Science.gov

Sample records for river meander migration

  1. RVR MeanderMigration of meandering rivers in homogeneous and heterogeneous floodplains using physically-based bank erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The RVR Meander platform for computing long-term meandering-channel migration is presented, together with a method for planform migration based on the modeling of the streambank erosion processes of hydraulic erosion and mass failure. An application to a real-world river, with assumption of homogene...

  2. Self-formed meandering river created in the laboratory using an upstream migrating boundary

    NASA Astrophysics Data System (ADS)

    van Dijk, W. M.; van de Lageweg, W. I.; Kleinhans, M. G.

    2010-12-01

    Braided rivers are relatively easily formed in the laboratory, whereas self-formed meandering rivers in the lab have proven very difficult to form, indicating a lack of understanding of the necessary and sufficient conditions for meandering. Our objective is to create self-formed dynamic meandering rivers and floodplains in a laboratory. Early experiments attempted to initiate meandering with upstream inflow at a fixed angle different from the general flow direction. The resulting bends were fixed at one position, which is not the dynamic meandering observed in nature. Another important condition for meandering is to have banks stronger than the non-cohesive bed sediment, which has been attained by growing vegetation. Furthermore, finer or light-weight sediment has been used to let chute channels fill up where otherwise multi-thread channels would have evolved, which is braiding. Yet the fixed-angle inflow kept meander migration and channel belt width and complexity limited. We accomplished dynamic meandering in the laboratory by using an upstream migrating boundary, which simulates a meander migrating into the flume. Our experiments were conducted in a circulated flume of 11x6 meter, with a constant discharge and sediment feed consisting of a sediment mixture ranging from silt to fine gravel (Kleinhans et al., 2010, this conference). The downstream boundary is a lake into which the river built a branched fan delta (Van de Lageweg et al., 2010, this conference). The morphology was recorded by high-resolution (0.5 mm) line-laser scanning and digital Single Lens Reflex (SLR) camera used for channel-floodplain segmentation and particle size estimation, at an interval of 8 hours. Furthermore a large number of smaller-scale auxiliary experiments were conducted to explore meandering tendency in a large range of parameters. Initial alternate ‘forced’ bars were formed at fixed positions with low sinuosity when the upstream boundary was at one fixed position. Migration

  3. River Meander Studies

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.

    1972-01-01

    The meander patterns of the Feather and Colorado rivers were studied in an attempt to correlate pattern changes and flood probability. Attempts were also made to correlate stream meander power spectrum and stream discharge frequency distribution.

  4. Modification of meander migration by bank failures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meander migration and planform evolution depend on the resistance to erosion of the floodplain soils. To date, research to quantify meandering river adjustment has largely focused on resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and v...

  5. Modification of meander migration by bank failures

    NASA Astrophysics Data System (ADS)

    Motta, D.; Langendoen, E. J.; Abad, J. D.; García, M. H.

    2014-05-01

    Meander migration and planform evolution depend on the resistance to erosion of the floodplain materials. To date, research to quantify meandering river adjustment has largely focused on resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at the bank toe. Hence, it impacts migration rates and meander shapes through the horizontal and vertical distribution of erodibility of floodplain materials. Planar failures are more episodic. However, in floodplain areas characterized by less cohesive materials, they can affect meander evolution in a sustained way and produce preferential migration patterns. Model results show that besides the hydrodynamics, bed morphology and horizontal floodplain heterogeneity, floodplain stratigraphy can significantly affect meander evolution, both in terms of migration rates and planform shapes. Specifically, downstream meander migration can either increase or decrease with respect to the case of a homogeneous floodplain; lateral migration generally decreases as result of bank protection due to slump blocks; and the effect on bend skewness depends on the location and volumes of failed bank material caused by cantilever and planar failures along the bends, with possible achievement of

  6. CLASSIFICATION AND BEHAVIOR OF MEANDER MIGRATION.

    USGS Publications Warehouse

    Martin, Edward H.; Shen, Hsieh W.; Glover, J. Ed

    1986-01-01

    Meander migrations on the Mississippi River between Cairo, Illinois and Baton Rouge, Louisiana for the time period between the years 1765 and 1930 were classified into six categories based on the nature of channel movements. During the time period between 1765 and 1900, man's disturbance on this river reach was relatively minor. This study was mainly based on measurements taken in the years 1765, 1825, 1887 and 1930. The six categories of meander migration were: downstream limb migration, downstream limb rotation, mainly upstream limb migration, upstream limb rotation, pure translation and pure expansion. It was determined that over 60% of future meander migrations could be predicted from the characteristics of each individual initial channel pattern.

  7. Designing and Assessing Restored Meandering River Planform Using RVR Meander

    NASA Astrophysics Data System (ADS)

    Langendoen, E. J.; Abad, J. D.; Motta, D.; Frias, C. E.; Wong, M.; Barnes, B. J.; Anderson, C. D.; Garcia, M. H.; MacDonald, T. E.

    2013-12-01

    The ongoing modification and resulting reduction in water quality of U.S. rivers have led to a significant increase in river restoration projects over the last two decades. The increased interest in restoring degraded streams, however, has not necessarily led to improved stream function. Palmer and Allan (2005) found that many restoration projects fail to achieve their objectives due to the lack of policies to support restoration standards, to promote proven methods and to provide basic data needed for planning and implementation. Proven models of in-stream and riparian processes could be used not only to guide the design of restoration projects but also to assess both pre- and post-project indicators of ecological integrity. One of the most difficult types of river restoration projects concern reconstructing a new channel, often with an alignment and channel form different from those of the degraded pre-project channel. Recreating a meandering planform to provide longitudinal and lateral variability of flow and bed morphology to improve in-stream aquatic habitat is often desired. Channel meander planform is controlled by a multitude of variables, for example channel width to depth ratio, radius of curvature to channel width ratio, bankfull discharge, roughness, bed-material physical characteristics, bed material transport, resistance to erosion of the floodplain soils, riparian vegetation, etc. Therefore, current practices that use simple, empirically based relationships or reference reaches have led to failure in several instances, for example a washing out of meander bends or a highly unstable planform, because they fail to address the site-specific conditions. Recently, progress has been made to enhance a physically- and process-based model, RVR Meander, for rapid analysis of meandering river morphodynamics with reduced empiricism. For example, lateral migration is based on measurable physical properties of the floodplain soils and riparian vegetation versus

  8. Valley evolution by meandering rivers

    NASA Astrophysics Data System (ADS)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  9. Floodplain heterogeneity and meander migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of horizontal heterogeneity of floodplain soils on rates and patterns of meander migration is analyzed with a Ikeda et al. (1981)-type model for hydrodynamics and bed morphodynamics, coupled with a physically-based bank erosion model according to the approach developed by Motta et al. (20...

  10. Why do gravel bed rivers meander?

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.; Dietrich, W. E.

    2011-12-01

    Gravel bed meandering channels are common on Earth and have been observed on Mars, yet little is known about the conditions required to support meandering in gravel substrates. This is problematic for stream restoration projects that often redesign channels as gravel bed meanders without a complete recipe. We supplemented previous data compilations on channel morphology with additional data from the literature to investigate the conditions that support meandering in gravel bed rivers in the field. The 127 gravel bed rivers in our database are most common along the base of the Rocky Mountains in North America, and the United Kingdom. We identified the location of 111 of the reaches and using Google Earth, subdivided those channels into 3 categories: meandering channels with occasional islands (22 rivers), sinuous channels with bars but without evidence of cutoffs (36 rivers), and meandering channels with cutoffs (33 rivers). We also separately identified channels whose median diameter was less than 10 mm (20 rivers) because their behavior differed greatly from coarser rivers. We contrasted these rivers with sinuous gravel channels (channels without bars), braided gravel channels, and sand meanders from previous literature compilations. Coarse-grained (>10 mm) meanders with cutoffs have an average Shields stress of 0.032 and range from 0.016 to 0.046. This is significantly lower than the other gravel channel types where Shields stress can exceed 0.2 for both braided and sinuous channels. We propose that gravel meanders with cutoffs are not transporting gravel downstream, but rather are reworking gravel deposited under earlier hydrologic and sediment supply regimes. We observed similar behavior during meandering experiments, where coarse sediment was not transported around bends but was exchanged between channel banks and downstream bars. The low stresses on gravel meanders with cutoffs might also be expected to correspond with low stresses on the banks, which in

  11. Quantifying Process-Based Mitigation Strategies in Historical Context: Separating Multiple Cumulative Effects on River Meander Migration

    PubMed Central

    Fremier, Alexander K.; Girvetz, Evan H.; Greco, Steven E.; Larsen, Eric W.

    2014-01-01

    Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a ‘sliding baseline’. In river systems, cumulative effects caused by flow regulation, channel revetment and riparian vegetation removal significantly impact floodplain ecosystems by altering channel dynamics and precluding subsequent ecosystem processes, such as primary succession. To quantify these impacts on floodplain development processes, we used a model of river channel meander migration to illustrate the degree to which flow regulation and riprap impact migration rates, independently and synergistically, on the Sacramento River in California, USA. From pre-dam conditions, the cumulative effect of flow regulation alone on channel migration is a reduction by 38%, and 42–44% with four proposed water diversion project scenarios. In terms of depositional area, the proposed water project would reduce channel migration 51–71 ha in 130 years without current riprap in place, and 17–25 ha with riprap. Our results illustrate the utility of a modeling approach for quantifying cumulative impacts. Model-based quantification of environmental impacts allow scientists to separate cumulative and synergistic effects to analytically define mitigation measures. Additionally, by selecting an ecosystem process that is affected by multiple impacts, it is possible to consider process-based mitigation scenarios, such as the removal of riprap, to allow meander migration and create new floodplains and allow for riparian vegetation recruitment. PMID:24964145

  12. Quantifying process-based mitigation strategies in historical context: separating multiple cumulative effects on river meander migration.

    PubMed

    Fremier, Alexander K; Girvetz, Evan H; Greco, Steven E; Larsen, Eric W

    2014-01-01

    Environmental legislation in the US (i.e. NEPA) requires defining baseline conditions on current rather than historical ecosystem conditions. For ecosystems with long histories of multiple environmental impacts, this baseline method can subsequently lead to a significantly altered environment; this has been termed a 'sliding baseline'. In river systems, cumulative effects caused by flow regulation, channel revetment and riparian vegetation removal significantly impact floodplain ecosystems by altering channel dynamics and precluding subsequent ecosystem processes, such as primary succession. To quantify these impacts on floodplain development processes, we used a model of river channel meander migration to illustrate the degree to which flow regulation and riprap impact migration rates, independently and synergistically, on the Sacramento River in California, USA. From pre-dam conditions, the cumulative effect of flow regulation alone on channel migration is a reduction by 38%, and 42-44% with four proposed water diversion project scenarios. In terms of depositional area, the proposed water project would reduce channel migration 51-71 ha in 130 years without current riprap in place, and 17-25 ha with riprap. Our results illustrate the utility of a modeling approach for quantifying cumulative impacts. Model-based quantification of environmental impacts allow scientists to separate cumulative and synergistic effects to analytically define mitigation measures. Additionally, by selecting an ecosystem process that is affected by multiple impacts, it is possible to consider process-based mitigation scenarios, such as the removal of riprap, to allow meander migration and create new floodplains and allow for riparian vegetation recruitment. PMID:24964145

  13. Meander dynamics in a changing river corridor

    NASA Astrophysics Data System (ADS)

    Magdaleno, Fernando; Fernández-Yuste, José A.

    2011-07-01

    In the first decades of the twentieth century, the Ebro River was the Iberian channel with the most active fluvial dynamics and the most remarkable spatial-temporal evolution. Its meandering typology, the dimensions of its floodplain (with an average width > 3.0 km), and the singularities of its flow regime produced a especially interesting set of river functions from the perspective of the fluvial geomorphology of the largest Mediterranean channels. The largest dynamics of the Ebro River are concentrated along the meandering profile of the central sector. During the twentieth century, this sector experienced a large alteration of its geomorphological structure. We present here an analysis of this evolution through the cartographic study of a long segment of the river (~ 250 km) in 1927, 1956, and 2003. The study is focused on a wide set of geomorphic parameters and indicators that represent the forms of the meander belt, its lateral dynamics, and the overall mobility of the river corridor. The results of the analysis show a large transformation of the meander dynamics, as well as a massive loss of the river lateral activity, most of which occurred in the second half of the twentieth century. This intense geomorphological transformation becomes visible in (i) the large reduction of the bankfull width and the active channel area; (ii) the decrease in the rate of lateral channel migration; (iii) the loss of channel activity; and (iv) the large reduction of coincidence of the active channel areas. However, the most traditional form parameters (i.e., wavelength, amplitude, radius of curvature, and meander length) do not show significant differences throughout the time interval analysed. The study reinforces the necessity of integrating a wide range of dynamic indicators, which may complement the classical form parameters and represent the real functioning of the river corridor, in the geomorphological analyses of meander dynamics. This work also shows the most

  14. Numerical Simulations of Floodplain Heterogeneity Effects on Meanders Migration

    NASA Astrophysics Data System (ADS)

    Bogoni, M.; Lanzoni, S.; Putti, M.

    2014-12-01

    Floodplains and sinuous rivers have a close relationship with each other, mutually influencing their evolutions in time and space. The heterogeneity in erosional resistance has a crucial role on meander planform evolution. It depends on external factors, like land use and cover, but also on the composition of the floodplain, which is due to the ancient geological composition and to the processes associated to long-term river migration. In particular, banks erosion and deposition cause a variation of the superficial composition of the soil, therefore the river patterns are influenced by the previous trends. Based on some recent works, the aim of this contribution is to collect numerical information on the relations between meander migration and the heterogeneity of floodplains caused by oxbow lakes. Numerical simulations have been performed to analyze the temporal and spatial behavior of meanders with a range of values of the erosional resistance of the plain. These values are set as a function of some factors: the characteristic grain size of sediment transported by the flow, the deposition age of the sediments, the eventual presence of vegetation on the banks. The statistical analysis of characteristic geometrical quantities of meanders are able to show the dependence of the simulation results on the meander history. In particular we try to answer to the following questions: how do the rivers affect themselves during their spatial and temporal evolution, modifying the distribution of the floodplain erodibility? Do the migration history plays a main role on the meanders migration modeling?

  15. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  16. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Constantine, José Antonio; Dunne, Thomas; Ahmed, Joshua; Legleiter, Carl; Lazarus, Eli D.

    2014-12-01

    The role of externally imposed sediment supplies on the evolution of meandering rivers and their floodplains is poorly understood, despite analytical advances in our physical understanding of river meandering. The Amazon river basin hosts tributaries that are largely unaffected by engineering controls and hold a range of sediment loads, allowing us to explore the influence that sediment supply has on river evolution. Here we calculate average annual rates of meander migration within 20 reaches in the Amazon Basin from Landsat imagery spanning 1985-2013. We find that rivers with high sediment loads experience annual migration rates that are higher than those of rivers with lower sediment loads. Meander cutoff also occurs more frequently along rivers with higher sediment loads. Differences in meander migration and cutoff rates between the study reaches are not explained by differences in channel slope or river discharge. Because faster meander migration and higher cutoff rates lead to increased sediment-storage space in the resulting oxbows, we suggest that sediment supply modulates the reshaping of floodplain environments by meandering rivers. We conclude that imposed sediment loads influence planform changes in lowland rivers across the Amazon.

  17. Biomorphodynamic modelling of inner bank advance in migrating meander bends

    NASA Astrophysics Data System (ADS)

    Zen, Simone; Zolezzi, Guido; Toffolon, Marco; Gurnell, Angela M.

    2016-07-01

    We propose a bio-morphodynamic model at bend cross-sectional scale for the lateral migration of river meander bends, where the two banks can migrate separately as a result of the mutual interaction between river flow, sediments and riparian vegetation, particularly at the interface between the permanently wet channel and the advancing floodplain. The model combines a non-linear analytical model for the morphodynamic evolution of the channel bed, a quasi-1D model to account for flow unsteadiness, and an ecological model describing riparian vegetation dynamics. Simplified closures are included to estimate the feedbacks among vegetation, hydrodynamics and sediment transport, which affect the morphology of the river-floodplain system. Model tests reveal the fundamental role of riparian plants in generating bio-morphological patterns at the advancing floodplain margin. Importantly, they provide insight into the biophysical controls of the 'bar push' mechanism and into its role in the lateral migration of meander bends and in the temporal variations of the active channel width.

  18. Analysis of Meander Migration Rates in Tidal Landscapes

    NASA Astrophysics Data System (ADS)

    Finotello, Alvise; D'Alpaos, Andrea; Ghinassi, Massimiliano; Lanzoni, Stefano; Marani, Marco; Rinaldo, Andrea

    2015-04-01

    Meandering patterns are universal features of tidal landscapes, which exert a great influence on the dynamics of tidal channel networks and on the stratigraphy of intertidal platforms. Despite their importance in landscape evolution and their ubiquity, tidal meanders have received less attention when compared to their fluvial counterparts. Quite a few studies, in fact, have focused on the morphodynamic evolution of tidal meanders, together with their planimetric shape and morphometric characteristics. To improve current understanding of tidal meander migration, a key step to address tidal meander evolution, we have analyzed a sequence of aerial photographs (from 1938 to present day) for about 400 meander bends, over 40 salt-marsh channels in the Northern part of the Venice Lagoon (Italy). Tidal meanders display similarities with fluvial meanders, although important differences emerge. Meanders cutting through the San Felice marsh follow the relationship between cartesian length and channel width, typical of meanders developed within different landscapes. However, meander migration rates, which were determined on the basis of three different methods, proved to be smaller than those characterizing fluvial meanders. Our analysis suggests mean migration rates of about 0.10 m/year, which is consistent with migration rates determined by previous studies on tidal meanders. The relationship between erosion (migration) rate and bend radius (R), both made dimensionless with channel width (W), displays a bell-shaped envelope pattern, in analogy with fluvial meanders although with smaller migration rates. In the tidal case, in fact, the largest migration rate is about 0.10 channel widths per year, which is smaller than the largest migration rate (0.20 channel widths per year) characterizing fluvial meanders that we found in the literature. Interestingly, in the case of tidal meanders the peak of the bell-shaped curve corresponds to a R/W ratio between 4 and 5, whereas the same

  19. Migration Rate Of Tidal Meanders: Inferences From The Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Finotello, A.; D'Alpaos, A.; Ghinassi, M.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2015-12-01

    Meandering channels are ubiquitous features of tidal landscapes. However, despite their fundamental role on the eco-morphodynamic evolution of these landscapes, tidal meanders have received less attention when compared to their fluvial counterparts. Improving current understanding of tidal meander migration, a largely-examined topic in fluvial landscapes, is a key step to highlight analogies and differences between tidal and fluvial cases. The migration of about 400 meander bends, belonging to 40 salt-marsh channels in the Northern Venice Lagoon (Italy), from 1968 to nowadays, has been investigated by means of both a classical method in fluvial frameworks and new procedure. Similarities with fluvial meanders occur, although important difference also emerge. Meanders cutting through the San Felice marsh follow the relationship between cartesian length and channel width, typical of meanders developed within different settings. However, meander migration rates proved to be smaller than those characterizing fluvial meanders. Indeed, the analysis of meander migration suggests a mean migration rate of about 0.10 m/year, consistent with the few data available in the literature. As for the fluvial case, the maximum-potential migration rate (i.e. the envelope curve of the relationship between migration rate and bend radius, both divided by channel width) reaches a maximum for radius-over-width ratio included between 2 and 3, regardless of the considered method. Nevertheless, the new-proposed method allows us to provide a more objective and continuous characterization. By using this new procedure, the channel curvature has finally been Fourier-analyzed, confirming the importance of even harmonics along the curvature spectrum. A correlation between migration rates and dominant harmonics seems to drive the evolution of tidal meanders and might represent a key-feature to distinguish them from their fluvial counterparts.

  20. River meander modeling and confronting uncertainty.

    SciTech Connect

    Posner, Ari J.

    2011-05-01

    This study examines the meandering phenomenon as it occurs in media throughout terrestrial, glacial, atmospheric, and aquatic environments. Analysis of the minimum energy principle, along with theories of Coriolis forces (and random walks to explain the meandering phenomenon) found that these theories apply at different temporal and spatial scales. Coriolis forces might induce topological changes resulting in meandering planforms. The minimum energy principle might explain how these forces combine to limit the sinuosity to depth and width ratios that are common throughout various media. The study then compares the first order analytical solutions for flow field by Ikeda, et al. (1981) and Johannesson and Parker (1989b). Ikeda's et al. linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g., cohesiveness, stratigraphy, or vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of a meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations several measures are formulated in order to determine which of the resulting planforms is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model.

  1. A simplified 2D model for meander migration with physically-based bank evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The migration rate calculated by numerical models of river meandering is commonly based on a method that relates migration rate to near-bank excess velocity multiplied by a dimensionless coefficient. Notwithstanding its simplicity, since the early 1980s this method has provided important insight int...

  2. Numerical simulation of river meandering with self-evolving banks

    NASA Astrophysics Data System (ADS)

    Asahi, Kazutake; Shimizu, Yasuyuki; Nelson, Jonathan; Parker, Gary

    2013-12-01

    In this study, the natural process of river meandering is captured in a computational model that considers the effects of bank erosion, the process of land accretion along the inner banks of meander bends, and the formation of channel cutoffs. The methodology for predicting bank erosion explicitly includes a submodel treating the formation and eventual removal of slump blocks. The accretion of bank material on the inner bank is modeled by defining the time scale over which areas that are originally channel become land. Channel cutoff formation is treated relatively simply by recomputing the channel alignment at a single model time step when migrating banks meet. The model is used to compute meandering processes in both steady and unsteady flows. The key features of this new model are the ability (a) to describe bank depositional and bank erosional responses separately, (b) to couple them to bed morphodynamics, and thus (c) to describe coevolving river width and sinuosity. Two cases of steady flow are considered, one with a larger discharge (i.e., "bankfull") and one with a smaller discharge (i.e., "low flow"). In the former case, the shear stress is well above the critical shear stress, but in the latter case, it is initially below it. In at least one case of constant discharge, the planform pattern can develop some sinuosity, but the pattern appears to deviate somewhat from that observed in natural meandering channels. For the case of unsteady flow, discharge variation is modeled in the simplest possible manner by cyclically alternating the two discharges used in the steady flow computations. This model produces a rich pattern of meander planform evolution that is consistent with that observed in natural rivers. Also, the relationship between the meandering evolution and the return time scale of floods is investigated by the model under the several unsteady flow patterns. The results indicate that meandering planforms have different shapes depending on the values

  3. RVR meander - a toolbox for river meander planform design and evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoring the meandering planform or spatial variability of historically meandering streams that have been channelized or highly disturbed is one of the most difficult aspects in river restoration. River planform and cross-sectional geometry are the result of complex interactions between flow, boun...

  4. Experimental investigation of Mars meandering rivers: Chemical precipitation process

    NASA Astrophysics Data System (ADS)

    Kim, W.; Lim, Y.; Cleveland, J.; Reid, E.; Jew, C.

    2014-12-01

    On Earth, meandering streams occur where the banks are resistant to erosion, which enhances narrow and deep channels. Often this is because the stream banks are held firm by vegetation. The ancient, highly sinuous channels with cutoffs found on Mars are enigmatic because vegetation played no role in providing bank cohesion and enhancing fine sediment deposition. Possible causes of the meandering therefore include ice under permafrost conditions and chemical processes. We conducted carbonate flume experiments to investigate possible mechanisms creating meandering channels other than vegetation. The experiment includes a tank that dissolves limestone by adding CO2 gas and produces artificial spring water, peristaltic pumps to drive water through the system, a heater to control the temperature of the spring water, and a flume where carbonate sediment deposits. Spring water containing dissolved calcium and carbonate ions moves through a heater to increase temperature, and then into the flume. The flume surface is open to the air to allow CO2 degassing, decrease temperature, and increase pH, which promotes carbonate precipitation. A preliminary experiment was done and successfully created a meander pattern that evolved over a 3-day experiment. The experiment showed lateral migration of the bend and avulsion of the stream, similar to a natural meander. The lateral variation in flow speed increased the local residence time of water, thus increasing the degassing of CO2 on the two sides of the flow and promoting more precipitation. This enhanced precipitation on the sides provided a mechanism to build levees along the channel and created a stream confined in a narrow path. This mechanism also potentially applies to Earthly single thread and/or meandering rivers developed and recorded before vegetation appeared on Earth's surface.

  5. Meandering down to the Sea: The Wandering Ways of Rivers.

    ERIC Educational Resources Information Center

    Aslamazov, Lev

    1992-01-01

    Discusses the hydrodynamic reasons why a riverbed meanders through a plain. Describes how water movement at a bend in a river causes erosion and changes in the riverbed. Provides a mathematical model to explain the periodic shape of meanders of a river in a plain. (MDH)

  6. Model tracks sediment dynamics for highly curved meandering rivers

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-07-01

    Understanding the dynamics of meandering rivers—the twisting, turning, and wandering of waterways over time—is of concern to water managers and civil engineers. How curved a river is affects how it moves, and Ottevanger et al. built on existing models to improve representations of meandering dynamics for highly curved rivers.

  7. Experimental evidence for the conditions necessary to sustain meandering in coarse-bedded rivers

    PubMed Central

    Braudrick, Christian A.; Dietrich, William E.; Leverich, Glen T.; Sklar, Leonard S.

    2009-01-01

    Meandering rivers are common on Earth and other planetary surfaces, yet the conditions necessary to maintain meandering channels are unclear. As a consequence, self-maintaining meandering channels with cutoffs have not been reproduced in the laboratory. Such experimental channels are needed to explore mechanisms controlling migration rate, sinuosity, floodplain formation, and planform morphodynamics and to test theories for wavelength and bend propagation. Here we report an experiment in which meandering with near-constant width was maintained during repeated cutoff and regeneration of meander bends. We found that elevated bank strength (provided by alfalfa sprouts) relative to the cohesionless bed material and the blocking of troughs (chutes) in the lee of point bars via suspended sediment deposition were the necessary ingredients to successful meandering. Varying flood discharge was not necessary. Scaling analysis shows that the experimental meander migration was fast compared to most natural channels. This high migration rate caused nearly all of the bedload sediment to exchange laterally, such that bar growth was primarily dependent on bank sediment supplied from upstream lateral migration. The high migration rate may have contributed to the relatively low sinuosity of 1.19, and this suggests that to obtain much higher sinuosity experiments at this scale may have to be conducted for several years. Although patience is required to evolve them, these experimental channels offer the opportunity to explore several fundamental issues about river morphodynamics. Our results also suggest that sand supply may be an essential control in restoring self-maintaining, actively shifting gravel-bedded meanders. PMID:19805077

  8. A simplified 2D model for meander migration with physically-based bank evolution

    NASA Astrophysics Data System (ADS)

    Motta, Davide; Abad, Jorge D.; Langendoen, Eddy J.; Garcia, Marcelo H.

    2012-08-01

    The rate of migration, calculated by numerical models of river meandering, is commonly based on a method that relates the rate of migration to near-bank excess velocity multiplied by a dimensionless coefficient. Notwithstanding its simplicity, since the early 1980s this method has provided important insight into the long-term evolution of meander planforms through theoretical exercises. Its use in practice has not been as successful, because the complexity of the physical processes responsible for bank retreat, the heterogeneity in floodplain soils, and the presence of vegetation, make the calibration of the dimensionless coefficient rather challenging. This paper presents a new approach that calculates rates of meander migration using physically-based streambank erosion formulations. The University of Illinois RVR Meander model, which simulates meandering-river flow and bed morphodynamics, is integrated with algorithms for streambank erosion of the US Department of Agriculture channel evolution computer model CONCEPTS. The performance of the proposed approach is compared to that of the more simple classic method through the application to several test cases for idealized and natural planform geometry. The advantages and limitations of the approach are discussed, focusing on simulated planform pattern, the impact of soil spatial heterogeneity, the relative importance of the different processes controlling bank erosion (hydraulic erosion, cantilever, and planar failure), the requirements for obtaining stable migration patterns (centerline filtering and interpolation of bank physical properties), and the capability of predicting the planform evolution of natural rivers over engineering time scales (i.e., 50 to 100 years). The applications show that the improved physically-based method of bank retreat is required to capture the complex long-term migration patterns of natural channels, which cannot be merely predicted from hydrodynamics only.

  9. Floods, landslides and short-term meandering bedrock river dynamics

    NASA Astrophysics Data System (ADS)

    Lague, D.; Bonnet, S.; Davies, T. R.; Davy, P.

    2012-12-01

    Actively incising bedrock meanders are an ubiquitous feature of mountain belts, but the mechanisms leading to their formation and evolution are still poorly understood. As for straight bedrock rivers, we expect the combination of stochastic discharge, sediment supply and river transport capacity to play a key role in the partitioning between vertical and lateral incision. But the sinuous planform geometry yields localized high rates of outer bank incision driving localized hillslope mass wasting processes. The resulting deposits may alter patterns of sedimentation and incision leading to a strongly coupled channel-hillslope system. We aim at better understanding this coupling following two approaches : a detailed quantification of channel response to individual floods and mass-wasting events using Terrestrial Laser Scanner surveys and recent historical data; and the integration of this short-term dynamics at longer-timescales through numerical modelling. In particular, we note that many of these rivers exhibits numerous strath terraces abandoned in their inner bend documenting an evolution which is not purely continuous but rather punctuated by rapid changes in the balance between vertical and lateral erosion. Whether these changes can be tied to specific extreme events (floods, landslides, major earthquakes...) or an intrinsic instability is a key question to better understand bedrock meandering dynamics. It also has potentially important implications for the reconstruction of paleo-extremes from dated terraces or for the management of infrastructures located near actively migrating meandering bedrock rivers. This presentation focuses on the use of Terrestrial Laser Scanner to investigate the spatio-temporal patterns of bank erosion in the Rangitikei river (New-Zealand) over 3 years. The Rangitikei river is incising weakly consolidated mudstone at an average rate of 5 mm/yr since 15 kyr and has developed a very sinuous meandering pattern with several cut

  10. Lateral versus downstream transport of gravel in gravel-bed meandering rivers

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.; Dietrich, W. E.

    2014-12-01

    The degree to which gravel is exchanged laterally from eroding banks to point bars rather than transported downstream is largely unknown in gravel-bed meanders. This is crucial for understanding the potential effects bank stabilization on channel form. We use a compilation of field data to calculate the number of bends required for the supply of gravel from bank erosion to equal transport rate of gravel through a reach (Nb). A low value of Nb suggests that most of the gravel transport by the river is derived from local bank erosion and that, in essence, gravel is being shifted from outer bank to downstream bars with little net downslope flux. We compared the migration rate in 18 gravel-bed meanders rivers with calculations of the gravel transport capacity. Using the average bend length measured for the reach, and assuming the fraction of gravel in the banks ranged from 0.1 to 0.8 of the bank height, Nb was < 1 bend for 12 of the 18 rivers and generally < 10 bends for the remainder of the rivers. The meanders with Nb<1 had Shields stresses less than 0.044, which is the median Shields stress of 115 gravel-bed meanders in the literature. We compared these results to 9 gravel-bed meanders where gravel transport rates were available but the migration rates were unknown. For these rivers, we assumed migration rates ranged from 0.005-0.1 widths/yr (the range observed for gravel-bed meanders) and the gravel fraction in the banks ranged from 0.1-0.8. Nb was ranged from <1 to 20 bends, but was generally higher than for the gravel-bed meanders where we calculated the gravel transport capacity. This is not surprising because 7 of the 9 rivers had Shields stresses > 0.045, and higher gravel transport rates would be expected for this dataset. Our calculations suggest that for many gravel-bed meanders, gravel is being exchanged between the bed and banks within one bend, and even gravel-bed meanders with higher Shields stresses are likely exchanging gravel within a given reach

  11. Understanding Single-Thread Meandering Rivers with High Sinuosity on Mars through Chemical Precipitation Experiments

    NASA Astrophysics Data System (ADS)

    Lim, Y.; Kim, W.

    2015-12-01

    Meandering rivers are extremely ubiquitous on Earth, yet it is only recently that single-thread experimental channels with low sinuosity have been created. In these recent experiments, as well as in natural rivers, vegetation plays a crucial role in maintaining a meandering pattern by adding cohesion to the bank and inhibiting erosion. The ancient, highly sinuous channels found on Mars are enigmatic because presumably vegetation did not exist on ancient Mars. Under the hypothesis that Martian meandering rivers formed by chemical precipitation on levees and flood plain deposits, we conducted carbonate flume experiments to investigate the formation and evolution of a single-thread meander pattern without vegetation. The flow recirculating in the flume is designed to accelerate chemical reactions - dissolution of limestone using CO2 gas to produce artificial spring water and precipitation of carbonates to increase cohesion- with precise control of water discharge, sediment discharge, and temperature. Preliminary experiments successfully created a single-thread meandering pattern through chemical processes. Carbonate deposits focused along the channel sides improved the bank stability and made them resistant to erosion, which led to a stream confined in a narrow path. The experimental channels showed lateral migration of the bend through cut bank and point bar deposits; intermittent floods created overbank flow and encouraged cut bank erosion, which enhanced lateral migration of the channel, while increase in sediment supply improved lateral point bar deposition, which balanced erosion and deposition rates. This mechanism may be applied to terrestrial single-thread and/or meandering rivers with little to no vegetation or before its introduction to Earth and also provide the link between meandering river records on Mars to changes in Martian surface conditions.

  12. Evolution of cutoffs across meander necks in Powder River, Montana, USA

    USGS Publications Warehouse

    Gay, G.R.; Gay, H.H.; Gay, W.H.; Martinson, H.A.; Meade, R.H.; Moody, J.A.

    1998-01-01

    Over a period of several decades, gullies have been observed in various stages of forming, growing and completing the cutoff of meander necks in Powder River. During one episode of overbank flow, water flowing over the down-stream bank of the neck forms a headctu. The headcut migrates up-valley, forming a gully in its wake, until it has traversed the entire neck, cutting off the meander. The river then follows the course of the gully, which is subsequently enlarged as the river develops its new channel. The complete process usually requires several episodes of high water: in only one of the five cases described herein was a meander cutoff initiated and completed during a single large flood.

  13. An integrated approach to investigate the reach-averaged bend scale dynamics of large meandering rivers

    NASA Astrophysics Data System (ADS)

    Monegaglia, Federico; Henshaw, Alex; Zolezzi, Guido; Tubino, Marco

    2016-04-01

    Planform development of evolving meander bends is a beautiful and complex dynamic phenomenon, controlled by the interplay among hydrodynamics, sediments and floodplain characteristics. In the past decades, morphodynamic models of river meandering have provided a thorough understanding of the unit physical processes interacting at the reach scale during meander planform evolution. On the other hand, recent years have seen advances in satellite geosciences able to provide data with increasing resolution and earth coverage, which are becoming an important tool for studying and managing river systems. Analysis of the planform development of meandering rivers through Landsat satellite imagery have been provided in very recent works. Methodologies for the objective and automatic extraction of key river development metrics from multi-temporal satellite images have been proposed though often limited to the extraction of channel centerlines, and not always able to yield quantitative data on channel width, migration rates and bed morphology. Overcoming such gap would make a major step forward to integrate morphodynamic theories, models and real-world data for an increased understanding of meandering river dynamics. In order to fulfill such gaps, a novel automatic procedure for extracting and analyzing the topography and planform dynamics of meandering rivers through time from satellite images is implemented. A robust algorithm able to compute channel centerline in complex contexts such as the presence of channel bifurcations and anabranching structures is used. As a case study, the procedure is applied to the Landsat database for a reach of the well-known case of Rio Beni, a large, suspended load dominated, tropical meandering river flowing through the Bolivian Amazon Basin. The reach-averaged evolution of single bends along Rio Beni over a 30 years period is analyzed, in terms of bend amplification rates computed according to the local centerline migration rate. A

  14. Rivers meandering in bedrock: Lithologic, climatic, and process controls on form and evolution

    NASA Astrophysics Data System (ADS)

    Zunka, J. P.; Lancaster, S. T.

    2014-12-01

    Whereas meander wavelengths of alluvial rivers characteristically scale with bankfull discharge, bedrock meander wavelengths are typically 5-10 times greater than the scaling relationship for alluvial rivers would suggest, a fact that has led some to conclude that bedrock meanders are "underfit." Others, however, have reasoned that larger dominant discharges should be expected for bedrock meanders to erode bank toes and mobilize sediment in bank-shielding scree piles, which often accompany steep, even vertical, outside banks capable of supplying coarse debris via landslide, debris flow, and rockfall. We attempt to test this hypothesis by finding dominant discharges for the Buffalo National River, Arkansas, by several methods. First, assuming that, as with alluvial meanders, bedrock meander wavelengths are 7-15 times hydraulic width at dominant discharge, we use cross-sections extracted from LiDAR-derived DEMs to find discharges corresponding to objectively-determined meander wavelengths. Second, assuming that dominant discharge must mobilize scree mantling outer-bank toe slopes, we use measured grain size distributions and cross sections to determine this discharge. For each of these calculated discharges, we use flow-duration curves to find corresponding recurrence intervals. Third, assuming that mean residence times of scree are similar to dominant discharge recurrence intervals, we use measured scree volumes and flux rates inferred from lateral migration rates to find those residence times. Preliminary results for the site with the longest gauge record yield a mean recurrence interval of 26 yrs corresponding to a meander wavelength-to-width scaling ratio of 11 (9-139 yrs for scaling ratios of 7-15). Recurrence intervals found by the other methods await field and cosmogenic isotope concentration measurements.

  15. An entropy-based classification scheme of meandering rivers

    NASA Astrophysics Data System (ADS)

    Abad, J. D.; Gutierrez, R. R.

    2015-12-01

    Some researchers have highlighted the fact that most of the river classification schemes have not evolved at the same pace as river morphodynamics models have done it. The most prevailing classification scheme of meandering river was proposed by Brice (1975) and is mainly based on observational criteria. Likewise, thermodynamics principles have been applied on geomorphology over a relatively long period of time. Thus, for instance, a strong analogy between meander angle of deflection and the distribution of momentum in gas dynamics has been identified. Based on the analysis of curvature data from 16 natural meanders (which totals 52 realizations) ranging from class B to class G related to the Brice classification scheme, we propose a two-parameter meandering classification schemen, namely: [1] the yearly Shannon wavelet based negentropy gradient (ΔSWT), and [2] a quantitative continuum of the degree of confinement, which is estimated from the dimensonless Frechet distance (δF*) between the meandering centerline curvature and that of the mean center. Our results show that δF* identifies a threshold of ˜650 to discriminate freely from confined rivers; thereby, scales of the second and third degree of confinement are quantified. Likewise, the proxy parameter ΔSWT suggests that there are 4 degrees of meandering morphodynamics which lay in the intervals [10-1-100], [100-101], [101-102], and [102-103]. Our results also suggest that the lower negentropy corresponds to G1 meanders (two phase, bimodal bankfull sinuosity, equiwidth) and class B2 (single phase, wider at bends, no bars). Class G2 (two phase, bimodal bankfull sinuosity, wider at bends with point bars) and class C (single phase wider a bends, no bars) exhibit higher negentropy (single phase wider at bends width point bars). Likewise, the middle-negentropy group is comprised by both confined meanders (B1, single phase and equiwidth channel, and D, single phase, wider at bends with point bars and chutes) and

  16. Vegetal Encroachment on Point Bar Deposits as a Control on Width Variation in Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Parker, G.; Eke, E.; Asahi, K.; Shimizu, Y.; Nelson, J. M.

    2012-12-01

    Most meandering rivers have vegetated floodplains. As this vegetation encroaches on point bars, it helps stabilize the sediment there. The river can then undergo slow migration and channel deformation, all the while maintaining channel coherence. Yet streams that appear to have the same degree of meandering can nevertheless show marked variation in channel width, as measured from vegetation line to vegetation line. The top image shows a reach of a tributatary of the Ob River, Russia, and the bottom image shows a reach of the Trinity River, Texas. In both cases, the flow is from right to left. In the case of the Ob tributary, the point bars are completely vegetated, and streamwise variation in width is rather muted. In the case of the Trinity River, the point bars are not completely vegetated, and streamwise variation in width is rather strong. Here we present two numerical models of migrating, meandering rivers in which channel width is self-specified in terms of the dynamics of bank erosion and deposition. In one of these models, bank vegetation is assumed to immediately encroach on newly-created point bar deposits. This mode of encroachment is shown to strongly contain the channel, so muting width variation. In the other model, newly-created point bar deposits remain bare for a period of time before vegetation is allowed to stabilize them. This results in less effective containment of the channel and stronger streamwise width variation.

  17. Experimental rivers: from braided to meandering by addition of cohesive floodplain material

    NASA Astrophysics Data System (ADS)

    Van Dijk, W. M.; van de Lageweg, W. I.; Kleinhans, M. G.

    2011-12-01

    Braided rivers are relatively easily formed in the laboratory, whereas self-formed meandering rivers have proven very difficult to form. Our objective is to create self-formed dynamic braided and meandering rivers in a laboratory, and to quantitatively compare the resulting morphology and deposits. We applied a transverse moving inlet funnel for flow and sediment at the upstream boundary, mimicking meanders migrating into the control section. Conditions in the meandering and braided experiment were exactly equal except that slightly cohesive silt-sized silica flour was added to the feed sediment of the meandering channel. This was to test the hypotheses that 1) meandering rivers have relatively narrower and deeper channels due to bank cohesion, and 2) floodplain-filling sediment fills potential chute channels that would otherwise lead to braiding. Our experiments were conducted in a flume of 10x6 meter, which was split up into two separate fluvial plains (each 10x3 m). The parallel setups have identical cycled discharge regimes with a longer duration low flow and a shorter duration high flow simulating floods. The bed sediment consisted of a poorly sorted sediment mixture ranging from fine sand to fine gravel. The evolution was recorded by high-resolution line-laser scanning and digital Single Lens Reflex (SLR) camera used for channel-floodplain segmentation and particle size estimation. In agreement with earlier work, the experimental river without silica flour evolves from alternate bars to a fully braided river. With silica flour added to the feed, a meandering system evolved with frequent chute cut-offs that nevertheless remained mostly single-thread. The silica flour introduces cohesive self-formed floodplains, causes narrower channels and fills potential chutes. Large bends developed with scroll bar complexes and sinuosity reached maxima of 1.4. In contrast, the non-cohesive experiment is dominated by much more rapid channel shifting and displacement, so that

  18. Bedform formation in the Glastonbury meanders of the Connecticut River

    NASA Astrophysics Data System (ADS)

    Ostfeld, R.; O'Connell, S.; Patton, P. C.; Resor, P. G.; Geiger, L.

    2011-12-01

    The Glastonbury meanders of the Connecticut River contain stable bedforms varying from less than 0.5 m to over 1.5 m in height, and 7 to 49 m in wavelength, dominated by medium-size sand. Field measurements, including the flow velocity and water depth were used to calculate stream power (in N/m2), and thus calculate the force needed to initiate sediment movement. Modeling experiments supported the field data. Our results show that, in these river meanders, bedform formation, morphology and stability are driven by stream power. Low Froude numbers (0.05-0.10) indicate that the river is usually in a state of equilibrium, but that it is punctuated by short intervals of bedform destruction during high discharge. Mean and median grain size were similar throughout the meanders and all parts of the bedforms suggesting the importance of hydraulic sorting. Field data included imaging the river using sidescan sonar, collecting sediment samples, measuring river discharge using an acoustic Doppler current profiler, and using USGS gage heights at Hartford and Middletown. Modeling was done with CCHE2D, a two-dimensional flow and sediment transport model developed at the National Center for Computational Hydroscience and Engineering.

  19. Detailed river stage mapping and head gradient analysis during meander cutoff in a laboratory river

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Endreny, Theodore A.

    2014-02-01

    Analytical models of river evolution predict meander narrowing and elongation which creates sinuosity-driven hyporheic exchange across the meander neck, by decreasing flow distance and increasing head loss. We used a laboratory river table and close range photogrammetry to map and analyze sinuosity as a driver of head gradients and hyporheic exchange during cutoff. The river valley had relatively high slopes (1.8%) and moderately cohesive sediment (10% talc, 90% sand) to facilitate cutoff, and ratios of horizontal to vertical scaling were distorted to achieve dynamic similitude (Re = 3200). Incipient to cutoff, the head gradient across the neck increased due to a narrowing neck, upstream aggradation, and downstream degradation. Longitudinal and transverse river surface slopes around the meander bend increased as the meander approached cutoff. The steep head gradient across the moderately cohesive meander neck generated seepage erosion and scour that formed a low-sinuosity avulsion. Sediment-rich flow in the avulsed channel aggraded the downstream bed and separated the active channel and oxbow lake. The limitation in geometric and dynamic similitude in the river table limits extrapolation to natural rivers, yet river evolution may involve aggradation and degradation induced channel head loss and turnover hyporheic exchange as well as seepage-induced meander neck erosion. Our submillimeter maps of meander morphology and water stage provide data to parameterize river evolution and hyporheic exchange models, and may inform analysis and mapping of field sites.

  20. Self-formed Dynamic Meandering Rivers and Floodplains in the Laboratory: Necessary and Sufficient Conditions

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; van Dijk, W. M.; van de Lageweg, W. I.; Markies, H.; van der Gon-Netscher, T.; van de Meer, H.; van Maarseveen, M.; Postma, G.

    2010-12-01

    Traditionally, rivers were downscaled to the laboratory through similarity of the Froude, Shields and Reynolds numbers. This has worked well for rivers with fixed banks and for braided gravel-bed rivers. However, for self-formed dynamic meandering rivers in experiments, Froude scaling is incomplete without a constrained width-depth ratio. This aspect ratio should be small enough to obtain alternate bars. Bank erosion and bar migration have to be limited by somewhat cohesive or vegetated self-formed floodplains. Our objective is to determine the conditions that lead to river meandering in the laboratory. We developed an experimental scaling strategy for meandering gravel-bed rivers that reduces scale problems or quantifies scale effects. A sediment mixture ranging from silt to fine gravel produces subcritical to critical flow, a hydraulically rough boundary without scour holes or current ripples. Furthermore the mixture leads to richer morphodynamics with measurable sorting trends, narrower channels and cohesive self-formed floodplains. We cycle the inflow point of constant flow discharge and sediment feed in transverse direction at the upstream boundary to perturb an initially straight channel and simulate a meander migrating into the flume (Van Dijk et al., this conference). The downstream boundary is a lake into which the river progrades a branched fan delta (Villiers et al., Cheshier et al., van de Lageweg et al., this conference). Morphology was recorded by high-resolution line-laser scanning and digital photography allowed image segmentation and particle size estimation through an entropy method. In agreement with earlier work, the experimental river initially evolves from alternate bars to a fully braided river without significant floodplain building. With silica flour added to the feed, a transitional river between braided and meandering evolves with frequent chute cut-offs but mostly single-thread. During chute cut-offs the water and bed levels upstream of

  1. Revisiting nonlinearity in meandering river planform dynamics using Gradual Wavelet Reconstruc­­tion

    NASA Astrophysics Data System (ADS)

    Schwenk, J.; Foufoula-Georgiou, E.; Lanzoni, S.

    2014-12-01

    Characterizing the intrinsic nonlinearity in meandering river dynamics is important because it dictates river evolution response to perturbations such as bank armoring or channel straightening. Meandering river dynamics have been described in terms of chaos or self-organized criticality—characterizations predicated on the presence of nonlinearity—yet recent studies have found only limited evidence for its existence. Standard nonlinearity tests are performed by generating a number of linearized surrogate series from a signal of interest. Inherent nonlinearities in the original signal are destroyed in the surrogates via phase randomization in the Fourier domain. Nonlinearity is inferred if a significant difference exists between the original and the surrogates in an appropriately determined phase space. These tests detect the presence or absence of nonlinearity but cannot identify which scales and locations are contributing most to the signal's nonlinearity. A new surrogate generation method called Gradual Wavelet Reconstruction (GWR) has two key advantages over the standard methodology. First, GWR quantifies the degree of nonlinearity rather than simply detecting its presence or absence, providing a basis for comparisons between river planforms and models of meander migration. Second, because the GWR methodology relies on localized transformations, it can determine the scales and locations primarily contributing to the observed complexity. As a result of those advantages too, GWR has been shown to detect the presence of nonlinearity in signals where standard tests have failed. We apply GWR methodology to time series of channel sinuosity predicted by two established models of long-time meander migration: a HIPS-type model and that of Zolezzi and Seminara (2001). Although the former model has been shown to capture first-order meander dynamics, it fails to fully couple sediment and flow dynamics; nor does it account for the resonance phenomenon. Using GWR, we show

  2. Captures, Cutoffs, and Autogenic Drainage Basin Reorganization from Bedrock River Meandering in the Oregon Coast Range

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Finnegan, N. J.

    2015-12-01

    Meandering bedrock channels in the Oregon Coast Range (OCR), USA, have lateral migration rates far in excess of vertical incision rates. Consequently, the sweeping of trunk streams through this landscape can locally exert a much stronger influence on tributary channel long profiles than far-field tectonic forcing of base-level. Here, we use LiDAR-data to explore the influence of lateral channel mobility on the evolution of tributaries to the Smith River, in the OCR. We focus on two processes that dramatically and instantaneously change tributary long profiles: 1) Capture of tributaries by growing meander bends, and 2) Meander bend neck cutoffs on the main-stem that leave tributaries disconnected from base-level lowering. We focus on these two types of events because they provide clear examples of autogenic drivers of landscape disequilibrium at the sub-watershed scale in a landscape that is commonly argued to reflect steady tectonic forcing of base-level. We show that tributary streams are significantly more likely to flow into the leading edge of meander bends, testifying to the repeated capture of tributaries by growing bends. Examples of eminent captures by migrating bends, and examples with large knick points along recently captured tributaries suggest that the autogenic capture of tributaries by growing bends is a fundamental cause of transience in tributary channels in this landscape. To demonstrate the influence of the process of meander bend neck cutoff on tributary long profile evolution, we compare the long profiles of 34 tributaries that were hung above the main-stem of the Smith River following neck cutoff events. These stagnated tributary channels typically exhibit large convexities that record ongoing lowering of the trunk stream. Measured heights of these hanging tributaries implies that the timescale of adjustment for tributaries following cutoff events is ~ 105-106 years. The timescale of adjustment of tributary channels following meander cutoff

  3. A long term meander evolution simulation: A model evaluation using the field data from Quinn River, Nevada

    NASA Astrophysics Data System (ADS)

    Matsubara, Y.; Howard, A. D.; Burr, D. M.; Moore, J. M.; Williams, R. M.

    2011-12-01

    Despite the ubiquity of meandering streams, there have been few field-based studies of the temporal evolution of meander planforms, including modeling of channel migration and spatial patterns of floodplain. The Quinn River, located in the east branch of the Black Rock Desert, Nevada is a sinuous channel that flows through lacustrine sediments on the floor of paleolake Lahontan where vegetation cover is sparse. It is still active and aerial photographs taken over the past 50 years show that significant modifications including meander cutoffs have occurred in the past 40 years. This provides good basis for testing the ability of flow and bank erosion models (e.g., Johannesson and Parker [1989]) to predict meander evolution pattern. Meander model developed by Howard [1992, 1996], which has its base on the Johannesson and Parker [1989] linearized model of flow through bends, was used to simulate forward evolution of the Quinn River starting from the 1972 centerline. The Quinn River lacks bars and has a nearly canal-like cross-section with a flat bed, thus it is an ideal channel to test predictions of bend evolution. The model was calibrated by using various data such as meander wavelength, channel cross-sectional shape, measurements of flow resistance based upon the field work, and timing of meander cutoffs to find the model results that best match the 2010 centerline. We also formulated and calibrated the flood plain sediment deposition model using high resolution topography data from LiDAR. Our results show that the model well predicts the meander evolution pattern over historical time period. Also the short term simulations show a good correlation between the predicted inner and outer bend flow velocity ratio and the ratio of inner and outer channel bank slope ratio.

  4. Development of a meandering channel caused by the planform shape of the river bank

    NASA Astrophysics Data System (ADS)

    Nagata, T.; Watanabe, Y.; Yasuda, H.; Ito, A.

    2014-04-01

    Due to a typhoon and a stationary rain front, record amounts of rain fell in September 2011, and the largest class of discharge in recorded history was observed in the Otofuke River of eastern Hokkaido in Japan, and extensive bank erosion occurred in various parts of the river channel. Damages were especially serious in the middle reaches, where part of a dike was washed out. The results of a post-flood survey suggested that the direct cause of the dike breach was lateral advance of the bank erosion associated with the development of meandering channels. As the related development mechanism and predominant factors have not yet been clarified, this remains a priority from the viewpoint of disaster prevention. A past study on the development of meandering channels was reported by Shimizu et al. (1996). In this study, the meandering channel development process was reproduced using a slope failure model that linked bank erosion with bed changes. The study attempted to clarify the meandering development mechanism in the disaster and its predominant factors by using this model. The analysis properly reproduced the characteristics of the post-flood meandering waveforms. Therefore, it is suggested that the development of meandering during the flood attributed to the propagation of meandering downstream, which is triggered by the meandering flow from the meandering channel in the upstream, which also suggests that this propagated meandering then caused a gradual increase of meandering amplitude accompanied by bank erosion in the recession period of the flood.

  5. Development of a meandering channel caused by the plane shape of the river bank

    NASA Astrophysics Data System (ADS)

    Nagata, T.; Watanabe, Y.; Yasuda, H.; Ito, A.

    2013-11-01

    Due to a typhoon and a stationary rain front, record amounts of rain fell in September 2011, and the largest class of discharge in recorded history was observed in the Otofuke River of eastern Hokkaido in Japan, and extensive bank erosion occurred in various parts of the river channel. Damages were especially serious in the middle reaches, where part of a dike was washed out. The results of a post-flood survey suggested that the direct cause of the dike breach was lateral advance of the bank erosion associated with the development of meandering channels. As the related development mechanism and predominant factors have not yet been clarified, this remains a priority from the viewpoint of disaster prevention. A past study on the development of meandering channels was reported by Shimizu et al. In this study, the meandering channel development process was reproduced using a slope failure model that linked bank erosion with bed changes. The study attempted to clarify the meandering development mechanism in the disaster and it's predominant factors by using this model. The analysis properly reproduced the characteristics of the post-flood meandering waveforms. Therefore, it is suggested that the development of meandering during the flood attributed to the propagation of meandering to downstream, which is triggered by the meandering flow from the meandering channel in the upstream, and also suggested that this propagated meandering then caused a gradual increase of meandering amplitude accompanied by bank erosion in the recession period of the flood.

  6. a Linear Model for Meandering Rivers with Arbitrarily Varying Width

    NASA Astrophysics Data System (ADS)

    Frascati, A.; Lanzoni, S.

    2011-12-01

    Alluvial rivers usually exhibit quite complex planforms, characterized by a wide variety of alternating bends, that have attracted the interest of a large number of researchers. Much less attention has been paid to another striking feature observed in alluvial rivers, namely the relatively regular spatial variations attained by the channel width. Actively meandering channels, in fact, generally undergo spatial oscillations systematically correlated with channel curvature, with cross sections wider at bends than at crossings. Some other streams have been observed to exhibit irregular width variations. Conversely, rivers flowing in highly vegetated flood plains, i.e. canaliform rivers, may exhibit an opposite behavior, owing to the combined effects of bank erodibility and floodplain depositional processes which, in turn, are strictly linked to vegetation cover. Similarly to streamline curvatures induced by bends, the presence of along channel width variations may have remarkable effects on the flow field and sediment dynamics and, thereby, on the equilibrium river bed configuration. In particular, spatial distribution of channel curvature typically determines the formation of a rhythmic bar-pool pattern in the channel bed strictly associated with the development of river meanders. Channel width variations are on the contrary characterized by a sequence of narrowing, yielding a central scour, alternated to the downstream development of a widening associated with the formation of a central bar. Here we present a morphodynamic model that predict at a linear level the spatial distribution of the flow field and the equilibrium bed configuration of an alluvial river characterized by arbitrary along channel distributions of both the channel axis curvature and the channel width. The mathematical model is averaged over the depth and describes the steady, non-uniform flow and sediment transport in sinuous channels with a noncohesive bed. The governing two-dimensional equations

  7. Topographic Signatures of Meandering Rivers with Differences in Outer Bank Cohesion

    NASA Astrophysics Data System (ADS)

    Kelly, S. A.; Belmont, P.

    2014-12-01

    Within a given valley setting, interactions between river hydraulics, sediment, topography, and vegetation determine attributes of channel morphology, including planform, width and depth, slope, and bed and bank properties. These feedbacks also govern river behavior, including migration and avulsion. Bank cohesion, from the addition of fine sediment and/or vegetation has been recognized in flume experiments as a necessary component to create and maintain a meandering channel planform. Greater bank cohesion slows bank erosion, limiting the rate at which a river can adjust laterally and preventing so-called "runaway widening" to a braided state. Feedbacks of bank cohesion on channel hydraulics and sediment transport may thus produce distinct topographic signatures, or patterns in channel width, depth, and point bar transverse slope. We expect that in bends of greater outer bank cohesion the channel will be narrower, deeper, and bars will have greater transverse slopes. Only recently have we recognized that biotic processes may imprint distinct topographic signatures on the landscape. This study explores topographic signatures of three US rivers: the lower Minnesota River, near Mankato, MN, the Le Sueur River, south central MN, and the Fall River, Rocky Mountain National Park, CO. Each of these rivers has variability in outer bank cohesion, quantified based on geotechnical and vegetation properties, and in-channel topography, which was derived from rtkGPS and acoustic bathymetry surveys. We present methods for incorporating biophysical feedbacks into geomorphic transport laws so that models can better simulate the spatial patterns and variability of topographic signatures.

  8. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  9. Measuring and modeling multidimensional dispersion in a meandering river

    NASA Astrophysics Data System (ADS)

    Logan, B. L.; Nelson, J. M.; Runkel, R. L.; McDonald, R. R.

    2009-04-01

    As part of a study to separate and characterize the active and passive components of sturgeon larval dispersal in a large river, we made detailed measurements of the dispersion of a large pulse of Rhodamine dye injected at a single upstream point. The study occurred on the Kootenai River, USA, a 200m-wide meandering river with an unusually low gradient, 2x10-5, and an average depth of 5 m at the moderate study flow of 271 m3/s. For the first 14 river kilometers downstream from the injection site, a detailed concentration data set describing the spatial and temporal evolution of the dye pulse was obtained using GPS receivers and high-accuracy fluorometers mounted on several boats. Beyond this initial reach, the dye was predominantly well-mixed in the cross-stream direction except near the leading and trailing edges of the pulse, and only longitudinal dispersion was measured. These measurements were made at a series of 11 fixed locations for an additional 45 river kilometers downstream, at which point peak dye concentrations were near the detection limit. Even for a relatively simple channel, the data indicate that local topography and bank irregularity exert a strong influence on the distribution of dye. While most of the dye pulse was apparently well mixed in the cross-stream and vertical directions, deep pools and lateral separation zones produced complex 3-dimensional structure in the concentration field, especially at the leading edge of the dye pulse. The dispersion data show that travel times in different reaches were more variable than predicted by a simple 1-dimensional model. Comparisons of the field data with results from multidimensional computational models indicate that uncommon channel features play a disproportionately important role in determining the storage and subsequent release of constituents that are passively advected and diffused.

  10. HYDRODYNAMICS AND SEDIMENT TRANSPORT IN LOWER MISSISSIPPI RIVER MEANDER BENDS (LOUISIANA): IMPLICATIONS FOR LARGE SEDIMENT DIVERSIONS

    NASA Astrophysics Data System (ADS)

    Allison, M. A.; McCorquodale, A.; Meselhe, E. A.

    2009-12-01

    Field data collection and numerical modeling is being conducted in the lower Mississippi River in the region of a meander bend at Myrtle Grove, LA (river km 96 above Head of Passes) in support of a proposed large water and sediment diversion (1,130-2,830 cms) for coastal wetland restoration. Field studies in October 2008, April and May 2009, at discharges ranging from 11,000-21,000 cms, examined the role of bend dynamics on sediment transport through this reach relative to control sites further downriver and USGS monitoring stations upriver. Suspended loads and grain size character measured by ADCP (velocities and backscatter), isokinetic point sampler (P-63), and optical sensors (LISST, OBS, transmissometer) indicate that during the rising-to-high discharge phase, sand lifting off from the downstream edge of the lateral bar upriver of the bend augments that carried from further upriver, and is entrained in the upper 10-25m of the water column. This excess suspended sand is advected around the bend before concentrations are reduced to background levels over the lateral bar downstream of the bend. Bedload transport rates measured by repeat swath bathymetric mapping of migrating dunes are comparable upstream of the bend, downstream, and in the control sites. However, no bedforms are observed in the bend thalweg (up to 60 m deep) supporting the dominance of suspended sand transport in the bend. Both 1D (HEC-RAS and HEC6-T) and 3D (Flow3D) numerical hydrodynamic and sediment transport modeling is underway to simulate this process and the large-scale eddy present in the bend that generates upriver transport along the inside of the meander bend at all observed discharges. Our preliminary results suggest that the outside of meander bends might be an appropriate site for sediment diversions that draw near-surface water from this sediment-rich layer.

  11. Examining the physical meaning of the bank erosion coefficient used in meander migration modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Widely used models of meander evolution relate migration rate to vertically averaged near-bank velocity through the use of a coefficient of bank erosion (E). In applications to floodplain management problems, E is typically determined through calibration to historical planform changes, and thus its...

  12. A computational platform for physically-based bank evolution and long-term meander migration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...

  13. Annual bank and point bar morphodynamics of a meandering river determined by high-accuracy multitemporal laser scanning and flow data

    NASA Astrophysics Data System (ADS)

    Lotsari, E.; Vaaja, M.; Flener, C.; Kaartinen, H.; Kukko, A.; Kasvi, E.; Hyyppä, H.; Hyyppä, J.; Alho, P.

    2014-07-01

    The knowledge has been insufficient concerning the effects of peak flows, and local bend and flow characteristics on annual morphodynamics of consecutive bends in meandering rivers. Therefore, it was determined how flow peak magnitude and duration affect morphodynamics, how the short-term spatial evolution of a given meander bend associates with the neighboring bends, and how local bend and flow characteristics affect morphodynamics. The annual bank and point bar morphodynamics of eight consecutive bends of a subarctic meandering river were analyzed between 2009 and 2012 on the basis of high-accuracy multitemporal data, measured by mobile and terrestrial laser scanning and an Acoustic Doppler Current Profiler. According to the results, multiple years of highly accurate data are crucial for a broader picture of meandering channel evolution. The results showed for the first time in detail that none of the years were similar in terms of point bar and bank morphodynamics. The duration of point bar submergence and maximum water stage was more important for evolution of the meandering channel than the local effects of each bend. The detailed topographical data of the present study confirmed that the higher the flow and water stage peak the more deposition occurred on point bars. More importantly, the independence of the short-term spatial evolution of meander bends from the association with neighboring bends was confirmed. Erosion patterns did not relate particularly to the sinuosity or radius of curvature. A clear relation between velocity and bend curvature, on which some meander migration models rely, was not found.

  14. Steady-state unsteadiness: drainage network reorganization triggered by bedrock river meandering in the Oregon Coast Range

    NASA Astrophysics Data System (ADS)

    Johnson, K. N.; Finnegan, N. J.

    2013-12-01

    In most landscapes, vertical incision of bedrock stream networks transmits base-level signals into the landscape interior, and is thus the primary control on landscape evolution. Some bedrock channels, however, also have the capacity to move laterally within a landscape via active bedrock meandering. This is common in diverse lithologies including many sedimentary rocks (e.g. California and Oregon Coast Ranges, Colorado Plateau) and basalt (e.g. Columbia River Flood Basalt, Hawaiian Islands). If active meandering of the main stem channel occurs, rates of base-level lowering at the mouth of tributary watersheds will fluctuate over time, even if the base-level lowering rate at the mouth of the main stem channel is constant over time. This is because lateral migration of the main stem channel causes elongation or truncation of the lower reaches of tributaries, which in turn changes slopes and thus tributary incision rates. In addition, as meander bends along the main stem channel grow, they can capture tributaries from other main stem reaches, causing sudden drainage network reorganization and impulsive base-level lowering. Thus a landscape with steady tectonic and climatic forcing may nevertheless experience significant unsteadiness because of the process of meandering itself. Here we test our conceptual model that active meandering of a main stem channel exerts a fundamental control on the relative base-level lowering of tributary watersheds throughout the landscape. To this end, we analyze high resolution LiDAR elevation data from the Smith River, in the Oregon Coast Range, argued to be a classic example of a 'steady state' landscape. We find that tributary junctions are concentrated on the outside of active meander bends, consistent with the hypothesis that actively growing meander bends 'collect' tributaries as they propagate into the landscape. In addition, we find that longitudinal profiles of these tributaries are not consistent with a 'steady state' condition

  15. Hydraulic interactions between a meandering river channel and its floodplain during an overbank flood

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Dunne, T.; Fisher, B.

    2012-12-01

    River channel and floodplain complexity is generated by the lateral migration of meandering river channels across the floodplain surface. The main driver of meander migration is the flow field which erodes the outer bank of river bends, scours pools, creates topographic variability on the floodplain and interacts with riparian vegetation. Flows between channels and floodplains are generally thought to be highly three-dimensional due to the presence of secondary circulation cells and helical flow patterns observed in laboratory experiments, yet few field datasets exist to test or validate existing conceptual models. Flow over and through floodplain vegetation has also been difficult to characterize at the field scale. We took advantage of a remarkably long and stable 5-year flood discharge to measure flow fields across the floodplain and in curved reaches of the gravel-bed Merced River In California to document the hydraulic interactions between the channel and floodplain. We then developed, calibrated and validated a quasi-3D hydrodynamic model of the flows in order to expand the interpretation of the results. Due to the spatial variability in both topography and flow resistance, the modeling required detailed mapping of the channel-floodplain surface and vegetation with a terrestrial LiDAR scanner and RTK GPS units. The results highlight several general aspects of the channel-floodplain flow during an overbank flow event: (1) the flow field in the channel was largely two-dimensional with only weak helical flow patterns; (2) the highest channel velocities and boundary shear stresses occurred at the local maxima in bend curvature where lateral migration has been documented via repeat topographic surveys; (3) flow velocities rapidly decelerated as water was decanted from the channel onto the floodplain where the velocity magnitude was roughly 20-30% of the average channel velocity; (4) dense vegetation along the channel margins enhanced channel velocities but reduced

  16. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    NASA Astrophysics Data System (ADS)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order < 3). This may imply that river sediment play different roles between down- and upstream segments. River sediment in the upstream is an erosion agent vertically

  17. Georectification of historical aerial photos to track meander change in Wood River, Klamath County, Oregon

    NASA Astrophysics Data System (ADS)

    Nash, C.; Hughes, M. L.

    2010-12-01

    The Wood River in Oregon’s Upper Klamath Basin is a meandering channel draining the southeastern slopes of Crater Lake National Park. Its valley floor is heavily grazed and highly altered by a series of irrigation channels that have substantially affected the river’s spring-fed flow regime and morphology. Despite efforts to restore the river’s hydrology, very little information is available about the river’s geomorphology. Using high-resolution LIDAR data from 2004 and georectified aerial photos from 1940-2009, we analyzed meander changes along the Wood River in the geomorphic context of its valley floor and meander belt. Aerial photos were scanned to produce digital images with sub-meter pixels, then georectified with a second-order polynomial transformation. Nine or fewer ground-control points were used for each photo to achieve an overall root-mean-square error value of 0.6 - 0.7 m. The scarcity of buildings and changes in the road and fence networks over the study period required the partial use of “natural pattern matching” during photo rectification. Semi-permanent patterns of fan erosion on the upper valley floor and hydrogeomorphic wetland patterns in lower valley provided the primary bases for natural pattern matching, further aided by the use of transparency during photo overlaying. Six prototypes of meander change were identified: extension, compression, translation, rotation, compound heading, and cutoff. Of these types, extension of meanders was the most frequently occurring. However, the effects of extension were counteracted by numerous meander cutoffs, which nominally affected sinuosity, but actually shortened the channel by about 1 km, or about 3%. Cutoffs were most frequent in the upper reaches of the river, where valley slope is higher, the meander belt is wider, and accommodation space was adequate to promote relatively high initial sinuosity. In these reaches, some cutoffs appear to have initiated downstream transfers of bedload

  18. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

    PubMed Central

    Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows. PMID:24587718

  19. The potential for dams to impact lowland meandering river floodplain geomorphology.

    PubMed

    Marren, Philip M; Grove, James R; Webb, J Angus; Stewardson, Michael J

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an "environmental sediment regime" to operate alongside environmental flows. PMID:24587718

  20. Modulation of the flow structure by progressive bed forms in the meandering Wabash River

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, it was observed that migrating bed forms produce temporal and spatial peaks of shear stresses along the outer bank of an experimental meandering channel. These stresses are about 50% larger than the shear stresses exerted by the mean near-bank flow. Because of this increase in bank shear s...

  1. Chute Formation and Iterative Adjustment in Large, Sand-Bed Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Grenfell, M. C.; Aalto, R. E.; Nicholas, A.

    2011-12-01

    The meandering-braided continuum is a planform manifestation of excess available river energy; a balance between the energy of flow (commonly quantified as unit steam power or shear stress), and dynamic resistance due to bed material calibre and bank strength. Single-thread meandering rivers plot in part of the continuum defined by low excess available river energy, while braided rivers plot in part of the continuum defined by high excess available river energy. Planform patterns that are transitional between single-thread meandering and braided occur where chute channel formation is prolific. In this presentation we will elucidate the morphodynamic implications of chute formation for sinuosity and planform pattern in large, sand-bed meandering rivers. We draw on the results of recent research that applied binary logistic regression analysis to determine the possibility of predicting chute initiation based on attributes of meander bend character and dynamics (Grenfell et al., accepted, ESP&L). Regression models developed for the Strickland River, Papua New Guinea (54 bends), the lower Paraguay River, Paraguay/Argentina (45 bends), and the Beni River, Bolivia (114 bends), revealed that the probability of chute initiation at a meander bend is a function of the bend extension rate (the rate at which a bend elongates). Image analyses of all rivers and field observations from the Strickland suggest that the majority of chute channels form during scroll-slough development. Rapid extension is shown to favour chute initiation by breaking the continuity of point bar deposition and vegetation encroachment at the inner bank, resulting in widely-spaced scrolls with intervening sloughs that are positively aligned with primary over-bar flow. The rivers plot in order of increasing chute activity on an empirical meandering-braided pattern continuum (Kleinhans and van den Berg, 2011, ESP&L 36) defined by potential specific stream power (ωpv) and bedload calibre (D50). Increasing

  2. Multiscale structure of meanders

    NASA Astrophysics Data System (ADS)

    Vermeulen, B.; Hoitink, A. J. F.; Zolezzi, G.; Abad, J. D.; Aalto, R.

    2016-04-01

    River meander planforms can be described based on wavelet analysis, but an objective method to identify the main characteristics of a meander planform over all spatial scales is yet to be found. Here we show how a set of simple metrics representing meander shape can be retrieved from a continuous wavelet transform of a planform geometry. We construct a synoptic multiple looping tree to establish the meander structure, revealing the embedding of dominant meander scales in larger-scale loops. The method can be applied beyond the case of rivers to unravel the meandering structure of lava flows, turbidity currents, tidal channels, rivulets, supraglacial streams, and extraterrestrial flows.

  3. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    NASA Astrophysics Data System (ADS)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  4. Exposure of late Pleistocene Mississippi River meander-belt facies at Mt. Pleasant, Louisiana

    SciTech Connect

    Autin, W.J.; Davison, A.T.; Miller, B.J.; Day, W.J.; Schumacher, B.A.

    1988-09-01

    Exposure of a sedimentary sequence along a Mississippi River bluff at Mt. Pleasant, Louisiana, provides insight into the construction of the Prairie Terraces. This site serves as a type section for a late Pleistocene meander belt of the Mississippi River, and stratigraphic features have been traced beneath the Prairie Terraces in southeastern Louisiana. A 23.35-m measured section reveals upper units of Peoria loess and mixed loess. The described meander-belt facies are of a probable Wisconsin age and are here named the Mt. Pleasant Bluff alloformation. This age designation is based on position in the stratigraphic section, degree of preservation of sedimentary facies, character and degree of development of the upper paleosol, preservation of constructional topography beneath the loess, and correlation of this sequence to nearby sites with Wisconsin-age radiocarbon dates.

  5. Coevolution of floodplain and riparian forest dynamics on large, meandering rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Riddle, J. D.; Battles, J. J.

    2012-12-01

    On large meandering rivers, riparian forests coevolve with the floodplains that support them. Floodplain characteristics such as local disturbance regime, deposition rates and sediment texture drive plant community dynamics, which in turn feed back to the abiotic processes. We investigated floodplain and riparian forest coevolution along the along the Sacramento River (California, USA), a large, mediterranean-climate river that has been extensively regulated for 70 years, but whose 160-km middle reach (Red Bluff to Colusa) retains some channel mobility and natural forest stands. Guided by maps of floodplain change over time and current vegetation cover, we conducted an extensive forest inventory and chronosequence analysis to quantify how abiotic conditions and forest structural characteristics such as tree density, basal area and biomass vary with floodplain age. We inventoried 285 fixed-area plots distributed across 19 large point bars within vegetation patches ranging in age from 4 to 107 years. Two successional trajectories were evident: (1) shifting species dominance over time within forested areas, from willow to cottonwood to walnut, boxelder and valley oak; and (2) patches of shrub willow (primarily Salix exigua) that maintained dominance throughout time. Sediment accretion was reduced in the persistent willow plots compared to the successional forest stands, suggesting an association between higher flood energy and arrested succession. Forested stands 40-60 years old were the most extensive across the chronosequence in terms of floodplain area, and supported the highest biomass, species diversity, and functional wildlife habitat. These stands were dominated by Fremont cottonwood (Populus fremontii) and reached their maxima in terms of tree size and biomass at age 50 years. The persistent willow stands reached their structural maxima earlier (32 years) and supported lower biomass. Basal area and abundance of large trees decreased in stands >90 years old

  6. Response of lateral channel dynamics of a lowland meandering river to engineering-derived adjustments - an example of the Morava River (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Ondruch, Jakub; Mácka, Zdenek

    2015-11-01

    Freely meandering (quasi)natural reaches of lowland rivers represent a rare phenomenon in Central Europe. Increasing attention is currently being paid to the dynamics of quasi-natural (artificially influenced) meandering rivers as this attention represents the basic prerequisite for the development of appropriate restoration strategies on regulated rivers. This study focused on a 5.5 km long reach of the Morava River in the Strážnické Pomoraví region, Czech Republic that is characterised by quasi-natural evolution after substantial engineering adjustments were made in the first decades of the twentieth century. Based on Geographic Information Systems (GIS) analysis of aerial photographs, the spatio-temporal dynamics of bank erosion and accretion rates were quantitatively described and variables that control channel migration rates were identified. High rates of lateral shifts were localised in high sinuosity segments (sinuosity 1.17-2.37), whereas segments with very low rates were straight or formed into slightly curved bends (sinuosity 1.05-1.18). As a key factor, engineering works that influenced local river bed slope and induced a dramatic increase in bank erosion rates were identified. River engineering works induced a dramatic increase in bank erosion rate (2.19 m/year for 1938-53 and 1.47 m/year for 1953-63). An interval of approximately 25 years was needed before the erosion rates dropped back to values documented before river regulation (0.35-1.09 m/year for 1841-1938). Other important controlling variables included radius of curvature, frequency and magnitude of floods and, locally, river bank material properties and floodplain land cover.

  7. Point Bar and Overbank Deposit Storage Time Distributions in a Simulated Meandering River

    NASA Astrophysics Data System (ADS)

    Ackerman, T. R.; Pizzuto, J. E.

    2015-12-01

    Floodplain storage durations are important geologically and for managing pollutants. They provide necessary input data for sediment routing models, but the functions that describe storage are hard to define with field data. Using a meandering river model, a 36ka simulation is analyzed in 20 year time steps. Channel length, and eroded, deposited, and stored sediment volumes stabilize in under 2ka while the region explored by the river expands as time0.3. The simulated channel was 70m (3 pixels) wide and freely migrated within a 30 by 40km reach simulated with constant erodibility, and mean migration rate ±0.06 channel widths per year. No incision or aggradation was permitted. Sediment storage was partitioned by elevation. Point bar deposits are emplaced immediately as the channel moves away and comprise the lower 40% of a vertical section, while the upper 60% of the floodplain consists of vertically accreted 'overbank' deposits that accumulate with decreasing rates as elevation and distance from the channel increase. Point bar deposits have the highest probability of erosion at 80 years, and contribute 2/3 of eroded material despite representing only 40% of the floodplain volume. When eroded, vertical accretion deposits are 1.25 times older than point bar deposits. Apart from these differences, the storage distributions for both deposits are very similar, though there is much more scatter in the point bar distributions. Eroded sediment 2ka in age is well fit with a power law distribution. On average, 10% of eroded material is <80 years old, 30% from 80 - 500 years, 38% from 500 - 2000 years, 15% from 2ka to 10ka and 7% of eroded material is >10ka in age. However, the fraction older than 10ka is widely variable (0% to 30%, σ = 6.8%) in any 20 year interval. The patchiness and variability in the age of eroded sediment observed in these model results may be similar to natural settings and would be difficult to quantify or address with field measurements.

  8. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river

    NASA Astrophysics Data System (ADS)

    Konsoer, Kory M.; Rhoads, Bruce L.; Langendoen, Eddy J.; Best, James L.; Ursic, Mick E.; Abad, Jorge D.; Garcia, Marcelo H.

    2016-01-01

    Spatial heterogeneity in the erosion-resistance properties of the channel banks and floodplains associated with sediment characteristics, vegetation, or bedrock can have a substantial influence on the morphodynamics of meandering rivers, resulting in highly variable rates of bank erosion and complex patterns of planform evolution. Although past studies have examined the spatial variability in bank erodibility within small rivers, this aspect of the erosion-resistance properties for large rivers remains poorly understood. Furthermore, with the exception of recent numerical modeling that incorporates stochastic variability of floodplain erosional resistance, most models of meandering river dynamics have assumed uniform erodibility of the bank and floodplain materials. The present paper investigates the lateral and vertical heterogeneity in bank material properties and riparian vegetation within two elongate meander loops on a large mixed bedrock-alluvial river using several geotechnical field and laboratory methods. Additionally, the bank stability and toe-erosion numerical model (BSTEM) and repeat terrestrial LiDAR surveys are used to evaluate the capacity of the bank material properties to modify the rates and mechanisms of bank retreat. Results show that the textural properties of the bank materials, soil cohesion, and critical shear stress necessary for sediment entrainment differ substantially between the two bends and are also highly variable within each bend - laterally and vertically. Trees growing along the banks increase the resistance to erosion by contributing to the shear strength of the bank materials and are capable of increasing bank stability along a large river. Locally outcropping bedrock also influences bank erodibility in both bends. The results of this study demonstrate that spatial variability in the erosion-resistance properties of the channel banks is an important factor contributing to spatial variability in the rates and mechanisms of bank

  9. Meandering patterns in the wake of horizontal-axis wind and river turbines

    NASA Astrophysics Data System (ADS)

    Guala, Michele; Howard, Kevin; Singh, Arvind; Hill, Craig; Musa, Mirko; Feist, Christopher; Sotiropoulos, Fotis

    2014-11-01

    Energy harvesting devices with rotor axis oriented with the flow generate a wake which is unstable due to the complex interactions among turbulent structures from the incoming flow, root, hub and tip vortices (see Foti et al. APS/DFD 2014). Experiments in wind tunnel and open-channel flow with erodible surface show similar meandering patterns in the velocity field, which are responsible for the far wake expansion and the incoming turbulence experienced by down-wind/stream units. Wake meandering statistics were observed to depend on the operating turbine conditions (tip speed ratio), upstream device siting (turbine - turbine interaction) or specific turbine kinematics (floating turbine under waves). In addition, for wall boundary conditions defined by an erodible surface, where sand grains respond to local shear stress by moving (erosion) or settling (deposition), turbines were observed to induce dynamic topographic perturbations also exhibiting meandering patterns. This occurred in limited mobility conditions and under migrating bedforms, with large scale topographic features amplified under specific asymmetric turbine configurations. The work opens up the possibility to place turbines in complex flows optimizing their performance while maintaining, or reshaping, the surrounding topography by specific control or siting strategies. Resarch supported by NSF CAREER: CBET-1351303, IREE early career UMN, DOE Grant DE-EE0005482, NSF PFI Grant IIP-1318201.

  10. Sensitivity of Flow and Sediment Transport in Meandering Rivers to Scale Effects and Flow Rate

    SciTech Connect

    Shams, Mehrzad; Ahmadi, Goodarz; Smith, Duane H.

    2008-06-01

    Sensitivity of flow and sediment transport in a meandering river to variations in scaling and flow rate was studied. The FLUENT™ code was used for evaluating the river flow characteristics, including the mean velocity field and the Reynolds stress components, as well as for particle trajectory analysis. Particular attention was given to the sensitivity of the sedimentation patterns of different size particles in the river bend for various scales. Simulation studies were performed for both a model river and a physical river. The physical river was geometrically similar to the model river, with a scaling ratio of 1:100, but with identical Froude number. The flow and particle deposition patterns in the physical and model rivers were compared. It was shown that the mean flow quantities exhibit dynamic similarity, but the turbulence parameters and the particle sedimentation features in the physical river were different from the model. The secondary flows and particle transport patterns were also found to be sensitive to variation in the scale and flow rate.

  11. Internal connectivity of meandering rivers: Statistical generalization of channel hydraulic geometry

    NASA Astrophysics Data System (ADS)

    Czapiga, M. J.; Smith, V. B.; Nittrouer, J. A.; Mohrig, D.; Parker, G.

    2015-09-01

    The geometry of rivers has been characterized in terms of downstream and at-a-station hydraulic geometry, based on individual cross sections. Such analyses do not, however, provide insight as to how these cross sections are connected. We generalize the concept of hydraulic geometry, using data on bathymetry from four reaches of meandering rivers that include at least five bends. We quantify connectivity in terms of the probability that a connected path exists such that a given attribute remains within specified bounds along it. While the concept is general, here we apply it to vessel navigability. We develop a predictor for navigability in meandering rivers, which requires only the following, relatively easily obtained input: vessel draft, vessel width, bankfull depth, bankfull width, relative difference between current and bankfull water surface elevation, and length of desired navigation path. The predictor is applicable to both bankfull and below-bankfull stage. A key input parameter is the standard deviation of the probability distribution of depth. This parameter, in and of itself, yields no information on connectivity as it does not capture the spatial orientation of depth variation. We find, however, that (a) the probability function for connectivity does depend on this parameter, and (b) its use allows for an approximate similarity collapse of the probability function, so providing a quasi-universal predictive relation applying to all four reaches. The results also suggest potential application to more complex forms for connectivity that involve other or multiple in-stream physical variables.

  12. Floodplain Heterogeneity Drives Riparian Vegetation Composition and Structure Through Channel Meander Migration and Channel Abandonment

    NASA Astrophysics Data System (ADS)

    Fremier, A. K.; Viers, J. H.; Hayden, M. K.; Stella, J. C.

    2008-12-01

    Riparian vegetation composition and structure reflect the legacy of fine- and coarse-scale patterns of hydrology, geomorphology and ecology. Understanding the dynamics of complex systems requires scaling-up mechanistic patterns and processes. Coupling hydro-geomorphic processes with vegetation development is an integral step in understanding habitat evolution in riparian corridors. We quantified floodplain deposition dynamics and topographic complexity to better understand how riparian forest structure and composition changed through time and over the floodplain. We used LiDAR data and a temporally-rich dataset of aerial photography coupled with field data to analyze landscape-scale patterns with species composition and floodplain dynamics. We examined the significance of two definable large-scale floodplain processes - meander migration and channel abandonment - that set-up the spatial structure of riparian forest dynamics. In addition, we analyzed the potential feedback of riparian vegetation on floodplain formation. Canopy structure and floodplain heterogeneity generally showed a log-linear relationship over time and were highly correlated with species composition changes over time and with a range of past hydrologies (inter- and intra- annual patterns). These data suggest that analysis of landscape formation processes, in particularly during the early stages, improves our understanding of riparian forest dynamics and that channel abandonment can be a significant alternative pathway to cottonwood recruitment. By analyzing the coupled eco-geomorphic processes we can more effectively scale-up riparian vegetation patterns by applying a functional knowledge of the corridor-wide channel dynamics and floodplain hydrology.

  13. Dynamic meandering in response to upstream perturbations and floodplain formation

    NASA Astrophysics Data System (ADS)

    Schuurman, F.; Shimizu, Y.; Iwasaki, T.; Kleinhans, M. G.

    2016-01-01

    River meandering results from spatially alternating bank erosion and bar growth. Recent flume experiments and theory suggest that a continuous inflow perturbation is a requirement for sustained meandering. Furthermore, flume experiments suggest that bar-floodplain conversion is an additional requirement. Here, we tested the effects of continuous inflow perturbation and bar-floodplain conversion on meander migration using three numerical morphodynamic models: a 1D-model, and two 2D-models with one of them using adaptive moving grid. We focused on the interaction between bars and bends that leads to meander initiation, and the effect of different methods to model bank erosion and floodplain accretion processes on meander migration. The results showed that inflow perturbations have large effects on meander dynamics of high-sinuosity channels, with strong excitation when the inflow is periodically perturbed. In contrast, inflow perturbations have rather small effect in low-sinuosity channels. Steady alternate bars alone are insufficient to cause high-sinuosity meandering. For high-sinuosity meandering, bar-floodplain conversion is required that prevents chute-cutoffs and enhances flow asymmetry, whilst meandering with chute-cutoffs requires merely weak floodplain formation, and braiding occurs without floodplain formation. Thus, this study demonstrated that both dynamic upstream inflow perturbation and bar-floodplain conversion are required for sustained high-sinuosity meandering.

  14. Geophysical controls of aquifer-river exchange flow patterns in a UK lowland meandering river.

    NASA Astrophysics Data System (ADS)

    Dara, Rebwar; Krause, Stefan; Rivett, Michael

    2016-04-01

    The deposition of fine particles (clay and silt) and organic matters in alluvial sediments can substantially reduce the permeability of streambed sediments and extend towards the wider floodplain. The resulting hydraulic conductivity patterns within the streambed and floodplain have been shown to control both location as well as intensity of hyporheic exchange in many lowland rivers. The aim of the study is to investigate the variability in streambed permeability fields in an unprecedented spatial resolution and quantify the impacts on controlling hyporheic exchange fluxes in the River Tern, a UK lowland meandering stream. Geophysical surveys were conducted deploying Ground Penetrating Radar (GPR) in conjunction with geological information derived from core logs and bank exposures for mapping shallow subsurface structural heterogeneity. The GPR survey deployed a pulse EKKO pro equipped with a shielded 250 MHz antenna. For the floodplain survey, GPR profiles of 12 NE-SW and 6 NW- SE orientation profiles were taken creating a raster of approximately 10 m. The riparian terrestrial GPR surveys were accompanied by a longitudinal in channel GPR survey for which the antenna was deployed on a floating device. At locations identified to be representative for the range of streambed hydrofacies identified by GPR in investigated stream reach, multi-level mini-piezometer networks were installed in the streambed for monitoring groundwater-surface water exchange fluxes, and conducting dilution tracer tests for quantification of residence time distributions at the aquifer-river interface. Quasi-three-dimensional GPR profiles from closely spaced grids of 2D GPR data of floodplain deposits indicated a range of different radar facies and helped to delineate the type and extend of high and low conductive materials. The results of longitudinal GPR survey along a 240 m section of the river channel revealed that areas rich in low conductivity layers such as organic peat and clay lenses

  15. Tidal meanders

    NASA Astrophysics Data System (ADS)

    Marani, Marco; Lanzoni, Stefano; Zandolin, Diego; Seminara, Giovanni; Rinaldo, Andrea

    2002-11-01

    Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, topographic, vegetational and ecological features. New insight is provided on the geometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of local curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the transitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolution of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sensitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.

  16. Tidal Meanders

    NASA Astrophysics Data System (ADS)

    Marani, M.; Lanzoni, S.; Zandolin, D.; Seminara, S.; Rinaldo, A.

    Observational evidence is presented on the geometry of meandering tidal channels evolved within coastal wetlands characterized by different tidal, hydrodynamic, to- pographic, vegetational and ecological features. New insight is provided on the ge- ometrical properties of tidal meanders, with possible dynamic implications on their evolution. In particular, it is shown that large spatial gradients of leading flow rates induce important spatial variabilities of meander wavelengths and widths, while their ratio remains remarkably constant in the range of scales of observation. This holds regardless of changes in width and wavelength up to two orders of magnitude. This suggests a locally adapted evolution, involving the morphological adjustment to the chief landforming events driven by local hydrodynamics. The spectral analysis of lo- cal curvatures reveals that Kinoshita's model curve does not fit tidal meanders due to the presence of even harmonics, in particular the second mode. Geometric parameters are constructed that are suitable to detect possible geomorphic signatures of the tran- sitions from ebb- to flood-dominated hydrodynamics, here related to the skewness of the tidal meander. Trends in skewness, however, prove elusive to measure and fail to show detectable patterns. We also study comparatively the spatial patterns of evolu- tion of the ratios of channel width to depth, and the ratio of width to local radius of curvature. Interestingly, the latter ratio exhibits consistency despite sharp differences in channel incision. Since the degree of incision, epitomized by the width-to-depth ratio, responds to the relevant erosion and migrations mechanisms and is much sen- sitive to vegetation and sediment properties, it is noticeable that we observe a great variety of landscape carving modes and yet recurrent planar features like constant width/curvature and wavelength/width ratios.

  17. Hydrological controls on the morphogenesis of low-energy meanders (Cher River, France)

    NASA Astrophysics Data System (ADS)

    Dépret, Thomas; Gautier, Emmanuèle; Hooke, Janet; Grancher, Delphine; Virmoux, Clément; Brunstein, Daniel

    2015-12-01

    River restoration is a key-issue for European hydrosystems that were modified over centuries by human activities. This is particularly true for numerous low energy rivers flowing in the plateaus of Western Europe. Because of this limited energy, their potential in terms of autogenic restoration a priori appears strongly restricted. This study examines the conditions under which the morphogenesis on one of these systems occurs in relation to various hydrologic conditions. Two complementary approaches are combined on three reaches of the meandering Cher River (France). Firstly, we examine at a pluri-decadal scale the control of duration, frequency and intensity of floods on the planimetric erosion (bank retreat mainly). Secondly, we estimate the range of effective discharge for bedload transport. The results show that the morphogenesis is controlled by low magnitude hydrological events. Two major controlling factors are suggested: low differential of energy between small and large floods, peculiar to low energy rivers of mid-latitude, and low critical discharges for lateral erosion and bedload mobilization. For these reasons, the ability of the alluvial Cher River to self-restore its fluvial dynamics seems to be relatively high.

  18. Characterization of confluences in free meandering rivers of the Amazon basin

    NASA Astrophysics Data System (ADS)

    Gutierrez, Ronald R.; Abad, Jorge D.; Choi, Marianne; Montoro, Hugo

    2014-09-01

    Past studies on river confluence dynamics are mostly based on a limited number of experimental and field data that mainly represent the morphodynamic, hydrodynamic, and sedimentary processes of alluvial river channels with limited planform activity and concentrated solely around the confluence region. The present contribution is novel and focuses on the study of the planimetric configuration of confluences in tropical free meandering rivers located in the upper Amazon catchment. Confluences are environmental controls that impose convective instabilities in all the associated channels, namely the main stretch channel upstream of the confluence (M), the tributary (T), and the main post-confluent channel (MT). By performing a wavelet analysis on channels' curvature, we quantify the extent of the transitional region. Our results indicate that the strength of these transitional instabilities are in some degree dependent on the confluence width ratio (β); such that for β > 0.45, marked instabilities are developed. These instabilities induce the following general changes and in the planimetric configurations of the aforementioned channels: [i] the arc-wavelength in the confluent (M and T) and post-confluence channels increase in the transitional region, and [ii] the peaks on the curvature of MT channel decrease with respect to the M channel, thus resembling a constructive effect in the superposition of the meander trains. Although most of the confluence angles are acute, regardless the width-ratio, some instances of obtuse angles of confluence are observed. They are associated with β ≥ 0.80, where possibly the confluence is forced to become accordant. Our results show that no evident cause-effect relationship is found between the angle of confluence and the length of the transitional region; however, some degree of dependence is seen between the confluence angle and the arc-wavelength of the post-confluence channel (i.e., higher values of the arc

  19. A New Stochastic Modeling of 3-D Mud Drapes Inside Point Bar Sands in Meandering River Deposits

    SciTech Connect

    Yin, Yanshu

    2013-12-15

    The environment of major sediments of eastern China oilfields is a meandering river where mud drapes inside point bar sand occur and are recognized as important factors for underground fluid flow and distribution of the remaining oil. The present detailed architectural analysis, and the related mud drapes' modeling inside a point bar, is practical work to enhance oil recovery. This paper illustrates a new stochastic modeling of mud drapes inside point bars. The method is a hierarchical strategy and composed of three nested steps. Firstly, the model of meandering channel bodies is established using the Fluvsim method. Each channel centerline obtained from the Fluvsim is preserved for the next simulation. Secondly, the curvature ratios of each meandering river at various positions are calculated to determine the occurrence of each point bar. The abandoned channel is used to characterize the geometry of each defined point bar. Finally, mud drapes inside each point bar are predicted through random sampling of various parameters, such as number, horizontal intervals, dip angle, and extended distance of mud drapes. A dataset, collected from a reservoir in the Shengli oilfield of China, was used to illustrate the mud drapes' building procedure proposed in this paper. The results show that the inner architectural elements of the meandering river are depicted fairly well in the model. More importantly, the high prediction precision from the cross validation of five drilled wells shows the practical value and significance of the proposed method.

  20. Channel dynamics and habitat complexity in a meandering, gravel-bed river

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Legleiter, C. J.; Pecquerie, L.; Dunne, T.

    2009-12-01

    River channel dynamics play an important role in creating and maintaining diverse habitat conditions for multiple life stages of aquatic organisms. As a result, many river restoration projects seek to re-establish ecosystems in which an enhanced degree of habitat complexity is sustained through natural fluvial processes of flow, sediment transport, and channel change. Few field cases have effectively quantified the evolution of channel morphology and habitat complexity in restored rivers, however, and the outcomes of restoration actions remain difficult to predict. Our objective was to quantify the extent to which morphology, flow complexity and salmonid spawning and rearing habitat develop from the simplified initial conditions commonly observed in re-configured meandering channels. Using a time-series of topographic data, we measured rates of morphologic change in a recently restored gravel-bed reach of the Merced River, California, USA. We constructed two-dimensional (2D) hydrodynamic models to quantify how the evolving morphology influenced hydraulic conditions, flow complexity and suitability for Chinook salmon spawning and rearing. Following two large flood events, point bar development led to order-of-magnitude increases in modeled flow complexity, as quantified via the metrics of kinetic energy gradient, vorticity and hydraulic strain. On a bend-averaged scale, morphologic changes produced up to a two-fold increase in flow circulation, indicating a direct linkage between geomorphic processes and the development of habitat complexity at both the local (1.0 m2 grid cell) and meander wavelength scale. Habitat modeling indicated that the availability of Chinook salmon spawning habitat has increased over time, whereas the majority of the reach provides low-medium quality rearing habitat for juvenile salmonids, primarily due to a lack of low velocity refuge zones. These results demonstrate the ability of geomorphic processes to increase flow complexity and

  1. Analysis of river planforms in the New Madrid region and possible relations to tectonic warping across the loess bluffs and within the meander belt of the Mississippi River

    SciTech Connect

    Johnson, K.A.; Mayer, L. . Dept. of Geology)

    1993-03-01

    Stream channel planforms measured from such streams as the Hatchie (H), L'Anguille (LA), St. Francis, White (W) and Little Red (LR) rivers provide a way to study influences of topographic warping between the loess bluffs that bound the Mississippi river valley. Planforms are analyzed using sinuosity, Richardson analysis, and pattern. Pattern changes include transitions from braided to meandering and meandering to straight. Sinuosities of the W and LR rivers show a transition from low sinuosity, [1.3, 1.4] to higher sinuosity [2.6, 2.8], over a short distance, as they cross the bluffs from the uplands to the Western Lowlands. On the east, the Hatchie changes from a braided to meandering pattern upon crossing the bluffs. Its sinuosity varies from a low of about 1.4 to a high of 2.2, coincident with a marsh area. The LA river flows on the west side of Crowley's Ridge and is paralleled by the St. Francis river on the east. These rivers, with very different drainage areas and sinuosities, show matching meander bends at similar wavelengths along Crowley's Ridge. The bends are about 10 km in 1/2 wavelength suggesting some extraordinary influence on pattern perpendicular to the ridge. Richardson analysis indicates that features with a 1/2 wavelength of 2 km may control several rivers' bending patterns. These features are analyzed to determine their spatial relations with one another.

  2. Mapping bathymetry in a large meandering river above and below a significant sediment input

    NASA Astrophysics Data System (ADS)

    Kelly, S. A.; Belmont, P.

    2013-12-01

    Accurate representations of river bathymetry are essential for understanding channel morphodynamics and sediment routing. Repeat surveys of channel topography using sophisticated technology can elucidate where depositional surfaces occur and whether they are acting as net accumulation zones or places of transient sediment exchange. In this study, we used an Acoustic Doppler Current Profiler (ADCP) coupled with a real-time-kinematic GPS to collect bathymetry data upstream and downstream of a critical tributary junction where the Blue Earth River joins the Minnesota River, near Mankato, MN, USA. The Blue Earth River represents a considerable point source of coarse and fine sediment, much of which is stored within the channel and floodplain of the actively aggrading Minnesota River. This junction therefore represents a rare opportunity to study how a significant increase in sediment supply influences the form and evolution of in-channel topography. We surveyed 33 river km over 6 days in June 2013, achieving an average point density of 3.2 points/100 m2. River bathymetry is generally more variable in the transverse than the streamwise direction, so we used anisotropic interpolation techniques to construct digital elevation models (DEMs) of the surveyed channel. We transformed Cartesian coordinates to curvilinear orthogonal coordinates and generated DEMs using Hutchinson's spline, anisotropic ordinary kriging, and elliptical inverse distance weighting statistical interpolation techniques. To evaluate the performance of each interpolation method we created DEMs from a subset of the surveyed points and calculated the root mean square error between reference points in each DEM. We observed alternate bars in straight reaches downstream of the tributary junction, while straight reaches upstream were planar bed. Point bars and cutoffs were observed in meandering reaches above and below the tributary junction. Channel geometry significantly differs downstream of the Blue Earth

  3. The performance of the Hydromorphological Index of Diversity (HMID) in a hydropower affected meandering river

    NASA Astrophysics Data System (ADS)

    Stähly, Severin; Bourqui, Pierre; Franca, Mario J.; Robinson, Christopher; Schleiss, Anton J.

    2016-04-01

    More than half of the Swiss electricity is produced by hydropower. Large price fluctuations cause severe hydropeaking flow regimes due to corresponding production fluctuations, which undisputedly have a negative impact on aquatic biota. Water diversion due to dams on the other hand imposes downstream residual flow regimes. The absence of flood events and regular sediment supply disrupts sediment dynamics and disconnects floodplains, which are habitats of high value, from its main channel. The residual-flow controlled reach at the Sarine river in western Switzerland is the subject of the present study. The Sarine meanders strongly and the river reach under analysis has a bed incision of locally more than 100 m. Its incision provokes the isolation of the river which is consequently minimally touched by human structures and shows a natural geomorphology. Since the construction of a dam upstream this reach in 1948, aiming at the water abstraction to hydropower, vegetation could establish and the active floodplain decreased its area, as airborne images show. Nevertheless, it is classified as a floodplain of national importance and it has been under protection since 1992. It is supposed to be a valuable habitat for a wide range of organisms. The Hydromorphological Index of Diversity (HMID) is a simple tool for quantifying the habitat richness in a river reach, taking into account the mean values and the variation of water depth and flow velocity. For channelized rivers, HMID values from up to 5 are expected, while morphological pristine sites with a high spatial variability of water depth and velocity show values of 9 or higher. For the residual flow of the Sarine River, flow depth and velocity were measured using ADCP and ADV. The results are compared with a nearby natural reference river and the outcome of a 2D numerical simulation. Finally, the behaviour and limitations of the HMID, in a hydropower affected river, are discussed. In the close future an artificial flood

  4. Improved 1D model for calculating hydraulic properties in meandering rivers: Comparisons with measurements and 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Haji Mohammadi, M.; Kang, S.; Sotiropoulos, F.

    2011-12-01

    It is well-known that meander bends impose local losses of energy to the flow in rivers. These local losses should be added together with friction loss to get the total loss of energy. In this work, we strive to develop a framework that considers the effect of bends in meandering rivers for one-dimensional (1-D) homogenous equations of flow. Our objective is to develop a simple, yet physically sound, and efficient model for carrying out engineering computations of flow through meander bends. We consider several approaches for calculating 1-D hydraulic properties of meandering rivers such as friction factor and Manning coefficient. The method of Kasper et al. (2005), which is based on channel top width, aspect ratio and radius of curvature, is adopted for further calculations. In this method, a correction is implemented in terms of local energy loss, due to helical motion and secondary currents of fluid particles driven by centrifugal force, in meanders. To validate the model, several test cases are simulated and the computed results are compared with the reported data in the literature in terms of water surface elevation, shear velocity, etc. For all cases the computed results are in reasonable agreement with the experimental data. 3-D RANS turbulent flow simulations are also carried out, using the method of Kang et al. (Adv. In Water Res., vol. 34, 2011), for different geometrical parameters of Kinoshita Rivers to determine the spatial distribution of shear stress on river bed and banks, which is the key factor in scour/deposition patterns. The 3-D solutions are then cross-sectionally averaged and compared with the respective solutions from the 1-D model. The comparisons show that the improved 1D model, which incorporates the effect of local bend loss, captures key flow parameters with reasonable accuracy. Our results also underscore the range of validity and limitations of 1D models for meander bend simulations. This work was supported by NSF Grants (as part of

  5. A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.

    2008-12-01

    On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest

  6. Geomorphic response of Lillooet River, British Columbia, to meander cutoffs and base level lowering

    NASA Astrophysics Data System (ADS)

    Weatherly, Hamish; Jakob, Matthias

    2014-07-01

    A detailed record of channel profiles, slopes, and stream discharge on Lillooet River provides an opportunity to study the effects of natural and artificial channel changes that have occurred over the past century. We analyze the long-term effects of channel alterations that may affect flood hazard. In the mid 1940s several meanders were artificially severed, side channels blocked off, and the level of downstream Lillooet Lake was lowered. These measures were thought to increase hydrologic efficiency and decrease flood risk in the largely agricultural valley. Between 1947 and 1994 average channel width in the upper reaches decreased by 50%, most of which occurred by the late 1950s. Between 1945 and 1969 Lillooet River degraded its bed elevation by 3-4 m (12.5 to 16.7 cm a- 1) in the upper reaches and up to 2 m (8.3 cm a- 1) in the lower reaches. This sudden and profound degradation compares to average bed elevation increases of 2.4 cm a- 1 prior to the engineering works. Between 1969 and 1985 the cross section area increased by 22% in the upper reaches and 13% in the lower reaches and decreased to 12% and 8%, respectively, for the time period 1985 to 2000. The increased sediment supply that was caused by channel straightening accelerated delta advance in Lillooet Lake from 7 m a- 1 (1858 to 1948) to 30 m a- 1 for the five-year period following the 1948 channel works. These rates have decreased over time, but with a current advance rate of 10.5 m a- 1 (1986-2009) are still above the long-term average prior to the channel changes. This study demonstrates the time scale, direction, and magnitude of channel changes following significant artificial river alterations. While the initial goal of decreasing flood risk had been achieved in the short term, the lower river apparently is slowly returning to an overall aggradational phase. Ongoing delta advance will ultimately increase channel elevations in the lower reaches and lead to significant flood hazards for populated

  7. Fates of pollutants from uranium mining in floodplain of a meandering river (the Ploucnice, Czech Republic)

    NASA Astrophysics Data System (ADS)

    Matys Grygar, Tomas; Elznicova, Jitka; Majerova, Lucie; Babek, Ondrej; Kiss, Timea; Havelcova, Martina; Hosek, Michal

    2014-05-01

    tens of km downstream of the mining area). Several hotspots were formed behind the end of the channelised river reach downstream from the mining area. The analyses of the pollution hotspots conducted by other researchers in 1990s and our novel results show that maximal pollutant gamma activity (mainly U and Ra-226) in these hotspots has been transported from a meander (channel) belt towards the distal floodplain. Downstream transport (secondary pollution) from the hotspots is demonstrated by considerable Zn, Ni and U enrichment in the deposits of 2013 summer flood (25 years after termination of the primary pollution) and by the fact, that enrichment factors of Zn, Ni and U in the floodplain sediments downstream of the hotspots has still not started to decline. The persistence of the pollution of the floodplain sediments is in contrast with the activity of the Ploučnice River water, which dropped down in 1989 and afterwards to the levels from the period before the start of the uranium mining.

  8. A backwards-in-time Lagrangian framework for extraction of meander bend dynamics: use in meander classification, process diagnostics, and model comparison

    NASA Astrophysics Data System (ADS)

    Schwenk, J.; Lanzoni, S.; Foufoula-Georgiou, E.

    2013-12-01

    Physically based river meander migration models have grown in popularity and complexity since the pioneering work of Ikeda, Parker, and Saswe in 1981. Numerical meander models have proven valuable for understanding river meander dynamics by providing highly resolved temporal and spatial series of physiographic and morphodynamic properties that are difficult or impossible to observe from real meandering rivers. Analyses of such model outputs typically focus on either reachwide (e.g. sinuosity) or pointwise (e.g. local migration rates) measures. We propose here a framework that bridges the gap between holistic and reductionist approaches to river meandering. This research introduces a new method for identifying and tracking individual meanders ('atoms') from cutoff to inception. An atom is a river reach that evolves in time and eventually intersects itself to become an oxbow lake. Typically individual meander extractions use inflection points to demarcate meander end-points, but automated inflection detection is susceptible to spurious flexes along the centerline. We propose a different approach based on tracking cutoff nodes backwards in time thereby avoiding detection problems and making an atom's dynamics easily accessible. A classification scheme is developed that separates extracted atoms into three types of increasing complexity. Type I atoms are simple, single-loop meander bends; type II atoms contain complex, single-loop bends; and type III atoms consist of compound or multiple meanders. The distinct dynamic behavior of each atom type is explored through individual and ensemble dynamics, e.g. average growth rate, average migration rate, or statistics of local curvature series. Analyses reveal new insights that relate process and form and explore the effect of local versus non-local influences on meander growth. The utilized river migration model represents the most basic physical processes that drive river migration--i.e., channel cutoff and channel migration

  9. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  10. Stratification effects on flow field and bed topography in meandering rivers

    NASA Astrophysics Data System (ADS)

    Bolla Pittaluga, M.

    2010-12-01

    and eddy diffusivity, enhances significantly the vertical distribution of lateral velocity. Next, we investigate whether the point bar pattern in the inner bank and pool in the outer bank typically observed in meandering rivers may be significantly affected by the stratification effect. With the help of the Exner equation we show that, in the ideal case analyzed here, namely a uniform and steady flow in a constant curvature channel, stratification gives rise to steeper lateral bed profiles with respect to the unstratified case.

  11. [Migration in the Tisza River region].

    PubMed

    Kiss, E

    1992-03-01

    Out-migration and its effect on an area near Hungary's Tisza River are described. The author notes that while out-migration has slowed in the last decade, those who leave are more highly educated, skilled, and under 40 years of age. The impact of this migration on population structure, including age distribution, is assessed. (SUMMARY IN ENG AND RUS) PMID:12343676

  12. Fluvial Bank Erosion in the Meandering River Asker, UK: Insights from Computational Fluid Dynamics (CFD) Modelling

    NASA Astrophysics Data System (ADS)

    Darby, S. E.; Rinaldi, M.; Rossi Romanelli, L.; Spyropoulos, E.

    2003-12-01

    CFD simulations for a (200 m long) meander loop on the River Asker at Bridport in southern England. CFD models under specific steady (peak) flow conditions were developed using FLUENT, with peak flow discharge estimates obtained from an adjacent gauging station. The geometry of each model was specified using DEMs of the channel created from high-resolution tacheometric surveys of the study reach, with water surface elevation defined using a network of crest gauges spaced at 20 m intervals along the reach. Zero slip boundary conditions were defined at all sidewall nodes and initial flow velocity vectors at all nodes at the upstream inlet were estimated with reference to 3D flow velocity data acquired using Acoustic Doppler Velocimetry (ADV) at this location. Simulated flow fields for the extent of the study reach were then evaluated by comparing simulated and observed surface velocity vectors, the latter being derived from Particle Image Velocimetry (PIV), supplemented by ADV data in selected (accessible) locations. Finally, we use the near-bank boundary shear stress data obtained from the CFD models to develop insight into the nature and effectiveness of FE processes within the study reach.

  13. Sorting out meandering and braiding: discriminating formative conditions and stratigraphy

    NASA Astrophysics Data System (ADS)

    Kleinhans, M. G.; van de Lageweg, W. I.; Schuurman, F.; Van Dijk, W. M.

    2011-12-01

    For various river channel patterns, the necessary formative conditions differ, but how is not entirely understood. Furthermore, not only the morphology and dynamics differ, but also the resulting stratigraphy differs, of which understanding is required to infer past environmental conditions and predict reservoir behaviour. Our objective is to identify the necessary and sufficient conditions for forming dynamic meandering and braided rivers. We reproduced both patterns experimentally and with a physics-based numerical model, and produced synthetic stratification from bed elevation maps and control lacquer peels for the experiments. Experimental meandering was produced using a mixture of poorly sorted sediment and silt-sized silica flour and a transversely moving inflow boundary. Braiding was produced in exactly the same conditions but without the silica flour. These experiments represent gravel-bed rivers in nature, where both experimental meandering and braiding channels were close to the transition between the types. Onset meandering was also produced in the numerical model (Delft3D) with a similar transversely moving inflow boundary, whilst braided rivers formed with fixed inflow or some noise on the transverse discharge distribution at the inflow boundary. The silica flour deposited on crevasse splays and in chute channels, forming new floodplain. This caused much less chute cutoffs and stronger banks. The resulting meandering river formed multiple sets of scroll bars forming pointbars, overlain by splays and floodplain. The braided river, in contrast, showed mid-channel bars and multiple active channels, faster and more haphazard bar and channel migration, and frequent chute cutoffs. Apart from the floodplain, stratification in meandering rivers consisted of sigmoidally stratified units formed by scroll bars and channel fills, usually formed after chute cutoff. Braided rivers had similar units but much smaller and more. In both cases the highest preservation

  14. Hydraulic and geomorphic processes in an overbank flood along a gravel-bed, meandering river: implications for chute formation

    NASA Astrophysics Data System (ADS)

    Harrison, L.; Dunne, T.; Fisher, G. B.

    2014-12-01

    Hydraulic interactions between rivers and floodplains produce off-channel chutes, whose presence can increase the ecological diversity of the valley floor. Detailed studies of the hydrologic exchanges between channels and floodplains are usually conducted in laboratory facilities, and studies documenting chute development are generally limited to qualitative observations. In this study, we use a reconstructed, gravel-bedded, meandering river as a laboratory for studying these mechanisms at field scale. Using an integrated field and modeling approach, we quantified the flow exchanges between the river channel and its floodplain during an overbank flood, and identified locations where flow had the capacity to erode floodplain chutes. Hydraulic measurements and modeling indicated high rates of flow exchange between the channel and floodplain, with flow rapidly decelerating as water was decanted from the channel onto the floodplain due to the frictional drag provided by substrate and riparian vegetation. Peak shear stresses were greatest downstream of the maxima in bend curvature, along the concave bank, where terrestrial LiDAR scans indicate initial floodplain chute formation. A second chute has developed across the convex bank of a meander bend, in a location where sediment accretion, point bar development and plant colonization have created divergent flow paths between the main channel and floodplain. In both cases, the off-channel chutes are evolving slowly during infrequent floods due to the coarse nature of the floodplain, though rapid chute formation would be more likely in finer-grained floodplains. The controls on chute formation at these locations include the river curvature, cross-stream position of the high velocity core, erodibility of the floodplain sediment, and the density of riparian vegetation.

  15. Influence of Channel Morphology on Flow Hydraulics in a Compound Meander Bend of the Lower Brazos River, Texas

    NASA Astrophysics Data System (ADS)

    Hales, B. U.; Guneralp, I.; Filippi, A. M.

    2013-12-01

    At a meander-bend scale, process-form interactions between channel morphology and flow hydraulics generate unique features called geomorphic units, such as pools, sediment bars, and backwater regions. Geomorphic units play an important role as distinct habitats for aquatic species. In this study, we investigate channel morphology and flow structure of an incised meander bend on the lower Brazos River, Texas, to inform aquatic habitat assessment. The bend represents the characteristics of sand-bed and high-amplitude meandering rivers and contains a localized bank-protection structure along its cutbank. We examine: 1) the spatial characteristics of channel morphology (i.e., geomorphic units); 2) spatial characteristics of flow hydraulics in relation to geomorphic units at low- (Q1), medium- (Q2), and high- (Q3) discharge conditions; and 3) the influence of channel morphology on flow hydraulics within this meander bend. We utilize bathymetric and hydraulic surveys conducted using Acoustic Doppler Current Profiler (ADCP) and simultaneously collected bed-sediment samples. To characterize channel morphology, we use a digital terrain model (DTM) of the bend that we generate by fusing our bathymetric data and an airborne interferometric synthetic aperture radar (InSAR)-derived DTM. We examine flow hydraulics by performing quasi 3-D hydraulic modeling. Results show that channel morphology has a strong influence on the spatial distribution of hydraulic parameters, including water depth, flow velocities, Froude number, and helix strength. At Q1, the emergent mid-channel bar forces flow divergence/convergence and acts as a macro-roughness structure. High flow velocity concentrates in the deeper and narrower sub-channel along the cutbank side. At Q2, the location of the mid-channel bar shifts toward the point bar, forming a new chute sub-channel. Highest flow velocities are still concentrated in the permanent sub-channel along the cutbank, but shift downstream toward the exit

  16. Geomorphic adjustment to hydrologic modifications along a meandering river: Implications for surface flooding on a floodplain

    NASA Astrophysics Data System (ADS)

    Edwards, Brandon L.; Keim, Richard F.; Johnson, Erin L.; Hupp, Cliff R.; Marre, Saraline; King, Sammy L.

    2016-09-01

    Responses of large regulated rivers to contemporary changes in base level are not well understood. We used field measurements and historical analysis of air photos and topographic maps to identify geomorphic trends of the lower White River, Arkansas, USA, in the 70 years following base-level lowering at its confluence with the Mississippi River and concurrent with flood control by dams. Incision was identified below a knickpoint area upstream of St. Charles, AR, and increases over the lowermost ~90 km of the study site to ~2 m near the confluence with the Mississippi River. Mean bankfull width increased by 30 m (21%) from 1930 to 2010. Bank widening appears to be the result of flow regulation above the incision knickpoint and concomitant with incision below the knickpoint. Hydraulic modeling indicated that geomorphic adjustments likely reduced flooding by 58% during frequent floods in the incised, lowermost floodplain affected by backwater flooding from the Mississippi River and by 22% above the knickpoint area. Dominance of backwater flooding in the incised reach indicates that incision is more important than flood control on the lower White River in altering flooding and also suggests that the Mississippi River may be the dominant control in shaping the lower floodplain. Overall, results highlight the complex geomorphic adjustment in large river-floodplain systems in response to anthropogenic modifications and their implications, including reduced river-floodplain connectivity.

  17. Floodplain architecture of an actively meandering river (the Ploučnice River, the Czech Republic) as revealed by the distribution of pollution and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Matys Grygar, T.; Elznicová, J.; Tůmová, Š.; Faměra, M.; Balogh, M.; Kiss, T.

    2016-02-01

    The aim of this study was to describe the floodplain architecture of the Ploučnice River, a naturally meandering river in the Czech Republic, using manual drill coring, the element analysis of sediments, and electrical resistivity tomography (ERT). The Ploučnice River has received diffuse pollution since the early twentieth century (mainly Pb) followed by a prominent, temporally well-defined pollution pulse from uranium mining in the 1970s and 1980s (mainly U and 226Ra). The pollution created a chemostratigraphic (temporal) framework for overbank fines. We used geographical information systems (GIS) to describe the channel's dynamics and visualise fluvial landforms. We sampled and analysed the finest floodplain sediments in the top 1 to 2 m of the floodplain fill (silty and sandy deposits), and we used ERT to visualise bodies of coarser and deeper strata at depths down to ~ 3 m. Several limits of ERT imaging have been found by a comparison of the resistivity domains with lithological descriptions of the cores: several decimetre-thick strata were not revealed (they are below the spatial resolution of that method), and humidity affected the results that were obtained in the topmost strata. The space for deposition of fluvial sediments in the Ploučnice River is being created by (1) natural lateral shifts in the channel (up to 0.5 m/year); (2) meander loop development and cutoffs at the timescale of decades to centuries and spatial scale of up to ~ 1/4 of the floodplain width; and (3) more substantial reorganisation of the channel structure by avulsions, probably at the timescale of centuries. These processes continuously create space for the deposition of overbank fines on the top of former point bars and in swales and abandoned channels. As a consequence of the speed of the channel shifts, at least 80% of the fine-grained top of the floodplain fill (overbank fines) was reworked over approximately three centuries.

  18. From meander bend to oxbow lake: flow, channel morphology and sedimentology of an evolving chute cutoff on the Wabash River, IL-IN

    NASA Astrophysics Data System (ADS)

    Zinger, J. A.; Rhoads, B. L.; Best, J. L.; Johnson, K.

    2012-12-01

    Chute channels develop on meandering rivers in a wide variety of environments, and in many cases result in bend cutoff and formation of an oxbow lake. During the transition from active meander bend to oxbow lake, the chute channel and original bend create a paired bifurcation-confluence unit. Here, we present field documentation of the evolving flow structure within a recent chute cutoff on the Wabash River, IL-IN, focusing on the bifurcation located on the upstream limb of the original bend. Previous studies indicate that this is the location of greatest sedimentation rates prior to complete plugging of the bend (e.g. Shields & Abt, 1989). We seek to isolate the fundamental processes causing rapid sedimentation in the upstream limb of the bend, using repeated hydroacoustic measurements of bed elevation and three-dimensional flow velocity at several key cross-sections. We also employ differential GPS surveys of channel banklines, analysis of aerial photographs and sampling of sediment on exposed bars at low flow, to aid interpretations of the cross-sectional data. This paper will detail the co-evolution of flow structure and channel morphology at this site and examine the coherent patterns of erosion and deposition responsible for oxbow lake formation. Reference: Shields, FD; Abt, SR (1989). Sediment deposition in cutoff meander bends and implications for effective management. Regulated Rivers: Research & Management 4, 381-396.

  19. Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA

    NASA Astrophysics Data System (ADS)

    Zinger, Jessica A.; Rhoads, Bruce L.; Best, James L.; Johnson, Kevin K.

    2013-12-01

    paper documents the three-dimensional structure of flow and bed morphology of two developing chute cutoffs on a single meander bend on the lower Wabash River, USA, and relates the flow structure to patterns of morphologic change in the evolving cutoff channels. The upstream end of the cutoff channels is characterized by: (1) a zone of flow velocity reduction/stagnation and bar development in the main channel across from the cutoff entrance, (2) flow separation and bar development along the inner (left) bank of the cutoff channel immediately downstream from the cutoff entrance, and (3) helical motion and outward advection of flow momentum entering the cutoff channel, leading to erosion of the outer (right) bank of the cutoff channel. At the downstream end of the cutoff channels, the major hydrodynamic and morphologic features are: (1) flow stagnation along the bank of the main channel immediately upstream of the cutoff channel mouth, (2) convergence of flows from the cutoff and main channels, (3) helical motion of flow from the cutoff, (4) a zone of reduced velocity along the bank of the main channel immediately downstream from the cutoff channel mouth, and (5) development of a prominent bar complex that penetrates into the main channel and extends from the stagnation zone upstream to downstream of the cutoff mouth. These results provide the basis for a conceptual model of chute-cutoff dynamics in which the upstream and downstream ends of a cutoff channel are treated as a bifurcation and confluence, respectively.

  20. Local sorting, bend curvature, and particle mobility in meandering gravel bed rivers

    NASA Astrophysics Data System (ADS)

    Clayton, Jordan A.

    2010-02-01

    Hydraulic, grain scale sorting of mixed bed sediment influences the mobility of grains in discrete areas of river channels. To assess this effect, local values of surface grain size sorting were compared with measurements of bed load at corresponding locations in a bend of the Colorado River in Rocky Mountain National Park (RMNP), and the distribution of local Shields stress through the reach was derived from a two-dimensional flow model. With decreasing degrees of local sorting, the relative mobility of the fine- and coarse-size fractions of the load appeared to decrease and increase, respectively. Furthermore, back-calculated critical Shields stress values for sediment entrainment decreased with values of local sorting, particularly for the upstream portion of the reach where particles were more poorly sorted and coarse grains had higher relative exposure. To evaluate the pervasiveness of these and other patterns of sorting in gravel rivers, detailed field measurements of channel topography and surface grain size (317 pebble counts) were obtained for seven additional reaches of differing curvature (radius of curvature/width from 1 to 28) near the headwaters of the Colorado and Fall rivers in RMNP. Moderately curved and tight bends (radius of curvature/width ≤ 7) were significantly better sorted than comparatively straight reaches. Values of local sorting decreased with distance downstream for the majority of curved channels, reflecting a reduction in the standard deviation of surface grain sizes toward the lower end of the reach; this effect increased slightly with bend sharpness.

  1. Spatial variability in floodplain resistance to erosion on a large meandering, mixed bedrock-alluvial river

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial heterogeneities of the erosion-resistance properties of the channel banks and floodplains, such as grain size characteristics and the presence of vegetation and bedrock, can have a substantial influence on river morphodynamics, resulting in complex planform geometries and highly variable rat...

  2. Hyporheic Exchange Flows and Biogeochemical Patterns near a Meandering Stream: East Fork of the Jemez River, Valles Caldera National Preserve, New Mexico

    NASA Astrophysics Data System (ADS)

    Christensen, H.; Wooten, J. P.; Swanson, E.; Senison, J. J.; Myers, K. D.; Befus, K. M.; Warden, J.; Zamora, P. B.; Gomez, J. D.; Wilson, J. L.; Groffman, A.; Rearick, M. S.; Cardenas, M. B.

    2012-12-01

    A study by the 2012 Hydrogeology Field Methods class of the University of Texas at Austin implemented multiple approaches to evaluate and characterize local hyporheic zone flow and biogeochemical trends in a highly meandering reach of the of the East Fork of the Jemez River, a fourth order stream in northwestern New Mexico. This section of the Jemez River is strongly meandering and exhibits distinct riffle-pool morphology. The high stream sinuosity creates inter-meander hyporheic flow that is also largely influenced by local groundwater gradients. In this study, dozens of piezometers were used to map the water table and flow vectors were then calculated. Surface water and ground water samples were collected and preserved for later geochemical analysis by ICPMS and HPLC, and unstable parameters and alkalinity were measured on-site. Additionally, information was collected from thermal monitoring of the streambed, stream gauging, and from a series of electrical resistivity surveys forming a network across the site. Hyporheic flow paths are suggested by alternating gaining and losing sections of the stream as determined by stream gauging at multiple locations along the reach. Water table maps and calculated fluxes across the sediment-water interface also indicate hyporheic flow paths. We find variability in the distribution of biogeochemical constituents (oxidation-reduction potential, nitrate, ammonium, and phosphate) along interpreted flow paths which is partly consistent with hyporheic exchange. The variability and heterogeneity of reducing and oxidizing conditions is interpreted to be a result of groundwater-surface water interaction. Two-dimensional mapping of biogeochemical parameters show redox transitions along interpreted flow paths. Further analysis of various measured unstable chemical parameters results in observable trends strongly delineated along these preferential flow paths that are consistent with the direction of groundwater flow and the assumed

  3. The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi

    2015-04-01

    Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.

  4. Computer simulations of channel meandering and the formation of point bars: Linking channel dynamics to the preserved stratigraphy

    NASA Astrophysics Data System (ADS)

    Sun, T.; Covault, J. A.; Pyrcz, M.; Sullivan, M.

    2012-12-01

    Meandering rivers are probably one of the most recognizable geomorphic features on earth. As they meander across alluvial and delta plains, channels migrate laterally and develop point bars, splays, levees and other geomorphic and sedimentary features that compose substantial portions of the fill within many sedimentary basins. These basins can include hydrocarbon producing fields. Therefore, a good understanding of the processes of meandering channels and their associated deposits is critical for exploiting these reservoirs in the subsurface. In the past couple of decades, significant progress has been made in our understanding of the morphodynamics of channel meandering. Basic fluid dynamics and sediment transport (Ikeda and Parker, 1981; Howard, 1992) has shown that many characteristic features of meandering rivers, such as the meandering wavelength, growth rate and downstream migration rate, can be predicted quantitatively. As a result, a number of variations and improvement of the theory have emerged (e.g., Blondeaux and Seminara, 1985; Parker and Andrews, 1985, 1986; and Sun et al., 2001a, b).The main improvements include the recognition of so called "bar-bend" interactions, where the development of bars on the channel bed and their interactions with the channel bend is recognized as a primary cause for meandering channels to develop greater complexity than the classic goose-neck meander bend shapes, such as compound bend. Recently, Sun and others have shown that the spatial patterns of width variations in meandering channels can be explained by an extrinsic periodic flow variations coupled with the intrinsic bend instability dynamics. In contrast to the significant improvement of our understanding of channel meandering, little work has been done to link the geomorphic features of meandering channels to the geometry and heterogeneity of the deposits they form and ultimately preserves. A computer simulation model based on the work of Sun and others (1996, 2001

  5. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: Morphodynamics of bar push and bank pull

    NASA Astrophysics Data System (ADS)

    Eke, Esther; Parker, Gary; Shimizu, Yasuyuki

    2014-07-01

    Meandering rivers display active communication between bank erosion and bar deposition processes. How does this occur? How does the river select its width? To answer these questions, we implement a model for meander migration where both bank processes (erosion and deposition) are considered independently. Bank erosion is modeled as erosion of purely noncohesive bank material damped by natural slump block armoring; channel deposition is modeled via flow-retarded vegetal encroachment. Both processes are tied to a slope-dependent channel forming Shields number; banks with near-bank Shields number below this value undergo deposition, and those above it undergo erosion. Channel-forming Shields number must increase with slope, as dictated by available data and model performance. Straight channel modeling shows that a channel arrives at an equilibrium width from any initial condition. For the channel bend, the river always approaches an asymptotic state where width reduces slowly in time and where bank erosion and deposition occur at nearly equal rates. Before this state is reached, however, the river follows a phase-plane trajectory with four possible regimes: (a) both banks erode, (b) both banks deposit, (c) both banks migrate outward, but with a faster depositing bank (bar push), and (d) both banks migrate outward, but with a faster eroding bank (bank pull). The trajectory of migration on the phase plane depends on initial conditions and input parameters controlling the rate of depositional and erosional migration. All input parameters have specific physical meaning, and the potential to be measured in the field.

  6. Experiments in a high-amplitude Kinoshita meandering channel: 1. Implications of bend orientation on mean and turbulent flow structure

    NASA Astrophysics Data System (ADS)

    Abad, Jorge D.; Garcia, Marcelo H.

    2009-02-01

    Meandering rivers exhibit complex planform patterns with both upstream and downstream valley oriented meander bends. In order to describe the effects of bend orientation on long-term river evolution, it is of great importance to be able to describe bend orientation (curvature) effects on the hydrodynamics of the flow as a first approximation. Mean flow and turbulence characteristics were investigated experimentally in a periodic, asymmetric, meandering channel herein called "the Kinoshita channel". The channel planform configuration retains high-order harmonic modes. Upstream and downstream valley oriented meander bends can be studied by reversing the flow. A flat, smooth bed (without sediment) condition has been considered to avoid further complexity. Spatial distributions of mean flow (e.g., velocities) and turbulence parameters (Reynolds stresses, turbulent kinetic energy) were observed at several cross sections along the meander wavelength. Measurements show that at the bend apex, the core of maximum velocity is found near the inner bank for both planform orientations. At the same cross section, observations show that when bends are oriented upstream valley, the secondary flow is not as well developed as in the case where bends are oriented downstream valley. Furthermore, for the upstream condition the energy gradient is smaller than that for the downstream condition, suggesting that the friction (i.e., flow resistance) due to curvature is higher for the downstream-skewed condition. Implications about having upstream and downstream bends in the meandering river migration framework are also discussed herein.

  7. Creating self-formed meandering channels in laboratory flumes (Invited)

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.

    2009-12-01

    Our ability to construct predictive numerical models for meandering rivers is hampered by the inability to create meandering channels in the laboratory where individual variables can be isolated and controlled. Typically, experimental channels braid, straighten, or cease migration once they develop curvature. By using alfalfa sprouts to provide bank strength and fine sediment to attach point bars to the floodplain, we have successfully created and maintained meandering morphology in a laboratory flume. The 6.1 by 17 m flume has a floodplain slope of approximately 0.005 with a sandy bed and banks that scales as a gravel bed river. The alfalfa sprouts slow bank erosion allowing time for the bars to create new floodplain deposits. The sprouts also increase floodplain roughness, armor new bar deposits, and promote deposition of overbank sediment. The fine sediment, a lightweight plastic that scaled as sand, was crucial for blocking chutes formed between the bar and the floodplain, isolating cut-off channels from the main flow, and creating levees. During this 136-hour long experiment, the channel width stabilized as the channel migrated across the floodplain, and the curvature was recreated following cutoffs. Although the sinuosity (about 1.2) was low relative to meandering channels observed in the field, the spacing of bends was within the upper bounds of field examples. Subsequent experiments with higher bank strength had more limited chute development were able to generate a sinuosity of about 1.4. Scaling analysis indicates that the bank migration rates in the lower sinuosity experiment were approximately 10 times faster than migration rates in the field. A particular challenge in these experiments is maintaining a healthy alfalfa crop. After 15-20 hours of flood flows, the alfalfa begins to die off and new emergent bars need to be seeded. It then takes about 7 days for the alfalfa to grow to the size used in these experiments. The 15-20 hours scale to about one

  8. Analysing the meandering rivers responses to the slope-changes, depending on their bankfull discharge - Case study in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit; Timár, Gábor; Molnár, Gábor

    2014-05-01

    The multi-variable connection between the channel slope, bankfull discharge and sinuosity values were analysed to get a mathematical formula, which describes the responses of the rivers, and gives the probable sinuosity values for every slope and discharge values. Timár (2003) merged two planar diagrams into a quasi 3D graph. One of them displayed how the river pattern changes, according to the slope and bankfull discharge values (Leopold and Wolmann, 1957; Ackers and Charlton, 1971); the other based on flume experiments, and gives a connection between the slope and sinuosity (Schumm and Khan, 1972). The result graph suggests that the slope-sinuosity connection also works along the natural rivers, for every discharge values. The aim of this work was to prove this relation, and describe it numerically. The sinuosity values were calculated along the natural, meandering river beds, using historical maps (2nd Military Survey of the Habsburg Empire, from the 19th century). The available slope and discharge values were imported from a database measured after the main river control works, at the beginning of the 20th century (Viczián, 1905). Analysing the reports of the river control works, the natural slope could be computed for every river sections. The mean discharges were also converted to bankfull discharges. Neither long time series, nor cross sectional areas were obtainable, so other method was used to generate the bankfull discharge. After the above mentioned corrections a quadratic polynomial surface was fitted onto these points with least squares regression. The cross section of this surface follows the theoretical slope-sinuosity graph, verifying that the flume experiments and natural rivers behave similarly. The differences between the fitted surface and the original points were caused by other river parameters, which also affect the natural rivers (e.g. the sediment discharge). Furthermore, this graph confirms the connection between the slope and sinuosity

  9. Flow structure and development of circular meander pools

    NASA Astrophysics Data System (ADS)

    Andrle, Robert

    1994-06-01

    Flow structure, bank strength, and scour and fill in one of a series of atypical river bends on Mansfield Creek, Cattaraugus County, New York are studied. These bends are characterized by large, deep, circular pools located at the apices of extremely tight bends. The pattern of flow through the bends is typified by the presence of a large countercurrent occupying approximately half of the pool on the outside of the bend. This differs greatly from the typical river bend in which flow is generally downstream and subparallel to the channel banks throughout the bend. Deposition in the bend also does not follow the conventional pattern, but instead occurs primarily on the concave bank in the form of a concave bank bench. Erosion is concentrated on the convex bank and no point bar deposits exist. Shifting of erosion to the convex bank has been noted elsewhere in the literature in extremely tight bends with ratios of mean radius to mean width of less than 2.0, but not in association with circular meander pools. Several possible theories are suggested that may explain development of the circular meander pools at this site. It is likely that the high, cohesive banks of the study reach are an important factor, slowing channel migration and preventing cutoff chutes from forming, allowing development of highly sinuous meanders.

  10. Meandering: fluvial versus tidal. (Invited)

    NASA Astrophysics Data System (ADS)

    Seminara, G.

    2009-12-01

    the channel, whereas the seaward pattern displayed deposition at the outer bends and scour at the inner bends, a pattern which would clearly be planimetrically unstable if the channel walls were erodible. In a second experiment, in the final stage, close to equilibrium, point bars were out of phase with respect to curvature throughout the whole channel. A possible explanation of this striking observation is that asymmetry of an observed pattern must be associated with either flood- or ebb- dominance of the basic flow field: some indication, in this respect, comes from the observation that the bar-pool pattern changed in time with the hydrodynamics as the average bed profile evolved towards equilibrium. A second key to be explored is the very nature of the observed bar-pool pattern, recalling that the relationship of tidal alternate (free) bars to point (forced) bars differs from its fluvial counterpart: tidal free bars are non migrating features at equilibrium (Seminara and Tubino, J Fluid Mech, 2001), bar migration arising from the role of overtides (Garotta et al, Phys. of Fluids, 2006). Distinguishing free from forced bars is then harder than in the fluvial case and the issue of their possible coexistence needs be revisited. Finally, the plan form evolution of tidal meanders is typically slower than in the fluvial case: not surprisingly, as sediment transport is very weak close to channel equilibrium.

  11. Numerical modeling of gravel bed river response to meander straightening: The coupling between the evolution of bed pavement and long profile

    NASA Astrophysics Data System (ADS)

    Talbot, Tracey; Lapointe, Michel

    2002-06-01

    Artificial meander straightening (rectification) was conducted in the early 1960s along the Sainte-Marguerite River, Canada, in order to facilitate highway construction along the valley. Previous studies [Talbot and Lapointe, 2002] confirm that vertical reprofiling, coupled with pavement coarsening in the degrading reach, were the main responses counteracting the disequilibrium in gravel transport rates triggered at rectification of this system. Numerical simulations, using SEDROUT2.0, a one-dimensional hydraulic and sediment transport model, and validated against the observed channel response, show the important role played by an advancing wave of pavement coarsening down the rectified reach in modulating the bed degradation response. Simulations extending into the future reveal an asymptotically slowing approach to equilibrium in the middle of the 21st century, with a response half-time of the order of 10 years. In near-threshold gravel bed systems like the Sainte-Marguerite River, pavement coarsening after rectification buffers the system against extreme degradation. Most significantly for watershed management, this also appears to severely limit the extent of propagation of degradation upstream of the rectification.

  12. River response to climate and sea level changes during the Late Saalian/Early Eemian in northern Poland - a case study of meandering river deposits in the Chłapowo cliff section

    NASA Astrophysics Data System (ADS)

    Moskalewicz, Damian; Sokołowski, Robert J.; Fedorowicz, Stanisław

    2016-03-01

    Fluvial sediments in the Chłapowo cliff section were studied in order to reconstruct their palaeoflow conditions and stratigraphical position. Lithofacies, textural and palaeohydraulic analyses as well as luminescence dating were performed so as to achieve the aim of study. Sedimentary successions were identified as a record of point bar cycles. The fluvial environment probably functioned during the latest Saalian, shortly after the retreat of the Scandinavian Ice Sheet. Discharge outflow was directed to the northwest. The river used the older fluvioglacial valley and probably was directly connected to the Eem Sea. Good preservation and strong aggradation of point-bar cycles were related to a rapid relative base level rise. The meandering river sediments recognised showed responses to climate and sea level changes as illustrated by stratigraphical, morphological and sedimentological features of the strata described. The present study also revealed several insights into proper interpretation of meandering fluvial successions, in which the most important were: specific lithofacies assemblage of GSt (St, Sp) → Sl → SFrc → Fm (SFr) and related architectural elements: channel/sandy bedforms CH/SB → lateral accretion deposits LA → floodplain fines with crevasse splays FF (CS); upward-fining grain size and decreasing content of denser heavy minerals; estimated low-energy flow regime with a mean depth of 1.6-3.3 m, a Froude number of 0.2-0.4 and a sinuosity of 1.5.

  13. Correlation between river slope and meandering variability (obtained by DGPS data) and morphotectonics for two Andean tributaries of the Amazon river: the case of Beni (Bolivia) and Napo (Ecuador-Peru) rivers.

    NASA Astrophysics Data System (ADS)

    Bourrel, L.; Darrozes, J.; Guyot, J.; Christophoul, F.; Bondoux, F.

    2007-05-01

    The Beni river drains a catchment area of 282 000 km2 of which 40 percent are located in the Cordillera of the Bolivian and Peruvian Andes, and the rest in the Amazonian plain : the studied reaches runs from Guanay (Andean Piedmont) to Riberalta (junction with Madre de Dios river) that represents a distance by the river of 1055 km. The Napo river starts in the Ecuadorian Andes and leaves Ecuador in Nuevo Rocafuerte (27 400 km2) and enters in Peru until its junction with the Amazon river : the studied section runs from Misahualli (Andean Piedmont) to this junction, that represents a distance by the river of 995 km. The GPS data were acquired using a mobile GPS embarked on a boat and 4 fixed bases located along the Beni river, 6 along the Napo river and the two rivers profile calculated from post-treated differential GPS solutions. For the Beni river, two sectors were identified: - the upstream sector (~230 km) between Guanay (414 m) and 50 km downstream Rurrenabaque (245 m) is located in Andean Piedmont, which consists in a series of thrusts associated with anticlines and synclines (the subandean zone), and presents slope values range between 135 cm/km and 10 cm/km and an average index of sinuosity (IS) of 1.29, - the downstream sector (~ 820 km) which runs in Amazonian plain (until Riberalta -165 m-), is characterized by an average slope of 8 cm/km and an average IS of 2.06 (this sector is much more homogeneous and the Beni river shows a meandering channel). For the Napo River, three sectors were identified: - the first sector (~140 km) between Misahualli (401 m) and Coca (265 m), is located in Andean Piedmont (subandean zone) and presents slope values range between 170 cm/km and 30 cm/km and an average IS of 1.6, - the second sector (~250 km) between Coca (when the Napo river enters in the Amazonian plain) and Nuevo Rocafuerte (190 m), presents slope values range between 30 cm/km and 20 cm/km and an average IS of 1.2, and a convex-up shape profile corresponding to

  14. Spatial patterns of groundwater-surface water interactions at the meander-bend scale in a gravel-bed lowland river during a large-scale flow experiment

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2012-12-01

    Improved characterization of 1) streambed hydraulic conductivity and 2) near-bed and subsurface water temperatures allows better understanding of the spatial patterns of groundwater-surface water exchange in rivers. We measured the effects of a large-scale flow experiment on groundwater-surface water exchange and temperature using fiber optic distributed temperature sensing (DTS), measured temperature in the shallow hyporheic zone (46 cm), and measured streambed saturated hydraulic conductivity (Ksat) over the length of three river meander bends (2 km). Measured channel bed elevation, flow depth, velocity, and bed-material grain size were used to develop a two-dimensional numerical model of the flow field as boundary conditions for a model of the hyporheic flow field. We deployed 2 km of fiber-optic cable directly on top of the riverbed over three pool-riffle sequences each with a different degree of bed mobility. DTS data were collected every 2 m for 32 days (1.5 days at 10 cms, 10 days at 20 cms, 16 days at 10 cms, and 4.5 days at 2-4 cms). Three installations of six hyporheic zone sensors, located near the upstream and downstream ends of the DTS cable, recorded interstitial pore water temperature at depths of 46 cm. During flows of 10 cms, we measured Ksat in the streambed at depths of 60 cm using a groundwater standpipe and backpack permeameter over the length of two meander bends. DTS results showed relatively uniform temperature over the 2-km reach during the initial flow of 10 cms. Near-bed temperatures averaged 15.6°C while pore water temperatures averaged 15.4°C. The 20 cms flow decreased near-bed temperatures to 14.9°C and pore water temperatures averaged 14.7°C. However, during the 20 cms flow, the bed became mobile causing local scour and deposition at three locations and buried the DTS cable with gravel/sand up to 26 cm deep. Our DTS results allowed us to record the transition from near-bed temperatures to shallow subsurface temperatures during a

  15. 2D and 3D numerical simulations of morphodynamics structures in a large-amplitude meanders

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the pioneering study of the Ishikari River, Japan, Kinoshita (Kinoshita 1957, 1961) described two types of meandering channels: (1) channel with two bars per meander wavelength (one bar per bend), and (2) channel with three or more bars per meander wavelength (multiple bars per bend). Based on th...

  16. Spatiotemporal Dynamics of River Channel Migration on the Ganges-Brahmaputra Delta: 2000-2013

    NASA Astrophysics Data System (ADS)

    Small, C.; Chiu, S.; Sousa, D.; Mondal, D. R.; Steckler, M. S.; Akhter, S. H.; Mia, B.; Goodbred, S. L., Jr.; Wilson, C.; Seeber, L.

    2014-12-01

    downstream migration of the larger meanders on both rivers. We also observe a pronounced change in the morphology and evolution of the channels in the Brahmaputra braid plain upstream and downstream of the hinge zone with more rapid changes in channel geometry upstream and a more stable configuration of two anastamosing primary channels downstream.

  17. Optimum swimming pathways of fish spawning migrations in rivers

    USGS Publications Warehouse

    McElroy, Brandon; DeLonay, Aaron; Jacobson, Robert

    2012-01-01

    Fishes that swim upstream in rivers to spawn must navigate complex fluvial velocity fields to arrive at their ultimate locations. One hypothesis with substantial implications is that fish traverse pathways that minimize their energy expenditure during migration. Here we present the methodological and theoretical developments necessary to test this and similar hypotheses. First, a cost function is derived for upstream migration that relates work done by a fish to swimming drag. The energetic cost scales with the cube of a fish's relative velocity integrated along its path. By normalizing to the energy requirements of holding a position in the slowest waters at the path's origin, a cost function is derived that depends only on the physical environment and not on specifics of individual fish. Then, as an example, we demonstrate the analysis of a migration pathway of a telemetrically tracked pallid sturgeon (Scaphirhynchus albus) in the Missouri River (USA). The actual pathway cost is lower than 105 random paths through the surveyed reach and is consistent with the optimization hypothesis. The implication—subject to more extensive validation—is that reproductive success in managed rivers could be increased through manipulation of reservoir releases or channel morphology to increase abundance of lower-cost migration pathways.

  18. Optimum Pathways of Fish Spawning Migrations in Rivers

    NASA Astrophysics Data System (ADS)

    McElroy, B. J.; Jacobson, R. B.; Delonay, A.

    2010-12-01

    Many fish species migrate large distances upstream in rivers to spawn. These migrations require energetic expenditures that are inversely related to fecundity of spawners. Here we present the theory necessary to quantify relative energetic requirements of upstream migration pathways and then test the hypothesis that least-cost paths are taken by the federally endangered pallid sturgeon (Scaphyrhyncus Albus), a benthic rheophile, in the lower Missouri River, USA. Total work done by a fish through a migratory path is proportional to the size of the fish, the total drag on the fish, and the distance traversed. Normalizing by the work required to remain stationary at the beginning of a path, relative work expenditure at each point of the path is found to be the cube of the ratio of the velocity along the path to the velocity at the start of the path. This is the velocity of the fish relative to the river flow. A least-cost migratory pathway can be determined from the velocity field in a reach as the path that minimizes a fish's relative work expenditure. We combine location data from pallid sturgeon implanted with telemetric tags and pressure-sensitive data storage tags with depth and velocity data collected with an acoustic Doppler profiler. During spring 2010 individual sturgeon were closely followed as they migrated up the Missouri River to spawn. These show that, within a small margin, pallid sturgeon in the lower Missouri River select least-cost paths as they swim upstream (typical velocities near 1.0 - 1.2 m/s). Within the range of collected data, it is also seen that many alternative paths not selected for migration are two orders of magnitude more energetically expensive (typical velocities near 2.0 - 2.5 m/s). In general these sturgeon migrated along the inner banks of bends avoiding high velocities in the thalweg, crossing the channel where the thalweg crosses in the opposite direction in order to proceed up the inner bank of subsequent bends. Overall, these

  19. Merging of RVR meander with CONCEPTS: Simplified 2D model for long-term meander evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...

  20. Testing river surveying techniques in tidal environments: example from an actively meandering channel surveyed with TLS (Mont Saint-Michel bay, France)

    NASA Astrophysics Data System (ADS)

    Leroux, J.; Lague, D.

    2013-12-01

    factor 2 during summer/autumn spring tides at the peak of pioneer vegetation development. Bank erosion and channel dynamics show a marked difference for tides reaching the salt marsh elevation. For tides below marsh elevation, bank erosion is negligible and the channel is systematically aggrading at a rate proportional to HWL. For tides flooding the marsh, mean bank erosion increases linearly with HWL and the channel shifts to erosion for over-marsh tides. Using flow velocity and SSC data we show that sedimentation on the inner bar results from the penetration of the turbid flood onto the inner bar. Spatial variability in sedimentation results from local interactions between flow and vegetation. On the contrary, bank erosion is dominated by the very large ebb peak velocity developing during spring tides. The very non-linear sensitivity to HWL of bank erosion and channel erosion means that the rate of evolution is largely controlled by the largest tides of the year. This in turn yields very large annual fluctuations in the rates of meander evolution. These results demonstrate that mega-tidal environment can offer an alternative setting to test new survey techniques aimed at river monitoring and can shed light in the elementary processes governing biogeomorphological interactions.

  1. [Ethnic dimension to migration in the Senegal river valley].

    PubMed

    Traore, S

    1993-08-01

    Studies of the factors determining migratory patterns in the Senegal River Valley usually stress the importance of economic factors related to colonial domination. But when cultural factors and the social relations governing them are examined in a comparative study of ethnic groups, distinct population subgroups may be revealed to have differential migratory patterns. The Soninka and the Poular, two groups highly affected by migration, were chosen for an analysis of the impact of specific historical experiences on migratory behavior. A historical analysis of colonial archives and anthropological and historical monographs and the 1982-83 "Survey of Migration in the Valley of the Senegal River" provided data. The survey indicated that Soninka and Poular migratory patterns differed from each other, but that both differed from the migratory patterns of all other ethnic groups in the region. Soninka migration is international and oriented primarily toward Europe. It has recently become more intense than that of the poular. The determinants of migration in the two groups appear related more to the structure of households than to lack of educational and health facilities or even of food at the village level. Pastoral life and its associated beliefs and religious ideology appear to have been the principal determinants of precolonial movement among the Poular, while Soninka migration responded more to competition over control of manpower. Itinerant commercial activity was coupled with use of slave labor to ensure food production. But the suppression of slavery and crises of subsistence aggravated by colonial policy provoked ever more distant migration, which found a focus in the French demand for labor after World War II. Migration as an alternative does not appear to have been as significant for the Poular until more recently, when subsistence agriculture and the sale of animals were no longer sufficient to cover monetary needs. Male migration among the Soninka is a

  2. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  3. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.

    PubMed

    López-Casas, S; Jiménez-Segura, L F; Agostinho, A A; Pérez, C M

    2016-07-01

    Magdalena River basin potamodromous fishes have two annual reproductive seasons: the subienda in the first half of the year and the mitaca in the second. Both upstream migrations are c. 30-45 days long; after that, with the onset of the rainy season, fishes spawn and remain in the river (resident individuals) or start a downstream movement (the bajanza) to return to the Magdalena floodplain lakes (nursery, shelter and feeding grounds). Due to their particular gonad development the bocachico Prochilodus magdalenae and probably the comelón Leporinus muyscorum are physiologically able to undertake two annual basin migrations. In the presence of dams or hydropower structures, fishes are able to find alternative migration routes. Some species should be re-classified in their migratory behaviour. PMID:27073186

  4. Meandering Brownian Donkeys

    NASA Astrophysics Data System (ADS)

    Eichhorn, R.; Reimann, P.

    2004-04-01

    We consider a Brownian particle whose motion is confined to a ``meandering'' pathway and which is driven away from thermal equilibrium by an alternating external force. This system exhibits absolute negative mobility, i.e. when an external static force is applied the particle moves in the direction opposite to that force. We reveal the physical mechanism behind this ``donkey-like'' behavior, and derive analytical approximations that are in excellent agreement with numerical results.

  5. Downstream-migrating fluvial point bars in the rock record

    NASA Astrophysics Data System (ADS)

    Ghinassi, Massimiliano; Ielpi, Alessandro; Aldinucci, Mauro; Fustic, Milovan

    2016-04-01

    Classical models developed for ancient fluvial point bars are based on the assumption that meander bends invariably increase their radius as meander-bend apices migrate in a direction transverse to the channel-belt axis (i.e., meander bend expansion). However, many modern meandering rivers are also characterized by down-valley migration of the bend apex, a mechanism that takes place without a significant change in meander radius and wavelength. Downstream-migrating fluvial point bars (DMFPB) are the dominant architectural element of these types of meander belts. Yet they are poorly known from ancient fluvial-channel belts, since their disambiguation from expansional point bars often requires fully-3D perspectives. This study aims to review DMFPB deposits spanning in age from Devonian to Holocene, and to discuss their main architectural and sedimentological features from published outcrop, borehole and 3D-seismic datasets. Fluvial successions hosting DMFPB mainly accumulated in low accommodation conditions, where channel belts were affected by different degrees of morphological (e.g., valleys) or tectonic (e.g., axial drainage of shortening basins) confinement. In confined settings, bends migrate downstream along the erosion-resistant valley flanks and little or no floodplain deposits are preserved. Progressive floor aggradation (e.g., valley filling) allow meander belts with DMFPB to decrease their degree of confinement. In less confined settings, meander bends migrate downstream mainly after impinging against older, erosion-resistant channel fill mud. By contrast, tectonic confinement is commonly associated with uplifted alluvial plains that prevented meander-bend expansion, in turn triggering downstream translation. At the scale of individual point bars, translational morphodynamics promote the preservation of downstream-bar deposits, whereas the coarser-grained upstream and central beds are less frequently preserved. However, enhanced preservation of upstream

  6. Remote sensing of stream flow rates - Correlation of meander and discharge spectra

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Schubert, G.

    1973-01-01

    Results of a study of river meander patterns and discharges, in which attempt was made to correlate the discharge spectrum of a river with the river meander power spectrum determined from aerial and satellite imagery. Some significant characteristics of both the discharge and the meander spectra have been discovered. Discharge frequency spectra based on long-term records of daily streamflow are found to have an inverse power-law dependence on discharge. This is shown to reflect the short-term decay of individual floods which are found to have an inverse power-law dependence on time. Meander power spectra for a number of river reaches, digitized from aerial photography, also show significant structure, the power spectral density having an inverse power-law dependence on wave number over one or more portions of the spectrum with breaks in the spectra at characteristic wave numbers. A number of examples of typical discharge and meander spectra are shown.

  7. Were Rivers Flowing across the Sahara During the Last Interglacial? Implications for Human Migration through Africa

    PubMed Central

    Coulthard, Tom J.; Ramirez, Jorge A.; Barton, Nick; Rogerson, Mike; Brücher, Tim

    2013-01-01

    Human migration north through Africa is contentious. This paper uses a novel palaeohydrological and hydraulic modelling approach to test the hypothesis that under wetter climates c.100,000 years ago major river systems ran north across the Sahara to the Mediterranean, creating viable migration routes. We confirm that three of these now buried palaeo river systems could have been active at the key time of human migration across the Sahara. Unexpectedly, it is the most western of these three rivers, the Irharhar river, that represents the most likely route for human migration. The Irharhar river flows directly south to north, uniquely linking the mountain areas experiencing monsoon climates at these times to temperate Mediterranean environments where food and resources would have been abundant. The findings have major implications for our understanding of how humans migrated north through Africa, for the first time providing a quantitative perspective on the probabilities that these routes were viable for human habitation at these times. PMID:24040347

  8. Distinguishing meanders of the Kuroshio using machine learning

    NASA Astrophysics Data System (ADS)

    Plotkin, David A.; Weare, Jonathan; Abbot, Dorian S.

    2014-10-01

    The Kuroshio south of Japan is often described as being bimodal, with abrupt transitions between a straight path state that stays near the coast (small meander) and a meandering state that deviates from the coast (large meander). Despite evidence of the existence of two or more states of the Kuroshio, previous data-driven studies have shown only high variability of the current; they have not, however, demonstrated bimodality in the sense of two states of relatively high probability separated by a region of relatively low probability. We use singular value decomposition (SVD), a standard time series analysis method for characterizing variability, and diffusion maps and spectral clustering (DMSC), a machine learning algorithm that seeks multimodality, to investigate Kuroshio reanalysis output. By applying these methods to a time series of velocity fields, we find that (1) the Kuroshio is bimodal, with high inflow and low path variability in the small meander and low inflow and high path variability in the large meander, (2) the state of the system correlates highly with the location of the recirculation gyre south of Japan, and (3) the meanders are better characterized by path variability than by mean path. Because these results are consistent with satellite sea surface height data, they are not an artifact of the model used for reanalysis. Further, our results provide evidence for a previously proposed transition mechanism based on the strengthening, migration, and weakening of the recirculation gyre south of Japan and can therefore help direct future modeling studies.

  9. Sediment supply as a driver of river evolution in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Ahmed, Joshua; Constantine, José Antonio; Dunne, Thomas; Legleiter, Carl; Lazarus, Eli D.

    2015-04-01

    The Amazon represents the only large river basin in the world where there is a sufficient range of sediment supplies and a lack of engineering controls to assess how sediment supply drives the evolution of meandering rivers. Despite recent analytical advances (Asahi et al., 2013; Pittaluga and Seminara, 2011), modern theory does not yet identify or explain the effects of externally imposed sediment supplies, a fundamental river characteristic, on meandering river evolution. These sediment supplies would be radically reduced by the construction of large dams proposed for the Amazon Basin (Finer and Jenkins, 2012). Here, we demonstrate that the sediment loads imposed by their respective drainage basins determine planform changes in lowland rivers across the Amazon. Our analysis, based on Landsat image sequences, indicates that rivers with high sediment loads draining the Andes and associated foreland basin experience annual migration rates that are on average four times faster than rivers with lower sediment loads draining the Central Amazon Trough and shields. Incidents of meander cutoff also occur more frequently along the rivers of the Andes and foreland basin, where the number of oxbows in the floodplains is more than twice that observed in the floodplains of the Central Amazon Trough and shields. Our results, which cannot be explained by differences in channel slope or hydrology, highlight the importance of sediment supply in modulating the ability of meandering alluvial rivers to reshape the floodplain environment through river migration. Asahi, K., Shimizu, Y., Nelson, J., Parker, G., 2013. Numerical simulation of river meandering with self-evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2013JF002752. Finer, M., Jenkins, C.N., 2012. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLOS One, 7(4), e35126. Pittaluga, M.B., Seminara, G., 2011. Nonlinearity and unsteadiness in river

  10. Using High-Resolution Field Measurements to Model Dune Kinematics in a Large Elongate Meander Bend.

    NASA Astrophysics Data System (ADS)

    Konsoer, K. M.; Rhoads, B. L.; Best, J.; Frias, C. E.; Abad, J. D.; Langendoen, E. J.

    2014-12-01

    Due to recent advances in hydroacoustic technology, such as the development of multibeam echo sounders, it is now possible to obtain highly accurate and detailed bathymetric data for river channels. These data provide the basis for detailed characterizations of bed form morphology ranging from individual ripples to composite dune fields. Theoretical models suggest that bed forms reach an equilibrium morphology based on hydraulic conditions during steady flow. However, at the scale of individual meander bends, bed form morphology will vary according to the local flow structure as influenced by overall bed morphology and planform curvature. Thus, the coevolution of flow structure, bed form morphology, and sediment transport should vary throughout a meander bend. This paper examines spatial variation in bed form characteristics and rates of bed form migration, and thus bed material transport, within a large, actively migrating, elongate meander loop. During a May 2013 flood event on Maier Bend, Wabash River (IL-IN, USA), repeat multibeam echo sounding surveys were conducted ~4 hours apart, providing estimates of dune celerity and volumetric rates of sediment transport at different locations around the bend. Three-dimensional velocity measurements, obtained using an acoustic Doppler current profiler, provide hydraulic data for evaluating interactions between flow structure and bed form morphology. Results show that bed form morphology is highly variable within the bend, ranging from barchans dunes on the upstream limb, 2D ripples across the point bar, and 3D composite dunes with wavelength of ~20 meters near the bend apex. Rates of dune celerity varied from 0.3 m/hr to 0.7 m/hr and were dependent on bed form geometry and local hydraulic conditions. The high-resolution data on flow and form are used to calibrate a 2D numerical model of sediment transport through the bend. Simulations using the calibrated model are used to evaluate the fluvial processes underlying

  11. Mainstem-tributary linkages by mayfly migration help sustain salmonids in a warming river network.

    PubMed

    Uno, Hiromi; Power, Mary E

    2015-10-01

    Animal migrations can link ecosystems across space. We discovered an aquatic insect that migrates between a river mainstem and its tributaries, and provides an important trophic subsidy for tributary predators. A mayfly, Ephemerella maculata, rears in a warm, sunlit productive river mainstem, then migrates as adults to cool, shaded unproductive tributaries where they oviposit and die. This migration tripled insect flux into a tributary for 1 month in summer. A manipulative field experiment showed that this E. maculata subsidy nearly tripled the growth of the young of the year steelhead trout (Oncorhynchus mykiss) in the recipient tributary over the summer months, and was more important than terrestrial invertebrate subsidies, which have been considered the primary food source for predators in small, forested creeks. By delivering food subsidies from productive but warming river mainstems to cool but food-limited tributaries, aquatic insect migrations could enhance resilience to cool-water predators in warming river networks. PMID:26248587

  12. The effects of floodplain soil heterogeneity on meander planform shape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Meander migration rates and patterns are a function of the forces exerted by the flowing water on the streambanks and the resistance to erosion of the bank soils. Past analytical studies of planform development have mostly focused on the complexity of the governing equations, i.e. hydrodynamics, and...

  13. Modeling high sinuosity meanders in a small flume

    NASA Astrophysics Data System (ADS)

    Smith, Charles E.

    1998-10-01

    Meandering channels with exposed point bars and sinuosities near 2.0 can spontaneously develop in a mix of diatomaceous earth and kaolinite clay. The experimental streams that were studied were as small as 4 cm wide. They showed many of the characteristics found in large meandering streams such as migration of channels, formation of point bars, clay plugs, chutes and bar scrolls. Most of the meander series began as a first sharp bend that induced subsequent bends down stream. Sediment transport, specifically bed load, together with the slope of the floodplain, were the dominant influences, if not the cause of the channel instabilities that led to channel migration and bend formation. Bank cohesion allowed migrating channels to assume sinuous shapes and to maintain fairly uniform widths. The experiments were conducted in a small flume and used simple equipment. The use of light, fine grained materials in flume experiments may prove to be valuable in learning more about the conditions of soil, slope and flow which produce various meandering planforms.

  14. Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters

    PubMed Central

    Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.

    2010-01-01

    Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel

  15. Meander in valley crossing a deep-ocean fan.

    PubMed

    Shepard, F P

    1966-10-21

    Seaward of most submarine canyons there are large sediment fans comparable to the fans at the base of mountain ranges. Many of the submarine fans are cut by valleys called fan-valleys which usually connect with the mouths of submarine canyons. Loop-like bends or meanders characterize the channels of rivers in their lower flood plains, but have never been found in the shallow channels that cross the alluvial fans at the base of mountain canyons. Therefore, it was surprising to find that the channel in a very deep submarine fan-valley off Monterey Bay, California, has a tight meander. PMID:17751705

  16. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering - The Kura River (southern Caucasus)

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Sukhishvili, Lasha; Faust, Dominik

    2016-08-01

    One reaction of rivers toward allogenic triggers is the large-scale river channel migration in the form of avulsions or progressive lateral migrations (combing) that are widespread phenomena around the world during the late Quaternary. Because they potentially cause significant human and economic losses and significantly change geomorphic processes in the affected regions, a deeper knowledge about causes and rates is essential and furthermore helps to identify the dominant drivers of regional landscape evolution during different periods. One possible cause for river channel migrations is sediment-flux steering, i.e. the shift of rivers in sedimentary basins against a tectonically driven trend caused by transverse sediment discharge. During the last 30 years, sediment-flux steering has been investigated by field and experimental studies in extensional half-grabens with generally small-sized transverse catchments and/or volcaniclastic sedimentation. This study presents geomorphologic, geochronologic, and heavy mineral analyses together with complementary tectonomorphometric and earthquake data to investigate late Quaternary channel migrations of the Kura River in the southern foreland basin of the Greater Caucasus, a region where the late Quaternary landscape evolution is rather fragmentarily understood so far. Special emphasis of this study is given to the interplay between axial river flow and transverse sediment supply leading to sediment-flux steering. Large-scale migrations of the course of the Kura River during the late Quaternary reflect the interplay between tectonic processes leading to the southwestward advance of the Kura Fold-and-Thrust-Belt and climatically-triggered sediment-flux steering caused by aggradation phases of transverse rivers with comparatively large catchment areas in the Lesser Caucasus. During generally warmer periods such as the Holocene with fluvial incision and low sediment supply from the transverse rivers, the main Kura River could

  17. Relationship Between Vortex Meander and Ambient Turbulence

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Hardy, Gordon H.; Meyn, Larry A.

    2006-01-01

    Efforts are currently underway to increase the capacity of airports by use of closely-spaced parallel runways. If such an objective is to be achieved safely and efficiently during both visual and instrument flight conditions, it will be necessary to develop more precise methods for the prediction of the motion and spread of the hazard posed by the lift-generated vortex-wakes of aircraft, and their uncertainties. The purpose of the present study is to relate the motion induced in vortex filaments by turbulence in the ambient flow field to the measured turbulence in the flow field. The problem came about when observations made in the two largest NASA wind tunnels indicated that extended exposure of vortex wakes to the turbulence in the wind tunnel air stream causes the centers of the vortices to meander about with time at a given downstream station where wake measurements are being made. Although such a behavior was expected, the turbulence level based on the maximum amplitude of meander was much less than the root-mean-squared value measured in the free-stream of the wind tunnel by use of hot-film anemometers. An analysis of the time-dependent motion of segments of vortex filaments as they interact with an eddy, indicates that the inertia of the filaments retards their motion enough in the early part of their travel to account for a large part of the difference in the two determinations of turbulence level. Migration of vortex filaments from one turbulent eddy to another (probably with a different orientation), is believed to account for the remainder of the difference. Methods that may possibly be developed for use in the measurement of the magnitude of the more intense eddies in turbulent flow fields and how they should be adjusted to predict vortex meander are then discussed.

  18. Survival of migrating salmon smolts in large rivers with and without dams.

    PubMed

    Welch, David W; Rechisky, Erin L; Melnychuk, Michael C; Porter, Aswea D; Walters, Carl J; Clements, Shaun; Clemens, Benjamin J; McKinley, R Scott; Schreck, Carl

    2008-10-28

    The mortality of salmon smolts during their migration out of freshwater and into the ocean has been difficult to measure. In the Columbia River, which has an extensive network of hydroelectric dams, the decline in abundance of adult salmon returning from the ocean since the late 1970s has been ascribed in large measure to the presence of the dams, although the completion of the hydropower system occurred at the same time as large-scale shifts in ocean climate, as measured by climate indices such as the Pacific Decadal Oscillation. We measured the survival of salmon smolts during their migration to sea using elements of the large-scale acoustic telemetry system, the Pacific Ocean Shelf Tracking (POST) array. Survival measurements using acoustic tags were comparable to those obtained independently using the Passive Integrated Transponder (PIT) tag system, which is operational at Columbia and Snake River dams. Because the technology underlying the POST array works in both freshwater and the ocean, it is therefore possible to extend the measurement of survival to large rivers lacking dams, such as the Fraser, and to also extend the measurement of survival to the lower Columbia River and estuary, where there are no dams. Of particular note, survival during the downstream migration of at least some endangered Columbia and Snake River Chinook and steelhead stocks appears to be as high or higher than that of the same species migrating out of the Fraser River in Canada, which lacks dams. Equally surprising, smolt survival during migration through the hydrosystem, when scaled by either the time or distance migrated, is higher than in the lower Columbia River and estuary where dams are absent. Our results raise important questions regarding the factors that are preventing the recovery of salmon stocks in the Columbia and the future health of stocks in the Fraser River. PMID:18959485

  19. Out of Africa: the importance of rivers as human migration corridors

    NASA Astrophysics Data System (ADS)

    Ramirez, J. A.; Coulthard, T. J.; Rogerson, M.; Barton, N.; Bruecher, T.

    2013-12-01

    The route and timing of Homo sapiens exiting Africa remains uncertain. Corridors leading out of Africa through the Sahara, the Nile Valley, and the Red Sea coast have been proposed as migration routes for anatomically modern humans 80,000-130,000 years ago. During this time climate conditions in the Sahara were wetter than present day, and monsoon rainfall fed rivers that flowed across the desert landscape. The location and timing of these rivers may have supported human migration northward from central Africa to the Mediterranean coast, and onwards to Europe or Asia. Here, we use palaeoclimate rainfall and a hydrological model to spatially simulate and quantitatively test the existence of three major rivers crossing the Sahara from south to north during the time of human migration. We provide evidence that, given realistic underlying climatology, the well-known Sahabi and Kufrah rivers very likely flowed across modern day Libya and reached the coast. More unexpectedly an additional river crossed the core of the Sahara through Algeria (Irharhar river) and flowed into the Chotts basin. The Irharhar river is unique, because it links locations in central Africa experiencing monsoon climates with temperate coastal Mediterranean environments where food and resources were likely abundant. From an ecological perspective, this little-known corridor may prove to be the most parsimonious migration route. Support for the Irharar as a viable migration corridor is provided by its geographic proximity to middle Stone Age archaeological artefacts found in North Africa. Our new, highly novel approach provides the first quantitative analysis of the likelihood that rivers occurred during the critical period of human migration out of Africa. Simulated probability of surface water in North Africa during the last interglacial and the location of tools and ornaments from the Middle Stone Age.

  20. Upstream migration of Pacific lampreys in the John Day River, Oregon: Behavior, timing, and habitat use

    USGS Publications Warehouse

    Robinson, T. Craig; Bayer, J.M.

    2005-01-01

    Adult Pacific lamprey migration and habitat preferences for over-winter holding and spawning, and larval rearing in tributaries to the Columbia River are not well understood. The John Day River is one such tributary where larval and adult stages of this species have been documented, and its free-flowing character provided the opportunity to study migration of Pacific lampreys unimpeded by passage constraints. Forty-two adult Pacific lampreys were captured in the John Day River near its mouth during their upstream migration. Pacific lampreys were surgically implanted with radio transmitters and released onsite, and tracked by fixed-site, aerial, and terrestrial telemetry methods for nearly one year. Adults moved upstream exclusively at night, with a mean rate of 11.1 ?? 6.3 km/day. They halted upstream migration by September, and held a single position for approximately six months in the lateral margins of riffles and glides, using boulders for cover. More than half of Pacific lampreys resumed migration in March before ending movement in early May. Pacific lampreys that resumed migration in spring completed a median of 87% of their upstream migration before over-winter holding. Upon completing migration. Pacific lampreys briefly held position before beginning downstream movement at the end of May. Though not directly observed, halting migration and movement downstream were likely the result of spawning and death. Gains in adult Pacific lamprey passage through the Columbia River hydrosystem and tributaries may be made by improvements that would expedite migration during spring and summer and increase the quantity and variety of cover and refuge opportunities. ?? 2005 by the Northwest Scientific Association. All rights reserved.

  1. The Wavelet ToolKat: A set of tools for the analysis of series through wavelet transforms. Application to the channel curvature and the slope control of three free meandering rivers in the Amazon basin.

    NASA Astrophysics Data System (ADS)

    Vaudor, Lise; Piegay, Herve; Wawrzyniak, Vincent; Spitoni, Marie

    2016-04-01

    The form and functioning of a geomorphic system result from processes operating at various spatial and temporal scales. Longitudinal channel characteristics thus exhibit complex patterns which vary according to the scale of study, might be periodic or segmented, and are generally blurred by noise. Describing the intricate, multiscale structure of such signals, and identifying at which scales the patterns are dominant and over which sub-reach, could help determine at which scales they should be investigated, and provide insights into the main controlling factors. Wavelet transforms aim at describing data at multiple scales (either in time or space), and are now exploited in geophysics for the analysis of nonstationary series of data. They provide a consistent, non-arbitrary, and multiscale description of a signal's variations and help explore potential causalities. Nevertheless, their use in fluvial geomorphology, notably to study longitudinal patterns, is hindered by a lack of user-friendly tools to help understand, implement, and interpret them. We have developed a free application, The Wavelet ToolKat, designed to facilitate the use of wavelet transforms on temporal or spatial series. We illustrate its usefulness describing longitudinal channel curvature and slope of three freely meandering rivers in the Amazon basin (the Purus, Juruá and Madre de Dios rivers), using topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000. Three types of wavelet transforms are used, with different purposes. Continuous Wavelet Transforms are used to identify in a non-arbitrary way the dominant scales and locations at which channel curvature and slope vary. Cross-wavelet transforms, and wavelet coherence and phase are used to identify scales and locations exhibiting significant channel curvature and slope co-variations. Maximal Overlap Discrete Wavelet Transforms decompose data into their variations at a series of scales and are used to provide

  2. Arctic River Mobility: A Baseline Assessment

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Wilson, C. J.; Brumby, S. P.; Pope, P. A.

    2009-12-01

    In many arctic river systems, permafrost and the presence of frozen floodplain materials provides a significant source of bank cohesion. Due to this cohesion, permafrost may play an important control of arctic river mobility and meandering dynamics. Whether changes in the rates of permafrost thawing has had or will have as significant a geomorphic impact on arctic river meandering as has already been observed for arctic coastline retreat, lake size and distribution, and hillslope stability is at present an unanswered question. The potential impact of climate driven changes in arctic river meandering has important implications for river planform morphology, floodplain dynamics, river ecology, and the export of carbon and nutrients to coastal oceans. We present results of remote sensing analysis of river mobility for the Yukon River in Alaska and sections of the Siberian Rivers including the Lena, the Kolyma and the Indigirka Rivers. Comparisons of river location at successive intervals in time were conducted using Landsat imagery archives and higher resolution aerial photographs and satellite imagery. Extraction of river channel locations was accomplished using the GeniePro automated feature extraction software. Over the period of Landsat coverage (mid-1980s to present) arctic rivers show limited to no movement at the resolution of the Landsat data (30 m per pixel). On the Yukon Flats regions of the Yukon River, the most mobile sections of the river have migration rates comparable to reach-average values reported for temperate rivers; given that large portions of the Yukon display no detectable movement, reach-averaged values are far less than observed in temperate systems. Field inspection of areas of high erosion along the Yukon River indicate that erosional processes associated with the thermal degradation of permafrost play a dominant role in many of these areas. Thermal niching and large scale bank collapse due to undercutting play a large role in bank erosion

  3. Modeling the stratigraphy and preservation potential of meandering stream deposits

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Clevis, Q.; Lock, G.; Lancaster, S.; Desitter, A.

    2003-12-01

    Both natural and human-induced modes of river and floodplain behavior have the potential to obscure, expose, or even destroy portions of the archaeological record. In valley systems with actively meandering channels much material can be lost to lateral bank erosion. Conversely, floodplain aggradation can bury and therefore obscure sites. In this study we aim to quantify the preservation potential of fluvial units containing archaeological sites as a function of the natural process of meandering, climate change and increased land-use during the Holocene. We used the CHILD simulation model of landscape evolution to explore alternative scenarios in which these three factors are both varied independently and combined. Boundary and initial conditions for the model scenarios are based on the Holocene evolution of the archaeologically-rich Upper Thames Valley, which is known to have witnessed variations in flood frequency, land-clearance, episodic alluviation and river entrenchment. The CHILD model is set up to combine four components that simulate the development of valley and floodplain system: hillslope and channel erosion, lateral stream meandering, overbank deposition, and the accumulation of a 3D stratigraphy. The landscape is represented by an adaptable triangular mesh of nodes, especially suited for simulating the gradual shifting of meander bends. The new stratigraphic layering routine recently added to the model in improves the resolution of the stratigraphic record accumulated by the model. Simulation results reveal systematic controls on preservation potential, and suggest potential sources of bias in the archaeological record.

  4. Environmental correlates of upstream migration of yellow-phase American eels in the Potomac River drainage

    USGS Publications Warehouse

    Welsh, Stuart; Heather L. Liller

    2013-01-01

    Assessing the relationships between upstream migration and environmental variables is important to understanding the ecology of yellow-phase American Eels Anguilla rostrata. During an American Eel migration study within the lower Shenandoah River (Potomac River drainage), we counted and measured American Eels at the Millville Dam eel ladder for three periods: 14 May–23 July 2004, 7–30 September 2004, and 1 June–31 July 2005. Using generalized estimating equations, we modeled each time series of daily American Eel counts by fitting time-varying environmental covariates of lunar illumination (LI), river discharge (RD), and water temperature (WT), including 1-d and 2-d lags of each covariate. Information-theoretic approaches were used for model selection and inference. A total of 4,847 American Eels (19–74 cm total length) used the ladder during the three periods, including 2,622 individuals during a 2-d span following a hurricane-induced peak in river discharge. Additive-effects models of RD + WT, a 2-d lag of LI + RD, and LI + RD were supported for the three periods, respectively. Parameter estimates were positive for river discharge for each time period, negative for lunar illumination for two periods and positive for water temperature during one period. Additive-effects models supported synergistic influences of environmental variables on the upstream migration of yellow-phase American Eels, although river discharge was consistently supported as an influential correlate of upstream migration.

  5. Quantifying Knick Point Migration Rates Related to the Messinian Crisis. The Case of the Nile River

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt; Pucher, Christoph; Robl, Jörg; Hergarten, Stefan

    2016-04-01

    The Messinian crisis is a temporally well-constrained period between 5.3 my and 5.9 my, when the strait of Gibraltar was tectonically closed and the Mediterranean Sea had consequently desiccated. This dramatic base level drop by about 1500 vertical meters had a profound influence on the geomorphic evolution of the major drainages surrounding the Mediterranean basin. In particular, it caused substantial knickpoints in the major rivers including the Rhone, the Ebro, the Po and the Nile. While the knickpoints of the Rhone and Ebro have been studied previously and the knickpoints created by the Po may lie today underneath the Po plains, the knickpoint and its migration along the Nile has not been studied and would have migrated along its current river channel. In this contribution we focus on numerical modelling of the knickpoint migration in the Nile and use our modelling results in comparison with the present day morphological analyses of the river to constrain absolute migration rates. We suspect that the first Nile cataract near Assuan, some 1000 km upstream of today's river mouth may be the relict of the Messinian salinity crisis making it to one of the fastest migrating knickpoints in the world.

  6. Seasonal migration and homing of channel catfish in the lower Wisconsin River, Wisconsin

    USGS Publications Warehouse

    Pellett, Thomas D.; Van Dyck, Gene J.; Adams, Jean V.

    1998-01-01

    A multiyear tag and recapture study was conducted to determine whether channel catfishIctalurus punctatus were migratory and if they had strong homing tendencies. Over 10,000 channel catfish were tagged from the lower Wisconsin River and adjacent waters of the upper Mississippi River during the 3-year sampling period. Data on movements were obtained from study recaptures and through tag returns and harvest information provided by sport anglers and commercial fishers. Channel catfish occupied relatively small home ranges during summer, migrated downstream to the upper Mississippi River in autumn, then migrated back up the Wisconsin River in spring to spawn and to occupy the same summer home sites they had used in previous summers. Fish size was a factor in the degree of fidelity to summer home sites, with larger fish showing greater fidelity.

  7. Monitoring the Migrations of Wild Snake River Spring and Summer Chinook Salmon Smolts, 1992 Annual Report.

    SciTech Connect

    Achord, Stephen; Marsh, Douglas M.; Kamikawa, Daniel J.

    1994-09-01

    We PIT tagged wild spring and summer chinook salmon parr in the Snake River Basin in 1991, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, and McNary Dams during spring and summer 1992. This report details our findings.

  8. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1996 Annual Report.

    SciTech Connect

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    1997-07-01

    We PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1995 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams during spring and summer 1996.

  9. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000 Annual Report.

    SciTech Connect

    Achord, Stephen

    2001-08-01

    This report details the 2000 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989.

  10. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1999 Annual Report.

    SciTech Connect

    Achord, Stephen

    2001-06-01

    This report details the 1999 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989.

  11. Optical remote sensing of bedforms in a field-scale meandering channel

    NASA Astrophysics Data System (ADS)

    Palmsten, M. L.; Kozarek, J. L.; Calantoni, J.

    2012-12-01

    The morphology and migration rate of bedforms in a sandy meander vary as a result of differences in boundary shear stress around the meander bend. The objective of this work is to quantify bedform size and migration rate using synoptic observations of remotely sensed water depth around a meander bend. We conducted an experiment from 9-20 July 2012 at the Saint Anthony Falls Laboratory Outdoor StreamLab (OSL), University of Minnesota. The OSL consists of a bedload dominated, sandy (D50 = 0.7 mm) meandering channel approximately 40 m in length, 2.7 m in width, and 0.3 m in depth. Riffles were installed upstream and downstream of the meander bend. Discharge was fixed at 199 L/s throughout the experiment and sediment feed rate was 4.1 kg/min. Four color video cameras were mounted on a tower 5 m above the floodplain on the inner bank of the meander looking down into the stream. Two additional cameras, including one near infra-red camera were mounted on the outer bank of the meander. Video data were supplemented by 1 mm resolution measurements of velocity and sonar observations of bed elevation. The sonar and video data were used to create a transfer function between pixel intensity and water depth and pixel location was corrected for refraction, resulting ~0.01 m resolution depth measurements along the entire meander bend. Initially, the stream bed was flat. A pool formed immediately downstream of the riffle. A point bar and ripples developed during the first hour of the experiment. The morphology of bedforms changed with position around the meander bend from convex upstream to convex downstream. The sinuosity of bedforms also increased around the meander bend, reaching maximum near the bend apex. Bedform wavelength increased around the meander bend from 0.5 m upstream of the bend apex to > 1.5 m downstream of the bed apex. Bedform spacing increased as alternating bedforms increased in amplitude while neighboring bedforms decreased in amplitude until they disappeared

  12. Migration of precocious male hatchery chinook salmon in the Umatilla River, Oregon

    USGS Publications Warehouse

    Zimmerman, C.E.; Stonecypher, R.W., Jr.; Hayes, M.C.

    2003-01-01

    Between 1993 and 2000, precocious yearling males of hatchery-produced fall and spring chinook salmon Oncorhynchus tshawytscha composed 3.6-82.1% of chinook salmon runs to the Umatilla River, Oregon. These yearling males are smaller than typical jack salmon, which spend a full winter in the ocean, and are commonly referred to as "mini jacks." Minijack fall chinook salmon are characterized by enlarged testes and an increased gonadosomatic index. Our goal was to determine if minijacks migrated to saltwater between the time they are released from the hatchery and the time they return to the Umatilla River, a period of 4-6 months. During 1999-2000, we collected otoliths from an adult male fall chinook salmon, 12 spring chinook salmon minijacks, and 10 fall chinook salmon minijacks. We measured strontium:calcium (Sr:Ca) ratios from the age-1 annulus to the edge of the otolith to determine whether these fish had migrated to the ocean. The Sr:Ca ratios increased from low values near the age-1 annulus, similar to ratios expected from freshwaters, to higher values near the edge of the otolith. The Sr:Ca ratios increased to levels similar to ratios expected in saltwater, indicating that these fish had migrated to saltwater before returning to the Umatilla River. Analysis of published water chemistry data from the Columbia and Snake rivers and rearing experiments in the main-stem Columbia River confirmed that high Sr:Ca ratios measured in otoliths were not the result of high strontium levels encountered in the freshwater environment. Previously assumed to remain within freshwater and near the point of release, our results suggest these minijack salmon migrated at least 800 km and past three hydroelectric dams to reach saltwater and return to the Umatilla River.

  13. Miller City levee break and incipient meander cutoff

    USGS Publications Warehouse

    Oberg, K.A.; Jacobson, R.B.

    1994-01-01

    On July 15, 1993, the flooding Mississippi River broke through a levee near Miller City, Ill., at the head of the Mississippi Embayment, approximately 55 km upstream from Cairo, Ill. Flow through the break crossed a high-amplitude meander bend and reentered the main channel approximately 24 km upstream from Cairo, bypassing 31 km of the river channel. The incipient meander cutoff is one of the more dramatic examples of geomorphic change accompanying the 1993 flood. Discharge and bathymetry data were collected in the incipient cutoff channel every other day during the 2 weeks before and after the flood peak. During the peak on August 7, as much as 8,100 m3/s, or approximately 25 percent of the Mississippi flood discharge, was bypassing the meander bend. The flow excavated an irregular channel in the flood plain up to 25 m deep. This irregular channel extends as far as 2 km downstream from the levee break. By August 25, as much as 2,900 m3/s was still flowing through the levee break; with recession of the flood, extensive sand deposits were exposed on the margins and downstream from the scoured areas. Preliminary data indicate that local relief, such as relict channels and preexisting county roads, affected the extent of new channel formation.

  14. Spawning migration movements of Lost River and shortnose suckers in the Williamson and Sprague Rivers, Oregon, following the removal of Chiloquin Dam-2009 Annual Report

    USGS Publications Warehouse

    Ellsworth, Craig M.; VanderKooi, Scott P.

    2011-01-01

    The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.

  15. Evaluating spawning migration patterns and predicting spawning success of shovelnose sturgeon in the Lower Missouri River

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.

    2011-01-01

    Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the

  16. Evaluating spawning migration patterns and predicting spawning success of shovelnose sturgeon in the Lower Missouri River

    USGS Publications Warehouse

    Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.

    2011-01-01

    Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354 rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402 rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the

  17. Mississippi River and sea surface height effects on oil slick migration.

    PubMed

    Falcini, Frederico; Jerolmack, Douglas J; Nardelli, Bruno Buongiorno

    2012-01-01

    Millions of barrels of oil escaped into the Gulf of Mexico (GoM) after the 20 April, 2010 explosion of Deepwater Horizon (DH). Ocean circulation models were used to forecast oil slick migration in the GoM, however such models do not explicitly treat the effects of secondary eddy-slopes or Mississippi River (MR) hydrodynamics. Here we report oil front migration that appears to be driven by sea surface level (SSL) slopes, and identify a previously unreported effect of the MR plume: under conditions of relatively high river discharge and weak winds, a freshwater mound can form around the MR Delta. We performed temporal oil slick position and altimeter analysis, employing both interpolated altimetry data and along-track measurements for coastal applications. The observed freshwater mound appears to have pushed the DH oil slick seaward from the Delta coastline. We provide a physical mechanism for this novel effect of the MR, using a two-layer pressure-driven flow model. Results show how SSL variations can drive a cross-slope migration of surface oil slicks that may reach velocities of order km/day, and confirm a lag time of order 5-10 days between mound formation and slick migration, as observed form the satellite analysis. Incorporating these effects into more complex ocean models will improve forecasts of slick migration for future spills. More generally, large SSL variations at the MR mouth may also affect the dispersal of freshwater, nutrients and sediment associated with the MR plume. PMID:22558317

  18. Mississippi River and Sea Surface Height Effects on Oil Slick Migration

    PubMed Central

    Falcini, Frederico; Jerolmack, Douglas J.; Buongiorno Nardelli, Bruno

    2012-01-01

    Millions of barrels of oil escaped into the Gulf of Mexico (GoM) after the 20 April, 2010 explosion of Deepwater Horizon (DH). Ocean circulation models were used to forecast oil slick migration in the GoM, however such models do not explicitly treat the effects of secondary eddy-slopes or Mississippi River (MR) hydrodynamics. Here we report oil front migration that appears to be driven by sea surface level (SSL) slopes, and identify a previously unreported effect of the MR plume: under conditions of relatively high river discharge and weak winds, a freshwater mound can form around the MR Delta. We performed temporal oil slick position and altimeter analysis, employing both interpolated altimetry data and along-track measurements for coastal applications. The observed freshwater mound appears to have pushed the DH oil slick seaward from the Delta coastline. We provide a physical mechanism for this novel effect of the MR, using a two-layer pressure-driven flow model. Results show how SSL variations can drive a cross-slope migration of surface oil slicks that may reach velocities of order km/day, and confirm a lag time of order 5–10 days between mound formation and slick migration, as observed form the satellite analysis. Incorporating these effects into more complex ocean models will improve forecasts of slick migration for future spills. More generally, large SSL variations at the MR mouth may also affect the dispersal of freshwater, nutrients and sediment associated with the MR plume. PMID:22558317

  19. Interactions between hyporheic flow produced by stream meanders, bars, and dunes

    USGS Publications Warehouse

    Stonedahl, Susa H.; Harvey, Judson W.; Packman, Aaron I.

    2013-01-01

    Stream channel morphology from grain-scale roughness to large meanders drives hyporheic exchange flow. In practice, it is difficult to model hyporheic flow over the wide spectrum of topographic features typically found in rivers. As a result, many studies only characterize isolated exchange processes at a single spatial scale. In this work, we simulated hyporheic flows induced by a range of geomorphic features including meanders, bars and dunes in sand bed streams. Twenty cases were examined with 5 degrees of river meandering. Each meandering river model was run initially without any small topographic features. Models were run again after superimposing only bars and then only dunes, and then run a final time after including all scales of topographic features. This allowed us to investigate the relative importance and interactions between flows induced by different scales of topography. We found that dunes typically contributed more to hyporheic exchange than bars and meanders. Furthermore, our simulations show that the volume of water exchanged and the distributions of hyporheic residence times resulting from various scales of topographic features are close to, but not linearly additive. These findings can potentially be used to develop scaling laws for hyporheic flow that can be widely applied in streams and rivers.

  20. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994-1995 Progress (Annual) Report.

    SciTech Connect

    Achord, Stephen

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing.

  1. Stratigraphy, depositional history, and trapping mechanisms of Lone Tree Creek and Lodgepole Creek oil fields, Lower Cretaceous Fall River formation, Powder River Basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Ryer, T.A.

    1985-05-01

    Stratigraphically trapped accumulations of oil in the Lone Tree Creek and Lodgepole Creek fields occur within and just updip from a fluvial meander belt within the Fall River Formation. The meander belt can be mapped north-to-south over a distance of at least 100 mi (161 km) in the eastern part of the Powder River basin. The northern part of the meander belt contains the oil fields of the Coyote Creek-Miller Creek trend; the southern part contains only the relatively small Lone Tree Creek and Lodgepole Creek fields. These small fields are of considerable interest, as they display a style of stratigraphic trapping of hydrocarbons not observed in the prolific Coyote Creek-Miller Creek trend. The stratigraphic traps of the Coyote Creek-Miller Creek trend occur at updip facing convexities along the eastern edge of the meander belt, with abandonment clay plugs serving as lateral permeability barriers to hydrocarbon migration. Oil has been produced in part of the Lone Tree Creek field from a similar trap. The remaining part of Lone Tree Creek field and Lodgepole creek field produce from stratigraphic traps formed by lateral pinch-outs of delta-front sandstone bodies. These traps are situated updip from and apparently in continuity with the meander-belt deposits, indicating that they may have been charged with hydrocarbons that found their way through the clay-plug barriers along the margin of the meander belt. Similar, undiscovered traps may exist updip from Fall River meander belts elsewhere in the basin.

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1994 Annual Report.

    SciTech Connect

    Achord, Stephen; Matthews, Gene M.; Kamikawa, Daniel J.

    1995-09-01

    The goals of this study are to (1) characterize the outmigration timing of different wild stocks of spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence outmigration timing. The authors PIT tagged wild spring/summer chinook salmon parr in the Snake River Basin in 1993, and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, and McNary Dams during spring, summer, and fall 1994. This report details their findings.

  3. Disease Susceptibility of Hatchery Snake River Spring-Summer Chinook Salmon with Different Juvenile Migration Histories in the Columbia River.

    PubMed

    Arkoosh, Mary R; Kagley, Anna N; Anulacion, Bernadita F; Boylen, Deborah A; Sandford, Benjamin P; Loge, Frank J; Johnson, Lyndal L; Collier, Tracy K

    2006-12-01

    Various methods have been developed to mitigate the effects of dams on juvenile Pacific salmon Oncorhynchus spp. migrating to the Pacific Ocean through the Columbia River basin. In this study, we examined the health of hatchery Snake River spring and summer Chinook salmon relative to two mitigating strategies: dam bypass and transportation (e.g., barging). The health of out-migrants was assessed in terms of the difference in the incidence of mortality among fish, categorically grouped into no-bypass, bypass, and transportation life histories, in response to challenge with the marine pathogen Listonella anguillarum during seawater holding. These three life histories were defined as follows: (1) fish that were not detected at any of the juvenile bypass systems above Bonneville Dam were classified as having a no-bypass life history; (2) fish that were detected at one or more juvenile bypass systems above Bonneville Dam were classified as having a bypass life history; and (3) fish that were barged were classified as having the transportation life history. Barged fish were found to be less susceptible to L. anguillarum than in-river fish-whether bypassed or not-which suggests that transportation may help mitigate the adverse health effects of the hydropower system of the Columbia River basin on Snake River spring-summer Chinook salmon. The findings of this study are not necessarily transferable to other out-migrant stocks in the Columbia River basin, given that only one evolutionarily significant unit, that is, Snake River spring-summer Chinook salmon, was used in this study. PMID:26599158

  4. Contrasted sediment processes and morphological adjustments in three successive cutoff meanders of the Danube delta

    NASA Astrophysics Data System (ADS)

    Tiron Duţu, Laura; Provansal, Mireille; Le Coz, Jérôme; Duţu, Florin

    2014-01-01

    Since the 1980s intensive anthropogenic disturbances have affected the channel of the St. George branch, the southern distributary of the Danube River. The meander cutoff programme since 1984-1988 induced different hydrosedimentary impacts on the local distribution of river flow velocities, discharge, and sediment fluxes between the former meanders and the man-made canals (Ichim and Radoane, 1986; Popa, 1997; Panin, 2003). This paper selects three large cutoff meander reaches of the St. George branch (the Mahmudia, Dunavăţ de Sus, and Dunavăţ de Jos meanders noted here as M1, M2, and M3, respectively) as an example to analyse the human impact in the Danube River delta. The diversion of the flow induces strong modifications by acceleration of the fluxes through the artificial canals combined with dramatically enhanced deposition in the former meander where it was observed in two cases (M1 and M3) with slight modifications in M2. An exceptional flood that occurred in April 2006 offered a good opportunity for scanning different cross sections of the meander systems. Bathymetry, flow velocity, suspended-load concentration, and liquid and solid discharge data were acquired throughout several cross sections of both natural channels and artificial canals of the three cutoffs, using acoustic Doppler current profiler (ADCP) technology, in order to investigate the distribution of the flow and sediment and its impact on the hydrosedimentary processes in each channelized reach and adjacent former meander. Therefore, the results obtained during the 2006 flood were referred to a long-term evolution (1970-2006), analysed by GIS techniques.

  5. 2D numerical modelling of meandering channel formation

    NASA Astrophysics Data System (ADS)

    XIAO, Y.; ZHOU, G.; YANG, F. S.

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.

  6. Migration and habitats of diadromous Danube River sturgeons in Romania: 1998-2000

    USGS Publications Warehouse

    Kynard, B.; Suciu, R.; Horgan, M.

    2002-01-01

    Upstream migrant adults of stellate sturgeon, Acipenser stellatus (10 in 1998, 43 in 1999) and Russian sturgeon, A. gueldenstaedtii (three in 1999) were captured at river km (rkm) 58-137, mostly in the spring, and tagged with acoustic tags offering a reward for return. The overharvest was revealed by tag returns (38% in 1998, 28% in 1999) and by harvest within 26 days (and before reaching spawning grounds) of the six stellate sturgeon tracked upstream. A drop-back of > 50% of the tagged sturgeon, some to the Black Sea, shows a high sensitivity to interruption of migration and capture/handling/holding. Harvesting and dropback prevented tracking of sturgeon to spawning sites. Gillnetting and tracking of stellate sturgeon showed that the autumn migration ended in early October (river temperature 16??C) and identified a likely wintering area at river km (rkm) 75-76 (St George Branch). Thus, fishery harvesting after early October captures wintering fish, not migrants. Rare shoreline cliffs in the lower river likely create the only rocky habitat for sturgeon spawning. A survey for potential spawning habitats found five sites with rocky substrate and moderate water velocity, all ???rkm 258. Drift netting caught early life-stages of 17 fish species and one sturgeon, a beluga, Huso huso, larva likely spawned at ???rkm 258. All diadromous Danube sturgeons likely spawn at ???rkm 258.

  7. Numerical modeling of dune progression in a high amplitude meandering channel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laboratory experiments carried out by Abad and Garcia (2009) in a high-amplitude Kinoshita meandering channel show bed morphodynamics to comprise steady (local scour and deposition) and unsteady (migrating bedforms) components. The experiments are replicated with a numerical model. The sediment tran...

  8. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    SciTech Connect

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be of key

  9. Electronic tags and genetics explore variation in migrating steelhead kelts (oncorhynchus mykiss), Ninilchik river, Alaska

    USGS Publications Warehouse

    Nielsen, J.L.; Turner, S.M.; Zimmerman, C.E.

    2011-01-01

    Acoustic and archival tags examined freshwater and marine migrations of postspawn steelhead kelts (Oncorhynchus mykiss) in the Ninilchik River, Alaska, USA. Postspawn steelhead were captured at a weir in 2002-2005. Scale analysis indicated multiple migratory life histories and spawning behaviors. Acoustic tags were implanted in 99 kelts (2002-2003), and an array of acoustic receivers calculated the average speed of outmigration, timing of saltwater entry, and duration of residency in the vicinity of the river mouth. Ocean migration data were recovered from two archival tags implanted in kelts in 2004 (one male and one female). Archival tags documented seasonal differences in maximum depth and behavior with both fish spending 97% of time at sea <6 m depth (day and night). All study fish were double tagged with passive integrated transponder (PIT) tags implanted in the body cavity. Less than 4% of PIT tags were retained in postspawn steelhead. Molecular genetics demonstrated no significant differences in genetic population structure across years or among spawning life history types, suggesting a genetically panmictic population with highly diverse life history characteristics in the Ninilchik River.

  10. Fluvial Morphology and Bedform Migration in the Ebb Tidal Dominated Duplin River, Georgia

    NASA Astrophysics Data System (ADS)

    Straub, J. A.; Hill, J. C.; Viso, R. F.; Peterson, R. N.; Carter, M. L.

    2014-12-01

    The Duplin River is an ebb-domintated, salt marsh drainage system west of Sapelo Island, Georgia. With no riverine input, flow in the Duplin is dependent on local surface run off, groundwater discharge and tidal flushing. Repeat multibeam bathymetry surveys within this system provide insight into sediment transport, current dynamics, and the migration of bottom features. Examination of bathymetric changes and the rate of bedform migration can be used to help estimate net sediment transport in fluvial and tidal systems. The swath bathymetry data presented here were collected during December 2009, March 2013, and June 2013 (high and low tide) aboard a small survey vessel, using a pole-mounted Kongsberg EM3002d multibeam bathymetry system. Along-stream profiles from bathymetry data collected during a single spring tidal cycle show little bedform migration, while the more temporally distant profiles record significant shifts in both small (cm-scale) and large (m-scale) bedform position, as well as changes in the morphology of large erosional scour depressions. Previous work has suggested the larger bedforms, which maintain an ebb-oriented geometry through both ebb and flood tide, are indicative of sediment transport rates that are an order of magnitude greater during the ebb tide (Zarillo, 1985). The new data suggest punctuated events, such as storm surges, may also play an important role in the fluvial transport, although more analysis is needed to determine how sediment storage changes in the Duplin river system over multiple tidal cycles. Integration of topographic LiDAR data, vegetation patterns, sediment composition, groundwater inputs and planform river morphology will also provide insight into sediment storage and transport within the system.

  11. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1998 Annual Report.

    SciTech Connect

    Achord, Stephen; Hockersmith, Eric E.; Axel, Gordon A.

    2000-12-01

    This reports details the 1998 study results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends observed in the cumulative data resulting from this project; data has been collected from Oregon and Idaho streams since 1989. The project was initiated after 3 years of detection data from PIT-tags (passive-integrated-transponder tags) had shown distinct differences in migration patterns between wild and hatchery fish. Data showing these patterns had originated from tagging and interrogation operations begun in 1988 to evaluate a smolt transportation program conducted by the National Marine Fisheries Service (NMFS) for the US Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish for this project. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam. We continued to tag fish from Idaho in all years subsequent to 1992. Principal results from our tagging and interrogation efforts during 1997-1998 are given.

  12. Migration and spawning of radio-tagged zulega Prochilodus argenteus in a dammed Brazilian river

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, B.

    2006-01-01

    It is difficult for agencies to evaluate the impacts of the many planned dams on Sa??o Francisco River, Brazil, migratory fishes because fish migrations are poorly known. We conducted a study on zulega Prochilodus argenteus, an important commercial and recreational fish in the Sa??o Francisco River, to identify migrations and spawning areas and to determine linear home range. During two spawning seasons (2001-2003), we radio-tagged fish in three main-stem reaches downstream of Tre??s Marias Dam (TMD), located at river kilometer (rkm) 2,109. We tagged 10 fish at Tre??s Marias (TM), which is 5 km downstream of TMD; 12 fish at Pontal, which is 28 km downstream of TMD and which includes the mouth of the Abaete?? River, and 10 fish at Cilga, which is 45 km downstream of TMD. Late-stage (ripe) adults tagged in each area during the spawning season remained at or near the tagging site, except for four Cilga fish that went to Pontal and probably spawned. The Pontal area at the Abaete?? River mouth was the most important spawning site we found. Prespawning fish moved back and forth between main-stem staging areas upstream of the Abaete?? River mouth and Pontal for short visits. These multiple visits were probably needed as ripe fish waited for spawning cues from a flooding Abaete?? River. Some fish homed to prespaw ning staging areas, spawning areas, and nonspawning areas. The migratory style of zulega was dualistic, with resident and migratory fish. Total linear home range was also dualistic, with small (<26-km) and large (53-127-km) ranges. The locations of spawning areas and home ranges suggest that the Pontal group (which includes Cilga fish) is one population that occupies about 110 km. The Pontal population overlaps a short distance with a population located downstream of Cilga. Movements of late-stage TM adults suggest that the TM group is a separate population, possibly with connections to populations upstream of TMD. ?? Copyright by the American Fisheries Society

  13. Streambed and water profile response to in-channel restoration structures in a laboratory meandering stream

    NASA Astrophysics Data System (ADS)

    Han, Bangshuai; Chu, Hong-Hanh; Endreny, Theodore A.

    2015-11-01

    In-channel structures are often installed in alluvial rivers during restoration to steer currents, but they also modify the streambed morphology and water surface profile, and alter hydraulic gradients driving ecologically important hyporheic exchange. Although river features before and after restoration need to be compared, few studies have collected detailed observations to facilitate this comparison. We created a laboratory mobile-bed alluvial meandering river and collected detailed measurements in the highly sinuous meander before and after installation of in-channel structures, which included one cross vane and six J-hooks situated along 1 bar unit. Measurements of streambed and water surface elevation with submillimeter vertical accuracy and horizontal resolution were obtained using close-range photogrammetry. Compared to the smooth gradually varied water surface profile for control runs without structures, the structures created rapidly varied flow with subcritical to supercritical flow transitions, as well as backwater and forced-morphology pools, which increased volumetric storage by 74% in the entire stream reach. The J-hooks, located along the outer bank of the meander bend and downstream of the cross vane, created stepwise patterns in the streambed and water surface longitudinal profiles. The pooling of water behind the cross vane increased the hydraulic gradient across the meander neck by 1% and increased local groundwater gradients by 4%, with smaller increases across other transects through the intrameander zone. Scour pools developed downstream of the cross vane and around the J-hooks situated near the meander apex. In-channel structures significantly changed meander bend hydraulic gradients, and the detailed streambed and water surface 3-D maps provide valuable data for computational modeling of changes to hyporheic exchange.

  14. Influences of body size and environmental factors on autumn downstream migration of bull trout in the Boise River, Idaho

    USGS Publications Warehouse

    Monnot, L.; Dunham, J.B.; Hoem, T.; Koetsier, P.

    2008-01-01

    Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout,Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental factors (stream temperature and discharge) on migrations in the Boise River basin, Idaho. During the autumns of 2001-2003, we tracked the downstream migrations of 174 radio-tagged bull trout ranging in size from 21 to 73 cm TL. The results indicated that large bull trout (>30 cm) were more likely than small fish to migrate rapidly downstream after spawning in headwater streams in early autumn. Large bull trout also had a higher probability of arriving at the current terminus of migration in the system, Arrowrock Reservoir. The rate of migration by small bull trout was more variable and individuals were less likely to move into Arrowrock Reservoir. The rate of downstream migration by all fish was slower when stream discharge was greater. Temperature was not associated with the rate of migration. These findings indicate that fish size and environmentally related changes in behavior have important influences on patterns of migration. In a broader context, these results and other recent work suggest, at least in some cases, that commonly used classifications of migratory behavior may not accurately reflect the full range of behaviors and variability among individuals (or life stages) and environmental conditions. ?? Copyright by the American Fisheries Society 2008.

  15. Migrations and swimming capabilities of endangered pallid sturgeon (Scaphirhynchus albus) to guide passage designs in the fragmented Yellowstone River

    USGS Publications Warehouse

    Braaten, P. J.; Elliott, Caroline M.; Rhoten, Jason C.; Fuller, D. B.; McElroy, Brandon J.

    2015-01-01

    Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free-flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by-pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free-ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.

  16. Fluvial Responses to Growth Faulting in the West Pearl River, Louisiana

    NASA Astrophysics Data System (ADS)

    Prosser, S. A.; Yeager, K. M.

    2015-12-01

    The Pearl River Delta (PRD) in southeastern Louisiana is an actively deforming deltaic complex displaying surface and near-surface evidence of growth faulting. Active growth faults in these environments are rarely identified at the surface, in part because the downthrown blocks often experience increased rates of sediment deposition leading to an obscured and low-relief, or entirely absent, surface expression. Faulting can be expressed in fluvial systems as changes in channel gradient, which often result in coincident changes in channel sinuosity, migration rates, planform deflections, and/or ponding features within the deformed zone. The study area is focused on a meander bend of the West Pearl River (WPR). The nature of the meander bend suggests the likely presence of a short growth fault controlling channel morphology. This research tested the hypotheses that active near-surface growth faulting is constraining the tortuous meander bend of the WPR and that growth faults, where present and active, are strongly coupled to channel meander planform changes and marsh vertical accretion rates in the PRD. Tools including shallow lithostratigraphy, use of fallout radionuclides (210Pb, 137Cs, 7Be) to quantify marsh vertical accretion rates, and a ~75 year record of WPR channel migration show that active growth faulting exists along the northern bend of the WPR with resultant lateral channel deflection. Evidence of this growth fault suggests further, eastward extension of the Baton Rouge Fault Zone (BRFZ) into the PRD

  17. Assessment of long-term channel changes in the Mekong River using remote sensing and a channel-evolution model

    NASA Astrophysics Data System (ADS)

    Miyazawa, N.

    2011-12-01

    River-channel changes are a key factor affecting physical, ecological and management issues in the fluvial environment. In this study, long-term channel changes in the Mekong River were assessed using remote sensing and a channel-evolution model. A channel-evolution model for calculating long-term channel changes of a measndering river was developed using a previous fluid-dynamic model [Zolezzi and Seminara, 2001], and was applied in order to quantify channel changes of two meandering reaches in the Mekong River. Quite few attempts have been made so far to combine remote sensing observation of meandering planform change with the application of channel evolution models within relatively small-scale gravel-bed systems in humid temperate regions. The novel point of the present work is to link state-of-art meandering planform evolution model with observed morphological changes within large-scale sand-bed rivers with higher bank height in tropical monsoonal climate regions, which are the highly dynamic system, and assess the performance. Unstable extents of the reaches could be historically identified using remote-sensing technique. The instability caused i) bank erosion and accretion of meander bends and ii) movement or development of bars and changes in the flow around the bars. The remote sensing measurements indicate that maximum erosion occurred downstream of the maximum curvature of the river-center line in both reaches. The model simulations indicates that under the mean annual peak discharge the maximum of excess longitudinal velocity near the banks occurs downstream of the maximum curvature in both reaches. The channel migration coefficients of the reaches were calibrated by comparing remote-sensing measurements and model simulations. The diffrence in the migration coefficients between both reaches depends on the diffrence in bank height rather than the geotechnical properties of floodplain sediments. Possible eroded floodplain areas and accreted floodplain

  18. Geomorphic context of channel locational probabilities along the Lower Mississippi River, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, Thad A.; Anderson, Shawn; Liu, Pin-Shou

    2004-12-01

    Channel change is an important aspect of geomorphological evolution and habitat dynamics in large alluvial rivers. Planimetric maps of channel locations were used to investigate spatio-temporal alluvial channel changes in a geomorphic context along the Lower Mississippi River (LMR). Analyses were conducted with the aid of a time-weighted locational probability map. The locational probability map was constructed in ArcGIS and covered a period of 205 years. An examination of the pixel data from the probability maps indicates a high occurrence of low probability pixels along the Lower Mississippi River, which is in accordance with the dynamism of alluvial rivers. The northern section of the Lower Mississippi River (Columbus, KY to Memphis, TN) has been much more stable than the southern river segments (Helena, AR to Natchez, MS). Areas of high channel probability (channel stability) were often associated with alluvial channel confinement from a combination of flood-plain deposits, geologic structures and large stable islands. Low channel probability locations were found along sections exhibiting the following geomorphic characteristics: changes in meander amplitude, meander neck and chute cutoffs, meander extensional processes and islands lost in channel migrational processes. The results provide a strong foundation for understanding channel change on the Lower Mississippi River and serves as a valuable instrument for future management and restoration schemes.

  19. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 1997 Annual Report.

    SciTech Connect

    Achord, Stephen; Eppard, M. Brad; Hockersmith, Eric E.

    1998-05-01

    In August 1996, we PIT tagged and released 1,360 wild chinook salmon parr in the South Fork of the Salmon River and two of its tributaries in Idaho. During spring and summer 1997, the overall adjusted percentage of PIT-tagged fish from Idaho detected at six downstream dams averaged 18.3% (range 16.0 to 27.3% depending on stream of origin). Peak detections of all wild spring/summer chinook salmon smolts (from Idaho and Oregon) at Lower Granite Dam occurred during variable but increasing river flows in April. High river flows from mid-April to mid-May moved most of these fish through Lower Granite Dam, with 50 and 90% passage occurring on 24 April and 21 May, respectively. From 1989 to 1996, peak detections of wild spring/summer chinook salmon smolts were highly variable and generally independent of river flows before about 9 May at this dam; however, during these years (including 1997), peak detections of wild fish coincided with periods of peak flow at the dam from 9 May to the end of May. In both 1995 and 1996, in excess of 90% of the wild fish had migrated past Lower Granite Dam by the time peak flows occurred in June. In 1989, we observed a period of peak detections of wild fish that coincided with peak flows at the dam in June. After examining chinook salmon smolt passage timing at the dams over the last 9 years, it has become clear that flow is only one of several factors that influence passage timing. Other factors, such as annual climatic conditions, water temperature, turbidity, physiological development, variability in stock behavior, fish size, and other yet unknown conditions may equally affect wild smolt passage timing at dams. As additional environmental monitors and traps are installed in study streams, we will be able to more accurately monitor parr and smolt movements out of rearing areas and examine the relationships of these movements to environmental parameters within the streams. Mapped over time, this information will provide the basis for

  20. Survival of migrating Atlantic salmon smolts through the Penobscot River, Maine: A pre-restoration assessment

    USGS Publications Warehouse

    Zydlewski, Joseph; Kinnison, Michael T.; Holbrook, Christopher M.

    2011-01-01

    Survival, distribution, and behavior of hatchery (n = 493) and naturally reared (n = 133) smolts of Atlantic salmon Salmo salar migrating through the Penobscot River and estuary in Maine were evaluated with acoustic telemetry in 2005 and 2006. Survival and use of a secondary migration path (the Stillwater Branch) were estimated with a multistate mark–recapture model. Higher rates of mortality per kilometer (range = 0.01–0.22) were observed near release sites and within reaches that contained three particular dams: Howland, West Enfield, and Milford dams. Estimated total survival of tagged hatchery smolts through entire individual reaches containing those dams ranged from 0.52 ( 0.18) to 0.94 ( 0.09), whereas survival through most of the reaches without dams exceeded 0.95. Of those smolts that survived to the Penobscot River–Stillwater Branch split at Marsh Island, most (≥74%) remained in the main stem around Marsh Island, where they experienced lower survival than fish that used the Stillwater Branch. Movement rates of hatchery-reared smolts were significantly lower through reaches containing dams than through reaches that lacked dams. Smolts arriving at dams during the day experienced longer delays than smolts arriving at night. Planned removal of two dams in this system is expected to enhance the passage of smolts through the main-stem corridor. However, the dams currently scheduled for removal (Great Works and Veazie dams) had less influence on smolt survival than some of the dams that will remain. This case study shows that by examining prerestoration migration dynamics throughout entire river systems rather than just in the vicinity of particular dams, tracking studies can help prioritize restoration efforts or predict the costs and benefits of future hydrosystem changes.

  1. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  2. A simplified approach to modelling underground migration of radionuclides from contaminated river sediments

    NASA Astrophysics Data System (ADS)

    Štamberg, K.; Vopálka, D.; Beneš, P.; Slávik, O.

    1997-04-01

    Accidental releases of waste water from the first Czechoslovak nuclear power plant, A1, caused contamination of sediments of the Dudváh river, flowing into the Vah river, in Slovakia. Rather high concentrations of 137Cs and 90Sr (2150Bq dm -3 and 215Bq dm -3, respectively) were found in bottom sediments of a former channel of the re-engineered river body at a distance of about 250 m from a village, Siladice, with water-supply wells. In order to assess the possibility of contamination of the wells, underground migration of both radionuclides from the contaminated area was simulated using an original layered convection-diffusion model. Kd values determined in laboratory experiments were used. The analysis of the hydrological situation in the area reveals that the critical condition is a dominant horizontal groundwater flow near the water table in the direction from the Váh bank to Siladice, in the periods when the contaminated body lies under the water table. The simulation calculated under conservative conditions showed that the contamination of water-supply wells would not exceed permissible concentration limits.

  3. Survey of pathogens in hatchery Chinook salmon with different out-migration histories through the Snake and Columbia rivers.

    PubMed

    Van Gaest, A L; Dietrich, J P; Thompson, D E; Boylen, D A; Strickland, S A; Collier, T K; Loge, F J; Arkoosh, M R

    2011-06-01

    The operation of the Federal Columbia River Power System (FCRPS) has negatively affected threatened and endangered salmonid populations in the Pacific Northwest. Barging Snake River spring Chinook salmon Oncorhynchus tshawytscha through the FCRPS is one effort to mitigate the effect of the hydrosystem on juvenile salmon out-migration. However, little is known about the occurrence and transmission of infectious agents in barged juvenile salmon relative to juvenile salmon that remain in-river to navigate to the ocean. We conducted a survey of hatchery-reared spring Chinook salmon at various points along their out-migration path as they left their natal hatcheries and either migrated in-river or were barged through the FCRPS. Salmon kidneys were screened by polymerase chain reaction for nine pathogens and one family of water molds. Eight pathogens were detected; the most prevalent were Renibacterium salmoninarum and infectious hematopoietic necrosis virus. Species in the family Saprolegniaceae were also commonly detected. Pathogen prevalence was significantly greater in fish that were barged through the FCRPS than in fish left to out-migrate in-river. These results suggest that the transmission of infectious agents to susceptible juvenile salmon occurs during the barging process. Therefore, management activities that reduce pathogen exposure during barging may increase the survival of juvenile Chinook salmon after they are released. PMID:21834329

  4. Modeling Meandering Channel by Two-Dimensional Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Yu, C.; Duan, J. G.

    2014-12-01

    This research is to simulate the process of channel meandering using a two-dimensional depth-averaged hydrodynamic model. The multiple interactions between unsteady flow, turbulence, secondary flow, nonequilibrium sediment transport and bank erosion are considered by the model. The governing equations are the 2D depth-averaged Reynolds-averaged Navier-Stokes (2D-RANS) equations and the Exner equation for bed elevation evolution. The Reynolds stresses are calculated by the k-ɛ turbulence model. The secondary flow, is modeled by the dispersion terms in momentum equations. The spatial lag between the instantaneous flow properties and the rate of sediment transport is simulated by the nonequilibrium sediment transport model. During the process of adaptation, the sediment transport rate gradually develops into the transport capacity of a given flow condition. The evolution of channel bed and bank is modeled by the general Exner equation that accounts for both vertical deformation of bed elevation as well as lateral migration of bank. The system of governing equations is solved by a semi-implicit finite volume method over the Cartesian mesh. The advective fluxes across each cell interface are simultaneously calculated by the extended HLL Riemann solver. At each time step, the diffusion terms in the governing equations are solved by the implicit Euler scheme. The source terms are discretized in a well-balanced way to retain the C-property of the proposed model. Application of the model to different test cases indicates that the model can correctly simulate different phases of meandering channel evolution which include streamwise migration, transverse migration and rotation of channel bends.

  5. Downstream migration of recently metamorphosed sea lampreys in the Ocqueoc River, Michigan, before and after treatment with lampricides

    USGS Publications Warehouse

    Hanson, Lee H.; Swink, William D.

    1989-01-01

    The objectives of this study were to determine the effectiveness ofchemical treatments of the Ocqueoc River, Michigan, in reducing the number of recently metamorphosed sea lampreys Petromyzon marinus migrating to Lake Huron and to estimate total numbers of migrants produced before and after treatment. Sea lampreys were captured during their downstream migration in a single fyke net fished in the same location from September 1963 through August 1975. The catch, which averaged 3,474 sea lampreys (range, 3,248-3,913) during four migration periods (September-June) before treatment in 1968, declined to 4 during the 1974-1975 migration period. Markrecapture studies were conducted to determine the capture efficiency of the net for recently metamorphosed sea lampreys and to estimate the total downstream migration for each migration period. Estimated downstream migrations before treatment averaged 62,036 sea lampreys (range, 58,000-69,875) for four migration periods and declined to 71 during the 1974-1975 migration period. Catches were usually greater in fall than in spring. The fall peak in migratory activity was in November or December, and the spring peak was in April; both peaks occurred while water levels were high and water temperatures were near 5A?C.

  6. Sex biased survival and differences in migration of wild steelhead (Oncorhynchus mykiss) smolts from two coastal Oregon rivers

    USGS Publications Warehouse

    Thompson, Neil F.; Leblanc, Camille A.; Romer, Jeremy D.; Schreck, Carl B.; Blouin, Michael S.; Noakes, David L. G.

    2016-01-01

    In salmonids with partial migration, females are more likely than males to undergo smoltification and migrate to the ocean (vs. maturing in freshwater). However, it is not known whether sex affects survivorship during smolt migration (from fresh water to entry into the ocean). We captured wild steelhead (Oncorhynchus mykiss) smolts in two coastal Oregon rivers (USA) and collected fin tissue samples for genetic sex determination (2009; N = 70 in the Alsea and N = 69 in the Nehalem, 2010; N = 25 in the Alsea). We implanted acoustic tags and monitored downstream migration and survival until entry in to the Pacific Ocean. Survival was defined as detection at an estuary/ocean transition array. We found no effect of sex on smolt survivorship in the Nehalem River in 2009, or in the Alsea River in 2010. However, males exhibited significantly lower survival than females in the Alsea River during 2009. Residency did not influence this result as an equal proportion of males and females did not reach the estuary entrance (11% of males, 9% of females). The sexes did not differ in timing or duration of migration, so those variables seem unlikely to explain sex-biased survivorship. Larger males had higher odds of survival than smaller males in 2009, but the body size of females did not affect survivorship. The difference in survivorship between years in the Alsea River could be due to flow conditions, which were higher in 2010 than in 2009. Our findings suggest that sex may affect steelhead smolt survival during migration, but that the difference in survivorship may be weak and not a strong factor influencing adult sex ratios.

  7. Is history of rivers important in restoration projects? The example of human impact on a lowland river valley (the Obra River, Poland)

    NASA Astrophysics Data System (ADS)

    Słowik, Marcin

    2015-12-01

    Palaeoenvironmental and palaeohydrological reconstructions can provide important guidance for river restoration projects. This paper reconstructs the trajectory of river pattern changes of a lowland river (the Obra River, western Poland) as a basis to inform realistic restoration activities. The history of river changes is reconstructed for the last 12,700 radiocarbon years BP. The sequence and timing of change differ from widely recognized, conventional assessments of transitions from braided to meandering planforms in the Polish Lowlands. Traces of a laterally migrating anabranching system were found in the middle Obra valley. In its lower course, a transition from a braided to meandering planform took place later than in other rivers of the Polish Lowlands. Sediment delivery from parts of the catchment situated downstream of lakes in the river course could have been the main reason for maintenance of the braided pattern. Restoration scenarios that take into account the trajectory of river planform changes are hypothesized in relation to variations of sediment supply and degree of anthropogenic impact.

  8. Characterization of Wind Meandering in Low-Wind-Speed Conditions

    NASA Astrophysics Data System (ADS)

    Mortarini, Luca; Stefanello, Michel; Degrazia, Gervasio; Roberti, Debora; Trini Castelli, Silvia; Anfossi, Domenico

    2016-06-01

    Investigation of low-wind cases observed during the Urban Turbulent Project campaign (Torino, Italy) and at the Santa Maria meteorological station (Santa Maria, Brazil) provides insight into the wind-meandering phenomenon, i.e. large, non-turbulent oscillations of horizontal wind speed and temperature. Meandering and non-meandering cases are identified through analysis of the Eulerian autocorrelation functions of the horizontal wind-velocity components and temperature. When all three autocorrelation functions oscillate, meandering is present. As with weak turbulence, meandering shows no dependence on stability but is influenced by presence of buildings and depends on wind speed. We show that, while the standard deviation of the horizontal velocity is always large in low-wind conditions, the standard deviation of the vertical velocity shows very different behaviour in meandering and non-meandering conditions. In particular, the value of the ratio of the standard deviations of the vertical and horizontal velocities typifies the meandering condition.

  9. Summary of Migration and Survival Data from Radio-Tagged Juvenile Coho Salmon in the Trinity River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg

    2009-01-01

    The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.

  10. Fluvial responses to late Quaternary climate change in the Shiyang River drainage system, western China

    NASA Astrophysics Data System (ADS)

    Gao, Hongshan; Li, Zongmeng; Pan, Baotian; Liu, Fenliang; Liu, Xiaopeng

    2016-04-01

    As a drainage system located in arid western China, the Shiyang River, combined with considerable fluvial strata and landform information, provides an environmental context within which to investigate fluvial responses to late Quaternary climate change. Sedimentological analysis and optically stimulated luminescence (OSL) dating enabled us to reconstruct the processes and fluvial styles of three sedimentary sequences of the Shagou and Hongshui rivers in the Shiyang drainage system. Our results present a variety of river behaviors during the late Quaternary in these areas. In the upstream Shiyang River, Zhangjiadazhuang (ZJDZ) profile of the Shagou was dominated by aggradation and a meandering channel pattern at 10.6-4.2 ka, while a noticeable channel incision occurred at ~ 4.2 ka followed by lateral channel migration. In the downstream Shiyang River, Datugou (DTG) profile of the Hongshui was an aggrading meandering river from 39.7 to 7.2 ka while channel incision occurred at 7.2 ka. Another downstream profile, Wudunwan (WDW) of the Hongshui was also characterized by aggradation from 22.4 to 4.8 ka; however, its channel pattern shifted from braided to meandering at ~ 13 ka. A discernable downcutting event occurred at ~ 4.8 ka, followed by three channel aggradation and incision episodes prior to 1.8 ka. The last 1.8 ka has been characterized by modern channel and floodplain development. The fluvial processes and styles investigated have a close correlation with late Quaternary climate change in the Shiyang River drainage. During cold phases, the WDW reach was dominated by aggradation with a braided channel pattern. During warm phases, the rivers that we investigated were also characterized by aggradation but with meandering channel patterns. Channel incision events and changes of fluvial style occurred mainly during climate transitions.

  11. Physiological characterization of juvenile Chinook salmon utilizing different habitats during migration through the Columbia River Estuary.

    PubMed

    Hanson, Kyle C; Ostrand, Kenneth G; Glenn, Richard A

    2012-11-01

    Although off-channel habitats in the estuaries of large rivers impart many benefits to fish that rear within them, it is less clear how these habitats benefit migrating anadromous species that utilize these habitats for short periods of time. We evaluated the physiological correlates (nutritional condition, growth, and smoltification) of habitat utilization (main-channel vs. off-channel) by juvenile Chinook salmon Oncorhynchus tshawytscha during emigration. Fish from the off-channel had higher condition factor scores and relative weights than fish from the main-channel throughout the study period. Plasma triglyceride and protein concentrations were significantly different between habitat types and across the sampling period, suggesting that fish utilizing the off-channel habitats were compensating for energy losses associated with emigration as compared to main-channel fish. Growth potential (RNA to DNA ratio) did not vary by habitat or sampling period, presumably due to short residency time. There were no differences in osmoregulatory capacity (gill Na(+), K(+)-ATPase activity) based on habitat type. Our results indicate that short-term off-channel habitat use may mitigate for energy declines incurred during migration, but likely does not impart significant gains in energy stores or growth. PMID:22842392

  12. Lyme disease and migrating birds in the Saint Croix River Valley.

    PubMed Central

    Weisbrod, A R; Johnson, R C

    1989-01-01

    During a study of migrating land birds in 1987, we examined over 9,200 individual birds representing 99 species from the Saint Croix River Valley, a Lyme disease-endemic area of east central Minnesota and northwestern Wisconsin. We found that 250 deer tick (Ixodes dammini) larvae and nymphs infested 58 birds from 15 migrant species; 56 ticks (22.4%) were positive for the Lyme disease spirochete Borrelia burgdorferi. Five ground-foraging migrant bird species favoring mesic habitats, veery (Catharus fuscescens), ovenbird (Seiurus aurocapillus), northern waterthrush (S. novaboracensis), common yellowthroat (Geothlypis trichas), and swamp sparrow (Melospiza georgiana), accounted for nearly three-quarters of parasitized individuals. Nearly half of the spirochete-positive ticks were removed from migrating birds taken in a riparian floodplain forest. Recaptured migrants with infected ticks indicate that they transmit B. burgdorferi to hexapod larvae. We suggest that birds may be both an important local reservoir in the upper Mississippi Valley and long-distance dispersal agents for B. burgdorferi-infected ticks to other regions of the continent. PMID:2782872

  13. Effect of Migration Pathway on Travel Time and Survival of Acoustic-Tagged Juvenile Salmonids in the Columbia River Estuary

    SciTech Connect

    Harnish, Ryan A.; Johnson, Gary E.; McMichael, Geoffrey A.; Hughes, Michael S.; Ebberts, Blaine D.

    2012-02-01

    Off-channel areas (side channels, tidal flats, sand bars, and shallow-water bays) may serve as important migration corridors through estuarine environments for salmon and steelhead smolts. Relatively large percentages (21-33%) of acoustic-tagged yearling and subyearling Chinook salmon and steelhead smolts were detected migrating through off-channel areas of the Columbia River estuary in 2008. The probability of survival for off-channel migrants (0.78-0.94) was similar to or greater than the survival probability of main channel migrants (0.67-0.93). Median travel times were similar for all species or run types and migration pathways we examined, ranging from 1-2 d. The route used by smolts to migrate through the estuary may affect their vulnerability to predation. Acoustic-tagged steelhead that migrated nearest to avian predator nesting colonies experienced higher predation rates (24%) than those that migrated farthest from the colonies (10%). The use of multiple migration pathways may be advantageous to out-migrating smolts because it helps to buffer against high rates of mortality, which may occur in localized areas, and helps to minimize inter- and intraspecific competition.

  14. Ontogenetic behavior and migration of Volga River Russian sturgeon, Acipenser gueldenstaedtii, with a note on adaptive significance of body color

    USGS Publications Warehouse

    Kynard, B.; Zhuang, P.; Zhang, L.; Zhang, T.; Zhang, Z.

    2002-01-01

    We conducted laboratory experiments with Volga River Russian sturgeon, Acipenser gueldenstaedtii, to develop a conceptual model of early behavior. We daily observed fish from day-0 (embryos, first life interval after hatching) to day-29 feeding larvae for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Hatchling embryos initiated a downstream migration, which suggests that predation risk of embryos at spawning sites is high. Migration peaked on days 0-5 and ceased on day 7 (8-day migration). Migrants preferred bright, open habitat and early migrants swam-up far above the bottom (maximum daily median, 140 cm) in a vertical swim tube. Post-migrant embryos did not prefer bright illumination but continued to prefer white substrate, increased use of cover habitat, and swam on the bottom. Larvae initiated feeding on day 10 after 170.6 cumulative temperature degree-days. Larvae did not migrate, weakly preferred bright illumination, preferred white substrate and open habitat, and swam near the bottom (daily median 5-78 cm). The lack of a strong preference by larvae for bright illumination suggests foraging relies more on olfaction than vision for locating prey. A short migration by embryos would disperse wild sturgeon from a spawning area, but larvae did not migrate, so a second later migration by juveniles disperses young sturgeon to the sea (2-step migration). Embryo and larva body color was light tan and tail color was black. The migration, behavior, and light body color of Russian sturgeon embryos was similar to species of Acipenser and Scaphirhynchus in North America and to Acipenser in Asia that migrate after hatching as embryos. The similarity in migration style and body color among species with diverse phylogenies likely reflects convergence for common adaptations across biogeographic regions. ?? 2002 Kluwer Academic Publishers.

  15. Distribution, migration and potential risk of heavy metals in the Shima River catchment area, South China.

    PubMed

    Gao, Lei; Chen, Jianyao; Tang, Changyuan; Ke, Zhiting; Wang, Jiang; Shimizu, Yuta; Zhu, Aiping

    2015-10-01

    The distribution, migration and potential risk of heavy metals in water and soil environments, related to city water supply, were investigated. Heavy metal concentrations in waters from the Shima River water ranged from not detected (n.d.) to 749 μg L(-1) for Mn, n.d. to 151 μg L(-1) for Ni, 7.00 to 494 μg L(-1) for Zn, n.d. to 93.0 μg L(-1) for Cu and n.d. to 9860 μg L(-1) for Fe. The highest concentration of heavy metals was found at an upstream site in February as a result of industrial effluent discharge. Groundwater (GW1-GW5) and soil (S1-S8) samples along the riverbank showed similar levels of contamination due to a close hydraulic relationship and frequent exchange of water, probably resulting in migration of heavy metals from river water to the aquifer and accumulation at the interface. The mean concentrations of heavy metals in soil profiles were in the ranges of 2.50-19.0 mg kg(-1) for As, 2.80-11.2 mg kg(-1) for Cd, 20.3-165 mg kg(-1) for Cr, 14.5-298 mg kg(-1) for Cu, 11.4-102 mg kg(-1) for Ni, 7.00-95.0 mg kg(-1) for Pb, 40.4-465 mg kg(-1) for Zn, 8.80 × 10(3)-21.8 × 10(3) mg kg(-1) for Fe, and 62.2-430 mg kg(-1) for Mn, showing severe soil pollution by Cd. LUMISTox testing and the potential ecological risk index (RI) were used to assess the potential for adverse ecological effects caused by heavy metals in water and soil media. River water samples posed slight acute toxicity to Vibrio fischeri with luminescence inhibition rates (LIRs) ranging from 24.6% to 38.4% in February. Elevated Zn and Cu concentrations significantly contributed to the toxicity. However, groundwater did not exhibit any toxicity to Vibrio fischeri. The severity of the potential ecological risk for individual metals (Er(i)) decreased in the order of Cd > Cu > Ni > As > Pb > Zn > Cr. RI values indicated that all soil samples in the study area posed a high level of ecological risk. Cd contributed significantly (95.5-98.9%) to potential ecological risk in soils. PMID:26308469

  16. Sediment transport and morphodynamic changes in Ziarat Estuary and Mond River Delta, the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Razavi Arab, Azadeh; Haghshenas, S. Abbas; Samsami, Farzin

    2014-05-01

    The Mond River, which is considered as one of the Major Iranian rivers discharging in to the Persian Gulf, is bounded within the region from 51°10' to 54°28' E and 27°20' to 29°51' N, flowing in two provinces of Fars and Boushehr. The latest part of the river is completely meandered and the river mouth has been migrating twice during the past 50 years. Total sediment discharge of the river is estimated as 12 million cubic meter per year. Analysis of meandering river phenomenon and river mouth migration as well as evolution of the down-stream sand spits has long been one of the challenges in hydrodynamic discussions. This natural process usually takes place in rivers to provide energy equilibrium and its integration with human desires has posed as a management issue. The sediment discharging to the Persian Gulf plays an essential role in formation of Mond River Delta as well as a set of sand spits formed in downstream of the river mouth. The morpho-dynamic of entire environment of the Mond River - Mond Delta highly affects marine environment in the surrounding area. The present study offers the results of a numerical and field investigation of various features of river-delta interaction on Ziarat Estuary and the Mond Delta area. A numerical model has been utilized to investigate cases of flow and sediment transport behaviour in the coastal Mond area and future migration patterns of the River Mouth is estimated. Sediment sources and relevant contributions in morphodynamic changes of the sand spits are widely investigated through sediment constituent analysis. The results of the numerical model are compared with field observations and comprehensive GIS based analysis of historic shoreline changes from aerial photos and satellite imagery. It is concluded that the model achievements are capable to predict the observed phenomena. Management guidelines and suggestions are deducted and drawn from the calibration and verification of the results with field observations

  17. Geometry of meandering and braided gravel-bed threads from the Bayanbulak Grassland, Tianshan, P. R. China

    NASA Astrophysics Data System (ADS)

    Métivier, François; Devauchelle, Olivier; Chauvet, Hugo; Lajeunesse, Eric; Meunier, Patrick; Blanckaert, Koen; Ashmore, Peter; Zhang, Zhi; Fan, Yuting; Liu, Youcun; Dong, Zhibao; Ye, Baisheng

    2016-03-01

    The Bayanbulak Grassland, Tianshan, P. R. China, is located in an intramontane sedimentary basin where meandering and braided gravel-bed rivers coexist under the same climatic and geological settings. We report and compare measurements of the discharge, width, depth, slope and grain size of individual threads from these braided and meandering rivers. Both types of threads share statistically indistinguishable regime relations. Their depths and slopes compare well with the threshold theory, but they are wider than predicted by this theory. These findings are reminiscent of previous observations from similar gravel-bed rivers. Using the scaling laws of the threshold theory, we detrend our data with respect to discharge to produce a homogeneous statistical ensemble of width, depth and slope measurements. The statistical distributions of these dimensionless quantities are similar for braided and meandering threads. This suggests that a braided river is a collection of intertwined threads, which individually resemble those of meandering rivers. Given the environmental conditions in Bayanbulak, we furthermore hypothesize that bedload transport causes the threads to be wider than predicted by the threshold theory.

  18. Rate estimates for lateral bedrock erosion based on radiocarbon ages, Duck River, Tennessee

    SciTech Connect

    Brakenridge, G.R.

    1985-02-01

    Rates of bedrock erosion in ingrown meandering rivers can be inferred from the location of buried relict flood-plain and river-bank surfaces, associated paleosols, and radiocarbon dates. Two independent methods are used to evaluate the long-term rates of limestone bedrock erosion by the Duck River. Radiocarbon dates on samples retrieved from buried Holocene flood-plain and bank surfaces indicate lateral migration of the river bank at average rates of 0.6-1.9 m/100 yr. Such rates agree with lateral bedrock cliff erosion rates of 0.5-1.4 m/100 yr, as determined from a comparison of late Pleistocene and modern bedrock cliff and terrace scarp positions. These results show that lateral bedrock erosion by this river could have occurred coevally with flood-plain and terrace formation and that the resulting evolution of valley meander bends carved into bedrock is similar in many respects to that of channel meanders cut into alluvium. 11 references, 5 figures.

  19. Migration and spawning of female surubim (Pseudoplatystoma corruscans, Pimelodidae) in the São Francisco river, Brazil

    USGS Publications Warehouse

    Godinho, Alexandre L.; Kynard, Boyd; Godinho, Hugo P.

    2007-01-01

    Surubim, Pseudoplatystoma corruscans, is the most valuable commercial and recreational fish in the São Francisco River, but little is known about adult migration and spawning. Movements of 24 females (9.5–29.0 kg), which were radio-tagged just downstream of Três Marias Dam (TMD) at river kilometer 2,109 and at Pirapora Rapids (PR) 129 km downstream of TMD, suggest the following conceptual model of adult female migration and spawning. The tagged surubims used only 274 km of the main stem downstream of TMD and two tributaries, the Velhas and Abaeté rivers. Migration style was dualistic with non-migratory (resident) and migratory fish. Pre-spawning females swam at ground speeds of up to 31 km day-1 in late September–December to pre-spawning staging sites located 0–11 km from the spawning ground. In the spawning season (November–March), pre-spawning females migrated back and forth from nearby pre-spawning staging sites to PR for short visits to spawn, mostly during floods. Multiple visits to the spawning site suggest surubim is a multiple spawner. Most post-spawning surubims left the spawning ground to forage elsewhere, but some stayed at the spawning site until the next spawning season. Post-spawning migrants swam up or downstream at ground speeds up to 29 km day-1 during January–March. Construction of proposed dams in the main stem and tributaries downstream of TMD will greatly reduce surubim abundance by blocking migrations and changing the river into reservoirs that eliminate riverine spawning and non-spawning habitats, and possibly, cause extirpation of populations.

  20. [Modeling of Processes of Migration and Accumulation of Radionuclides in Freshwater Ecosystems by the Example of the Samson, Lev, Vandras Rivers Related to the Ob-Irtysh River Basin].

    PubMed

    Trapeznikov, A V; Korzhavin, A V; Trapeznikova, V N; Nikolkin, V N

    2016-01-01

    Mathematical models of horizontal distribution and migration of radionuclides are presented in water and floodplain soils of the Samson-Lev-Vandras river system related to the Ob-Irtysh river basin. Integral inventory of radionuclides in the main components of the river ecosystems is calculated. The estimated annual discharge of radionuclides from the Vandras river to the Great Salym river is given. The effect of the removal of man-made radionuclides in the Samson, Lev, Vandras rivers on radioactive contamination of the Ob-Irtysh river system is shown in comparison with the Techa river, that also belongs to the Ob-Irtysh river basin. Despite the presence of an additional radioactive contamination of the Samson floodplain, the transfer of radioactive substances in the Samson, Lev, Vandras rivers has a much smaller impact on the contamination of the Ob-Irtysh river system, compared to the Techa river, prone to a large-scale radioactive contamination. PMID:27534071

  1. Sinuosity and meander belt scarring: Tectonics and stream dynamics across the Baton Rouge Fault Zone

    NASA Astrophysics Data System (ADS)

    Dunek, P.; Gasparini, N.

    2009-12-01

    This study focuses on the sinuosity of alluvial rivers flowing across the Baton Rogue fault zone (BRFZ). The BRFZ is a little studied normal fault system extending roughly from Baton Rogue, LA east to about the Mississippi border. We hypothesize that the sinuosity is measurably different in channel reaches upstream and downstream of the fault trace. To gather sinuosity data we use two methods. The first is field surveying using a laser range finder and GPS; this method is only used over limited reaches, because covering the entire river system in this way is prohibitively time consuming. The second method uses ArcGIS to analyze LIDAR data that are freely available for the entire state of Louisiana. The LIDAR data have a 5 meter resolution. The largest channels are easily identified by eye in the LIDAR data and can be digitally traced by hand. On most of the smaller rivers, however, it is difficult to discern the exact trace of the channel. In these cases we use the ArcGIS hydrology tools to determine the path of the rivers. In order to check the accuracy we do this twice, once with the LIDAR data and once with the USGS 10 m data. However, the two data sets often produce very different river paths. Upon further investigation it appears that the rivers show a large amount of scarring throughout the meander belt, making it impossible to discern the exact trace of the channel. In fact, field surveying indicates that often times the channel traces from both data sets are incorrect. As a result, in areas where there is no clear channel trace, we calculate a local relief across the meander belt as a proxy for the degree of meandering. We find that in channels where it is possible to calculate sinuosity, there are distinct patterns related to local faulting; in those channels in which we cannot calculate sinuosity, meander belt relief patterns indicate increased channel meandering in proximity to the fault zone. The red and green paths correspond to the USGS 10m and LIDAR

  2. Sources and migration of plutonium in groundwater at the Savannah River site.

    PubMed

    Dai, Minhan; Kelley, James M; Buesseler, Ken O

    2002-09-01

    The isotopic composition, size distribution, and redox speciation of plutonium (Pu) in the groundwater in the vicinity of the F-area seepage basins at the U.S. Department of Energy Savannah River Site (SRS) were examined. A low 240Pu/239Pu ratio in the upstream control well signifies a Pu source otherthan global fallout and indicates reactor-produced Pu. Elevated 240Pu/239Pu atom ratios downstream from the seepage basins are due to the decay of transplutonium isotopes, mainly 244Cm to 240Pu, which were generated at the SRS. Evidence suggests that the migration of basin-released Pu isotopes is minor. Rather, it is the transplutonium isotopes that migrate preferentially downstream and in the process decay to yield progeny Pu isotopes. Size fractionation studies with cross-flow ultrafiltration show that <4% of the 239Pu or 240Pu is found in the colloidal fraction, a finding that is consistent with the higher Pu oxidation states observed in the SRS groundwater. The observation of a low abundance of colloid-associated Pu in SRS groundwater cannot be extrapolated to all sites, but is in contrast to the conclusions of prior groundwater Pu studies at the SRS and elsewhere. This work is unique in its application of a novel combination of sampling and processing protocols as well as its use of thermal ionization mass spectrometry for the detection of Pu isotopes. This allows quantification of the Pu source terms and better determination of the ambient Pu size and redox speciation representative of in situ conditions. PMID:12322739

  3. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  4. Numerically Simulating the Hydrodynamic and Water Quality Environment for Migrating Salmon in the Lower Snake River

    SciTech Connect

    Cook, Chris B.; Richmond, Marshall C.; Coleman, Andre M.; Rakowski, Cynthia L.; Titzler, P. Scott; Bleich, Matthew D.

    2003-06-10

    Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater and Lower Snake Rivers, and improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional hydrodynamic and thermal conditions at the confluence of the Clearwater and Snake Rivers and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. Hydrodynamic, water quality, and meteorological conditions around the reservoir were monitored at frequent intervals, and this effort is currently continuing in 2003. Monitoring of the reservoir is a multi-year endeavor, and this report spans only the first year of data collection. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model has also been applied. This model uses collected field data as boundary conditions and has been applied to the entire 2002 field season. Numerous data collection sites were within the model domain and serve as both calibration and validation locations for the numerical model. Errors between observed and simulated data vary in magnitude from location to location and from one time to another. Generally, errors are small and within expected ranges, although model parameters may be improved in the future to minimize differences between observed and simulated values as additional 2003 field data become available. A two-dimensional laterally-averaged hydrodynamic and water quality model was applied to the three reservoirs downstream of LGR (the pools behind Little Goose, Lower Monumental, and Ice Harbor Dams). A two-dimensional model is appropriate for these reservoirs because observed lateral thermal variations during summer and fall 2002 were almost negligible, however vertical thermal variations were quite

  5. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2003-2004 Annual Report.

    SciTech Connect

    Achord, Stephen; Hodge, Jacob M.; Sandford, Benjamin P.

    2005-06-01

    This report provides information on PIT-tagging of wild Chinook salmon parr in Idaho in 2003 and the subsequent monitoring of these fish and similarly tagged fish from Oregon. We report estimated parr-to-smolt survival and arrival timing of these fish at Lower Granite Dam, as well as interrogation data collected at several other sites throughout the Snake and Columbia River system. This research continues studies that began under Bonneville Power Administration (BPA) funding in 1991. Results from previous study years were reported by Achord et al. (1994; 1995a,b; 1996a; 1997; 1998; 2000; 2001a,b; 2002, 2003, 2004). Goals of this ongoing study are: (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer Chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence migration patterns. (4) Characterize the migration behavior and estimate survival of different wild juvenile fish stocks as they emigrate from their natal rearing areas. This study provides critical information for recovery planning, and ultimately recovery for these ESA-listed wild fish stocks. In 2003-2004, we also continued to measure water temperature, dissolved oxygen, specific conductance, turbidity, water depth, and pH at five monitoring stations in the Salmon River Basin, Idaho for the Baseline Environmental Monitoring Program. These data, along with parr/smolt migration, survival, and timing data, will help to discern patterns or characteristic relationships between fish movement/survival and environmental factors.

  6. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2001-2002 Annual Report.

    SciTech Connect

    Achond, Stephen; Hockersmith, Eric E.; Sandford, Benjamin P.

    2003-07-01

    This report details the 2002 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these differences in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers. In 1991, the Bonneville Power Administration began a cooperative effort with NMFS to expand tagging and interrogation of wild fish. Project goals were to characterize the outmigration timing of these fish, to determine whether consistent migration patterns would emerge, and to investigate the influence of environmental factors on the timing and distribution of these migrations. In 1992, the Oregon Department of Fish and Wildlife (ODFW) began an independent program of PIT tagging wild chinook salmon parr in the Grande Ronde and Imnaha River Basins in northeast Oregon. Since then, ODFW has reported all tagging, detection, and timing information on fish from these streams. However, with ODFW concurrence, NMFS will continue to report arrival timing of these fish at Lower Granite Dam.

  7. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    SciTech Connect

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T.

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences between the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall Chinook

  8. Emergence of river dynamics through changing vegetation patterns

    NASA Astrophysics Data System (ADS)

    van Oorschot, Mijke; Kleinhans, Maarten; Middelkoop, Hans; Geerling, Gertjan

    2016-04-01

    Riparian vegetation interacts with morphodynamic processes in rivers to create distinct habitat mosaics supporting a large biodiversity. The aim of our work is to quantitatively investigate the emergent patterns in vegetation and river morphology at the river reach scale by dynamically modelling the processes and their interactions. Here, we coupled an advanced morphodynamic model to a novel dynamic riparian vegetation model to study the interaction between vegetation and morphodynamics. Vegetation colonizes bare substrate within the seed dispersal window, passes several growth stages with different properties and can die through flooding, desiccation, uprooting, scour or burial. We have compared river morphology and vegetation patterns of scenarios without vegetation, with static vegetation that does not grow or die and several dynamic vegetation scenarios with a range of vegetation strategies and eco-engineering properties. Results show that dynamic vegetation has a decreased lateral migration of meander bends and maintains its active meandering behavior as opposed to the scenarios without vegetation and with static vegetation. Also the patterns in vegetation and fluvial morphology and the vegetation age distribution mostly resemble the natural situation when compared to aerial photos of the study area. We find that river dynamics, specifically sinuosity and sediment transport, are very sensitive to vegetation properties that determine vegetation density, settlement location and survival. Future work will include the effects of invasive species, addition of silt and the effect of various river management strategies.

  9. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    SciTech Connect

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008 are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007

  10. Gene expression profiling and environmental contaminant assessment of migrating Pacific salmon in the Fraser River watershed of British Columbia.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C

    2010-05-01

    The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female

  11. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    SciTech Connect

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from the hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here. Survival

  12. Coexistence of meandering and bunching of steps on vicinal surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Yan-Mei; Liu, Bang-Gui

    2006-01-01

    We simulate morphology and its evolution of vicinal surfaces in epitaxy by using the phase-field model. For usual parameters of Cu vicinal surfaces, a pure in-phase meandering pattern consistent to the experimental images is obtained. Nevertheless, vicinal surfaces grow into more complex hierarchy for a small kink energy. In addition to step meandering, step bunching happens due to competition of local step fluctuation and interlayer Ehrlich-Schwoebel barrier in the presence of the step meandering. This implies that step meandering and step bunching can coexist in some growing epitaxial vicinal surfaces.

  13. The Sredne-Amursky basin: A migrating cretaceous depocenter for the Amur river, eastern Siberia

    SciTech Connect

    Light, M.; Maslanyj, M.; Davidson, K. )

    1993-09-01

    Recently acquired seismic, well, and regional geological data imply favorable conditions for the accumulation of oil and gas in the 20,000 km[sup 2] Sredne-Amursky basin. Major graben and northeast-trending sinistral wrench-fault systems are recognized in the basin. Lower and Upper Cretaceous sediments are up to 9000 and 3000 m thick, respectively. Paleogeographic reconstructions imply that during the Late Triassic-Early Cretaceous the Sredne-Amursky basin was part of a narrow marine embayment (back-arc basin), which was open to the north. During the Cretaceous, the region was part of a foreland basin complicated by strike-slip, which produced subsidence related to transtension during oblique collision of the Sikhote-Alin arc with Eurasian margin. Contemporaneous uplift also related to this collision migrated from south to north and may have sourced northward-directed deltas and alluvial fans, which fed northward into the closing back-arc basin between 130 and 85 Ma. The progradational clastic succession of the Berriasian-Albian and the Late Cretaceous fluvial, brackish water and paralic sediments within the basin may be analogous to the highly productive late Tertiary clastics of the Amur River delta in the northeast Sakhalin basin. Cretaceous-Tertiary lacustrine-deltaic sapropelic shales provide significant source and seal potential and potential reservoirs occur in the Cretaceous and Tertiary. Structural plays were developed during Cretaceous rifting and subsequent strike-slip deformation. If the full hydrocarbon potential of the Sredne-Amursky basin is to be realized, the regional appraisal suggests that exploration should be focused toward the identification of plays related to prograding Cretaceous deltaic depositional systems.

  14. Foraging Ecology of Fall-Migrating Shorebirds in the Illinois River Valley

    PubMed Central

    Smith, Randolph V.; Stafford, Joshua D.; Yetter, Aaron P.; Horath, Michelle M.; Hine, Christopher S.; Hoover, Jeffery P.

    2012-01-01

    Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2±4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity

  15. Foraging ecology of fall-migrating shorebirds in the Illinois River valley.

    PubMed

    Smith, Randolph V; Stafford, Joshua D; Yetter, Aaron P; Horath, Michelle M; Hine, Christopher S; Hoover, Jeffery P

    2012-01-01

    Populations of many shorebird species appear to be declining in North America, and food resources at stopover habitats may limit migratory bird populations. We investigated body condition of, and foraging habitat and diet selection by 4 species of shorebirds in the central Illinois River valley during fall migrations 2007 and 2008 (Killdeer [Charadrius vociferus], Least Sandpiper [Calidris minutilla], Pectoral Sandpiper [Calidris melanotos], and Lesser Yellowlegs [Tringa flavipes]). All species except Killdeer were in good to excellent condition, based on size-corrected body mass and fat scores. Shorebird diets were dominated by invertebrate taxa from Orders Diptera and Coleoptera. Additionally, Isopoda, Hemiptera, Hirudinea, Nematoda, and Cyprinodontiformes contribution to diets varied by shorebird species and year. We evaluated diet and foraging habitat selection by comparing aggregate percent dry mass of food items in shorebird diets and core samples from foraging substrates. Invertebrate abundances at shorebird collection sites and random sites were generally similar, indicating that birds did not select foraging patches within wetlands based on invertebrate abundance. Conversely, we found considerable evidence for selection of some diet items within particular foraging sites, and consistent avoidance of Oligochaeta. We suspect the diet selectivity we observed was a function of overall invertebrate biomass (51.2 ± 4.4 [SE] kg/ha; dry mass) at our study sites, which was greater than estimates reported in most other food selection studies. Diet selectivity in shorebirds may follow tenants of optimal foraging theory; that is, at low food abundances shorebirds forage opportunistically, with the likelihood of selectivity increasing as food availability increases. Nonetheless, relationships between the abundance, availability, and consumption of Oligochaetes for and by waterbirds should be the focus of future research, because estimates of foraging carrying capacity

  16. Including independent estimates and uncertainty to quantify total abundance of fish migrating in a large river system: walleye (Sander vitreus) in the Maumee River, Ohio

    USGS Publications Warehouse

    Pritt, Jeremy J.; DuFour, Mark R.; Mayer, Christine M.; Kocovsky, Patrick M.; Tyson, Jeffrey T.; Weimer, Eric J.; Vandergoot, Christopher S.

    2013-01-01

    Walleye (Sander vitreus) in Lake Erie is a valuable and migratory species that spawns in tributaries. We used hydroacoustic sampling, gill net sampling, and Bayesian state-space modeling to estimate the spawning stock abundance, characterize size and sex structure, and explore environmental factors cuing migration of walleye in the Maumee River for 2011 and 2012. We estimated the spawning stock abundance to be between 431,000 and 1,446,000 individuals in 2011 and between 386,400 and 857,200 individuals in 2012 (95% Bayesian credible intervals). A back-calculation from a concurrent larval fish study produced an estimate of 78,000 to 237,000 spawners for 2011. The sex ratio was skewed towards males early in the spawning season but approached 1:1 later, and larger individuals entered the river earlier in the season than smaller individuals. Walleye migration was greater during low river discharge and intermediate temperatures. Our approach to estimating absolute abundance and uncertainty as well as characterization of the spawning stock could improve assessment and management of this species, and our methodology is applicable to other diadromous populations.

  17. Origins and impacts of mesoscale meanders in the Agulhas Current

    NASA Astrophysics Data System (ADS)

    Elipot, S.; Beal, L. M.

    2014-12-01

    The Agulhas Current (AC) is the western boundary current of the South Indian subtropical gyre and is also the pathway for the inter-basin exchange of water, heat and salt between the Indian Ocean and the Atlantic Ocean, and thus a crucial part of the global overturning circulation of the world ocean. The AC, which otherwise flows stably along the coast of South Africa, undergoes dramatic offshore excursions from its mean path, forming large mesoscale solitary meanders propagating downstream and potentially linked to the leakage of Indian Ocean waters to the South Atlantic. These irregular meander events have been referred to as Natal Pulses.Here we present new observations and analyses of Agulhas meanders using full-depth velocity mooring observations from the Agulhas Current Time series experiment (ACT). Detailed analyses of the in-situ velocity reveal important differences between the behavior of the flow during solitary meander events and during meander events of smaller amplitude. During solitary meanders, an onshore cyclonic circulation and an offshore anticyclonic circulation act in concert to displace the jet offshore, leading to sudden and strong positive conversion of kinetic energy of the mean flow to the meander. In contrast, smaller amplitude meanderings are principally represented by a single cyclonic circulation spanning the entire jet that acts to displace the jet without significantly extracting kinetic energy from the mean flow. Solitary meander events can be traced upstream using satellite altimetry and linked to either Mozambique Channel eddies or Madagascar dipoles, the latter possibly part of a basin-wide pattern of propagating sea level anomalies consistent with Rossby wave dynamics. However, only a small number of these anomalies lead to solitary meanders. Altimetric observations suggest 1.5 meanders per year and show that the two-year period during ACT when no events were observed is unprecedented in the 20-year satellite record.

  18. The effects of river impoundment and hatchery rearing on the migration behavior of juvenile steelhead in the Lower Snake River, Washington

    USGS Publications Warehouse

    Plumb, J.M.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2006-01-01

    We used radiotelemetry to monitor the migration behavior of juvenile hatchery and wild steelhead Oncorhynchus mykiss as they migrated through Lower Granite Reservoir and Dam on the lower Snake River, Washington. From 1996 to 2001, we surgically implanted radio transmitters in 1,540 hatchery steelhead and 1,346 wild steelhead. For analysis, we used the inverse Gaussian distribution to describe travel time distributions for cohorts (>50 fish) of juvenile steelhead as they migrated downriver. Mean travel rates were significantly related to reach- and discharge-specific water velocities. Also, mean travel rates near the dam were slower for a given range of water velocities than were mean travel rates through the reservoir, indicating that the presence of the dam caused delay to juvenile steelhead over and above the effect of water velocity. Hatchery steelhead took about twice as long as wild steelhead to pass the dam as a result of the higher proportions of hatchery steelhead traveling upriver from the dam. Because upriver travel and the resulting migration delay might decrease survival, it is possible that hatchery steelhead survive at lower rates than wild steelhead. Our analysis identified a discharge threshold (???2,400 m3/s) below which travel time and the percentage of fish traveling upriver from the dam increased rapidly, providing support for the use of minimum flow targets to mitigate for fish delay and possibly enhance juvenile steelhead survival.

  19. Genetics, recruitment, and migration patterns of Arctic Cisco (Coregonus autumnalis) in the Colville River, Alaska and Mackenzie River, Canada

    USGS Publications Warehouse

    Zimmerman, Christian E.; Ramey, Andy M.; Turner, S.; Mueter, Franz J.; Murphy, S.; Nielsen, Jennifer L.

    2013-01-01

    Arctic cisco Coregonus autumnalis have a complex anadromous life history, many aspects of which remain poorly understood. Some life history traits of Arctic cisco from the Colville River, Alaska, and Mackenzie River basin, Canada, were investigated using molecular genetics, harvest data, and otolith microchemistry. The Mackenzie hypothesis, which suggests that Arctic cisco found in Alaskan waters originate from the Mackenzie River system, was tested using 11 microsatellite loci and a single mitochondrial DNA gene. No genetic differentiation was found among sample collections from the Colville River and the Mackenzie River system using molecular markers (P > 0.19 in all comparisons). Model-based clustering methods also supported genetic admixture between sample collections from the Colville River and Mackenzie River basin. A reanalysis of recruitment patterns to Alaska, which included data from recent warm periods and suspected changes in atmospheric circulation patterns, still finds that recruitment is correlated to wind conditions. Otolith microchemistry (Sr/Ca ratios) confirmed repeated, annual movements of Arctic cisco between low-salinity habitats in winter and marine waters in summer.

  20. Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.

    2004-01-01

    An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.

  1. River mobility in a permafrost dominated floodplain

    NASA Astrophysics Data System (ADS)

    Rowland, J.; Wilson, C.; Brumby, S.; Pope, P.

    2009-04-01

    Along arctic coastlines, recent studies have attributed dramatic increases in the rates of shoreline erosion to global climate change and permafrost degradation. While across much of the arctic, changes in the size and number of lakes have been interpreted as the result of permafrost degradation altering surface water dynamics. The potential influence of climate change and permafrost thawing on the mobility and form of arctic rivers, however, has been relatively unexplored to date. In rivers located within permafrost, some to potentially most, of the cohesive bank strength may be derived from frozen materials. It is likely that, as permafrost thaws, river bank erosion may increase, in turn influencing both migration rates and channel planform. Using automated feature extraction software (GeniePro), we quantified the of the mobility of a 200 km reach of the Yukon River through the Yukon Flats region located just north of Fairbanks, Alaska, USA. The Yukon Flats is an area of comprised of both continuous and discontinuous permafrost. Based on both changes in lake distributions and wintertime river base flows, it has been suggested that permafrost in this area has been experiencing recent thawing. In this reach, the Yukon River transitions from a 2 km wide braided channel to a multi-thread meandering channel where individual threads are approximately 1 km wide and the floodplain preserves prior meander cutoffs and oxbow lakes. Preliminary results from thirty years of LANDSAT imagery shows a surprising stability of channel location (at the image resolution of 30m/pixel) given the channel form. Within the braid-belt there is localized relocation of channel threads and mid-channel islands, though along much of the reach, the change in the location of channels banks is close to the resolution of the imagery. At the most active bends, bank migration rates range from 0.007 to 0.02 channel widths per year. These rates are comparable to system wide average rates observed on

  2. Excitation of vortex meandering in shear flow

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich

    2015-06-01

    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity {\\boldsymbol{ ω }} in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector {\\boldsymbol{ Ω }} and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lateral and vertical vorticity can be phase shifted by half a wavelength. The linear and nonlinear evolutions of the vortex in the shear flow are studied numerically. Linearized simulations confirm the results of the stability analysis. The nonlinear simulations reveal further evolution of the helix in the shear flow. The linearly excited mode persists in co-existence with evolving smaller scale instabilities until the flow becomes fully turbulent at the time of O(100 {{Ω }-1}). Turbulent mixing dampens the amplifying mode. The described phenomenon of vortex meandering may serve as an alternative explanation for the excitation of wind turbine wake meandering in the atmospheric boundary layer.

  3. Comparative ontogenetic behavior and migration of kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, from the Amur River

    USGS Publications Warehouse

    Zhuang, P.; Kynard, B.; Zhang, L.; Zhang, T.; Cao, W.

    2003-01-01

    We conducted laboratory experiments with kaluga, Huso dauricus, and Amur sturgeon, Acipenser schrenckii, to develop a conceptual model of early behavior. We daily observed embryos (first life phase after hatching) and larvae (period initiating exogenous feeding) to day-30 (late larvae) for preference of bright habitat and cover, swimming distance above the bottom, up- and downstream movement, and diel activity. Day-0 embryos of both species strongly preferred bright, open habitat and initiated a strong, downstream migration that lasted 4 days (3 day peak) for kaluga and 3 days (2 day peak) for Amur sturgeon. Kaluga migrants swam far above the bottom (150 cm) on only 1 day and moved day and night; Amur sturgeon migrants swam far above the bottom (median 130 cm) during 3 days and were more nocturnal than kaluga. Post-migrant embryos of both species moved day and night, but Amur sturgeon used dark, cover habitat and swam closer to the bottom than kaluga. The larva period of both species began on day 7 (cumulative temperature degree-days, 192.0 for kaluga and 171.5 for Amur sturgeon). Larvae of both species preferred open habitat. Kaluga larvae strongly preferred bright habitat, initially swam far above the bottom (median 50-105 cm), and migrated downstream at night during days 10-16 (7-day migration). Amur sturgeon larvae strongly avoided illumination, had a mixed response to white substrate, swam 20-30 cm above the bottom during most days, and during days 12-34 (most of the larva period) moved downstream mostly at night (23-day migration). The embryo-larva migration style of the two species likely shows convergence of non-related species for a common style in response to environmental selection in the Amur River. The embryo-larva migration style of Amur sturgeon is unique among Acipenser yet studied.

  4. LATERAL TURBULENCE INTENSITY AND PLUME MEANDERING DURING STABLE CONDITIONS

    EPA Science Inventory

    There is much evidence in the literature for the presence of mesoscale lateral meanders in the stable nighttime boundary layer. These meanders result in relatively high lateral turbulence intensities and diffusion rates when averaged over an hour. Anemometer data from 17 overnigh...

  5. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    SciTech Connect

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  6. Streamwise vortex meander in a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.; Mehta, Rabindra D.

    1993-01-01

    The present experimental study was conducted in order to determine the existence of streamwise vortex meander in a mixing layer, and if present, its significance on the measured properties. The dependence of the velocity cross-correlation on the fixed probe location was shown to be a good indicator of the stationarity of the streamwise vortex location. The cross-correlation measurements obtained here indicate that spanwise meander is negligible, although transverse apparent meander (normal to the plane of the mixing layer) was indicated. The transverse meander, exemplified by the elliptical shape of the mean streamwise vorticity contours, was expected, since the streamwise vorticity in the braid region is essentially inclined, with respect to the streamwise direction. These conclusions were supported by results of estimated spanwise profiles of the transverse velocity component. The balance of evidence suggests that the measured mean streamwise vorticity decay is representative of the decay of the vorticity rather than an artifact of meander.

  7. Hydrodynamics and sediment transport in a meandering channel with a model axial-flow hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Hill, Craig; Kozarek, Jessica; Sotiropoulos, Fotis; Guala, Michele

    2016-02-01

    An investigation into the interactions between a model axial-flow hydrokinetic turbine (rotor diameter, dT = 0.15 m) and the complex hydrodynamics and sediment transport processes within a meandering channel was carried out in the Outdoor StreamLab research facility at the University of Minnesota St. Anthony Falls Laboratory. This field-scale meandering stream with bulk flow and sediment discharge control provided a location for high spatiotemporally resolved measurements of bed and water surface elevations around the model turbine. The device was installed within an asymmetric, erodible channel cross section under migrating bed form and fixed outer bank conditions. A comparative analysis between velocity and topographic measurements, with and without the turbine installed, highlights the local and nonlocal features of the turbine-induced scour and deposition patterns. In particular, it shows how the cross-section geometry changes, how the bed form characteristics are altered, and how the mean flow field is distorted both upstream and downstream of the turbine. We further compare and discuss how current energy conversion deployments in meander regions would result in different interactions between the turbine operation and the local and nonlocal bathymetry compared to straight channels.

  8. Fluvial changes of the Guadalquivir river during the Holocene in Córdoba (Southern Spain)

    NASA Astrophysics Data System (ADS)

    Uribelarrea, David; Benito, Gerardo

    2008-08-01

    Holocene fluvial changes of the Guadalquivir River at Córdoba City were studied with an emphasis on floodplain development, river migration rates, sedimentation rates and environmental history. During the Holocene, the Guadalquivir River has developed a large meander (El Arenal) with a general southwards lateral migration, undercutting Tertiary bedrock, and with a total incision of 9 m, which developed three alluvial surfaces: Fp1, Fp2 and Fp3. The oldest floodplain surface Fp1 (+ 7-9 m) was deposited during the early Holocene and reached its maximum extent around 1000 yr BP. The next floodplain surface Fp2 (+ 5 m) accumulated 500 to 1000 yr ago. Finally, the youngest floodplain surface (Fp3, + 1-2 m) was developed in the last 500 yr. Migration rates and direction changed from 690-480 m 2 yr - 1 in Fp1 (to the southeast), 2280 m 2 yr - 1 in Fp2 and 620 m 2 yr - 1 in Fp3 (to the west). The stratigraphical study of palaeomeanders and chute channel deposits show evidence of river position and dynamics through recent times: (1) "San Eduardo" was filled 4000 yr BP; (2) "Madre Vieja" has been active since 2100 yr BP to the present day; and (3) "El Cortijo" was formed and filled during historical times (the last 1000 yr). The chronology of the alluvial stratigraphy and fluvial dynamics are discussed within the context of historical hydrologic, climatic and anthropogenic changes. In addition, the geomorphological reconstruction of the riverine landscape in historical times provided some clue to the location of Medinat al-Zahira, a lost Muslim settlement built in the 10th century AD and believed to be situated at, or nearby, the Arenal meander. Paleogeographical analysis shows that the most suitable conditions for this medieval settlement were found on the northeast part of the Arenal meander.

  9. Migration depths of adult steelhead Oncorhynchus mykiss in relation to dissolved gas supersaturation in a regulated river system

    SciTech Connect

    Johnson, Eric L.; Clabough, Tami S.; Caudill, Christopher C.; keefer, matthew L.; Peery, Christopher A.; Richmond, Marshall C.

    2010-04-01

    Adult steelhead tagged with archival transmitters primarily migrated through a large river corridor at depths > 2 m, interspersed with frequent but short (< 5 min) periods closer to the surface. The recorded swimming depths and behaviours probably provided adequate hydrostatic compensation for the encountered supersaturated dissolved gas conditions and probably limited development of gas bubble disease (GBD). Results parallel those from a concurrent adult Chinook salmon study, except steelhead experienced greater seasonal variability and were more likely to have depth-uncompensated supersaturation exposure in some dam tailraces, perhaps explaining the higher incidence of GBD in this species.

  10. [Sources, Migration and Conversion of Dissolved Alkanes, Dissolved Fatty Acids in a Karst Underground River Water, in Chongqing Area].

    PubMed

    Liang, Zuo-bing; Sun, Yu-chuan; Wang, Zun-bo; Shi, Yang; Jiang, Ze-li; Zhang, Mei; Xie, Zheng-Lan; Liao, Yu

    2015-09-01

    Dissolved alkanes and dissolved fatty acids were collected from Qingmuguan underground river in July, October 2013. By gas chromatography-mass spectrometer (GC-MS), alkanes and fatty acids were quantitatively analyzed. The results showed that average contents of alkanes and fatty acids were 1 354 ng.L-1, 24203 ng.L-1 in July, and 667 ng.L-1, 2526 ng.L-1 in October respectively. With the increasing migration distance of dissolved alkanes and dissolved fatty acids in underground river, their contents decreased. Based on the molecular characteristic indices of alkanes, like CPI, OEP, Paq and R, dissolved alkanes were mainly originated from microorganisms in July, and aquatic plants in October. Saturated straight-chain fatty acid had the highest contents in all samples with the dominant peak in C16:0, combined with the characteristics of carbon peak, algae or bacteria might be the dominant source of dissolved fatty acids. PMID:26717680

  11. The Owens River as a tiltmeter for Long Valley caldera, California

    SciTech Connect

    Reid, J.B. Jr )

    1992-05-01

    In the lower 11 km of its course around the resurgent dome of Long Valley caldera, the Owens River displays two parallel meander belts, comparable in meander wavelength and amplitude but unequal in age, elevation, and discharge. It appears the two belts take turns carrying the river's flow depending on whether the dome is inflating or subsiding. The inboard belt, some 200-300 m closer to the dome and now 30-60 cm higher in elevation, contains an underfit stream and is now being abandoned. The outboard channel formed in a series of avulsions apparently induced by recent uplift of the dome. In the upper 4 km of the two-channel reach, avulsion occurred between 1856 and 1878 as inferred from the original US Coast and Geodetic Survey mapping the caldera. Avulsion had already occurred by 1856 in the lower 4 km of the river, suggesting a possible migration of the center of uplift through time. More ancient meander scars at the inboard and outboard limits of the floodplain imply additional earlier episodes of inflation and subsidence. Projection of surveyed topographic profiles across the river's floodplain to the center of the dome suggests that cumulative recent uplift is on the order of 15-35 m, or about 30-70 times greater than that measured for the caldera since 1979 (Castle et al. 1984). The duration of the era of subsidence can be estimated by comparing oxbow densities in the old and new meander belts in the upper two-channel reach; the data suggest that the dome may have been in subsidence for a period of at least 500 to 1,000 yr ending about 150 yr ago. No eruptions of the Long Valley volcanic system have accompanied these inflations and subsidings.

  12. Migration depths of juvenile Chinook salmon and steelhead relative to total dissolved gas supersaturation in a Columbia River reservoir

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2006-01-01

    The in situ depths of juvenile salmonids Oncorhynchus spp. were studied to determine whether hydrostatic compensation was sufficient to protect them from gas bubble disease (GBD) during exposure to total dissolved gas (TDG) supersaturation from a regional program of spill at dams meant to improve salmonid passage survival. Yearling Chinook salmon O. tshawytscha and juvenile steelhead O. mykiss implanted with pressure-sensing radio transmitters were monitored from boats while they were migrating between the tailrace of Ice Harbor Dam on the Snake River and the forebay of McNary Dam on the Columbia River during 1997-1999. The TDG generally decreased with distance from the tailrace of the dam and was within levels known to cause GBD signs and mortality in laboratory bioassays. Results of repeated-measures analysis of variance indicated that the mean depths of juvenile steelhead were similar throughout the study area, ranging from 2.0 m in the Snake River to 2.3 m near the McNary Dam forebay. The mean depths of yearling Chinook salmon generally increased with distance from Ice Harbor Dam, ranging from 1.5 m in the Snake River to 3.2 m near the forebay. Juvenile steelhead were deeper at night than during the day, and yearling Chinook salmon were deeper during the day than at night. The TDG level was a significant covariate in models of the migration depth and rates of each species, but no effect of fish size was detected. Hydrostatic compensation, along with short exposure times in the area of greatest TDG, reduced the effects of TDG exposure below those generally shown to elicit GBD signs or mortality. Based on these factors, our results indicate that the TDG limits of the regional spill program were safe for these juvenile salmonids.

  13. Strath terrace formation and knickpoint migration in a coastal watershed draining to the Cascadia subduction margin, Smith River, northern California

    NASA Astrophysics Data System (ADS)

    Caldwell, D. J.; Kelsey, H. M.

    2010-12-01

    Strath terrace formation and knickpoint migration along mainstem channels are indicators of landscape response to tectonic forcing in the Smith River watershed. The watershed (1,575 km2) is a bedrock dominated coastal basin in northern-most California. Aerial photographs, 10 m and 1 m digital elevation models, and field investigations were used to map strath terraces and determine modern and paleo-channel elevations along two of the three mainstem channels (Middle Fork and South Fork). Along these reaches there are primarily two strath terraces, although some reaches are bordered by more than two strath terraces. Alluvium overlying these straths is thin to moderate in thickness, averaging 5.6 m and ranging from 0.25 m to 11.5 m. Two prominent knickpoints and associated knickzones (reaches of relatively high gradient located immediately downstream of a knickpoint) are located in the Middle and South Forks just upstream of the confluence of the two forks. There is a distinct upstream convergence, of equal magnitudes, of the modern channel with the lowest elevated strath surface along the knickzones of both forks, resulting in elevated strath surfaces downstream of the knickzones. We infer that the knickzones are transient and that the straths are more vertically separated from the modern channel only after the knickpoint has migrated upstream. Schmidt hammer investigations rule out the possibility that differences in rock strength were the cause of the knickzones because relative Schmidt hammer values revealed that rock strength does not significantly vary across the knickzones. Extensive preservation of strath terraces throughout the basin indicates that strath terraces record baselevel lowering. Baselevel lowering is likely caused by surface uplift of the basin in response to plate convergence. We infer that the response in the channel to regional surface uplift is upstream migration of high-gradient reaches (i.e. knickzone migration). Both the strath terraces and

  14. Morphology of meandering and braided gravel-bed streams from the Bayanbulak Grassland, Tianshan, China

    NASA Astrophysics Data System (ADS)

    Métivier, F.; Devauchelle, O.; Chauvet, H.; Lajeunesse, E.; Meunier, P.; Blanckaert, K.; Zhang, Z.; Fan, Y.; Liu, Y.; Dong, Z.; Ye, B.

    2015-11-01

    The Bayanbulak Grassland, Tianshan, China is located in an intramountane sedimentary basin where meandering and braided gravel-bed streams coexist under the same climatic and geological settings. We report on measurements of their discharge, width, depth, slope and grain size. Based on this data set, we compare the morphology of individual threads from braided and meandering streams. Both types of threads share statistically indistinguishable regime relations. Their depths and slopes compare well with the threshold theory, but they are wider than predicted by this theory. These findings are reminiscent of previous observations from similar gravel-bed streams. Using the scaling laws of the threshold theory, we detrend our data with respect to discharge to produce a homogeneous statistical ensemble of width, depth and slope measurements. The statistical distributions of these dimensionless quantities are similar for braided and meandering streams. This suggests that a braided river is a collection of intertwined channels, which individually resemble isolated streams. Given the environmental conditions in Bayanbulak, we furthermore hypothesize that bedload transport causes the channels to be wider than predicted by the threshold theory.

  15. Meandering worms: mechanics of undulatory burrowing in muds.

    PubMed

    Dorgan, Kelly M; Law, Chris J; Rouse, Greg W

    2013-04-22

    Recent work has shown that muddy sediments are elastic solids through which animals extend burrows by fracture, whereas non-cohesive granular sands fluidize around some burrowers. These different mechanical responses are reflected in the morphologies and behaviours of their respective inhabitants. However, Armandia brevis, a mud-burrowing opheliid polychaete, lacks an expansible anterior consistent with fracturing mud, and instead uses undulatory movements similar to those of sandfish lizards that fluidize desert sands. Here, we show that A. brevis neither fractures nor fluidizes sediments, but instead uses a third mechanism, plastically rearranging sediment grains to create a burrow. The curvature of the undulating body fits meander geometry used to describe rivers, and changes in curvature driven by muscle contraction are similar for swimming and burrowing worms, indicating that the same gait is used in both sediments and water. Large calculated friction forces for undulatory burrowers suggest that sediment mechanics affect undulatory and peristaltic burrowers differently; undulatory burrowing may be more effective for small worms that live in sediments not compacted or cohesive enough to extend burrows by fracture. PMID:23446526

  16. Meandering worms: mechanics of undulatory burrowing in muds

    PubMed Central

    Dorgan, Kelly M.; Law, Chris J.; Rouse, Greg W.

    2013-01-01

    Recent work has shown that muddy sediments are elastic solids through which animals extend burrows by fracture, whereas non-cohesive granular sands fluidize around some burrowers. These different mechanical responses are reflected in the morphologies and behaviours of their respective inhabitants. However, Armandia brevis, a mud-burrowing opheliid polychaete, lacks an expansible anterior consistent with fracturing mud, and instead uses undulatory movements similar to those of sandfish lizards that fluidize desert sands. Here, we show that A. brevis neither fractures nor fluidizes sediments, but instead uses a third mechanism, plastically rearranging sediment grains to create a burrow. The curvature of the undulating body fits meander geometry used to describe rivers, and changes in curvature driven by muscle contraction are similar for swimming and burrowing worms, indicating that the same gait is used in both sediments and water. Large calculated friction forces for undulatory burrowers suggest that sediment mechanics affect undulatory and peristaltic burrowers differently; undulatory burrowing may be more effective for small worms that live in sediments not compacted or cohesive enough to extend burrows by fracture. PMID:23446526

  17. Flow and sediment processes in a cutoff meander of the Danube Delta during episodic flooding

    NASA Astrophysics Data System (ADS)

    Jugaru Tiron, Laura; Le Coz, Jérôme; Provansal, Mireille; Panin, Nicolae; Raccasi, Guillaume; Dramais, Guillaume; Dussouillez, Philippe

    2009-05-01

    This article analyzes the water and suspended solid fluxes through a straightened meander of the southern branch of the Danube Delta (the St. George branch) during episodic flooding. The Mahmudia study site corresponds to a vast natural meander which was cut off in 1984-1988 by an artificial canal opened to shipping. The meander correction accelerated fluxes through the artificial canal and dramatically enhanced deposition in the former meander. After his formation, the cutoff meander acted as sediment storage locations, essentially removing channel and point bar sediments from the active sediment budget of the main channel. Increases in slope and stream power in reaches upstream and downstream have also occurred, but to a lesser degree. During the one-hundred-year recurrent flood in April 2006, bathymetry, flow velocity and discharge data were acquired across several sections of both natural and artificial channels with an acoustic Doppler current profiler (aDcp Workhorse Sentinel 600 kHz, Teledyne RDI) in order to investigate the distribution of the flow and sediment and his impact on sedimentation in a channelized reach and its adjacent cutoff. The contrasting hydro-sedimentary processes at work in both channels and bifurcation/confluence nodal points are analyzed from the measured flux distribution, morphological profiles and velocity and concentration patterns. In the cutoff, a diminishing of the intensity of the flow velocity (c. 50%) and of the SSC was observed correlated with the aggradation of the river bed. In the bifurcation/confluence nodal points and in the artificial canal were observed the most intensive hydrodynamic activity (high flow velocity, SSC concentration, degradation of the river bad). Both the event-scale and long-term morphological trends of the alluvial system are discussed analyzing the boundary shear stress and SSC variability. Excess boundary shear stress in the sub-reaches directly affected by cutoffs resulted in scour that increased

  18. Observations of Sand Dune Migration on the Colorado River in Grand Canyon using High-Resolution Multibeam Bathymetry

    NASA Astrophysics Data System (ADS)

    Kaplinski, M. A.; Buscmobe, D.; Ashley, T.; Tusso, R.; Grams, P. E.; McElroy, B. J.; Mueller, E. R.; Hamill, D.

    2015-12-01

    Repeat, high-resolution multibeam bathymetric surveys were conducted in March and July 2015 along a reach of the Colorado River in Grand Canyon near the Diamond Creek gage (362 km downstream of Lees Ferry, AZ) to characterize the migration of sand dunes. The surveys were collected as part of a study designed to quantify the relative importance of bedload and suspended sediment transport and develop a predictive relationship for bedload transport. Concurrent measurements of suspended-sediment concentrations, bed-sediment grain size, and water velocity were also collected. The study site is approximately 350 m long and 50 m wide; water depths are 7 to 10 m during normal flows; and a field of sand dunes form along its entire length with negligible coarse material at the bed surface. Full swath coverage of the site required about 6 to 10 minutes to complete with two passes of the survey vessel. Mapping occurred continuously during several survey periods. For each survey period, time-series of bathymetric maps were constructed from each pair of survey lines. In March, surveys were collected over durations of 2, 3, 9, and 11 hours, at discharges of 339 to 382 m3/s. In July, surveys were collected over durations of 4, 4, and 13 hours, at discharges ranging from 481 to 595 ft3/s. These surveys capture the migration of sand dunes over a wide range of discharge with an unprecedented temporal resolution. The dunes in March were between 30 and 50 cm in height, 5 m in length, and migrating downstream at about 1 m per hour. In July, dunes were between 75 and 130 cm in height and 10-15 m in length, and were migrating downstream at rates of 5 to 2 m per hour. The surveys also reveal that the dune migration is spatially and temporally variable, with fast-migrating small dunes variably superimposed on slower-moving larger dunes. The dunes also refract around shoreline talus piles and other flow constrictions collectively causing a large degree of dune deformation as they migrate.

  19. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    SciTech Connect

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E.

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and estimate survival of

  20. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; U.S. Geological Survey; Gillikin, Daniel; U.S. Fish and Wildlife Service

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  1. River Responses to Climate Change: Examining the Subsurface Architecture of the Pee Dee River, South Carolina

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Wright, E. E.

    2011-12-01

    A detailed geological record of climate and landscape change through multiple glacial-interglacial cycles is preserved in the morphology and stratigraphy of South Carolina's coastal plain. High-resolution LiDAR topography across the coastal plain reveals a complex landscape with channel patterns that highlight the dynamic response of coastal river systems to shifts in climate. While the southeastern coastal plain was far from the edge of the North American ice sheet during the Last Glacial Maximum, much of the relict floodplain morphology is comprised of braided plains with parabolic dunes oriented ENE, large meander scars and sandy scroll bars. These features record a transition from low profile, episodic braided systems during the glacial period to unusually large, overfit meandering systems during deglaciation, and subsequently to the smaller, modern meandering system. Focusing on the confluence of the Great Pee Dee and Little Pee Dee Rivers, we collected a suite of geophysical data (Chirp subbottom and multibeam bathymetry in the river and Ground Penetrating Radar (GPR) across the floodplain and dunes) and geologic samples to examine the 3-D subsurface architecture of this fluvial system. Preliminary analysis of the Chirp subbottom and GPR data reveals a series of buried surfaces that appear to represent multiple fluvial terraces dissected by paleochannels that may record several cycles of glaciation accompanied by shifts in fluvial morphology. Sediment samples collected along these subsurface profiles will be correlated with the geophysical data to provide age constraints on the timing of channel migration. These newly acquired datasets have been integrated with pre-existing high resolution LiDAR topography data and regional orthophotographs to create a detailed three-dimensional visualization of the study area.

  2. WATER QUALITY STATUS REPORT, CROOKED RIVER, IDAHO COUNTY IDAHO, 1987

    EPA Science Inventory

    Crooked River (17060305), a primary anadromous fisheries resource, is located approximately 120 miles southeast of Lewiston, Idaho. Dredging operations between 1936 and 1948 left large piles of gravel in the natural watercourse, causing the river to meander. Impoundments of wat...

  3. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River

    PubMed Central

    Tabak, Nava M.; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary. PMID:27043136

  4. Simulating the Effects of Sea Level Rise on the Resilience and Migration of Tidal Wetlands along the Hudson River.

    PubMed

    Tabak, Nava M; Laba, Magdeline; Spector, Sacha

    2016-01-01

    Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE's wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary. PMID:27043136

  5. The Fate of Oxbow Lakes Determined by Mechanisms of Meander Cutoff

    NASA Astrophysics Data System (ADS)

    Constantine, José; Dieras, Pauline; Hales, Tristram; Piégay, Hervé

    2016-04-01

    Oxbow lakes are some of the most widespread and distinctive landforms along meandering rivers, but their persistence as aquatic habitat may depend on the mechanisms of their formation. Based on an archive of historical aerial photographs and maps of seven meandering rivers, we use changes in water-surface area as a proxy for alluviation to demonstrate that oxbows and abandoned channels created by neck cutoff can persist in the floodplain for centuries, whereas the oxbows and abandoned channels created by chute cutoff appear to undergo rapid alluviation following their formation. Differences in the persistence of the thirty-seven oxbows and abandoned channels under study are due to differences in the planform characteristics that are associated with each cutoff mechanism. Using theoretical and empirical relations that describe the conditions required for the conveyance of riverbed sediment, we show that neck cutoff results in the successful transition of persistent oxbows because they lack the planform characteristics required for sustaining the flows needed to prevent plug formation. The angle by which flow is diverted and the magnitude by which the river is locally steepened is significantly greater for channels created by neck cutoff than for those created by chute cutoff.

  6. Migration of the Pee Dee River system inferred from ancestral paleochannels underlying the South Carolina Grand Strand and Long Bay inner shelf

    USGS Publications Warehouse

    Baldwin, W.E.; Morton, R.A.; Putney, T.R.; Katuna, M.P.; Harris, M.S.; Gayes, P.T.; Driscoll, N.W.; Denny, J.F.; Schwab, W.C.

    2006-01-01

    Several generations of the ancestral Pee Dee River system have been mapped beneath the South Carolina Grand Strand coastline and adjacent Long Bay inner shelf. Deep boreholes onshore and high-resolution seismic-reflection data offshore allow for reconstruction of these paleochannels, which formed during glacial lowstands, when the Pee Dee River system incised subaerially exposed coastal-plain and continental-shelf strata. Paleochannel groups, representing different generations of the system, decrease in age to the southwest, where the modern Pee Dee River merges with several coastal-plain tributaries at Winyah Bay, the southern terminus of Long Bay. Positions of the successive generational groups record a regional, southwestward migration of the river system that may have initiated during the late Pliocene. The migration was primarily driven by barrier-island deposition, resulting from the interaction of fluvial and shoreline processes during eustatic highstands. Structurally driven, subsurface paleotopography associated with the Mid-Carolina Platform High has also indirectly assisted in forcing this migration. These results provide a better understanding of the evolution of the region and help explain the lack of mobile sediment on the Long Bay inner shelf. Migration of the river system caused a profound change in sediment supply during the late Pleistocene. The abundant fluvial source that once fed sand-rich barrier islands was cut off and replaced with a limited source, supplied by erosion and reworking of former coastal deposits exposed at the shore and on the inner shelf.

  7. Richness and diversity of helminth communities in the Japanese grenadier anchovy, Coilia nasus, during its anadromous migration in the Yangtze River, China.

    PubMed

    Li, Wen X; Zou, Hong; Wu, Shan G; Song, Rui; Wang, Gui T

    2012-06-01

    To determine the relationship between the species richness, diversity of helminth communities, and migration distance during upward migration from coast to freshwater, helminth communities in the anadromous fish Coilia nasus were investigated along the coast of the East China Sea, the Yangtze Estuary, and 3 localities on the Yangtze River. Six helminth species were found in 224 C. nasus . Changes in salinity usually reduced the survival time of parasites, and thus the number of helminth species and their abundance. Except for the 2 dominant helminths, the acanthocephalan Acanthosentis cheni and the nematode Contracaecum sp., mean abundance of other 4 species of helminths was rather low (<1.0) during the upward migration in the Yangtze River. Mean abundance of the 2 dominant helminths peaked in the Yangtze Estuary and showed no obvious decrease among the 3 localities on the Yangtze River. Mean species richness, Brillouin's index, and Shannon index were also highest in the estuary (1.93 ± 0.88, 0.28 ± 0.25, and 0.37 ± 0.34, respectively) and did not exhibit marked decline at the 3 localities on the Yangtze River. A significant negative correlation was not seen between the similarity and the geographical distance (R  =  -0.5104, P  =  0.1317). The strong salinity tolerance of intestinal helminths, relatively brief stay in the Yangtze River, and large amount of feeding on small fish and shrimp when commencing spawning migration perhaps were responsible for the results. PMID:22257179

  8. Investigating historical changes in morphodynamic processes associated with channelization of a large Alpine river: the Etsch/Adige River, NE Italy

    NASA Astrophysics Data System (ADS)

    Zen, Simone; Scorpio, Vittoria; Mastronunzio, Marco; Proto, Matteo; Zolezzi, Guido; Bertoldi, Walter; Comiti, Francesco; Surian, Nicola; Prà, Elena Dai

    2016-04-01

    River channel management within the last centuries has largely modified fluvial processes and morphodynamic evolution of most large European rivers. Several river systems experienced extensive channelization early in the 19th century, thus strongly challenging our present ability to detect their morphodynamic functioning with contemporary photogrammetry or cartographical sources. This consequently leaves open questions about their potential future response, especially to management strategies that "give more room" to the river, aiming at partially rehabilitating their natural functioning. The Adige River (Etsch in German), the second longest Italian river, is an exemplary case where channelization occurred more than 150 years ago, and is the focus of the present work. This work aims (i) to explore changes in fundamental morphodynamic processes associated with massive channelization of the Adige River and (ii) to quantify the alteration in river bars characteristics, by using morphodynamic models of bars and meandering. To fulfil our aims we combine the analysis of historical data with morphodynamic mathematical modelling. Historical sources (recovered in a number of European archives), such as hydrotopographical maps, airborne photogrammetry and hydrological datasets were collected to investigate channel morphology before and after the channelization. Information extracted from this analysis was combined with morphodynamic linear models of free migrating and forced steady bars, to investigate river bars and bend stability properties under different hydromorphological scenarios. Moreover, a morphodynamic model for meandering channel was applied to investigate the influence of river channel planform on the evolution of the fluvial bars. Results from the application of morphodynamic models allowed to predict the type, position and geometry of bars characterizing the channelized configuration of the river, and to explain the presently observed relative paucity of bars

  9. [Migration of main odorous compounds in a water supply system with Huangpu River as raw water in Shanghai].

    PubMed

    Bai, Xiao-Hui; Zhang, Ming-De; Jia, Cheng-Shen

    2011-01-01

    Migration and variation of odorous compounds as geosmin, 2-methylisoborneol (MIB) and residual chlorine in drinking water taken from Huangpu River were studied by using headspace solid phase microextraction procedure (HSPME) and gas chromatograph with mass spectrometry. The results showed that, raw water, processed water, pipe water (taken from pump station) and secondary-supply water all contained MIB and geosmin ranging from 2 ng/L to 18 ng/L and 2.68 ng/L to 5.06 ng/L respectively and decreased dramatically during the water processing and distribution system. MIB is proved to be a kind of the odorous compounds in drinking water of Shanghai by comparing the concentrations of MIB and GSM with their odor threshold. The concentration of residual chlorine declined greatly in the distribution system, but because of the high value at the outlet of waterworks, it still may exceeded the influence of MIB and cause the odour problems. PMID:21404674

  10. Smolt Migration Characteristics and Mainstem Snake and Columbia River Detection Rates of PIT-Tagged Grande Ronde and Imnaha River Naturally Produced Spring Chinook Salmon, Annual Reports 1993, 1994, 1995 : Fish Research Project, Oregon.

    SciTech Connect

    Walters, Timothy R.; Carmichael, Richard W.; Keefe, MaryLouise

    1996-04-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995.