factors ranged from 1.04 at

  3. Consolidated incineration facility technical support

    SciTech Connect

    Burns, D.; Looper, M.G.

    1993-12-31

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. Key components of this technical support program include recently completed waste burn tests at both EPA`s Incineration Research Facility and at Energy and Environmental Research Corporation`s Solid Waste Incineration Test Facility. The main objectives for these tests were determining the fate of heavy metals, measuring organics destruction and removal efficiencies, and quantifying incinerator offgas particulate loading and size distribution as a function of waste feed characteristics and incineration conditions. In addition to these waste burning tests, the SRTC has recently completed installations of the Offgas Components Test Facility (OCTF), a 1/10 scale CIF offgas system pilot plant. This pilot facility will be used to demonstrate system operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. Technical support programs of this type are needed to resolve technical issues related with treatment and disposal of combustible hazardous, mixed, and low-level radioactive waste. Implementation of this program will minimize facility start-up problems and help insure compliance with all facility performance requirements.

  4. Yakima River Spring Chinook Enhancement Study Appendices, 1991 Final Report.

    SciTech Connect

    Fast, David E.

    1991-05-01

    This document consists of the appendices for annual report DOE/BP/39461--9 which is summarized as follows. The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system.

  5. Yakima River Spring Chinook Enhancement Study, 1991 Final Report.

    SciTech Connect

    Fast, David E.

    1991-05-01

    The population of Yakima River spring chinook salmon (Oncorhynchus tschawytscha) has been drastically reduced from historic levels reported to be as high as 250,000 adults (Smoker 1956). This reduction is the result of a series of problems including mainstem Columbia dams, dams within the Yakima itself, severely reduced flows due to irrigation diversions, outmigrant loss in irrigation canals, increased thermal and sediment loading, and overfishing. Despite these problems, the return of spring chinook to the Yakima River has continued at levels ranging from 854 to 9,442 adults since 1958. In October 1982, the Bonneville Power Administration contracted the Yakima Indian Nation to develop methods to increase production of spring chinook in the Yakima system. The Yakima Nation's current enhancement policy attempts to maintain the genetic integrity of the spring chinook stock native to the Yakima Basin. Relatively small numbers of hatchery fish have been released into the basin in past years. The goal of this study was to develop data that will be used to present management alternatives for Yakima River spring chinook. A major objective of this study is to determine the distribution, abundance and survival of wild Yakima River spring chinook. The second major objective of this study is to determine the relative effectiveness of different methods of hatchery supplementation. The last three major objectives of the study are to locate and define areas in the watershed that may be used for the rearing of spring chinook; to define strategies for enhancing natural production of spring chinook in the Yakima River; and to determine the physical and biological limitations on production within the system. 47 refs., 89 figs., 67 tabs.

  6. Sediment Dynamics Affecting the Threatened Santa Ana Sucker in the Highly-modified Santa Ana River and Inset Channel, Southern California, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.

    2015-12-01

    In this study, we investigate the sediment dynamics of the low-flow channel of the Santa Ana River that is formed by wastewater discharges and contains some of the last remaining habitat of the Santa Ana Sucker (Catostomus santaanae). The Santa Ana River is a highly-modified river draining the San Bernardino Mountains and Inland Empire metropolitan area east of Los Angeles. Home to over 4 million people, the watershed provides habitat for the federally-threatened Santa Ana Sucker, which presently reside within the mainstem Santa Ana River in a reach supported by year-round constant discharges from water treatment plants. The nearly constant low-flow wastewater discharges and infrequent runoff events create a small, approximately 8 m wide, inset channel within the approximately 300 m wide mainstem channel that is typically dry except for large flood flows. The sediment dynamics within the inset channel are characterized by constantly evolving bed substrate and sediment transport rates, and occasional channel avulsions. The sediment dynamics have large influence on the Sucker, which rely on coarse-substrate (gravel and cobble) for their food production. In WY 2013 through the present, we investigated the sediment dynamics of the inset channel using repeat bathymetric and substrate surveys, bedload sampling, and discharge measurements. We found two distinct phases of the inset channel behavior: 1. 'Reset' flows, where sediment-laden mainstem discharges from upstream runoff events result in sand deposition in the inset channel or avulse the inset channel onto previously dry riverbed; and 2. 'Winnowing' flows, whereby the sand within the inset channel is removed by clear-water low flows from the wastewater treatment plant discharges. Thus, in contrast to many regulated rivers where high flows are required to flush fine sediments from the bed (for example, downstream from dams), in the Santa Ana River the low flows from wastewater treatment plants serve as the flushing

  7. Compositional dynamics of dissolved lignin in watersheds: small temperate streams to large tropical rivers

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Krusche, A. V.; Richey, J. E.

    2012-12-01

    The most abundant biochemicals on land are cellulose, hemicellulose, and lignin. Lignin, alone, composes roughly 30% of the organic carbon (OC) in the terrestrial biosphere (Boerjan et al., 2003) and a significant portion of the OC mobilized into stream and river networks worldwide. Here we present a synthesis of several studies examining (i) the mobilization dynamics/compositional changes in dissolved lignin during rapid storm events in small temperate streams (Hood Canal, WA, USA), and (ii) the respiration dynamics/biological overturning of dissolved (and particulate) lignin in the Amazon River mainstem. Rapid sampling (3 hour intervals) during short-term rainfall events has revealed that the concentration of dissolved lignin phenols (as well as DOC) in small temperate streams is strongly correlated with river discharge (Ward et al., 2012). Additionally, rapid discharge increases resulted in an increase in Ad/Al and C/V ratios and decrease in the S/V ratio of dissolved lignin phenols, indicating a mobilization of relatively degraded non-woody/gymnosperm-derived material in the dissolved phase during storms occurring after a long dry period. We hypothesize that sorption to soil surfaces imparts an additional control on lignin mobilization: degraded phenols are relatively more soluble than their non-degraded counterparts and are easily mobilized by rapid flow, whereas non-degraded phenols are slowly mobilized by base flow and continuously degraded in soils. Once lignin is mobilized into the aquatic setting it is often assumed to be refractory. However, evidence in the Amazon River mainstem suggests the contrary. We have assessed the biodegradability of dissolved (and particulate) lignin, as well as a vast suite (~120) of similar phenolic compounds with a series of incubation experiments performed on four Amazon River cruises. We estimate that on average the degradation of lignin and similar phenolic compounds supports 30-50% of bulk respiration rates in the river

  8. Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, B.

    2006-01-01

    It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society

  9. Analysis of minimum 7-day discharges and estimation of minimum 7-day, 2-year discharges for streamflow-gaging stations in the Brazos River basin, Texas

    USGS Publications Warehouse

    Raines, Timothy H.; Asquith, William H.

    1997-01-01

    The 7Q2 is zero for 31 of the 46 unregulated-only stations and for 9 of the 26 regulated-only stations. The 7Q2 also is zero for 9 stations before regulation and for 3 stations after regulation of the 25 stations with both unregulated and regulated data. The 7Q2 ranges from 33 to 631 cubic feet per second for the eight regulated-only stations on the mainstem Brazos River. For the seven stations on the mainstem Brazos River with at least 10 years of unregulated and 10 years of regulated discharge data, the 7Q2 ranges from 0 to 568 cubic feet per second before regulation and from 0.30 to 670 cubic feet per second after regulation. The 7Q2 increased during regulation for 19 of the 25 stations with both unregulated and regulated data. The effect of regulation for most stations generally was an increase in the magnitude of the 7Q2.

  10. Continuous Ship-borne Methane Measurements on the Upper Mississippi River and Selected Tributaries

    NASA Astrophysics Data System (ADS)

    Crawford, J.; Loken, L. C.; Dornblaser, M.; Stanley, E. H.; Striegl, R. G.

    2015-12-01

    Despite evidence that streams and rivers contribute immensely to the atmospheric methane budget (~26 Tg CH4 yr-1), very little is known regarding the spatial patterns and controls of methane concentrations in river networks. We present a dataset of high-resolution methane concentrations along a nearly complete river flowpath starting with a small headwater stream (8 km), two larger tributaries (50 and 80 km reaches), as well as the complete length of the upper Mississippi River (1300 km). These systems span from 1st to 9th order and range in discharge from 5 cfs to > 400,000 cfs. Continuous measurements were collected from a moving boat using a flow-through sampling system with cavity ring-down spectroscopy of gas equilibrated water. River methane concentrations ranged from near saturation to > 5 uM with all samples being above atmospheric equilibrium. The extent of methane spatial autocorrelation generally increased with increasing river size (semivariance range = 800, 4000 and 12,000 m), although the largest tributary reach did not exhibit clear spatial autocorrelation structure. Further, all river sections exhibited significant spatial clustering of methane concentrations (Global Moran's I) and significant hotspots and coldspots of methane (local Moran's I) associated with changes in benthic geomorphology. Hotspot examples included high methane clusters in organic-rich stream sediments and productive backwaters in the mainstem of the Mississippi River. Incubated anoxic stream sediments illustrated similar patterns, where organic-rich sediments produced substantially greater methane over 24 hours relative to organic-poor substrates. Quantitative PCR analysis of the methanogen gene mcrA also supports the contention that methane is produced at greatest rates in organic-rich stream sediments. Together, our high resolution spatial data and ancillary ecosystem data suggest that river methane is mostly controlled by local sediment processes which become more spatially

  11. Constraints and Opportunities for Rehabilitation of an Urban, Sonoran Desert River

    NASA Astrophysics Data System (ADS)

    White, J.; Stromberg, J.; Poznik, J.; White, M.

    2005-12-01

    Several riparian restoration projects are underway in the arid southwestern United States, many centered on urban rivers. In the Phoenix metropolitan area (Arizona), multiple projects are ongoing or planned along the Salt River. Several factors constrain the urban Salt River projects: the occasional surface flows released from the upstream diversion dam are no longer hydraulically connected to the deepened groundwater table in all reaches; upstream diversion and flow-regulating dams create barriers to the flow of fine sediments, seeds and other materials; channelization has disconnected the river from its historic floodplain; and many of the tributary-mainstem connections have been severed. Actions are not being undertaken to reverse these changes; rather, attempts are being made to create localized oases by transporting pumped groundwater via delivery channels to sustain trees planted at the termini of drip-irrigation lines, and by re-shaping the land surface to create ponds and perched aquifers. In addition to these planned restorations, pockets of riparian vegetation have developed naturally along the Salt River in areas where new urban water sources have become available. We are investigating the diversity and dynamics of these self-assembled plant communities, and comparing them to the areas of focused restoration as well as to regional free-flowing reference rivers. Analysis indicates that input of water from urban storm drains sustains a diverse (but spatially limited) riparian plant community along the Salt River, albeit one whose composition reflects, in part, the urbanized landscape and thus deviates from the palette of the intended restoration plantings. In effect, the urban storm drains are functioning as tributaries and connecting the river with its watershed. The new riparian ecosystems at these storm drain outflows and at the planned restoration areas will inevitably differ from those at regional reference rivers, unless historical ecosystem

  12. Trapping of sediment along the Amazon tidal river in diverse floodplain environments

    NASA Astrophysics Data System (ADS)

    Fricke, A. T.; Nittrouer, C. A.; Ogston, A. S.; Nowacki, D. J.; Souza Filho, P. W.; Silveira, O.; Asp, N. E.

    2013-12-01

    The Amazon tidal river, the freshwater reach that is influenced by tides, extends roughly 800 kilometers upstream of the river mouth. Previous studies suggest that up to one third of the sediment measured at the upstream limit of tides does not reach the ocean, and is likely trapped along the tidal river. Here we present data from a variety of depositional environments along this reach, including intertidal vegetated floodplains, floodplain lakes, and drowned tributary confluences. Sediment delivery to each of these environments is temporally variable as a result of changing tides and river stage, and spatially variable along the continuum from the purely fluvial upstream condition to the strongly tidal downstream environment. Short-term instrument records and direct observations are paired with sedimentological and radiochemical techniques to identify mechanisms of sediment exchange between river and floodplain and associated patterns of sediment accumulation. Sediments in vegetated intertidal floodplains exhibit tidal laminations and incised channel networks similar to muddy marine intertidal areas. Floodplain lakes experience dramatic seasonal changes in size, and during high flows of the river skim water and sediment from the Amazon River by providing a shortcut relative to the meandering mainstem. Amazon sediment is fluxed into the drowned tributary confluences (rías) of the Xingu and Tapajos Rivers by density-driven underflows. In the Tapajos Ría, sediment from the Amazon River has built a 25-km long birdfoot delta, suggesting these tributaries may be net sinks of sediment, rather than sources. These findings help define the importance of each tidal environment in trapping Amazon sediment before it reaches the marine environment.

  13. Streamflow and sediment data collected to determine the effects of a controlled flood in March and April 1996 on the Colorado River between Lees Ferry and Diamond Creek, Arizona

    USGS Publications Warehouse

    Konieczki, Alice D.; Graf, Julia B.; Carpenter, Michael C.

    1997-01-01

    An 8-day period of planned release of water at 1,275 cubic meters per second from Glen Canyon Dam in March and April 1996 provided an opportunity to collect data on river stage, streamflow, water chemistry, and sediment transport at discharges above powerplant releases. The U.S. Geological Survey collected data at five streamflow-gaging stations on the mainstem of the Colorado River and four on tributaries during the controlled flood. River-stage data were collected at an additional 29 locations, and suspended-sediment data were collected at 4 of the 5 mainstem streamflow-gaging stations. In addition, measurements of reach-average flow velocity were made using a dye tracer, and water-surface slope was measured in reaches adjacent to three of the streamflow-gaging stations. Sand-storage changes caused by the controlled flood were documented by measuring bed elevation of the channel at cross sections before and after the controlled releases at the network of 120 monumented locations. This report presents selected data in tabular and graphical form. The data presented in the report are available in electronic form.

  14. Design and Analysis of Salmonid Tagging Studies in the Columbia Basin : Evaluating Wetland Restoration Projects in the Columbia River Estuary using Hydroacoustic Telemetry Arrays to Estimate Movement, Survival, and Residence Times of Juvenile Salmonids, Volume XXII (22).

    SciTech Connect

    Perry, Russell W.; Skalski, John R.

    2008-08-01

    Wetlands in the Columbia River estuary are actively being restored by reconnecting these habitats to the estuary, making more wetland habitats available to rearing and migrating juvenile salmon. Concurrently, thousands of acoustically tagged juvenile salmonids are released into the Columbia River to estimate their survival as they migrate through the estuary. Here, we develop a release-recapture model that makes use of these tagged fish to measure the success of wetland restoration projects in terms of their contribution to populations of juvenile salmon. Specifically, our model estimates the fraction of the population that enter the wetland, survival within the wetland, and the mean residence time of fish within the wetland. Furthermore, survival in mainstem Columbia River downstream of the wetland can be compared between fish that remained the mainstem and entered the wetland. These conditional survival estimates provide a means of testing whether the wetland improves the subsequent survival of juvenile salmon by fostering growth or improving their condition. Implementing such a study requires little additional cost because it takes advantage of fish already released to estimate survival through the estuary. Thus, such a study extracts the maximum information at minimum cost from research projects that typically cost millions of dollars annually.

  15. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  16. Chemical denudation in the Yellow River and its geomorphological implications

    NASA Astrophysics Data System (ADS)

    Ran, Lishan; Lu, X. X.; Sun, Huiguo; Han, Jingtai; Yu, Ruihong

    2015-02-01

    Chemical denudation plays an important role in regulating atmospheric CO2 balance and modulating global climate. With weekly collected water samples at three stations on the Yellow River mainstem from July 2011 to July 2012, we investigate its chemical denudation characteristics on the basis of water geochemistry and discuss the geomorphological implications. Because of limited atmospheric inputs into the Yellow River, chemical weathering is of first importance in affecting the chemical compositions of its water geochemistry. As a result of extensive carbonates within the watershed, carbonate dissolution is the major source of the dissolved solids, accounting for 28-33.7% of the total dissolved solids (TDS). In contrast, silicate weathering contributes only 9.9-10.9%. With a mean TDS concentration of 639 mg l- 1, the TDS flux into the ocean is estimated at 16 Mt yr- 1, corresponding to a specific chemical denudation rate of 21.3 t km- 2 yr- 1. Comparative analysis with physical erosion suggests the dominance of physical erosion over chemical weathering in providing riverine loads. Rapid removal by physical erosion may have restrained the chemical denudation processes. Rock weathering consumes, on average, 2.3 Mt of atmospheric CO2 during the one-year-long sampling campaign, accounting for 0.22-0.31% of the global annual CO2 consumption through chemical weathering. Of the CO2 consumed, 74% is caused by carbonate weathering and 26% by silicate weathering, indicating the predominance of carbonate weathering in consuming atmospheric CO2 within the watershed.

  17. 5MW Raft River Facility Experience

    SciTech Connect

    Whitbeck, J.F.

    1980-12-01

    Located in Northern California In Lake and Sonoma Counties about 90 miles north of San Francisco, Pacific Gas and Electric Company's (PG and E's) The Geysers Power Plant, which has at present fourteen units in service with a net generating capacity of 798MW, is the largest geothermal development in the world. Eight additional PG and E units now in construction, design, and planning will add 720MW of additional capacity by 1986. Figure 1 shows the location of this project and the locations of the existing and future units. This paper discusses evolution of Geysers Unit 18 through resource and project planning, licensing, design, and what is expected during construction, and startup. While many of the experiences are unique to The Geysers units, some could be applicable to other geothermal developments. This unit is one of a series of 110MW units of standardized design which are being developed to reduce the cost and improve schedules. Construction has just commenced, and it is expected to be in commercial operation in October 1982.

  18. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River Basin, Connecticut, 2000-2001

    USGS Publications Warehouse

    Colombo, Michael J.; Grady, Stephen J.; Todd Trench, Elaine C.

    2004-01-01

    A consistent and pervasive pattern of nutrient enrichment was substantiated by water-quality sampling in the Quinebaug River and its tributaries in eastern Connecticut during water years 2000 and 2001. Median total nitrogen and total phosphorus concentrations exceeded the U.S. Environmental Protection Agency?s recently recommended regional ambient water-qual-ity criteria for streams (0.71 and 0.031 milligrams per liter, respectively). Maximum total phosphorus concentrations exceeded 0.1 milligrams per liter at nearly half the sampled locations in the Quinebaug River Basin. Elevated total nitrogen and total phosphorus concentrations were measured at all stations on the mainstem of the Quinebaug River, the French River, and the Little River. Nutrient enrichment was related to municipal wastewater point sources at the sites on the mainstem of the Quinebaug River and French River, and to agricultural nonpoint nutrient sources in the Little River Basin. Nutrient enrichment and favorable physical factors have resulted in excessive, nuisance algal blooms during summer months, particularly in the numerous impoundments in the Quinebaug River system. Phytoplankton algal density as high as 85,000 cells per milliliter was measured during such nuisance blooms in water years 2000 and 2001. Different hydrologic conditions during the summers of 2000 and 2001 produced very different seston algal populations. Larger amounts of precipitation sustained higher streamflows in the summer of 2000 (than in 2001), which resulted in lower total algal abundance and inhibited the typical algal succession from diatoms to cyanobacteria. Despite this, nearly half of all seston chlorophyll-a concentrations measured during this study exceeded the recommended regional ambient stream-water-quality criterion (3.75 micrograms per liter), and seston chlorophyll-a concentrations as large as 42 micrograms per liter were observed in wastewa-ter-receiving reaches of the Quinebaug River. Estimates of primary

  19. Reconnaissance of pharmaceuticals and wastewater indicators in streambed sediments of the lower Columbia River basin, Oregon and Washington

    USGS Publications Warehouse

    Nilsen, Elena; Furlong, Edward T.; Rosenbauer, Robert

    2014-01-01

    One by-product of advances in modern chemistry is the accumulation of synthetic chemicals in the natural environment. These compounds include contaminants of emerging concern (CECs), some of which are endocrine disrupting compounds (EDCs) that can have detrimental reproductive effects. The role of sediments in accumulating these types of chemicals and acting as a source of exposure for aquatic organisms is not well understood. Here we present a small-scale reconnaissance of CECs in bed sediments of the lower Columbia River and several tributaries and urban streams. Surficial bed sediment samples were collected from the Columbia River, the Willamette River, the Tualatin River, and several small urban creeks in Oregon. Thirty-nine compounds were detected at concentrations ranging from 1,000 ng [g sediment]-1 dry weight basis. Columbia River mainstem, suggesting a higher risk of exposure to aquatic life in lower order streams. Ten known or suspected EDCs were detected during the study. At least one EDC was detected at 21 of 23 sites sampled; several EDCs were detected in sediment from most sites. This study is the first to document the occurrence of a large suite of CECs in the sediments of the Columbia River basin. A better understanding of the role of sediment in the fate and effects of emerging contaminants is needed.

  20. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, M.; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  1. Red shiner invasion and hybridization with blacktail shiner in the upper Coosa River, USA

    USGS Publications Warehouse

    Walters, D.M.; Blum, M.J.; Rashleigh, B.; Freeman, B.J.; Porter, B.A.; Burkhead, N.M.

    2008-01-01

    Human disturbance increases the invasibility of lotic ecosystems and the likelihood of hybridization between invasive and native species. We investigated whether disturbance contributed to the invasion of red shiner (Cyprinella lutrensis) and their hybridization with native blacktail shiner (C. venusta stigmatura) in the Upper Coosa River System (UCRS). Historical records indicated that red shiners and hybrids rapidly dispersed in the UCRS via large, mainstem rivers since the mid to late 1990s. We measured the occurrence and abundance of parental species and hybrids near tributary-mainstem confluences and characterized populations at these incipient contact zones by examining variation across morphological traits and molecular markers. Red shiners represented only 1.2% of total catch in tributaries yet introgression was widespread with hybrids accounting for 34% of total catch. Occurrence of red shiners and hybrids was highly correlated with occurrence of blacktail shiners, indicating that streams with native populations are preferentially colonized early in the invasion and that hybridization is a key process in the establishment of red shiners and their genome in new habitats. Tributary invasion was driven by post-F1 hybrids with proportionately greater genomic contributions from blacktail shiner. Occurrence of red shiners and hybrids and the relative abundance of hybrids significantly increased with measures of human disturbance including turbidity, catchment agricultural land use, and low dissolved oxygen concentration. Red shiners are a significant threat to Southeast Cyprinella diversity, given that 41% of these species hybridize with red shiner, that five southeastern drainages are invaded, and that these drainages are increasingly disturbed by urbanization. ?? 2007 Springer Science+Business Media B.V.

  2. Land use influences and ecotoxicological ratings for upper clinch river tributaries in virginia.

    PubMed

    Locke, B A; Cherry, D S; Zipper, C E; Currie, R J

    2006-08-01

    The Clinch River system of southwestern Virginia and northeastern Tennessee is among the most biodiverse aquatic ecosystems of the United States, but its fauna are in decline. Unionidae (freshwater mussel) species are a major component of the Clinch's aquatic community, and their decline is well documented. Point-source discharges within the Clinch drainage are few, and primary stressors on the biota are believed to originate from non-point sources that are transported into the mainstem by tributaries. Currently, the relative influences of tributaries as stressors on aquatic biota are unclear. We studied 19 major tributaries of the free-flowing Upper Clinch River, developed an Ecotoxicological Rating (ETR) utilizing eight parameters, and assessed stream quality among land use categories using the ETR rating system. Biological, toxicological, habitat, and chemical variables were measured in each tributary, near its confluence with the Clinch. Geographic Information System software was used to quantify land use within each tributary watershed; all tributary watersheds are predominately forested, but agricultural, mining, and developed land uses (urban, transportation) are also present. ETRs indicated that the tributaries draining mining-influenced watersheds had greater potential impact on the mainstem than those draining agricultural or forested watersheds, because of poor benthic macroinvertebrate scores. ETRs ranged from 44 to 63, on a 100-point scale, for mining-influenced tributaries compared to agricultural (57-86) and forested tributaries (64-91). Mean ETRs for the mining-influenced tributaries (51) were significantly different than ETRs from agricultural and forested streams (75 and 80, respectively), and the presence of developed land uses had no significant relationship with ETRs. PMID:16783618

  3. Constituent loads and flow-weighted average concentrations for major subbasins of the upper Red River of the North Basin, 1997-99

    USGS Publications Warehouse

    Sether, Bradley A.; Berkas, Wayne R.; Vecchia, Aldo V.

    2004-01-01

    associated with each estimated annual load. The estimated annual loads for the eight primary sites then were used to estimate annual loads for five intervening reaches in the study area. Results were used as a screening tool to identify which subbasins contributed a disproportionate amount of pollutants to the Red River. To compare the relative water quality of the different subbasins, an estimated flow-weighted average (FWA) concentration was computed from the estimated average annual load and the average annual streamflow for each subbasin. The 5-day biochemical oxygen demands in the upper Red River Basin were fairly small, and medians ranged from 1 to 3 milligrams per liter. The largest estimated FWA concentration for dissolved solids (about 630 milligrams per liter) was for the Bois de Sioux River near Doran, Minn., site. The Otter Tail River above Breckenridge, Minn., site had the smallest estimated FWA concentration (about 240 milligrams per liter). The estimated FWA concentrations for dissolved solids for the main-stem sites ranged from about 300 to 500 milligrams per liter and generally increased in a downstream direction. The estimated FWA concentrations for total nitrite plus nitrate for the main-stem sites increased from about 0.2 milligram per liter for the Red River below Wahpeton, N. Dak., site to about 0.9 milligram per liter for the Red River at Perley, Minn., site. Much of the increase probably resulted from flows from the tributary sites and intervening reaches, excluding the Otter Tail River above Breckenridge, Minn., site. However, uncertainty in the estimated concentrations prevented any reliable conclusions regarding which sites or reaches contributed most to the increase. The estimated FWA concentrations for total ammonia for the main-stem sites increased from about 0.05 milligram per liter for the Red River above Fargo, N. Dak., site to about 0.15 milligram per liter for the Red River near Harwood, N. Dak., site. T

  4. Escapement and Productivity of Spring Chinook and Summer Steelhead in the John Day River Basin, Technical Report 2004-2005.

    SciTech Connect

    Wilson, Wayne

    2007-04-01

    The objectives are: (1) Estimate number and distribution of spring Chinook salmon Oncorhynchus tshawytscha redds and spawners in the John Day River subbasin; and (2) Estimate smolt-to-adult survival rates (SAR) and out-migrant abundance for spring Chinook and summer steelhead O. mykiss and life history characteristics of summer steelhead. Spawning ground surveys for spring (stream-type) Chinook salmon were conducted in four main spawning areas (Mainstem, Middle Fork, North Fork, and Granite Creek System) and seven minor spawning areas (South Fork, Camas Creek, Desolation Creek, Trail Creek, Deardorff Creek, Clear Creek, and Big Creek) in the John Day River basin during August and September of 2005. Census surveys included 298.2 river kilometers (88.2 rkm within index, 192.4 rkm additional within census, and 17.6 rkm within random survey areas) of spawning habitat. We observed 902 redds and 701 carcasses including 227 redds in the Mainstem, 178 redds in the Middle Fork, 420 redds in the North Fork, 62 redds in the Granite Creek System, and 15 redds in Desolation Creek. Age composition of carcasses sampled for the entire basin was 1.6% age 3, 91.2% age 4, and 7.1% age 5. The sex ratio was 57.4% female and 42.6% male. Significantly more females than males were observed in the Granite Creek System. During 2005, 82.3% of female carcasses sampled had released all of their eggs. Significantly more pre-spawn mortalities were observed in Granite Creek. Nine (1.3%) of 701 carcasses were of hatchery origin. Of 298 carcasses examined, 4.0% were positive for the presence of lesions. A significantly higher incidence of gill lesions was found in the Granite Creek System when compared to the rest of the basin. Of 114 kidney samples tested, two (1.8%) had clinical BKD levels. Both infected fish were age-4 females in the Middle Fork. All samples tested for IHNV were negative. To estimate spring Chinook and summer steelhead smolt-to-adult survival (SAR) we PIT tagged 5,138 juvenile

  5. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2003 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2003. This was the eighth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 437,633 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,492 PIT tagged yearlings from Pittsburg Landing, 7,494 from Big Canyon and 2,497 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels at the acclimation facilities could be considered medium with 37-83% of the fish sampled rating medium to very high. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 153.7 mm (153.2-154.2 mm) at Captain John Rapids to 164.2 mm (163.9-164.5 mm) at Pittsburg Landing. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.22 at Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 83.1% (80.7-85.5%) for Big Canyon to 91.7% (87.7-95.7%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 59.9% (54.6-65.2%) for Big Canyon to 69.4% (60.5-78.4%) for Captain John Rapids. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.8 river kilometers per day (rkm/d) for Captain

  6. Seasonal variations in methane emission from Amazon River and tributaries

    NASA Astrophysics Data System (ADS)

    Sawakuchi, H. O.; Krusche, A. V.; Ballester, M. V.; Sawakuchi, A. O.; Richey, J. E.

    2012-12-01

    Inland waters are known as important sources of methane to atmosphere. Methane is produced in anaerobic environments usually found in lake and floodplain bottom sediments, which is the main reason why most of the information regarding methane fluxes come from this environments. However, while floodplains dry during low water season, reducing methanogenesis, rivers keep the capacity to emit methane throughout the year. Here we present results of CH4 flux measurements from 4 large tropical rivers within the Amazon basin obtained with floating chambers in 10 sampling sites during low water (between September and November of 2011) and high water seasons (May, 2012). Sampling sites were located in three main tributaries of Amazon Rivers, Madeira, Xingu and Tapajós, and in the Amazon River mainstem. In the Madeira River high water fluxes ranged from 2.85 to 30.99 mmol m-2 yr-1 while during low water from 77.47 to 183.31 mmol m-2 yr-1. Fluxes for the Amazon and Tapajós were, respectively, 110.99 and 80.01 mmol m-2 yr-1 for the high water season and 169.71 and 193.18 mmol m-2 yr-1 for low water. In the Xingu River two sites had higher fluxes during low water, 314.90 and 571.49 mmol m-2 yr-1 (91.93 and 51.11 mmol m-2 yr-1 in the high water respectively). The two other sites had an opposite pattern with 296.56 and 60.80 mmol m-2 yr-1 in the low water and 846.95 and 360.93 mmol m-2 yr-1 during high water; one site showed equal fluxes for both seasons. Most of the fluxes were higher during low water, with the exception of the three sites at the Xingu River, where fluxes during high water were higher or equal than in low water. These results show a different pattern than described before for these riverine systems, in which higher methane fluxes during high water were expected due to inputs from surrounding anoxic floodplain environments. Instead, our data shows that methane in rivers can be produced within river channels. Lower fluxes during high water could be related to

  7. Amazon River

    Atmospheric Science Data Center

    2013-04-17

    ... the Rio Solimoes and the Rio Negro converge to form the Amazon River. This image from the Multi-angle Imaging SpectroRadiometer (MISR) ... date:  Jul 23, 2000 Images:  Amazon River location:  South America thumbnail:  ...

  8. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    ... View Larger Image The mighty Mississippi River, from its source at Lake Itasca, Minnesota to the Gulf of Mexico, is ... heavy rainfall on areas traversed by the upper Mississippi River. Each image in this pair covers an identical 195-kilometer x ...

  9. Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna; Stewart, Marc A.; Wellman, Roy W.; Vaughn, Jennifer

    2008-01-01

    In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical methods and presents data from the first year of work. To determine water velocities and discharge, a series of cross-sectional acoustic Doppler current profiler (ADCP) measurements were made on the mainstem and four canals on May 30 and September 19, 2007. Water quality was sampled weekly at five mainstem sites and five tributaries from early April through early November, 2007. Constituents reported here include field parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, iron, silica, and alkalinity; specific UV absorbance at 254 nm; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. The ADCP measurements conducted in good weather conditions in May showed that four major canals accounted for most changes in discharge along the mainstem on that day. Direction of velocity at measured locations was fairly homogeneous across the channel, while velocities were generally lowest near the bottom, and highest near surface, ranging from 0.0 to 0.8 ft/s. Measurements in September, made in windy conditions, raised questions about the effect of wind on flow. Most nutrient and carbon concentrations were lowest in spring, increased and remained elevated in summer, and decreased in fall. Dissolved nitrite plus nitrate and nitrite had a different seasonal cycle and were below detection or at low concentration in summer. Many nutrient and

  10. Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.

    SciTech Connect

    Johnson, David B.

    1985-05-01

    Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

  11. Delta distributary dynamics in the Skagit River Delta (Washington, USA): Extending, testing, and applying avulsion theory in a tidal system

    NASA Astrophysics Data System (ADS)

    Hood, W. Gregory

    2010-11-01

    Analysis of historical aerial photos shows that Skagit Delta (Washington, USA) distributary dynamics are consistent with the Slingerland and Smith model of avulsion dynamics where the ratio of the water surface slopes of the two branches of a bifurcation predicts avulsion stability. This model was extended to predict distributary inlet (upstream) width and bankfull cross-sectional area. The water surface gradient ratio for a bifurcation pair predicted distributary width well; the lowest R2 was 0.61 for the 1937 data points, but R2 ranged from 0.83 to 0.90 for other year-specific regression lines. Gradient ratios were not constant over the historical record; from 1937 to 1972 the mainstem river channel lengthened by 1250 m in the course of marsh progradation, while distributary lengthening was comparatively negligible. Consequently, the gradient advantage of the distributaries increased and their channels widened. After the mainstem river terminus stabilized from 1972 to the present, the distributaries continued to lengthen with marsh progradation, so that distributary gradient advantage steadily declined and the distributaries narrowed. While distributary cross sections were not available for the historical period, they were surveyed in 2007 near the distributary inlets. Gradient ratio was more closely related to distributary inlet bankfull cross-sectional area ( R2 = 0.95) than to minimum distributary width for any photo year examined. Applying this form of analysis to Skagit Delta distributaries that have been dammed in the course of agricultural development suggests that their restoration to stabilize eroding marshes at their outlets and recover salmon migration pathways would be feasible without significant risk of full river avulsion.

  12. PROOF OF CONCEPT TEST OF A UNIQUE GASEOUS PERFLUROCARBON TRACER SYSTEM FOR VERIFICATION AND LONG TERM MONITORING OF CAPS AND COVER SYSTEMS CONDUCTED AT THE SAVANNAH RIVER SITE BENTONITE MAT TEST FACILITY.

    SciTech Connect

    HEISER,J.; SULLIVAN,T.; SERRATO,M.

    2002-02-24

    be used as a non-invasive method (if injection ports are emplaced prior to cover emplacement) on new covers or a minimally invasive method on existing covers. PFT verification will be useful at all buried waste sites using a cover system (e.g., treated or untreated chemical waste landfills) including DOE, commercial, and private sector sites. This paper discusses the initial field trial of the PFT cover monitoring system performed at the Savannah River Site (SRS) in FY01. The experiments provided a successful proof-of-principle test of the PFT technology in monitoring caps and covers. An injection and sampling array was installed in the Bentomat test cap at the SRS Caps Test Facility. This system contained 6 feet of sandy soil beneath a 1/2 inch geosynthetic clay liner covered by an HDPE liner which was covered by 2 feet of clayey top soil. PFTs were injected into the sandy soil though a pre-existing system of access pipes below the cap and soil gas samples were taken on top of the cap. Mid-way into the injection period a series of 1 1/2 inch holes were punched into the cap (through the geomembrane) to provide a positive breach in the cap. Data will be presented that shows the initial cap was fairly tight and leak free and that the artificially induced leaks were detectable within two hours of occurrence.

  13. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    he U.S. Geological Survey (USGS), in cooperation with Idaho Department of Environmental Quality, developed spreadsheet mass-balance models for total phosphorus using results from three synoptic sampling periods conducted in the lower Boise River watershed during August and October 2012, and March 2013. The modeling reach spanned 46.4 river miles (RM) along the Boise River from Veteran’s Memorial Parkway in Boise, Idaho (RM 50.2), to Parma, Idaho (RM 3.8). The USGS collected water-quality samples and measured streamflow at 14 main-stem Boise River sites, two Boise River north channel sites, two sites on the Snake River upstream and downstream of its confluence with the Boise River, and 17 tributary and return-flow sites. Additional samples were collected from treated effluent at six wastewater treatment plants and two fish hatcheries. The Idaho Department of Water Resources quantified diversion flows in the modeling reach. Total phosphorus mass-balance models were useful tools for evaluating sources of phosphorus in the Boise River during each sampling period. The timing of synoptic sampling allowed the USGS to evaluate phosphorus inputs to and outputs from the Boise River during irrigation season, shortly after irrigation ended, and soon before irrigation resumed. Results from the synoptic sampling periods showed important differences in surface-water and groundwater distribution and phosphorus loading. In late August 2012, substantial streamflow gains to the Boise River occurred from Middleton (RM 31.4) downstream to Parma (RM 3.8). Mass-balance model results indicated that point and nonpoint sources (including groundwater) contributed phosphorus loads to the Boise River during irrigation season. Groundwater exchange within the Boise River in October 2012 and March 2013 was not as considerable as that measured in August 2012. However, groundwater discharge to agricultural tributaries and drains during non-irrigation season was a large source of discharge and

  14. Divergent biophysical controls of aquatic CO2 and CH4 in the World's two largest rivers.

    PubMed

    Borges, Alberto V; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R; Deborde, Jonathan; Vidal, Luciana O; Lambert, Thibault; Bouillon, Steven

    2015-01-01

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. PMID:26494107

  15. Phylogenetic diversity, composition and distribution of bacterioplankton community in the Dongjiang River, China.

    PubMed

    Liu, Zhenghui; Huang, Shaobin; Sun, Guoping; Xu, Zhencheng; Xu, Meiying

    2012-04-01

    Bacterioplankton community compositions in the Dongjiang River were characterized using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library construction. Water samples in nine different sites were taken along the mainstem and three tributaries. In total, 24 bands from DGGE gels and 406 clones from the libraries were selected and sequenced, subsequently analyzed for the bacterial diversity and composition of those microbial communities. Bacterial 16S rRNA gene sequences from freshwater bacteria exhibited board phylogenetic diversity, including sequences representing the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Bacteriodetes, Verrucomicrobia, and candidate division TM7. Members of Betaproteobacteria group were the most dominant in all sampling sites, followed by Gammaproteobacteria, Alphaproteobacteria, and Actinobacteria. DGGE profiles and the ∫-LIBSHUFF analysis revealed similar patterns of bacterial diversity among most sampling sites, while spatial distribution variances existed in all sites along the river basin. Statistical analysis showed that bacterial species distribution strongly correlated with environmental variables, such as nitrate and ammonia, suggesting that nitrogen nutrients may shape the microbial community structure and composition in the Dongjiang River. This study had important implications for the comparison with other rivers elsewhere and contributed to the growing data set on the factors that structure bacterial communities in freshwater ecosystems. PMID:22133045

  16. Influence of wood and forests on fish abundance and richness in a large floodplain river

    NASA Astrophysics Data System (ADS)

    Gregory, S.; Wildman, R. C.

    2005-05-01

    We investigated the influence of large wood and adjacent floodplain forests on fish assemblages along the 230-km mainstem of the Willamette River, Oregon. Fish were sampled in open reaches using boat electroshocking, beach seining, and backpack electroshocking in paired sites with intact forest and land converted to agriculture or urban use. Fish abundance and richness were statistically significantly greater in reaches with intact forest. We observed that wood abundance in the river was related to density of trees along the floodplain margin and developed an intensive sampling approach for determining fish abundance and richness in accumulations of large wood in the river. Fish were sampled from "wood corrals" and marked by fin clipping. These sites were sampled the following day to determine the abundances of each species by mark-recapture. Nets were placed around similar areas in adjacent habitats without wood. Fish numbers around wood accumulations were more than double those in areas without wood. The number of fish species was greater by an average of four species in sites with wood. These results were used to project the consequence of historical changes in fish abundance and richness in the Willamette River and forecast possible responses to future land use change.

  17. Present and potential sediment yields in the Yampa River Basin, Colorado and Wyoming

    USGS Publications Warehouse

    Andrews, Edmund D.

    1978-01-01

    Average annual suspended- and total-sediment loads in streamflow were determined by the flow-duration sediment-transport-curve method at 18 sites in the Yampa River basin, Colorado and Wyoming. These computations indicate that about 2.0 million tons of sediment are carried by the Yampa River at Deerlodge Park during an average year. Significant areal differences in the sediment yield from various parts of the basin also were determined. The lower Little Snake River subbasin contributes about 60 percent of the total basin sediment yield, although it represents less than 35 percent of the area and supplies less than 3 percent of the streamflow. In contrast, the upland (eastern) one-third of the basin contributes only about 14 percent of the sediment yield but 76 percent of the streamflow. Projected economic development of the basin, especially surface mining of coal, will impact the physical environment. Depending upon the amount and location of land disturbed, an estimated 10 ,000 to 30,000 tons per year of additional sediment will be contributed to the main-stem Yampa River. (Woodard-USGS)

  18. Time of travel of solutes in the Sabine River basin, Texas, August-November 1996

    USGS Publications Warehouse

    Raines, Timothy H.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Sabine River Authority, did a time-of-travel study in the Sabine River Basin during low flow from August to November 1996. The study was done to provide accurate estimates of the time-of-travel and dispersion characteristics for solutes during low flow in a 1.8-mile (mi) reach of Grace Creek, a 23.9-mi reach of the mainstem Sabine River, a 3.4-mi reach of Hawkins Creek, and a 1.9-mi reach of Rocky Creek. This report explains the approach and documents the results of the study. The results of the study will be used by the Texas Natural Resource Conservation Commission in a water-quality model to determine waste-load allocation in Segment 0505 of the Sabine River Basin. The time-of-travel and dispersion characteristics also provide useful information on the probable behavior of soluble contaminants that might be introduced into the streams measured in this study.

  19. 77 FR 19278 - Leaf River Energy Center LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Energy Regulatory Commission Leaf River Energy Center LLC; Notice of Application On March 20, 2012, Leaf River Energy Center LLC (Leaf River), 53 Riverside Avenue, Westport, Connecticut 06880, filed with the...-000, to authorize Leaf River to reallocate the aggregate total facility certificated storage...

  20. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    SciTech Connect

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  1. Data from synoptic water-quality studies on the Colorado River in the Grand Canyon, Arizona, November 1990 and June 1991

    USGS Publications Warehouse

    Taylor, H.E.; Peart, D.B.; Antweiler, R.C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.

    1996-01-01

    Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.

  2. Methow River Studies, Washington: abundance estimates from Beaver Creek and the Chewuch River screw trap, methodology testing in the Whitefish Island side channel, and survival and detection estimates from hatchery fish releases, 2013

    USGS Publications Warehouse

    Martens, Kyle D.; Fish, Teresa M.; Watson, Grace A.; Connolly, Patrick J.

    2014-01-01

    2008, focuses on the evaluation of the M2 reach (rkm 66– 80) of the mainstem Methow River prior to restoration actions planned by Reclamation and Yakama Nation. The M2 study was designed to help understand the inter-relationships between stream habitat and the life history of various fish species to explain potential success or limitations in response to restoration actions. To help document changes derived by restoration, two reference reaches (Upper Methow between rkm 85 and 90, and Chewuch River between rkm 4 and 11) were identified based on relative lack of disturbance, proximity to the restoration reach, and relative unconfined geomorphology. A control reach (Lower Methow between rkm 57 and 64, also referred to as “Silver Reach”) was 2 identified based on its similar disturbance as the reference reach, proximity to the restoration reach, and relatively unconfined geomorphology. Products to date include Barber and others (2011), Bellmore (2011), Tibbits and others (2012), Bellmore and others (2013), Benjamin and others (2013), Romine and others (2013b), Bellmore and other (2014), Martens and others (2014), and Martens and Connolly (2014). The third phase of work has been to help with the development and to provide data for modeling efforts. Most of the planned M2 reach restoration is focused on the creation or improvement of offchannel habitat, especially side channels. The pre-restoration portion of this study has been documented by Martens and Connolly (2014). Side channel restoration actions were initiated in 2012 (Whitefish Island side channel, also referred to as SC3; rkm 76) and are planned to continue over the next several years. The Whitefish Island side channel was modified to maintain hydrological connection with the mainstem throughout the year. In addition, several log structures were installed and pools were deepened to create fish habitat. Prior to restoration, this side channel would lose hydrological connection with the mainstem Methow River

  3. Evaluation of a floating fish guidance structure at a hydrodynamically complex river junction in the Sacramento–San Joaquin River Delta, California, USA

    USGS Publications Warehouse

    Romine, Jason G.; Perry, Russell W.; Pope, Adam C; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L

    2016-01-01

    Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.

  4. Safety analysis reports for multiple hazard category facilities

    SciTech Connect

    Geeting, M.W.; Gerrard, P.B.

    1995-12-31

    The Savannah River Site contains many nuclear facilities for which safety analysis reports (SARs) are required. The current requirements with which the SARs must comply are given in U.S. Department of Energy (DOE) Order 5480.23. This order requires use of the graded approach. The graded approach demands a more thoroughly documented assessment of complex, higher hazard facilities than simple, lower hazard facilities because grading is a function of both hazard potential and complexity. The treatment of different hazard category facilities in the development of the SAR for the Central Laboratory Facility at the Savannah River Site is described here.

  5. Early life history of the northern pikeminnow in the lower Columbia River basin

    USGS Publications Warehouse

    Gadomski, D.M.; Barfoot, C.A.; Bayer, J.M.; Poe, T.P.

    2001-01-01

    The northern pikeminnow Ptychocheilus oregonensis is a large, native cyprinid in the Columbia River basin that has persisted in spite of substantial habitat alterations. During the months of June to September 1993-1996, we investigated the temporal and spatial patterns of northern pikeminnow spawning, along with describing larval drift and characterizing larval and early juvenile rearing habitats in the lower Columbia River (the John Day and Dalles reservoirs and the free-flowing section downstream of Bonneville Dam) as well as in the lower sections of two major tributaries (the John Day and Deschutes rivers). The density of newly emerged drifting larvae was higher in dam tailraces (a mean of 7.7 larvae/100 m3 in surface tows) than in the lower reservoirs (0.3 larvae/100 m3), indicating that tailraces were areas of more intense spawning. Density was particularly high in the Bonneville Dam tailrace (15.1 larvae/100 m3), perhaps because adult northern pikeminnow are abundant below Bonneville Dam and this is the first tailrace and suitable main-stem spawning habitat encountered during upriver spawning migrations. Spawning also occurred in both of the tributaries sampled but not in a backwater. Spawning in the Columbia River primarily took place during the month of June in 1993 and 1994, when the water temperature rose from 14??C to 18??C, but occurred about 2 weeks later in 1995 and 1996, possibly because of cooler June water temperature (14-15??C) in these years. The period of drift was brief (about 1-3 d), with larvae recruiting to shallow, low-velocity shorelines of main-channel and backwater areas to rear. Larvae reared in greatest densities at sites with fine sediment or sand substrates and moderate- to high-density vegetation (a mean density of 92.1 larvae/10 m3). The success of northern pikeminnow in the Columbia River basin may be partly attributable to their ability to locate adequate spawning and rearing conditions in a variety of main-stem and tributary

  6. River Times.

    ERIC Educational Resources Information Center

    Auldridge, Teresa; And Others

    The James River is one of the most precious resources of Virginia. It was the site of the first permanent English settlement in the New World; the power of the water at the Fall Zone was a major factor in the development of Richmond; and the river served as a primary transportation route to the West via the Kanawha Canal. Both the water itself and…

  7. Divergent Radiocarbon Age Distributions of Carbon Pools in a Major Temperate River: Implications for Sources, Reactivity, and Land-Ocean Exchanges

    NASA Astrophysics Data System (ADS)

    Bauer, J. E.; Guo, L.; Perkey, D. W.; Raymond, P.; Bianchi, T. S.; Grottoli, A. G.; Matsui, Y.

    2011-12-01

    Rivers collectively transport carbon to the oceans in amounts comparable to other net global carbon fluxes. The characteristics of the carbon pools exported by major world rivers have largely been defined by studies of a single system - the Amazon - yet a significant fraction of global river water and material fluxes are driven by major temperate rivers which have received more limited study. We present new findings on the carbon pools of the Mississippi River system, which drains one of the most highly engineered drainage basins in the world. The three major pools (dissolved organic and inorganic C and particulate organic C; DOC, DIC and POC, respectively) have entirely disparate source-age characteristics, suggesting that each arises from unique reservoirs and/or processes in the Mississippi Basin. In particular, the radiocarbon (14C) contents of the organic matter pools indicate that river DOC arises from surface runoff of contemporary biomass, whereas POC originates from deeper soil horizons and/or protracted river bed erosion. Between the Upper Mississippi and the confluence of the Ohio River, concentrations of DOC and DIC along the mainstem of the river show non-conservative behavior. Downriver of the Ohio River confluence, however, DOC and DIC when corrected for tributary inputs remain essentially unchanged, suggesting the relative inertness of these pools over a significant length of the Mississippi. While a major part of the Mississippi and Ohio River watersheds is agricultural, carbon inputs from corn-dominated regions appear to be relatively limited. The export of carbon pools of highly divergent source-ages from the Mississippi and possibly other major temperate rivers indicates that terrestrial carbon losses from these systems may need to be reassessed in continent-scale and ocean carbon budgets.

  8. Persistence and Geomorphology of Clearwater Side Channels in a Braided River: The More Things Change, the More They Stay the Same

    NASA Astrophysics Data System (ADS)

    Curran, J. H.

    2007-12-01

    Clearwater side channel lifespans and geomorphic changes are being examined to guide research on importance of side channels to salmon habitat quantity and quality at the river-long scale and implications for land management. Dynamic patterns of channel formation in braided rivers can result in rapid abandonment of channels within the braid plain. When these channels fill with water from hyporheic, regional ground water, or upland tributary sources, clearwater side channels result that might create a stable environment for spawning salmon. To determine the annual to decadal persistence of these side channels, clearwater channels in the 120 km-long Matanuska River in southcentral Alaska are being identified from color differences on a 0.3 m pixel 2006 color orthophoto prepared from 1:24,000-scale aerial photography. Channel identification is being calibrated with field observations of selected channels. This inventory of modern clearwater side channels is being compared to historical conditions from a black-and-white orthophoto prepared from 1949 1:40,000-scale aerial photography, and selected aerial photography for the 1960s and 1980s. Where photo quality limits detection of water clarity, side channel presence or absence is noted. Initial results show that while individual side channels may persist for many years, they have rarely persisted more than a few decades. Analysis of selected, wide braid plain areas shows that multiple water sources may exist for supplying abandoned braid plain channels, an indication that some locations may host clearwater side channels regardless of mainstem position. For example, a clearwater side channel that has been historically used as a spawning site is fed by a tributary known locally as Yellow Creek. This channel is presently being captured by the active braids of the Matanuska River. A comparable clearwater side channel has formed from tributary flow on the opposite bank. However, in 1949, this condition was reversed, with

  9. Extreme river response to climate-induced aggradation in a forested, montane basin, Carbon River, Mount Rainier National Park, Washington, United States

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Rossi, R. K.; Kennard, P. M.; Beason, S. R.

    2013-12-01

    understand the Carbon River avulsion vulnerability, relative to White River and Tahoma Creek, and whether recent avulsions are a harbinger of a threshold loss of riparian forest leading to unfettered future river channel shifting. To this end, we are analyzing historic aerial imagery, multiple LiDAR datasets, and the flood record as well as field mapping channels to identify historically active, inactive, and abandoned avulsions through time and in relation to susceptibility of forest mortality and infrastructure destruction by mainstem avulsions of the Carbon River and widening of the river valley. Our work contributes to the understanding of river avulsions and landscape response to climate change via channel migration due to interactions between sediment aggradation, flood events, and interactions with streamside forests.

  10. RCRA FACILITIES

    EPA Science Inventory

    Points represent facilities that are regulated by the EPA under the Resource Conservation and Recovery Act (RCRA). Facilities regulated under RCRA generate, dispose of, treate or transport hazardous waste. RCRA is a law enacted by Congress in 1976 and amended in 1984 to include ...

  11. Synthesis of natural flows at selected sites in and near the Milk River basin, Montana, 1928-89

    USGS Publications Warehouse

    Cary, L.E.; Parrett, Charles

    1995-01-01

    Natural monthly streamflows were synthesized for the years 1928-89 at 2 sites in the St. Mary River Basin and 11 sites in the Milk River Basin in north- central Montana. The sites are represented as nodes in a streamflow accounting model being developed by the Bureau of Reclamation for the Milk River Basin. Recorded flows at most sites have been affected by human activities, including reservoir storage and irrigation diversions. The flows at the model nodes were corrected for the effects of these activities to obtain synthesized flows. The synthesized flows at nodes with seasonal and short-term records were extended using a statistical technique. The methods of synthesis varied, depending on upstream activities and information available. Flows at sites in the St. Mary River Basin and at the Milk River at Eastern Crossing of International Boundary pre- viously had been synthesized. The flows at mainstem sites downstream from the Milk River at Eastern Crossing were synthesized by adding synthesized natural runoff from intervening drainage areas to natural flows for Milk River at Eastern Crossing. Natural runoff from intervening drainage areas was estimated by multiplying recorded flows at selected index gaging stations on tributary streams by the ratio of the intervening drainage area to the combined drainage area of the index stations. The recorded flows for Milk River at Western Crossing of International Boundary and for Peoples Creek near Dodson, Montana, were assumed to be natural flows. The synthesized annual flows at the mouth of the Milk River compared favorably with the recorded flows near the mouth when the effects of upstream irrigation were considered.

  12. Relations Among Geology, Physiography, Land Use, and Stream Habitat Conditions in the Buffalo and Current River Systems, Missouri and Arkansas

    USGS Publications Warehouse

    Panfil, Maria S.; Jacobson, Robert B.

    2001-01-01

    This study investigated links between drainage-basin characteristics and stream habitat conditions in the Buffalo National River, Arkansas and the Ozark National Scenic Riverways, Missouri. It was designed as an associative study - the two parks were divided into their principle tributary drainage basins and then basin-scale and stream-habitat data sets were gathered and compared between them. Analyses explored the relative influence of different drainage-basin characteristics on stream habitat conditions. They also investigated whether a relation between land use and stream characteristics could be detected after accounting for geologic and physiographic differences among drainage basins. Data were collected for three spatial scales: tributary drainage basins, tributary stream reaches, and main-stem river segments of the Current and Buffalo Rivers. Tributary drainage-basin characteristics were inventoried using a Geographic Information System (GIS) and included aspects of drainage-basin physiography, geology, and land use. Reach-scale habitat surveys measured channel longitudinal and cross-sectional geometry, substrate particle size and embeddedness, and indicators of channel stability. Segment-scale aerial-photo based inventories measured gravel-bar area, an indicator of coarse sediment load, along main-stem rivers. Relations within and among data sets from each spatial scale were investigated using correlation analysis and multiple linear regression. Study basins encompassed physiographically distinct regions of the Ozarks. The Buffalo River system drains parts of the sandstone-dominated Boston Mountains and of the carbonate-dominated Springfield and Salem Plateaus. The Current River system is within the Salem Plateau. Analyses of drainage-basin variables highlighted the importance of these physiographic differences and demonstrated links among geology, physiography, and land-use patterns. Buffalo River tributaries have greater relief, steeper slopes, and more

  13. Evaluation of airborne image data and LIDAR main stem data for monitoring physical resources within the Colorado River ecosystem

    USGS Publications Warehouse

    Davis, Philip A.; Rosiek, Mark R.; Galuszka, Donna M.

    2002-01-01

    This study evaluated near-infrared LIDAR data acquired over the main-stem channel at four long-term monitoring sites within the Colorado River ecosystem (CRE) to determine the ability of these data to provide reliable indications in changes in water elevation over time. Our results indicate that there is a good correlation between the LIDAR water-surface elevations and ground measurements of water-edge elevation, but there are also inherent errors in the LIDAR data. The elevation errors amount to about 50 cm and therefore temporal changes in water-surface elevation that exceed this value by the majority of data at a particular location can be deemed significant or real. This study also evaluated airborne image data for producing photogrammetric elevation data and for automated mapping of sand bars and debris flows within the CRE. The photogrammetric analyses show that spatial resolutions of ≤ 10 cm are required to produce vertical accuracies

  14. Composition of Age-0 Fish Assemblages in the Apalachicola River, River Styx, and Battle Bend, Florida

    USGS Publications Warehouse

    Walsh, Stephen J.; Buttermore, Elissa N.; Burgess, O. Towns; Pine, William E., III

    2009-01-01

    Light traps were used to sample the age-0 year class of fish communities in the Apalachicola River and associated floodplain water bodies of River Styx and Battle Bend, Florida, in 2006-2007. A total of 629 light traps were deployed during the spring and early summer months (341 between March 15 and June 6, 2006; 288 between March 9 and July 3, 2007). For combined years, 13.8 percent of traps were empty and a total of 20,813 age-0 fish were captured representing at least 40 taxa of 29 genera and 16 families. Trap catches were dominated by relatively few species, with the most abundant groups represented by cyprinids, centrarchids, percids, and catostomids. Six taxa accounted for about 80 percent of all fish collected: Micropterus spp. (28.9 percent), Notropis texanus (28.9 percent), Lepomis macrochirus (7.9 percent), Carpiodes cyprinus (6.2 percent), Cyprinidae sp. (4.6 percent), and Minytrema melanops (4.2 percent). Based on chronological appearance in light traps and catch-per-unit effort, including data from previous years of sampling, peak spawning periods for most species occurred between early March and mid-June. A complementary telemetry study of pre-reproductive adults of select target species (Micropterus spp., Lepomis spp., and M. melanops) revealed distinct patterns of habitat use, with some individual fish exclusively utilizing mainstem river habitat or floodplain habitat during spawning and post-spawning periods, and other individuals migrating between habitats. A comparison of light-trap catches between a pre-enhancement, high-water year (2003) and post-enhancement, low-water year (2007) for the oxbow at Battle Bend revealed some difference in community composition, with slightly greater values of diversity and evenness indices in 2007. Two dominant species, Lepomis macrochirus and Micropterus salmoides, were substantially greater in relative abundance among all age-0 fish collected in 2007 in comparison to 2003. Excavation of sediments at the mouth

  15. Assessing Summer and Fall Chinook Salmon Restoration in the Upper Clearwater River and Principal Tributaries, 1994 Annual Report.

    SciTech Connect

    Arnsberg, Billy D.; Statler, David P.

    1995-08-01

    This is the first annual report of a five year study to assess summer and fall chinook salmon restoration potential in the upper Clearwater River and principal tributaries, Salmon, Grande Ronde, and Imnaha Rivers. During 1994, the authors focused primarily on assessing water temperatures and spawning habitat in the upper Clearwater River and principal tributaries. Water temperature analysis indicated a colder temperature regime in the upper Clearwater River above the North Fork Clearwater River confluence during the winter as compared to the lower Clearwater. This was due to warm water releases from Dworshak Reservoir on the North Fork moderating temperatures in the lower Clearwater River. Thermal temperature unit analysis and available literature suggest a 75% survival threshold level may be anticipated for chinook salmon egg incubation if spawning would occur by November 1 in the upper Clearwater River. Warm water upwelling in historic summer and fall chinook spawning areas may result in increased incubation survivals and will be tested in the future. The authors observed a total of 37 fall chinook salmon redds in the Clearwater River subbasin. They observed 30 redds in the mainstem Clearwater below the North Fork Clearwater River confluence and seven redds in the North Fork Clearwater River. No redds were observed in the South Fork Clearwater, Middle Fork Clearwater, or Selway Rivers. They observed one fall chinook salmon redd in the Salmon River. They recovered 10 fall chinook salmon carcasses in the Clearwater River to obtain biological measurements and to document hatchery contribution to spawning. Unseasonably high and cold Dworshak Dam releases coinciding with early juvenile fall chinook salmon rearing in the lower Clearwater River may be influencing selective life history traits including growth, smolt development, outmigration timing, behavior, and could be directly affecting survival. During July 1994, discharges from Dworshak Dam increased from a

  16. Great Lakes Steel -- PCI facility

    SciTech Connect

    Eichinger, F.T.; Dake, S.H.; Wagner, E.D.; Brown, G.S.

    1997-12-31

    This paper discusses the planning, design, and start-up of the 90 tph PCI facility for National Steel`s Great Lakes Steel Division in River Rouge, MI. This project is owned and operated by Edison Energy Services, and was implemented on a fast-track basis by Raytheon Engineers and Constructors, Babcock Material Handling, and Babcock and Wilcox. This paper presents important process issues, basic design criteria, an the challenges of engineering and building a state-of-the-art PCI facility in two existing plants. Pulverized coal is prepared at the River Rouge Power Plant of Detroit Edison, is pneumatically conveyed 6,000 feet to a storage silo at Great Lakes Steel, and is injected into three blast furnaces.

  17. Bedload entrainment in low-gradient paraglacial coastal rivers of Maine, U.S.A.: Implications for habitat restoration

    NASA Astrophysics Data System (ADS)

    Snyder, Noah P.; Castele, Michael R.; Wright, Jed R.

    2009-02-01

    The rivers of coastal Maine flow through mainstem lakes and long low-gradient reaches that break the continuum of bedload transport expected in nonparaglacial landscapes. Stream erosion of glacial deposits supplies coarse sediment to these systems. The land use history includes intensive timber harvest and associated dam construction, which may have altered the frequency of substrate-mobilizing events. These watersheds are vital habitat for the last remaining wild anadromous Atlantic salmon in the United States. Future adjustments in channel morphology and habitat quality (via natural stream processes or restoration projects) depend on erosion, transport, and deposition of coarse sediment. These factors motivate our study of competence at four sites in the Sheepscot and Narraguagus watersheds. Three of the four sites behaved roughly similarly, with particle entrainment during intervals that include winter ice and spring flood conditions, and relatively minor bed mobilization during moderate floods in the summer and fall (with a recurrence interval of 2-3 years). The fourth site, on the Sheepscot River mainstem, exhibits more vigorous entrainment of marked particles and more complex three-dimensional channel morphology. This contrast is partially due to local geomorphic conditions that favor high shear stresses (particularly relatively steep gradient), but also likely to nourishment of the bedload saltation system by recruitment from an eroding glacial deposit upstream. Our results suggest that the frequency and magnitude of bedload transport are reach specific, depending on factors including local channel geometry, upstream sediment supply and transport, and formation of anchor ice. This presents a challenge for stream practitioners in this region: different reaches may require contrasting management strategies. Our results underscore the importance of understanding channel processes at a given site and assessing conditions upstream and downstream as a prerequisite

  18. Hyporheic Potential as a Mechanism for Variation in Stream Temperature Along the Umatilla River, Oregon.

    NASA Astrophysics Data System (ADS)

    O'Daniel, S. J.; Poole, G. C.

    2002-12-01

    Groundwater and surface water interaction create patterns of thermal diversity crucial to normative ecosystem function. Native salmonids utilize upwelling hyporheic water, which both, create and expand critical cold water refugia. Using several known factors for hyporheic exchange, we created a potential hyporheic influence using 30-meter Digital Elevation Model data. Trend in valley width, stream slope, trend in floodplain width, variance in slope and sinuosity were derived from the DEM data and combined in to an estimate of hyporheic potential. We compared several known stream temperature influences to hyporheic potential. These influences include riparian shade, topographic shade, tributary influences, irrigation dam influence, and reservoir releases. FLIR - Forward Looking Infrared Radiometer data was used to create a longitudinal temperature profile for mainstem Umatilla River. Potential thermal influences were compared to a continuous temperature profile of the river. Hyporheic potential explains the majority of thermal variation during a peak temperature loading period. These results suggest, at river basin scales, that hyporheic exchange is an important driver in thermal variation.

  19. Assessing juvenile native fish demographic responses to a steady flow experiment in a large regulated river

    USGS Publications Warehouse

    Finch, Colton G.; Pine, William E., III; Yackulic, Charles B.; Dodrill, Michael J.; Yard, Michael D.; Gerig, Brandon S.; Coggins,, Lewis G., Jr.; Korman, Josh

    2016-01-01

    The Colorado River below Glen Canyon Dam, Arizona, is part of an adaptive management programme which optimizes dam operations to improve various resources in the downstream ecosystem within Grand Canyon. Understanding how populations of federally endangered humpback chub Gila cypha respond to these dam operations is a high priority. Here, we test hypotheses concerning temporal variation in juvenile humpback chub apparent survival rates and abundance by comparing estimates between hydropeaking and steady discharge regimes over a 3-year period (July 2009–July 2012). The most supported model ignored flow type (steady vs hydropeaking) and estimated a declining trend in daily apparent survival rate across years (99.90%, 99.79% and 99.67% for 2009, 2010 and 2011, respectively). Corresponding abundance of juvenile humpback chub increased temporally; open population model estimates ranged from 615 to 2802 individuals/km, and closed model estimates ranged from 94 to 1515 individuals/km. These changes in apparent survival and abundance may reflect broader trends, or simply represent inter-annual variation. Important findings include (i) juvenile humpback chub are currently surviving and recruiting in the mainstem Colorado River with increasing abundance; (ii) apparent survival does not benefit from steady fall discharges from Glen Canyon Dam; and (iii) direct assessment of demographic parameters for juvenile endangered fish are possible and can rapidly inform management actions in regulated rivers.

  20. Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 2002 Annual Report.

    SciTech Connect

    Brostrom, Jody K.

    2003-03-01

    We tagged 4,513 hatchery steelhead from Dworshak National Fish Hatchery (NFH), with Passive Integrated Transponder (PIT) tags to evaluate factors contributing to residualism. Steelhead from typical growth ponds (System I) averaged eight mm less and traveled two days faster to Lower Granite Dam than those in faster growth ponds (System II). The mean detection rates of steelhead by rearing system were 57.4%, 55.9%, and 57.8% for System I, System II, and System III. Steelhead released into Clear Creek, South Fork Clearwater River and directly from Dworshak NFH had detection rates of 55.0%, 59.1%, and 57.8%, respectively. Overall detection rate for all release sites, rearing systems and egg takes was 54.1%. We PIT tagged an additional 270 hatchery steelhead in the North Fork and mainstem Clearwater rivers and the adult ladder at Dworshak National Fish Hatchery between May 15 and October 29. In the four tributaries sampled, no hatchery steelhead were captured or observed. A total of 51 code d-wire tags were recovered; 3 were released at Dworshak NFH in 2001 and 47 in 2002. One fish was released at Clear Creek. Although sample sizes were small, we were able to verify that at least 33 residual steelhead tagged in 2001 persisted in the Clearwater River during winter and were detected at downstream dams in 2002. Final analysis will include influences of water flow and temperature in emigration success.

  1. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  2. Facility Planning.

    ERIC Educational Resources Information Center

    Graves, Ben E.

    1984-01-01

    This article reviews recommendations on policies for leasing surplus school space made during the Council of Educational Facility Planners/International conference. A case study presentation of a Seattle district's use of lease agreements is summarized. (MJL)

  3. Potential effect of algal productivity in the San Joaquin River on nitrate concentrations and isotope ratios

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.; Young, M. B.; Volkmar, E. C.; Dahlgren, R. A.; Borglin, S. E.; Stringfellow, W. T.

    2008-12-01

    The d15N of algae in nitrate-rich rivers is often about 4 to 5 permil lower than the d15N of the nitrate used by the algae. In cases where the algal productivity significantly depletes the available nitrate pool, the uptake of nitrate can cause significant increases in the d15N and d18O of the residual nitrate, resulting in isotope values similar to what would be expected for a major contribution of human or animal waste to the river. Furthermore, progressive algal uptake also causes nitrate d18O and d15N values that plot along slopes of about 1:2, consistent with assimilation and/or denitrification. One way to resolve the question of whether the high nitrate d15N and d18O values reflect a waste source, assimilation, or denitrification is to compare the simultaneous changes in nitrate concentrations, algal quality and loads, nitrate d15N and d18O, and the d15N, d13C, and C:N of the particulate organic matter, which is often dominated by algae in large rivers. As part of a recent investigation of nitrate and organic matter sources to the San Joaquin River (SJR), samples were collected twice-weekly to monthly for over 2 years from 7 mainstem sites (as well as many major and minor tributary sites) and analyzed for a wide range of chemical constituents and isotope ratios. The average nitrate d15N of mainstem sites was +11 permil, with a range of +2 to +17; the average d18O was +5 permil, with a range of -1 to +18. The potential impact of algal uptake on isotope ratios in the SJR was modeled using isotope and chemical data from 2 Lagrangian experiments in the San Luis Drain, a simple concrete-lined canal which drains into the SJR, has only a single input of water, and has algae similar to that in the SJR and a high productivity rate (Volkmar et al., in prep.).

  4. Production facilities

    SciTech Connect

    Not Available

    1989-01-01

    This book presents a cross section of different solutions to the many unique production problems operators face. Sections address benefit vs. cost options for production facility designs, oil and gas separation processes and equipment, oil treating and desalting systems, and water treating methods and equipment. Papers were selected to give an overall view of factors involved in optimizing the design of cost-effective production facilities.

  5. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2004 Annual Report.

    SciTech Connect

    Rocklage, Stephen J. Nez Perce Tribe, Department of Fisheries Resource Management, Lapawi, ID)

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project (FCAP) sites upstream of Lower Granite Dam in 2004. This was the ninth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 414,452 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 4,983 PIT tagged yearlings from Pittsburg Landing, 4,984 from Big Canyon and 4,982 from Captain John Rapids. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered low with 53-94% rating not detected to low. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 154.6 mm (154.0-155.2 mm) at Pittsburg Landing to 163.0 mm (162.6-163.4 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Lyons Ferry Hatchery to 1.16 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.7% (72.9-76.5%) for Big Canyon to 88.1% (85.7-90.6%) for Captain John Rapids. Estimated survival from release to McNary Dam ranged from 45.3% (39.2-51.5%) for Pittsburg Landing to 52.1% (42.9-61.2%) for Big Canyon. Median migration rates to Lower Granite Dam, based on all observations of PIT tagged yearlings from the FCAP facilities, ranged from 5.5 river kilometers per day (rkm/d) for Captain John Rapids to 12.8 rkm/d for Pittsburg Landing. Median migration

  6. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2001 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2001. This was the sixth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 318,932 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,503 PIT tagged yearlings from Pittsburg Landing, 7,499 from Big Canyon and 2,518 from Captain John Rapids. The Washington Department of Fish and Wildlife released 991 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 155.4 mm (154.7-156.1 mm) at Captain John Rapids to 171.6 mm (170.7-172.5 mm) at Lyons Ferry Hatchery. Mean condition factors ranged from 1.02 at Lyons Ferry Hatchery to 1.16 at Big Canyon and Captain John Rapids. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 74.4% (73.2-75.5%) for Big Canyon to 85.2% (83.5-87.0%) for Captain John Rapids. Estimated survival from release

  7. Monitoring and Evaluation of Yearling Fall Chinook Salmon (Oncorhynchus tshawytscha) Released from Acclimation Facilities Upstream of Lower Granite Dam; 2000 Annual Report.

    SciTech Connect

    Rocklage, Stephen J.; Kellar, Dale S.

    2005-07-01

    The Nez Perce Tribe, in cooperation with the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife, conducted monitoring and evaluation studies on Lyons Ferry Hatchery reared yearling fall Chinook salmon Oncorhynchus tshawytscha that were acclimated and released at three Fall Chinook Acclimation Project sites upstream of Lower Granite Dam along with yearlings released on-station from Lyons Ferry Hatchery in 2000. This was the fifth year of a long-term project to supplement natural spawning populations of Snake River stock fall Chinook salmon upstream of Lower Granite Dam. The 397,339 yearlings released from the Fall Chinook Acclimation Project facilities were short of the 450,000 fish quota. We use Passive Integrated Transponder (PIT) tag technology to monitor the primary performance measures of survival to mainstem dams and migration timing. We also monitor size, condition and tag/mark retention at release. We released 7,477 PIT tagged yearlings from Pittsburg Landing, 7,421 from Big Canyon and 2,488 from Captain John Rapids. The Washington Department of Fish and Wildlife released 980 PIT tagged yearlings from Lyons Ferry Hatchery. Fish health sampling indicated that, overall, bacterial kidney disease levels could be considered relatively low. Compared to prior years, Quantitative Health Assessment Indices were relatively low at Big Canyon and Captain John Rapids and about average at Pittsburg Landing and Lyons Ferry Hatchery. Mean fork lengths (95% confidence interval) of the PIT tagged groups ranged from 157.7 mm (157.3-158.1 mm) at Big Canyon to 172.9 mm (172.2-173.6 mm) at Captain John Rapids. Mean condition factors ranged from 1.06 at Captain John Rapids and Lyons Ferry Hatchery to 1.12 at Big Canyon. Estimated survival (95% confidence interval) of PIT tagged yearlings from release to Lower Granite Dam ranged from 87.0% (84.7-89.4%) for Pittsburg Landing to 95.2% (91.5-98.9%) for Captain John Rapids. Estimated survival from release to

  8. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  9. Migration of precocious male hatchery chinook salmon in the Umatilla River, Oregon

    USGS Publications Warehouse

    Zimmerman, C.E.; Stonecypher, R.W., Jr.; Hayes, M.C.

    2003-01-01

    Between 1993 and 2000, precocious yearling males of hatchery-produced fall and spring chinook salmon Oncorhynchus tshawytscha composed 3.6-82.1% of chinook salmon runs to the Umatilla River, Oregon. These yearling males are smaller than typical jack salmon, which spend a full winter in the ocean, and are commonly referred to as "mini jacks." Minijack fall chinook salmon are characterized by enlarged testes and an increased gonadosomatic index. Our goal was to determine if minijacks migrated to saltwater between the time they are released from the hatchery and the time they return to the Umatilla River, a period of 4-6 months. During 1999-2000, we collected otoliths from an adult male fall chinook salmon, 12 spring chinook salmon minijacks, and 10 fall chinook salmon minijacks. We measured strontium:calcium (Sr:Ca) ratios from the age-1 annulus to the edge of the otolith to determine whether these fish had migrated to the ocean. The Sr:Ca ratios increased from low values near the age-1 annulus, similar to ratios expected from freshwaters, to higher values near the edge of the otolith. The Sr:Ca ratios increased to levels similar to ratios expected in saltwater, indicating that these fish had migrated to saltwater before returning to the Umatilla River. Analysis of published water chemistry data from the Columbia and Snake rivers and rearing experiments in the main-stem Columbia River confirmed that high Sr:Ca ratios measured in otoliths were not the result of high strontium levels encountered in the freshwater environment. Previously assumed to remain within freshwater and near the point of release, our results suggest these minijack salmon migrated at least 800 km and past three hydroelectric dams to reach saltwater and return to the Umatilla River.

  10. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    SciTech Connect

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Escapement

  11. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Hyun; Zell, Claudia; Moreira-Turcq, Patricia; Pérez, Marcela A. P.; Abril, Gwenaël; Mortillaro, Jean-Michel; Weijers, Johan W. H.; Meziane, Tarik; Sinninghe Damsté, Jaap S.

    2012-08-01

    In order to trace the transport of soil organic carbon (OC) in the lower Amazon basin, we investigated the distributions of crenarchaeol and branched glycerol dialkyl glycerol tetraethers (GDGTs) by analyzing riverbed sediments and river suspended particulate matter (SPM) collected in the Solimões-Amazon River mainstem and its tributaries. The Branched and Isoprenoid Tetraether (BIT) index, a proxy for river-transported soil OC into the ocean, was determined from the distributions of these GDGTs. The GDGT-derived parameters were compared with other bulk geochemical data (i.e. C:N ratio and stable carbon isotopic composition). The GDGT-derived and bulk geochemical data indicate that riverine SPM and riverbed sediments in the lower Amazon River and its tributaries are a mixture of C3 plant-derived soil OC and aquatic-derived OC. The branched GDGTs in the SPM and riverbed sediments did not predominantly originate from the high Andes soils (>2500 m in altitude) as was suggested previously. However, further constraint on the soil source area of branched GDGTs was hampered due to the deficiency of soil data from the lower montane forest areas in the Andes. Our study also revealed seasonal and interannual variation in GDGT composition as well as soil OC discharge, which was closely related to the hydrological cycle. By way of a simple binary mixing model using the flux-weighted BIT values at Óbidos, the last gauging station in the Amazon River, we estimated that 70-80% of the POC pool in the river was derived of soil OC. However, care should be taken to use the BIT index since it showed a non-conservative behaviour along the river continuum due to the aquatic production of crenarchaeol. Further investigation using a continuous sampling strategy following the full hydrological cycle is required to fully understand how soil-derived GDGT signals are transformed in large tropical river systems through their transport pathway to the ocean.

  12. Use of Composite Fingerprinting Technique to Determine Contribution of Paria River Sediments to Dam-Release Flood Deposits in Marble Canyon, Grand Canyon, Az

    NASA Astrophysics Data System (ADS)

    Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.

    2015-12-01

    The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.

  13. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  14. Evaluation of aerial thermal infrared remote sensing to identify groundwater-discharge zones in the Meduxnekeag River, Houlton, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.; O'Donnell, Cara

    2014-01-01

    Residents of the area near Houlton, Maine, have observed seasonal episodic blooms of algae and documented elevated concentrations of fecal-coliform bacteria and inorganic nutrients and low dissolved oxygen concentrations in the Meduxnekeag River. Although point and nonpoint sources of urban and agricultural runoff likely contribute to water-quality impairment, the role of shallow groundwater inflows in delivering such contaminants to the Meduxnekeag River has not been well understood. To provide information about possible groundwater inflows to the river, airborne thermal infrared videography was evaluated as a means to identify and classify thermal anomalies in a 25-mile reach of the mainstem and tributaries of the Meduxnekeag River near Houlton, Maine. The U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, collected thermal infrared images from a single-engine, fixed-wing aircraft during flights on December 3–4, 2003, and November 26, 2004. Eleven thermal anomalies were identified on the basis of data from the December 2003 flight and 17 from the November 2004 flight, which covered the same reaches of stream. Following image analysis, characterization, and prioritization, the georeferenced infrared images of the thermal anomalies were compared to features on topographic maps of the study area. The mapped anomalies were used to direct observations on the ground to confirm discharge locations and types of inflow. The variations in grayscale patterns on the images were thus confirmed as representing shallow groundwater-discharge zones (seeps), outfalls of treated wastewater, or ditches draining runoff from impervious surfaces.

  15. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R.; Deborde, Jonathan; Vidal, Luciana O.; Lambert, Thibault; Bouillon, Steven

    2015-10-01

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

  16. Concentrations and loads of suspended sediment-associated pesticides in the San Joaquin River, California and tributaries during storm events

    USGS Publications Warehouse

    Hladik, M.L.; Domagalski, J.L.; Kuivila, K.M.

    2009-01-01

    Current-use pesticides associated with suspended sediments were measured in the San Joaquin River, California and its tributaries during two storm events in 2008. Nineteen pesticides were detected: eight herbicides, nine insecticides, one fungicide and one insecticide synergist. Concentrations for the herbicides (0.1 to 3000 ng/g; median of 6.1 ng/g) were generally greater than those for the insecticides (0.2 to 51 ng/g; median of 1.5 ng/g). Concentrations in the tributaries were usually greater than in the mainstem San Joaquin River and the west side tributaries were higher than the east side tributaries. Estimated instantaneous loads ranged from 1.3 to 320 g/day for herbicides and 0.03 to 53 g/day for insecticides. The greatest instantaneous loads came from the Merced River on the east side. Instantaneous loads were greater for the first storm of 2008 than the second storm in the tributaries while the instantaneous loads within the San Joaquin River were greater during the second storm. Pesticide detections generally reflected pesticide application, but other factors such as physical-chemical properties and timing of application were also important to pesticide loads.

  17. Divergent biophysical controls of aquatic CO2 and CH4 in the World’s two largest rivers

    PubMed Central

    Borges, Alberto V.; Abril, Gwenaël; Darchambeau, François; Teodoru, Cristian R.; Deborde, Jonathan; Vidal, Luciana O.; Lambert, Thibault; Bouillon, Steven

    2015-01-01

    Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels. PMID:26494107

  18. Algal and Water-Quality Data for the Yellowstone River and Tributaries, Montana and Wyoming, 1999-2000

    USGS Publications Warehouse

    Peterson, David A.

    2009-01-01

    Streams of the Yellowstone River Basin in Montana and Wyoming were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Algal communities were sampled in 1999 in conjunction with other ecological sampling and in 2000 during synoptic sampling. Water-quality measurements related to the algal sampling included light attenuation and dissolved-oxygen concentrations. Sites were sampled on the main-stem Yellowstone River, major tributaries such as the Clarks Fork Yellowstone River and the Bighorn River, and selected minor tributaries. Some of the data collected, such as the phytoplankton chlorophyll-a data, were referenced or summarized in previous U.S. Geological Survey reports but were not previously published in tabular form, and therefore are presented in this report, prepared in cooperation with the Montana Department of Environmental Quality. Data presented in this report include chlorophyll-a concentrations in phytoplankton and periphyton samples, as well as light attenuation and dissolved-oxygen production data from 1999-2000.

  19. Savannah River Site Environmental Report for 2002

    SciTech Connect

    Mamatey, A.R.

    2003-07-21

    The Savannah River Site (SRS), one of the facilities in the U.S. Department of Energy (DOE) complex, was constructed during the early 1950s to produce basic materials (such as plutonium-239 and tritium) used in nuclear weapons. The site covers approximately 310 square miles in South Carolina and borders the Savannah River. Various industrial, manufacturing, medical, and farming operations are conducted near the site. Several major industrial and manufacturing facilities are located in the area, and a variety of crops is produced on local farms. SRS is bounded on its southwestern border by the Savannah River for about 35 river miles and is approximately 160 river miles from the Atlantic Ocean. The SRS region is part of the Southern Bottomland Hardwood Swamp region, which extends south from Virginia to Florida and west along the Gulf of Mexico to the Mississippi River drainage basin. Originally, site facilities generated materials for nuclear weapons. Since the end of the Cold War in 199 1, however, their purpose has shifted to the stabilization of nuclear materials from onsite and offsite sources to ensure safe long-term storage or disposal. SRS has always been concerned about the safety of the public. The site is committed to protecting human health and reducing the risks associated with past, current, and future operations. Sampling locations, sample media, sampling frequency, and types of analysis are selected based on environmental regulations, exposure pathways, public concerns, and measurement capabilities.

  20. 29. CROSSCUT FACILITY PROPERTY AND POWER LINE LOCATION, SHOWING INDIAN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. CROSSCUT FACILITY PROPERTY AND POWER LINE LOCATION, SHOWING INDIAN BEND POND LABELLED 'SETTLING BASIN,' STEAM/DIESEL PLANT AND OTHER FEATURES. 1951 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  1. Chemical mixing study for the Hanford TWRS Supporting facilities (U)

    SciTech Connect

    Heal, D.W.; Brantley, W.M.

    1996-09-03

    This Engineering Calculation addresses consequences of mixing any two hazardous chemicals contained in the same section of TWRS supporting facilities, as screened in accordance with `Westinghouse Savannah River Company Engineering and Construction Services Division Guidelines and Methods.`

  2. Exterior view looking northwest with construction facilities of "new" pumping ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view looking northwest with construction facilities of "new" pumping station in foreground. Doug Hine is man in picture. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  3. 2. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  4. 1. SWIMMING POOL. VIEW TO WEST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. SWIMMING POOL. VIEW TO WEST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  5. 3. SWIMMING POOL. VIEW TO SOUTHEAST. Rainbow Hydroelectric Facility, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SWIMMING POOL. VIEW TO SOUTHEAST. - Rainbow Hydroelectric Facility, Swimming Pool, On north bank of Missouri River 2 miles Northeast of Great Falls, & end of Rainbow Dam Road, Great Falls, Cascade County, MT

  6. Genetic Structure of Chum Salmon (Oncorhynchus Keta) Populations in the Lower Columbia River: Are Chum Salmon in Cascade Tributaries Remnant Populations?

    SciTech Connect

    Small, Maureen P.; Pichahchy, A.E.; Von Bargen, J.F.; Young, S.F.

    2004-09-01

    Prior to the 1950's, the lower Columbia River drainage supported a run of over a million chum salmon composed of at least 16 populations. By the late 1950's, over-fishing and habitat destruction had decreased the run to as little as a few hundred fish. With the exception of Grays River in the coastal region of the Columbia River and an aggregation of chum salmon spawning in creeks and the mainstem near Bonneville Dam in the Columbia Gorge region, most populations were considered extinct. However, over the years, WDFW biologists detected chum salmon spawning in tributaries originating in the Cascade Range: the Cowlitz, Lewis, and Washougal rivers. Further, chum salmon in the Cowlitz River appeared to have summer and fall run-timings. To assess whether Cascade spawners were strays from Grays River and Gorge regions or remnants of former populations, chum salmon from the Coastal, Cascade and Gorge regions were characterized genetically at 17 microsatellite loci. With the exception of Washougal River chum salmon, which grouped strongly with the Gorge genetic group, significant heterogeneity in genotype distributions were detected between regions and genotype distributions overlapped among collections within regions. In a neighbor-joining consensus tree, regional groups occupied branches with over 77% bootstrap support. In assignment tests, over 63% of individuals were correctly assigned back to region of origin although an average of 29% assigned to river of origin. Genetic distinction of Cascade region chum salmon was similar to distinction of Coastal and Gorge chum salmon and the Cascade region chum salmon had twice the number of private regional alleles. Further, the Cowlitz River supports the only summer chum salmon run in the Columbia River drainage. We propose that chum salmon in the Cascade region are remnants of original populations. We attribute the strong divergence between regional groups to diverse ecological conditions in each region, which promoted

  7. 77 FR 70159 - Marble River, LLC v. Noble Clinton Windpark I, LLC, Noble Ellenburg Windpark, LLC, Noble...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Energy Regulatory Commission Marble River, LLC v. Noble Clinton Windpark I, LLC, Noble Ellenburg Windpark..., Marble River, LLC (Marble River or Complainant) filed a formal complaint against Noble Clinton Windpark I... pay Marble River for headroom created by common system upgrade facilities that benefit Noble and...

  8. Factors Affecting the Survival of Upstream Migrant Adult Salmonids in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 9 of 11.

    SciTech Connect

    Dauble, Dennis D.; Mueller, Robert P.

    1993-06-01

    The Bonneville Power Administration (BPA) is developing conservation planning documentation to support the National Marine Fisheries Service`s (NMFS) recovery plan for Columbia Basin salmonid stocks that are currently listed under the Endangered Species Act (ESA). Information from the conservation planning documentation will be used as a partial scientific basis for identifying alternative conservation strategies and to make recommendations toward conserving, rebuilding, and ultimately removing these salmon stocks from the list of endangered species. This report describes the adult upstream survival study, a synthesis of biological analyses related to conditions affecting the survival of adult upstream migrant salmonids in the Columbia River system. The objective of the adult upstream survival study was to analyze existing data related to increasing the survival of adult migrant salmonids returning to the Snake River system. The fate and accountability of each stock during its upstream migration period and the uncertainties associated with measurements of escapement and survival were evaluated. Operational measures that affected the survival of adult salmon were evaluated including existing conditions, augmented flows from upstream storage release, and drawdown of mainstem reservoirs. The potential impacts and benefits of these measures to each ESA stock were, also described based on considerations of species behavior and run timing.

  9. Floods in the Skunk River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  10. Rapid River Hatchery - Spring Chinook, Final Report

    SciTech Connect

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife.

  11. Klamath River Water Quality Data from Link River Dam to Keno Dam, Oregon, 2008

    USGS Publications Warehouse

    Sullivan, Annett B.; Deas, Michael L.; Asbill, Jessica; Kirshtein, Julie D.; Butler, Kenna; Vaughn, Jennifer

    2009-01-01

    This report documents sampling and analytical methods and presents field data from a second year of an ongoing study on the Klamath River from Link River Dam to Keno Dam in south central Oregon; this dataset will form the basis of a hydrodynamic and water quality model. Water quality was sampled weekly at six mainstem and two tributary sites from early April through early November, 2008. Constituents reported herein include field-measured water-column parameters (water temperature, pH, dissolved oxygen concentration, specific conductance); total nitrogen and phosphorus; particulate carbon and nitrogen; total iron; filtered orthophosphate, nitrite, nitrite plus nitrate, ammonia, organic carbon, and iron; specific UV absorbance at 254 nanometers; chlorophyll a; phytoplankton and zooplankton enumeration and species identification; and bacterial abundance and morphological subgroups. Sampling program results indicated: *Most nutrient and carbon concentrations were lowest in spring, increased starting in mid-June, remained elevated in the summer, and decreased in fall. Dissolved nitrite plus nitrate had a different seasonal cycle and was below detection or at low concentration in summer. *Although total nitrogen and total phosphorus concentrations did not show large differences from upstream to downstream, filtered ammonia and orthophosphate concentrations increased in the downstream direction and particulate carbon and particulate nitrogen generally decreased in the downstream direction. *Large bacterial cells made up most of the bacteria biovolume, though cocci were the most numerous bacteria type. Cocci, with diameters of 0.1 to 0.2 micrometers, were smaller than the filter pore sizes used to separate dissolved from particulate matter. *Phytoplankton biovolumes were dominated by diatoms in spring and by the blue-green alga Aphanizomenon flos-aquae after mid-June. Another blue-green, Anabaena flos-aquae, was noted in samples from late May to late June. Phytoplankton

  12. Justification for Continued Operation of the SRS Saltstone Facility (Z-Area)

    SciTech Connect

    Wagner, W.A.

    1999-01-20

    Saltstone Production and Disposal Facilities (Z-Area) are a part of the Defense Waste Processing Facilities (DWPF). Z-Area facilities are just one segment of an integrated waste management and disposal system located at the Savannah River Site (SRS). The bases for the Justification of Continuing Operations (JCO) of the Saltstone Production and Disposal Facilities (Z-Area) at SRS are provided.

  13. River system environmental modeling and simulation methodology

    SciTech Connect

    Rao, N.B.

    1981-01-01

    Several computer models have been built to examine pollution in rivers. However, the current state of the art in this field emphasizes problem solving using specific programs. A general methodology for building and simulating models of river systems is lacking. Thus, the purpose of this research was to develop a methodology which can be used to conceptualize, visualize, construct and analyze using simulation, models of pollution in river systems. The conceptualization and visualization of these models was facilitated through a network representation. The implementation of the models was accomplished using the capabilities of an existing simulation language, GASP V. The methodology also provides data management facilities for model outputs through the use of the Simulation Data Language (SDL), and high quality plotting facilities through the use of the graphics package DISSPLA (Display Integrated Software System and Plotting Language). Using this methodology, a river system is modeled as consisting of certain elements, namely reaches, junctions, dams, reservoirs, withdrawals and pollutant sources. All these elements of the river system are described in a standard form which has been implemented on a computer. This model, when executed, produces spatial and temporal distributions of the pollutants in the river system. Furthermore, these outputs can be stored in a database and used to produce high quality plots. The result of this research is a methodology for building, implementing and examining the results of models of pollution in river systems.

  14. Assessment of Radionuclides in the Savannah River Site Environment Summary

    SciTech Connect

    Carlton, W.H.

    1999-01-26

    This document summarizes the impact of radionuclide releases from Savannah River Site (SRS) facilities from 1954 through 1996. The radionuclides reported here are those whose release resulted in the highest dose to people living near SRS.

  15. Effluent Treatment Facility tritium emissions monitoring

    SciTech Connect

    Dunn, D.L.

    1991-07-25

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide.

  16. Evaluation of Salmon Spawning below the Four Lowermost Columbia River Dams, 2004-2005 Annual Report.

    SciTech Connect

    Geist, David; Currie, Andrea

    2006-02-01

    Since FY 2000, scientists at Pacific Northwest National Laboratory (PNNL) have conducted research to assess the extent of spawning by chum (Oncorhynchus keta) and fall Chinook (O. tshawytscha) salmon in the lower mainstem Columbia River. Their work supports a larger Bonneville Power Administration (BPA) project aimed at characterizing the physical habitat used by mainstem fall Chinook and chum salmon populations. Multiple collaborators in addition to PNNL are involved in the BPA project--counterparts include the Washington Department of Fish and Wildlife (WDFW), U.S. Fish and Wildlife Service (USFWS), Pacific States Marine Fisheries Commission (PSMFC), U.S. Geological Survey (USGS), and Oregon Department of Fish and Wildlife (ODFW). Data resulting from the individual tasks each agency conducts are providing a sound scientific basis for developing strategies to operate the Federal Columbia River Power System (FCRPS) in ways that will effectively protect and enhance the chum and fall Chinook salmon populations--both listed as threatened under the Endangered Species Act. Fall Chinook salmon, thought to originate from Bonneville Hatchery, were first noted to be spawning downstream of Bonneville Dam by biologists from the WDFW in 1993. Known spawning areas include gravel beds on the Washington side of the river near Hamilton Creek and Ives Island. Limited spawning ground surveys were conducted in the area around Ives and Pierce islands during 1994 through 1997. Based on these surveys, fall Chinook salmon were believed to be spawning successfully in this area. In addition, chum salmon have been documented spawning downstream of Bonneville Dam. In FY 1999, BPA Project No. 1999-003 was initiated by the WDFW, ODFW, and the USFWS to characterize the variables associated with physical habitat used by mainstem fall Chinook and chum salmon populations and to better understand the effects of hydropower project operations on spawning and incubation. Pacific Northwest National

  17. Nature's complex flume - Using a diagnostic state-and-transition framework to understand post-restoration channel adjustment of the Clark Fork River, Montana

    NASA Astrophysics Data System (ADS)

    Van Dyke, Chris

    2016-02-01

    There is an imperfect symmetry between the patterns of channel evolution observed during laboratory flume experiments and those which materialize in rivers exposed to ambient environmental conditions that produce hydrogeomorphic fluxes which are more complex, contingent, and unpredictable. One strategy to improve our understanding of short- to medium-term channel evolution is to study landscapes that have undergone significant disturbance and have had their biogeomorphic templates reset to a known condition - in effect, creating a flume in nature. This study adopts a diagnostic state-and-transition framework to narrate and document baseline hypotheses for the potential evolutionary trajectories Clark Fork River, near Milltown, Montana. Following dam removal and remediation, a 5-km stretch of the Clark Fork River and its adjoining floodplain were reconstructed. Since flow was introduced to the newly constructed channel in December 2010, complex evolutionary trajectories have been observed on the Clark Fork's mainstem, its secondary channels, and floodplain. Focusing particularly on the river's secondary channels, this paper develops a typology of channel states that have been observed and demonstrates that multiple adjustment trajectories have materialized, sometimes within the same channel. A diagnostic state-and-transition framework offers a parsimonious strategy to quantitatively or qualitatively anticipate the influence of water, sediment, and ecological fluxes on channel evolution at the basin, reach, or segment scale. It provides environmental agencies with a robust method to devise spatially explicit scenario-based management plans for rivers in a variety of geomorphic settings.

  18. A graded approach to safety documentation at processing facilities

    SciTech Connect

    Cowen, M.L.

    1992-09-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities.

  19. Planning Facilities.

    ERIC Educational Resources Information Center

    Flynn, Richard B., Ed.; And Others

    1983-01-01

    Nine articles give information to help make professionals in health, physical education, recreation, dance, and athletics more knowledgeable about planning facilities. Design of natatoriums, physical fitness laboratories, fitness trails, gymnasium lighting, homemade play equipment, indoor soccer arenas, and dance floors is considered. A…

  20. Facilities Management.

    ERIC Educational Resources Information Center

    Bete, Tim, Ed.

    1998-01-01

    Presents responses from Matt McGovern, "School Planning and Management's" Maintenance and Operations columnist, on the issue of school facility maintenance. McGovern does not believe schools will ever likely meet acceptable levels of maintenance, nor use infrared thermography for assessing roofs, outsource all maintenance work, nor find a pressing…

  1. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Arkansas River, and Verdigris River between Mississippi River, Ark., and Catoosa, Okla.; use... White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River, Ark... apply to: (1) Waterways. White River between Mississippi River and Arkansas Post Canal, Ark.;...

  2. Temperature Effects of Point Sources, Riparian Shading, and Dam Operations on the Willamette River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.

    2007-01-01

    to within about 0.005 degrees Celsius (?C). In addition to assessing the effects of point-source heat trades, the models were used to evaluate the temperature effects of several shade-restoration scenarios. Restoration of riparian shade along the entire Long Tom River, from its mouth to Fern Ridge Dam, was calculated to have a small but significant effect on daily maximum temperatures in the main-stem Willamette River, on the order of 0.03?C where the Long Tom River enters the Willamette River, and diminishing downstream. Model scenarios also were run to assess the effects of restoring selected 5-mile reaches of riparian vegetation along the main-stem Willamette River from river mile (RM) 176.80, just upstream of the point where the McKenzie River joins the Willamette River, to RM 116.87 near Albany, which is one location where cumulative point-source heating effects are at a maximum. Restoration of riparian vegetation along the main-stem Willamette River was shown by model runs to have a significant local effect on daily maximum river temperatures (0.046 to 0.194?C) at the site of restoration. The magnitude of the cooling depends on many factors including river width, flow, time of year, and the difference in vegetation characteristics between current and restored conditions. Downstream of the restored reach, the cooling effects are complex and have a nodal nature: at one-half day of travel time downstream, shade restoration has little effect on daily maximum temperature because water passes the restoration site at night; at 1 full day of travel time downstream, cooling effects increase to a second, diminished maximum. Such spatial complexities may complicate the trading of heat allocations between point and nonpoint sources. Upstream dams have an important effect on water temperature in the Willamette River system as a result of augmented flows as well as modified temperature releases over the course of the summer and autumn. The TMDL was formulated prior t

  3. Characterize and Quantify Residual Steelhead in the Clearwater River, Idaho, 1999-2000 Progress Report.

    SciTech Connect

    Brostrom, Jody K.

    2006-08-01

    During 1999-2002 we determined whether size at release and release site influenced emigration success and survival of hatchery steelhead smolts raised at Dworshak National Fish Hatchery and released into the Clearwater River drainage. We marked 4,500 smolts each year with Passive Integrated Transponder Tags (PIT-tags) which enabled us to track emigration and estimate survival through mainstem Snake and Columbia river dams. Hatchery steelhead raised in System I freshwater were significantly smaller than those raised in warmer System II re-use water (196 mm, 206 mm, 198 mm and 201 mm System I; 215 mm, 213 mm, 206 mm and 209 mm System II). However, there was no significant difference in detection rates to mainstem observation sites between the two groups (65%, 58%, 78% and 55% System I; 69%, 59%, 74% and 53% System II). Survival estimates to Lower Granite Dam were also not significant between the two groups (72%, 81%, 80% and 77% System I; 77%, 79%, 77%, and 72% System II). Smolts less than 180 mm FL were less likely to be detected than larger smolts. Hatchery steelhead smolts released into Clear Creek, the South Fork Clearwater River and the Clearwater River at Dworshak National Fish Hatchery had significantly different lengths each year, but there was no discernible pattern due to random egg takes and rearing systems. Detection rates to mainstem observation sites for smolts released into Clear Creek were significantly less than the other two groups in all years except 2002 (62%, 57%, 71%, and 57% Clear Creek; 68%, 63%, 73% and 61% South Fork Clearwater River; 70%, 59%, 78% and 55% Clearwater River). However, survival rates to Lower Granite Dam were not significantly different (73%, 65%, 78%, and 77% Clear Creek; 79%, 72%, 79% and 76% South Fork Clearwater River; 81%, 76%, 80% and 83% Clearwater River). Similar to the size at release group, smolts less than 180 mm FL were less likely to get detected than larger smolts. Smolts from both size at release and release

  4. Contributions from the Amazon River mouth to the carbonate and nutrient dynamics of the tropical Atlantic Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Yager, P. L.; Richey, J. E.; Page, B. P.; Ward, N.; Krusche, A. V.; Weber, S.; Montoya, J. P.; Rezende, C. E.

    2013-12-01

    The Amazon River contributes considerable freshwater and dissolved constituents to the global ocean, and its low-salinity plume offshore significantly impacts the carbon and nutrient cycles of the western tropical North Atlantic Ocean. Viewing the river-plume-ocean system as a continuum, rather than a point source, is a key component of the ROCA / ANACONDAS project effort. Here we report the findings of a multi-season field effort in the lower reach of the Amazon mainstem and offshore plume to determine the concentrations and variability of the full carbonate system as well as dissolved inorganic nitrogen, phosphorus, and silica at the mouth, providing for the first time the critical "river end members" for the Amazon's contribution to the sea. We find that concentrations at the mouth differ significantly from measurements made upriver at Manaus and Óbidos, historically used to represent the Amazon's contribution. With these new end members, the impact of the plume on the tropical marine ecosystem can be better determined, including its role as a globally significant atmospheric carbon dioxide sink and its sensitivity to change. These data, in combination with other microbial and geochemical data from the Amazon River continuum, improve our understanding of the links between the river, the plume, and the tropical Atlantic carbon cycle, as well as improve predictive capabilities of future climate change impacts. True color satellite image of Amazon River plume - NASA pCO2 versus salinity for outer Amazon River plume with color bar showing chlorophyll a fluorescence. Line is linear regression through the data, not a mixing line.

  5. Value and Resilience in the Case of 'Invasive' Tamarix in the Colorado River Riparian Corridor

    NASA Astrophysics Data System (ADS)

    Loring, P. A.; Gerlach, S.; Zamora, F.

    2009-12-01

    A common premise of science for conservation and sustainability is an assumption that despite any human definitions of value, there are ecological first principles, e.g., resilience, which must be understood if sustainability is to be possible. As I show here, however, pursuits such as restoration, conservation, and sustainability remain tangled in (and sometimes at odds with one another regarding) many value-laden decisions regarding the equity, justice, and morality of human-environment interactions. These include such important decisions as: what should be restored or sustained and for whom, how and by whom, and at what cost. This paper uses examples from the lower Colorado River Riparian Corridor, in particular the issue of the so-called ‘invasive’ saltcedar (Tamarix spp.), to illustrate some of the implicit value judgments common to the practice of managing ecosystems. There are many possible perspectives to be taken on a matter like Tamarix, each implicitly or explicitly representing different worldviews and agendas for the ecosystems in question. Resilience theory provides one such perspective, but as I show here, it proves incapable of producing recommendations for managing the corridor that are free of subjective valuations. I end with a case study of habitat and Tamarix management practices in the Mexican portion of the Colorado River Delta, highlighting the proven potential when up-front values are explicitly coupled to the practice of sustainability science, rather than left as details for 'good governance,' a realm presently imagined as separate from science, to sort out. Map of the Colorado River Delta. The Sonoran Institute manages projects in the Mexican portion of the Colorado River Delta region, along the Rio Hardy, the mainstem of the Colorado River in Baja California, MX and in the Cienega de Santa Clara wetlands, Sonora, MX. Map courtesy of Water Education Foundation. www.watereducation.org

  6. Movement patterns of armado, Pterodoras granulosus, in the Paraná River Basin

    USGS Publications Warehouse

    Makrakis, M.C.; Miranda, L.E.; Makrakis, S.; Fernandez, D.R.; Garcia, J.O.; Dias, J.H.P.

    2007-01-01

    We studied the migratory behaviour of armado, Pterodoras granulosus, in the Paraná River Basin of Brazil, Paraguay and Argentina, during 1997–2005. This species invaded the Upper Paraná River after upstream dispersal was facilitated when Itaipu Reservoir inundated a natural barrier. Fish were tagged (N = 8051) in the mainstems of the Yacyreta and Itaipu reservoirs, bays of major tributaries, the Paraná River floodplain above Itaipu Reservoir, and below dams. In all, 420 fish were recaptured of which 61% moved away from the release area. Fish moved a maximum of 215 km (mean 42), and at a maximum rate of 9.4 km·day−1 (mean 0.6). Of the 256 armados that moved away from the release site, 145 moved upstream towards unimpounded stretches of the Paraná River and 111 moved downstream into the reservoir and bays of its tributaries (maximum 150 km). Based on the observed migratory movements, we suspect that most of the reproductive output originates in tributaries to the reservoirs. The ability of this species to expand its range presents a conundrum by pitting fishery management interests against conservation needs. Maintenance of the important armado fisheries depends on the ability of the species to migrate freely to use spawning and nursery areas in reservoir tributaries and floodplains. However, its ability to migrate long distances can allow this non-native species the opportunity to invade most of the Upper Paraná River.

  7. BOISE RIVER STUDY IN ADA COUNTY IDAHO, 1978

    EPA Science Inventory

    The purpose of this study was to assess the impact of present point sources on the river and to obtain background information to develop effluent limitations for the City of Boise wastewater treatment facilities. The study was conducted on the Boise River (Ada County, ID) from L...

  8. The Savannah River Technology Center Research and Development Climatology Center

    SciTech Connect

    Kurzeja, R.J.

    1995-12-31

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) built and has operated the Climatology Site (CS) for almost 10 years. The Climatology Site provides a wide variety of meteorological support functions for Savannah River Site (SRS) operations and research. This document describes the Climatology Site facility to familiarize present and potential users with its capabilities.

  9. 60. Aerial view looking southeast; Dundee Dam and Passaic River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. Aerial view looking southeast; Dundee Dam and Passaic River at center, Dundee Canal and headgates, guardlock, and former hydroelectric facility at right, Dundee Textile Mill between river and canal - Dundee Canal Industrial Historic District, Beginning at George Street in Passaic & extending north along Dundee Canal approximately 1.2 miles to Canal headgates opposite East Clifton Avenue in Clifton, Passaic, Passaic County, NJ

  10. Seasonality of Rare Earth Element concentrations and fluxes in the Amazon river and its main tributaries

    NASA Astrophysics Data System (ADS)

    Seyler, P.; Sonke, J.; Viers, J.; Barroux, G.; Boaventura, G. R.; Rousseau, T.

    2008-12-01

    Many studies carried out on the Amazon River illustrate the complex functioning of this river in terms of geochemistry. Concerning the REE, (Sholkovitz and Szymczak 2000) and (Hannigan and Sholkovitz 2001, Gerard et al, 2003) summarized the actual knowledge we have on the Amazon river. In this study we present a 2-year time series on dissolved REE geochemistry in the Amazon River at Óbidos station (S01°56'50", W55°30'40"), which is the ultimate gauging station on the Amazon River upstream from the marine influence and from the three main Amazon River tributaries, The Negro River at Serrinha (S00°28'55", W064°49'48) station, the Solimões River at Manacapuru stations (S03°20'43", W60°33'12") and the Madeira River at Porto Velho (08°44'12", W63°55'13"), and the Curuaí floodplain, one of the largest várzea located in between Manaus and Óbidos. REE concentrations were measured by ICP-MS in LMTG Laboratory (France). The main results are: -a substantial seasonal variation in REE concentrations that is correlated with discharge. This variation repeats itself from yaer to year, and is also reflected in a compilation of literature data that reflects different years and dates of sampling; - an absence of seasonal variation in REE patterns and Ce* anomalies; - a monthly weighted annual Nd flux to the surface Atlantic Ocean of 607 ± 43 T.yr-1, which is at least 1.6 times larger than the currently used estimate based on one single measurement during the low water stage. A mass balance of the major tributaries shows quasi-conservative behavior of the LREE and an excess of observed HREE during the high water stage. Additional observations are necessary to see if this feature is recurrent or whether it reflects inherent organizational and analytical difficulties involved in the monthly sampling of all Amazonian rivers. Persistence of such a HREE excess requires a source such as suspended matter sorbed REE that transfer to the dissolved phase at tributary confluences

  11. Channel Maintenance and Flushing Flows for the Klamath River Below Iron Gate Dam, California

    USGS Publications Warehouse

    Holmquist-Johnson, Cristopher L.; Milhous, Robert T.

    2010-01-01

    The Klamath River is a major river in northern California and southern Oregon. Iron Gate Dam divides the river into the two subunits where there is a significant change in utilization of the river. Downstream of Iron Gate Dam, the river