Science.gov

Sample records for rna interference machineries

  1. Noncoding RNAs of Plant Viruses and Viroids: Sponges of Host Translation and RNA Interference Machinery.

    PubMed

    Miller, W Allen; Shen, Ruizhong; Staplin, William; Kanodia, Pulkit

    2016-03-01

    Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like 'sponges' that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5' to 3' degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host's RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race. PMID:26900786

  2. Global effects on gene expression in fission yeast by silencing and RNA interference machineries.

    PubMed

    Hansen, Klavs R; Burns, Gavin; Mata, Juan; Volpe, Thomas A; Martienssen, Robert A; Bähler, Jürg; Thon, Geneviève

    2005-01-01

    Histone modifications influence gene expression in complex ways. The RNA interference (RNAi) machinery can repress transcription by recruiting histone-modifying enzymes to chromatin, although it is not clear whether this is a general mechanism for gene silencing or whether it requires repeated sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr mutants derepressed similar subsets of genes, many of which also became transcriptionally activated in cells that were exposed to environmental stresses such as nitrogen starvation. Many genes that were repressed by the Clr proteins clustered in extended regions close to the telomeres. Surprisingly few genes were repressed by both the silencing and RNAi machineries, with transcripts from centromeric repeats and Tf2 retrotransposons being notable exceptions. We found no correlation between repression by RNAi and proximity to LTRs, and the wtf family of repeated sequences seems to be repressed by histone deacetylation independent of RNAi. Our data indicate that the RNAi and Clr proteins show only a limited functional overlap and that the Clr proteins play more global roles in gene silencing. PMID:15632061

  3. RNA Interference

    MedlinePlus

    ... NIGMS Home > Science Education > RNA Interference Fact Sheet RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process ...

  4. Decreased expression of RNA interference machinery, Dicer and Drosha, is associated with poor outcome in ovarian cancer patients

    SciTech Connect

    Merritt, William M.; Lin, Yvonne G.; Han, Liz Y.; Kamat, Aparna A.; Spannuth, Whitney A.; Schmandt, Rosemarie; Urbauer, Diana; Pennacchio, Len A.; Cheng, Jan-Fang; Zeidan, Alexandra; Wang, Hua; Mueller, Peter; Lenburg, Marc E.; Gray, Joe W.; Mok, Samuel; Birrer, Michael J.; Lopez-Berestein, Gabriel; Coleman, Robert L.; Bar-Eli, Menashe; Sood, Anil K.

    2008-05-06

    The clinical and functional significance of RNA interference (RNAi) machinery, Dicer and Drosha, in ovarian cancer is not known and was examined. Dicer and Drosha expression was measured in ovarian cancer cell lines (n=8) and invasive epithelial ovarian cancer specimens (n=111) and correlated with clinical outcome. Validation was performed with previously published cohorts of ovarian, breast, and lung cancer patients. Anti-Galectin-3 siRNA and shRNA transfections were used for in vitro functional studies. Dicer and Drosha mRNA and protein levels were decreased in 37% to 63% of ovarian cancer cell lines and in 60% and 51% of human ovarian cancer specimens, respectively. Low Dicer was significantly associated with advanced tumor stage (p=0.007), and low Drosha with suboptimal surgical cytoreduction (p=0.02). Tumors with both high Dicer and Drosha were associated with increased median patient survival (>11 years vs. 2.66 years for other groups; p<0.001). In multivariate analysis, high Dicer (HR=0.48; p=0.02), high-grade histology (HR=2.46; p=0.03), and poor chemoresponse (HR=3.95; p<0.001) were identified as independent predictors of disease-specific survival. Findings of poor clinical outcome with low Dicer expression were validated in separate cohorts of cancer patients. Galectin-3 silencing with siRNA transfection was superior to shRNA in cell lines with low Dicer (78-95% vs. 4-8% compared to non-targeting sequences), and similar in cell lines with high Dicer. Our findings demonstrate the clinical and functional impact of RNAi machinery alterations in ovarian carcinoma and support the use of siRNA constructs that do not require endogenous Dicer and Drosha for therapeutic applications.

  5. The RNA interference revolution.

    PubMed

    Lenz, G

    2005-12-01

    The discovery of double-stranded RNA-mediated gene silencing has rapidly led to its use as a method of choice for blocking a gene, and has turned it into one of the most discussed topics in cell biology. Although still in its infancy, the field of RNA interference has already produced a vast array of results, mainly in Caenorhabditis elegans, but recently also in mammalian systems. Micro-RNAs are short hairpins of RNA capable of blocking translation, which are transcribed from genomic DNA and are implicated in several aspects from development to cell signaling. The present review discusses the main methods used for gene silencing in cell culture and animal models, including the selection of target sequences, delivery methods and strategies for a successful silencing. Expected developments are briefly discussed, ranging from reverse genetics to therapeutics. Thus, the development of the new paradigm of RNA-mediated gene silencing has produced two important advances: knowledge of a basic cellular mechanism present in the majority of eukaryotic cells and access to a potent and specific new method for gene silencing. PMID:16302089

  6. RNA Interference in Ticks

    PubMed Central

    Kocan, Katherine M.; Blouin, Edmour; de la Fuente, José

    2011-01-01

    Ticks are obligate hematophagous ectoparasites of wild and domestic animals and humans, and are considered to be second worldwide to mosquitoes as vectors of human diseases1 and the most important vectors affecting cattle industry worldwide2. Ticks are classified in the subclass Acari, order Parasitiformes, suborder Ixodida and are distributed worldwide from Arctic to tropical regions3. Despite efforts to control tick infestations, these ectoparasites remain a serious problem for human and animal health4,5. RNA interference (RNAi)6 is a nucleic acid-based reverse genetic approach that involves disruption of gene expression in order to determine gene function or its effect on a metabolic pathway. Small interfering RNAs (siRNAs) are the effector molecules of the RNAi pathway that is initiated by double-stranded RNA (dsRNA) and results in a potent sequence-specific degradation of cytoplasmic mRNAs containing the same sequence as the dsRNA trigger7-9. Post-transcriptional gene silencing mechanisms initiated by dsRNA have been discovered in all eukaryotes studied thus far, and RNAi has been rapidly developed in a variety of organisms as a tool for functional genomics studies and other applications10. RNAi has become the most widely used gene-silencing technique in ticks and other organisms where alternative approaches for genetic manipulation are not available or are unreliable5,11. The genetic characterization of ticks has been limited until the recent application of RNAi12,13. In the short time that RNAi has been available, it has proved to be a valuable tool for studying tick gene function, the characterization of the tick-pathogen interface and the screening and characterization of tick protective antigens14. Herein, a method for RNAi through injection of dsRNA into unfed ticks is described. It is likely that the knowledge gained from this experimental approach will contribute markedly to the understanding of basic biological systems and the development of vaccines

  7. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  8. Ethical Perspectives on RNA Interference Therapeutics

    PubMed Central

    Ebbesen, Mette; Jensen, Thomas G.; Andersen, Svend; Pedersen, Finn Skou

    2008-01-01

    RNA interference is a mechanism for controlling normal gene expression which has recently begun to be employed as a potential therapeutic agent for a wide range of disorders, including cancer, infectious diseases and metabolic disorders. Clinical trials with RNA interference have begun. However, challenges such as off-target effects, toxicity and safe delivery methods have to be overcome before RNA interference can be considered as a conventional drug. So, if RNA interference is to be used therapeutically, we should perform a risk-benefit analysis. It is ethically relevant to perform a risk-benefit analysis since ethical obligations about not inflicting harm and promoting good are generally accepted. But the ethical issues in RNA interference therapeutics not only include a risk-benefit analysis, but also considerations about respecting the autonomy of the patient and considerations about justice with regard to the inclusion criteria for participation in clinical trials and health care allocation. RNA interference is considered a new and promising therapeutic approach, but the ethical issues of this method have not been greatly discussed, so this article analyses these issues using the bioethical theory of principles of the American bioethicists, Tom L. Beauchamp and James F. Childress. PMID:18612370

  9. Molecular Genetics of the RNA Polymerase II General Transcriptional Machinery

    PubMed Central

    Hampsey, Michael

    1998-01-01

    Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions. PMID:9618449

  10. The RNA synthesis machinery of negative-stranded RNA viruses

    SciTech Connect

    Ortín, Juan; Martín-Benito, Jaime

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  11. Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast

    PubMed Central

    Hiriart, Edwige; Vavasseur, Aurélia; Touat-Todeschini, Leila; Yamashita, Akira; Gilquin, Benoit; Lambert, Emeline; Perot, Jonathan; Shichino, Yuichi; Nazaret, Nicolas; Boyault, Cyril; Lachuer, Joel; Perazza, Daniel; Yamamoto, Masayuki; Verdel, André

    2012-01-01

    RNA interference (RNAi) silences gene expression by acting both at the transcriptional and post-transcriptional levels in a broad range of eukaryotes. In the fission yeast Schizosaccharomyces pombe the RNA-Induced Transcriptional Silencing (RITS) RNAi complex mediates heterochromatin formation at non-coding and repetitive DNA. However, the targeting and role of RITS at other genomic regions, including protein-coding genes, remain unknown. Here we show that RITS localizes to specific meiotic genes and mRNAs. Remarkably, RITS is guided to these meiotic targets by the RNA-binding protein Mmi1 and its associated RNA surveillance machinery that together degrade selective meiotic mRNAs during vegetative growth. Upon sexual differentiation, RITS localization to the meiotic genes and mRNAs is lost. Large-scale identification of Mmi1 RNA targets reveals that RITS subunit Chp1 associates with the vast majority of them. In addition, loss of RNAi affects the effective repression of sexual differentiation mediated by the Mmi1 RNA surveillance machinery. These findings uncover a new mechanism for recruiting RNAi to specific meiotic genes and suggest that RNAi participates in the control of sexual differentiation in fission yeast. PMID:22522705

  12. RNA Interference for Wheat Functional Gene Analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi) refers to a common mechanism of RNA-based post-transcriptional gene silencing in eukaryotic cells. In model plant species such as Arabidopsis and rice, RNAi has been routinely used to characterize gene function and to engineer novel phenotypes. In polyploid species, this appr...

  13. Self-assembled RNA interference microsponges for efficient siRNA delivery

    NASA Astrophysics Data System (ADS)

    Lee, Jong Bum; Hong, Jinkee; Bonner, Daniel K.; Poon, Zhiyong; Hammond, Paula T.

    2012-04-01

    The encapsulation and delivery of short interfering RNA (siRNA) has been realized using lipid nanoparticles, cationic complexes, inorganic nanoparticles, RNA nanoparticles and dendrimers. Still, the instability of RNA and the relatively ineffectual encapsulation process of siRNA remain critical issues towards the clinical translation of RNA as a therapeutic. Here we report the synthesis of a delivery vehicle that combines carrier and cargo: RNA interference (RNAi) polymers that self-assemble into nanoscale pleated sheets of hairpin RNA, which in turn form sponge-like microspheres. The RNAi-microsponges consist entirely of cleavable RNA strands, and are processed by the cell’s RNA machinery to convert the stable hairpin RNA to siRNA only after cellular uptake, thus inherently providing protection for siRNA during delivery and transport to the cytoplasm. More than half a million copies of siRNA can be delivered to a cell with the uptake of a single RNAi-microsponge. The approach could lead to novel therapeutic routes for siRNA delivery.

  14. Generation of siRNA Nanosheets for Efficient RNA Interference

    PubMed Central

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-01-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances. PMID:27120975

  15. Generation of siRNA Nanosheets for Efficient RNA Interference

    NASA Astrophysics Data System (ADS)

    Kim, Hyejin; Lee, Jae Sung; Lee, Jong Bum

    2016-04-01

    After the discovery of small interference RNA (siRNA), nanostructured siRNA delivery systems have been introduced to achieve an efficient regulation of the target gene expression. Here we report a new siRNA-generating two dimensional nanostructure in a formation of nanosized sheet. Inspired by tunable mechanical and functional properties of the previously reported RNA membrane, siRNA nanosized sheets (siRNA-NS) with multiple Dicer cleavage sites were prepared. The siRNA-NS has two dimensional structure, providing a large surface area for Dicer to cleave the siRNA-NS for the generation of functional siRNAs. Furthermore, downregulation of the cellular target gene expression was achieved by delivery of siRNA-NS without chemical modification of RNA strands or conjugation to other substances.

  16. Editor meets silencer: crosstalk between RNA editing and RNA interference

    PubMed Central

    Nishikura, Kazuko

    2010-01-01

    The most prevalent type of RNA editing is mediated by ADAR (adenosine deaminase acting on RNA) enzymes, which convert adenosines to inosines (a process known as A→I RNA editing) in double-stranded (ds)RNA substrates. A→I RNA editing was long thought to affect only selected transcripts by altering the proteins they encode. However, genome-wide screening has revealed numerous editing sites within inverted Alu repeats in introns and untranslated regions. Also, recent evidence indicates that A→I RNA editing crosstalks with RNA-interference pathways, which, like A→I RNA editing, involve dsRNAs. A→I RNA editing therefore seems to have additional functions, including the regulation of retrotransposons and gene silencing, which adds a new urgency to the challenges of fully understanding ADAR functions. PMID:17139332

  17. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis

    PubMed Central

    Mills, Mary K.; Nayduch, D.; Michel, K.

    2014-01-01

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic hemorrhagic disease, bluetongue, and likely Schmallenberg, which cause significant economic burden worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species, and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative siRNA pathway member orthologs, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to preform RNA silencing. Injection of control dsRNA, dsGFP, into the hemocoel 2–3 day old adult female midges resulted in survival curves that support virus transmission. DsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) ortholog, resulted in a 40% decrease of transcript levels and 73% shortened median survivals as compared to dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis. PMID:25293805

  18. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis.

    PubMed

    Mills, M K; Nayduch, D; Michel, K

    2015-02-01

    Biting midges in the genus Culicoides are important vectors of arboviral diseases, including epizootic haemorrhagic disease, bluetongue and most likely Schmallenberg, which cause significant economic burdens worldwide. Research on these vectors has been hindered by the lack of a sequenced genome, the difficulty of consistent culturing of certain species and the absence of molecular techniques such as RNA interference (RNAi). Here, we report the establishment of RNAi as a research tool for the adult midge, Culicoides sonorensis. Based on previous research and transcriptome analysis, which revealed putative small interfering RNA pathway member orthologues, we hypothesized that adult C. sonorensis midges have the molecular machinery needed to perform RNA silencing. Injection of control double-stranded RNA targeting green fluorescent protein (dsGFP), into the haemocoel of 2-3-day-old adult female midges resulted in survival curves that support virus transmission. dsRNA injection targeting the newly identified C. sonorensis inhibitor of apoptosis protein 1 (CsIAP1) orthologue resulted in a 40% decrease of transcript levels and 73% shorter median survivals as compared with dsGFP-injected controls. These results reveal the conserved function of IAP1. Importantly, they also demonstrate the feasibility of RNAi by dsRNA injection in adult midges, which will greatly facilitate studies of the underlying mechanisms of vector competence in C. sonorensis. PMID:25293805

  19. Symbiont-mediated RNA interference in insects

    PubMed Central

    Whitten, Miranda M. A.; Facey, Paul D.; Del Sol, Ricardo; Fernández-Martínez, Lorena T.; Evans, Meirwyn C.; Mitchell, Jacob J.; Bodger, Owen G.

    2016-01-01

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  20. Symbiont-mediated RNA interference in insects.

    PubMed

    Whitten, Miranda M A; Facey, Paul D; Del Sol, Ricardo; Fernández-Martínez, Lorena T; Evans, Meirwyn C; Mitchell, Jacob J; Bodger, Owen G; Dyson, Paul J

    2016-02-24

    RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects. PMID:26911963

  1. RNA Interference in Infectious Tropical Diseases

    PubMed Central

    Hong, Young S.

    2008-01-01

    Introduction of double-stranded RNA (dsRNA) into some cells or organisms results in degradation of its homologous mRNA, a process called RNA interference (RNAi). The dsRNAs are processed into short interfering RNAs (siRNAs) that subsequently bind to the RNA-induced silencing complex (RISC), causing degradation of target mRNAs. Because of this sequence-specific ability to silence target genes, RNAi has been extensively used to study gene functions and has the potential to control disease pathogens or vectors. With this promise of RNAi to control pathogens and vectors, this paper reviews the current status of RNAi in protozoans, animal parasitic helminths and disease-transmitting vectors, such as insects. Many pathogens and vectors cause severe parasitic diseases in tropical regions and it is difficult to control once the host has been invaded. Intracellularly, RNAi can be highly effective in impeding parasitic development and proliferation within the host. To fully realize its potential as a means to control tropical diseases, appropriate delivery methods for RNAi should be developed, and possible off-target effects should be minimized for specific gene suppression. RNAi can also be utilized to reduce vector competence to interfere with disease transmission, as genes critical for pathogenesis of tropical diseases are knockdowned via RNAi. PMID:18344671

  2. RNA interference Pathways in Filamentous Fungi

    PubMed Central

    Liu, Yi

    2015-01-01

    RNA interference is a conserved eukaryotic homology-dependent post-transcriptional gene silencing mechanism. The filamentous fungus Neurospora crassa is one of the first organisms used for RNAi studies. Quelling and Meiotic Silencing by Unpaired DNA (MSUD) are two RNAi related phenomena discovered in Neurospora and their characterizations have contributed significantly to our understanding of RNAi mechanisms in eukaryotes. More recently, a type of DNA damage-induced small RNA, microRNA-like small RNAs and Dicer-independent small silencing RNAs have been discovered in Neurospora crassa which can regulate gene expression. In addition, there are at least six different pathways responsible for the production of these small RNAs, indicating that this fungus is an important model system to study small RNA function and biogenesis. The RNAi studies in other filamentous fungi such as Cryphonectria paracitica and Aspergillus provide evidences that RNAi plays an important role in antiviral defense and RNAi mechanism is widely conserved in filamentous fungi, and RNAi has been commonly used as an efficient tool for studying the gene function. The discovery of the endogenous small RNAs from M. circinelloides further indicates the richness and complex of the RNAi field in eukaryotes. PMID:20680389

  3. Retention and Loss of RNA Interference Pathways in Trypanosomatid Protozoans

    PubMed Central

    Murta, Silvane M. F.; Vieira, Ana Carolina; Turco, Salvatore J.; Tschudi, Christian; Ullu, Elisabetta; Beverley, Stephen M.

    2010-01-01

    RNA interference (RNAi) pathways are widespread in metaozoans but the genes required show variable occurrence or activity in eukaryotic microbes, including many pathogens. While some Leishmania lack RNAi activity and Argonaute or Dicer genes, we show that Leishmania braziliensis and other species within the Leishmania subgenus Viannia elaborate active RNAi machinery. Strong attenuation of expression from a variety of reporter and endogenous genes was seen. As expected, RNAi knockdowns of the sole Argonaute gene implicated this protein in RNAi. The potential for functional genetics was established by testing RNAi knockdown lines lacking the paraflagellar rod, a key component of the parasite flagellum. This sets the stage for the systematic manipulation of gene expression through RNAi in these predominantly diploid asexual organisms, and may also allow selective RNAi-based chemotherapy. Functional evolutionary surveys of RNAi genes established that RNAi activity was lost after the separation of the Leishmania subgenus Viannia from the remaining Leishmania species, a divergence associated with profound changes in the parasite infectious cycle and virulence. The genus Leishmania therefore offers an accessible system for testing hypothesis about forces that may select for the loss of RNAi during evolution, such as invasion by viruses, changes in genome plasticity mediated by transposable elements and gene amplification (including those mediating drug resistance), and/or alterations in parasite virulence. PMID:21060810

  4. Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles

    PubMed Central

    2015-01-01

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use. PMID:25521794

  5. The viral RNA capping machinery as a target for antiviral drugs.

    PubMed

    Ferron, François; Decroly, Etienne; Selisko, Barbara; Canard, Bruno

    2012-10-01

    Most viruses modify their genomic and mRNA 5'-ends with the addition of an RNA cap, allowing efficient mRNA translation, limiting degradation by cellular 5'-3' exonucleases, and avoiding its recognition as foreign RNA by the host cell. Viral RNA caps can be synthesized or acquired through the use of a capping machinery which exhibits a significant diversity in organization, structure and mechanism relative to that of their cellular host. Therefore, viral RNA capping has emerged as an interesting field for antiviral drug design. Here, we review the different pathways and mechanisms used to produce viral mRNA 5'-caps, and present current structures, mechanisms, and inhibitors known to act on viral RNA capping. PMID:22841701

  6. RNA-mediated interference and reverse transcription control the persistence of RNA viruses in the insect model Drosophila.

    PubMed

    Goic, Bertsy; Vodovar, Nicolas; Mondotte, Juan A; Monot, Clément; Frangeul, Lionel; Blanc, Hervé; Gausson, Valérie; Vera-Otarola, Jorge; Cristofari, Gael; Saleh, Maria-Carla

    2013-04-01

    How persistent viral infections are established and maintained is widely debated and remains poorly understood. We found here that the persistence of RNA viruses in Drosophila melanogaster was achieved through the combined action of cellular reverse-transcriptase activity and the RNA-mediated interference (RNAi) pathway. Fragments of diverse RNA viruses were reverse-transcribed early during infection, which resulted in DNA forms embedded in retrotransposon sequences. Those virus-retrotransposon DNA chimeras produced transcripts processed by the RNAi machinery, which in turn inhibited viral replication. Conversely, inhibition of reverse transcription hindered the appearance of chimeric DNA and prevented persistence. Our results identify a cooperative function for retrotransposons and antiviral RNAi in the control of lethal acute infection for the establishment of viral persistence. PMID:23435119

  7. The Place of RNA in the Origin and Early Evolution of the Genetic Machinery

    PubMed Central

    Wächtershäuser, Günter

    2014-01-01

    The extant genetic machinery revolves around three interrelated polymers: RNA, DNA and proteins. Two evolutionary views approach this vital connection from opposite perspectives. The RNA World theory posits that life began in a cold prebiotic broth of monomers with the de novo emergence of replicating RNA as functionally self-contained polymer and that subsequent evolution is characterized by RNA → DNA memory takeover and ribozyme → enzyme catalyst takeover. The FeS World theory posits that life began as an autotrophic metabolism in hot volcanic-hydrothermal fluids and evolved with organic products turning into ligands for transition metal catalysts thereby eliciting feedback and feed-forward effects. In this latter context it is posited that the three polymers of the genetic machinery essentially coevolved from monomers through oligomers to polymers, operating functionally first as ligands for ligand-accelerated transition metal catalysis with later addition of base stacking and base pairing, whereby the functional dichotomy between hereditary DNA with stability on geologic time scales and transient, catalytic RNA with stability on metabolic time scales existed since the dawn of the genetic machinery. Both approaches are assessed comparatively for chemical soundness. PMID:25532530

  8. New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing

    PubMed Central

    Burroughs, Alexander Maxwell; Ando, Yoshinari; Aravind, L

    2014-01-01

    Our understanding of the pervasive involvement of small RNAs in regulating diverse biological processes has been greatly augmented by recent application of deep-sequencing technologies to small RNA across diverse eukaryotes. We review the currently-known small RNA classes and place them in context of the reconstructed evolutionary history of the RNAi protein machinery. This synthesis indicates the earliest versions of eukaryotic RNAi systems likely utilized small RNA processed from three types of precursors: 1) sense-antisense transcriptional products, 2) genome-encoded, imperfectly-complementary hairpin sequences, and 3) larger non-coding RNA precursor sequences. Structural dissection of PIWI proteins along with recent discovery of novel families (including Med13 of the Mediator complex) suggest that emergence of a distinct architecture with the N-terminal domains (also occurring separately fused to endoDNases in prokaryotes) formed via duplication of an ancestral unit was key to their recruitment as primary RNAi effectors and use of small RNAs of certain preferred lengths. Prokaryotic PIWI proteins are typically components of several RNA-directed DNA restriction or CRISPR/Cas systems. However, eukaryotic versions appear to have emerged from a subset that evolved RNA-directed RNA interference. They were recruited alongside RNaseIII domains and RdRP domains, also from prokaryotic systems, to form the core eukaryotic RNAi system. Like certain regulatory systems, RNAi diversified into two distinct but linked arms concomitant with eukaryotic nucleo-cytoplasmic compartmentalization. Subsequent elaboration of RNAi proceeded via diversification of the core protein machinery through lineage-specific expansions and recruitment of new components from prokaryotes (nucleases and small RNA-modifying enzymes), allowing for diversification of associating small RNAs. PMID:24311560

  9. Bringing RNA Interference (RNAi) into the High School Classroom

    ERIC Educational Resources Information Center

    Sengupta, Sibani

    2013-01-01

    RNA interference (abbreviated RNAi) is a relatively new discovery in the field of mechanisms that serve to regulate gene expression (a.k.a. protein synthesis). Gene expression can be regulated at the transcriptional level (mRNA production, processing, or stability) and at the translational level (protein synthesis). RNAi acts in a gene-specific…

  10. The promises and pitfalls of RNA-interference-based therapeutics

    PubMed Central

    Castanotto, Daniela; Rossi, John J.

    2009-01-01

    The discovery that gene expression can be controlled by the Watson–Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence — a process known as RNA interference — has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded. PMID:19158789

  11. Chemiluminescence imaging for microRNA detection based on cascade exponential isothermal amplification machinery.

    PubMed

    Xu, Yongjie; Li, Dandan; Cheng, Wei; Hu, Rong; Sang, Ye; Yin, Yibing; Ding, Shijia; Ju, Huangxian

    2016-09-14

    A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis. PMID:27566360

  12. The Fascinating World of RNA Interference

    PubMed Central

    Naqvi, Afsar Raza; Islam, Md. Nazrul; Choudhury, Nirupam Roy; Haq., Qazi Mohd. Rizwanul

    2009-01-01

    Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways. PMID:19173032

  13. Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes.

    PubMed

    Swevers, L; Huvenne, H; Menschaert, G; Kontogiannatos, D; Kourti, A; Pauchet, Y; ffrench-Constant, R; Smagghe, G

    2013-12-01

    In the search for new methods of pest control, the potential of RNA interference (RNAi) is being explored. Because the gut is the first barrier for the uptake of double-stranded (ds)RNA, pyrosequencing of the gut transcriptome is a powerful tool for obtaining the necessary sequences for specific dsRNA-mediated pest control. In the present study, a dataset representing the gut transcriptome of the Colorado potato beetle (CPB; Leptinotarsa decemlineata) was generated and analysed for the presence of RNAi-related genes. Almost all selected genes that were implicated in silencing efficiency at different levels in the RNAi pathway (core machinery, associated intracellular factors, dsRNA uptake, antiviral RNAi, nucleases), which uses different types of small RNA (small interfering RNA, microRNA and piwi-RNA), were expressed in the CPB gut. Although the database is of lower quality, the majority of the RNAi genes are also found to be present in the gut transcriptome of the tobacco hornworm [TH; Manduca sexta (19 out of 35 genes analysed)]. The high quality of the CPB transcriptome database will lay the foundation for future gene expression and functional studies regarding the gut and RNAi. PMID:24580832

  14. Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells

    PubMed Central

    Canella, Donatella; Praz, Viviane; Reina, Jaime H.; Cousin, Pascal; Hernandez, Nouria

    2010-01-01

    Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome. We have localized, genome-wide, Pol III and some of its transcription factors. Our results reveal broad usage of the known Pol III transcription machinery and define a minimal Pol III transcriptome in dividing IMR90hTert fibroblasts. This transcriptome consists of some 500 actively transcribed genes including a few dozen candidate novel genes, of which we confirmed nine as Pol III transcription units by additional methods. It does not contain any of the microRNA genes previously described as transcribed by Pol III, but reveals two other microRNA genes, MIR886 (hsa-mir-886) and MIR1975 (RNY5, hY5, hsa-mir-1975), which are genuine Pol III transcription units. PMID:20413673

  15. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.

    PubMed

    Weiberg, Arne; Wang, Ming; Lin, Feng-Mao; Zhao, Hongwei; Zhang, Zhihong; Kaloshian, Isgouhi; Huang, Hsien-Da; Jin, Hailing

    2013-10-01

    Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers "virulent" sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism. PMID:24092744

  16. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  17. MicroRNA machinery responds to peripheral nerve lesion in an injury-regulated pattern

    PubMed Central

    Wu, Di; Raafat, Mohamed; Pak, Elena; Hammond, Scott; Murashov, Alexander K.

    2011-01-01

    Recently, functional and potent RNA interference (RNAi) has been reported in peripheral nerve axons transfected with short-interfering RNA (siRNA). In addition, components of RNA-induced silencing complex (RISC) have been identified in axotomized sciatic nerve fibers as well as in regenerating dorsal root ganglia (DRG) neurons in vitro. Based on these observations, and on the fact that siRNA and microRNAs (miRNA) share the same effector enzymes, we hypothesized that the endogenous miRNA biosynthetic pathway would respond to peripheral nerve injury. To answer this question, we investigated changes in the expression of miRNA biosynthetic enzymes following peripheral nerve crush injury in mice. Here we show that several pivotal miRNA biosynthetic enzymes are expressed in an injury-regulated pattern in sciatic nerve in vivo, and in DRG axons in vitro. Moreover, the sciatic nerve lesion induced expression of mRNA-processing bodies (P-bodies), which are the local foci of mRNA degradation in DRG axons. In addition, a group of injury-regulated miRNAs was identified by miRNA microarray and validated by qPCR and in situ hybridization analyses. Taken together, our data support the hypothesis that the peripheral nerve regeneration processes may be regulated by miRNA pathway. PMID:21689732

  18. A Comparative Study of RNA Polymerase II Transcription Machinery in Yeasts

    NASA Astrophysics Data System (ADS)

    Sharma, Nimisha; Mehta, Surbhi

    The control of gene expression, predominantly at the level of transcription, plays a fundamental role in biological processes determining the phenotypic changes in cells and organisms. The eukaryotes have evolved a complex and sophisticated transcription machinery to transcribe DNA into RNA. RNA polymerase II enzyme lies at the centre of the transcription apparatus that comprises nearly 60 polypeptides and is responsible for the expression and regulation of proteinencoding genes. Much of our present understanding and knowledge of the RNA polymerase II transcription apparatus in eukaryotes has been derived from studies in Saccharomyces cerevisiae. More recently, Schizosaccharomyces pombe has emerged as a better model system to study transcription because the transcription mechanism in this yeast is closer to that in higher eukaryotes. Also, studies on components of the basal transcription machinery have revealed a number of properties that are common with other eukaryotes, but have also highlighted some features unique to S. pombe. In fact, the fungal transcription associated protein families show greater species specificity and only 15% of these proteins contain homologues shared between both S. cerevisiae and S. pombe. In this chapter, we compare the RNA polymerase II transcription apparatus in different yeasts.

  19. Hairpin dsRNA does not trigger RNA interference in Candida albicans cells.

    PubMed

    Staab, Janet F; White, Theodore C; Marr, Kieren A

    2011-01-01

    RNA interference/silencing mechanisms triggered by double-stranded RNA (dsRNA) have been described in many eukaryotes, including fungi. These mechanisms have in common small RNA molecules (siRNAs or microRNAs) originating from dsRNAs that, together with the effector protein Argonaute, mediate silencing. The genome of the fungal pathogen Candida albicans harbours a well-conserved Argonaute and a non-canonical Dicer, essential members of silencing pathways. Prototypical siRNAs are detected as members of the C. albicans transcriptome, which is potential evidence of RNA interference/silencing pathways in this organism. Surprisingly, expression of a dsRNA a hairpin ADE2 dsRNA molecule to interfere with the endogenous ADE2 mRNA did not result in down-regulation of the message or produce adenine auxotrophic strains. Cell free assays showed that the hairpin dsRNA was a substrate for the putative C. albicans Dicer, discounting the possibility that the nature of the dsRNA trigger affects silencing functionality. Our results suggested that unknown cellular events govern the functionality of siRNAs originating from transgenes in RNA interference/silencing pathways in C. albicans. PMID:20737430

  20. Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries.

    PubMed

    Hershko-Shalev, Tal; Odenheimer-Bergman, Ahuva; Elgrably-Weiss, Maya; Ben-Zvi, Tamar; Govindarajan, Sutharsan; Seri, Hemda; Papenfort, Kai; Vogel, Jörg; Altuvia, Shoshy

    2016-04-01

    While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein. PMID:27057757

  1. Gifsy-1 Prophage IsrK with Dual Function as Small and Messenger RNA Modulates Vital Bacterial Machineries

    PubMed Central

    Hershko-Shalev, Tal; Odenheimer-Bergman, Ahuva; Elgrably-Weiss, Maya; Ben-Zvi, Tamar; Govindarajan, Sutharsan; Seri, Hemda; Papenfort, Kai; Vogel, Jörg; Altuvia, Shoshy

    2016-01-01

    While an increasing number of conserved small regulatory RNAs (sRNAs) are known to function in general bacterial physiology, the roles and modes of action of sRNAs from horizontally acquired genomic regions remain little understood. The IsrK sRNA of Gifsy-1 prophage of Salmonella belongs to the latter class. This regulatory RNA exists in two isoforms. The first forms, when a portion of transcripts originating from isrK promoter reads-through the IsrK transcription-terminator producing a translationally inactive mRNA target. Acting in trans, the second isoform, short IsrK RNA, binds the inactive transcript rendering it translationally active. By switching on translation of the first isoform, short IsrK indirectly activates the production of AntQ, an antiterminator protein located upstream of isrK. Expression of antQ globally interferes with transcription termination resulting in bacterial growth arrest and ultimately cell death. Escherichia coli and Salmonella cells expressing AntQ display condensed chromatin morphology and localization of UvrD to the nucleoid. The toxic phenotype of AntQ can be rescued by co-expression of the transcription termination factor, Rho, or RNase H, which protects genomic DNA from breaks by resolving R-loops. We propose that AntQ causes conflicts between transcription and replication machineries and thus promotes DNA damage. The isrK locus represents a unique example of an island-encoded sRNA that exerts a highly complex regulatory mechanism to tune the expression of a toxic protein. PMID:27057757

  2. RNA interference as a tool for Alzheimer's disease therapy.

    PubMed

    Orlacchio, Antonio; Bernardi, Giorgio; Orlacchio, Aldo; Martino, Sabata

    2007-11-01

    RNA interference is a biological process that controls gene silencing in all living cells. Targeting the RNA interference system represents a novel therapeutic strategy able to intercede with multiple disease-related genes and to target many neurodegenerative diseases. Recently, the design of small interfering RNA-selective compounds has become more straightforward because of the significant progress made in predictive modeling for new therapeutic approaches. Although in vivo delivery of RNA interference remains a significant obstacle, new data show that RNAi blocks gene function in vivo, suggesting a potential therapeutic approach for humans. Some groups have demonstrated the efficacy of RNAi therapy in Alzheimer's disease. Results, based on animal models, show a down-regulation of the amyloid precursor protein and a consequent reduction of the amyloid-beta peptide accumulation in the brain or the inactivation of beta-secretase (BACE1). Indeed, lentiviral vectors expressing siRNAs targeting BACE1 reduce amyloid production and the neurodegenerative and behavioural deficit in APP transgenic mice. This review highlights recent advances in RNA research and focuses on strengths and weaknesses of RNAi compounds in Alzheimer's disease. PMID:18045220

  3. Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome.

    PubMed

    Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Buechel, Sabine; Sachsenberg, Timo; Wang, Jia-Wei; Rätsch, Gunnar; Weigel, Detlef

    2010-10-12

    In Arabidopsis thaliana, four different dicer-like (DCL) proteins have distinct but partially overlapping functions in the biogenesis of microRNAs (miRNAs) and siRNAs from longer, noncoding precursor RNAs. To analyze the impact of different components of the small RNA biogenesis machinery on the transcriptome, we subjected dcl and other mutants impaired in small RNA biogenesis to whole-genome tiling array analysis. We compared both protein-coding genes and noncoding transcripts, including most pri-miRNAs, in two tissues and several stress conditions. Our analysis revealed a surprising number of common targets in dcl1 and dcl2 dcl3 dcl4 triple mutants. Furthermore, our results suggest that the DCL1 is not only involved in miRNA action but also contributes to silencing of a subset of transposons, apparently through an effect on DNA methylation. PMID:20870966

  4. Identification of alternative splicing regulators by RNA interference in Drosophila

    PubMed Central

    Park, Jung W.; Parisky, Katherine; Celotto, Alicia M.; Reenan, Robert A.; Graveley, Brenton R.

    2004-01-01

    Alternative splicing is thought to be regulated by nonspliceosomal RNA binding proteins that modulate the association of core components of the spliceosome with the pre-mRNA. Although the majority of metazoan genes encode pre-mRNAs that are alternatively spliced, remarkably few splicing regulators are currently known. Here, we used RNA interference to examine the role of >70% of the Drosophila RNA-binding proteins in regulating alternative splicing. We identified 47 proteins as splicing regulators, 26 of which have not previously been implicated in alternative splicing. Many of the regulators we identified are nonspliceosomal RNA-binding proteins. However, our screen unexpectedly revealed that altering the concentration of certain core components of the spliceosome specifically modulates alternative splicing. These results significantly expand the number of known splicing regulators and reveal an extraordinary richness in the mechanisms that regulate alternative splicing. PMID:15492211

  5. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA.

    PubMed

    Wei, Zhiyun; Batagov, Arsen O; Carter, David R F; Krichevsky, Anna M

    2016-01-01

    Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here, using RNA sequencing, we demonstrate that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, possibly due to the confounding effect of the FBS. Analysis of publically available exRNA datasets supports the notion of FBS contamination. Furthermore, FBS transcripts can be taken up by cultured cells and affect the results of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA. PMID:27503761

  6. Fetal Bovine Serum RNA Interferes with the Cell Culture derived Extracellular RNA

    PubMed Central

    Wei, Zhiyun; Batagov, Arsen O.; Carter, David R. F.; Krichevsky, Anna M.

    2016-01-01

    Fetal bovine serum (FBS) has been used in eukaryotic cell cultures for decades. However, little attention has been paid to the biological effects associated with RNA content of FBS on cell cultures. Here, using RNA sequencing, we demonstrate that FBS contains a diverse repertoire of protein-coding and regulatory RNA species, including mRNA, miRNA, rRNA, and snoRNA. The majority of them (>70%) are retained even after extended ultracentrifugation in the preparations of vesicle-depleted FBS (vdFBS) commonly utilized in the studies of extracellular vesicles (EV) and intercellular communication. FBS-associated RNA is co-isolated with cell-culture derived extracellular RNA (exRNA) and interferes with the downstream RNA analysis. Many evolutionally conserved FBS-derived RNA species can be falsely annotated as human or mouse transcripts. Notably, specific miRNAs abundant in FBS, such as miR-122, miR-451a and miR-1246, have been previously reported as enriched in cell-culture derived EVs, possibly due to the confounding effect of the FBS. Analysis of publically available exRNA datasets supports the notion of FBS contamination. Furthermore, FBS transcripts can be taken up by cultured cells and affect the results of highly sensitive gene expression profiling technologies. Therefore, precautions for experimental design are warranted to minimize the interference and misinterpretations caused by FBS-derived RNA. PMID:27503761

  7. Multifunctional Roles for the Protein Translocation Machinery in RNA Anchoring to the Endoplasmic Reticulum*

    PubMed Central

    Jagannathan, Sujatha; Hsu, Jack C.-C.; Reid, David W.; Chen, Qiang; Thompson, Will J.; Moseley, Arthur M.; Nicchitta, Christopher V.

    2014-01-01

    Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis. PMID:25063809

  8. Ups and downs of RNA interference in parasitic nematodes.

    PubMed

    Britton, Collette; Samarasinghe, Buddhini; Knox, David P

    2012-09-01

    RNA interference (RNAi) is widely used in Caenorhabiditis elegans to identify essential gene function. In parasitic nematodes RNAi has been reported to result in transcript knockdown of some target genes, but not others, thus limiting its use as a potential functional genomics tool. We recently extended work in Haemonchus contortus to examine why only some genes seem to be susceptible to RNAi and to test RNAi effects in vivo. Here we review our findings, which suggest that site of gene expression influences silencing. This most likely reflects limited uptake of dsRNA from the environment, a phenomenon also observed in other free-living nematodes. We discuss new technologies to improve dsRNA delivery, such as nanoparticles being developed for therapeutic siRNA delivery, and methods to monitor RNAi effects. Alternative approaches will be important in progressing the application of RNAi to identify essential gene function in parasitic nematodes. PMID:21854774

  9. Delineating the Structural Blueprint of the Pre-mRNA 3′-End Processing Machinery

    PubMed Central

    Xiang, Kehui; Tong, Liang

    2014-01-01

    Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes. PMID:24591651

  10. The rolB gene activates the expression of genes encoding microRNA processing machinery.

    PubMed

    Bulgakov, Victor P; Veremeichik, Galina N; Shkryl, Yuri N

    2015-04-01

    The rolB gene of Agrobacterium rhizogenes renders cells more tolerant of environmental stresses and increases their defense potential. However, these effects, coupled with the developmental abnormalities caused by rolB, have not yet been explained. In rolB-transformed Arabidopsis thaliana cells, we detected a 2.2 to 7-fold increase in the expression of genes encoding core and accessory proteins (DCL1, SE, HYL1, AGO1, TGH, DDL, HEN1, AGO4 and RDR2) of the microRNA processing machinery. However, the rolB gene did not affect the expression of DCL2, DCL3 and HST. The diverse and complex effects of rolB on transformed plant cells may be attributable to changes caused by this gene in particular RNA silencing pathways. PMID:25491479

  11. Silencio/CG9754 connects the Piwi–piRNA complex to the cellular heterochromatin machinery

    PubMed Central

    Sienski, Grzegorz; Batki, Julia; Senti, Kirsten-André; Dönertas, Derya; Tirian, Laszlo; Meixner, Katharina; Brennecke, Julius

    2015-01-01

    The repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI–piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown. Here, we characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi-mediated transcriptional silencing in Drosophila. Ectopic targeting of Silencio to RNA or DNA is sufficient to elicit silencing independently of Piwi and known piRNA pathway factors. Instead, Silencio requires the H3K9 methyltransferase Eggless/SetDB1 for its silencing ability. In agreement with this, SetDB1, but not Su(var)3-9, is required for Piwi-mediated transcriptional silencing genome-wide. Due to its interaction with the target-engaged Piwi–piRNA complex, we suggest that Silencio acts as linker between the sequence specificity factor Piwi and the cellular heterochromatin machinery. PMID:26494711

  12. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference

    PubMed Central

    Barrangou, Rodolphe; Birmingham, Amanda; Wiemann, Stefan; Beijersbergen, Roderick L.; Hornung, Veit; Smith, Anja van Brabant

    2015-01-01

    The discovery that the machinery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 bacterial immune system can be re-purposed to easily create deletions, insertions and replacements in the mammalian genome has revolutionized the field of genome engineering and re-invigorated the field of gene therapy. Many parallels have been drawn between the newly discovered CRISPR-Cas9 system and the RNA interference (RNAi) pathway in terms of their utility for understanding and interrogating gene function in mammalian cells. Given this similarity, the CRISPR-Cas9 field stands to benefit immensely from lessons learned during the development of RNAi technology. We examine how the history of RNAi can inform today's challenges in CRISPR-Cas9 genome engineering such as efficiency, specificity, high-throughput screening and delivery for in vivo and therapeutic applications. PMID:25800748

  13. RNA interference directed to CDK2 inhibits HIV-1 transcription.

    PubMed

    Ammosova, Tatyana; Berro, Reem; Kashanchi, Fatah; Nekhai, Sergei

    2005-10-25

    We previously reported that cell cycle-dependent kinase 2 (CDK2) is required for human immunodeficiency virus-1 (HIV-1) Tat-dependent transcription in vitro. In the present study, CDK2-specific RNA interference in cultured HEK293T cells inhibited CDK2 expression and Tat-induced HIV-1 transcription from non-integrated HIV-1 promoter but not basal HIV-1 transcription or transcription from CMV or beta-actin promoters. Also, CDK2-specific RNA interference inhibited Tat-induced transcription from the integrated HIV-1 promoter in HeLa-CD4-LTR-beta-gal cells and potently blocked TNFalpha-induced HIV-1 viral replication in OM10.1 cells. CDK2-specific RNA interference did not have an effect on cell cycle progression, but it augmented TNFalpha-induced apoptosis of OM10.1 cells. Our results indicate that CDK2 participates in Tat-mediated HIV-1 transcription and may serve as a potential therapeutic target. PMID:16085226

  14. Internal guide RNA interactions interfere with Cas9-mediated cleavage.

    PubMed

    Thyme, Summer B; Akhmetova, Laila; Montague, Tessa G; Valen, Eivind; Schier, Alexander F

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9-gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9-gRNA complex formation. PMID:27282953

  15. Internal guide RNA interactions interfere with Cas9-mediated cleavage

    PubMed Central

    Thyme, Summer B.; Akhmetova, Laila; Montague, Tessa G.; Valen, Eivind; Schier, Alexander F.

    2016-01-01

    The CRISPR/Cas system uses guide RNAs (gRNAs) to direct sequence-specific DNA cleavage. Not every gRNA elicits cleavage and the mechanisms that govern gRNA activity have not been resolved. Low activity could result from either failure to form a functional Cas9–gRNA complex or inability to recognize targets in vivo. Here we show that both phenomena influence Cas9 activity by comparing mutagenesis rates in zebrafish embryos with in vitro cleavage assays. In vivo, our results suggest that genomic factors such as CTCF inhibit mutagenesis. Comparing near-identical gRNA sequences with different in vitro activities reveals that internal gRNA interactions reduce cleavage. Even though gRNAs containing these structures do not yield cleavage-competent complexes, they can compete with active gRNAs for binding to Cas9. These results reveal that both genomic context and internal gRNA interactions can interfere with Cas9-mediated cleavage and illuminate previously uncharacterized features of Cas9–gRNA complex formation. PMID:27282953

  16. Studying membrane trafficking in the worm C. elegans by RNA interference.

    PubMed

    Balklava, Zita; Sztul, Elizabeth

    2013-01-01

    A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans. PMID:24295300

  17. RNA Interference Prevents Autosomal-Dominant Hearing Loss.

    PubMed

    Shibata, Seiji B; Ranum, Paul T; Moteki, Hideaki; Pan, Bifeng; Goodwin, Alexander T; Goodman, Shawn S; Abbas, Paul J; Holt, Jeffrey R; Smith, Richard J H

    2016-06-01

    Hearing impairment is the most common sensory deficit. It is frequently caused by the expression of an allele carrying a single dominant missense mutation. Herein, we show that a single intracochlear injection of an artificial microRNA carried in a viral vector can slow progression of hearing loss for up to 35 weeks in the Beethoven mouse, a murine model of non-syndromic human deafness caused by a dominant gain-of-function mutation in Tmc1 (transmembrane channel-like 1). This outcome is noteworthy because it demonstrates the feasibility of RNA-interference-mediated suppression of an endogenous deafness-causing allele to slow progression of hearing loss. Given that most autosomal-dominant non-syndromic hearing loss in humans is caused by this mechanism of action, microRNA-based therapeutics might be broadly applicable as a therapy for this type of deafness. PMID:27236922

  18. Inhibition of Tulane Virus Replication in vitro with RNA Interference

    PubMed Central

    Fan, Qiang; Wei, Chao; Xia, Ming; Jiang, Xi

    2012-01-01

    RNA interference (RNAi), a conserved mechanism triggered by small interfering RNA (siRNA), has been used for suppressing gene expression through RNA degradation. The replication of caliciviruses (CVs) with RNAi was studied using the Tulane virus (TV) as a model. Five siRNAs targeting the non-structural, the major (VP1) and minor (VP2) structural genes of the TV were developed and the viruses were quantified using qPCR and TCID50 assay. Treatment of the cells with siRNA 4 hours before viral inoculation significantly reduced viral titer by up to 2.6 logs and dramatically decreased viral RNA copy numbers and viral titers 48 hours post infection in four of the five siRNAs studied. The results were confirmed by Western blot, in which the major structural protein VP1 was markedly reduced in both the cells and the culture medium. Two small protein bands of the S and P domains of the viral capsid protein were also detected in the cell lysates, although their role in viral replication remains unknown. Since the TV shares many biological properties with human noroviruses (NoVs), the successful demonstration of RNAi in TV replication would provide valuable information in control of acute gastroenteritis caused by human NoVs. PMID:23154881

  19. High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing

    PubMed Central

    2011-01-01

    RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA) libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge. Here, we describe complete experimental protocols and novel open source computational methodologies, shALIGN and shRNAseq, that allow RNAi screens to be rapidly deconvoluted using next generation sequencing. Our computational pipeline offers efficient screen analysis and the flexibility and scalability to quickly incorporate future developments in shRNA library technology. PMID:22018332

  20. Who Watches the Watchmen: Roles of RNA Modifications in the RNA Interference Pathway

    PubMed Central

    Xhemalce, Blerta

    2016-01-01

    RNA levels are widely thought to be predictive of RNA function. However, the existence of more than a hundred chemically distinct modifications of RNA alone is a major indication that these moieties may impart distinct functions to subgroups of RNA molecules that share a primary sequence but display distinct RNA “epigenetic” marks. RNAs can be modified on many sites, including 5′ and 3′ ends, the sugar phosphate backbone, or internal bases, which collectively provide many opportunities for posttranscriptional regulation through a variety of mechanisms. Here, we will focus on how modifications on messenger and microRNAs may affect the process of RNA interference in mammalian cells. We believe that taking RNA modifications into account will not only advance our understanding of this crucial pathway in disease and cancer but will also open the path to exploiting the enzymes that “write” and “erase” them as targets for therapeutic drug development. PMID:27441695

  1. A genome-wide RNA interference screen uncovers two p24 proteins as regulators of Wingless secretion.

    PubMed

    Port, Fillip; Hausmann, George; Basler, Konrad

    2011-11-01

    Wnt proteins are secreted, lipid-modified glycoproteins that control animal development and adult tissue homeostasis. Secretion of Wnt proteins is at least partly regulated by a dedicated machinery. Here, we report a genome-wide RNA interference screen for genes involved in the secretion of Wingless (Wg), a Drosophila Wnt. We identify three new genes required for Wg secretion. Of these, Emp24 and Eclair are required for proper export of Wg from the endoplasmic reticulum (ER). We propose that Emp24 and Eca act as specific cargo receptors for Wg to concentrate it in forming vesicles at sites of ER export. PMID:21886182

  2. MicroRNA-binding viral protein interferes with Arabidopsis development.

    PubMed

    Chellappan, Padmanabhan; Vanitharani, Ramachandran; Fauquet, Claude M

    2005-07-19

    MicroRNAs (miRNAs) are small (approximately 21 nt), noncoding RNAs that negatively regulate target mRNAs at the posttranscriptional level that are involved in development. In plants, virus-induced disease symptoms often result in developmental abnormalities resembling perturbation of miRNA-mediated function. Here, we report that expression in transgenic plants of a geminivirus-encoded AC4 protein from African cassava mosaic virus Cameroon Strain (ACMV), a suppressor of posttranscriptional gene silencing, was correlated with decreased accumulation of host miRNAs and increased development abnormalities in Arabidopsis. Down-regulation of miRNA correlated with an up-regulation of target mRNA level. In vitro binding assays revealed the ability of AC4 of ACMV (A-AC4) but not East African cassava mosaic Cameroon virus AC2 to bind single-stranded forms of miRNAs and short interfering RNAs but not double-stranded RNA forms. Normally, a labile intermediate during the miRNA biogenesis/RNA-induced silencing complex assembly, miRNA*, was below the level of detection, indicating that AC4 might interfere at a point downstream of the miRNA duplex unwinding process. The association of AC4 with miRNA was demonstrated by the association of A-AC4-GFP fusion protein, extracted from Arabidopsis protoplasts, with 2'-O-methyloligonucleotide complementary to miR159 (miR159*) and by the presence of miRNA with the A-AC4-GFP fusion protein after immunoprecipitation with antibody against GFP. In both assays, A-AC4 protein and miRNA complexes were copurified. These results provide direct evidence that AC4 is a unique virus-encoded posttranscriptional gene-silencing suppressor protein that binds to and presumably inactivates mature miRNAs and thus blocks the normal miRNA-mediated regulation of target mRNAs, resulting in developmental defects in Arabidopsis. PMID:16006510

  3. The efficiency of RNA interference in Bursaphelenchus xylophilus.

    PubMed

    Park, Jung-Eun; Lee, Kyong Yun; Lee, Se-Jin; Oh, Wan-Suk; Jeong, Pan-Young; Woo, Taeha; Kim, Chang-Bae; Paik, Young-Ki; Koo, Hyeon-Sook

    2008-07-31

    RNA interference (RNAi) was performed on several essential genes in the pinewood nematode Bursaphelenchus xylophilus, which causes pine wilt disease. Double-stranded RNA (dsRNA) was delivered to larvae or adult worms by soaking, electroporation, or microinjection. Soaking and electroporation of L2-L3 stage worms in solutions containing dsRNA for essential genes induced over 25% lethality after 5 days, and gene-specific phenotypes were observed. This lethality agreed with significant reductions of the targeted transcripts, as assayed by reverse-transcription coupled with real time PCR. Microinjection was the most efficient route as measured by the hatching rate of F1 embryos, which was reduced by 46%. When adult worms were soaked in dsRNA, lethality was induced in the F1 larvae, revealing the persistence of knockdown phenotypes. The penetrance of the RNAi phenotypes for essential genes was relatively low but consistent, indicating that RNAi should be useful for studying the in vivo functions of B. xylophilus gene products. PMID:18525237

  4. Abasic pivot substitution harnesses target specificity of RNA interference

    PubMed Central

    Lee, Hye-Sook; Seok, Heeyoung; Lee, Dong Ha; Ham, Juyoung; Lee, Wooje; Youm, Emilia Moonkyung; Yoo, Jin Seon; Lee, Yong-Seung; Jang, Eun-Sook; Chi, Sung Wook

    2015-01-01

    Gene silencing via RNA interference inadvertently represses hundreds of off-target transcripts. Because small interfering RNAs (siRNAs) can function as microRNAs, avoiding miRNA-like off-target repression is a major challenge. Functional miRNA–target interactions are known to pre-require transitional nucleation, base pairs from position 2 to the pivot (position 6). Here, by substituting nucleotide in pivot with abasic spacers, which prevent base pairing and alleviate steric hindrance, we eliminate miRNA-like off-target repression while preserving on-target activity at ∼80–100%. Specifically, miR-124 containing dSpacer pivot substitution (6pi) loses seed-mediated transcriptome-wide target interactions, repression activity and biological function, whereas other conventional modifications are ineffective. Application of 6pi allows PCSK9 siRNA to efficiently lower plasma cholesterol concentration in vivo, and abolish potentially deleterious off-target phenotypes. The smallest spacer, C3, also shows the same improvement in target specificity. Abasic pivot substitution serves as a general means to harness the specificity of siRNA experiments and therapeutic applications. PMID:26679372

  5. Larval RNA interference in the red flour beetle, Tribolium castaneum.

    PubMed

    Linz, David M; Clark-Hachtel, Courtney M; Borràs-Castells, Ferran; Tomoyasu, Yoshinori

    2014-01-01

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle's body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485

  6. Larval RNA Interference in the Red Flour Beetle, Tribolium castaneum

    PubMed Central

    Tomoyasu, Yoshinori

    2014-01-01

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle’s body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485

  7. Integrative analysis of genome-wide RNA interference screens.

    PubMed

    Berndt, Jason D; Biechele, Travis L; Moon, Randall T; Major, Michael B

    2009-01-01

    High-throughput genetic screens have exponentially increased the functional annotation of the genome over the past 10 years. Likewise, genome-scale efforts to map DNA methylation, chromatin state and occupancy, messenger RNA expression patterns, and disease-associated genetic polymorphisms, and proteome-wide efforts to map protein-protein interactions, have also created vast resources of data. An emerging trend involves combining multiple types of data, referred to as integrative screening. Examples include papers that report integrated data generated from large-scale RNA interference screens on the Wnt/beta-catenin pathway with either genotypic or proteomic data in colorectal cancer. These studies demonstrate the power of data integration to generate focused, validated data sets and to identify high-confidence candidate genes for follow-up experiments. We present the ongoing evolution and new strategies for the integrative screening approach with respect to understanding and treating human disease. PMID:19436058

  8. Sequence-non-specific effects of RNA interference triggers and microRNA regulators

    PubMed Central

    Olejniczak, Marta; Galka, Paulina; Krzyzosiak, Wlodzimierz J.

    2010-01-01

    RNA reagents of diverse lengths and structures, unmodified or containing various chemical modifications are powerful tools of RNA interference and microRNA technologies. These reagents which are either delivered to cells using appropriate carriers or are expressed in cells from suitable vectors often cause unintended sequence-non-specific immune responses besides triggering intended sequence-specific silencing effects. This article reviews the present state of knowledge regarding the cellular sensors of foreign RNA, the signaling pathways these sensors mobilize and shows which specific features of the RNA reagents set the responsive systems on alert. The representative examples of toxic effects caused in the investigated cell lines and tissues by the RNAs of specific types and structures are collected and may be instructive for further studies of sequence-non-specific responses to foreign RNA in human cells. PMID:19843612

  9. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells.

    PubMed

    Schnettler, Esther; Sterken, Mark G; Leung, Jason Y; Metz, Stefan W; Geertsema, Corinne; Goldbach, Rob W; Vlak, Just M; Kohl, Alain; Khromykh, Alexander A; Pijlman, Gorben P

    2012-12-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3'-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses. PMID:23035235

  10. Noncoding Flavivirus RNA Displays RNA Interference Suppressor Activity in Insect and Mammalian Cells

    PubMed Central

    Schnettler, Esther; Sterken, Mark G.; Leung, Jason Y.; Metz, Stefan W.; Geertsema, Corinne; Goldbach, Rob W.; Vlak, Just M.; Kohl, Alain

    2012-01-01

    West Nile virus (WNV) and dengue virus (DENV) are highly pathogenic, mosquito-borne flaviviruses (family Flaviviridae) that cause severe disease and death in humans. WNV and DENV actively replicate in mosquitoes and human hosts and thus encounter different host immune responses. RNA interference (RNAi) is the predominant antiviral response against invading RNA viruses in insects and plants. As a countermeasure, plant and insect RNA viruses encode RNA silencing suppressor (RSS) proteins to block the generation/activity of small interfering RNA (siRNA). Enhanced flavivirus replication in mosquitoes depleted for RNAi factors suggests an important biological role for RNAi in restricting virus replication, but it has remained unclear whether or not flaviviruses counteract RNAi via expression of an RSS. First, we established that flaviviral RNA replication suppressed siRNA-induced gene silencing in WNV and DENV replicon-expressing cells. Next, we showed that none of the WNV encoded proteins displayed RSS activity in mammalian and insect cells and in plants by using robust RNAi suppressor assays. In contrast, we found that the 3′-untranslated region-derived RNA molecule known as subgenomic flavivirus RNA (sfRNA) efficiently suppressed siRNA- and miRNA-induced RNAi pathways in both mammalian and insect cells. We also showed that WNV sfRNA inhibits in vitro cleavage of double-stranded RNA by Dicer. The results of the present study suggest a novel role for sfRNA, i.e., as a nucleic acid-based regulator of RNAi pathways, a strategy that may be conserved among flaviviruses. PMID:23035235

  11. Efficacy of a Novel Class of RNA Interference Therapeutic Agents

    PubMed Central

    Matsumoto, Takahiro; D'Alessandro-Gabazza, Corina N.; Gil-Bernabe, Paloma; Boveda-Ruiz, Daniel; Naito, Masahiro; Kobayashi, Tetsu; Toda, Masaaki; Mizutani, Takayuki; Taguchi, Osamu; Morser, John; Eguchi, Yutaka; Kuroda, Masahiko; Ochiya, Takahiro; Hayashi, Hirotake; Gabazza, Esteban C.; Ohgi, Tadaaki

    2012-01-01

    RNA interference (RNAi) is being widely used in functional gene research and is an important tool for drug discovery. However, canonical double-stranded short interfering RNAs are unstable and induce undesirable adverse effects, and thus there is no currently RNAi-based therapy in the clinic. We have developed a novel class of RNAi agents, and evaluated their effectiveness in vitro and in mouse models of acute lung injury (ALI) and pulmonary fibrosis. The novel class of RNAi agents (nkRNA®, PnkRNA™) were synthesized on solid phase as single-stranded RNAs that, following synthesis, self-anneal into a unique helical structure containing a central stem and two loops. They are resistant to degradation and suppress their target genes. nkRNA and PnkRNA directed against TGF-β1mRNA ameliorate outcomes and induce no off-target effects in three animal models of lung disease. The results of this study support the pathological relevance of TGF-β1 in lung diseases, and suggest the potential usefulness of these novel RNAi agents for therapeutic application. PMID:22916145

  12. Kinetic models of the interference of gene transcription to ncRNA and mRNA

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2011-06-01

    The experiments indicate that the transcription of genes into ncRNA can positively or negatively interfere with transcription into mRNA. We propose two kinetic models describing this effect. The first model is focused on the ncRNA-induced chromatin modification facilitating the transcription of the downstream gene into mRNA. The second model includes the competition between the transcription into ncRNA and the binding of activator to a regulatory site of the downstream gene transcribed into mRNA. Our analysis based on the mean-field kinetic equations and Monte Carlo simulations shows the likely dependences of the transcription rate on RNA polymerase concentration in situations with different rate-limiting steps. Our models can also be used to scrutinize the dependence of the transcription rate on other kinetic parameters. Our kinetic Monte Carlo simulations show that the first model predicts stochastic bursts in the mRNA formation provided that the transcription into ncRNA is slow, while the second model predicts in addition anti-phase stochastic bursts in the mRNA and ncRNA formation provided that that the protein attachment to and detachment from a regulatory site is slow.

  13. Defining the molecular profile of planarian pluripotent stem cells using a combinatorial RNA-seq, RNA interference and irradiation approach

    PubMed Central

    2012-01-01

    Background Planarian stem cells, or neoblasts, drive the almost unlimited regeneration capacities of freshwater planarians. Neoblasts are traditionally described by their morphological features and by the fact that they are the only proliferative cell type in asexual planarians. Therefore, they can be specifically eliminated by irradiation. Irradiation, however, is likely to induce transcriptome-wide changes in gene expression that are not associated with neoblast ablation. This has affected the accurate description of their specific transcriptomic profile. Results We introduce the use of Smed-histone-2B RNA interference (RNAi) for genetic ablation of neoblast cells in Schmidtea mediterranea as an alternative to irradiation. We characterize the rapid, neoblast-specific phenotype induced by Smed-histone-2B RNAi, resulting in neoblast ablation. We compare and triangulate RNA-seq data after using both irradiation and Smed-histone-2B RNAi over a time course as means of neoblast ablation. Our analyses show that Smed-histone-2B RNAi eliminates neoblast gene expression with high specificity and discrimination from gene expression in other cellular compartments. We compile a high confidence list of genes downregulated by both irradiation and Smed-histone-2B RNAi and validate their expression in neoblast cells. Lastly, we analyze the overall expression profile of neoblast cells. Conclusions Our list of neoblast genes parallels their morphological features and is highly enriched for nuclear components, chromatin remodeling factors, RNA splicing factors, RNA granule components and the machinery of cell division. Our data reveal that the regulation of planarian stem cells relies on posttranscriptional regulatory mechanisms and suggest that planarians are an ideal model for this understudied aspect of stem cell biology. PMID:22439894

  14. Scavenger Receptor Mediates Systemic RNA Interference in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Xuenan, Xuan; Suzuki, Hiroshi; Linggatong Galay, Remil; Tanaka, Tetsuya; Fujisaki, Kozo

    2011-01-01

    RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks. PMID:22145043

  15. siRNA Design Software for a Target Gene-Specific RNA Interference

    PubMed Central

    Naito, Yuki; Ui-Tei, Kumiko

    2012-01-01

    RNA interference (RNAi) is a mechanism through which small interfering RNA (siRNA) induces sequence-specific posttranscriptional gene silencing. RNAi is commonly recognized as a powerful tool not only for functional genomics but also for therapeutic applications. Twenty-one-nucleotide-long siRNA suppresses the expression of the intended gene whose transcript possesses perfect complementarity to the siRNA guide strand. Hence, its silencing effect has been assumed to be extremely specific. However, accumulated evidences revealed that siRNA could downregulate unintended genes with partial complementarities mainly to the seven-nucleotide seed region of siRNA. This phenomenon is referred to as off-target effect. We have revealed that the capability to induce off-target effect is strongly correlated to the thermodynamic stability in siRNA seed-target duplex. For understanding accurate target gene function and successful therapeutic application, it may be critical to select a target gene-specific siRNA with minimized off-target effect. Here we present our siRNA design software for a target-specific RNAi. In addition, we also introduce the software programs open to the public for designing functional siRNAs. PMID:22701467

  16. siRNA Design Software for a Target Gene-Specific RNA Interference.

    PubMed

    Naito, Yuki; Ui-Tei, Kumiko

    2012-01-01

    RNA interference (RNAi) is a mechanism through which small interfering RNA (siRNA) induces sequence-specific posttranscriptional gene silencing. RNAi is commonly recognized as a powerful tool not only for functional genomics but also for therapeutic applications. Twenty-one-nucleotide-long siRNA suppresses the expression of the intended gene whose transcript possesses perfect complementarity to the siRNA guide strand. Hence, its silencing effect has been assumed to be extremely specific. However, accumulated evidences revealed that siRNA could downregulate unintended genes with partial complementarities mainly to the seven-nucleotide seed region of siRNA. This phenomenon is referred to as off-target effect. We have revealed that the capability to induce off-target effect is strongly correlated to the thermodynamic stability in siRNA seed-target duplex. For understanding accurate target gene function and successful therapeutic application, it may be critical to select a target gene-specific siRNA with minimized off-target effect. Here we present our siRNA design software for a target-specific RNAi. In addition, we also introduce the software programs open to the public for designing functional siRNAs. PMID:22701467

  17. An efficient RNA interference screening strategy for gene functional analysis

    PubMed Central

    2012-01-01

    Background RNA interference (RNAi) is commonly applied in genome-scale gene functional screens. However, a one-on-one RNAi analysis that targets each gene is cost-ineffective and laborious. Previous studies have indicated that siRNAs can also affect RNAs that are near-perfectly complementary, and this phenomenon has been termed an off-target effect. This phenomenon implies that it is possible to silence several genes simultaneously with a carefully designed siRNA. Results We propose a strategy that is combined with a heuristic algorithm to design suitable siRNAs that can target multiple genes and a group testing method that would reduce the number of required RNAi experiments in a large-scale RNAi analysis. To verify the efficacy of our strategy, we used the Orchid expressed sequence tag data as a case study to screen the putative transcription factors that are involved in plant disease responses. According to our computation, 94 qualified siRNAs were sufficient to examine all of the predicated 229 transcription factors. In addition, among the 94 computer-designed siRNAs, an siRNA that targets both TF15 (a previously identified transcription factor that is involved in the plant disease-response pathway) and TF21 was introduced into orchids. The experimental results showed that this siRNA can simultaneously silence TF15 and TF21, and application of our strategy successfully confirmed that TF15 is involved in plant defense responses. Interestingly, our second-round analysis, which used an siRNA specific to TF21, indicated that TF21 is a previously unidentified transcription factor that is related to plant defense responses. Conclusions Our computational results showed that it is possible to screen all genes with fewer experiments than would be required for the traditional one-on-one RNAi screening. We also verified that our strategy is capable of identifying genes that are involved in a specific phenotype. PMID:22988976

  18. Testing the efficacy of RNA interference constructs in Aspergillus fumigatus.

    PubMed

    Henry, Christine; Mouyna, Isabelle; Latgé, Jean-Paul

    2007-04-01

    We recently developed a silencing vector in Aspergillus fumigatus which carries a hygromycin resistance marker and a transcriptional unit for hairpin RNA expression under the control of the inducible glucoamylase promoter (pGla) (Mouyna et al. in FEMS Microbiol Lett 237:317-324, 2004). We showed previously that this vector can be used for the RNA interference application of two genes ALB1 and FKS1 of which reduced mRNA levels occurred for both, with phenotypic consequences resembling disruptions of genes involved in melanin (ALB1) and beta(1-3)glucan biosynthesis (FKS1). We reported here the silencing of KRE6 and CRH1, two other genes putatively involved in cell wall biosynthesis using a similar construction under the control of the constitutive promoter glyceraldehyde-3-phosphate dehydrogenase (pgpdA). Silencing of the expression of these two genes was obtained. Further analysis of the transformants showed however that (1) a 100% loss of expression was never achieved for all genes tested (2) the vector used for RNAi is lost or modified over successive transfers resulting in an inhibition of the silencing. These disadvantages of RNAi indicate that classical gene disruption by gene replacement remains the most efficient method for a molecular analysis of gene function in A. fumigatus. PMID:17273823

  19. Emerging strategies for RNA interference (RNAi) applications in insects

    PubMed Central

    Nandety, Raja Sekhar; Kuo, Yen-Wen; Nouri, Shahideh; Falk, Bryce W

    2015-01-01

    RNA interference (RNAi) in insects is a gene regulatory process that also plays a vital role in the maintenance and in the regulation of host defenses against invading viruses. Small RNAs determine the specificity of the RNAi through precise recognition of their targets. These small RNAs in insects comprise small interfering RNAs (siRNAs), micro RNAs (miRNAs) and Piwi interacting RNAs (piRNAs) of various lengths. In this review, we have explored different forms of the RNAi inducers that are presently in use, and their applications for an effective and efficient fundamental and practical RNAi research with insects. Further, we reviewed trends in next generation sequencing (NGS) technologies and their importance for insect RNAi, including the identification of novel insect targets as well as insect viruses. Here we also describe a rapidly emerging trend of using plant viruses to deliver the RNAi inducer molecules into insects for an efficient RNAi response. PMID:25424593

  20. Role of RNA Interference (RNAi) in the Moss Physcomitrella patens

    PubMed Central

    Arif, Muhammad Asif; Frank, Wolfgang; Khraiwesh, Basel

    2013-01-01

    RNA interference (RNAi) is a mechanism that regulates genes by either transcriptional (TGS) or posttranscriptional gene silencing (PTGS), required for genome maintenance and proper development of an organism. Small non-coding RNAs are the key players in RNAi and have been intensively studied in eukaryotes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs are synthesized from a short hairpin structure while siRNAs are derived from long double-stranded RNAs (dsRNA). Both miRNA and siRNAs control the expression of cognate target RNAs by binding to reverse complementary sequences mediating cleavage or translational inhibition of the target RNA. They also act on the DNA and cause epigenetic changes such as DNA methylation and histone modifications. In the last years, the analysis of plant RNAi pathways was extended to the bryophyte Physcomitrella patens, a non-flowering, non-vascular ancient land plant that diverged from the lineage of seed plants approximately 450 million years ago. Based on a number of characteristic features and its phylogenetic key position in land plant evolution P. patens emerged as a plant model species to address basic as well as applied topics in plant biology. Here we summarize the current knowledge on the role of RNAi in P. patens that shows functional overlap with RNAi pathways from seed plants, and also unique features specific to this species. PMID:23344055

  1. A small molecule enhances RNA interference and promotes microRNA processing

    PubMed Central

    Shan, Ge; Li, Yujing; Zhang, Junliang; Li, Wendi; Szulwach, Keith E; Duan, Ranhui; Faghihi, Mohammad A; Khalil, Ahmad M; Lu, Lianghua; Paroo, Zain; Chan, Anthony W S; Shi, Zhangjie; Liu, Qinghua; Wahlestedt, Claes; He, Chuan; Jin, Peng

    2010-01-01

    Small interfering RNAs (siRNAs) and microRNAs (miRNAs) are sequence-specific post-transcriptional regulators of gene expression. Although major components of the RNA interference (RNAi) pathway have been identified, regulatory mechanisms for this pathway remain largely unknown. Here we demonstrate that the RNAi pathway can be modulated intracellularly by small molecules. We have developed a cell-based assay to monitor the activity of the RNAi pathway and find that the small-molecule enoxacin (Penetrex) enhances siRNA-mediated mRNA degradation and promotes the biogenesis of endogenous miRNAs. We show that this RNAi-enhancing activity depends on the trans-activation-responsive region RNA-binding protein. Our results provide a proof-of-principle demonstration that small molecules can be used to modulate the activity of the RNAi pathway. RNAi enhancers may be useful in the development of research tools and therapeutics. PMID:18641635

  2. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection

    PubMed Central

    Ayllón, Nieves; Naranjo, Victoria; Hajdušek, Ondrej; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Alberdi, Pilar; Šíma, Radek; Cabezas-Cruz, Alejandro; Rückert, Claudia; Bell-Sakyi, Lesley; Kazimírová, Mária; Havlíková, Sabína; Klempa, Boris; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found. PMID:26186700

  3. The let-7 microRNA interfaces extensively with the translation machinery to regulate cell differentiation

    PubMed Central

    Ding, Xavier C.; Slack, Frank J.; Großhans, Helge

    2010-01-01

    MicroRNAs (miRNAs) are noncoding RNAs that regulate numerous target genes through a posttranscriptional mechanism and thus control major developmental pathways. The phylogenetically conserved let-7 miRNA regulates cell proliferation and differentiation, thus functioning as a key regulator of developmental timing in C. elegans and a tumor suppressor gene in humans. Using a reverse genetic screen, we have identified genetic interaction partners of C. elegans let-7, including known and novel potential target genes. Initial identification of several translation initiation factors as suppressors of a let-7 mutation led us to systematically examine genetic interaction between let-7 and the translational machinery, which we found to be widespread. In the presence of wild-type let-7, depletion of the translation initiation factor eIF3 resulted in precocious cell differentiation, suggesting that developmental timing is translationally regulated, possibly by let-7. As overexpression of eIF3 in humans promotes translation of mRNAs that are also targets of let-7-mediated repression, we suggest that eIF3 may directly or indirectly oppose let-7 activity. This might provide an explanation for the opposite functions of let-7 and eIF3 in regulating tumorigenesis. PMID:18818519

  4. RNA interference: concept to reality in crop improvement.

    PubMed

    Saurabh, Satyajit; Vidyarthi, Ambarish S; Prasad, Dinesh

    2014-03-01

    The phenomenon of RNA interference (RNAi) is involved in sequence-specific gene regulation driven by the introduction of dsRNA resulting in inhibition of translation or transcriptional repression. Since the discovery of RNAi and its regulatory potentials, it has become evident that RNAi has immense potential in opening a new vista for crop improvement. RNAi technology is precise, efficient, stable and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better quality traits. The impact of RNAi to improve the crop plants has proved to be a novel approach in combating the biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. It has been employed successfully to bring about modifications of several desired traits in different plants. These modifications include nutritional improvements, reduced content of food allergens and toxic compounds, enhanced defence against biotic and abiotic stresses, alteration in morphology, crafting male sterility, enhanced secondary metabolite synthesis and seedless plant varieties. However, crop plants developed by RNAi strategy may create biosafety risks. So, there is a need for risk assessment of GM crops in order to make RNAi a better tool to develop crops with biosafety measures. This article is an attempt to review the RNAi, its biochemistry, and the achievements attributed to the application of RNAi in crop improvement. PMID:24402564

  5. Endogenous RNA interference is driven by copy number

    PubMed Central

    Cruz, Cristina; Houseley, Jonathan

    2014-01-01

    A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001 PMID:24520161

  6. A kinetic model for RNA-interference of focal adhesions

    PubMed Central

    2013-01-01

    Background Focal adhesions are integrin-based cell-matrix contacts that transduce and integrate mechanical and biochemical cues from the environment. They develop from smaller and more numerous focal complexes under the influence of mechanical force and are key elements for many physiological and disease-related processes, including wound healing and metastasis. More than 150 different proteins localize to focal adhesions and have been systematically classified in the adhesome project (http://www.adhesome.org). First RNAi-screens have been performed for focal adhesions and the effect of knockdown of many of these components on the number, size, shape and location of focal adhesions has been reported. Results We have developed a kinetic model for RNA interference of focal adhesions which represents some of its main elements: a spatially layered structure, signaling through the small GTPases Rac and Rho, and maturation from focal complexes to focal adhesions under force. The response to force is described by two complementary scenarios corresponding to slip and catch bond behavior, respectively. Using estimated and literature values for the model parameters, three time scales of the dynamics of RNAi-influenced focal adhesions are identified: a sub-minute time scale for the assembly of focal complexes, a sub-hour time scale for the maturation to focal adhesions, and a time scale of days that controls the siRNA-mediated knockdown. Our model shows bistability between states dominated by focal complexes and focal adhesions, respectively. Catch bonding strongly extends the range of stability of the state dominated by focal adhesions. A sensitivity analysis predicts that knockdown of focal adhesion components is more efficient for focal adhesions with slip bonds or if the system is in a state dominated by focal complexes. Knockdown of Rho leads to an increase of focal complexes. Conclusions The suggested model provides a kinetic description of the effect of RNA-interference

  7. dsRNA interference on expression of a RNA-dependent RNA polymerase gene of Bombyx mori cytoplasmic polyhedrosis virus.

    PubMed

    Pan, Zhong-Hua; Gao, Kun; Hou, Cheng-Xiang; Wu, Ping; Qin, Guang-Xing; Geng, Tao; Guo, Xi-Jie

    2015-07-01

    Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the major viral pathogens in silkworm. Its infection often results in significant losses to sericulture. Studies have demonstrated that RNAi is one of the important anti-viral mechanisms in organisms. In this study, three dsRNAs targeting the RNA-dependent RNA polymerase (RDRP) gene of BmCPV were designed and synthesized with 2'-F modification to explore their interference effects on BmCPV replication in silkworm larvae. The results showed that injecting dsRNA in the dosage of 4-6 ng per mg body weight into the 5th instar larvae can interfere with the BmCPV-RDRP expression by 93% after virus infection and by 99.9% before virus infection. In addition, the expression of two viral structural protein genes (genome RNA segments 1 and 5) was also decreased with the decrease of RDRP expression, suggesting that RNAi interference of BmCPV-RDRP expression could affect viral replication. The study provides an effective method for investigating virus replication as well as the virus-host interactions in the silkworm larvae using dsRNA. PMID:25839934

  8. Applicability of RNA interference in cancer therapy: Current status.

    PubMed

    Maduri, S

    2015-01-01

    Cancer is a manifestation of dysregulated gene function arising from a complex interplay of oncogenes and tumor suppressor genes present in our body. Cancer has been constantly chased using various therapies but all in vain as most of them are highly effective only in the early stages of cancer. Recently, RNA interference (RNAi) therapy, a comparatively new entrant is evolving as a promising player in the battle against cancer due to its post-transcriptional gene silencing ability. The most alluring feature of this non-invasive technology lies in its utility in the cancer detection and the cancer treatment at any stage. Once this technology is fully exploited it can bring a whole new era of therapeutics capable of curing cancer at any stage mainly due to its ability to target the vital processes required for cell proliferation such as response to growth factors, nutrient uptake/synthesis, and energy generation. This therapy can also be used to treat stage IV cancer, the most difficult to treat till date, by virtue of its metastasis inhibiting capability. Recent research has also proved that cancer can even be prevented by proper modulation of physiological RNAi pathways and researchers have found that many nutrients, which are a part of routine diet, can effectively modulate these pathways and prevent cancer. Even after having all these advantages the potential of RNAi therapy could not be fully tapped earlier, due to many limitations associated with the administration of RNAi based therapeutics. However, recent advancements in this direction, such as the development of small interfering RNA (siRNA) tolerant to nucleases and the development of non-viral vectors such as cationic liposomes and nanoparticles, can overcome this obstacle and facilitate the clinical use of RNAi based therapeutics in the treatment of cancer. The present review focuses on the current status of RNAi therapeutics and explores their potential as future diagnostics and therapeutics against

  9. TAF1B is a TFIIB-like component of the basal transcription machinery for RNA polymerase I.

    PubMed

    Naidu, Srivatsava; Friedrich, J Karsten; Russell, Jackie; Zomerdijk, Joost C B M

    2011-09-16

    Transcription by eukaryotic RNA polymerases (Pols) II and III and archaeal Pol requires structurally related general transcription factors TFIIB, Brf1, and TFB, respectively, which are essential for polymerase recruitment and initiation events. A TFIIB-like protein was not evident in the Pol I basal transcription machinery. We report that TAF1B, a subunit of human Pol I basal transcription factor SL1, is structurally related to TFIIB/TFIIB-like proteins, through predicted amino-terminal zinc ribbon and cyclin-like fold domains. SL1, essential for Pol I recruitment to the ribosomal RNA gene promoter, also has an essential postpolymerase recruitment role, operating through TAF1B. Therefore, a TFIIB-related protein is implicated in preinitiation complex assembly and postpolymerase recruitment events in Pol I transcription, underscoring the parallels between eukaryotic Pol I, II, and III and archaeal transcription machineries. PMID:21921199

  10. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi) is a promising antiviral methodology. We recently demonstrated that retroviral vectors expressing short hairpin RNAs (shRNA-mirs) in the context of a modified endogenous micro-RNA (miRNA) can be effective in reducing replication of other retroviruses in chicken cells. In thi...

  11. Genome-Wide Occupancy Profile of the RNA Polymerase III Machinery in Saccharomyces cerevisiae Reveals Loci with Incomplete Transcription Complexes†

    PubMed Central

    Moqtaderi, Zarmik; Struhl, Kevin

    2004-01-01

    We used chromatin immunoprecipitation, followed by microarray hybridization, to determine the genome-wide distribution of the RNA polymerase (Pol) III transcription apparatus in the yeast Saccharomyces cerevisiae. The Pol III transcriptome includes all tRNA genes, previously identified non-tRNA Pol III genes, and SNR52, which encodes a small nucleolar RNA. Unexpectedly, we identify eight ETC loci that are occupied by TFIIIC but not by other components of the Pol III machinery. Some ETC loci contain stretches of DNA that are highly conserved among closely related yeast species, suggesting that they may encode functional RNAs. ETC6 is located upstream of the gene encoding the τ 91 subunit of TFIIIC, suggesting the possibility of Pol III-regulated expression of a critical Pol III factor. We also identify the ZOD1 locus, which is bound by all components of the Pol III machinery and yet does not appear to express an RNA conserved among closely related yeast species. The B block motifs and several flanking nucleotides of the ZOD1 and ETC loci are very similar to each other and are highly conserved across the yeast species. Furthermore, the unusual profile of Pol III factor association with ZOD1 and the ETC loci is perfectly preserved in a different Saccharomyces species, indicating that these loci represent novel functional entities. PMID:15121834

  12. Redefining regulation of DNA methylation by RNA interference

    PubMed Central

    Muthusamy, Viswanathan; Bosenberg, Marcus; Wajapeyee, Narendra

    2013-01-01

    Epigenetic changes refer to heritable changes that may modulate gene expression without affecting DNA sequence. DNA methylation is one such heritable epigenetic change, which is causally associated with the transcription regulation of many genes in the mammalian genome. Altered DNA methylation has been implicated in a wide variety of human diseases including cancer. Understanding the regulation of DNA methylation is likely to improve the ability to diagnose and treat these diseases. With the advent of high-throughput RNA interference (RNAi) screens, answering epigenetic questions on a genomic scale is now possible. Two recent genome-wide RNAi screens have addressed the regulation of DNA methylation in cancer, leading to the identification of the regulators of epigenetic silencing by oncogenic RAS and how epigenetic silencing of the tumor suppressor RASSF1A is maintained. These RNAi screens have much wider applications, since similar screens can now be adapted to identify the mechanism of silencing of any human disease-associated gene that is epigenetically regulated. In this review, we discuss two recent genome-wide RNAi screens for epigenetic regulators and explore potential applications in understanding DNA methylation and gene expression regulation in mammalian cells. We also discuss some of the key unanswered questions in the field of DNA methylation and suggest genome-wide RNAi screens designed to answer them. PMID:20620207

  13. Harnessing RNA interference for the treatment of viral infections.

    PubMed

    Arbuthnot, Patrick

    2010-01-01

    Exploiting the RNA interference (RNAi) pathway to inhibit viral gene expression has become an active field of research. The approach has potential for therapeutic application and several viruses are susceptible to RNAi-mediated knockdown. Differences in the characteristics of individual viruses require that viral gene silencing be tailored to specific infections. Important considerations are viral tissue tropism, acute or chronic nature of the infection and the efficiency with which antiviral sequences can be delivered to affected tissue. Both synthetic short interfering RNAs (siRNAs) and expressed RNAi activators are being developed for viral therapy. The sustained silencing of expressed antiviral sequences is useful for countering chronic viral infection. siRNAs, which may be chemically modified to improve specificity and stability, are being developed for knockdown of viruses that cause acute or chronic infections. Preventing viral escape from silencing is important and overcoming this problem using combinatorial RNAi or through silencing of host dependency factors is promising. Although improving delivery efficiency and limiting off-target effects remain obstacles, rapid progress continues to be made in the field and it is likely that the goal of achieving licensed RNAi-based viral therapies will soon be realized. PMID:20697601

  14. RNA interference targeting raptor inhibits proliferation of gastric cancer cells

    SciTech Connect

    Wu, William Ka Kei; Lee, Chung Wa; Cho, Chi Hin; Chan, Francis Ka Leung; Yu, Jun; Sung, Joseph Jao Yiu

    2011-06-10

    Mammalian target of rapamycin complex 1 (mTORC1) is dysregulated in gastric cancer. The biologic function of mTORC1 in gastric carcinogenesis is unclear. Here, we demonstrate that disruption of mTORC1 function by RNA interference-mediated downregulation of raptor substantially inhibited gastric cancer cell proliferation through induction of G{sub 0}/G{sub 1}-phase cell cycle arrest. The anti-proliferative effect was accompanied by concomitant downregulation of activator protein-1 and upregulation of Smad2/3 transcriptional activities. In addition, the expression of cyclin D{sub 3} and p21{sup Waf1}, which stabilizes cyclin D/cdk4 complex for G{sub 1}-S transition, was reduced by raptor knockdown. In conclusion, disruption of mTORC1 inhibits gastric cancer cell proliferation through multiple pathways. This discovery may have an implication in the application of mTORC1-directed therapy for the treatment of gastric cancer.

  15. Compressed sensing methods for DNA microarrays, RNA interference, and metagenomics.

    PubMed

    Rao, Aditya; P, Deepthi; Renumadhavi, C H; Chandra, M Girish; Srinivasan, Rajgopal

    2015-02-01

    Compressed sensing (CS) is a sparse signal sampling methodology for efficiently acquiring and reconstructing a signal from relatively few measurements. Recent work shows that CS is well-suited to be applied to problems in genomics, including probe design in microarrays, RNA interference (RNAi), and taxonomic assignment in metagenomics. The principle of using different CS recovery methods in these applications has thus been established, but a comprehensive study of using a wide range of CS methods has not been done. For each of these applications, we apply three hitherto unused CS methods, namely, l1-magic, CoSaMP, and l1-homotopy, in conjunction with CS measurement matrices such as randomly generated CS m matrix, Hamming matrix, and projective geometry-based matrix. We find that, in RNAi, the l1-magic (the standard package for l1 minimization) and l1-homotopy methods show significant reduction in reconstruction error compared to the baseline. In metagenomics, we find that l1-homotopy as well as CoSaMP estimate concentration with significantly reduced time when compared to the GPSR and WGSQuikr methods. PMID:25629590

  16. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference.

    PubMed

    Xu, Zhongping; Li, Jingwen; Guo, Xiaoping; Jin, Shuangxia; Zhang, Xianlong

    2016-01-01

    Cottonseed oil is recognized as an important oil in food industry for its unique characters: low flavor reversion and the high level of antioxidants (VitaminE) as well as unsaturated fatty acid. However, the cottonseed oil content of cultivated cotton (Gossypium hirsutum) is only around 20%. In this study, we modified the accumulation of oils by the down-regulation of phosphoenolpyruvate carboxylase 1 (GhPEPC1) via RNA interference in transgenic cotton plants. The qRT-PCR and enzyme activity assay revealed that the transcription and expression of GhPEPC1 was dramatically down-regulated in transgenic lines. Consequently, the cottonseed oil content in several transgenic lines showed a significant (P < 0.01) increase (up to 16.7%) without obvious phenotypic changes under filed condition when compared to the control plants. In order to elucidate the molecular mechanism of GhPEPC1 in the regulation of seed oil content, we quantified the expression of the carbon metabolism related genes of transgenic GhPEPC1 RNAi lines by transcriptome analysis. This analysis revealed the decrease of GhPEPC1 expression led to the increase expression of triacylglycerol biosynthesis-related genes, which eventually contributed to the lipid biosynthesis in cotton. This result provides a valuable information for cottonseed oil biosynthesis pathway and shows the potential of creating high cottonseed oil germplasm by RNAi strategy for cotton breeding. PMID:27620452

  17. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?

    PubMed

    Unniyampurath, Unnikrishnan; Pilankatta, Rajendra; Krishnan, Manoj N

    2016-01-01

    The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term. PMID:26927085

  18. RNA interference of IL-10 in leukemic B-1 cells.

    PubMed

    McCarthy, Brian A; Mansour, Amal; Lin, Yi-Chu; Kotenko, Sergei; Raveche, Elizabeth

    2004-07-23

    RNA interference, or RNAi, is designed to work by Watson-Crick base pairing and to result in a posttranscriptional block in protein synthesis. Antiapoptotic proteins are a major focus of cancer therapy and make attractive targets for RNAi. An IL-10 RNAi sequence was designed in accordance with Tuschl rules and was modeled to a hairpin configuration. In chronic lymphocytic leukemia (CLL), the most common leukemia in the Western world, the failure to undergo apoptosis may be responsible for the accumulation of malignant B-1 cells. Interleukin-10, despite controversy, has been shown to have antiapoptotic properties, and increased endogenous IL-10 production has been found in CLL by several labs. A malignant B-1 cell line, LNC, derived from an NZB mouse (a murine model for CLL) was utilized as a target for IL-10 RNAi. Our earlier studies of antisense IL-10 resulted in antiproliferative and proapoptotic effects. The cytotoxic effects of IL-10 RNAi were dose- and time-dependent, with an optimal dose 10-fold lower than that of antisense IL-10. IL-10 RNAi lowered IL-10 protein as measured by ELISA. 2 micro M IL-10 RNAi initiated a G2/M block and a decrease in the message for cdc25C, the M-phase inducer phosphatase. IL-10 RNAi efficiently induced apoptosis. Bcl7C, a member of the antiapoptotic Bcl family, was significantly down-regulated. IL-10 modulating Bcl7C expression represents a novel mechanism in the evasion of apoptosis. This approach, by itself or in conjunction with current therapies, merits consideration in similar B-cell malignancies. PMID:15270555

  19. Suppression of Bedbug's Reproduction by RNA Interference of Vitellogenin.

    PubMed

    Moriyama, Minoru; Hosokawa, Takahiro; Tanahashi, Masahiko; Nikoh, Naruo; Fukatsu, Takema

    2016-01-01

    Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug. PMID:27096422

  20. Functional Identification of Tumor Suppressor Genes Through an in vivo RNA Interference Screen in a Mouse Lymphoma Model

    PubMed Central

    Bric, Anka; Miething, Cornelius; Bialucha, Carl Uli; Scuoppo, Claudio; Zender, Lars; Krasnitz, Alexander; Xuan, Zhenyu; Zuber, Johannes; Wigler, Michael; Hicks, James; McCombie, Richard W.; Hemann, Michael T.; Hannon, Gregory J.; Powers, Scott; Lowe, Scott W.

    2009-01-01

    SUMMARY Short hairpin RNAs (shRNAs) capable of stably suppressing gene function by RNA interference (RNAi) can mimic tumor suppressor gene loss in mice. By selecting for shRNAs capable of accelerating lymphomagenesis in a well-characterized mouse lymphoma model, we identified over ten candidate tumor suppressors, including Sfrp1, Numb, Mek1, and Angiopoietin 2. Several components of the DNA damage response machinery were also identified, including Rad17, which acts as a haploinsufficient tumor suppressor that responds to oncogenic stress and whose loss is associated with poor prognosis in human patients. Our results emphasize the utility of in vivo RNAi screens, identify and validate a diverse set of tumor suppressors, and have therapeutic implications. PMID:19800577

  1. Advances in RNA interference technology and its impact on nutritional improvement, disease and insect control in plants.

    PubMed

    Katoch, Rajan; Thakur, Neelam

    2013-03-01

    This review highlights the advances in the knowledge of RNA interference (RNAi) and discusses recent progress on the functionality of different components RNAi machinery operating in the organisms. The silencing of genes by RNA interference has become the technology of choice for investigation of gene functions in different organisms. The refinement in the knowledge of the endogenous RNAi pathways in plants along with the development of new strategies and applications for the improvement of nutritional value of important agricultural crops through suppression of genes in different plants have opened new vistas for nutritional security. The improvement in the nutritional status of the plants and reduction in the level of toxins or antinutrients was desired for long, but the available technology was not completely successful in achieving the tissue specific regulation of some genes. In the recent years, a number of economically important crop plants have been tested successfully for improving plant nutritional value through metabolic engineering using RNAi. The implications of this technology for crop improvement programs, including nutritional enrichment, reduction of antinutrients, disease, and insect control have been successfully tested in variety of crops with commercial considerations. The enhancement of the nutraceutical traits for the desired health benefits in common crop plants through manipulation of gene expression has been elaborated in this article. The tremendous potential with RNAi technology is expected to revolutionize the modern agriculture for meeting the growing challenges is discussed. PMID:23322250

  2. Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest population suppression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi) is a breakthrough technology that has significantly impacted contemporary approaches to control the damage caused by insect pests. Most well-known RNAi studies continue to rely on injecting the dsRNA molecules directly into the organism; this approach is not suitable for use...

  3. Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families

    SciTech Connect

    Carbonell, Alberto; Martinez de Alba, Angel-Emilio Gago, Selma

    2008-02-05

    Infection by viroids, non-protein-coding circular RNAs, occurs with the accumulation of 21-24 nt viroid-derived small RNAs (vd-sRNAs) with characteristic properties of small interfering RNAs (siRNAs) associated to RNA silencing. The vd-sRNAs most likely derive from dicer-like (DCL) enzymes acting on viroid-specific dsRNA, the key elicitor of RNA silencing, or on the highly structured genomic RNA. Previously, viral dsRNAs delivered mechanically or agroinoculated have been shown to interfere with virus infection in a sequence-specific manner. Here, we report similar results with members of the two families of nuclear- and chloroplast-replicating viroids. Moreover, homologous vd-sRNAs co-delivered mechanically also interfered with one of the viroids examined. The interference was sequence-specific, temperature-dependent and, in some cases, also dependent on the dose of the co-inoculated dsRNA or vd-sRNAs. The sequence-specific nature of these effects suggests the involvement of the RNA induced silencing complex (RISC), which provides sequence specificity to RNA silencing machinery. Therefore, viroid titer in natural infections might be regulated by the concerted action of DCL and RISC. Viroids could have evolved their secondary structure as a compromise between resistance to DCL and RISC, which act preferentially against RNAs with compact and relaxed secondary structures, respectively. In addition, compartmentation, association with proteins or active replication might also help viroids to elude their host RNA silencing machinery.

  4. RNA interference targeting SHP-1 attenuates myocardial infarction in rats.

    PubMed

    Sugano, Masahiro; Tsuchida, Keiko; Hata, Tomoji; Makino, Naoki

    2005-12-01

    The Src homology domain 2 (SH2)-containing tyrosine phosphatase-1 (SHP-1) plays a key role in apoptosis and decreases phosphorylation of Akt. Apoptosis of cardiomyocytes is thought to contribute to the increased area of acute myocardial infarction (AMI), and Akt activation exerts a powerful cardioprotective effect after ischemia. Thus, a therapeutic strategy designed to inhibit expression of SHP-1 would be beneficial in AMI. Here we report that siRNA targeting SHP-1 reduced infarct size in a rat model of AMI. Upon injection into the ischemic left ventricular wall, the vector-based siRNA significantly suppressed the increase in the SHP-1 mRNA and the SHP-1 protein levels. The siRNA vector also significantly reduced the SHP-1 that bound to Fas-R. The SHP-1 siRNA vector increased phospho-Akt and reduced DNA fragmentation and caspase activity compared with the scramble siRNA vector. Finally, the area of myocardial infarction was significantly smaller with the SHP-1 siRNA vector than with the scramble siRNA vector at 2 days after LCA ligation. In conclusion, SHP-1 in the heart increased from the early stage of AMI, and this increase was thought to contribute to the increased area of myocardial infarction. Suppression of SHP-1 with the SHP-1 siRNA vector markedly reduced the infarct size in AMI. PMID:16223786

  5. The HIV-1 Nef Protein Binds Argonaute-2 and Functions as a Viral Suppressor of RNA Interference

    PubMed Central

    Aqil, Madeeha; Naqvi, Afsar Raza; Bano, Aalia Shahr; Jameel, Shahid

    2013-01-01

    The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR). PMID:24023945

  6. Effective Treatment of Respiratory Alphaherpesvirus Infection Using RNA Interference

    PubMed Central

    Fulton, Amy; Peters, Sarah T.; Perkins, Gillian A.; Jarosinski, Keith W.; Damiani, Armando; Brosnahan, Margaret; Buckles, Elizabeth L.; Osterrieder, Nikolaus; Van de Walle, Gerlinde R.

    2009-01-01

    Background Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesvirinae, is spread via nasal secretions and causes respiratory disease, neurological disorders and abortions. The virus is a significant equine pathogen, but current EHV-1 vaccines are only partially protective and effective metaphylactic and therapeutic agents are not available. Small interfering RNAs (siRNA's), delivered intranasally, could prove a valuable alternative for infection control. siRNA's against two essential EHV-1 genes, encoding the viral helicase (Ori) and glycoprotein B, were evaluated for their potential to decrease EHV-1 infection in a mouse model. Methodology/Principal Fndings siRNA therapy in vitro significantly reduced virus production and plaque size. Viral titers were reduced 80-fold with 37.5 pmol of a single siRNA or with as little as 6.25 pmol of each siRNA when used in combination. siRNA therapy in vivo significantly reduced viral replication and clinical signs. Intranasal treatment did not require a transport vehicle and proved effective when given up to 12 h before or after infection. Conclusions/Significance siRNA treatment has potential for both prevention and early treatment of EHV-1 infections. PMID:19122813

  7. [shRNAs driven by K14 promoter induce tissue-specific RNA interference].

    PubMed

    Dai, Rong; Shen, Si-Jun; Wan, Peng-Cheng; Shi, Guo-Qing; Meng, Qing-Yong; Liu, Shou-Ren

    2011-07-01

    RNA interference is an efficient method for exploring gene function. Accumulating evidence suggests that RNA Pol II promoters can direct cell- or tissue-specific gene silencing. A eGFP-shRNA fusion construct transcribed from an RNA Pol II promoter (K14 promoter) was used to induce gene-specific shRNA silencing ofBMP4 gene expression. Recombinant vectors (pEGFP-C1-shRNA, psiCHECK-BMP4, and pEGFP-K14-shRNA) were constructed. Vectors pEGFP-C1-shRNA and psiCHECK-BMP4 were cotransfected into Hela cells (in vitro) and shRNA-induced inhibition efficiency was tested by a luciferase assay. The results showed that all the six interference sequences inhibited the expression of BMP4 with high efficiency (>60%), and the interference sequence 5# showed the highest efficiency. For in vivo screening of JB6-C41 cells transfected with vector pEGFP-K14-shRNA, the inhibition efficiency was assayed by quantitative RT-PCR and Western blotting analyses. The results showed that the mRNA and protein products of the exogenous BMP4 gene were efficiently and specifically inhibited. The efficiency of gene silencing was greater than 60%, except for sequence 3#. The declines in mRNA and protein expression levels were significantly correlated during gene silence by the shRNA. This system may be adapted for in vivo shRNA expression and gene silencing. This method may provide a novel approach for the application of RNAi technology in suppressing gene expression in the analysis of the mechanisms of hair follicle development in sheep. PMID:22049690

  8. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery

    PubMed Central

    Lima, Walt F.; De Hoyos, Cheryl L.; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5′ to 3′ exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3′ to 5′ direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3′ to 5′ direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5′-cap binding complex and, consequently, were susceptible to degradation in the 5′ to 3′ direction by the XRN exoribonucleases. PMID:26843429

  9. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery.

    PubMed

    Lima, Walt F; De Hoyos, Cheryl L; Liang, Xue-Hai; Crooke, Stanley T

    2016-04-20

    DNA-based antisense oligonucleotides (ASOs) elicit cleavage of the targeted RNA by the endoribonuclease RNase H1, whereas siRNAs mediate cleavage through the RNAi pathway. To determine the fates of the cleaved RNA in cells, we lowered the levels of the factors involved in RNA surveillance prior to treating cells with ASOs or siRNA and analyzed cleavage products by RACE. The cytoplasmic 5' to 3' exoribonuclease XRN1 was responsible for the degradation of the downstream cleavage products generated by ASOs or siRNA targeting mRNAs. In contrast, downstream cleavage products generated by ASOs targeting nuclear long non-coding RNA Malat 1 and pre-mRNA were degraded by nuclear XRN2. The downstream cleavage products did not appear to be degraded in the 3' to 5' direction as the majority of these products contained intact poly(A) tails and were bound by the poly(A) binding protein. The upstream cleavage products of Malat1 were degraded in the 3' to 5' direction by the exosome complex containing the nuclear exoribonuclease Dis3. The exosome complex containing Dis3 or cytoplasmic Dis3L1 degraded mRNA upstream cleavage products, which were not bound by the 5'-cap binding complex and, consequently, were susceptible to degradation in the 5' to 3' direction by the XRN exoribonucleases. PMID:26843429

  10. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells.

    PubMed

    Karlikow, Margot; Goic, Bertsy; Mongelli, Vanesa; Salles, Audrey; Schmitt, Christine; Bonne, Isabelle; Zurzolo, Chiara; Saleh, Maria-Carla

    2016-01-01

    Tunnelling nanotubes and cytonemes function as highways for the transport of organelles, cytosolic and membrane-bound molecules, and pathogens between cells. During viral infection in the model organism Drosophila melanogaster, a systemic RNAi antiviral response is established presumably through the transport of a silencing signal from one cell to another via an unknown mechanism. Because of their role in cell-cell communication, we investigated whether nanotube-like structures could be a mediator of the silencing signal. Here, we describe for the first time in the context of a viral infection the presence of nanotube-like structures in different Drosophila cell types. These tubules, made of actin and tubulin, were associated with components of the RNAi machinery, including Argonaute 2, double-stranded RNA, and CG4572. Moreover, they were more abundant during viral, but not bacterial, infection. Super resolution structured illumination microscopy showed that Argonaute 2 and tubulin reside inside the tubules. We propose that nanotube-like structures are one of the mechanisms by which Argonaute 2, as part of the antiviral RNAi machinery, is transported between infected and non-infected cells to trigger systemic antiviral immunity in Drosophila. PMID:27255932

  11. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.

    PubMed

    Bilichak, Andriy; Yao, Youli; Kovalchuk, Igor

    2014-06-01

    Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue. PMID:24472037

  12. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells

    PubMed Central

    Karlikow, Margot; Goic, Bertsy; Mongelli, Vanesa; Salles, Audrey; Schmitt, Christine; Bonne, Isabelle; Zurzolo, Chiara; Saleh, Maria-Carla

    2016-01-01

    Tunnelling nanotubes and cytonemes function as highways for the transport of organelles, cytosolic and membrane-bound molecules, and pathogens between cells. During viral infection in the model organism Drosophila melanogaster, a systemic RNAi antiviral response is established presumably through the transport of a silencing signal from one cell to another via an unknown mechanism. Because of their role in cell-cell communication, we investigated whether nanotube-like structures could be a mediator of the silencing signal. Here, we describe for the first time in the context of a viral infection the presence of nanotube-like structures in different Drosophila cell types. These tubules, made of actin and tubulin, were associated with components of the RNAi machinery, including Argonaute 2, double-stranded RNA, and CG4572. Moreover, they were more abundant during viral, but not bacterial, infection. Super resolution structured illumination microscopy showed that Argonaute 2 and tubulin reside inside the tubules. We propose that nanotube-like structures are one of the mechanisms by which Argonaute 2, as part of the antiviral RNAi machinery, is transported between infected and non-infected cells to trigger systemic antiviral immunity in Drosophila. PMID:27255932

  13. Autoregulation of Inducible Nitric Oxide Synthase Expression by RNA Interference Provides Neuroprotection in Neonatal Rats

    PubMed Central

    Wang, Zhi; Feng, Chenzhuo; Zhao, Huijuan; Ren, Xiaoyan; Peng, Shuling; Zuo, Zhiyi

    2015-01-01

    We have shown that autoregulation of gene expression by RNA interference is achievable in cell cultures. To determine whether this novel concept could be used to produce neuroprotection under in vivo condition, postnatal day (PND) 3 rats received intracerebroventricular injection of lentivirus that carried or did not carry code for short hairpin RNA (shRNA) of inducible nitric oxide synthase (iNOS). The expression of this shRNA was controlled by an iNOS promoter (piNOS-shRNA) or cytomegalovirus promoter (pCMV-shRNA). The rats were subjected to brain hypoxia-ischemia at PND7. Ischemic brain tissues had increased iNOS expression. This increase was attenuated by virus carrying piNOS-shRNA. Virus carrying pCMV-shRNA reduced iNOS to a level that was lower than control. Brain tissue loss and functional impairment after the hypoxia-ischemia were attenuated by the virus carrying piNOS-shRNA but not by pCMV-shRNA. Our results provide proof-of-concept evidence that autoregulation of iNOS expression by RNA interference induces neuroprotection in vivo and that appropriate regulation of gene expression is important. PMID:25767617

  14. shutdown is a component of the Drosophila piRNA biogenesis machinery

    PubMed Central

    Preall, Jonathan B.; Czech, Benjamin; Guzzardo, Paloma M.; Muerdter, Felix; Hannon, Gregory J.

    2012-01-01

    In animals, the piRNA pathway preserves the integrity of gametic genomes, guarding them against the activity of mobile genetic elements. This innate immune mechanism relies on distinct genomic loci, termed piRNA clusters, to provide a molecular definition of transposons, enabling their discrimination from genes. piRNA clusters give rise to long, single-stranded precursors, which are processed into primary piRNAs through an unknown mechanism. These can engage in an adaptive amplification loop, the ping-pong cycle, to optimize the content of small RNA populations via the generation of secondary piRNAs. Many proteins have been ascribed functions in either primary biogenesis or the ping-pong cycle, though for the most part the molecular functions of proteins implicated in these pathways remain obscure. Here, we link shutdown (shu), a gene previously shown to be required for fertility in Drosophila, to the piRNA pathway. Analysis of knockdown phenotypes in both the germline and somatic compartments of the ovary demonstrate important roles for shutdown in both primary biogenesis and the ping-pong cycle. shutdown is a member of the FKBP family of immunophilins. Shu contains domains implicated in peptidyl-prolyl cis-trans isomerase activity and in the binding of HSP90-family chaperones, though the relevance of these domains to piRNA biogenesis is unknown. PMID:22753781

  15. Effect of adenovirus-mediated RNA interference on endogenous microRNAs in a mouse model of multidrug resistance protein 2 gene silencing.

    PubMed

    Narvaiza, Iñigo; Aparicio, Oscar; Vera, María; Razquin, Nerea; Bortolanza, Sergia; Prieto, Jesús; Fortes, Puri

    2006-12-01

    RNA interference with viral vectors that express short hairpin RNAs (shRNAs) has emerged as a powerful tool for functional genomics and therapeutic purposes. However, little is known about shRNA in vivo processing, accumulation, functional kinetics, and side effects related to shRNA saturation of the cellular gene silencing machinery. Therefore, we constructed first-generation recombinant adenoviruses encoding different shRNAs against murine ATP-binding cassette multidrug resistance protein 2 (Abcc2), which is involved in liver transport of bilirubin to bile, and analyzed Abcc2 silencing kinetics. C57/BL6 mice injected with these viruses showed significant impairment of Abcc2 function for up to 3 weeks, as reflected by increased serum bilirubin levels. The lack of Abcc2 function correlated with a specific reduction of Abcc2 mRNA and with high levels of processed shRNAs targeting Abcc2. Inhibition was lost at longer times postinfection, correlating with a decrease in the accumulation of processed shRNAs. This finding suggests that a minimal amount of processed shRNAs is required for efficient silencing in vivo. This system was also used to evaluate the effect of shRNA expression on the saturation of silencing factors. Saturation of the cellular silencing processing machinery alters the accumulation and functionality of endogenous microRNAs (miRNAs) and pre-miRNAs. However, expression of functional exogenous shRNAs did not change the levels of endogenous miRNAs or their precursors. In summary, this work shows that adenoviral vectors can deliver sufficient shRNAs to mediate inhibition of gene expression without saturating the silencing machinery. PMID:17020948

  16. Light-activated RNA interference in human embryonic stem cells.

    PubMed

    Huang, Xiao; Hu, Qirui; Braun, Gary B; Pallaoro, Alessia; Morales, Demosthenes P; Zasadzinski, Joseph; Clegg, Dennis O; Reich, Norbert O

    2015-09-01

    We describe a near infrared (NIR) light-activated gene silencing method in undifferentiated human embryonic stem cell (hESC) using a plasmonic hollow gold nanoshell (HGN) as the siRNA carrier. Our modular biotin-streptavidin coupling strategy enables positively charged TAT-peptide to coat oligonucleotides-saturated nanoparticles as a stable colloid formation. TAT-peptide coated nanoparticles with dense siRNA loading show efficient penetration into a wide variety of hESC cell lines. The siRNA is freed from the nanoparticles and delivered to the cytosol by femtosecond pulses of NIR light with potentially exquisite spatial and temporal control. The effectiveness of this approach is shown by targeting GFP and Oct4 genes in undifferentiated hESC (H9). The accelerated expression of differentiation markers for all three germ layers resulting from Oct4 knockdown confirms that this method has no detectable adverse effects that limit the range of differentiation. This biocompatible and NIR laser-activated patterning method makes possible single cell resolution of siRNA delivery for diverse studies in stem cell biology, tissue engineering and regenerative medicine. PMID:26086448

  17. High-Throughput RNA Interference Screening: Tricks of the Trade

    PubMed Central

    Nebane, N. Miranda; Coric, Tatjana; Whig, Kanupriya; McKellip, Sara; Woods, LaKeisha; Sosa, Melinda; Sheppard, Russell; Rasmussen, Lynn; Bjornsti, Mary-Ann; White, E. Lucile

    2016-01-01

    The process of validating an assay for high-throughput screening (HTS) involves identifying sources of variability and developing procedures that minimize the variability at each step in the protocol. The goal is to produce a robust and reproducible assay with good metrics. In all good cell-based assays, this means coefficient of variation (CV) values of less than 10% and a signal window of fivefold or greater. HTS assays are usually evaluated using Z′ factor, which incorporates both standard deviation and signal window. A Z′ factor value of 0.5 or higher is acceptable for HTS. We used a standard HTS validation procedure in developing small interfering RNA (siRNA) screening technology at the HTS center at Southern Research. Initially, our assay performance was similar to published screens, with CV values greater than 10% and Z′ factor values of 0.51 ± 0.16 (average ± standard deviation). After optimizing the siRNA assay, we got CV values averaging 7.2% and a robust Z′ factor value of 0.78 ± 0.06 (average ± standard deviation). We present an overview of the problems encountered in developing this whole-genome siRNA screening program at Southern Research and how equipment optimization led to improved data quality. PMID:23616418

  18. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference

    PubMed Central

    Naito, Yuki; Yamada, Tomoyuki; Ui-Tei, Kumiko; Morishita, Shinichi; Saigo, Kaoru

    2004-01-01

    siDirect (http://design.RNAi.jp/) is a web-based online software system for computing highly effective small interfering RNA (siRNA) sequences with maximum target-specificity for mammalian RNA interference (RNAi). Highly effective siRNA sequences are selected using novel guidelines that were established through an extensive study of the relationship between siRNA sequences and RNAi activity. Our efficient software avoids off-target gene silencing to enumerate potential cross-hybridization candidates that the widely used BLAST search may overlook. The website accepts an arbitrary sequence as input and quickly returns siRNA candidates, providing a wide scope of applications in mammalian RNAi, including systematic functional genomics and therapeutic gene silencing. PMID:15215364

  19. Canonical and alternate functions of the microRNA biogenesis machinery

    PubMed Central

    Chong, Mark M.W.; Zhang, Guoan; Cheloufi, Sihem; Neubert, Thomas A.; Hannon, Gregory J.; Littman, Dan R.

    2010-01-01

    The canonical microRNA (miRNA) biogenesis pathway requires two RNaseIII enzymes: Drosha and Dicer. To understand their functions in mammals in vivo, we engineered mice with germline or tissue-specific inactivation of the genes encoding these two proteins. Changes in proteomic and transcriptional profiles that were shared in Dicer- and Drosha-deficient mice confirmed the requirement for both enzymes in canonical miRNA biogenesis. However, deficiency in Drosha or Dicer did not always result in identical phenotypes, suggesting additional functions. We found that, in early-stage thymocytes, Drosha recognizes and directly cleaves many protein-coding messenger RNAs (mRNAs) with secondary stem–loop structures. In addition, we identified a subset of miRNAs generated by a Dicer-dependent but Drosha-independent mechanism. These were distinct from previously described mirtrons. Thus, in mammalian cells, Dicer is required for the biogenesis of multiple classes of miRNAs. Together, these findings extend the range of function of RNaseIII enzymes beyond canonical miRNA biogenesis, and help explain the nonoverlapping phenotypes caused by Drosha and Dicer deficiency. PMID:20713509

  20. Canonical and alternate functions of the microRNA biogenesis machinery.

    PubMed

    Chong, Mark M W; Zhang, Guoan; Cheloufi, Sihem; Neubert, Thomas A; Hannon, Gregory J; Littman, Dan R

    2010-09-01

    The canonical microRNA (miRNA) biogenesis pathway requires two RNaseIII enzymes: Drosha and Dicer. To understand their functions in mammals in vivo, we engineered mice with germline or tissue-specific inactivation of the genes encoding these two proteins. Changes in proteomic and transcriptional profiles that were shared in Dicer- and Drosha-deficient mice confirmed the requirement for both enzymes in canonical miRNA biogenesis. However, deficiency in Drosha or Dicer did not always result in identical phenotypes, suggesting additional functions. We found that, in early-stage thymocytes, Drosha recognizes and directly cleaves many protein-coding messenger RNAs (mRNAs) with secondary stem-loop structures. In addition, we identified a subset of miRNAs generated by a Dicer-dependent but Drosha-independent mechanism. These were distinct from previously described mirtrons. Thus, in mammalian cells, Dicer is required for the biogenesis of multiple classes of miRNAs. Together, these findings extend the range of function of RNaseIII enzymes beyond canonical miRNA biogenesis, and help explain the nonoverlapping phenotypes caused by Drosha and Dicer deficiency. PMID:20713509

  1. Multitasking of the piRNA Silencing Machinery: Targeting Transposable Elements and Foreign Genes in the Bdelloid Rotifer Adineta vaga.

    PubMed

    Rodriguez, Fernando; Arkhipova, Irina R

    2016-05-01

    RNA-mediated silencing processes play a key role in silencing of transposable elements, especially in the germ line, where piwi-interacting RNAs (piRNAs) are responsible for suppressing transposon mobility and maintaining genome integrity. We previously reported that the genome of Adineta vaga, the first sequenced representative of the phylum Rotifera (class Bdelloidea), is characterized by massive levels of horizontal gene transfer, by unusually low transposon content, and by highly diversified RNA-mediated silencing machinery. Here, we investigate genome-wide distribution of pi-like small RNAs, which in A. vaga are 25-31 nucleotides in length and have a strong 5'-uridine bias, while lacking ping-pong amplification signatures. In agreement with expectations, 71% of mapped reads corresponded to annotated transposons, with 93% of these reads being in the antisense orientation. Unexpectedly, a significant fraction of piRNAs originate from predicted coding regions corresponding to genes of putatively foreign origin. The distribution of piRNAs across foreign genes is not biased toward 3'-UTRs, instead resembling transposons in uniform distribution pattern throughout the gene body, and in predominantly antisense orientation. We also find that genes with small RNA coverage, including a number of genes of metazoan origin, are characterized by higher occurrence of telomeric repeats in the surrounding genomic regions, and by higher density of transposons in the vicinity, which have the potential to promote antisense transcription. Our findings highlight the complex interplay between RNA-based silencing processes and acquisition of genes at the genome periphery, which can result either in their loss or eventual domestication and integration into the host genome. PMID:27017627

  2. [RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer].

    PubMed

    Peralta-Zaragoza, Oscar; Bermúdez-Morales, Víctor Hugo; Madrid-Marina, Vicente

    2010-01-01

    RNAi (RNA interference) is a natural process by which eukaryotic cells silence gene expression through small interference RNAs (siRNA) which are complementary to messenger RNA (mRNA). In this process, the siRNA that are 21-25 nucleotides long and are known as microRNA (miRNA), either associate with the RNA-induced silencing complex (RISC), which targets and cleaves the complementary mRNAs by the endonucleolytic pathway, or repress the translation. It is also possible to silence exogenous gene expression during viral infections by using DNA templates to transcribe siRNA with properties that are identical to those of bioactive microRNA. Persistent human papillomavirus (HPV) infection is the main etiological agent during cervical cancer development and the HPV E6 and E7 oncogenes, which induce cellular transformation and immortalization, represent strategic targets to be silenced with siRNA. In several in vitro and in vivo studies, it has been demonstrated that the introduction of siRNA directed against the E6 and E7 oncogenes in human tumoral cervical cells transformed by HPV, leads to the efficient silencing of HPV E6 and E7 oncogene expression, which induces the accumulation of the products of the p53 and pRb tumor suppressor genes and activates the mechanism of programmed cell death by apoptosis; thus, the progression of the tumoral growth process may be prevented. The goal of this review is to analyze the microRNA biogenesis process in the silencing of gene expression and to discuss the different protocols for the use of siRNA as a potential gene therapy strategy for the treatment of cervical cancer. PMID:20415061

  3. Inhibition of RNA interference and modulation of transposable element expression by cell death in Drosophila.

    PubMed

    Xie, Weiwu; Liang, Chengzhi; Birchler, James A

    2011-08-01

    RNA interference (RNAi) regulates gene expression by sequence-specific destruction of RNA. It acts as a defense mechanism against viruses and represses the expression of transposable elements (TEs) and some endogenous genes. We report that mutations and transgene constructs that condition cell death suppress RNA interference in adjacent cells in Drosophila melanogaster. The reversal of RNAi is effective for both the white (w) eye color gene and green fluorescent protein (GFP), indicating the generality of the inhibition. Antiapoptotic transgenes that reverse cell death will also reverse the inhibition of RNAi. Using GFP and a low level of cell death produced by a heat shock-head involution defective (hs-hid) transgene, the inhibition appears to occur by blocking the conversion of double-stranded RNA (dsRNA) to short interfering RNA (siRNA). We also demonstrate that the mus308 gene and endogenous transposable elements, which are both regularly silenced by RNAi, are increased in expression and accompanied by a reduced level of siRNA, when cell death occurs. The finding that chronic ectopic cell death affects RNAi is critical for an understanding of the application of the technique in basic and applied studies. These results also suggest that developmental perturbations, disease states, or environmental insults that cause ectopic cell death would alter transposon and gene expression patterns in the organism by the inhibition of small RNA silencing processes. PMID:21596898

  4. Delayed Newcastle disease virus replication using RNA interference to target the nucleoprotein.

    PubMed

    Hutcheson, Jessica M; Susta, Leonardo; Stice, Steven L; Afonso, Claudio L; West, Franklin D

    2015-07-01

    Each year millions of chickens die from Newcastle disease virus (NDV) worldwide leading to severe economic and food losses. Current vaccination campaigns have limitations especially in developing countries, due to elevated costs, need of trained personnel for effective vaccine administration, and functional cold chain network to maintain vaccine viability. These problems have led to heightened interest in producing new antiviral strategies, such as RNA interference (RNAi). RNAi methodology is capable of substantially decreasing viral replication at a cellular level, both in vitro and in vivo. In this study, we utilize microRNA (miRNA)-expressing constructs (a type of RNA interference) in an attempt to target and knockdown five NDV structural RNAs for nucleoprotein (NP), phosphoprotein (P), matrix (M), fusion (F), and large (L) protein genes. Immortalized chicken embryo fibroblast cells (DF-1) that transiently expressed miRNA targeting NP mRNA, showed increased resistance to NDV-induced cytopathic effects, as determined by cell count, relative to the same cells expressing miRNA against alternative NDV proteins. Upon infection with NDV, DF-1 cells constitutively expressing the NP miRNA construct had improved cell survival up to 48 h post infection (h.p.i) and decreased viral yield up to 24 h.p.i. These results suggest that overexpression of the NP miRNA in cells and perhaps live animal may provide resistance to NDV. PMID:26050911

  5. Multipurpose modular lentiviral vectors for RNA interference and transgene expression.

    PubMed

    Kesireddy, Venu; van der Ven, Peter F M; Fürst, Dieter O

    2010-07-01

    We have created a multipurpose modular lentiviral vector system for expressing both transgenes and miRNA 30-based short hairpins (shRNAmirs) for RNAi. The core of the resulting vector system, pLVmir, allows a simple two step cloning procedure for expressing shRNAmirs under the control of a Pol II promoter in both a constitutive and conditional manner. The adapted cloning method includes a PCR-free method for transferring shRNAmir based RNAi clones from a publicly available library (Open Biosystems). The addition of a Pol II promoter-driven shRNAmir cassette and broadening the choice of Pol III promoters and silencing triggers offers great flexibility to this system. The combination of several preexisting and additional modules created here caters to common needs of researchers. Our modular vector system was validated regarding functionality of promoters, inducibility and reversibility. We successfully applied the system to knockdown Xirp2 mRNA expression in H2kb-tsA58 muscle cells and determined that this had no spurious effect on the expression of a closely related protein. Finally, our set of lentiviral vectors may be used to achieve synergistic effects, for simultaneous knockdown of two genes, as a rescue plasmid and for studying mutant proteins in a physiological context. PMID:19798586

  6. Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery

    PubMed Central

    Freibaum, Brian D.; Chitta, Raghu; High, Anthony A.; Taylor, J. Paul

    2010-01-01

    TDP-43 is a highly conserved and ubiquitously expressed member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins. Recently, TDP-43 was shown to be a major disease protein in the ubiquitinated inclusions characteristic of most cases of amyotrophic lateral sclerosis (ALS), tau-negative frontotemporal lobar degeneration (FTLD), and inclusion body myopathy. In these diseases, TDP-43 is redistributed from its predominantly nuclear location to ubiquitin-positive, cytoplasmic foci. The extent to which TDP-43 drives pathophysiology is unknown, but the identification of mutations in TDP-43 in familial forms of ALS and FTLD-U suggests an important role for this protein in pathogenesis. Little is known about TDP-43 function and only a few TDP-43 interacting proteins have been previously identified, which makes further insight into both the normal and pathological functions of TDP-43 difficult. Here we show, via a global proteomic approach, that TDP-43 has extensive interaction with proteins that regulate RNA metabolism. Some interactions with TDP-43 were found to be dependent on RNA-binding, whereas other interactions are RNA-independent. Disease-causing mutations in TDP-43 (A315T and M337V) do not alter its interaction profile. TDP-43 interacting proteins largely cluster into two distinct interaction networks, a nuclear/splicing cluster and a cytoplasmic/translation cluster, strongly suggesting that TDP-43 has multiple roles in RNA metabolism and functions in both the nucleus and the cytoplasm. Finally, we found numerous TDP-43 interactors that are known components of stress granules and, indeed, we find that TDP-43 is also recruited to stress granules. PMID:20020773

  7. Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens

    PubMed Central

    Zha, Wenjun; Peng, Xinxin; Chen, Rongzhi; Du, Bo; Zhu, Lili; He, Guangcun

    2011-01-01

    Background RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. Methodology/Principal Findings The Hemipteran insect brown planthopper (Nilaparvata lugens Stål) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. Conclusions Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants. PMID:21655219

  8. N6-methyladenosine modification in mRNA: machinery, function and implications for health and diseases.

    PubMed

    Maity, Arpita; Das, Biswadip

    2016-05-01

    N6-methyladenosine (m(6) A) modification in mRNA is extremely widespread, and functionally modulates the eukaryotic transcriptome to influence mRNA splicing, export, localization, translation, and stability. Methylated adenines are present in a large subset of mRNAs and long noncoding RNAs (lncRNAs). Methylation is reversible, and this is accomplished by the orchestrated action of highly conserved methyltransferase (m(6) A writer) and demethylase (m(6) A eraser) enzymes to shape the cellular 'epitranscriptome'. The engraved 'methyl code' is subsequently decoded and executed by a group of m(6) A reader/effector components, which, in turn, govern the fate of the modified transcripts, thereby dictating their potential for translation. Reversible mRNA methylation thus adds another layer of regulation at the post-transcriptional level in the gene expression programme of eukaryotes that finely sculpts a highly dynamic proteome in order to respond to diverse cues during cellular differentiation, immune tolerance, and neuronal signalling. PMID:26645578

  9. Satellite RNAs interfere with the function of viral RNA silencing suppressors

    PubMed Central

    Shen, Wan-Xia; Au, Phil Chi Khang; Shi, Bu-Jun; Smith, Neil A.; Dennis, Elizabeth S.; Guo, Hui-Shan; Zhou, Chang-Yong; Wang, Ming-Bo

    2015-01-01

    Viral satellite RNAs (satRNAs) are small subviral RNAs and depend on the helper virus for replication and spread. satRNAs can attenuate helper virus-induced symptoms, the mechanism of which remains unclear. Here, we show that two virus-encoded suppressors of RNA silencing (VSRs), Cucumber mosaic virus (CMV) 2b and Tombusvirus P19, suppress hairpin RNA (hpRNA)-induced silencing of a β-glucuronidase (GUS) gene in Nicotiana benthamiana. This suppression can be overcome by CMV Y-satellite RNA (Y-Sat) via the Y-Sat-derived small interfering RNAs (siRNAs), which bind to the VSRs and displace the bound hpGUS-derived siRNAs. We also show that microRNA target gene expression in N. tabacum was elevated by CMV infection, presumably due to function of the 2b VSR, but this upregulation of microRNA target genes was reversed in the presence of Y-Sat. These results suggest that satRNA infection minimizes the effect of VSRs on host siRNA and microRNA-directed silencing. Our results suggest that the high abundance of satRNA-derived siRNAs contributes to symptom attenuation by binding helper virus-encoded VSRs, minimizing the capacity of the VSRs to bind host siRNA and miRNA and interfere with their function. PMID:25964791

  10. Foreign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery

    PubMed Central

    Vorontsova, Daria; Datsenko, Kirill A.; Medvedeva, Sofia; Bondy-Denomy, Joseph; Savitskaya, Ekaterina E.; Pougach, Ksenia; Logacheva, Maria; Wiedenheft, Blake; Davidson, Alan R.; Severinov, Konstantin; Semenova, Ekaterina

    2015-01-01

    CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems. PMID:26586803

  11. Mutational interference mapping experiment (MIME) for studying RNA structure and function.

    PubMed

    Smyth, Redmond P; Despons, Laurence; Huili, Gong; Bernacchi, Serena; Hijnen, Marcel; Mak, Johnson; Jossinet, Fabrice; Weixi, Li; Paillart, Jean-Christophe; von Kleist, Max; Marquet, Roland

    2015-09-01

    RNA regulates many biological processes; however, identifying functional RNA sequences and structures is complex and time-consuming. We introduce a method, mutational interference mapping experiment (MIME), to identify, at single-nucleotide resolution, the primary sequence and secondary structures of an RNA molecule that are crucial for its function. MIME is based on random mutagenesis of the RNA target followed by functional selection and next-generation sequencing. Our analytical approach allows the recovery of quantitative binding parameters and permits the identification of base-pairing partners directly from the sequencing data. We used this method to map the binding site of the human immunodeficiency virus-1 (HIV-1) Pr55(Gag) protein on the viral genomic RNA in vitro, and showed that, by analyzing permitted base-pairing patterns, we could model RNA structure motifs that are crucial for protein binding. PMID:26237229

  12. RNA interference (RNAi) patents and human health related applications of RNAi.

    PubMed

    Ebhardt, H Alexander

    2007-01-01

    The Nobel Prize in Physiology or Medicine in 2006 was shared by A.Z. Fire and C.C. Mello. The honour was given to these two principal investigators for demonstrating in the nematode Caenorhabditis elegans that double stranded RNA directs cleavage of messenger RNAs (mRNA) in a homologous manner. This process was termed RNA interference (RNAi) and was published in 1998. Since then, further research revealed that small 21-22 nts long RNAs guide an RNA-induced silencing complex (RISC) to a target mRNA causing translational inhibition or mRNA cleavage. This review will focus on RNAi patents, delivery of RNAi to combat human disease and reviewing some recent applications regarding detection and possible cure of human diseases using RNAi. PMID:19075926

  13. Powering up the molecular therapy of RNA interference by novel nanoparticles.

    PubMed

    Liao, Wenzhen; Li, Wen; Zhang, Tiantian; Kirberger, Micheal; Liu, Jun; Wang, Pei; Chen, Wei; Wang, Yong

    2016-06-21

    RNA interference technology has been widely applied in biomedical therapy in recent years. A type of small RNA molecule - siRNA could regulate the expression of disease related genes by breaking down the integrity of mRNA with high specificity. However, the low efficiency of siRNA delivery to its target seriously hampered the RNAi therapy. Compared with viral-based delivery systems, non-viral-based nanoparticles are more suitable for disease treatment due to reduced cellular toxicity, higher loading capacity, and better biocompatibility. This review article highlights several nanoparticle-based siRNA delivery systems, including liposomes, cationic solid lipid nanoparticles, reconstituted high density lipoprotein, polymeric nanoparticles, cationic cell penetrating peptides, and inorganic nanoparticles. The molecular mechanism of gene silencing, clinical examples, and the limitations of current technology related to nanomaterial sciences, are also discussed. PMID:27221980

  14. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  15. Inhibition of avian tumor viruses by vector-based RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi) has been shown to reduce the replication of certain animal viruses both in cell culture and in live animals. We developed RNAi-based anti-viral strategies against two important chicken pathogens: avian leukosis virus (ALV) and Marek’s Disease virus MDV). Entry plasmids conta...

  16. Functional specialization among insect chitinase family genes revealed by RNA interference

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biological functions of individual members of the large family of chitinase-like proteins from the red flour beetle, Tribolium castaneum, were examined using gene-specific RNA interference (RNAi). One chitinase, TcCHT5, was found to be required for pupal-adult molting only. A lethal phenotype ...

  17. RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene silencing through RNA interference (RNAi) has revolutionized the study of gene function, particularly in non-model insects. However, in Lepidoptera (moths and butterflies) RNAi has many times proven to be difficult to achieve. Most of the negative results have been anecdotal and the positive ex...

  18. A Simple Laboratory Practical to Illustrate RNA Mediated Gene Interference Using Drosophila Cell Culture

    ERIC Educational Resources Information Center

    Buluwela, Laki; Kamalati, Tahereh; Photiou, Andy; Heathcote, Dean A.; Jones, Michael D.; Ali, Simak

    2010-01-01

    RNA mediated gene interference (RNAi) is now a key tool in eukaryotic cell and molecular biology research. This article describes a five session laboratory practical, spread over a seven day period, to introduce and illustrate the technique. During the exercise, students working in small groups purify PCR products that encode "in vitro"…

  19. How Golden Is Silence? Teaching Undergraduates the Power and Limits of RNA Interference

    ERIC Educational Resources Information Center

    Kuldell, Natalie H.

    2006-01-01

    It is hard and getting harder to strike a satisfying balance in teaching. Time dedicated to student-generated models or ideas is often sacrificed in an effort to "get through the syllabus." I describe a series of RNA interference (RNAi) experiments for undergraduate students that simultaneously explores fundamental concepts in gene regulation,…

  20. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium species)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium ssp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function ...

  1. RNA interference of peroxisome-related genes in C. elegans: a new model for human peroxisomal disorders.

    PubMed

    Petriv, Oleh I; Pilgrim, David B; Rachubinski, Richard A; Titorenko, Vladimir I

    2002-08-14

    RNA-mediated interference (RNAi) for the posttranscriptional silencing of genes was used to evaluate the importance of various peroxisomal enzymes and peroxins for the development of Caenorhabditis elegans and to compare the roles of these proteins in the nematode to their roles in yeasts and humans. The nematode counterparts of the human ATP-binding cassette half-transporters, the enzymes alkyldihydroxyacetonephosphate synthase and Delta(3,5)-Delta (2,4)-dienoyl-CoA isomerase, the receptors for peroxisomal membrane and matrix proteins (Pex19p and Pex5p), and components of the docking and translocation machineries for matrix proteins (Pex13p and Pex12p) are essential for the development of C. elegans. Unexpectedly, RNAi silencing of the acyl-CoA synthetase-mediated activation of fatty acids, the alpha- and beta-oxidation of fatty acids, the intraperoxisomal decomposition of hydrogen peroxide, and the peroxins Pex1p, Pex2p, and Pex6p had no apparent effect on C. elegans development. The described analysis of functional gene knockouts through RNAi provides a basis for the use of C. elegans as a valuable model system with which to study the molecular and physiological defects underlying the human peroxisomal disorders. PMID:12181365

  2. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    NASA Astrophysics Data System (ADS)

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-05-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centred RNA-induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.

  3. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    PubMed Central

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-01-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID-domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centered RNA induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis. PMID:26018492

  4. Next-generation libraries for robust RNA interference-based genome-wide screens

    PubMed Central

    Kampmann, Martin; Horlbeck, Max A.; Chen, Yuwen; Tsai, Jordan C.; Bassik, Michael C.; Gilbert, Luke A.; Villalta, Jacqueline E.; Kwon, S. Chul; Chang, Hyeshik; Kim, V. Narry; Weissman, Jonathan S.

    2015-01-01

    Genetic screening based on loss-of-function phenotypes is a powerful discovery tool in biology. Although the recent development of clustered regularly interspaced short palindromic repeats (CRISPR)-based screening approaches in mammalian cell culture has enormous potential, RNA interference (RNAi)-based screening remains the method of choice in several biological contexts. We previously demonstrated that ultracomplex pooled short-hairpin RNA (shRNA) libraries can largely overcome the problem of RNAi off-target effects in genome-wide screens. Here, we systematically optimize several aspects of our shRNA library, including the promoter and microRNA context for shRNA expression, selection of guide strands, and features relevant for postscreen sample preparation for deep sequencing. We present next-generation high-complexity libraries targeting human and mouse protein-coding genes, which we grouped into 12 sublibraries based on biological function. A pilot screen suggests that our next-generation RNAi library performs comparably to current CRISPR interference (CRISPRi)-based approaches and can yield complementary results with high sensitivity and high specificity. PMID:26080438

  5. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy.

    PubMed

    Xiao, Bo; Laroui, Hamed; Ayyadurai, Saravanan; Viennois, Emilie; Charania, Moiz A; Zhang, Yuchen; Merlin, Didier

    2013-10-01

    The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP). The TPP-PPM/siRNA NPs exhibited high uniformity (polydispersity index = 0.004), a small particle size (211-275 nm), excellent bioreducibility, and enhanced cellular uptake. Additionally, the generated NPs had negative cytotoxicity compared to control NPs fabricated by branched polyethylenimine (bPEI, 25 kDa) or Oligofectamine (OF) and siRNA. In vitro gene silencing experiments revealed that TPP-PPM/TNF-α siRNA NPs with a weight ratio of 40:1 showed the most efficient inhibition of the expression and secretion of TNF-α (approximately 69.9%, which was comparable to the 71.4% obtained using OF/siRNA NPs), and its RNAi efficiency was highly inhibited in the presence of mannose (20 mm). Finally, TPP-PPM/siRNA NPs showed potential therapeutic effects on colitis tissues, remarkably reducing TNF-α level. Collectively, these results suggest that non-toxic TPP-PPM/siRNA NPs can be exploited as efficient, macrophage-targeted carriers for IBD therapy. PMID:23820013

  6. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy

    PubMed Central

    Xiao, Bo; Laroui, Hamed; Ayyadurai, Saravanan; Viennois, Emilie; Charania, Moiz A.; Zhang, Yuchen; Merlin, Didier

    2013-01-01

    The application of RNA interference (RNAi) for inflammatory bowel disease (IBD) therapy has been limited by the lack of non-cytotoxic, efficient and targetable small interfering RNA (siRNA) carriers. TNF-α is the major pro-inflammatory cytokine mainly secreted by macrophages during IBD. Here, a mannosylated bioreducible cationic polymer (PPM) was synthesized and further spontaneously assembled nanoparticles (NPs) assisted by sodium triphosphate (TPP). The TPP-PPM/siRNA NPs exhibited high uniformity (polydispersity index = 0.004), a small particle size (211–275 nm), excellent bioreducibility, and enhanced cellular uptake. Additionally, the generated NPs had negative cytotoxicity compared to control NPs fabricated by branched polyethylenimine (bPEI, 25 kDa) or Oligofectamine (OF) and siRNA. In vitro gene silencing experiments revealed that TPP-PPM/TNF-α siRNA NPs with a weight ratio of 40:1 showed the most efficient inhibition of the expression and secretion of TNF-α (approximately 69.9%, which was comparable to the 71.4% obtained using OF/siRNA NPs), and its RNAi efficiency was highly inhibited in the presence of mannose (20 mM). Finally, TPP-PPM/siRNA NPs showed potential therapeutic effects on colitis tissues, remarkably reducing TNF-α level. Collectively, these results suggest that non-toxic TPP-PPM/siRNA NPs can be exploited as efficient, macrophage-targeted carriers for IBD therapy. PMID:23820013

  7. The Role of RNA Interference (RNAi) in Arbovirus-Vector Interactions

    PubMed Central

    Blair, Carol D.; Olson, Ken E.

    2015-01-01

    RNA interference (RNAi) was shown over 18 years ago to be a mechanism by which arbovirus replication and transmission could be controlled in arthropod vectors. During the intervening period, research on RNAi has defined many of the components and mechanisms of this antiviral pathway in arthropods, yet a number of unexplored questions remain. RNAi refers to RNA-mediated regulation of gene expression. Originally, the term described silencing of endogenous genes by introduction of exogenous double-stranded (ds)RNA with the same sequence as the gene to be silenced. Further research has shown that RNAi comprises three gene regulation pathways that are mediated by small RNAs: the small interfering (si)RNA, micro (mi)RNA, and Piwi-interacting (pi)RNA pathways. The exogenous (exo-)siRNA pathway is now recognized as a major antiviral innate immune response of arthropods. More recent studies suggest that the piRNA and miRNA pathways might also have important roles in arbovirus-vector interactions. This review will focus on current knowledge of the role of the exo-siRNA pathway as an arthropod vector antiviral response and on emerging research into vector piRNA and miRNA pathway modulation of arbovirus-vector interactions. Although it is assumed that arboviruses must evade the vector’s antiviral RNAi response in order to maintain their natural transmission cycles, the strategies by which this is accomplished are not well defined. RNAi is also an important tool for arthropod gene knock-down in functional genomics studies and in development of arbovirus-resistant mosquito populations. Possible arbovirus strategies for evasion of RNAi and applications of RNAi in functional genomics analysis and arbovirus transmission control will also be reviewed. PMID:25690800

  8. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions. PMID:24681887

  9. Ewing's Sarcoma: Development of RNA Interference-Based Therapy for Advanced Disease

    PubMed Central

    Simmons, Olivia; Maples, Phillip B.; Senzer, Neil; Nemunaitis, John

    2012-01-01

    Ewing's sarcoma tumors are associated with chromosomal translocation between the EWS gene and the ETS transcription factor gene. These unique target sequences provide opportunity for RNA interference(i)-based therapy. A summary of RNAi mechanism and therapeutically designed products including siRNA, shRNA and bi-shRNA are described. Comparison is made between each of these approaches. Systemic RNAi-based therapy, however, requires protected delivery to the Ewing's sarcoma tumor site for activity. Delivery systems which have been most effective in preclinical and clinical testing are reviewed, followed by preclinical assessment of various silencing strategies with demonstration of effectiveness to EWS/FLI-1 target sequences. It is concluded that RNAi-based therapeutics may have testable and achievable activity in management of Ewing's sarcoma. PMID:22523703

  10. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference.

    PubMed

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-01-01

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667

  11. Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference

    PubMed Central

    Li, Xiaoxue; Dong, Xiaolong; Zou, Cong; Zhang, Hongyu

    2015-01-01

    RNA interference (RNAi) is a powerful and convenient tool for sequence-specific gene silencing, and it is triggered by double-stranded RNA (dsRNA). RNAi can be easily achieved in many eukaryotes by either injecting or feeding dsRNAs. This mechanism has demonstrated its potential in fundamental research on genetics, medicine and agriculture. However, the possibility that insects might develop refractoriness to RNAi remains unexplored. In this study, we report that the oriental fruit fly, Bactrocera dorsalis, became refractory to RNAi using orally administered dsRNA targeting endogenous genes. Furthermore, refractoriness to RNAi is not gene-specific, and its duration depends on the dsRNA concentration. RNAi blockage requires the endocytic pathway. Fluorescence microscopy indicated that in RNAi refractory flies, dsRNA uptake is blocked. Genes involved in the entry of dsRNAs into cells, including chc, cog3, light and others, are down-regulated in RNAi refractory flies. Increasing the endocytic capacity by improving F-actin polymerization disrupts RNAi refractoriness after both primary and secondary dsRNA exposures. Our results demonstrate that an insect can become refractory to RNAi by preventing the entry of dsRNA into its cells. PMID:25731667

  12. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes.

    PubMed

    Asano, Momoko; Satoh, Rena; Mochizuki, Atsuko; Tsuda, Shinya; Yamanaka, Takuya; Nishiguchi, Masamichi; Hirai, Katsuyuki; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki

    2005-08-15

    Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants. PMID:16081069

  13. RNA Interference as A Potential Therapeutic Treatment for Inflammation Associated Lung Injury

    PubMed Central

    Lomas-Neira, Joanne; Chung, Chun-Shiang; Ayala, Alfred

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain important sources of morbidity for patients in the ICUs in the developed world. However, imagine having as a therapeutic tool, the ability to regulate, in a tissue specific manner, the expression of a given gene. RNA interference, as potentially such a method of selectively suppressing protein expression, has evolved as an important tool in the study of gene specific function and targeted therapeutics. Significant progress has been made in identifying potential gene targets integral to the pathways leading to the development of inflammation-associated lung injury. This review will discuss the progress, thus far, in the application of in vivo RNA interference-based gene therapy in the investigation of inflammation-associated lung injury. PMID:19079669

  14. Gold Nanoparticle Interference Study during the Isolation, Quantification, Purity and Integrity Analysis of RNA

    PubMed Central

    Sanabria, Natasha M.; Vetten, Melissa; Andraos, Charlene; Boodhia, Kailen; Gulumian, Mary

    2014-01-01

    Investigations have been conducted regarding the interference of nanoparticles (NPs) with different toxicological assay systems, but there is a lack of validation when conducting routine tests for nucleic acid isolation, quantification, integrity, and purity analyses. The interference of citrate-capped gold nanoparticles (AuNPs) was investigated herein. The AuNPs were added to either BEAS-2B bronchial human cells for 24 h, the isolated pure RNA, or added during the isolation procedure, and the resultant interaction was assessed. Total RNA that was isolated from untreated BEAS-2B cells was spiked with various concentrations (v/v%) of AuNPs and quantified. A decrease in the absorbance spectrum (220–340 nm) was observed in a concentration-dependent manner. The 260 and 280 nm absorbance ratios that traditionally infer RNA purity were also altered. Electrophoresis was performed to determine RNA integrity, but could not differentiate between AuNP-exposed samples. However, the spiked post-isolation samples did produce differences in spectra (190–220 nm), where shifts were observed at a shorter wavelength. These shifts could be due to alterations to chromophores found in nucleic acids. The co-isolation samples, spiked with 100 µL AuNP during the isolation procedure, displayed a peak shift to a longer wavelength and were similar to the results obtained from a 24 h AuNP treatment, under non-cytotoxic test conditions. Moreover, hyperspectral imaging using CytoViva dark field microscopy did not detect AuNP spectral signatures in the RNA isolated from treated cells. However, despite the lack of AuNPs in the final RNA product, structural changes in RNA could still be observed between 190–220 nm. Consequently, full spectral analyses should replace the traditional ratios based on readings at 230, 260, and 280 nm. These are critical points of analyses, validation, and optimization for RNA-based techniques used to assess AuNPs effects. PMID:25470814

  15. Experimental study on inhibition of the growth of human adenoid cystic cancer cells by RNA interference targeting against survivingene

    PubMed Central

    Wang, Xin; Xiong, Yu; Zhang, Congji; Zhou, Jixiang; Yang, Jun; Wang, Kun; Xia, Xiyan

    2016-01-01

    Objective: To observe the influence of RNA interference targeting against survivin gene on the biological behaviors of human adenoid cystic cancer (ACC) cells and propose the action mechanism. Method: Specific siRNA (small interfering RNA) was constructed and transfected into ACC-2 cells using liposomes. The expressions of survivin and Caspase-3 in the transfected ACC-2 cells were detected by Western Blot and RT-PCR. Cell apoptosis was detected by transmission electron microscopy, TUNEL method and flow cytometry; ultrastructural changes and cell cycles were observed. Results: Recombinant siRNA interference plasmid specifically targeting against survivin gene was constructed successfully. Survivin protein expression in the transfected ACC-2 cells was downregulated significantly, while Caspase-3 protein and mRNA expressions were upregulated and cell proliferation was inhibited considerably. Conclusion: Recombinant siRNA interference plasmid inhibited survivin mRNA and protein expressions at high efficiency, thereby inhibiting the proliferation of ACC cells. PMID:27158333

  16. Investigation of RNA interference suppression of matrix metalloproteinase-9 in mouse model of atherosclerosis

    PubMed Central

    Jin, Zhe-Xiu; Xiong, Qiang; Jia, Fang; Sun, Chun-Ling; Zhu, Hong-Tao; Ke, Fu-Sheng

    2015-01-01

    Objective: To investigate the effect of RNA interference of matrix metalloproteinase (MMP)-9 on atherosclerosis on atherosclerosis in apolipoprotein E (ApoE)-/- mouse. Methods: ApoE-/- mouse strain and three cell lines (293T, NIH3T3 and Raw264.7) were used in the present study to investigate the effect of MMP-9 silencing by RNA interference. Thirty 10-week-old ApoE-/- mice were randomly assigned to a control group, lentiviruses with naked vector group and Lentiviruses-MMP-9 intervention group (n = 10). Aortic atherosclerotic plaques of the mice were stained with immunohistochemical techniques, the MMP-9 and high-sensitivity C-reactive protein levels of three groups were detected simultaneously. Expression of MMP-9 was significantly down-regulated in interference group. MMP-9 and high-sensitivity C-reactive protein levels in MMP-9 interference group were significantly lower than that of the control group. Conclusion: The expression of MMP-9 is closely related to vulnerability of atherosclerotic plaques. Silencing of MMP-9 expression acts as a positive role in maintenance of atherosclerotic plaque stability. The present study provides novel experimental insight for the treatment of vulnerable plaques in atherosclerosis. PMID:26131101

  17. Reversible Suppression of Cyclooxygenase 2 (COX-2) Expression In Vivo by Inducible RNA Interference

    PubMed Central

    Zaiss, Anne K.; Zuber, Johannes; Chu, Chun; Machado, Hidevaldo B.; Jiao, Jing; Catapang, Arthur B.; Ishikawa, Tomo-o; Gil, Jose S.; Lowe, Scott W.; Herschman, Harvey R.

    2014-01-01

    Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), plays a critical role in many normal physiological functions and modulates a variety of pathological conditions. The ability to turn endogenous COX-2 on and off in a reversible fashion, at specific times and in specific cell types, would be a powerful tool in determining its role in many contexts. To achieve this goal, we took advantage of a recently developed RNA interference system in mice. An shRNA targeting the Cox2 mRNA 3′untranslated region was inserted into a microRNA expression cassette, under the control of a tetracycline response element (TRE) promoter. Transgenic mice containing the COX-2-shRNA were crossed with mice encoding a CAG promoter-driven reverse tetracycline transactivator, which activates the TRE promoter in the presence of tetracycline/doxycycline. To facilitate testing the system, we generated a knockin reporter mouse in which the firefly luciferase gene replaces the Cox2 coding region. Cox2 promoter activation in cultured cells from triple transgenic mice containing the luciferase allele, the shRNA and the transactivator transgene resulted in robust luciferase and COX-2 expression that was reversibly down-regulated by doxycycline administration. In vivo, using a skin inflammation-model, both luciferase and COX-2 expression were inhibited over 80% in mice that received doxycycline in their diet, leading to a significant reduction of infiltrating leukocytes. In summary, using inducible RNA interference to target COX-2 expression, we demonstrate potent, reversible Cox2 gene silencing in vivo. This system should provide a valuable tool to analyze cell type-specific roles for COX-2. PMID:24988319

  18. RNA interference in parasitic helminths: current situation, potential pitfalls and future prospects.

    PubMed

    Geldhof, P; Visser, A; Clark, D; Saunders, G; Britton, C; Gilleard, J; Berriman, M; Knox, D

    2007-05-01

    RNA interference (RNAi) has become an invaluable tool for the functional analysis of genes in a wide variety of organisms including the free-living nematode Caenorhabditis elegans. Recently, attempts have been made to apply this technology to parasitic helminths of animals and plants with variable success. Gene knockdown has been reported for Schistosoma mansoni by soaking or electroporating different life-stages in dsRNA. Similar approaches have been tested on parasitic nematodes which clearly showed that, under certain conditions, it was possible to interfere with gene expression. However, despite these successes, the current utility of this technology in parasite research is questionable. First, problems have arisen with the specificity of RNAi. Treatment of the parasites with dsRNA resulted, in many cases, in non-specific effects. Second, the current RNAi methods have a limited efficiency and effects are sometimes difficult to reproduce. This was especially the case in strongylid parasites where only a small number of genes were susceptible to RNAi-mediated gene knockdown. The future application of RNAi in parasite functional genomics will greatly depend on how we can overcome these difficulties. Optimization of the dsRNA delivery methods and in vitro culture conditions will be the major challenges. PMID:17201997

  19. Gene Silencing by RNA Interference in the White Rot Fungus Phanerochaete chrysosporium▿

    PubMed Central

    Matityahu, Avi; Hadar, Yitzhak; Dosoretz, Carlos G.; Belinky, Paula A.

    2008-01-01

    The effectiveness of RNA interference (RNAi) is demonstrated in the lignin-degrading fungus Phanerochaete chrysosporium. The manganese-containing superoxide dismutase gene (MnSOD1) was used as the target for RNAi. The plasmid constructed for gene silencing contained a transcriptional unit for hairpin RNA expression. Significantly lower MnSOD expression at both the mRNA and protein activity levels was detected in RNAi transformants. Furthermore, even though P. chrysosporium possesses three copies of the MnSOD gene, this RNAi construct was sufficient to decrease the enzymatic activity by as much as 70% relative to control levels. Implementation of the RNAi technique in P. chrysosporium provides an alternative genetic tool for studies of gene function, particularly of essential genes or gene families. PMID:18606804

  20. Interference of hepatitis C virus RNA replication by short interfering RNAs

    NASA Astrophysics Data System (ADS)

    Kapadia, Sharookh B.; Brideau-Andersen, Amy; Chisari, Francis V.

    2003-02-01

    Hepatitis C virus (HCV) infection is a major cause of chronic liver disease, which can lead to the development of liver cirrhosis and hepatocellular carcinoma. Current therapy of patients with chronic HCV infection includes treatment with IFN in combination with ribavirin. Because most treated patients do not resolve the infection, alternative treatment is essential. RNA interference (RNAi) is a recently discovered antiviral mechanism present in plants and animals that induces double-stranded RNA degradation. Using a selectable subgenomic HCV replicon cell culture system, we have shown that RNAi can specifically inhibit HCV RNA replication and protein expression in Huh-7 cells that stably replicate the HCV genome, and that this antiviral effect is independent of IFN. These results suggest that RNAi may represent a new approach for the treatment of persistent HCV infection.

  1. Recombinant AAV as a Platform for Translating the Therapeutic Potential of RNA Interference

    PubMed Central

    Borel, Florie; Kay, Mark A; Mueller, Christian

    2014-01-01

    RNA interference has become a ubiquitous biological tool, and is being harnessed for therapeutic purposes as well. Therapeutic posttranscriptional gene silencing takes advantage of the endogenous RNAi pathway through delivery of either chemically synthesized siRNAs, or transgenes expressing hairpin-based inhibitory RNAs (e.g., shRNAs and artificial miRNAs). RNAi has expanded the field of viral gene therapy from gene replacement to gene knockdown. Here, we review various noncoding RNAs such as shRNAs, miRNAs, and miRNA decoys which can be utilized for therapeutic applications when expressed from recombinant adeno-associated vectors (AAV), and present examples of their basic design. In addition the basis of exploiting cellular miRNA profiles for detargeting AAV expression from specific cells is described. Finally, an overview of AAV-mediated RNAi preclinical studies is presented, and current RNAi-based clinical trials are reviewed. PMID:24352214

  2. Functional analysis of the cellulose gene of the pine wood nematode, Bursaphelenchus xylophilus, using RNA interference.

    PubMed

    Ma, H B; Lu, Q; Liang, J; Zhang, X Y

    2011-01-01

    Cellulases are pathogenic substances suspected to be responsible for the development of the early symptoms of nematode disease. The pine wood nematode, Bursaphelenchus xylophilus (Parasitaphelenchidae), is the causal agent of pine wilt disease, which kills millions of pine trees. We used RNA interference (RNAi), a reverse genetic tool, to analyze the function of the endo-β-1,4-glucanase gene of B. xylophilus, which causes the most serious forest tree disease in China and the rest of eastern Asia. Silencing of this gene was detected through real-time PCR and cellulase activity assays after soaking for 24 h in dsRNA. The cellulase gene silencing effects differed among various siRNAs. The propagation and dispersal ability of these nematodes decreased when the endo-β-1,4-glucanase gene was silenced. It is important to select an effective siRNA before performing an RNAi test. PMID:21948755

  3. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA.

    PubMed

    Woerner, Andreas C; Frottin, Frédéric; Hornburg, Daniel; Feng, Li R; Meissner, Felix; Patra, Maria; Tatzelt, Jörg; Mann, Matthias; Winklhofer, Konstanze F; Hartl, F Ulrich; Hipp, Mark S

    2016-01-01

    Amyloid-like protein aggregation is associated with neurodegeneration and other pathologies. The nature of the toxic aggregate species and their mechanism of action remain elusive. Here, we analyzed the compartment specificity of aggregate toxicity using artificial β-sheet proteins, as well as fragments of mutant huntingtin and TAR DNA binding protein-43 (TDP-43). Aggregation in the cytoplasm interfered with nucleocytoplasmic protein and RNA transport. In contrast, the same proteins did not inhibit transport when forming inclusions in the nucleus at or around the nucleolus. Protein aggregation in the cytoplasm, but not the nucleus, caused the sequestration and mislocalization of proteins containing disordered and low-complexity sequences, including multiple factors of the nuclear import and export machinery. Thus, impairment of nucleocytoplasmic transport may contribute to the cellular pathology of various aggregate deposition diseases. PMID:26634439

  4. Broad RNA interference-mediated antiviral immunity and virus-specific inducible responses in Drosophila.

    PubMed

    Kemp, Cordula; Mueller, Stefanie; Goto, Akira; Barbier, Vincent; Paro, Simona; Bonnay, François; Dostert, Catherine; Troxler, Laurent; Hetru, Charles; Meignin, Carine; Pfeffer, Sébastien; Hoffmann, Jules A; Imler, Jean-Luc

    2013-01-15

    The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms of innate immunity and has led to some important discoveries about the sensing and signaling of microbial infections. The response of Drosophila to virus infections remains poorly characterized and appears to involve two facets. On the one hand, RNA interference involves the recognition and processing of dsRNA into small interfering RNAs by the host RNase Dicer-2 (Dcr-2), whereas, on the other hand, an inducible response controlled by the evolutionarily conserved JAK-STAT pathway contributes to the antiviral host defense. To clarify the contribution of the small interfering RNA and JAK-STAT pathways to the control of viral infections, we have compared the resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch to infections by seven RNA or DNA viruses belonging to different families. Our results reveal a unique susceptibility of hop mutant flies to infection by Drosophila C virus and cricket paralysis virus, two members of the Dicistroviridae family, which contrasts with the susceptibility of Dcr-2 mutant flies to many viruses, including the DNA virus invertebrate iridescent virus 6. Genome-wide microarray analysis confirmed that different sets of genes were induced following infection by Drosophila C virus or by two unrelated RNA viruses, Flock House virus and Sindbis virus. Overall, our data reveal that RNA interference is an efficient antiviral mechanism, operating against a large range of viruses, including a DNA virus. By contrast, the antiviral contribution of the JAK-STAT pathway appears to be virus specific. PMID:23255357

  5. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, Arnaud; Béguel, Jean-Philippe; Cavaleiro, Nathalia Pereira; Thomas, Yoann; Quillien, Virgile; Boudry, Pierre; Alunno-Bruscia, Marianne; Fabioux, Caroline

    2015-06-01

    Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection. PMID:25883379

  6. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy.

    PubMed

    Bisset, Darren R; Stepniak-Konieczna, Ewa A; Zavaljevski, Maja; Wei, Jessica; Carter, Gregory T; Weiss, Michael D; Chamberlain, Joel R

    2015-09-01

    RNA interference (RNAi) offers a promising therapeutic approach for dominant genetic disorders that involve gain-of-function mechanisms. One candidate disease for RNAi therapy application is myotonic dystrophy type 1 (DM1), which results from toxicity of a mutant mRNA. DM1 is caused by expansion of a CTG repeat in the 3' UTR of the DMPK gene. The expression of DMPK mRNA containing an expanded CUG repeat (CUG(exp)) leads to defects in RNA biogenesis and turnover. We designed miRNA-based RNAi hairpins to target the CUG(exp) mRNA in the human α-skeletal muscle actin long-repeat (HSA(LR)) mouse model of DM1. RNAi expression cassettes were delivered to HSA(LR) mice using recombinant adeno-associated viral (rAAV) vectors injected intravenously as a route to systemic gene therapy. Vector delivery significantly reduced disease pathology in muscles of the HSA(LR) mice, including a reduction in the CUG(exp) mRNA, a reduction in myotonic discharges, a shift toward adult pre-mRNA splicing patterns, reduced myofiber hypertrophy and a decrease in myonuclear foci containing the CUG(exp) mRNA. Significant reversal of hallmarks of DM1 in the rAAV RNAi-treated HSA(LR) mice indicate that defects characteristic of DM1 can be mitigated with a systemic RNAi approach targeting the nuclei of terminally differentiated myofibers. Efficient rAAV-mediated delivery of RNAi has the potential to provide a long-term therapy for DM1 and other dominant muscular dystrophies. PMID:26082468

  7. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference

    PubMed Central

    Murphy, Katherine A.; Tabuloc, Christine A.; Cervantes, Kevin R.; Chiu, Joanna C.

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  8. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference.

    PubMed

    Murphy, Katherine A; Tabuloc, Christine A; Cervantes, Kevin R; Chiu, Joanna C

    2016-01-01

    RNA interference has had major advances as a developing tool for pest management. In laboratory experiments, double-stranded RNA (dsRNA) is often administered to the insect by genetic modification of the crop, or synthesized in vitro and topically applied to the crop. Here, we engineered genetically modified yeast that express dsRNA targeting y-Tubulin in Drosophila suzukii. Our design takes advantage of the symbiotic interactions between Drosophila, yeast, and fruit crops. Yeast is naturally found growing on the surface of fruit crops, constitutes a major component of the Drosophila microbiome, and is highly attractive to Drosophila. Thus, this naturally attractive yeast biopesticide can deliver dsRNA to an insect pest without the need for genetic crop modification. We demonstrate that this biopesticide decreases larval survivorship, and reduces locomotor activity and reproductive fitness in adults, which are indicative of general health decline. To our knowledge, this is the first study to show that yeast can be used to deliver dsRNA to an insect pest. PMID:26931800

  9. Interfering passages of Sindbis virus: concomitant appearance of interference, morphological variants, and trucated viral RNA.

    PubMed Central

    Johnston, R E; Tovell, D R; Brown, D T; Faulkner, P

    1975-01-01

    Serial passage of Sindbis at high multiplicities of infection resulted in cyclical variations in virus titer. Decreases in virus titer were correlated with the appearance of smaller-sized virions, interference and truncated viral RNA. The smaller particles were 37 nm in diameter, exclusive of the hemagglutinin spikes as compared with a diameter of 50 nm for standard virions. Passages which contained 37-nm partilces also interfered with infectious center formation by standard, plaque-purified virus. Polyacrylamide gel analysis of RNA isolated from virions present in interfering passages demonstrated the sequential appearance of three RNA species smaller than standard RNA with approximate molecular weights of 3.3 X 106, 2.7 X 106, and 2.2 X 106. The 3.3 X 106 RNA was evident in passage 5, by passage 8 both the 3.3 X 106 and 2.7 X 106 RNAs were present, and by passage 13 all three were present with the 2.2 X 106 RNA predominating. Images PMID:1165599

  10. Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects.

    PubMed

    Uryu, Outa; Kamae, Yuichi; Tomioka, Kenji; Yoshii, Taishi

    2013-04-01

    RNA interference (RNAi) strategy, which enables gene-specific knock-down of transcripts, has been spread across a wide area of insect studies for investigating gene function without regard to model and non-model insects. This technique is of particular benefit to promote molecular studies on non-model insects. However, the optimal conditions for RNAi are still not well understood because of its variable efficiency depending on the species, target genes, and experimental conditions. To apply RNAi technique to long-running experiments such as chronobiological studies, the effects of RNAi have to persist throughout the experiment. In this study, we attempted to determine the optimal concentration of double-stranded RNA (dsRNA) for systemic RNAi and its effective period in two different insect species, the cricket Gryllus bimaculatus and the firebrat Thermobia domestica. In both species, higher concentrations of dsRNA principally yielded a more efficient knock-down of mRNA levels of tested clock genes, although the effect depended on the gene and the species. Surprisingly, the effect of the RNAi reached its maximum effect 1-2 weeks and 1 month after the injection of dsRNA in the crickets and the firebrats, respectively, suggesting a slow but long-term effect of RNAi. Our study provides fundamental information for utilizing RNAi technique in any long-running experiment. PMID:23458340

  11. RNA Interference of the PBAN/Pyrokinin Gene: Impact on Ant, Solenopsis invicta, and Moth, Helicoverpa zea, Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, an emerging RNA interference (RNAi) technology has shown high potential for development of novel biologically-based control agents as alternatives to insecticides. This represents a paradigm shift that will avoid many problems associated with conventional insecticides. Insect neuropeptide ...

  12. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    PubMed

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast. PMID:24328131

  13. An RNA aptamer that interferes with the DNA binding of the HSF transcription activator

    PubMed Central

    Zhao, Xiaoching; Shi, Hua; Sevilimedu, Aarti; Liachko, Nicole; Nelson, Hillary C. M.; Lis, John T.

    2006-01-01

    Heat shock factor (HSF) is a conserved and highly potent transcription activator. It is involved in a wide variety of important biological processes including the stress response and specific steps in normal development. Reagents that interfere with HSF function would be useful for both basic studies and practical applications. We selected an RNA aptamer that binds to HSF with high specificity. Deletion analysis defined the minimal binding motif of this aptamer to be two stems and one stem–loop joined by a three-way junction. This RNA aptamer interferes with normal interaction of HSF with its DNA element, which is a key regulatory step for HSF function. The DNA-binding domain plus a flanking linker region on the HSF (DL) is essential for the RNA binding. Additionally, this aptamer inhibits HSF-induced transcription in vitro in the complex milieu of a whole cell extract. In contrast to the previously characterized NF-κB aptamer, the HSF aptamer does not simply mimic DNA binding, but rather binds to HSF in a manner distinct from DNA binding to HSF. PMID:16893958

  14. The role of RNA interference in the developmental separation of blood and lymphatic vasculature

    PubMed Central

    2014-01-01

    Background Dicer is an RNase III enzyme that cleaves double stranded RNA and generates functional interfering RNAs that act as important regulators of gene and protein expression. Dicer plays an essential role during mouse development because the deletion of the dicer gene leads to embryonic death. In addition, dicer-dependent interfering RNAs regulate postnatal angiogenesis. However, the role of dicer is not yet fully elucidated during vascular development. Methods In order to explore the functional roles of the RNA interference in vascular biology, we developed a new constitutive Cre/loxP-mediated inactivation of dicer in tie2 expressing cells. Results We show that cell-specific inactivation of dicer in Tie2 expressing cells does not perturb early blood vessel development and patterning. Tie2-Cre; dicerfl/fl mutant embryos do not show any blood vascular defects until embryonic day (E)12.5, a time at which hemorrhages and edema appear. Then, midgestational lethality occurs at E14.5 in mutant embryos. The developing lymphatic vessels of dicer-mutant embryos are filled with circulating red blood cells, revealing an impaired separation of blood and lymphatic vasculature. Conclusion Thus, these results show that RNA interference perturbs neither vasculogenesis and developmental angiogenesis, nor lymphatic specification from venous endothelial cells but actually provides evidence for an epigenetic control of separation of blood and lymphatic vasculature. PMID:24690185

  15. Reprogramming Leukemia Cells to Terminal Differentiation and Growth Arrest by RNA Interference of PU.1

    PubMed Central

    Papetti, Michael; Skoultchi, Arthur I.

    2011-01-01

    Malignant transformation often leads to both loss of normal proliferation control and inhibition of cell differentiation. Some tumor cells can be stimulated to reenter their differentiation program and to undergo terminal growth arrest. The in vitro differentiation of mouse erythroleukemia (MEL) cells is an important example of tumor cell reprogramming. MEL cells are malignant erythroblasts that are blocked from differentiating into mature RBC due to dysregulated expression of the transcription factor PU.1, which binds to and represses GATA-1, the major transcriptional regulator of erythropoiesis. We used RNA interference to ask whether inhibiting PU.1 synthesis was sufficient to cause MEL cells to lose their malignant properties. We report here that transfection of MEL cells with a PU.1-specific short interfering RNA oligonucleotide causes the cells to resume erythroid differentiation, accumulate hemoglobin, and undergo terminal growth arrest. RNA interference directed at specific, aberrantly expressed transcription factors may hold promise for the development of potent antitumor therapies in other hematologic malignancies. PMID:17951405

  16. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus.

    PubMed

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  17. Long-term expression of miRNA for RNA interference using a novel vector system based on a negative-strand RNA virus

    PubMed Central

    Honda, Tomoyuki; Yamamoto, Yusuke; Daito, Takuji; Matsumoto, Yusuke; Makino, Akiko; Tomonaga, Keizo

    2016-01-01

    RNA interference (RNAi) has emerged as a promising technique for gene therapy. However, the safe and long-term expression of small RNA molecules is a major concern for the application of RNAi therapies in vivo. Borna disease virus (BDV), a non-segmented, negative-strand RNA virus, establishes a persistent infection without obvious cytopathic effects. Unique among animal non-retroviral RNA viruses, BDV persistently establishes a long-lasting persistent infection in the nucleus. These features make BDV ideal for RNA virus vector persistently expressing small RNAs. Here, we demonstrated that the recombinant BDV (rBDV) containing the miR-155 precursor, rBDV-miR-155, persistently expressed miR-155 and efficiently silenced its target gene. The stem region of the miR-155 precursor in rBDV-miR-155 was replaceable by any miRNA sequences of interest and that such rBDVs efficiently silence the expression of target genes. Collectively, BDV vector would be a novel RNA virus vector enabling the long-term expression of miRNAs for RNAi therapies. PMID:27189575

  18. An unusual Dicer-like1 protein fuels the RNA interference pathway in Trypanosoma brucei.

    PubMed

    Shi, Huafang; Tschudi, Christian; Ullu, Elisabetta

    2006-12-01

    RNA interference (RNAi) is an evolutionarily conserved gene-silencing pathway that is triggered by double-stranded RNA (dsRNA). Central to this pathway are two ribonucleases: Dicer, a multidomain RNase III family enzyme that initiates RNAi by generating small interfering RNAs (siRNAs), and Argonaute or Slicer, an RNase H signature enzyme that affects cleavage of mRNA. Previous studies in the early diverging protozoan Trypanosoma brucei have established a key role for Argonaute 1 in RNAi. However, the identity of Dicer has not been resolved. Here, we report the identification and functional characterization of a T. brucei Dicer-like enzyme (TbDcl1). Using genetic and biochemical approaches, we provide evidence that TbDcl1 is required for the generation of siRNA-size molecules and for RNAi. Whereas Dicer and Dicer-like proteins are endowed with two adjacent RNase III domains at the carboxyl terminus (RNase IIIa and RNase IIIb), the arrangement of these two domains is unusual in TbDcl1. RNase IIIa is close to the amino terminus, and RNase IIIb is located approximately in the center of the molecule. This domain organization is specific to trypanosomatids and further illustrates the variable structures of protozoan Dicer-like proteins as compared to fungal and metazoan Dicer. PMID:17053086

  19. Enzymatic synthesis and RNA interference of nucleosides incorporating stable isotopes into a base moiety.

    PubMed

    Hatano, Akihiko; Shiraishi, Mitsuya; Terado, Nanae; Tanabe, Atsuhiro; Fukuda, Kenji

    2015-10-15

    Thymidine phosphorylase was used to catalyze the conversion of thymidine (or methyluridine) and uracil incorporating stable isotopes to deoxyuridine (or uridine) with the uracil base incorporating the stable isotope. These base-exchange reactions proceeded with high conversion rates (75-96%), and the isolated yields were also good (64-87%). The masses of all synthetic compounds incorporating stable isotopes were identical to the theoretical molecular weights via EIMS. (13)C NMR spectra showed spin-spin coupling between (13)C and (15)N in the synthetic compounds, and the signals were split, further proving incorporation of the isotopes into the compounds. The RNA interference effects of this siRNA with uridine incorporating stable isotopes were also investigated. A 25mer siRNA had a strong knockdown effect on the MARCKS protein. The insertion position and number of uridine moieties incorporating stable isotopes introduced into the siRNA had no influence on the silencing of the target protein. This incorporation of stable isotopes into RNA and DNA has the potential to function as a chemically benign tracer in cells. PMID:26404411

  20. Discovery of midgut genes for the RNA interference control of corn rootworm

    PubMed Central

    Hu, Xu; Richtman, Nina M.; Zhao, Jian-Zhou; Duncan, Keith E.; Niu, Xiping; Procyk, Lisa A.; Oneal, Meghan A.; Kernodle, Bliss M.; Steimel, Joseph P.; Crane, Virginia C.; Sandahl, Gary; Ritland, Julie L.; Howard, Richard J.; Presnail, James K.; Lu, Albert L.; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by “blebbing” of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  1. GENE SILENCING BY PARENTAL RNA INTERFERENCE IN THE GREEN RICE LEAFHOPPER, Nephotettix cincticeps (HEMIPTERA: CICADELLIDAE).

    PubMed

    Matsumoto, Yukiko; Hattori, Makoto

    2016-03-01

    RNA interference (RNAi) has been widely used for investigating gene function in many nonmodel insect species. Parental RNAi causes gene knockdown in the next generation through the administration of double-strand RNA (dsRNA) to the mother generation. In this study, we demonstrate that parental RNAi mediated gene silencing is effective in determining the gene function of the cuticle and the salivary glands in green rice leafhopper (GRH), Nephotettix cincticeps (Uhler). Injection of dsRNA of NcLac2 (9 ng/female) to female parents caused a strong knockdown of laccase-2 gene of first instar nymphs, which eventually led to high mortality rates and depigmentation of side lines on the body. The effects of parental RNAi on the mortality of the nymphs were maintained through 12-14 days after the injections. We also confirmed the effectiveness of parental RNAi induced silencing on the gene expressed in the salivary gland, the gene product of which is passed from instar to instar. The parental RNAi method can be used to examine gene function by phenotyping many offspring nymphs with injection of dsRNA into a small number of parent females, and may be applicable to high-efficiency determination of gene functions in this species. PMID:26728387

  2. Discovery of midgut genes for the RNA interference control of corn rootworm.

    PubMed

    Hu, Xu; Richtman, Nina M; Zhao, Jian-Zhou; Duncan, Keith E; Niu, Xiping; Procyk, Lisa A; Oneal, Meghan A; Kernodle, Bliss M; Steimel, Joseph P; Crane, Virginia C; Sandahl, Gary; Ritland, Julie L; Howard, Richard J; Presnail, James K; Lu, Albert L; Wu, Gusui

    2016-01-01

    RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality. PMID:27464714

  3. Effects of RNA interference-mediated NRP-1 silencing on the proliferation and apoptosis of breast cancer cells.

    PubMed

    Han, Zhengxiang; Jiang, Guan; Zhang, Yingying; Xu, Jie; Chen, Chong; Zhang, Lansheng; Xu, Zhenyuan; Du, Xiuping

    2015-07-01

    Lentiviral expression vectors carrying human NRP-1 short hairpin RNA (shRNA) were constructed and selected to present highly efficient NRP-1/shRNA interference sequences, in order to investigate the effects of RNA interference (RNAi)-mediated NRP-1 silencing on the biological activities of breast cancer cells. Three pairs of human NRP-1 targeted specific interference sequences and one pair of non-specific control sequences were designed, synthesized and subcloned into pLB lentiviral vectors, which were further identified by polymerase chain reaction (PCR) and sequencing. Recombinant and lentiviral packaging plasmids were co-transfected into 293FT cell lines in order to produce lentiviral particles and to infect breast cancer cells with high NRP-1 expression. Flow cytometry was used to sort green fluorescent protein-positive cells. Fluorescence quantitative-reverse transcription-PCR and western blot analysis were employed to identify the interference silencing sequence with the most efficient silencing profile. A cell counting kit-8 assay and an Annexin V-propidium iodide method in combination with flow cytometry were used to examine the effects of RNA interference-mediated NRP-1 gene silencing on cell proliferation, apoptosis and sensitivity to chemotherapy. The recombinant lentiviral plasmid pLB-NRP-1/shRNA was constructed successfully, as confirmed by PCR and sequencing. After the infection of recombinant lentiviral plasmids, the expression profiles of NRP-1 mRNA, and proteins of MCF-7 and SK-BR-3 cell-specific interference group (pLB-NRP-1/shRNA3) were significantly lower than that of the control group (P<0.05). Compared with the control group, the MCF-7 and SK-BR-3 cell-specific interference group (pLB-NRP-1/shRNA3) showed lower optical density values and higher apoptotic rates at 48, 72 and 96 h; these differences were statistically significant (P<0.05). EPI administration resulted in increased apoptosis in the MCF-7 and SK-BR-3 cell-specific interference

  4. Design and Methods of Large-Scale RNA Interference Screens in Drosophila.

    PubMed

    Zhou, Jia; Tong, Chao

    2016-01-01

    Drosophila is an ideal model system for addressing important questions in biology. The use of RNA interference (RNAi) to knockdown gene expression in fly tissues is both very effective and relatively simple. In the past few decades, genome-wide UAS-RNAi transgenic libraries and thousands of Gal4 strains have been generated and have facilitated large-scale in vivo RNAi screening. Here, we discuss methods for the design and performance of a large-scale in vivo RNAi screen in Drosophila. Furthermore, methods for the validation of results and analysis of data will be introduced. PMID:27581292

  5. Transfection of BmCPV genomic dsRNA in silkmoth-derived Bm5 cells: stability and interactions with the core RNAi machinery.

    PubMed

    Swevers, Luc; Kolliopoulou, Anna; Li, Zheng; Daskalaki, Maria; Verret, Frederic; Kalantidis, Kriton; Smagghe, Guy; Sun, Jingchen

    2014-05-01

    While several studies have been conducted to investigate the stability of dsRNA in the extracellular medium (hemolymph, gut content, saliva), little is known regarding the persistence of dsRNA once it has been introduced into the cell. Here, we investigate the stability of Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) genomic dsRNA fragments after transfection into Bombyx-derived Bm5 cells. Using RT-PCR as a detection method, we found that dsRNA could persist for long periods (up to 8 days) in the intracellular environment. While the BmCPV genomic dsRNA was processed by the RNAi machinery, its presence had no effects on other RNAi processes, such as the silencing of a luciferase reporter by dsLuc. We also found that transfection of BmCPV genomic dsRNA could not establish a viral infection in the Bm5 cells, even when co-transfections were carried out with dsRNAs targeting Dicer and Argonaute genes, suggesting that the neutralization by RNAi does not play a role in the establishment of an in vitro culture system. The mechanism of the dsRNA stability in Bm5 cells is discussed, as well as the implications for the establishment for an in vitro culture system for BmCPV. PMID:24636911

  6. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages

    PubMed Central

    Kishore, Shivendra; Jaskiewicz, Lukasz; Hall, Jonathan; Günthard, Huldrych F.; Beerenwinkel, Niko; Metzner, Karin J.

    2015-01-01

    Background MiRNAs and other small noncoding RNAs (sncRNAs) are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs) have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi) pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM). Methods The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP) as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP), which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM) were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs. Results and Conclusion PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages. PMID:26226348

  7. Slug down-regulation by RNA interference inhibits invasion growth in human esophageal squamous cell carcinoma

    PubMed Central

    2011-01-01

    Background Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive carcinomas of the gastrointestinal tract. We assessed the relevance of Slug in measuring the invasive potential of ESCC cells in vitro and in vivo in immunodeficient mice. Methods We utilized RNA interference to knockdown Slug gene expression, and effects on survival and invasive carcinoma were evaluated using a Boyden chamber transwell assay in vitro. We evaluated the effect of Slug siRNA-transfection and Slug cDNA-transfection on E-cadherin and Bcl-2 expression in ESCC cells. A pseudometastatic model of ESCC in immunodeficient mice was used to assess the effects of Slug siRNA transfection on tumor metastasis development. Results The EC109 cell line was transfected with Slug-siRNA to knockdown Slug expression. The TE13 cell line was transfected with Slug-cDNA to increase Slug expression. EC109 and TE13 cell lines were tested for the expression of apoptosis-related genes bcl-2 and metastasis-related gene E-cadherin identified previously as Slug targets. Bcl-2 expression was increased and E-cadherin was decreased in Slug siRNA-transfected EC109 cells. Bcl-2 expression was increased and E-cadherin was decreased in Slug cDNA-transfected TE13 cells. Invasion of Slug siRNA-transfected EC109 cells was reduced and apoptosis was increased whereas invasion was greater in Slug cDNA-transfected cells. Animals injected with Slug siRNA-transfected EC109 cells exhihited fewer seeded nodes and demonstrated more apoptosis. Conclusions Slug down-regulation promotes cell apoptosis and decreases invasion capability in vitro and in vivo. Slug inhibition may represent a novel strategy for treatment of metastatic ESCC. PMID:21599940

  8. Virus-Derived Gene Expression and RNA Interference Vector for Grapevine

    PubMed Central

    Kurth, Elizabeth G.; Peremyslov, Valera V.; Prokhnevsky, Alexey I.; Kasschau, Kristin D.; Miller, Marilyn; Carrington, James C.

    2012-01-01

    The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests. PMID:22438553

  9. gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens.

    PubMed

    Schmich, Fabian; Szczurek, Ewa; Kreibich, Saskia; Dilling, Sabrina; Andritschke, Daniel; Casanova, Alain; Low, Shyan Huey; Eicher, Simone; Muntwiler, Simone; Emmenlauer, Mario; Rämö, Pauli; Conde-Alvarez, Raquel; von Mering, Christian; Hardt, Wolf-Dietrich; Dehio, Christoph; Beerenwinkel, Niko

    2015-01-01

    Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package. PMID:26445817

  10. Sleeping Beauty-mediated knockdown of sheep myostatin by RNA interference.

    PubMed

    Hu, Shengwei; Ni, Wei; Sai, Wujiafu; Zhang, Hui; Cao, Xudong; Qiao, Jun; Sheng, Jinliang; Guo, Fei; Chen, Chuangfu

    2011-10-01

    Myostatin is a negative regulator of skeletal muscle growth. Myostatin dysfunction therefore offers a strategy for promoting animal muscle growth in livestock production. Knockdown of myostatin was achieved by combining RNA interference and the Sleeping Beauty (SB) transposon system in sheep cells. Four targeting sites of sheep myostatin were designed and measured for myostatin silencing in sheep fetal fibroblasts by real-time PCR. The sh3 construct induced significant decrease of myostatin gene expression by 90% (P<0.05). Myostatin silencing induced by SB-mediated sh3 was further tested in stably transfected cells. SB transposition increased the integration frequency of genes into sheep genomes and mediated a more efficient myostatin knockdown than random integration of sh3. We suggest that SB-mediated shRNA provides a novel potential tool for gene knockdown in the donor cells of animal cloning. PMID:21698446

  11. Gene silencing by RNA interference in the house dust mite, Dermatophagoides pteronyssinus.

    PubMed

    Marr, Edward J; Sargison, Neil D; Nisbet, Alasdair J; Burgess, Stewart T G

    2015-12-01

    This is the first report of gene silencing by RNA interference (RNAi) in the European house dust mite, Dermatophagoides pteronyssinus, Trouessart, 1897. Using a non-invasive immersion method first developed for the honey bee mite, Varroa destructor, a significant reduction in the expression of D. pteronyssinus glutathione-S-transferase mu-class 1 enzyme (DpGST-mu1) was achieved following overnight immersion in double stranded RNA encoding DpGST-mu1. Although no detrimental phenotypic changes were observed following silencing, this technique can now be used to address fundamental physiological questions and assess the potential therapeutic benefit in silencing D. pteronyssinus target genes in selected domestic situations of high human-mite interface. PMID:26212476

  12. Expression and RNA Interference of Salivary Polygalacturonase Genes in the Tarnished Plant Bug, Lygus lineolaris

    PubMed Central

    Walker, William B.; Allen, Margaret L.

    2010-01-01

    Three genes encoding polygalacturonase (PG) have been identified in Lygus lineolaris (Palisot de Beauvois) (Miridae: Hemiptera). Earlier studies showed that the three PG gene transcripts are exclusively expressed in the feeding stages of L. lineolaris. In this report, it is shown that all three transcripts are specifically expressed in salivary glands indicating that PGs are salivary enzymes. Transcriptional profiles of the three PGs were evaluated with respect to diet, comparing live cotton plant material to artificial diet. PG2 transcript levels were consistently lower in cotton-fed insects than those reared on artificial diet. RNA interference was used to knock down expression of PG1 mRNA in adult salivary glands providing the first demonstration of the use of this method in the non-model insect, L. lineolaris. PMID:21062205

  13. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine.

    PubMed

    Lambeth, Luke S; Zhao, Yuguang; Smith, Lorraine P; Kgosana, Lydia; Nair, Venugopal

    2009-01-01

    Live attenuated herpesvirus vaccines such as herpesvirus of turkey (HVT) have been used since 1970 for the control of Marek's disease (MD), a highly infectious lymphoproliferative disease of poultry. Despite the success of these vaccines in reducing losses from the disease, Marek's disease virus (MDV) strains have shown a continuing increase in virulence, presumably due to the inability of the current vaccines in preventing MDV replication. The highly specific and effective nature of RNA interference (RNAi) makes this technology particularly attractive for new antiviral strategies. In order to exploit the power of RNAi-mediated suppression of MDV replication in vivo delivered through existing vaccines, we engineered recombinant HVT expressing short hairpin RNA (shRNA) against MDV genes gB and UL29. The levels of protection induced by the RNAi-expressing HVT against virulent virus challenge were similar to the parent pHVT3 virus. However, chickens vaccinated with recombinant HVT expressing shRNA showed moderate reduction of challenge virus replication in blood and feather samples. Delivery of RNAi-based gene silencing through live attenuated vaccines for reducing replication of pathogenic viruses is a novel approach for the control of infectious diseases. PMID:18977264

  14. RNA interference can be used to disrupt gene function in tardigrades

    PubMed Central

    Tenlen, Jennifer R.; McCaskill, Shaina; Goldstein, Bob

    2012-01-01

    How morphological diversity arises is a key question in evolutionary developmental biology. As a long-term approach to address this question, we are developing the water bear Hypsibius dujardini (Phylum Tardigrada) as a model system. We expect that using a close relative of two well-studied models, Drosophila (Phylum Arthropoda) and Caenorhabditis elegans (Phylum Nematoda), will facilitate identifying genetic pathways relevant to understanding the evolution of development. Tardigrades are also valuable research subjects for investigating how organisms and biological materials can survive extreme conditions. Methods to disrupt gene activity are essential to each of these efforts, but no such method yet exists for the Phylum Tardigrada. We developed a protocol to disrupt tardigrade gene functions by double-stranded RNA-mediated RNA interference (RNAi). We show that targeting tardigrade homologs of essential developmental genes by RNAi produced embryonic lethality, whereas targeting green fluorescent protein did not. Disruption of gene functions appears to be relatively specific by two criteria: targeting distinct genes resulted in distinct phenotypes that were consistent with predicted gene functions, and by RT-PCR, RNAi reduced the level of a target mRNA and not a control mRNA. These studies represent the first evidence that gene functions can be disrupted by RNAi in the phylum Tardigrada. Our results form a platform for dissecting tardigrade gene functions for understanding the evolution of developmental mechanisms and survival in extreme environments. PMID:23187800

  15. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway.

    PubMed

    Fusaro, Adriana F; Matthew, Louisa; Smith, Neil A; Curtin, Shaun J; Dedic-Hagan, Jasmina; Ellacott, Geoff A; Watson, John M; Wang, Ming-Bo; Brosnan, Chris; Carroll, Bernard J; Waterhouse, Peter M

    2006-11-01

    RNA interference (RNAi) is widely used to silence genes in plants and animals. It operates through the degradation of target mRNA by endonuclease complexes guided by approximately 21 nucleotide (nt) short interfering RNAs (siRNAs). A similar process regulates the expression of some developmental genes through approximately 21 nt microRNAs. Plants have four types of Dicer-like (DCL) enzyme, each producing small RNAs with different functions. Here, we show that DCL2, DCL3 and DCL4 in Arabidopsis process both replicating viral RNAs and RNAi-inducing hairpin RNAs (hpRNAs) into 22-, 24- and 21 nt siRNAs, respectively, and that loss of both DCL2 and DCL4 activities is required to negate RNAi and to release the plant's repression of viral replication. We also show that hpRNAs, similar to viral infection, can engender long-distance silencing signals and that hpRNA-induced silencing is suppressed by the expression of a virus-derived suppressor protein. These findings indicate that hpRNA-mediated RNAi in plants operates through the viral defence pathway. PMID:17039251

  16. Flagellum ontogeny in trypanosomes studied via an inherited and regulated RNA interference system.

    PubMed

    Bastin, P; Ellis, K; Kohl, L; Gull, K

    2000-09-01

    The African trypanosome, Trypanosoma brucei possesses a large and unique intraflagellar structure called the paraflagellar rod (PFR). The PFR is composed of 2 major proteins, PFRA and PFRC. We have generated an inducible mutant trypanosome cell line (snl-2) that expresses linked inverted copies of a PFRA gene, capable of forming a PFRA double-stranded (ds) RNA. When expression of this dsRNA was induced, new PFRA RNA and PFRA protein quickly disappeared and PFR construction was affected, resulting in cell paralysis. This inducible RNA interference (RNAi) effect was fast-acting, heritable and reversible. It allowed us to demonstrate that PFR proteins are able to enter both mature and growing flagella but appear to concentrate differentially in new flagella because of the construction process. The PFR is constructed by a polar assembly process at the distal end of the flagellum resulting in a stable cytoskeletal structure with low turn-over. The inducible RNAi approach will have widespread applicability in studies of gene function and cellular processes in parasites. PMID:10954429

  17. A rapid and scalable system for studying gene function in mice using conditional RNA interference

    PubMed Central

    Premsrirut, Prem K.; Dow, Lukas E.; Kim, Sang Yong; Camiolo, Matthew; Malone, Colin D.; Miething, Cornelius; Scuoppo, Claudio; Zuber, Johannes; Dickins, Ross A.; Kogan, Scott C.; Shroyer, Kenneth R.; Sordella, Raffaella; Hannon, Gregory J.; Lowe, Scott W.

    2011-01-01

    Summary RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Using this system, we generated eight tet-regulated shRNA transgenic lines targeting Firefly and Renilla luciferases, Oct4 and tumor suppressors p53, p16INK4a, p19ARF and APC and demonstrate potent gene silencing and GFP-tracked knockdown in a broad range of tissues in vivo. Further, using an shRNA targeting APC, we illustrate how this approach can identify predicted phenotypes and also unknown functions for a well-studied gene. In addition, through regulated gene silencing we validate APC/Wnt and p19ARF as potential therapeutic targets in T cell acute lymphoblastic leukemia/lymphoma and lung adenocarcinoma, respectively. This system provides a cost-effective and scalable platform for the production of RNAi transgenic mice targeting any mammalian gene. PMID:21458673

  18. RNA Interference of Myocyte Enhancer Factor 2A Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice

    PubMed Central

    Zhao, Yu-xia; Liu, Gang-qiong; Zhang, Jin-ying

    2015-01-01

    Objective Myocyte enhancer factor-2A (MEF 2A) has been shown to be involved in atherosclerotic lesion development, but its role in preexisting lesions is still unclear. In the present study we aim to assess the role of MEF 2A in the progression of pre-existing atherosclerosis. Methods Eighty apolipoprotein E-deficient mice (APOE KO) were randomly allocated to control, scramble and MEF 2A RNA interference (RNAi) groups, and constrictive collars were used to induce plaque formation. Six weeks after surgery, lentiviral shRNA construct was used to silence the expression of MEF 2A. Carotid plaques were harvested for analysis 4 weeks after viral vector transduction. Inflammatory gene expression in the plasma and carotid plaques was determined by using ELISAs and real-time RT-PCR. Results The expression level of MEF 2A was significantly reduced in plasma and plaque in the RNAi group, compared to the control and NC groups, whereas the expression level of pro-inflammatory cytokines was markedly increased. Silencing MEF 2A using lentiviral shRNA significantly reduced the plaque collagen content and fibrous cap thickness, as well as increased plaque area. However, silencing MEF 2A had no obvious effect on plaque lipid content. Conclusions Lentivirus-mediated MEF 2A shRNA accelerates inflammation and atherosclerosis in APOE KO mice, but has no effect on lipoprotein levels in plasma. PMID:25793529

  19. A rationally designed nanoparticle for RNA interference therapy in B-lineage lymphoid malignancies

    PubMed Central

    Uckun, Fatih M.; Qazi, Sanjive; Ma, Hong; Yin, Lichen; Cheng, Jianjun

    2014-01-01

    The purposes of the present study were to further evaluate the biologic significance of the CD22ΔE12 molecular lesion and determine if it could serve as a molecular target for RNA interference (RNAi) therapy. We show that both pediatric and adult B-lineage lymphoid malignancies are characterized by a very high incidence of the CD22ΔE12 genetic defect. We provide unprecedented experimental evidence for a previously unrecognized causal link between CD22ΔE12 and aggressive biology of BPL cells by demonstrating that siRNA-mediated knockdown of CD22ΔE12 in primary BPL cells is associated with a marked inhibition of their clonogenicity. These findings provide the preclinical proof-of-concept that siRNA-mediated depletion of CD22ΔE12 may help develop effective treatments for high-risk and relapsed BPL patients who are in urgent need for therapeutic innovations. We also describe a unique polypeptide-based nanoparticle formulation of CD22ΔE12-siRNA as an RNAi therapeutic candidate targeting CD22ΔE12 that is capable of delivering its siRNA cargo into the cytoplasm of leukemia cells causing effective CD22ΔE12 depletion and marked inhibition of leukemic cell growth. Further development and optimization of this nanoparticle or other nanoformulation platforms for CD22ΔE12-siRNA may facilitate the development of an effective therapeutic RNAi strategy against a paradigm shift in therapy of aggressive or chemotherapy-resistant B-lineage lymphoid malignancies. PMID:25599086

  20. Drosophila Dicer-2 has an RNA interference-independent function that modulates Toll immune signaling.

    PubMed

    Wang, Zhaowei; Wu, Di; Liu, Yongxiang; Xia, Xiaoling; Gong, Wanyun; Qiu, Yang; Yang, Jie; Zheng, Ya; Li, Jingjing; Wang, Yu-Feng; Xiang, Ye; Hu, Yuanyang; Zhou, Xi

    2015-10-01

    Dicer-2 is the central player for small interfering RNA biogenesis in the Drosophila RNA interference (RNAi) pathway. Intriguingly, we found that Dicer-2 has an unconventional RNAi-independent function that positively modulates Toll immune signaling, which defends against Gram-positive bacteria, fungi, and some viruses, in both cells and adult flies. The loss of Dicer-2 expression makes fruit flies more susceptible to fungal infection. We further revealed that Dicer-2 posttranscriptionally modulates Toll signaling because Dicer-2 is required for the proper expression of Toll protein but not for Toll protein stability or Toll mRNA transcription. Moreover, Dicer-2 directly binds to the 3' untranslated region (3'UTR) of Toll mRNA via its PAZ (Piwi/Argonaute/Zwille) domain and is required for protein translation mediated by Toll 3'UTR. The loss of Toll 3'UTR binding activity makes Dicer-2 incapable of promoting Toll signaling. These data indicate that the interaction between Dicer-2 and Toll mRNA plays a pivotal role in Toll immune signaling. In addition, we found that Dicer-2 is also required for the Toll signaling induced by two different RNA viruses in Drosophila cells. Consequently, our findings uncover a novel RNAi-independent function of Dicer-2 in the posttranscriptional regulation of Toll protein expression and signaling, indicate an unexpected intersection of the RNAi pathway and the Toll pathway, and provide new insights into Toll immune signaling, Drosophila Dicer-2, and probably Dicer and Dicer-related proteins in other organisms. PMID:26601278

  1. Mathematical model of plant-virus interactions mediated by RNA interference.

    PubMed

    Neofytou, G; Kyrychko, Y N; Blyuss, K B

    2016-08-21

    Cross-protection, which refers to a process whereby artificially inoculating a plant with a mild strain provides protection against a more aggressive isolate of the virus, is known to be an effective tool of disease control in plants. In this paper we derive and analyse a new mathematical model of the interactions between two competing viruses with particular account for RNA interference. Our results show that co-infection of the host can either increase or decrease the potency of individual infections depending on the levels of cross-protection or cross-enhancement between different viruses. Analytical and numerical bifurcation analyses are employed to investigate the stability of all steady states of the model in order to identify parameter regions where the system exhibits synergistic or antagonistic behaviour between viral strains, as well as different types of host recovery. We show that not only viral attributes but also the propagating component of RNA-interference in plants can play an important role in determining the dynamics. PMID:27188250

  2. RNA Interference (RNAi) Induced Gene Silencing: A Promising Approach of Hi-Tech Plant Breeding

    PubMed Central

    Younis, Adnan; Siddique, Muhammad Irfan; Kim, Chang-Kil; Lim, Ki-Byung

    2014-01-01

    RNA interference (RNAi) is a promising gene regulatory approach in functional genomics that has significant impact on crop improvement which permits down-regulation in gene expression with greater precise manner without affecting the expression of other genes. RNAi mechanism is expedited by small molecules of interfering RNA to suppress a gene of interest effectively. RNAi has also been exploited in plants for resistance against pathogens, insect/pest, nematodes, and virus that cause significant economic losses. Keeping beside the significance in the genome integrity maintenance as well as growth and development, RNAi induced gene syntheses are vital in plant stress management. Modifying the genes by the interference of small RNAs is one of the ways through which plants react to the environmental stresses. Hence, investigating the role of small RNAs in regulating gene expression assists the researchers to explore the potentiality of small RNAs in abiotic and biotic stress management. This novel approach opens new avenues for crop improvement by developing disease resistant, abiotic or biotic stress tolerant, and high yielding elite varieties. PMID:25332689

  3. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Birrer, Katherine F.; Simpson, Kaylene J.; Lowenthal, John W.; Bean, Andrew G. D.; Stambas, John; Stewart, Cameron R.; Tompkins, S. Mark; van Beusechem, Victor W.; Fraser, Iain; Mhlanga, Musa; Barichievy, Samantha; Smith, Queta; Leake, Devin; Karpilow, Jon; Buck, Amy; Jona, Ghil; Tripp, Ralph A.

    2012-01-01

    Influenza virus encodes only 11 viral proteins but replicates in a broad range of avian and mammalian species by exploiting host cell functions. Genome-wide RNA interference (RNAi) has proven to be a powerful tool for identifying the host molecules that participate in each step of virus replication. Meta-analysis of findings from genome-wide RNAi screens has shown influenza virus to be dependent on functional nodes in host cell pathways, requiring a wide variety of molecules and cellular proteins for replication. Because rapid evolution of the influenza A viruses persistently complicates the effectiveness of vaccines and therapeutics, a further understanding of the complex host cell pathways coopted by influenza virus for replication may provide new targets and strategies for antiviral therapy. RNAi genome screening technologies together with bioinformatics can provide the ability to rapidly identify specific host factors involved in resistance and susceptibility to influenza virus, allowing for novel disease intervention strategies.—Meliopoulos, V. A., Andersen, L. E., Birrer, K. F., Simpson, K. J., Lowenthal, J. W., Bean, A. G. D., Stambas, J., Stewart, C. R., Tompkins, S. M., van Beusechem, V. W., Fraser, I., Mhlanga, M., Barichievy, S., Smith, Q., Leake, D., Karpilow, J., Buck, A., Jona, G., Tripp, R. A. Host gene targets for novel influenza therapies elucidated by high-throughput RNA interference screens. PMID:22247330

  4. Effect of plasmid-mediated RNA interference targeting telomerase reverse transcriptase on lung cancer cells.

    PubMed

    Ge, Linhu; Deng, Zhansheng; Zhang, Yangde; Shao, Wenlong; Qiu, Yuan; Cui, Dong; Huang, Donghai

    2011-12-01

    In the present study, a plasmid-mediated siRNA interference vector targeting the hTERT gene was constructed and stably transfected into H1299 lung cancer cells. Using real-time quantitative fluorescent PCR technology, western blotting and flow cytometry-based cell cycle profiling, the silencing effect of this vector and its inhibitory effect on proliferation in lung cancer cells were explored. Based upon the results of our previous study, a pair of siRNA sequences was selected, and a DNA template primer was designed and synthesized. After cloning of the template primer into the promoter of the pGenesil-1.1 expression vector, the constructed interference vector was validated using enzyme digestion and gene sequencing. The recombinant interference vector and empty vector were separately transfected into H1299 lung cancer cells with cationic liposomes, and stable monoclonally transfected cells were obtained after selection with G418. After stable transfection, hTERT mRNA and protein expression levels were detected using real-time RT-PCR technology and western blotting. Using the MTT method and a colony formation assay, the growth and proliferation of the stably transfected lung cancer cells were determined. Changes in the cell cycle profile of the stably transfected lung cancer cells were detected using flow cytometry. An interference vector targeting the hTERT gene (pGenesil.1-hTERT) was successfully constructed. Enzyme digestion and gene sequencing confirmed that the sequence insertion met the criteria of the design. After transfection of H1299 cells with pGenesil.1-hTERT or an empty vector, the stably transfected monoclonal cell lines H1299-pGenesil.1-hTERT and H1299-pGenesil.1 were obtained. Compared to the control cells transfected with the empty vector, the H1299-pGenesil.1-hTERT cells had significantly lower mRNA expression of hTERT (93.97±0.83% inhibition, with P<0.001). The protein expression of hTERT in H1299-pGenesil.1-hTERT cells was significantly lower

  5. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium

    PubMed Central

    Tomoyasu, Yoshinori; Miller, Sherry C; Tomita, Shuichiro; Schoppmeier, Michael; Grossmann, Daniela; Bucher, Gregor

    2008-01-01

    Background RNA interference (RNAi) is a highly conserved cellular mechanism. In some organisms, such as Caenorhabditis elegans, the RNAi response can be transmitted systemically. Some insects also exhibit a systemic RNAi response. However, Drosophila, the leading insect model organism, does not show a robust systemic RNAi response, necessitating another model system to study the molecular mechanism of systemic RNAi in insects. Results We used Tribolium, which exhibits robust systemic RNAi, as an alternative model system. We have identified the core RNAi genes, as well as genes potentially involved in systemic RNAi, from the Tribolium genome. Both phylogenetic and functional analyses suggest that Tribolium has a somewhat larger inventory of core component genes than Drosophila, perhaps allowing a more sensitive response to double-stranded RNA (dsRNA). We also identified three Tribolium homologs of C. elegans sid-1, which encodes a possible dsRNA channel. However, detailed sequence analysis has revealed that these Tribolium homologs share more identity with another C. elegans gene, tag-130. We analyzed tag-130 mutants, and found that this gene does not have a function in systemic RNAi in C. elegans. Likewise, the Tribolium sid-like genes do not seem to be required for systemic RNAi. These results suggest that insect sid-1-like genes have a different function than dsRNA uptake. Moreover, Tribolium lacks homologs of several genes important for RNAi in C. elegans. Conclusion Although both Tribolium and C. elegans show a robust systemic RNAi response, our genome-wide survey reveals significant differences between the RNAi mechanisms of these organisms. Thus, insects may use an alternative mechanism for the systemic RNAi response. Understanding this process would assist with rendering other insects amenable to systemic RNAi, and may influence pest control approaches. PMID:18201385

  6. Specific interference shRNA-expressing plasmids inhibit Hantaan virus infection in vitro and in vivo

    PubMed Central

    Liu, Yuan-yuan; Chen, Liang-jun; Zhong, Yan; Shen, Meng-xin; Ma, Nian; Liu, Bing-yu; Luo, Fan; Hou, Wei; Yang, Zhan-qiu; Xiong, Hai-rong

    2016-01-01

    Aim: To investigate the antiviral effects of vectors expressing specific short hairpin RNAs (shRNAs) against Hantaan virus (HTNV) infection in vitro and in vivo. Methods: Based on the effects of 4 shRNAs targeting different regions of HTNV genomic RNA on viral replication, the most effective RNA interference fragments of the S and M genes were constructed in pSilencer-3.0-H1 vectors, and designated pSilencer-S and pSilencer-M, respectively. The antiviral effect of pSilencer-S/M against HTNV was evaluated in both HTNV-infected Vero-E6 cells and mice. Results: In HTNV-infected Vero-E6 cells, pSilencer-S and pSilencer-M targeted the viral nucleocapsid proteins and envelope glycoproteins, respectively, as revealed in the immunofluorescence assay. Transfection with pSilencer-S or pSilencer-M (1, 2, 4 μg) markedly inhibited the viral antigen expression in dose- and time-dependent manners. Transfection with either plasmid (2 μg) significantly decreased HTNV-RNA level at 3 day postinfectin (dpi) and the progeny virus titer at 5 dpi. In mice infected with lethal doses of HTNV, intraperitoneal injection of pSilencer-S or pSilencer-M (30 μg) considerably increased the survival rates and mean time to death, and significantly reduced the mean virus yields and viral RNA level, and alleviated virus-induced pathological lesions in lungs, brains and kidneys. Conclusion: Plasmid-based shRNAs potently inhibit HTNV replication in vitro and in vivo. Our results provide a basis for development of shRNA as therapeutics for HTNV infections in humans. PMID:26972493

  7. RNA interference regulates the cell cycle checkpoint through the RNA export factor, Ptr1, in fission yeast

    SciTech Connect

    Iida, Tetsushi; Iida, Naoko; Tsutsui, Yasuhiro; Yamao, Fumiaki; Kobayashi, Takehiko

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer RNAi is linked to the cell cycle checkpoint in fission yeast. Black-Right-Pointing-Pointer Ptr1 co-purifies with Ago1. Black-Right-Pointing-Pointer The ptr1-1 mutation impairs the checkpoint but does not affect gene silencing. Black-Right-Pointing-Pointer ago1{sup +} and ptr1{sup +} regulate the cell cycle checkpoint via the same pathway. Black-Right-Pointing-Pointer Mutations in ago1{sup +} and ptr1{sup +} lead to the nuclear accumulation of poly(A){sup +} RNAs. -- Abstract: Ago1, an effector protein of RNA interference (RNAi), regulates heterochromatin silencing and cell cycle arrest in fission yeast. However, the mechanism by which Ago1 controls cell cycle checkpoint following hydroxyurea (HU) treatment has not been elucidated. In this study, we show that Ago1 and other RNAi factors control cell cycle checkpoint following HU treatment via a mechanism independent of silencing. While silencing requires dcr1{sup +}, the overexpression of ago1{sup +} alleviated the cell cycle defect in dcr1{Delta}. Ago1 interacted with the mRNA export factor, Ptr1. The ptr1-1 mutation impaired cell cycle checkpoint but gene silencing was unaffected. Genetic analysis revealed that the regulation of cell cycle checkpoint by ago1{sup +} is dependent on ptr1{sup +}. Nuclear accumulation of poly(A){sup +} RNAs was detected in mutants of ago1{sup +} and ptr1{sup +}, suggesting there is a functional link between the cell cycle checkpoint and RNAi-mediated RNA quality control.

  8. Perspectives and Insights into the Competition for Aminoacyl-tRNAs between the Translational Machinery and for tRNA Dependent Non-Ribosomal Peptide Bond Formation

    PubMed Central

    Fung, Angela W. S.; Payoe, Roshani; Fahlman, Richard P.

    2015-01-01

    Aminoacyl-tRNA protein transferases catalyze the transfer of amino acids from aminoacyl-tRNAs to polypeptide substrates. Different forms of these enzymes are found in the different kingdoms of life and have been identified to be central to a wide variety of cellular processes. L/F-transferase is the sole member of this class of enzyme found in Escherichia coli and catalyzes the transfer of leucine to the N-termini of proteins which result in the targeted degradation of the modified protein. Recent investigations on the tRNA specificity of L/F-transferase have revealed the unique recognition nucleotides for a preferred Leu-tRNALeu isoacceptor substrate. In addition to discussing this tRNA selectivity by L/F-transferase, we present and discuss a hypothesis and its implications regarding the apparent competition for this aminoacyl-tRNA between L/F-transferase and the translational machinery. Our discussion reveals a hypothetical involvement of the bacterial stringent response that occurs upon amino acid limitation as a potential cellular event that may reduce this competition and provide the opportunity for L/F-transferase to readily increase its access to the pool of aminoacylated tRNA substrates. PMID:26729173

  9. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    PubMed

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen. PMID:23691205

  10. Application of RNA interference methodology to investigate and develop SCMV resistance in maize.

    PubMed

    Gan, Defang; Ding, Fei; Zhuang, Dan; Jiang, Haiyang; Jiang, Tong; Zhu, Suwen; Cheng, Beijiu

    2014-08-01

    Specific fragments of the sugarcane mosaic virus (SCMV) coat protein gene (cp) were amplified by reverse transcriptionpolymerase chain reaction and used to construct a marker free small interfering RNA complex expression vector against SCMV. In planta transformation was performed on maize (Zea mays) inbred line 8112 mediated by Agrobacterium tumefaciens. PCR and Southern blot analyses demonstrated successful integration of the cp segment into the 8112 genome. The in planta transformation frequency was 0.1%, and the cotransformed frequency with the cp and bar genes was 0.034%. Real-time quantitative PCR of samples from different transgenic plant organs showed that the expression of the cp gene fragment in transgenic plants was variable and that the highest expression level occurred in the tassels and leaves and the lowest expression occurred in the roots. Real-time quantitative PCR was also used to measure how gene expression in transgenic T2 generation plants inoculated with SCMV changes over time. The results showed that the hairpin RNA structure transcribed from the cp gene interfered with SCMV infection and transgenic maize lines were not equally effective in preventing SCMV infection. Our findings provide a valuable tool for controlling plant viruses using RNA interference and the posttranslational gene silencing approach. PMID:25189224

  11. RNA interference in plant parasitic nematodes: a summary of the current status.

    PubMed

    Lilley, C J; Davies, L J; Urwin, P E

    2012-04-01

    SUMMARYRNA interference (RNAi) has emerged as an invaluable gene-silencing tool for functional analysis in a wide variety of organisms, particularly the free-living model nematode Caenorhabditis elegans. An increasing number of studies have now described its application to plant parasitic nematodes. Genes expressed in a range of cell types are silenced when nematodes take up double stranded RNA (dsRNA) or short interfering RNAs (siRNAs) that elicit a systemic RNAi response. Despite many successful reports, there is still poor understanding of the range of factors that influence optimal gene silencing. Recent in vitro studies have highlighted significant variations in the RNAi phenotype that can occur with different dsRNA concentrations, construct size and duration of soaking. Discrepancies in methodology thwart efforts to reliably compare the efficacy of RNAi between different nematodes or target tissues. Nevertheless, RNAi has become an established experimental tool for plant parasitic nematodes and also offers the prospect of being developed into a novel control strategy when delivered from transgenic plants. PMID:22217302

  12. Requirement for CRIF1 in RNA interference and Dicer-2 stability

    PubMed Central

    Lim, Su Jun; Scott, Anthony; Xiong, Xiao-Peng; Vahidpour, Shabnam; Karijolich, John; Guo, Dongdong; Pei, Shanshan; Yu, Yi-Tao; Zhou, Rui; Li, Willis X

    2014-01-01

    RNA interference (RNAi) is a eukaryotic gene-silencing system. Although the biochemistry of RNAi is relatively well defined, how this pathway is regulated remains incompletely understood. To identify genes involved in regulating the RNAi pathway, we screened for genetic mutations in Drosophila that alter the efficiency of RNAi. We identified the Drosophila homolog of the mammalian CR6-interacting factor 1 (CRIF1), also known as growth arrest and DNA-damage-inducible 45-gamma interacting protein (Gadd45GIP1), as a potential new regulator of the RNAi pathway. Loss-of-function mutants of Drosophila CRIF1 (dCRIF) are deficient in RNAi-mediated target gene knock-down, in the biogenesis of small interfering RNA (siRNA) molecules, and in antiviral immunity. Moreover, we show that dCRIF may function by interacting with, and stabilizing, the RNase III enzyme Dicer-2. Our results suggest that dCRIF may play an important role in regulating the RNAi pathway. PMID:25483042

  13. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.)

    PubMed Central

    Abdurakhmonov, Ibrokhim Y.; Ayubov, Mirzakamol S.; Ubaydullaeva, Khurshida A.; Buriev, Zabardast T.; Shermatov, Shukhrat E.; Ruziboev, Haydarali S.; Shapulatov, Umid M.; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z.; Percy, Richard G.; Devor, Eric J.; Sharma, Govind C.; Sripathi, Venkateswara R.; Kumpatla, Siva P.; van der Krol, Alexander; Kater, Hake D.; Khamidov, Khakimdjan; Salikhov, Shavkat I.; Jenkins, Johnie N.; Abdukarimov, Abdusattor; Pepper, Alan E.

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  14. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens.

    PubMed

    Warnock, Neil D; Wilson, Leonie; Canet-Perez, Juan V; Fleming, Thomas; Fleming, Colin C; Maule, Aaron G; Dalzell, Johnathan J

    2016-07-01

    Plant parasitic nematodes (PPN) locate host plants by following concentration gradients of root exudate chemicals in the soil. We present a simple method for RNA interference (RNAi)-induced knockdown of genes in tomato seedling roots, facilitating the study of root exudate composition, and PPN responses. Knockdown of sugar transporter genes, STP1 and STP2, in tomato seedlings triggered corresponding reductions of glucose and fructose, but not xylose, in collected root exudate. This corresponded directly with reduced infectivity and stylet thrusting of the promiscuous PPN Meloidogyne incognita, however we observed no impact on the infectivity or stylet thrusting of the selective Solanaceae PPN Globodera pallida. This approach can underpin future efforts to understand the early stages of plant-pathogen interactions in tomato and potentially other crop plants. PMID:27033013

  15. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.).

    PubMed

    Abdurakhmonov, Ibrokhim Y; Ayubov, Mirzakamol S; Ubaydullaeva, Khurshida A; Buriev, Zabardast T; Shermatov, Shukhrat E; Ruziboev, Haydarali S; Shapulatov, Umid M; Saha, Sukumar; Ulloa, Mauricio; Yu, John Z; Percy, Richard G; Devor, Eric J; Sharma, Govind C; Sripathi, Venkateswara R; Kumpatla, Siva P; van der Krol, Alexander; Kater, Hake D; Khamidov, Khakimdjan; Salikhov, Shavkat I; Jenkins, Johnie N; Abdukarimov, Abdusattor; Pepper, Alan E

    2016-01-01

    RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization. PMID:26941765

  16. Analysis of Nuclear RNA Interference (RNAi) in Human Cells by Subcellular Fractionation and Argonaute Loading

    PubMed Central

    Gagnon, Keith T.; Li, Liande; Janowski, Bethany A.; Corey, David R.

    2014-01-01

    RNA interference (RNAi) is well known for its ability to regulate gene expression in the cytoplasm of mammalian cells. In mammalian cell nuclei, however, the impact of RNAi has remained more controversial. A key technical hurdle has been a lack of optimized protocols for the isolation and analysis of cell nuclei. Here we describe a simplified protocol for nuclei isolation from cultured cells that incorporates a method for obtaining nucleoplasmic and chromatin fractions and removing cytoplasmic contamination. Cell fractions can then be used to detect the presence and activity of RNAi factors in the nucleus. We present a protocol for investigating an early step in RNAi, Argonaute protein loading with small RNAs, which is enabled by our improved extract preparations. These protocols facilitate characterization of nuclear RNAi and can be applied to the analysis of other nuclear proteins and pathways. From cellular fractionation to analysis of Argonaute loading results, this protocol takes 4–6 d to complete. PMID:25079428

  17. Quantitative high-throughput analysis of synthetic genetic interactions in Caenorhabditis elegans by RNA interference

    PubMed Central

    Fortunato, Angelo

    2009-01-01

    Biological processes are highly dynamic but the current representation of molecular networks is static and largely qualitative. To investigate the dynamic property of genetic networks, a novel quantitative high-throughput method based on RNA interference and capable of calculating the relevance of each interaction, was developed. With this approach, it will be possible to identify not only the components of a network, but also to investigate quantitatively how network and biological processes react to perturbations. As a first application of this method, the genetic interactions of a weak loss-of-function mutation in the gene efl-1/E2F with all the genes of chromosome III were investigated during embryonic development of Caenorhabditis elegans. Fifteen synthetic genetic interactions of efl-1/E2F with the genes of chromosome III were detected, measured and ranked by statistical relevance. PMID:19059334

  18. PsOr1, a potential target for RNA interference-based pest management.

    PubMed

    Zhao, Y Y; Liu, F; Yang, G; You, M S

    2011-02-01

    Insect pests cause billions of dollars in agricultural losses, and attempts to kill them have resulted in growing threats from insecticide resistance, dietary pesticide pollution and environmental destruction. New approaches to control refractory insect pests are therefore needed. The host-plant preferences of insect pests rely on olfaction and are mediated via a seven transmembrane-domain odorant receptor (Or) family. The present study reports the cloning and characterization of PsOr1, the first candidate member of the Or gene family from Phyllotreta striolata, a devastating beetle pest that causes damage worldwide. PsOr1 is remarkably well conserved with respect to other insect orthologues, including DmOr83b from Drosophila melanogaster. These insect orthologues form an essential non-conventional Or sub-family and may play an important and generalized role in insect olfaction. We designed double-stranded (ds) RNA directly against the PsOr1 gene and exploited RNA interference (RNAi) to control P. striolata. The chemotactic behavioural measurements showed that adult beetles were unable to sense the attractant or repellent odour stimulus after microinjection of dsRNA against PsOr1. Reverse Transcription (RT)-PCR analysis showed specific down-regulation of mRNA transcript levels for this gene. Furthermore, host-plant preference experiments confirmed that silencing PsOr1 by RNAi treatment impaired the host-plant preferences of P. striolata for cruciferous vegetables. These results demonstrate that this insect control approach of using RNAi to target PsOr1 and its orthologues might be effective in blocking host-plant-seeking behaviours in diverse insect pests. The results also support the theory that this unique receptor type plays an essential general role in insect olfaction. PMID:20854479

  19. Effects of chitosan nanoparticle-mediated BRAF siRNA interference on invasion and metastasis of gastric cancer cells.

    PubMed

    Huo, Jian

    2016-08-01

    To observe the changes in invasion capacity of gastric cancer BGC823 cells after being treated with chitosan-encapsulated BRAF siRNA nanoparticles, and to evaluate the effects of the nanoparticle-mediated BRAF siRNA interference on cell invasion and metastasis, BRAF siRNA was encapsulated with chitosan into nanoparticles sized 350 nm to treat gastric cancer cells. Silencing of BRAF was detected by Western blot and PCR, and cell invasion was observed by the Transwell assay. The nanoparticles significantly downregulated BRAF expression in BGC823 cells (P < 0.01) and inhibited their invasion (P < 0.001). Chitosan nanoparticle-mediated BRAF siRNA interference evidently reduced the invasion capacity of gastric cancers. PMID:25794798

  20. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene.

    PubMed Central

    Segal, Gregorio; Song, Rentao; Messing, Joachim

    2003-01-01

    In maize, alpha-zeins, the main protein components of seed stores, are major determinants of nutritional imbalance when maize is used as the sole food source. Mutations like opaque-2 (o2) are used in breeding varieties with improved nutritional quality. However, o2 works in a recessive fashion by affecting the expression of a subset of 22-kD alpha-zeins, as well as additional endosperm gene functions. Thus, we sought a dominant mutation that could suppress the storage protein genes without interrupting O2 synthesis. We found that maize transformed with RNA interference (RNAi) constructs derived from a 22-kD zein gene could produce a dominant opaque phenotype. This phenotype segregates in a normal Mendelian fashion and eliminates 22-kD zeins without affecting the accumulation of other zein proteins. A system for regulated transgene expression generating antisense RNA also reduced the expression of 22-kD zein genes, but failed to give an opaque phenotype. Therefore, it appears that small interfering RNAs not only may play an important regulatory role during plant development, but also are effective genetic tools for dissecting the function of gene families. Since the dominant phenotype is also correlated with increased lysine content, the new mutant illustrates an approach for creating more nutritious crop plants. PMID:14504244

  1. Specific Silencing of L392V PSEN1 Mutant Allele by RNA Interference

    PubMed Central

    Sierant, Malgorzata; Paduszynska, Alina; Kazmierczak-Baranska, Julia; Nacmias, Benedetta; Sorbi, Sandro; Bagnoli, Silvia; Sochacka, Elzbieta; Nawrot, Barbara

    2011-01-01

    RNA interference (RNAi) technology provides a powerful molecular tool to reduce an expression of selected genes in eukaryotic cells. Short interfering RNAs (siRNAs) are the effector molecules that trigger RNAi. Here, we describe siRNAs that discriminate between the wild type and mutant (1174 C→G) alleles of human Presenilin1 gene (PSEN1). This mutation, resulting in L392V PSEN1 variant, contributes to early onset familial Alzheimer's disease. Using the dual fluorescence assay, flow cytometry and fluorescent microscopy we identified positions 8th–11th, within the central part of the antisense strand, as the most sensitive to mismatches. 2-Thiouridine chemical modification introduced at the 3′-end of the antisense strand improved the allele discrimination, but wobble base pairing adjacent to the mutation site abolished the siRNA activity. Our data indicate that siRNAs can be designed to discriminate between the wild type and mutant alleles of genes that differ by just a single nucleotide. PMID:21559198

  2. Dissecting Wnt/beta-catenin signaling during gastrulation using RNA interference in mouse embryos.

    PubMed

    Lickert, Heiko; Cox, Brian; Wehrle, Christian; Taketo, Makoto M; Kemler, Rolf; Rossant, Janet

    2005-06-01

    Differential gene regulation integrated in time and space drives developmental programs during embryogenesis. To understand how the program of gastrulation is regulated by Wnt/beta-catenin signaling, we have used genome-wide expression profiling of conditional beta-catenin mutant embryos. Known Wnt/beta-catenin target genes, known components of other signaling pathways, as well as a number of uncharacterized genes were downregulated in these mutants. To further narrow down the set of differentially expressed genes, we used whole-mount in situ screening to associate gene expression with putative domains of Wnt activity. Several potential novel target genes were identified by this means and two, Grsf1 and Fragilis2, were functionally analyzed by RNA interference (RNAi) in completely embryonic stem (ES) cell-derived embryos. We show that the gene encoding the RNA-binding factor Grsf1 is important for axial elongation, mid/hindbrain development and axial mesoderm specification, and that Fragilis2, encoding a transmembrane protein, regulates epithelialization of the somites and paraxial mesoderm formation. Intriguingly, the knock-down phenotypes recapitulate several aspects of Wnt pathway mutants, suggesting that these genes are components of the downstream Wnt response. This functional genomic approach allows the rapid identification of functionally important components of embryonic development from large datasets of putative targets. PMID:15857914

  3. Efficient gene silencing in mesenchymal stem cells by substrate-mediated RNA interference.

    PubMed

    Hsu, Shan-Hui; Huang, Guo-Shiang; Ho, Tung-Tso; Feng, Fuh

    2014-11-01

    We described a novel substrate-mediated RNA interference (RNAi) technology to investigate the effect of neural crest marker expression on the multipotency of human gingival fibroblasts (HGFs). HGFs showed significantly higher neural and chondrogenic differentiation potentials compared with adult bone-marrow-derived mesenchymal stem cells and stem cells from human exfoliated deciduous teeth. By sending target-specific RNAi agents with the conventional vehicle (PolyFect), we observed that the multipotency of HGFs was closely associated with the expression of neural crest marker gene Forkhead box D3 (FoxD3). Using the novel chitosan substrate-mediated method, we successfully delivered short-hairpin RNA constructs to HGFs grown on chitosan without the use of conventional vehicles. The delivery efficiency measured by flow cytometry showed a 10-fold increase for HGFs on chitosan versus those on culture dish, and the cell viability was >95%. Moreover, HGFs with FoxD3 gene knockdown did not form spheroids on chitosan. Based on this working principle, we further selected the gene-silenced population from HGFs. The nonsilenced HGFs showed much higher neural differentiation ability with the nestin expression 40-fold greater than FoxD3-silenced population after induction, suggesting the feasibility of the method to silence genes. The new substrate-mediated gene silencing platform that combines the use of substrate and RNAi can be used to clarify the functions of important genes without suffering the toxicity. PMID:24624901

  4. RNA Interference Using c-Myc-Conjugated Nanoparticles Suppresses Breast and Colorectal Cancer Models.

    PubMed

    Tangudu, Naveen K; Verma, Vinod K; Clemons, Tristan D; Beevi, Syed S; Hay, Trevor; Mahidhara, Ganesh; Raja, Meera; Nair, Rekha A; Alexander, Liza E; Patel, Anant B; Jose, Jedy; Smith, Nicole M; Zdyrko, Bogdan; Bourdoncle, Anne; Luzinov, Igor; Iyer, K Swaminathan; Clarke, Alan R; Dinesh Kumar, Lekha

    2015-05-01

    In this article, we report the development and preclinical validation of combinatorial therapy for treatment of cancers using RNA interference (RNAi). RNAi technology is an attractive approach to silence genes responsible for disease onset and progression. Currently, the critical challenge facing the clinical success of RNAi technology is in the difficulty of delivery of RNAi inducers, due to low transfection efficiency, difficulties of integration into host DNA and unstable expression. Using the macromolecule polyglycidal methacrylate (PGMA) as a platform to graft multiple polyethyleneimine (PEI) chains, we demonstrate effective delivery of small oligos (anti-miRs and mimics) and larger DNAs (encoding shRNAs) in a wide variety of cancer cell lines by successful silencing/activation of their respective target genes. Furthermore, the effectiveness of this therapy was validated for in vivo tumor suppression using two transgenic mouse models; first, tumor growth arrest and increased animal survival was seen in mice bearing Brca2/p53-mutant mammary tumors following daily intratumoral treatment with nanoparticles conjugated to c-Myc shRNA. Second, oral delivery of the conjugate to an Apc-deficient crypt progenitor colon cancer model increased animal survival and returned intestinal tissue to a non-wnt-deregulated state. This study demonstrates, through careful design of nonviral nanoparticles and appropriate selection of therapeutic gene targets, that RNAi technology can be made an affordable and amenable therapy for cancer. PMID:25695957

  5. From The Cover: Genome-wide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation

    NASA Astrophysics Data System (ADS)

    Nollen, Ellen A. A.; Garcia, Susana M.; van Haaften, Gijs; Kim, Soojin; Chavez, Alejandro; Morimoto, Richard I.; Plasterk, Ronald H. A.

    2004-04-01

    Protein misfolding and the formation of aggregates are increasingly recognized components of the pathology of human genetic disease and hallmarks of many neurodegenerative disorders. As exemplified by polyglutamine diseases, the propensity for protein misfolding is associated with the length of polyglutamine expansions and age-dependent changes in protein-folding homeostasis, suggesting a critical role for a protein homeostatic buffer. To identify the complement of protein factors that protects cells against the formation of protein aggregates, we tested transgenic Caenorhabditis elegans strains expressing polyglutamine expansion yellow fluorescent protein fusion proteins at the threshold length associated with the age-dependent appearance of protein aggregation. We used genome-wide RNA interference to identify genes that, when suppressed, resulted in the premature appearance of protein aggregates. Our screen identified 186 genes corresponding to five principal classes of polyglutamine regulators: genes involved in RNA metabolism, protein synthesis, protein folding, and protein degradation; and those involved in protein trafficking. We propose that each of these classes represents a molecular machine collectively comprising the protein homeostatic buffer that responds to the expression of damaged proteins to prevent their misfolding and aggregation. protein misfolding | neurodegenerative diseases

  6. RNA interference technology used for the study of aquatic virus infections.

    PubMed

    Reshi, Mohammad Latif; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2014-09-01

    Aquaculture is one of the most important economic activities in Asia and is presently the fastest growing sector of food production in the world. Explosive increases in global fish farming have been accompanied by an increase in viral diseases. Viral infections are responsible for huge economic losses in fish farming, and control of these viral diseases in aquaculture remains a serious challenge. Recent advances in biotechnology have had a significant impact on disease reduction in aquaculture. RNAi is one of the most important technological breakthroughs in modern biology, allowing us to directly observe the effects of the loss of specific genes in living systems. RNA interference technology has emerged as a powerful tool for manipulating gene expression in the laboratory. This technology represents a new therapeutic approach for treating aquatic diseases, including viral infections. RNAi technology is based on a naturally occurring post-transcriptional gene silencing process mediated by the formation of dsRNA. RNAi has been proven widely effective for gene knockdown in mammalian cultured cells, but its utility in fish remains unexplored. This review aims to highlight the RNAi technology that has made significant contributions toward the improvement of aquatic animal health and will also summarize the current status and future strategies concerning the therapeutic applications of RNAi to combat viral disease in aquacultured organisms. PMID:24945574

  7. Mcam Silencing With RNA Interference Using Magnetofection has Antitumor Effect in Murine Melanoma

    PubMed Central

    Prosen, Lara; Markelc, Bostjan; Dolinsek, Tanja; Music, Branka; Cemazar, Maja; Sersa, Gregor

    2014-01-01

    The melanoma cell adhesion molecule (MCAM) is involved in melanoma development and its progression, including invasiveness, metastatic potential and angiogenesis. Therefore, MCAM represents a potential target for gene therapy of melanoma, whose expression could be hindered with posttranscriptional specific gene silencing with RNA interference technology. In this study, we constructed a plasmid DNA encoding short hairpin RNA against MCAM (pMCAM) to explore the antitumor and antiangiogenic effects. The experiments were performed in vitro on murine melanoma and endothelial cells, as well as in vivo on melanoma tumors in mice. The antiproliferative, antimigratory, antiangiogenic and antitumor effects were examined after gene therapy with pMCAM. Gene delivery was performed by magnetofection, and its efficacy compared to gene electrotransfer. Gene therapy with pMCAM has proved to be an effective approach in reducing the proliferation and migration of melanoma cells, as well as having antiangiogenic effect in endothelial cells and antitumor effect on melanoma tumors. Magnetofection as a developing nonviral gene delivery system was effective in the transfection of melanoma cells and tumors with pMCAM, but less efficient than gene electrotransfer in in vivo tumor gene therapy due to the lack of antiangiogenic effect after silencing Mcam by magnetofection. PMID:25350580

  8. Applications of RNA Interference in Schistosomiasis: Gene Function Identification and Development of New Therapies

    PubMed Central

    Pereira, Tiago Campos; Evangelista, Cláudia Carolina Silva; Borges, Gustavo; Zanotti-Magalhães, Eliana Maria; Magalhães, Luiz Augusto; Lopes-Cendes, Iscia

    2013-01-01

    The study of Schistosoma species has undergone a dramatic change in recent years mainly due to transcriptome, proteome, and genome analyses. In order to better understand the biology of the parasite and to develop new and more efficient/specific drugs, scientists have now the task to translate genetic information into functional data. The present paper aims to review the use of RNA interference (RNAi), a versatile technique used in gene silencing, for the dissection of the cellular/molecular biology of Schistosoma spp. In addition, we will review information on the recent development of a new generation of RNA-based drugs. Examples of specific experimental approaches will be presented and discussed, such as identification of gene function, development of therapies by targeting eggs, miracidia (as a strategy for environmental use), sporocysts (for infestation control in the intermediate host), and schistosomula/adult worms (as a treatment strategy). Furthermore, some of the main advantages, drawbacks, and future directions of these new applications and techniques will also be discussed. PMID:27335847

  9. RNA Interference Technology to Control Pest Sea Lampreys - A Proof-of-Concept

    PubMed Central

    Heath, George; Childs, Darcy; Docker, Margaret F.; McCauley, David W.; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0–fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  10. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    PubMed

    Heath, George; Childs, Darcy; Docker, Margaret F; McCauley, David W; Whyard, Steven

    2014-01-01

    The parasitic sea lamprey (Petromyzon marinus) has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol) to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs) into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin) reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species. PMID:24505485

  11. The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.

    PubMed

    Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin

    2013-06-01

    Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts. PMID:23604693

  12. Does the mutant CAG expansion in huntingtin mRNA interfere with exonucleolytic cleavage of its first exon?

    PubMed Central

    Liu, Wanzhao; Pfister, Edith L.; Kennington, Lori A.; Chase, Kathryn O.; Mueller, Christian; DiFiglia, Marian; Aronin, Neil

    2016-01-01

    Background Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntington’s disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments. Objectives We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA. Methods Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection. Results Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites. Conclusions Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage. PMID:27003665

  13. Expression of microRNA processing machinery genes in rhesus monkey oocytes and embryos of different developmental potentials

    PubMed Central

    MTANGO, NAMDORI R.; POTIREDDY, SANTHI; LATHAM, KEITH E.

    2008-01-01

    MicroRNAs (miRNAs) are a class of small RNAs that silence gene expression. In animal cells, miRNAs bind to the 3′ untranslated regions of specific mRNAs and inhibit their translation. The correct regulation of mRNA expression by miRNAs is believed to be important for oocyte maturation, early development and implantation. We examined the expression of 25 mRNAs involved in the microRNA processing pathway in a non human primate oocyte and embryo model. We observed that mRNAs related to miRNA splicing are downregulated during oocyte maturation while those related to miRNA processing are upregulated, indicating that there may exist a temporal difference in their activities related to transcriptional activity in germinal vesicle stage oocytes. We also observed that the vast majority of mRNAs examined were insensitive to α-amanitin at the 8-16 cell stage. The expression data did not reveal a major impact of embryo culture, and hormonal stimulation protocol affected only a small number of mRNAs, suggesting that the components of the pathway may be accumulated in the oocyte during oogenesis and resistant to exogenous insults. In comparison to published mouse array data, we observed species differences and similarities in the temporal expression patterns of some genes, suggesting that miRNA processing may be regulated differently. These data extend our understanding of the potential roles of miRNA during primate embryogenesis. PMID:18646051

  14. RNA interference as a method for target-site screening in the Western Corn Rootworm, Diabrotica virgifera virgifera

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA interference (RNAi) is one of the most powerful and extraordinarily-specific means by which to silence genes. The ability of RNAi to silence genes makes it possible to ascertain function from genomic data, thereby making it an excellent choice for target-site screening. To test the efficacy of...

  15. Broad Meloidogyne Resistance in Potato Based on RNA Interference of Effector Gene 16D10.

    PubMed

    Dinh, Phuong T Y; Zhang, Linhai; Mojtahedi, Hassan; Brown, Charles R; Elling, Axel A

    2015-03-01

    Root-knot nematodes (Meloidogyne spp.) are a significant problem in potato (Solanum tuberosum) production. There is no potato cultivar with Meloidogyne resistance, even though resistance genes have been identified in wild potato species and were introgressed into breeding lines. The objectives of this study were to generate stable transgenic potato lines in a cv. Russet Burbank background that carry an RNA interference (RNAi) transgene capable of silencing the 16D10 Meloidogyne effector gene, and test for resistance against some of the most important root-knot nematode species affecting potato, i.e., M. arenaria, M. chitwoodi, M. hapla, M. incognita, and M. javanica. At 35 days after inoculation (DAI), the number of egg masses per plant was significantly reduced by 65% to 97% (P < 0.05) in the RNAi line compared to wild type and empty vector controls. The largest reduction was observed in M. hapla, whereas the smallest reduction occurred in M. javanica. Likewise, the number of eggs per plant was significantly reduced by 66% to 87% in M. arenaria and M. hapla, respectively, compared to wild type and empty vector controls (P < 0.05). Plant-mediated RNAi silencing of the 16D10 effector gene resulted in significant resistance against all of the root-knot nematode species tested, whereas R Mc1(blb) , the only known Meloidogyne resistance gene in potato, did not have a broad resistance effect. Silencing of 16D10 did not interfere with the attraction of M. incognita second-stage juveniles to roots, nor did it reduce root invasion. PMID:25861119

  16. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways

    PubMed Central

    Clemens, James C.; Worby, Carolyn A.; Simonson-Leff, Nancy; Muda, Marco; Maehama, Tomohiko; Hemmings, Brian A.; Dixon, Jack E.

    2000-01-01

    We demonstrate the efficacy of double-stranded RNA-mediated interference (RNAi) of gene expression in generating “knock-out” phenotypes for specific proteins in several Drosophila cell lines. We prove the applicability of this technique for studying signaling cascades by dissecting the well-characterized insulin signal transduction pathway. Specifically, we demonstrate that inhibiting the expression of the DSOR1 (mitogen-activated protein kinase kinase, MAPKK) prevents the activation of the downstream ERK-A (MAPK). In contrast, blocking ERK-A expression results in increased activation of DSOR1. We also show that Drosophila AKT (DAKT) activation depends on the insulin receptor substrate, CHICO (IRS1–4). Finally, we demonstrate that blocking the expression of Drosophila PTEN results in the activation of DAKT. In all cases, the interference of the biochemical cascade by RNAi is consistent with the known steps in the pathway. We extend this powerful technique to study two proteins, DSH3PX1 and Drosophila ACK (DACK). DSH3PX1 is an SH3, phox homology domain-containing protein, and DACK is homologous to the mammalian activated Cdc42 tyrosine kinase, ACK. Using RNAi, we demonstrate that DACK is upstream of DSH3PX1 phosphorylation, making DSH3PX1 an identified downstream target/substrate of ACK-like tyrosine kinases. These experiments highlight the usefulness of RNAi in dissecting complex biochemical signaling cascades and provide a highly effective method for determining the function of the identified genes arising from the Drosophila genome sequencing project. PMID:10823906

  17. EGFP-EGF1-Conjugated PLGA Nanoparticles for Targeted Delivery of siRNA into Injured Brain Microvascular Endothelial Cells for Efficient RNA Interference

    PubMed Central

    Chen, Chen; Mei, Heng; Shi, Wei; Deng, Jun; Zhang, Bo; Guo, Tao; Wang, Huafang; Hu, Yu

    2013-01-01

    Injured endothelium is an important target for drug and/or gene therapy because brain microvascular endothelial cells (BMECs) play critical roles in various pathophysiological conditions. RNA-mediated gene silencing presents a new therapeutic approach for treating such diseases, but major challenge is to ensure minimal toxicity and target delivery of siRNA to injured BMECs. Injured BMECs overexpress tissue factor (TF), which the fusion protein EGFP-EGF1 could be targeted to. In this study, TNF alpha (TNF-α) was chosen as a stimulus for primary BMECs to produce injured endothelium in vitro. The EGFP-EGF1-PLGA nanoparticles (ENPs) with loaded TF-siRNA were used as a new carrier for targeted delivery to the injured BMECs. The nanoparticles then produced intracellular RNA interference against TF. We compared ENP-based transfections with NP-mediated transfections, and our studies show that the ENP-based transfections result in a more efficient downregulation of TF. Our findings also show that the TF siRNA-loaded ENPs had minimal toxicity, with almost 96% of the cells viable 24 h after transfection while Lipofectamine-based transfections resulted in only 75% of the cells. Therefore, ENP-based transfection could be used for efficient siRNA transfection to injured BMECs and for efficient RNA interference (RNAi). This transfection could serve as a potential treatment for diseases, such as stroke, atherosclerosis and cancer. PMID:23593330

  18. Antiviral RNA Interference against Orsay Virus Is neither Systemic nor Transgenerational in Caenorhabditis elegans

    PubMed Central

    Sarkies, Peter; Le Pen, Jérémie; Tanguy, Mélanie

    2015-01-01

    ABSTRACT Antiviral RNA-mediated silencing (RNA interference [RNAi]) acts as a powerful innate immunity defense in plants, invertebrates, and mammals. In Caenorhabditis elegans, RNAi is systemic; i.e., RNAi silencing signals can move between cells and tissues. Furthermore, RNAi effects can be inherited transgenerationally and may last for many generations. Neither the biological relevance of systemic RNAi nor transgenerational RNAi is currently understood. Here we examined the role of both pathways in the protection of C. elegans from viral infection. We studied the Orsay virus, a positive-strand RNA virus related to Nodaviridae and the first and only virus known to infect C. elegans. Immunity to Orsay virus infection requires the RNAi pathway. Surprisingly, we found that genes required for systemic or transgenerational RNAi did not have a role in antiviral defense. Furthermore, we found that Orsay virus infection did not elicit a systemic RNAi response even when a target for RNAi was provided by using transgenes. Finally, we show that viral siRNAs, the effectors of RNAi, are not inherited to a level that provides any significant resistance to viral infection in the next generation. We conclude that systemic or transgenerational RNAi does not play a role in the defense against natural Orsay virus infection. Furthermore, our data suggest that there is a qualitative difference between experimental RNAi and antiviral RNAi. Our data are consistent with a model of systemic and transgenerational RNAi that requires a nuclear or germ line component that is lacking in almost all RNA virus infections. IMPORTANCE Since its discovery in Caenorhabditis elegans, RNAi has proven a valuable scientific tool in many organisms. In C. elegans, exogenous RNAi spreads throughout the organism and can be passed between generations; however, there has been controversy as to the endogenous role(s) that the RNAi pathway plays. One endogenous role for which spreading both within the infected

  19. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea.

    PubMed

    Choi, Man-Yeon; Vander Meer, Robert K; Coy, Monique; Scharf, Michael E

    2012-08-01

    Insect neuropeptide hormones represent more than 90% of all insect hormones. The PBAN/pyrokinin family is a major group of insect neuropeptides, and they are expected to be found from all insect groups. These species-specific neuropeptides have been shown to have a variety of functions from embryo to adult. PBAN is well understood in moth species relative to sex pheromone biosynthesis, but other potential functions are yet to be determined. Recently, we focused on defining the PBAN gene and peptides in fire ants in preparation for an investigation of their function(s). RNA interference (RNAi) technology is a convenient tool to investigate unknown physiological functions in insects, and it is now an emerging method for development of novel biologically-based control agents as alternatives to insecticides. This could be a paradigm shift that will avoid many problems associated with conventional chemical insecticides. In this study, we selected the PBAN gene and its neuropeptide products as an RNAi target from two insect groups; a social insect, the fire ant (Solenopsis invicta) and a non-social insect, the corn earworm (Helicoverpa zea). Both insects are economically important pests. We report negative impacts after PBAN dsRNA treatment to suppress PBAN gene transcription during developmental and adult stages of both species, e.g. increased adult and larval mortality, delayed pupal development and decreased sex pheromone production in the moth. This is an important first step in determining the multiple functions of the PBAN gene in these two insects. This work illustrates the variety of phenotypic effects observed after RNAi silencing of the PBAN gene and suggests the possibility of novel biologically-based insect pest control methods. PMID:22705256

  20. Transcriptome Analysis in Cotton Boll Weevil (Anthonomus grandis) and RNA Interference in Insect Pests

    PubMed Central

    Coelho, Roberta Ramos; Antonino de Souza Jr, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas-Jr, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families’ data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects. PMID:24386449

  1. The 26S proteasome in Schistosoma mansoni: bioinformatics analysis, developmental expression, and RNA interference (RNAi) studies.

    PubMed

    Nabhan, Joseph F; El-Shehabi, Fouad; Patocka, Nicholas; Ribeiro, Paula

    2007-11-01

    The 26S proteasome is a proteolytic complex responsible for the degradation of the vast majority of eukaryotic proteins. Regulated proteolysis by the proteasome is thought to influence cell cycle progression, transcriptional control, and other critical cellular processes. Here, we used a bioinformatics approach to identify the proteasomal constituents of the parasitic trematode Schistosoma mansoni. A detailed search of the S. mansoni genome database identified a total of 31 putative proteasomal subunits, including 17 subunits of the regulatory (19S) complex and 14 predicted catalytic (20S) subunits. A quantitative real-time RT-PCR analysis of subunit expression levels revealed that the S. mansoni proteasome components are differentially expressed among cercaria, schistosomula, and adult worms. In particular, the data suggest that the proteasome may be downregulated during the early stages of schistosomula development and is subsequently upregulated as the parasite matures to the adult stage. To test for biological relevance, we developed a transfection-based RNA interference method to knockdown the expression of the proteasome subunit, SmRPN11/POH1. Transfection of in vitro transformed S. mansoni schistosomula with specific short-interfering RNAs (siRNAs) diminished SmRPN11/POH1 expression nearly 80%, as determined by quantitative RT-PCR analysis, and also decreased parasite viability 78%, whereas no significant effect could be seen after treatment with the same amount of an irrelevant siRNA. These results indicate that the subunit SmRPN11/POH1 is an essential gene in schistosomes and further suggest an important role for the proteasome in parasite development and survival. PMID:17892869

  2. An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis

    PubMed Central

    2010-01-01

    Background In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and UAS-dsRNA transgenic lines. Results By targeting around 10% of the Drosophila genes, this in vivo RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped. Conclusions In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA

  3. Transgenic RNA interference (RNAi)-derived field resistance to cassava brown streak disease.

    PubMed

    Ogwok, Emmanuel; Odipio, John; Halsey, Mark; Gaitán-Solís, Eliana; Bua, Anton; Taylor, Nigel J; Fauquet, Claude M; Alicai, Titus

    2012-12-01

    Cassava brown streak disease (CBSD), caused by the Ipomoviruses Cassava brown streak virus (CBSV) and Ugandan Cassava brown streak virus (UCBSV), is considered to be an imminent threat to food security in tropical Africa. Cassava plants were transgenically modified to generate small interfering RNAs (siRNAs) from truncated full-length (894-bp) and N-terminal (402-bp) portions of the UCBSV coat protein (ΔCP) sequence. Seven siRNA-producing lines from each gene construct were tested under confined field trials at Namulonge, Uganda. All nontransgenic control plants (n = 60) developed CBSD symptoms on aerial tissues by 6 months after planting, whereas plants transgenic for the full-length ΔCP sequence showed a 3-month delay in disease development, with 98% of clonal replicates within line 718-001 remaining symptom free over the 11-month trial. Reverse transcriptase-polymerase chain reaction (RT-PCR) diagnostics indicated the presence of UCBSV within the leaves of 57% of the nontransgenic controls, but in only two of 413 plants tested (0.5%) across the 14 transgenic lines. All transgenic plants showing CBSD were PCR positive for the presence of CBSV, except for line 781-001, in which 93% of plants were confirmed to be free of both pathogens. At harvest, 90% of storage roots from nontransgenic plants were severely affected by CBSD-induced necrosis. However, transgenic lines 718-005 and 718-001 showed significant suppression of disease, with 95% of roots from the latter line remaining free from necrosis and RT-PCR negative for the presence of both viral pathogens. Cross-protection against CBSV by siRNAs generated from the full-length UCBSV ΔCP confirms a previous report in tobacco. The information presented provides proof of principle for the control of CBSD by RNA interference-mediated technology, and progress towards the potential control of this damaging disease. PMID:22845735

  4. Phenotypic changes associated with RNA interference silencing of chalcone synthase in apple (Malus × domestica).

    PubMed

    Dare, Andrew P; Tomes, Sumathi; Jones, Midori; McGhie, Tony K; Stevenson, David E; Johnson, Ross A; Greenwood, David R; Hellens, Roger P

    2013-05-01

    We have identified in apple (Malus × domestica) three chalcone synthase (CHS) genes. In order to understand the functional redundancy of this gene family RNA interference knockout lines were generated where all three of these genes were down-regulated. These lines had no detectable anthocyanins and radically reduced concentrations of dihydrochalcones and flavonoids. Surprisingly, down-regulation of CHS also led to major changes in plant development, resulting in plants with shortened internode lengths, smaller leaves and a greatly reduced growth rate. Microscopic analysis revealed that these phenotypic changes extended down to the cellular level, with CHS-silenced lines showing aberrant cellular organisation in the leaves. Fruit collected from one CHS-silenced line was smaller than the 'Royal Gala' controls, lacked flavonoids in the skin and flesh and also had changes in cell morphology. Auxin transport experiments showed increased rates of auxin transport in a CHS-silenced line compared with the 'Royal Gala' control. As flavonoids are well known to be key modulators of auxin transport, we hypothesise that the removal of almost all flavonoids from the plant by CHS silencing creates a vastly altered environment for auxin transport to occur and results in the observed changes in growth and development. PMID:23398045

  5. RNA Interference Improves Myopathic Phenotypes in Mice Over-expressing FSHD Region Gene 1 (FRG1)

    PubMed Central

    Wallace, Lindsay M; Garwick-Coppens, Sara E; Tupler, Rossella; Harper, Scott Q

    2011-01-01

    Muscular dystrophies, and other diseases of muscle, arise from recessive and dominant gene mutations. Gene replacement strategies may be beneficial for the former, while gene silencing approaches may provide treatment for the latter. In the last two decades, muscle-directed gene therapies were primarily focused on treating recessive disorders. This disparity at least partly arose because feasible mechanisms to silence dominant disease genes lagged behind gene replacement strategies. With the discovery of RNA interference (RNAi) and its subsequent development as a promising new gene silencing tool, the landscape has changed. In this study, our objective was to demonstrate proof-of-principle for RNAi therapy of a dominant myopathy in vivo. We tested the potential of adeno-associated viral (AAV)-delivered therapeutic microRNAs, targeting the human Facioscapulohumeral muscular dystrophy (FSHD) region gene 1 (FRG1), to correct myopathic features in mice expressing toxic levels of human FRG1 (FRG1−high mice). We found that FRG1 gene silencing improved muscle mass, strength, and histopathological abnormalities associated with muscular dystrophy in FRG1−high mice, thereby demonstrating therapeutic promise for treatment of dominantly inherited myopathies using RNAi. This approach potentially applies to as many as 29 different gene mutations responsible for myopathies inherited as dominant disorders. PMID:21730972

  6. RNA interference: Applications and advances in insect toxicology and insect pest management.

    PubMed

    Kim, Young Ho; Soumaila Issa, Moustapha; Cooper, Anastasia M W; Zhu, Kun Yan

    2015-05-01

    Since its discovery, RNA interference (RNAi) has revolutionized functional genomic studies due to its sequence-specific nature of post-transcriptional gene silencing. In this paper, we provide a comprehensive review of the recent literature and summarize the current knowledge and advances in the applications of RNAi technologies in the field of insect toxicology and insect pest management. Many recent studies have focused on identification and validation of the genes encoding insecticide target proteins, such as acetylcholinesterases, ion channels, Bacillus thuringiensis receptors, and other receptors in the nervous system. RNAi technologies have also been widely applied to reveal the role of genes encoding cytochrome P450 monooxygenases, carboxylesterases, and glutathione S-transferases in insecticide detoxification and resistance. More recently, studies have focused on understanding the mechanism of insecticide-mediated up-regulation of detoxification genes in insects. As RNAi has already shown great potentials for insect pest management, many recent studies have also focused on host-induced gene silencing, in which several RNAi-based transgenic plants have been developed and tested as proof of concept for insect pest management. These studies indicate that RNAi is a valuable tool to address various fundamental questions in insect toxicology and may soon become an effective strategy for insect pest management. PMID:25987228

  7. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1.

    PubMed

    Barbie, David A; Tamayo, Pablo; Boehm, Jesse S; Kim, So Young; Moody, Susan E; Dunn, Ian F; Schinzel, Anna C; Sandy, Peter; Meylan, Etienne; Scholl, Claudia; Fröhling, Stefan; Chan, Edmond M; Sos, Martin L; Michel, Kathrin; Mermel, Craig; Silver, Serena J; Weir, Barbara A; Reiling, Jan H; Sheng, Qing; Gupta, Piyush B; Wadlow, Raymond C; Le, Hanh; Hoersch, Sebastian; Wittner, Ben S; Ramaswamy, Sridhar; Livingston, David M; Sabatini, David M; Meyerson, Matthew; Thomas, Roman K; Lander, Eric S; Mesirov, Jill P; Root, David E; Gilliland, D Gary; Jacks, Tyler; Hahn, William C

    2009-11-01

    The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IkappaB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-kappaB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-kappaB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer. PMID:19847166

  8. Brain water mobility decreases after astrocytic aquaporin-4 inhibition using RNA interference

    PubMed Central

    Badaut, Jérôme; Ashwal, Stephen; Adami, Arash; Tone, Beatriz; Recker, Rebecca; Spagnoli, David; Ternon, Béatrice; Obenaus, Andre

    2011-01-01

    Neuroimaging with diffusion-weighted imaging is routinely used for clinical diagnosis/prognosis. Its quantitative parameter, the apparent diffusion coefficient (ADC), is thought to reflect water mobility in brain tissues. After injury, reduced ADC values are thought to be secondary to decreases in the extracellular space caused by cell swelling. However, the physiological mechanisms associated with such changes remain uncertain. Aquaporins (AQPs) facilitate water diffusion through the plasma membrane and provide a unique opportunity to examine the molecular mechanisms underlying water mobility. Because of this critical role and the recognition that brain AQP4 is distributed within astrocytic cell membranes, we hypothesized that AQP4 contributes to the regulation of water diffusion and variations in its expression would alter ADC values in normal brain. Using RNA interference in the rodent brain, we acutely knocked down AQP4 expression and observed that a 27% AQP4-specific silencing induced a 50% decrease in ADC values, without modification of tissue histology. Our results demonstrate that ADC values in normal brain are modulated by astrocytic AQP4. These findings have major clinical relevance as they suggest that imaging changes seen in acute neurologic disorders such as stroke and trauma are in part due to changes in tissue AQP4 levels. PMID:20877385

  9. An RNA Interference Phenotypic Screen Identifies a Role for FGF Signals in Colon Cancer Progression

    PubMed Central

    Leushacke, Marc; Spörle, Ralf; Bernemann, Christof; Brouwer-Lehmitz, Antje; Fritzmann, Johannes; Theis, Mirko; Buchholz, Frank; Herrmann, Bernhard G.; Morkel, Markus

    2011-01-01

    In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression. PMID:21853123

  10. Targeting Th17 Cells with Small Molecules and Small Interference RNA

    PubMed Central

    Lin, Hui; Song, Pingfang; Zhao, Yi; Xue, Li-Jia; Liu, Yi; Chu, Cong-Qiu

    2015-01-01

    T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4+ T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage. PMID:26792955