These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

RNA modularity for synthetic biology  

PubMed Central

RNA molecules are highly modular components that can be used in a variety of contexts for building new metabolic, regulatory and genetic circuits in cells. The majority of synthetic RNA systems to date predominately rely on two-dimensional modularity. However, a better understanding and integration of three-dimensional RNA modularity at structural and functional levels is critical to the development of more complex, functional bio-systems and molecular machines for synthetic biology applications. PMID:24273647

2013-01-01

2

Modular power conditioning unit for photovoltaic applications  

Microsoft Academic Search

The concept of modular power conditioning systems for photovoltaic (PV) applications is discussed, with particular reference to the battery as the load. A MOSFET-based power conditioning unit (PCU) of 1 kW capacity is discussed in detail along with a control algorithm to track the maximum power point. Maximum power from each PV array is extracted in spite of any mismatch

R. Bhide; S. R. Bhat

1992-01-01

3

Locomotion With A Unit-Modular Reconfigurable Robot  

Microsoft Academic Search

A unit-modular robot is a robot that is composed of modules that are all identical. Inthis thesis we study the design and control of unit-modular dynamically reconfigurablerobots. This is based upon the design and construction of a robot called Polypod. Wefurther choose statically stable locomotion as the task domain to evaluate the designand control strategy. The result is the creation

Mark Yim

1994-01-01

4

A new microcontroller based solar energy conversion modular unit  

Microsoft Academic Search

This paper presents the design and the implementation of a new microcontroller-based solar energy conversion modular unit. The unit consists of an array of solar panels, a step-up chopper, a single-phase inverter, an AC mains power source and a microcontroller-based control unit. The novelty of this unit is that the switching device of the chopper is not only used for

F. Huang; Gao Zhimin; T. Forughian; D. Tien

1997-01-01

5

Human factors issues for multi-modular reactor units  

Microsoft Academic Search

Smaller and multi-modular reactors (MMR) will be highly technologically-advanced systems allowing more system flexibility to reactor configurations (e.g., addition\\/removal of reactor units). While the technical and financial advantages of such systems may be numerous, MMR presents many human factors challenges that may pose vulnerabilities to plant safety. An important human factors challenge in MMR operation and performance is the monitoring

Tuan Q. Tran; Humberto Garcia; Ronald L. Boring; Jeffrey C. Joe; Bruce P. Hallbert

2007-01-01

6

RNA Graph Partitioning for the Discovery of RNA Modularity: A Novel Application of Graph Partition Algorithm to Biology  

PubMed Central

Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (?2) associated with the topology matrix defining the graph: ?2 describes the overall topology, and the sum of µ2?s components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2?s components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (?220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578

Elmetwaly, Shereef; Schlick, Tamar

2014-01-01

7

RNA graph partitioning for the discovery of RNA modularity: a novel application of graph partition algorithm to biology.  

PubMed

Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG) framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2) corresponding to the second eigenvalues (?2) associated with the topology matrix defining the graph: ?2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (? 220 nucleotides). While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs also suggest design strategies for novel RNA motifs. PMID:25188578

Kim, Namhee; Zheng, Zhe; Elmetwaly, Shereef; Schlick, Tamar

2014-01-01

8

Structural basis for the modular recognition of single-stranded RNA by PPR proteins  

NASA Astrophysics Data System (ADS)

Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.

Yin, Ping; Li, Quanxiu; Yan, Chuangye; Liu, Ying; Liu, Junjie; Yu, Feng; Wang, Zheng; Long, Jiafu; He, Jianhua; Wang, Hong-Wei; Wang, Jiawei; Zhu, Jian-Kang; Shi, Yigong; Yan, Nieng

2013-12-01

9

Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes  

PubMed Central

Long intergenic noncoding RNAs (lincRNAs) regulate chromatin states and epigenetic inheritance. Here we show that the lincRNA HOTAIR serves as a scaffold for at least two distinct histone modification complexes. A 5? domain of HOTAIR binds Polycomb Repressive Complex 2 (PRC2) while a 3? domain of HOTAIR binds the LSD1/CoREST/REST complex. The ability to tether two distinct complexes enables RNA-mediated assembly of PRC2 and LSD1, and coordinates targeting of PRC2 and LSD1 to chromatin for coupled histone H3 lysine 27 methylation and lysine 4 demethylation. Our results suggest that lincRNAs may serve as scaffolds by providing binding surfaces to assemble select histone modification enzymes, and thereby specify the pattern of histone modifications on target genes. PMID:20616235

Tsai, Miao-Chih; Manor, Ohad; Wan, Yue; Mosammaparast, Nima; Wang, Jordon K.; Lan, Fei; Shi, Yang; Segal, Eran; Chang, Howard Y.

2010-01-01

10

Time Motion Study for Modular Caustic Solvent Extraction Unit  

SciTech Connect

The Defense Waste Processing Facilities (DWPF) at the Savannah River Site (SRS) is used to process high-level radioactive waste from the Tank Farm into borosilicate glass to reduce the mobility of the radionuclides and has processed and vitrified nuclear wastes into canisters for long-term disposal since FY96. All wastes vitrified to date in DWPF are ''sludge only'' wastes. The old salt waste processing technology, ITP, was suspended in FY98 due to benzene build-up inside the tank. The new selected technologies for treating the salt waste are Actinide Removal Process (ARP) and Caustic Side Solvent Extraction process (CSSX). The Modular CSSX Unit (MCU) is a cesium removal process that will be operated downstream of the ARP. The MCU is a short-term method for cesium removal, which uses the same technology as the Salt Waste Processing Facility (SWPF). Once the SWPF becomes operational, the MCU will be shut down. The modeling request is from the MCU project to verify the validity of its Concept Design Package. The modeling task is not typical because there are five different facilities/projects/processes involved, i.e., Tank Farm, ARP, MCU, Saltstone, and DWPF. Each facility, project, and process has their own management team and organization, with its own fiscal responsibility and performance accountability. In addition, from a task cost perspective, MCU desires to minimize modeling not directly associated with their facility. The balancing of comprehensive analysis with limited granularity is challenging. The customer expectation is the model should be small and delivered within weeks. Modeling a stand-alone MCU will not yield overall meaningful results because it can be expected that most problems will occur at interfaces with other facilities. This paper discusses how we set out our modeling strategy, overcame obstacles, avoided touchy issues, and delivered the modeling result on time and on budget.

CHANG, ROBERTC.

2004-10-30

11

KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED MANIPULATOR UNITS  

SciTech Connect

Decontamination and Dismantling (D&D) activities within the U.S. Department of Energy (DOE) require a long reach manipulator with a large load capacity. Variable Geometry Trusses (VGTs) are a unique class of mechanical structures which allow the advantages of truss structures for large scale applications to be applied to large robotic manipulators. Individual VGT units may be assembled to create a modular, long-reach, truss-type manipulator. Each module of such a manipulator system is either a static truss section or one of several possible VGT geometries. While many potential applications exist for this technology, the present work is largely motivated by the need for generic robotic systems for remote manipulation. A manipulator system based on VGT modules provides several advantages. The reconfigurable nature of the manipulator system allows it to be adapted on site to unforeseen conditions. The kinematic redundancy of the manipulator enables it to work effectively even in a highly obstructed workspace. The parallel structure of the truss modules enables the manipulator to be withdrawn in the event of a structural failure. Finally, the open framework of the modules provides a clear, protected passageway for control and power cabling, waste conveyance, or other services required at the end effector. As is implied in a truss structure, all primary members of a VGT are ideally loaded in pure tension or compression. This results in an extremely stiff and strong manipulator system with minimal overall weight. Careful design of the joints of a VGT is very important to the overall stiffness and accuracy of the structure, as several links (as many as six) are joined together at each joint. The greatest disadvantage to this approach to manipulator design has traditionally been that the kinematics of VGT structures are complex and poorly understood. This report specifically addresses the kinematics of several possible geometries for the individual VGT units. Equations and solution techniques are developed for solving the "forward" or "direct" and "inverse" kinematic problems for these geometries. The" forward" kinematic problem is that of finding the position and orientation of the distal end of the VGT relative to the proximal end, given the specific displacements of the (linear) actuators. This problem is rarely solvable in closed form. However, powerful iterative algorithms capable of solution in real time on typical modern robot control hardware are presented. The "inverse" kinematic problem is that of finding the required actuator displacements given the position and orientation of the distal end of the VGT relative to the proximal end. For specific VGT geometries, closed-form solutions are presented. For the more general problem, iterative algorithms capable of solution in real time are again derived and presented.

Salerno, R. J.

1994-06-01

12

A Modular Instrumentation System for NASA's Habitat Demonstration Unit  

NASA Technical Reports Server (NTRS)

NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.

Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

2010-01-01

13

Performance Evaluation of a Modular Detector Unit for X-Ray Computed Tomography  

PubMed Central

A research prototype CT scanner is currently under development in our lab. One of the key components in this project is the CT detector. This paper describes the design and performance evaluation of the modular CT detector unit for our proposed scanner. It consists of a Photodiode Array Assembly which captures irradiating X-ray photons and converts the energy into electrical current, and a mini Data Acquisition System which performs current integration and converts the analog signal into digital samples. The detector unit can be easily tiled together to form a CT detector. Experiments were conducted to characterize the detector performance both at the single unit level and system level. The noise level, linearity and uniformity of the proposed detector unit were reported and initial imaging studies were also presented which demonstrated the potential application of the proposed detector unit in actual CT scanners. PMID:23598502

Guo, Zhe; Tang, Zhiwei; Wang, Xinzeng; Deng, Mingliang; Hu, Guangshu; Zhang, Hui

2013-01-01

14

Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains  

SciTech Connect

Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Tanaka Hall, Traci M.; Wang, Zefeng (NIH); (Beijing U); (UNC)

2011-10-28

15

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

SciTech Connect

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

OHara J. M.; Higgins, J.; DAgostino, A.

2012-01-17

16

Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion  

NASA Technical Reports Server (NTRS)

This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; DelCastillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

2013-01-01

17

Extreme environment capable, modular and scalable power processing unit for solar electric propulsion  

NASA Astrophysics Data System (ADS)

This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

18

Domain ChIRP reveals the modularity of long noncoding RNA architecture, chromatin interactions, and function  

PubMed Central

Little is known about the functional domain architecture of long RNA molecules, mainly because of a relative paucity of suitable methods to analyze RNA function at a domain level. Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a scalable technique to dissect pairwise RNA-RNA, RNA-protein, and RNA-chromatin interactions in living cells. dChIRP of roX1, a lncRNA essential for Drosophila X-chromosome dosage compensation, reveals a “three-fingered hand” ribonucleoprotein topology. Each RNA finger binds chromatin and the Male-Specific Lethal (MSL) protein complex, and can individually rescue male lethality in roX-null flies, thus defining a minimal RNA domain for chromosome-wide dosage compensation. dChIRP improves RNA genomic localization signal by >20-fold relative to previous techniques, and these binding sites are correlated with chromosome conformation data, indicating that most roX-bound loci cluster in a nuclear territory. These results suggest dChIRP can reveal lncRNA architecture and function with new precision and sensitivity. PMID:24997788

Quinn, Jeffrey J; Chu, Ci; Akhtar, Asifa; Chang, Howard Y

2014-01-01

19

Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase  

PubMed Central

To prevent potential errors in protein synthesis, some aminoacyl-transfer RNA (tRNA) synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). Class Ia leucyl-tRNA synthetase (LeuRS) may misactivate various natural and non-protein amino acids and then mischarge tRNALeu. It is known that the fidelity of prokaryotic LeuRS depends on multiple editing pathways to clear the incorrect intermediates and products in the every step of aminoacylation reaction. Here, we obtained human cytoplasmic LeuRS (hcLeuRS) and tRNALeu (hctRNALeu) with high activity from Escherichia coli overproducing strains to study the synthetic and editing properties of the enzyme. We revealed that hcLeuRS could adjust its editing strategy against different non-cognate amino acids. HcLeuRS edits norvaline predominantly by post-transfer editing; however, it uses mainly pre-transfer editing to edit ?-amino butyrate, although both amino acids can be charged to tRNALeu. Post-transfer editing as a final checkpoint of the reaction was very important to prevent mis-incorporation in vitro. These results provide insight into the modular editing pathways created to prevent genetic code ambiguity by evolution. PMID:20805241

Chen, Xin; Ma, Jing-Jing; Tan, Min; Yao, Peng; Hu, Qing-Hua; Eriani, Gilbert; Wang, En-Duo

2011-01-01

20

Cost effective modular unit for cleaning oil and gas field waste water  

SciTech Connect

Problems of environmental control involving conservation of water resources are vital for the development of giant oil and gas condensate fields near Caspian Sea (Russia) characterized by water shortages. One of the urgent tasks of oil production industry is to use all field waste water consisting of underground, processing and rain water. It was necessary to construct a new highly effective equipment which could be used in local waste water treatment. Now we have at our disposal a technology and equipment to meet the requirements to the treated water quality. Thus we have installed a modular unit of 100 m{sup 3}/a day capacity to clean waste water from oil products, suspended matter and other organic pollutants at Orenburg oil and gas condensate field, Russia. The unit provides with a full treatment of produced water and comprises a settling tank with adhesive facility, the number of sorption filters, Trofactor bioreactors and a disinfecting facility. The equipment is fitted into three boxes measuring 9 x 3.2 x 2.7 in each. The equipment is simple in design that enables to save money, time and space. Sorption filters, bioreactors as well as the Trofactor process are a part of know-how. While working on the unit construction we applied well known methods of settling and sorption. The process of mechanic cleaning is undergoing in the following succession: (1) the gravitational separation in a settling tank where the floated film oil products are constantly gathered and the sediment is periodically taken away, (2) the settled water treatment in sorption Filters of a special kind.

Zinberg, M.B.; Nenasheva, M.N.; Gafarov, N.A.

1996-12-31

21

Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179  

SciTech Connect

Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

Samadi, Azadeh [Savannah River Remediation, Aiken, SC 29808 (United States)] [Savannah River Remediation, Aiken, SC 29808 (United States)

2013-07-01

22

MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT GAMMA MONITORS SYSTEM FINAL REPORT  

SciTech Connect

The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the liquid Waste Organization (LWO) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU.'' The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Revision of this report is a deliverable in Technical Task Report SP-TTR-2006-00010, ''NaI Shield Box Testing.'' Gamma-ray monitors were developed to: {lg_bullet} Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, {lg_bullet} Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, {lg_bullet} Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be approximately fifteen times higher than the Cs-137 concentration in the Feed Tank.)

Casella, V

2007-06-25

23

Modular Plasmonic Nanocarriers for Efficient and Targeted Delivery of Cancer-Therapeutic siRNA  

PubMed Central

We have combined a versatile and powerful route to deliver nucleic acids with peptide-based cell-specific targeting. siRNA targeting the polo-like kinase gene is in clinical trials for cancer treatment, and here we deliver this RNA selectively to cancer cells displaying the neuropilin-1 epitope using gold nanoshells. Release of the siRNA from the nanoparticles results from irradiation with a pulsed near-infrared laser, which also provides efficient endosomal escape within the cell. As a result, our approach requires 10-fold less material than standard nucleic acid transduction materials and is significantly more efficient than other particle-based methods. We also describe a particle–nucleic acid design that does not rely on modified RNA, thereby making the preparation of these materials more efficient and much less expensive. These improvements, when combined with control over when and where the siRNA is released, could provide the basis for diverse cell biological studies. PMID:24597503

2015-01-01

24

MODULAR CAUSTIC SIDE SOLVENT EXTRACTION UNIT (MCU) GAMMA MONITORS SYSTEM FINAL REPORT  

SciTech Connect

The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, the Closure Business Unit (CBU) plans to process a portion of dissolved saltcake waste through a Modular CSSX Unit (MCU). This work was derived from Technical Task Request SP-TTR-2004-00013, ''Gamma Monitor for MCU''. The deliverables for this task are the hardware and software for the gamma monitors and a report summarizing the testing and acceptance of this equipment for use in the MCU. Gamma-ray monitors are required to: (1) Measure the Cs-137 concentration in the decontaminated salt solution before entering the DSS (Decontaminated Salt Solution) Hold Tank, (2) Measure the Cs-137 concentration in the strip effluent before entering the Strip Effluent Hold Tank, (3) Verify proper operation of the solvent extraction system by verifying material balance within the process (The DSS Hold Tank Cs-137 concentration will be very low and the Cs-137 concentration in the Strip Effluent Hold Tank will be fifteen times higher than the Cs-137 concentration in the Feed Tank.) Sodium iodide monitors are used to measure the Cs-137 concentration in the piping before the DSS Hold tank, while GM monitors are used for Cs-137 measurements before the Strip Effluent Hold Tank. Tungsten shields were designed using Monte Carlo calculations and fabricated to reduce the process background radiation at the detector positions. These monitors were calibrated with NIST traceable standards that were specially made to be the same as the piping being monitored. Since this gamma ray monitoring system is unique, specially designed software was written and acceptance tested by Savannah River National Laboratory personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System (DCS). In order to provide user friendly software for the process personnel, the software was broken down into just a few software modules. These software modules are the Application Window, Detector Selection, Detector Configuration Settings, Background Counting, and Routine Data Acquisition. Instructions for using the software have been included in a user's manual that is appended to this report. The work presented in this report meets all of the requirements set forth in the project task plan to design and implement gamma ray monitors for the MCU. Additional setup and testing of the system will be required when it implemented in the process.

Casella, V

2005-12-15

25

Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit  

SciTech Connect

A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution from pH 3 to 1 and from pH 3 to 11 were not effective in clarifying the aqueous dispersions of organic droplets. Use of a 0.7-micron rated glass fiber filter of 3/4 mm thickness under gravity flow provided significant reduction in organic content and increased clarity. A 2 inch element stack of ''Teflon{reg_sign} Fiber Interceptor-Pak{trademark}'' media from ACS Separations, Inc. was not effective in clarifying DSS simulant.

Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

2005-04-29

26

NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT  

SciTech Connect

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and no leachate was observed in the NGS from any of the polymers studied.

Fondeur, F.; Peters, T.; Fink, S.

2011-09-29

27

Life extension program for the modular caustic side solvent extraction unit at Savannah River Site  

SciTech Connect

Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

Samadi-Dezfouli, Azadeh

2012-11-14

28

Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors  

Microsoft Academic Search

The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to

OHara J. M; J. Higgins; A. DAgostino

2012-01-01

29

Energy conservation potential of modular integrated utility systems (MIUS). [720Unit garden apartment complex  

Microsoft Academic Search

The Department of Housing and Urban Development is conducting the Modular Integrated Utility System (MIUS) Program devoted to development and demonstration of the technical, economic, and institutional advantages of integrating the systems for providing all or several of the utility services for a community. Possible utility services include electric power, space heating and cooling, potable water, and liquid and solid

W. R. Mixon; C. L. Segaser

1976-01-01

30

Waste and Solvent Composition Limits for Modular Caustic-Side Solvent Extraction Unit (MCU)  

SciTech Connect

This study examined waste feed and solvent limits for the Modular Caustic-Side Solvent Extraction Unit (MCU) currently being designed and built at the Savannah River Site (SRS) to remove cesium from highly alkaline radioactive waste. The study involved proposing ranges for 12 waste feed components (i.e., Na{sup +}, K{sup +}, Cs{sup +}, OH{sup -}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, Cl{sup -}, F{sup -}, SO{sub 4}{sup 2-}, PO{sub 4}{sup 3-}, and CO{sub 3}{sup 2-}, and AlO{sub 2}{sup -}) through a compilation of SRS waste data. Statistical design methods were used to generate numerous wastes with varying compositions from the proposed ranges. An Oak Ridge National Laboratory (ORNL) model called SXFIT was used to predict the cesium extraction distribution coefficients (D-values) between the organic (solvent) phase and the aqueous waste phase using the waste component concentrations as inputs. The D-values from the SXFIT model were used as input along with MCU base case process parameters to a SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction) model to calculate final cesium concentrations for the MCU. The SASSE model was developed at Argonne National Laboratory (ANL). The SXFIT D-value and the waste component concentration data were used to develop a handier alternative model (neural network model) to the SXFIT model that predicts D-values within 15% of the SXFIT D-values. Both the SXFIT and the neural network model revealed the following. The solvent extractant concentration ratios are approximately equal to the corresponding D-value ratios; a useful feature that could be used to predict extraction D-values when the extractant concentration in the solvent changes in the MCU operation. Also, potassium is the only waste component out of the 12 that shows a distinct relationship with the cesium extraction D-values; an indication of potassium's competition with cesium in the Caustic-Side Solvent Extraction (CSSX) process. A waste feed acceptance model suitable for assessing wastes within relatively wide ranges of D-values (0.6-40) and initial cesium-137 concentrations (0.2-12.8 Ci/gal) has been developed from the SASSE outputs. The waste feed acceptance model is an equation involving initial cesium-137 concentration and D-value that results in a final cesium-137 concentration of 0.1 Ci/gal, the target concentration for the MCU. For example, the waste feed acceptance model shows the minimum acceptable extraction D-value based on MCU base conditions is 5.73. The waste feed acceptance model is defined by a simple linear relationship for extraction D-values {ge} 7. This facilitates quicker calculations. For a given extraction D-value, final cesium-137 concentration (C{sub f}) and initial cesium-137 concentration (C{sub 0}) are linearly related; while for a given C{sub 0}, log (C{sub f}) and log (extraction D-value) are linear with a slope of -1.43. These two relationships allow one to quickly calculate C{sub f} at other MCU conditions without resorting to the SASSE model. The SASSE runs indicate that broad changes in the MCU process parameters for the extraction, scrub and strip stages (i.e., flow rate, temperature, fraction of interstage carryover, total liquid volume per contactor stage, and efficiency per contactor stage) will not result in C{sub f} exceeding target, at least for the MCU base conditions.

Adu-Wusu, Kofi; Waler, Douglas D.; Edwards, Thomas B

2005-05-26

31

Babesia bovis: transcriptional analysis of rRNA gene unit expression.  

PubMed

The complex life cycle of Babesia bovis includes erythrocytic stages in the bovine host and other stages occurring inside its common tick vector Rhipicephalus microplus. In related apicomplexa, changing environmental conditions affect the expression of ribosomal RNA, but it remained unknown whether the polymorphic A, B, and C rRNA coding units of B. bovis are differentially expressed. Northern blot analysis confirmed that polymorphic regions in the B. bovis 18s and ITS-2 rRNA coding units are transcribed. Then, rRNA transcript expression profiles were compared by analyzing cDNA libraries generated from total RNA extracted from in vitro cultured parasites, B. bovis infected cattle, R. microplus larvae and egg sources. The 18s and ITS-2 expression profiles indicate that rRNA unit B is almost exclusively expressed in cultured parasites while units A, B, and C are co-transcribed in the in vivo total RNA sources. Collectively, the data indicate that differential transcription of rRNA occurs in B.bovis, depending on the life stage of the parasite and on the environment. PMID:19508867

Laughery, Jacob M; Lau, Audrey O T; White, Stephen N; Howell, Jeanne M; Suarez, Carlos E

2009-09-01

32

Babesia bovis: Transcriptional analysis of rRNA gene unit expression  

Microsoft Academic Search

The complex life cycle of Babesia bovis includes erythrocytic stages in the bovine host and other stages occurring inside its common tick vector Rhipicephalus microplus. In related apicomplexa, changing environmental conditions affect the expression of ribosomal RNA, but it remained unknown whether the polymorphic A, B, and C rRNA coding units of B. bovis are differentially expressed. Northern blot analysis

Jacob M. Laughery; Audrey O. T. Lau; Stephen N. White; Jeanne M. Howell; Carlos E. Suarez

2009-01-01

33

A Graphics Processing Unit Accelerated Motion Correction Algorithm and Modular System for Real-time fMRI  

PubMed Central

Real-time functional magnetic resonance imaging (rt-fMRI) has recently gained interest as a possible means to facilitate the learning of certain behaviors. However, rt-fMRI is limited by processing speed and available software, and continued development is needed for rt-fMRI to progress further and become feasible for clinical use. In this work, we present an open-source rt-fMRI system for biofeedback powered by a novel Graphics Processing Unit (GPU) accelerated motion correction strategy as part of the BioImage Suite project (www.bioimagesuite.org). Our system contributes to the development of rt-fMRI by presenting a motion correction algorithm that provides an estimate of motion with essentially no processing delay as well as a modular rt-fMRI system design. Using empirical data from rt-fMRI scans, we assessed the quality of motion correction in this new system. The present algorithm performed comparably to standard (non real-time) offline methods and outperformed other real-time methods based on zero order interpolation of motion parameters. The modular approach to the rt-fMRI system allows the system to be flexible to the experiment and feedback design, a valuable feature for many applications. We illustrate the flexibility of the system by describing several of our ongoing studies. Our hope is that continuing development of open-source rt-fMRI algorithms and software will make this new technology more accessible and adaptable, and will thereby accelerate its application in the clinical and cognitive neurosciences. PMID:23319241

Scheinost, Dustin; Hampson, Michelle; Qiu, Maolin; Bhawnani, Jitendra; Constable, R. Todd; Papademetris, Xenophon

2013-01-01

34

The Modular Resource Center: integrated units for the study of the anatomical sciences in a problem-based curriculum.  

PubMed

The Modular Resource Center (MRC) at the College of Veterinary Medicine at Cornell University was created in 1993 as a way to provide visual resources in support of a newly implemented problem-based curriculum in which the anatomical sciences are taught primarily in the first tutorial-based course, The Animal Body. Over two dozen modules have been created specifically in support of this course, whereas additional modules have been created in support of other basic science courses. The basic unit of organization of the MRC is a module presented in a carrel that provides students a way to study, either alone or in groups, a given topic. The topic is presented through a script and an integrated set of anatomical materials including plastinated dissected specimens, vascular casts, skeletal preparations, models, radiographs, histological slides, and photo- and electron micrographs. The key feature of this resource center is that it is not a museum; rather it is more analogous to an interactive library, that can be used for reference, study, and review, not only by veterinary students but also by faculty, interns, residents, and undergraduates. A unique aspect is that all materials have been made by veterinary students working with faculty during the summer. Although started as a resource in support of a tutorial-based curriculum, the MRC has evolved over a decade into an anatomy resource that would be highly valued in any curricular format. PMID:12467082

Mizer, Linda A; Farnum, Cornelia E; Schenck, Pamela D

2002-12-15

35

Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine  

NASA Technical Reports Server (NTRS)

The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.

Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve

2001-01-01

36

Feasibility, benefits and challenges of modular construction in high rise development in the United States : a developer's perspective  

E-print Network

Modular construction has long been utilized in the construction of residential and many other commercial product types as a means for potentially quicker construction delivery times. Over the past 5 years this construction ...

Velamati, Sri

2012-01-01

37

The Habitat Demonstration Unit Project: A Modular Instrumentation System for a Deep Space Habitat  

NASA Technical Reports Server (NTRS)

NASA is focused on developing human exploration capabilities in low Earth orbit (LEO), expanding to near Earth asteroids (NEA), and finally to Mars. Habitation is a crucial aspect of human exploration, and a current focus of NASA activities. The Habitation Demonstration Unit (HDU) is a project focused on developing an autonomous habitation system that enables human exploration of space by providing engineers and scientists with a test bed to develop, integrate, test, and evaluate habitation systems. A critical feature of the HDU is the instrumentation system, which monitors key subsystems within the habitat. The following paper will discuss the HDU instrumentation system performance and lessons learned during the 2010 Desert Research and Technology Studies (D-RaTS). In addition, this paper will discuss the evolution of the instrumentation system to support the 2011 Deep Space Habitat configuration, the challenges, and the lessons learned of implementing this configuration. In 2010, the HDU was implemented as a pressurized excursion module (PEM) and was tested at NASA s D-RaTS in Arizona [1]. For this initial configuration, the instrumentation system design used features that were successful in previous habitat instrumentation projects, while also considering challenges, and implementing lessons learned [2]. The main feature of the PEM instrumentation system was the use of a standards-based wireless sensor node (WSN), implementing an IEEE 802.15.4 protocol. Many of the instruments were connected to several WSNs, which wirelessly transmitted data to the command and data handling system via a mesh network. The PEM instrumentation system monitored the HDU during field tests at D-RaTS, and the WSN data was later analyzed to understand the performance of this system. In addition, several lessons learned were gained from the field test experience, which fed into the instrumentation design of the next generation of the HDU.

Rojdev, Kristina; Kennedy, Kriss J.; Yim, Hester; Williamsn, Robert M.; Hafermalz, Scott; Wagner, Raymond S.

2011-01-01

38

Mapping of Digitaria streak virus transcripts reveals different RNA species from the same transcription unit.  

PubMed Central

All, except 19 [corrected] bp, of the Digitaria streak virus (DSV) genome is transcribed. Two RNA transcripts (1+ and 2+) are encoded by the virion DNA strand and up to five (1- to 5-) by the complementary DNA strand [corrected]. Detailed mapping of these RNAs has revealed evidence for splicing in one species (RNA 4-), which together with its more abundant unspliced counterpart (RNA 2-) could synthesize both a 30.5 and 41 kd polypeptide from the same transcription unit. This extensive overlapping of spliced and unspliced RNAs could indicate that the initiation and splicing of transcripts is temporally regulated. At least one transcript (RNA 1-) may have a non-translational role. Transcription of the DSV genome shows similarities to some animal DNA viruses, particularly the papovaviruses. Images PMID:2472960

Accotto, G P; Donson, J; Mullineaux, P M

1989-01-01

39

The Challenges of Modularization.  

ERIC Educational Resources Information Center

Discusses the movement towards credit accumulation and transfer in higher education institutions based on experiences at two universities in the United Kingdom, the University of Northumbria and the University of Glamorgan. Modularization, or unitization, and semesterization are considered, and three key areas are addressed: management, student…

Brown, Sally; Saunders, Danny

1995-01-01

40

RNA.  

ERIC Educational Resources Information Center

Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

Darnell, James E., Jr.

1985-01-01

41

Modular analysis of biological networks.  

PubMed

The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks. PMID:22161320

Kaltenbach, Hans-Michael; Stelling, Jörg

2012-01-01

42

NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)  

SciTech Connect

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and with the exception of CPVC, no leachate was observed in the NGS from any of the polymers studied. The testing shows no major concerns for compatibility over the short duration of these tests but does indicate that longer duration exposure studies are warranted, especially for Tefzel. However, the physical changes experienced by Tefzel in the improved solvent were comparable to the physical changes obtained when Tefzel is placed in CSSX baseline solvent. Therefore, there is no effect of the improved solvent beyond those observed in CSSX baseline solvent.

Fondeur, F.; Peters, T.; Fink, S.

2012-01-17

43

Modular manufacturing  

Microsoft Academic Search

This paper discusses requirements to be satisfied by future manufacturing systems and proposes a new concept of modular manufacturing to integrate intelligent and complex machines. In large-scale systems such as manufacturing systems, modularization is indispensable for clarifying logical structure and assuring a high degree of ease of construction. The parts, products and manufacturing equipments as well as the design and

H. Tsukune; M. Tsukamoto; T. Matsushita; F. Tomita; K. Okada; T. Ogasawara; K. Takase; T. Yuba

1993-01-01

44

The modular power subsystem for the multimission modular spacecraft  

NASA Technical Reports Server (NTRS)

The block diagram, subsystems, and components of the modular power subsystem for the multimission modular spacecraft (MMS) are described. The basic design studies were guided by considerations of cost, efficiency, simplicity, and flexibility to serve a variety of missions. Components discussed are the power regulator unit, the power control unit, the signal conditioning assembly, bus protection assembly, and the 20 Ah and 50 Ah batteries. The plan for the modular power subsystem protoflight module tests is shown. The testing has four phases: (1) component level tests, (2) subsystem integration and initial performance test, (3) subsystem protoflight environmental tests, and (4) subsystem final performance tests, qualification/acceptance review and delivery.

Harris, D. W.

1978-01-01

45

Modular Entanglement  

E-print Network

We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

Giulia Gualdi; Salvatore M. Giampaolo; Fabrizio Illuminati

2010-11-28

46

Modular entanglement.  

PubMed

We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

2011-02-01

47

RESULTS FROM ANALYSIS OF THE FIRST AND SECOND STRIP EFFLUENT COALESCER ELEMENTS FROM RADIOACTIVE OPERATIONS OF THE MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT  

SciTech Connect

The coalescer elements for the Strip Effluent (SE) acid within the Modular Caustic-Side Solvent Extraction Unit (MCU) experienced elevated differential pressure drop during radioactive operations. Following the end of operations for the first Macrobatch campaign and soon after start of the second Macrobatch campaign, personnel removed the coalescer media and provided to Savannah River National Laboratory (SRNL) for diagnostic investigation of the causes of reduced flow. This report summarizes those studies. Two Strip Effluent (SE) coalescers were delivered to the Savannah River National Laboratory (SRNL). One was removed from the Modular Caustic-Side Solvent Extraction Unit (MCU) between processing of Macrobatch 1 and 2 (coalescer 'Alpha'), and the second was removed from MCU after processing of {approx}24,000 gallons of salt solution (coalescer 'Beta'). Both coalescers underwent the same general strip acid flush program to reduce the dose and were delivered to SRNL for analysis of potential occluding solids. Analysis of Coalescer Alpha indicates the presence of aluminum hydroxide solids and aluminosilicate solids, while analysis of Coalescer Beta indicates the presence of aluminum hydroxide solids, but no aluminosilicates. Leaching studies on sections of both coalescers were performed. The results indicate that the coalescers had different amounts of solids present on them at the time of removal. Finally, samples of free liquids retrieved from both coalescers indicate no excessive amounts of CSSX solvent present. Given the strip acid flushing that occurred in the SE coalescers, the solids we detected on the coalescers are probably indicative of a larger quantity of these solids present before the strip acid flushing. Under this scenario, the excessive pressure drops are due to the solids and not from organic fouling.

Peters, T.; Fondeur, F.; Fink, S.

2011-06-28

48

Modular, Hierarchical Learning By Artificial Neural Networks  

NASA Technical Reports Server (NTRS)

Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

Baldi, Pierre F.; Toomarian, Nikzad

1996-01-01

49

Modular shield  

DOEpatents

A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

Snyder, Keith W. (Sandia Park, NM)

2002-01-01

50

Modular Certification  

NASA Technical Reports Server (NTRS)

Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

Rushby, John; Miner, Paul S. (Technical Monitor)

2002-01-01

51

76 FR 13661 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators...importation of certain devices for modular compressed air conditioning units and the FRL units they connect by reason of...

2011-03-14

52

Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices  

NASA Astrophysics Data System (ADS)

Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, ? = 67.256(9) degrees, ? = 80.356(11) degrees, ? = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

2014-09-01

53

On the origin of modular variation.  

PubMed

We study the dynamics of modularization in a minimal substrate. A module is a functional unit relatively separable from its surrounding structure. Although it is known that modularity is useful both for robustness and for evolvability (Wagner 1996), there is no quantitative model describing how such modularity might originally emerge. Here we suggest, using simple computer simulations, that modularity arises spontaneously in evolutionary systems in response to variation, and that the amount of modular separation is logarithmically proportional to the rate of variation. Consequently, we predict that modular architectures would appear in correlation with high environmental change rates. Because this quantitative model does not require any special substrate to occur, it may also shed light on the origin of modular variation in nature. This observed relationship also indicates that modular design is a generic phenomenon that might be applicable to other fields, such as engineering: Engineering design methods based on evolutionary simulation would benefit from evolving to variable, rather than stationary, fitness criteria, as a weak and problem-independent method for inducing modularity. PMID:12353747

Lipson, Hod; Pollack, Jordan B; Suh, Nam P

2002-08-01

54

Modular Robotics  

NSDL National Science Digital Library

The Palo Alto Research Center (PARC) is a subsidiary of Xerox Corporation. One of its most intriguing areas of study is "modular reconfigurable robotics," which is a technology that allows a robot to take itself apart and put itself back together again in a new form. This lets the robot customize its design for a given task. Several different models of robots have been constructed at the PARC, and this Web site describes how they were built and how they function. There is a large collection of video clips that show each of the robots in operation, including one of a robot riding a tricycle. Two Java simulation programs can be downloaded that demonstrate the control systems of two of the PARC models. A long list of publication titles with abstracts is given, and the full text is available for a few of them.

55

Functional Unit of the RNA Polymerase II C-Terminal Domain Lies within Heptapeptide Pairs  

Microsoft Academic Search

Unlike all other RNA polymerases, the largest subunit (RPB1) of eukaryotic DNA-dependent RNA poly- merase II (RNAP II) has a C-terminal domain (CTD) comprising tandemly repeated heptapeptides with the consensus sequence Y-S-P-T-S-P-S. The tandem structure, heptad consensus, and most key functions of the CTD are conserved between yeast and mammals. In fact, all metazoans, fungi, and green plants examined to

John W. Stiller; Matthew S. Cook

2004-01-01

56

DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy  

SciTech Connect

The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science & Engineering (PS&E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of testing. The ARP stream represented the sludge/MST stream from Appendix E of the material balance provided by Subosits. The MCU stream represented the ''Maximum Volume'' case from the material balances provided by Campbell. The latest DWPF processing plan involves adding the ARP stream to the sludge at boiling in the Sludge Receipt and Adjustment Tank (SRAT). This would be accomplished before the SRAT receipt sample is taken and SRAT processing is initiated. The MCU stream will be added at boiling during the normal reflux phase of the SRAT cycle. The SRAT cycle will be considered complete once the MCU stream has been added. SRNL replicated this processing strategy in this testing.

Herman, C

2006-04-21

57

Fluidized-bed gas turbine experimental unit for Modular Integrated Utility Systems (MIUS) applications. Quarterly progress report, January 1, 1975March 31, 1975  

Microsoft Academic Search

The first in a series of quarterly reports, this work focuses on a program for developing a coal - fueled Modular Integrated Utility System (MIUS) at the Oak Ridge National Laboratory (ORNL) Oak Ridge, Tenn. The work is being jointly sponsored by the Department of Housing and Urban Development, the Office of Policy Development and Research, and the Energy Research

Fraas

1976-01-01

58

Modular robot  

DOEpatents

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

Ferrante, T.A.

1997-11-11

59

Modular robot  

DOEpatents

A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

Ferrante, Todd A. (Idaho Falls, ID)

1997-01-01

60

Babesia bovis: Transcriptional analysis of rRNA gene unit expression  

Technology Transfer Automated Retrieval System (TEKTRAN)

The complex life cycle of Babesia bovis includes erythrocytic stages in the bovine host and other stages occurring inside its common tick vector Rhipicephalus microplus. In related apicomplexa, changing environmental conditions affect the expression of ribosomal RNA, but it remained unknown whether ...

61

Piecing together modular : understanding the benefits and limitations of modular construction methods for multifamily development  

E-print Network

The primary purpose of this thesis is to explain the benefits and limitations of modular construction as it pertains to primarily wood-frame, multifamily housing in the United States. This thesis attempts to educate the ...

Cameron, Peter J. (Peter Jay)

2007-01-01

62

ToModularize ToModularize?  

E-print Network

degree of modularity in the human brain and numerous reasons why it might have evolved to be that way of Birmingham Edgbaston, Birmingham, B15 2TT, UK j.bullinaria@physics.org Abstract There is a considerable how the advantage can cause modularity to evolve. However, I shall also show that it is possible

Bullinaria, John

63

Portable modular detection system  

SciTech Connect

Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

Brennan, James S. (Rodeo, CA); Singh, Anup (Danville, CA); Throckmorton, Daniel J. (Tracy, CA); Stamps, James F. (Livermore, CA)

2009-10-13

64

Maximum modular graphs  

NASA Astrophysics Data System (ADS)

Modularity has been explored as an important quantitative metric for community and cluster detection in networks. Finding the maximum modularity of a given graph has been proven to be NP-complete and therefore, several heuristic algorithms have been proposed. We investigate the problem of finding the maximum modularity of classes of graphs that have the same number of links and/or nodes and determine analytical upper bounds. Moreover, from the set of all connected graphs with a fixed number of links and/or number of nodes, we construct graphs that can attain maximum modularity, named maximum modular graphs. The maximum modularity is shown to depend on the residue obtained when the number of links is divided by the number of communities. Two applications in transportation networks and data-centers design that can benefit of maximum modular partitioning are proposed.

Trajanovski, S.; Wang, H.; Van Mieghem, P.

2012-07-01

65

Solar photovoltaic power conversion using modular multilevel converter  

Microsoft Academic Search

This paper makes an attempt to develop grid connected solar photovoltaic array power conversion using modular multilevel converter. The proposed system makes use of single stage power conversion with maximum power point tracking and modular multilevel converter (MMC) as interfacing unit into the grid. Here perturb & observe method of maximum power point algorithm is used to regulate the DC

S. Rajasekar; Rajesh Gupta

2012-01-01

66

Manufactured Housing--The Modular Home in Texas.  

ERIC Educational Resources Information Center

This report deals principally with modular homes (permanently sited structures) although it also presents some recent information on mobile homes. In 1976, modular home construction companies were surveyed in Texas and across the United States to assess the extent of their construction activity and market penetration and to gather some insight…

Sindt, Roger P.

67

Theory and applications of modular reconfigurable robotic systems  

Microsoft Academic Search

A modular reconfigurable robotic system consists of various link and joint units with standardized connecting interfaces that can be easily separated and reassembled into different configurations. Compared to a fixed configuration robot, which is usually a compromised design for a limited set of tasks, a modular robot can accomplish a large class of tasks through reconfiguration of a small inventory

I.-Ming Chen

1994-01-01

68

Modular kinetic analysis.  

PubMed

Modularization is an important strategy to tackle the study of complex biological systems. Modular kinetic analysis (MKA) is a quantitative method to extract kinetic information from such a modularized system that can be used to determine the control and regulatory structure of the system, and to pinpoint and quantify the interaction of effectors with the system. The principles of the method are described, and the relation with metabolic control analysis is discussed. Examples of application of MKA are given. PMID:21943914

Krab, Klaas

2011-01-01

69

Retrospect on Modular Organisms  

Microsoft Academic Search

Modularity is a new term, but some associated ideas have been with us for a long time. Animals like bryozoans, traditionally recognized as colonial, would all be considered modular at this meeting. It has also been realized for a long time that reproduction can be asexual and produce individuals that differ only from developmental asynchrony or environmental effects. The concept

G. G. Williams

1986-01-01

70

Modularization and Flexibilization.  

ERIC Educational Resources Information Center

Publications in the fields of educational science, organization theory, and project management were analyzed to identify the possibilities that modularization offers to institutions of higher professional education and to obtain background information for use in developing a method for modularization in higher professional education. It was…

Van Meel, R. M.

71

Modular hydraulic control system  

Microsoft Academic Search

A system of modular electrohydraulic servovalves is centrally controlled and may be used to control the operation of critical hydraulic actuators. A programmable controller operates a group of modular servovalves which each deliver a portion of the total actuator fluid requirements. The flow rate, valve position, and valve pressure of each servovalve is monitored by the controller and compared to

David C. Winyard; Waldemar C. Lindstrom

1994-01-01

72

Modular Buildings Buying Guide.  

ERIC Educational Resources Information Center

Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

Morris, Susan

1991-01-01

73

Modular redundant number systems  

SciTech Connect

With the increased use of public key cryptography, faster modular multiplication has become an important cryptographic issue. Almost all public key cryptography, including most elliptic curve systems, use modular multiplication. Modular multiplication, particularly for the large public key modulii, is very slow. Increasing the speed of modular multiplication is almost synonymous with increasing the speed of public key cryptography. There are two parts to modular multiplication: multiplication and modular reduction. Though there are fast methods for multiplying and fast methods for doing modular reduction, they do not mix well. Most fast techniques require integers to be in a special form. These special forms are not related and converting from one form to another is more costly than using the standard techniques. To this date it has been better to use the fast modular reduction technique coupled with standard multiplication. Standard modular reduction is much more costly than standard multiplication. Fast modular reduction (Montgomery`s method) reduces the reduction cost to approximately that of a standard multiply. Of the fast multiplication techniques, the redundant number system technique (RNS) is one of the most popular. It is simple, converting a large convolution (multiply) into many smaller independent ones. Not only do redundant number systems increase speed, but the independent parts allow for parallelization. RNS form implies working modulo another constant. Depending on the relationship between these two constants; reduction OR division may be possible, but not both. This paper describes a new technique using ideas from both Montgomery`s method and RNS. It avoids the formula problem and allows fast reduction and multiplication. Since RNS form is used throughout, it also allows the entire process to be parallelized.

NONE

1998-05-31

74

Modularization: An Attempt at Collegiate Level in India.  

ERIC Educational Resources Information Center

The effectiveness of a modular approach to learning in a botany unit as compared to the traditional teaching approach in terms of learning efficiency, learning time, and mastery level is reported. Three references are cited. (Author/CHC)

Gabriel, J.; Pillai, J. K.

1981-01-01

75

Stranded Whole Transcriptome RNA-Seq for All RNA Types.  

PubMed

Stranded whole transcriptome RNA-Seq described in this unit captures quantitative expression data for all types of RNA including, but not limited to, miRNA (microRNA), piRNA (Piwi-interacting RNA), snoRNA (small nucleolar RNA), lincRNA (large non-coding intergenic RNA), SRP RNA (signal recognition particle RNA), tRNA (transfer RNA), mtRNA (mitochondrial RNA), and mRNA (messenger RNA). The size and nature of these types of RNA are irrelevant to the approach described here. Barcoded libraries for multiplexing on the Illumina platform are generated with this approach but it can be applied to other platforms with a few modifications. © 2015 by John Wiley & Sons, Inc. PMID:25599667

Miller, David F B; Yan, Pearlly X; Fang, Fang; Buechlein, Aaron; Ford, James B; Tang, Haixu; Huang, Tim H; Burow, Matthew E; Liu, Yunlong; Rusch, Douglas B; Nephew, Kenneth P

2015-01-01

76

Modularity Approach Modular Pebble Bed Reactor (MPBR)  

E-print Network

Hatch Equip Access Hatch Equip Access Hatch Oil Refinery Hydrogen Production Desalinization Plant VHTR modularity principles to the design, construction and operation of advanced nuclear energy plants · To employ manufacturing and factory assembly principles to nuclear plants. · To minimize on site work by assembling plants

77

Diversity and Unity of Modularity  

ERIC Educational Resources Information Center

Since the publication of Fodor's (1983) The Modularity of Mind, there have been quite a few discussions of cognitive modularity among cognitive scientists. Generally, in those discussions, modularity means a property of specialized cognitive processes or a domain-specific body of information. In actuality, scholars understand modularity in many…

Seok, Bongrae

2006-01-01

78

Modular Inverse Algorithms without Multiplications  

Microsoft Academic Search

the basic left-shift, right-shift and shifting Euclidean modular inverse algorithms are presented with new optimization tricks. These algorithms are based on the corresponding extended GCD algorithms, but only one multiplicator, the modular inverse is computed. On many computational platforms, for operand lengths used in cryptography, the fastest modular inverse algorithms need about twice the modular multiplication time, or even less.

Laszlo Hars

2004-01-01

79

Diversity and unity of modularity.  

PubMed

Since the publication of Fodor's (1983) The Modularity of Mind, there have been quite a few discussions of cognitive modularity among cognitive scientists. Generally, in those discussions, modularity means a property of specialized cognitive processes or a domain-specific body of information. In actuality, scholars understand modularity in many different ways. Different characterizations of modularity and modules were proposed and discussed, but they created misunderstanding and confusion. In this article, I classified and analyzed different approaches to modularity and argued for the unity of modularity. Modularity is a multidimensional property consisting of features from several dimensions specifying different aspects of cognition. Among those, there are core features of modularity, and these core features form a cross-dimensional unity. Despite the diverse and liberal characterizations, modularity contributes to cognitive science because of the unity of the core features. PMID:21702818

Seok, Bongrae

2006-03-01

80

Modular tokamak magnetic system  

DOEpatents

A modular tokamak system comprised of a plurality of interlocking moldules. Each module is comprised of a vacuum vessel section, a toroidal field coil, moldular saddle coils which generate a poloidal magnetic field and ohmic heating coils.

Yang, Tien-Fang (Wayland, MA)

1988-01-01

81

Analysis of DC voltage ripples in modular multilevel converters  

Microsoft Academic Search

In modular multilevel converters (MMC), a circulating current in each phase unit is caused by the DC voltage ripples of the phase unit. This paper analyzed the power transfer of MMC, the energy and voltage fluctuations of the storage capacitors in the sub-modules. An accurate model to determine the voltage ripples of a phase unit is derived, in consideration of

Minyuan Guan; Zheng Xu; Huijie Li

2010-01-01

82

Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys.  

PubMed

Nasal turbinates or swabs were collected from wild ducks, geese, owls, sparrows, swallows, and starlings and from sentinel ducks placed next to turkey farms experiencing avian pneumovirus (APV) infections and were analyzed for APV genome and infectious particles. APV RNA was detected in samples examined from geese, sparrows, and starlings. APV RNA and antibodies were also detected in two different groups of sentinel ducks. Infectious APV was recovered from sentinel duck samples. The APV M gene isolated from the wild birds had over 96% predicted amino acid identity with APV/Minnesota 2A, which was isolated earlier from domestic turkeys showing respiratory illness, suggesting that wild birds may be involved in spreading APV infection. PMID:11060113

Shin, H J; Njenga, M K; McComb, B; Halvorson, D A; Nagaraja, K V

2000-11-01

83

Modular Chemistry:  Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal?Organic Carboxylate Frameworks  

Microsoft Academic Search

Secondary building units (SBUs) are molecular complexes and cluster entities in which ligand coordination modes and metal coordination environments can be utilized in the transformation of these fragments into extended porous networks using polytopic linkers (1,4-benzenedicarboxylate, 1,3,5,7-adamantanetetracarboxyl- ate, etc.). Consideration of the geometric and chemical attributes of the SBUs and linkers leads to prediction of the framework topology, and in

Mohamed Eddaoudi; David B. Moler; Hailian Li; Banglin Chen; Theresa M. Reineke; OMAR M. YAGHI

2001-01-01

84

MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model -Documentation of the Hydrogeologic-Unit Flow (HUF) Package  

USGS Publications Warehouse

This report documents the Hydrogeologic-Unit Flow (HUF) Package for the groundwater modeling computer program MODFLOW-2000. The HUF Package is an alternative internal flow package that allows the vertical geometry of the system hydrogeology to be defined explicitly within the model using hydrogeologic units that can be different than the definition of the model layers. The HUF Package works with all the processes of MODFLOW-2000. For the Ground-Water Flow Process, the HUF Package calculates effective hydraulic properties for the model layers based on the hydraulic properties of the hydrogeologic units, which are defined by the user using parameters. The hydraulic properties are used to calculate the conductance coefficients and other terms needed to solve the ground-water flow equation. The sensitivity of the model to the parameters defined within the HUF Package input file can be calculated using the Sensitivity Process, using observations defined with the Observation Process. Optimal values of the parameters can be estimated by using the Parameter-Estimation Process. The HUF Package is nearly identical to the Layer-Property Flow (LPF) Package, the major difference being the definition of the vertical geometry of the system hydrogeology. Use of the HUF Package is illustrated in two test cases, which also serve to verify the performance of the package by showing that the Parameter-Estimation Process produces the true parameter values when exact observations are used.

Anderman, E.R.; Hill, M.C.

2000-01-01

85

Modular Mayhem? A Case Study of the Development of the A-Level Science Curriculum in England  

ERIC Educational Resources Information Center

This article investigates the costs and benefits of the increased use of modular or unitized qualification designs through a case study of the GCE A-level science curriculum in England. Following a brief review of the development of modular A-levels, the various proposed advantages of modularity--short-term goals and regular feedback, flexibility…

Hayward, Geoff; McNicholl, Jane

2007-01-01

86

RNA-RNA SELEX.  

PubMed

Systematic evolution of ligands by exponential enrichment (SELEX) protocol is a valuable technique to identify RNA aptamers interacting with RNA structural motifs. RNA aptamers are mainly resolved with affinity column chromatography and electrophoretic mobility shift assay (EMSA). Here, we describe the separation of the RNA aptamers binding to an RNA stem-loop target with affinity chromatography using the column attached the target RNA and nondenaturing polyacrylamide gel electrophoresis to obtain a single predominant RNA aptamer family. PMID:25352135

Cho, B

2015-01-01

87

Modular optical detector system  

DOEpatents

A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

2006-02-14

88

Symmetric modular torsatron  

DOEpatents

A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

Rome, J.A.; Harris, J.H.

1984-01-01

89

Refined finite element modelling for the vibration analysis of large rotating machines: Application to the gas turbine modular helium reactor power conversion unit  

NASA Astrophysics Data System (ADS)

This paper is aimed at presenting refined finite element modelling used for dynamic analysis of large rotating machines. The first part shows an equivalence between several levels of modelling: firstly, models made of beam elements and rigid disc with gyroscopic coupling representing the position of the rotating shaft in an inertial frame; secondly full three-dimensional (3D) or 3D shell models of the rotor and the blades represented in the rotating frame and finally two-dimensional (2D) Fourier model for both rotor and stator. Simple cases are studied to better understand the results given by analysis performed using a rotating frame and the equivalence with the standard calculations with beam elements. Complete analysis of rotating machines can be performed with models in the frames best adapted for each part of the structure. The effects of several defects are analysed and compared with this approach. In the last part of the paper, the modelling approach is applied to the analysis of the large rotating shaft part of the power conversion unit of the GT-MHR nuclear reactor.

Combescure, D.; Lazarus, A.

2008-12-01

90

Criteria for software modularization  

NASA Technical Reports Server (NTRS)

A central issue in programming practice involves determining the appropriate size and information content of a software module. This study attempted to determine the effectiveness of two widely used criteria for software modularization, strength and size, in reducing fault rate and development cost. Data from 453 FORTRAN modules developed by professional programmers were analyzed. The results indicated that module strength is a good criterion with respect to fault rate, whereas arbitrary module size limitations inhibit programmer productivity. This analysis is a first step toward defining empirically based standards for software modularization.

Card, David N.; Page, Gerald T.; Mcgarry, Frank E.

1985-01-01

91

Modular hydraulic control system  

NASA Astrophysics Data System (ADS)

A system of modular electrohydraulic servovalves is centrally controlled and may be used to control the operation of critical hydraulic actuators. A programmable controller operates a group of modular servovalves which each deliver a portion of the total actuator fluid requirements. The flow rate, valve position, and valve pressure of each servovalve is monitored by the controller and compared to expected values in memory to determine whether a servovalve malfunction exists. If so, the controller maintains the required flow rate to the actuator by closing the malfunctioning valve and either activating a spare or proportionally increasing the flow rates of the remaining servovalves to compensate for the loss.

Winyard, David C.; Lindstrom, Waldemar C.

1994-06-01

92

CALIFORNIA ENERGY Modular Skylight Wells  

E-print Network

CALIFORNIA ENERGY COMMISSION Modular Skylight Wells: Design Guidelines for Skylights with Suspended upon the accuracy or adequacy of the information in this report. #12;#12;Modular Skylight Wells Commission. #12;Modular Skylight Wells Preface ii Preface The California Energy Commission's (Commission

93

Uncovering the structures of modular polyketide synthases.  

PubMed

Covering: up to 2014The modular polyketide synthases (PKSs) are multienzyme proteins responsible for the assembly of diverse secondary metabolites of high economic and therapeutic importance. These molecular 'assembly lines' consist of repeated functional units called 'modules' organized into gigantic polypeptides. For several decades, concerted efforts have been made to understand in detail the structure and function of PKSs in order to facilitate genetic engineering of the systems towards the production of polyketide analogues for evaluation as drug leads. Despite this intense activity, it has not yet been possible to solve the crystal structure of a single module, let alone a multimodular subunit. Nonetheless, on the basis of analysis of the structures of modular fragments and the study of the related multienzyme of animal fatty acid synthase (FAS), several models of modular PKS architecture have been proposed. This year, however, the situation has changed - three modular structures have been characterized, not by X-ray crystallography, but by the complementary methods of single-particle cryo-electron microscopy and small-angle X-ray scattering. This review aims to compare the cryo-EM structures and SAXS-derived structural models, and to interpret them in the context of previously obtained data and existing architectural proposals. The consequences for genetic engineering of the systems will also be discussed, as well as unresolved questions and future directions. PMID:25310997

Weissman, Kira J

2015-02-26

94

THE MODULAR MOUSETRAP.  

ERIC Educational Resources Information Center

THE AUTHOR BASES HIS APPROACH TO TEACHING LANGUAGES ON THE PRINCIPLE THAT MOST PEOPLE LEARN A FOREIGN LANGUAGE BETTER WHEN IT IS PRESENTED AS ONE ASPECT OF COMMUNICATION, RATHER THAN AS AN ABSTRACT SYSTEM. THE AUTHOR SUGGESTS THAT THIS "MODULAR PRINCIPLE," WHICH HE HAS FOLLOWED IN FOUR FOREIGN SERVICE INSTITUTE BEGINNING SWAHILI COURSES, MAY ALSO…

STEVICK, EARL W.

95

Modular, Multilayer Perceptron  

NASA Technical Reports Server (NTRS)

Combination of proposed modular, multilayer perceptron and algorithm for its operation recognizes new objects after relatively brief retraining sessions. (Perceptron is multilayer, feedforward artificial neural network fully connected and trained via back-propagation learning algorithm.) Knowledge pertaining to each object to be recognized resides in subnetwork of full network, therefore not necessary to retrain full network to recognize each new object.

Cheng, Li-Jen; Liu, Tsuen-Hsi

1991-01-01

96

Modularization of Courses.  

ERIC Educational Resources Information Center

Eastern Arizona College has developed a modularized system of instruction for five vocational and vocationally related courses--Introduction to Business, Business Mathematics, English, Drafting, and Electronics. Each course is divided into independent segments of instruction and students have open-entry and exit options. This document reviews the…

Eastern Arizona Coll., Thatcher.

97

Modular Annihilator Jordan Pairs  

Microsoft Academic Search

Barnes proved, in [2] and [3], that a complex semiprimitive associative Banach algebra A is modular annihilator if and only if 0 is the only possible accumulation point of the spectrum of x for each x 2 A. A complex Jordan Banach algebra J which satisfies the above spectral property is called inessen-tial. Fern'andez proved in [9] that inessential complex

M. Benslimane; H. Marhnine; C. Zarhouti

2001-01-01

98

Modularity in robotic systems  

NASA Technical Reports Server (NTRS)

Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

Tesar, Delbert; Butler, Michael S.

1989-01-01

99

Advanced Modular Power Approach to Affordable, Supportable Space Systems  

NASA Technical Reports Server (NTRS)

Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

2013-01-01

100

Modular magnet current regulator  

SciTech Connect

A modular current regulation system is being developed to power the low current correction and focusing magnets used for beam transport. The system consists of numerous multi-channel assemblies, each housed in a standard relay rack. Each multi-channel assembly consists of common power supplies, CAMAC control modules, and Eurocard cages for the current regulators. These regulators are linear, bipolar modules capable of parallel connection for higher current output. 3 figs.

Dobeck, N.; Burtner, G.; Garza, O.; LaMora, R.

1989-01-01

101

Parallel stage modular rankine cycle turbine with improved control  

SciTech Connect

The turbine of a Rankine cycle power plant has a plurality of modular units constituting turbine to which vaporized working fluid from a boiler is supplied in parallel through respective adjustable throttle valves. Exhaust vapor is removed from the modular units in parallel; and the load on the turbine is controlled by controlling the operation of each throttle valve such that, under any load condition, only one throttle valve at a time is adjusted and all of the others are either fully open or fully closed.

Kaplan, U.

1985-08-27

102

New realities of modular construction  

SciTech Connect

Modular construction has both advantages and disadvantages. Advantages are safety, reduction of construction time and faster plant startup time, reduced labor cost, weather friendliness, increased quality and efficiency, simultaneous production capability, testing ease and fewer interruptions to an operating plant. Disadvantages are transportation costs, module size limitations, transportation-accessibility needs, increased engineering effort, and offloading and setting needs. These pros and cons were identified by a Construction Industry Institute (C2) task force established in 1989 to assess modular construction strengths and weaknesses. Objective: develop a decision-support tool to evaluate a project's suitability for modularization. The task force first had to learn what drivers influence modularization and then develop a set of characteristics of the ideal project for modularization. To help in this research, academics from the University of Houston and Purdue University developed MODEX, an expert system which became the decision-support tool. The paper first discusses the myths of modularization and then describes MODEX.

Duty, J.M. Jr. (Bechtel Corp., Houston, TX (United States)); Fisher, D. (Univ. of Houston, TX (United States)); Lewis, W.W. (Pritchard Corp., Overland Park, KS (United States))

1993-12-01

103

Scalable and Modular Algorithms for Floating-Point Matrix Multiplication on FPGAs  

E-print Network

Scalable and Modular Algorithms for Floating-Point Matrix Multiplication on FPGAs Ling Zhuo computations. In this paper, we propose two FPGA-based algorithms for floating-point matrix multiplication. The processing elements(PEs) used in our algorithms are modular so that floating-point units can be easily

Prasanna, Viktor K.

104

SMEX-Lite Modular Solar Array Architecture  

NASA Technical Reports Server (NTRS)

For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.

Lyons, John

2002-01-01

105

Modular organization and hospital performance.  

PubMed

The concept of modularization represents a modern form of organization, which contains the vertical disaggregation of the firm and the use of market mechanisms within hierarchies. The objective of this paper is to examine whether the use of modular structures has a positive effect on hospital performance. The empirical section makes use of multiple regression analyses and leads to the main result that modularization does not have a positive effect on hospital performance. However, the analysis also finds out positive efficiency effects of two central ideas of modularization, namely process orientation and internal market mechanisms. PMID:17270066

Kuntz, Ludwig; Vera, Antonio

2007-02-01

106

To Modularize or Not To Modularize? John A. Bullinaria  

E-print Network

degree of modularity in the human brain and numerous reasons why it might have evolved to be that way of Birmingham Edgbaston, Birmingham, B15 2TT, UK j.bullinaria@physics.org Abstract There is a considerable how the advantage can cause modularity to evolve. However, I shall also show that it is possible

Bullinaria, John

107

Modular Containerless Processing Facility  

NASA Technical Reports Server (NTRS)

The Modular Containerless Processing Facility (MCPF) of the Space Station Freedom, being developed by the Jet Propulsion Laboratory, is described. The MCPF will be capable of positioning, manipulating, and performing processing operations on samples completely free of container walls. It will be comprised of a host facility and a series of interchangeable plug-in modules. Initial iterations of MCPF modules will be flown on the U.S. Microgravity Laboratory (USML) series of Shuttle flights. The Drop Physics Module schedualed to fly on USML-1 in March 1992 is also considered.

Morrison, Andrew D.

1990-01-01

108

Modular gear bearings  

NASA Technical Reports Server (NTRS)

A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

Vranish, John M. (Inventor)

2009-01-01

109

Versatile modular scaffolds  

NASA Technical Reports Server (NTRS)

Movable and fixed modular scaffolds can be tailored to most scaffolding needs by interconnecting only 4 basic structural elements: platforms, rails, vertical-support angles, and stiffener. Standard nuts and bolts are used to join elements, simplifying construction, and reducing costs. Scaffolds are rigid and can be made any length. They are stable on unlevel ground and can extend to well over 50 feet in height. Scaffolds allow for internal elevators and for wheels and air mounts so that same elements can be used for standing or movable scaffold.

Kerley, J.

1981-01-01

110

Fitness and structure landscapes for pre-miRNA processing  

NASA Astrophysics Data System (ADS)

The processing from pre-miRNA to mature miRNA in plants involves a mechanism, which depends on an extended stem in the secondary structure of the pre-miRNA. Here, we show how natural selection acts on this secondary structure to produce evolutionary conservation of the processing mechanism together with modularity of the pre-miRNA molecules, making this molecular function independent of others. Our main results are: 1. Selection on miRNA processing can be described by a fitness landscape which depends directly on the secondary structure of the pre-miRNA. 2. This fitness landscape predicts the divergence of the phenotype between orthologous pre-miRNA molecules from different species. 3. Actual pre-miRNA structures are modular: their phenotype is significantly less affected by deleterious mutations in the remainder of the molecule than for random RNA molecules.

Bundschuh, Ralf; de Meaux, Juliette; Lassig, Michael

2011-03-01

111

Modular decomposition and transitive orientation  

Microsoft Academic Search

Abstract A module of an undirected graph is a set X of nodes such for each node x not in X, either every member of X is adjacent to x, or no member of X is adjacent to x. There is a canonical linear-space representation for the modules of a graph, called the modular decomposition. Closely related to modular decomposition

Ross M. Mcconnell; Jeremy P. Spinrad

1999-01-01

112

Modular digital computer system design  

NASA Technical Reports Server (NTRS)

Automatically-Reconfigurable Modular Multiprocessor System (ARMMS) provides redundant processing with dynamic mode switching in real time. Design will provide higher computer capability than that presently available for same amount of hardware and will furnish modular system which is responsive to diverse problems effectively.

1974-01-01

113

Identification of Subtype Specific miRNA-mRNA Functional Regulatory Modules in Matched miRNA-mRNA Expression Data: Multiple Myeloma as a Case  

PubMed Central

Identification of miRNA-mRNA modules is an important step to elucidate their combinatorial effect on the pathogenesis and mechanisms underlying complex diseases. Current identification methods primarily are based upon miRNA-target information and matched miRNA and mRNA expression profiles. However, for heterogeneous diseases, the miRNA-mRNA regulatory mechanisms may differ between subtypes, leading to differences in clinical behavior. In order to explore the pathogenesis of each subtype, it is important to identify subtype specific miRNA-mRNA modules. In this study, we integrated the Ping-Pong algorithm and multiobjective genetic algorithm to identify subtype specific miRNA-mRNA functional regulatory modules (MFRMs) through integrative analysis of three biological data sets: GO biological processes, miRNA target information, and matched miRNA and mRNA expression data. We applied our method on a heterogeneous disease, multiple myeloma (MM), to identify MM subtype specific MFRMs. The constructed miRNA-mRNA regulatory networks provide modular outlook at subtype specific miRNA-mRNA interactions. Furthermore, clustering analysis demonstrated that heterogeneous MFRMs were able to separate corresponding MM subtypes. These subtype specific MFRMs may aid in the further elucidation of the pathogenesis of each subtype and may serve to guide MM subtype diagnosis and treatment. PMID:25874214

Zhang, Yunpeng; Xu, Yanjun; Li, Chunquan; Yang, Haixiu; Zhang, Chunlong; Su, Fei; Li, Yixue; Li, Xia

2015-01-01

114

Modular antenna design study  

NASA Technical Reports Server (NTRS)

The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

Ribble, J. W.

1981-01-01

115

Preheating after modular inflation  

NASA Astrophysics Data System (ADS)

We study (p)reheating in modular (closed string) inflationary scenarios, with a special emphasis on Kähler moduli/Roulette models. It is usually assumed that reheating in such models occurs through perturbative decays. However, we find that there are very strong non-perturbative preheating decay channels related to the particular shape of the inflaton potential (which is highly nonlinear and has a very steep minimum). Preheating after modular inflation, proceeding through a combination of tachyonic instability and broad-band parametric resonance, is perhaps the most violent example of preheating after inflation known in the literature. Further, we consider the subsequent transfer of energy to the standard model sector in scenarios where the standard model particles are confined to a D7-brane wrapping the inflationary blow-up cycle of the compactification manifold or, more interestingly, a non-inflationary blow-up cycle. We explicitly identify the decay channels of the inflaton in these two scenarios. We also consider the case where the inflationary cycle shrinks to the string scale at the end of inflation; here a field theoretical treatment of reheating is insufficient and one must turn instead to a stringy description. We estimate the decay rate of the inflaton and the reheat temperature for various scenarios.

Barnaby, Neil; Bond, J. Richard; Huang, Zhiqi; Kofman, Lev

2009-12-01

116

Modular reflector concept study  

NASA Technical Reports Server (NTRS)

A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

Vaughan, D. H.

1981-01-01

117

Modular dynamics in diamonds  

E-print Network

We investigate the relation between the actions of Tomita-Takesaki modular operators for local von Neumann algebras in the vacuum for free massive and massless bosons in four dimensional Minkowskian spacetime. In particular, we prove a long-standing conjecture that says that the generators of the mentioned actions differ by a pseudo-differential operator of order zero. To get that, one needs a careful analysis of the interplay of the theories in the bulk and at the boundary of double cones (a.k.a. diamonds). After introducing some technicalities, we prove the crucial result that the vacuum state for massive bosons in the bulk of a double cone restricts to a KMS state at its boundary, and that the restriction of the algebra at the boundary does not depend anymore on the mass. The origin of such result lies in a careful treatment of classical Cauchy and Goursat problems for the Klein-Gordon equation as well as the application of known general mathematical techniques, concerning the interplay of algebraic structures related with the bulk and algebraic structures related with the boundary of the double cone, arising from quantum field theories in curved spacetime. Our procedure gives explicit formulas for the modular group and its generator in terms of integral operators acting on symplectic space of solutions of massive Klein-Gordon Cauchy problem.

Romeo Brunetti; Valter Moretti

2010-09-25

118

RNA self-assembly and RNA nanotechnology.  

PubMed

CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such as the ribosome, large ribozymes, and riboswitches. Thus, the next step in synthetic RNA design will involve new ways to implement these same types of dynamic and responsive architectures into nanostructures functioning as real nanomachines in and outside the cell. RNA nanotechnology will likely garner broader utility and influence with a greater focus on the interplay between thermodynamic and kinetic influences on RNA self-assembly and using natural RNAs as guiding principles. PMID:24856178

Grabow, Wade W; Jaeger, Luc

2014-06-17

119

A modular and mobile system for indoor localization  

Microsoft Academic Search

The work presents a system for sensor data and complementary information fusion for localization in indoor environments. The system is based on modular sensor units, which can be attached to a person and contains various sensors, such as range sensors, inertial and magnetic sensors, a GPS receiver and a barometer. The measurements are processed using Bayesian Recursive Estimation algorithms and

Lasse Klingbeil; M. Romanovas; P. Schneider; M. Traechtler; Y. Manoli

2010-01-01

120

Modular power converter having fluid cooled support  

DOEpatents

A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

2005-12-06

121

Modular power converter having fluid cooled support  

DOEpatents

A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

2005-09-06

122

Modular Flooring System  

NASA Technical Reports Server (NTRS)

The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped onto durable, commercially available drywall carts for storage and/or transportation. This method of storage and transportation makes it very convenient and safe when handling large quantities of modules.

Thate, Robert

2012-01-01

123

The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA  

PubMed Central

The NXF1:NXT1 complex (also known as TAP:p15) is a general mRNA nuclear export factor that is conserved from yeast to humans. NXF1 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA domains). It is currently unclear how NXF1:NXT1 binds transcripts and whether there is higher organization of the NXF1 domains. We report here the 3.4 Å resolution crystal structure of the first three domains of human NXF1 together with NXT1 that has two copies of the complex in the asymmetric unit arranged to form an intimate domain-swapped dimer. In this dimer, the linkers between the NXF1 LRR and NTF2-like domains interact with NXT1, generating a 2-fold symmetric platform in which the RNA-binding RRM, LRR and NTF2-like domains are arranged on one face. In addition to bulk transcripts, NXF1:NXT1 also facilitates the export of unspliced retroviral genomic RNA from simple type-D retroviruses such as SRV-1 that contain a constitutive transport element (CTE), a cis-acting 2-fold symmetric RNA stem–loop motif. Complementary structural, biochemical and cellular techniques indicated that the formation of a symmetric RNA binding platform generated by dimerization of NXF1:NXT1 facilitates the recognition of CTE-RNA and promotes its nuclear export. PMID:25628361

Aibara, Shintaro; Katahira, Jun; Valkov, Eugene; Stewart, Murray

2015-01-01

124

Modularity in Cognition: Framing the Debate  

Microsoft Academic Search

Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that purport to undermine modularity, with particular

H. Clark Barrett; Robert Kurzban

2006-01-01

125

Modular error embedding  

DOEpatents

A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Ettinger, J. Mark (Los Alamos, NM)

1999-01-01

126

Modular error embedding  

SciTech Connect

A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits is disclosed. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

Sandford, M.T. II; Handel, T.G.; Ettinger, J.M.

1999-10-19

127

Kernel for modular robot applications: Automatic modeling techniques  

SciTech Connect

A modular robotic system consists of standardized joint and link units that an be assembled into various kinematic configurations for different types of tasks. For the control and simulation of such a system, manual derivation of the kinematic and dynamic models, as well as the error model for kinematic calibration, require tremendous effort, because the models constantly change as the robot geometry is altered after module reconfiguration. This paper presents a frame-work to facilitate the model-generation procedure for the control and simulation of the modular robot system. A graph technique, termed kinematic graphs and realized through assembly incidence matrices (AIM), is introduced to represent the module-assembly sequence and robot geometry. The kinematics and dynamics are formulated based on a local representation of the theory of lie groups and Lie algebras. The automatic model-generation procedure starts with a given assembly graph of the modular robot. Kinematic, dynamic, and error models of the robot are then established, based on the local representations and iterative graph-traversing algorithms. This approach can be applied to a modular robot with both serial and branch-type geometries, and arbitrary degrees of freedom. Furthermore, the AIM of the robot naturally leads to solving the task-oriented optimal configuration problem in modular robots. There is no need to maintain a huge library of robot models, and the footprint of the overall software system can be reduced.

Chen, I.M.; Yeo, S.H.; Chen, G. [Nanyang Technological Univ. (Singapore). School of Mechanical and production Engineering] [Nanyang Technological Univ. (Singapore). School of Mechanical and production Engineering; Yang, G. [Gintic Inst. of Manufacturing Technology (Singapore). Automation Technology Div.] [Gintic Inst. of Manufacturing Technology (Singapore). Automation Technology Div.

1999-02-01

128

Modular designs highlight several new rigs  

SciTech Connect

A new platform drilling rig for offshore Trinidad and two new land rigs for the former Soviet Union feature the latest in drilling and construction technology and modular components for quick rig up/rig down. The Sundowner 801 was mock-up tested in Galveston, TX, a few weeks ago in preparation for its load-out to the Dolphin field offshore Trinidad. Two other new units, UNOC 500 DE series land rigs, were recently constructed and mock-up tested in Ekaterinburg, Russia, for upcoming exploratory work for RAO Gazprom, a large natural gas producer in Russia. These rigs are unique in that they were constructed from new components made both in the US and in Russia. The paper describes all three units.

Rappold, K.

1995-12-04

129

Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex.  

PubMed

RNA-binding proteins play crucial roles in RNA processing and function as regulators of gene expression. Recent studies have defined the structural basis for RNA recognition by diverse RNA-binding motifs. While many RNA-binding proteins recognize RNA sequence non-specifically by associating with 5' or 3' RNA ends, sequence-specific recognition by RNA-binding proteins is typically achieved by combining multiple modular domains to form complex binding surfaces. In this review, we present examples of structures from different classes of RNA-binding proteins, identify the mechanisms utilized by them to target specific RNAs, and describe structural principles of how protein-protein interactions affect RNA recognition specificity. We also highlight the structural mechanism of sequence-dependent and -independent interactions in the Cas9-RNA-DNA complex. PMID:25432705

Ban, Ting; Zhu, Jian-Kang; Melcher, Karsten; Xu, H Eric

2015-03-01

130

Modular Isotopic Thermoelectric Generator  

SciTech Connect

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03

131

Modular Training Systems and Strategies: An International Meeting (Washington, D.C., May 11-12, 1992).  

ERIC Educational Resources Information Center

This publication contains materials from a conference to discuss modular approaches to curriculum design. The materials from the United States and five other countries address both national skills standards and modular systems of training delivery. An introduction provides brief summaries of the conference materials and the agenda. "National…

American Society for Training and Development, Alexandria, VA.

132

Modular embedded system design for mechatronic education 2010 IEEE\\/ASME international conference on mechatronic and embedded systems and applications  

Microsoft Academic Search

In this paper a modular embedded system for mechatronics education is presented. Four types of control boards are manufactured and related software is developed at board and PC level. A modular approach is adopted which is composed of units that can also work in a stand-alone manner. PC platform facilitates high-level usage of these cards whereas it is possible to

A. O. Nursal

2010-01-01

133

Towards a sustainable modular robot system for planetary exploration  

NASA Astrophysics Data System (ADS)

This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual robot module, multiple modules of a four-degree-of-freedom unit-modular robot were developed. The robot was equipped with a novel connector mechanism that made self-healing possible. Also, design strategies included the use of series elastic actuators for better robot-terrain interaction. In addition, various locomotion gaits were generated and explored using the robot modules, which is essential for a modular robot system to achieve robustness and thus successfully navigate and function in a planetary environment. To investigate multi-robot task completion, a biomimetic cooperative load transportation algorithm was developed and simulated. Also, a liquid motion-inspired theory was developed consisting of a large number of robot modules. This can be used to traverse obstacles that inevitably occur in maneuvering over rough terrains such as in a planetary exploration. Keywords: Modular robot, cooperative robots, biomimetics, planetary exploration, sustainability.

Hossain, S. G. M.

134

Spectral graph analysis of modularity and assortativity  

NASA Astrophysics Data System (ADS)

Expressions and bounds for Newman’s modularity are presented. These results reveal conditions for or properties of the maximum modularity of a network. The influence of the spectrum of the modularity matrix on the maximum modularity is discussed. The second part of the paper investigates how the maximum modularity, the number of clusters, and the hop count of the shortest paths vary when the assortativity of the graph is changed via degree-preserving rewiring. Via simulations, we show that the maximum modularity increases, the number of clusters decreases, and the average hop count and the effective graph resistance increase with increasing assortativity.

van Mieghem, P.; Ge, X.; Schumm, P.; Trajanovski, S.; Wang, H.

2010-11-01

135

A neural network with modular hierarchical learning  

NASA Technical Reports Server (NTRS)

This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

Baldi, Pierre F. (inventor); Toomarian, Nikzad (inventor)

1994-01-01

136

INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL  

SciTech Connect

With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

2007-12-01

137

RNA genetics  

SciTech Connect

This book contains the proceedings on RNA genetics: Retroviruses, Viroids, and RNA recombination, Volume 2. Topics covered include: Replication of retrovirus genomes, Hepatitis B virus replication, and Evolution of RNA viruses.

Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

1988-01-01

138

RNA Interference  

MedlinePLUS

NIGMS Home > News & Meetings > Extras > RNAi RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process that cells ...

139

Modular assembly of optical nanocircuits.  

PubMed

A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic 'lumped' circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems. PMID:24871450

Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

2014-01-01

140

Modular assembly of optical nanocircuits  

NASA Astrophysics Data System (ADS)

A key element enabling the microelectronic technology advances of the past decades has been the conceptualization of complex circuits with versatile functionalities as being composed of the proper combination of basic ‘lumped’ circuit elements (for example, inductors and capacitors). In contrast, modern nanophotonic systems are still far from a similar level of sophistication, partially because of the lack of modularization of their response in terms of basic building blocks. Here we demonstrate the design, assembly and characterization of relatively complex photonic nanocircuits by accurately positioning a number of metallic and dielectric nanoparticles acting as modular lumped elements. The nanoparticle clusters produce the desired spectral response described by simple circuit rules and are shown to be dynamically reconfigurable by modifying the direction or polarization of impinging signals. Our work represents an important step towards extending the powerful modular design tools of electronic circuits into nanophotonic systems.

Shi, Jinwei; Monticone, Francesco; Elias, Sarah; Wu, Yanwen; Ratchford, Daniel; Li, Xiaoqin; Alù, Andrea

2014-05-01

141

Rise and fall of modular orthodoxy.  

PubMed

The premise of cortical modularity is based on strong dissociations caused by focal lesions. These dissociations are rare, and their explanatory power and theoretical importance are vastly overrated. The effects of brain lesions must be considered in their totality, rather than in idiosyncratic selectivity. These effects are more consistent with a continuous, graded functional neocortical geometry, than with a modular neocortex. Distinction must be drawn between strong intrinsic modularity, and weak emergent modularity. Strong intrinsic modularity is more characteristic of the thalamus than of the cortex. The advent of neocortex may have represented an evolutionary escape from strong modularity as the dominant principle of neural organization, and a shift toward a more interactive principle of neural organization dominated by emergent properties. The latter may take the form of weak modularity, reflective of cognitive skill routinization. The extent of weak, emergent modularization may be asymmetric, more pronounced in the left hemisphere, while the right hemisphere is essentially amodular. PMID:7629267

Goldberg, E

1995-04-01

142

The Future Is...Beyond Modular.  

ERIC Educational Resources Information Center

Modular laboratories provide technology education students with valuable experiences, but they are not the total solution. Technology education can aid problem solving, technological literacy, and school-wide curriculum integration, but not within the limits of the modular environment. (JOW)

Pullias, Dave

1997-01-01

143

47 CFR 15.212 - Modular transmitters.  

Code of Federal Regulations, 2012 CFR

...modular transmitter must have its own power supply regulation. (iv) The modular...powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines and data input/output lines connected...

2012-10-01

144

47 CFR 15.212 - Modular transmitters.  

Code of Federal Regulations, 2013 CFR

...modular transmitter must have its own power supply regulation. (iv) The modular...powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines and data input/output lines connected...

2013-10-01

145

47 CFR 15.212 - Modular transmitters.  

Code of Federal Regulations, 2014 CFR

...modular transmitter must have its own power supply regulation. (iv) The modular...powered, it must comply with the AC line conducted requirements found in § 15.207. AC or DC power lines and data input/output lines connected...

2014-10-01

146

RNA epigenetics.  

PubMed

Mammalian messenger RNA (mRNA) and long noncoding RNA (lncRNA) contain tens of thousands of posttranscriptional chemical modifications. Among these, the N(6)-methyl-adenosine (m(6)A) modification is the most abundant and can be removed by specific mammalian enzymes. m(6)A modification is recognized by families of RNA binding proteins that affect many aspects of mRNA function. mRNA/lncRNA modification represents another layer of epigenetic regulation of gene expression, analogous to DNA methylation and histone modification. PMID:24768686

Liu, Nian; Pan, Tao

2015-01-01

147

Modular hybrid plasma reactor and related systems and methods  

DOEpatents

A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.

Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.

2010-06-22

148

A Modularized Counselor-Education Program.  

ERIC Educational Resources Information Center

Counselor-education programs may be enriched through the use of modularized learning experiences. This article notes several recent articles on competency-based counselor education, the concepts of simulation and modularization, and describes the process of developing a modularized master's program at the University of Bridgeport in Connecticut.…

Miller, Thomas V.; Dimattia, Dominic J.

1978-01-01

149

Modular differential equations for characters of RCFT  

E-print Network

We discuss methods, based on the theory of vector-valued modular forms, to determine all modular differential equations satisfied by the conformal characters of RCFT; these modular equations are related to the null vector relations of the operator algebra. Besides describing effective algorithmic procedures, we illustrate our methods on an explicit example.

Peter Bantay

2010-05-12

150

Crystal structure of histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate.  

PubMed Central

The crystal structure at 2.6 A of the histidyl-tRNA synthetase from Escherichia coli complexed with histidyl-adenylate has been determined. The enzyme is a homodimer with a molecular weight of 94 kDa and belongs to the class II of aminoacyl-tRNA synthetases (aaRS). The asymmetric unit is composed of two homodimers. Each monomer consists of two domains. The N-terminal catalytic core domain contains a six-stranded antiparallel beta-sheet sitting on two alpha-helices, which can be superposed with the catalytic domains of yeast AspRS, and GlyRS and SerRS from Thermus thermophilus with a root-mean-square difference on the C alpha atoms of 1.7-1.9 A. The active sites of all four monomers are occupied by histidyl-adenylate, which apparently forms during crystallization. The 100 residue C-terminal alpha/beta domain resembles half of a beta-barrel, and provides an independent domain oriented to contact the anticodon stem and part of the anticodon loop of tRNA(His). The modular domain organization of histidyl-tRNA synthetase reiterates a repeated theme in aaRS, and its structure should provide insight into the ability of certain aaRS to aminoacylate minihelices and other non-tRNA molecules. Images PMID:7556055

Arnez, J G; Harris, D C; Mitschler, A; Rees, B; Francklyn, C S; Moras, D

1995-01-01

151

CFD applications in the Pebble Bed Modular Reactor Project: A decade of progress  

Microsoft Academic Search

Of all the systems and components that have to be designed for a nuclear plant, the Reactor Unit is the most significant since it is at the very heart of the plant. At Pebble Bed Modular Reactor (Pty) Ltd. (PBMR), the design of the Reactor Unit is conducted with the aid of extensive analysis work. Due to the rapid computational

J. J. Janse van Rensburg; M. Kleingeld

2011-01-01

152

Modular small-scale cogenerators  

SciTech Connect

This article concentrates on implementing technology which already exists and transferring it to modular cogeneration packages in an innovative way. Anyone who has worked with more than one technology in their career soon learns that what may be an accepted practice in one industry may be considered innovative in another. Cogeneration can easily benefit from such innovations.

Hedden, R.E.

1988-09-01

153

MARS -Modular Architecture Recommendation System  

E-print Network

MARS - Modular Architecture Recommendation System Analysis of System Decompositions through of software systems, provides an exploratory approach for uncov- ering their architecture and evolution. We are going to introduce the MARS tool built as part of this thesis, explain various strategies and algorithms

Lanza, Michele

154

Modular solar energy collector systems  

Microsoft Academic Search

A readily fabricated, high efficient modular solar energy collector that may be arranged in a wide variety of arrays comprises a relatively small, typically but not necessarily rectangular, panel structure that is centrally coupled to an insulative support that may define an outlet conduit. In a specific example, a pair of coextensive, thermally conductive panels, the outer one of which

Knoos

1980-01-01

155

A Modular Voting Architecture ("Frogs")  

E-print Network

A Modular Voting Architecture ("Frogs") Shuki Bruck (CalTech) David Jefferson (Compaq) Ronald L. Rivest (MIT) (WOTE, August 28, 2001) #12;Outline !Moving from paper " electronic !Voting with frogs !Advantages of frogs !Security !Conclusions #12;What's next in voting? !We propose a practical voting system

Rivest, Ronald L.

156

Rapidly Deployed Modular Telemetry System  

NASA Technical Reports Server (NTRS)

The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

2013-01-01

157

Hyper redundant modular manipulator arm  

Microsoft Academic Search

We introduce the hyper-redundant modular manipulator arm (HRMA) ground test system, which is the ground experimental model for the technology of orbital maintenance system (OMS). OMS consists of three steps: 1) inspecting the satellite, 2) re-orbiting the useless satellite, and 3) simply repairing satellites in space. This HRMA is the arm for inspecting of satellites, the first step of OMS.

S. Kimura; S. Tsuchiya; T. Takegai; N. Iizuka; K. Moritani; S. Nishida; N. Kawashima; R. Okamura

2000-01-01

158

RNA Crystallization  

NASA Technical Reports Server (NTRS)

RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

Golden, Barbara L.; Kundrot, Craig E.

2003-01-01

159

Lifelong companions: RNA helicases and their roles in RNA metabolism.  

PubMed

The life of an RNA molecule is complicated. Once a newly synthesized eukaryotic RNA has emerged from the RNA polymerase in the nucleus, it will be processed, spliced, and exported into cytoplasm. In prokaryotes, transcribed RNA is synthesized directly in the cytoplasm. RNA molecules that serve as mRNAs have to be kept devoid of local structures that are inhibitory for ribosome scanning and translation. Quite differently, structural and catalytic RNAs have to adopt a defined three-dimensional conformation to exert their biological function, and may assemble with other protein and/or RNA partners into complex functional units. Ultimately, RNA degradation by the so-called degradosome will end the RNA's life. PMID:23353572

Klostermeier, Dagmar

2013-01-01

160

Quasispecies theory for evolution of modularity.  

PubMed

Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent. PMID:25679649

Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

2015-01-01

161

Quasispecies theory for evolution of modularity  

NASA Astrophysics Data System (ADS)

Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W.

2015-01-01

162

MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of the Model-Layer Variable-Direction Horizontal Anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) package  

USGS Publications Warehouse

This report documents the model-layer variable-direction horizontal anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW-2000. The LVDA capability allows the principal directions of horizontal anisotropy to be different than the model-grid row and column directions, and for the directions to vary on a cell-by-cell basis within model layers. The HUF Package calculates effective hydraulic properties for model grid cells based on hydraulic properties of hydrogeologic units with thicknesses defined independently of the model layers. These hydraulic properties include, among other characteristics, hydraulic conductivity and a horizontal anisotropy ratio. Using the LVDA capability, horizontal anisotropy direction is defined for model grid cells within which one or more hydrogeologic units may occur. For each grid cell, the HUF Package calculates the effective horizontal hydraulic conductivity along the primary direction of anisotropy using the hydrogeologic-unit hydraulic conductivities, and calculates the effective horizontal hydraulic conductivity along the orthogonal anisotropy direction using the effective primary direction hydraulic conductivities and horizontal anisotropy ratios. The direction assigned to the model layer effective primary hydraulic conductivity is specified using a new data set defined by the LVDA capability, when active, to calculate coefficients needed to solve the ground-water flow equation. Use of the LVDA capability is illustrated in four simulation examples, which also serve to verify hydraulic heads, advective-travel paths, and sensitivities calculated using the LVDA capability. This version of the LVDA capability defines variable-direction horizontal anisotropy using model layers, not the hydrogeologic units defined by the HUF Package. This difference needs to be taken into account when designing model layers and hydrogeologic units to produce simulations that accurately represent a given field problem. This might be a reason, for example, to make model layer boundaries coincide with hydrogeologic-unit boundaries in all or part of a model grid.

Anderman, Evan R.; Kipp, K.L.; Hill, Mary C.; Valstar, Johan; Neupauer, R.M.

2002-01-01

163

An artificial PPR scaffold for programmable RNA recognition.  

PubMed

Pentatricopeptide repeat (PPR) proteins control diverse aspects of RNA metabolism in eukaryotic cells. Although recent computational and structural studies have provided insights into RNA recognition by PPR proteins, their highly insoluble nature and inconsistencies between predicted and observed modes of RNA binding have restricted our understanding of their biological functions and their use as tools. Here we use a consensus design strategy to create artificial PPR domains that are structurally robust and can be programmed for sequence-specific RNA binding. The atomic structures of these artificial PPR domains elucidate the structural basis for their stability and modelling of RNA-protein interactions provides mechanistic insights into the importance of RNA-binding residues and suggests modes of PPR-RNA association. The modular mode of RNA binding by PPR proteins holds great promise for the engineering of new tools to target RNA and to understand the mechanisms of gene regulation by natural PPR proteins. PMID:25517350

Coquille, Sandrine; Filipovska, Aleksandra; Chia, Tiongsun; Rajappa, Lional; Lingford, James P; Razif, Muhammad F M; Thore, Stéphane; Rackham, Oliver

2014-01-01

164

Antares: A low cost modular launch vehicle for the future  

NASA Technical Reports Server (NTRS)

The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

1991-01-01

165

Self-organized modularization in evolutionary algorithms.  

PubMed

The principle of modularization has proven to be extremely successful in the field of technical applications and particularly for Software Engineering purposes. The question to be answered within the present article is whether mechanisms can also be identified within the framework of Evolutionary Computation that cause a modularization of solutions. We will concentrate on processes, where modularization results only from the typical evolutionary operators, i.e. selection and variation by recombination and mutation (and not, e.g., from special modularization operators). This is what we call Self-Organized Modularization. Based on a combination of two formalizations by Radcliffe and Altenberg, some quantitative measures of modularity are introduced. Particularly, we distinguish Built-in Modularity as an inherent property of a genotype and Effective Modularity, which depends on the rest of the population. These measures can easily be applied to a wide range of present Evolutionary Computation models. It will be shown, both theoretically and by simulation, that under certain conditions, Effective Modularity (as defined within this paper) can be a selection factor. This causes Self-Organized Modularization to take place. The experimental observations emphasize the importance of Effective Modularity in comparison with Built-in Modularity. Although the experimental results have been obtained using a minimalist toy model, they can lead to a number of consequences for existing models as well as for future approaches. Furthermore, the results suggest a complex self-amplification of highly modular equivalence classes in the case of respected relations. Since the well-known Holland schemata are just the equivalence classes of respected relations in most Simple Genetic Algorithms, this observation emphasizes the role of schemata as Building Blocks (in comparison with arbitrary subsets of the search space). PMID:16156926

Dauscher, Peter; Uthmann, Thomas

2005-01-01

166

Molded multilevel modular microfluidic devices  

NASA Astrophysics Data System (ADS)

In this paper, we present a quasi-three-dimensional micro-fluidic device that has been constructed using the LIGA technology at CAMD. The idea is centered in the modular construction of molded plastic devices. A primary master template was patterned into SU-8 and PMMA, from which we made a reversed insertion mold by electroplating Nickel on it. Chips were patterned by hot embossing and the complex structure was obtained by stacking one layer on top of the other. Alignment marks were placed in each different layer to allow the accurate positioning of the structures. Each layer is a 2-dimensional micro-fluidic system and liquids can go from one level to another level, back and forth, producing this almost three-dimensional behavior. This work aims to introduce concepts and features that will be a step towards a complete modularization of micro-fluidic devices.

Aristone, Flavio; Datta, Proyag; Desta, Yohannes M.; Espindola, Alexey M.; Goettert, Jost

2003-01-01

167

Modular Inflation and the Curvaton  

SciTech Connect

Supersymmetric Peccei-Quinn models which provide a suitable candidate for the curvaton field are studied. These models also solve the {mu} problem, while generating the Peccei-Quinn scale dynamically. The curvaton is a pseudo Nambu-Goldstone boson corresponding to an angular degree of freedom orthogonal to the axion. Its order parameter increases substantially following a phase transition during inflation.s results in a drastic amplification of the curvaton perturbations. Consequently, these models are able to accommodate low-scale inflation with Hubble parameter at the TeV scale such as modular inflation. We find that modular inflation with the orthogonal axion as curvaton can indeed account for the observations for natural values of the parameters. In particular, the spectral index can easily be made adequately lower than unity in accord with the recent data.

Lazarides, George [Physics Division, School of Technology, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece)

2007-01-12

168

Application of the modular risk analaysis approach health impact analyses  

SciTech Connect

The modular risk analysis approach is being used to evaluate health impacts for several Hanford related human health impact analyses. The modular risk analysis approach separates contaminant source inventory [source quantity (Q)], the contaminant release rate [unit flux factor time series (UFF{sup series})], the environmental transport [unit transport factor time series (UTF{sup series})], the exposure assumptions [unit dose factor (UDF)], and health impacts [unit impact factor (UIF)] into components. These factors are combined to provide an estimate of the human health impact for a particular scenario represented by the factors selected. The UFF{sup series} is the forcing function and the UTF{sup series} is the response function of the system. The forcing function represents the release from the source to the system (e.g., groundwater transport environment). The response function represents the transport through the system. These two terms are combined using a mathematical convoluted method as a time series. The component definition can be conducted concurrently to reduce analysis time. The final analysis then consists of simple combinations of the source terms and unit factors. After the different components have been refined, any component can be modified without impact to the other components and the risk estimates can be quickly re-evaluated. This approach can be used for all major transport and exposure pathways. The modular risk analysis approach is described with emphasis on the linkage of the transport and exposure pathway analyses. The results can be used to assist in the difficult decision making process that needs to be made on radioactive and hazardous cleanup at a site.

Strenge, D.L.; Buck, J.W.; Castleton, K.J. [Pacific Northwest Laboratory, Richland, WA (United States)

1996-06-01

169

Multidimensional bioseparation with modular microfluidics  

DOEpatents

A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

Chirica, Gabriela S.; Renzi, Ronald F.

2013-08-27

170

Modular packaging of VSCF converters  

NASA Astrophysics Data System (ADS)

The use of modular building blocks to configure VSCF converters of ratings varying from 40 to 110 kVA with an unvarying geometry for uniform circuit impedances is demonstrated. The various modules are described and means of implementating rating changes are considered. Alternate cooling methods such as air and oil are discussed and a description is given of the physical adjustments necessary for cooling compatibility. Weight, size, and efficiency data are provided for all ratings and cooling methods.

Pollard, David D.

1987-10-01

171

Modular thrust subsystem approaches to solar electric propulsion module design  

NASA Technical Reports Server (NTRS)

Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

1976-01-01

172

Modular thrust subsystem approaches to solar electric propulsion module design  

NASA Technical Reports Server (NTRS)

Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

1976-01-01

173

RNA genetics  

SciTech Connect

This book contains the proceedings on RNA gentics: Variability of RNA genomes, Volume III. Topics covered include: High error rate, population equilibrium, and evolution of RNA replication systems; Influenza viruses; High rate of nutation and evolution; and Sequence space and quasi species distribution.

Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

1988-01-01

174

RNA genetics  

SciTech Connect

This book contains the proceedings on RNA genetics: RNA-directed virus replication Volume 1. Topics covered include: Replication of the poliovirus genome; Influenza viral RNA transcription and replication; and Relication of the reoviridal: Information derived from gene cloning and expression.

Domingo, E. (Instituto de Biologia Molecular, Facultad de Ciencias, Universidad Autonoma de Madrid, Canto Blanco, Madrid (ES)); Holland, J.J. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Biology); Ahlquist, P. (Wisconsin Univ., Madison, WI (USA). Dept. of Plant Pathology)

1988-01-01

175

Predicting and Modeling RNA Architecture  

PubMed Central

SUMMARY A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values. PMID:20504963

Westhof, Eric; Masquida, Benoît; Jossinet, Fabrice

2011-01-01

176

Modular construction of mammalian gene circuits using TALE transcriptional repressors.  

PubMed

An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation. PMID:25643171

Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

2015-03-01

177

Modular detector systems for nuclear medicine imaging  

Microsoft Academic Search

Modular detectors provide system design flexibility that makes possible the development of many imaging systems not possible through the use of more traditional approaches such as employing fixed ring configurations or large FOV (field-of-view) detectors. We have developed two such modular detector systems. The first is a small FOV modular gamma camera based on a position-sensitive photomultiplier tube (PSPMT) and

Chin-Tu Chen; Chien-Min Kao; John N. Aarsvold; Qingguo Xie; R. A. Mintzer; Jefrey S. Souris

2004-01-01

178

MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory  

PubMed Central

MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721

Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

2005-01-01

179

Complete RNA inverse folding: computational design of functional hammerhead ribozymes.  

PubMed

Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/. PMID:25209235

Dotu, Ivan; Garcia-Martin, Juan Antonio; Slinger, Betty L; Mechery, Vinodh; Meyer, Michelle M; Clote, Peter

2014-10-01

180

Complete RNA inverse folding: computational design of functional hammerhead ribozymes  

PubMed Central

Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/. PMID:25209235

Dotu, Ivan; Garcia-Martin, Juan Antonio; Slinger, Betty L.; Mechery, Vinodh; Meyer, Michelle M.; Clote, Peter

2014-01-01

181

Communities of dense weighted networks: MicroRNA co-target network as an example  

E-print Network

Complex networks are intrinsically modular. Resolving small modules is particularly difficult when the network is densely connected; wide variation of link weights invites additional complexities. In this article we present an algorithm to detect community structure in densely connected weighted networks. First, modularity of the network is calculated by erasing the links having weights smaller than a cutoff $q.$ Then one takes all the disjoint components obtained at $q=q_c,$ where the modularity is maximum, and modularize the components individually using Newman Girvan's algorithm for weighted networks. We show, taking microRNA (miRNA) co-target network of Homo sapiens as an example, that this algorithm could reveal miRNA modules which are known to be relevant in biological context.

Basu, Mahashweta

2014-01-01

182

X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity  

PubMed Central

Cleavage of introns from precursor transfer RNAs (tRNAs) by tRNA splicing endonuclease (EndA) is essential for tRNA maturation in Archaea and Eukarya. In the past, archaeal EndAs were classified into three types (??2, ?4 and ?2?2) according to subunit composition. Recently, we have identified a fourth type of archaeal EndA from an uncultivated archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2, which is deeply branched within Euryarchaea. The ARMAN-2 EndA forms an ?2 homodimer and has broad substrate specificity like the ?2?2 type EndAs found in Crenarchaea and Nanoarchaea. However, the precise architecture of ARMAN-2 EndA was unknown. Here, we report the crystal structure of the ?2 homodimer of ARMAN-2 EndA. The structure reveals that the ? protomer is separated into three novel units (?N, ? and ?C) fused by two distinct linkers, although the overall structure of ARMAN-2 EndA is similar to those of the other three types of archaeal EndAs. Structural comparison and mutational analyses reveal that an ARMAN-2 type-specific loop (ASL) is involved in the broad substrate specificity and that K161 in the ASL functions as the RNA recognition site. These findings suggest that the broad substrate specificities of ?2 and ?2?2 EndAs were separately acquired through different evolutionary processes. PMID:22941657

Hirata, Akira; Fujishima, Kosuke; Yamagami, Ryota; Kawamura, Takuya; Banfield, Jillian F.; Kanai, Akio; Hori, Hiroyuki

2012-01-01

183

Combustion Power Unit--400: CPU-400.  

ERIC Educational Resources Information Center

Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

Combustion Power Co., Palo Alto, CA.

184

Modular design attitude control system  

NASA Technical Reports Server (NTRS)

A sequence of single axismodels and a series of reduced state linear observers of minimum order are used to reconstruct inaccessible variables pertaining to the modular attitude control of a rigid body flexible suspension model of a flexible spacecraft. The single axis models consist of two, three, four, and five rigid bodies, each interconnected by a flexible shaft passing through the mass centers of the bodies. Modal damping is added to each model. Reduced state linear observers are developed for synthesizing the inaccessible modal state variables for each modal model.

Chichester, F. D.

1984-01-01

185

Modular neural networks: a survey.  

PubMed

Modular Neural Networks (MNNs) is a rapidly growing field in artificial Neural Networks (NNs) research. This paper surveys the different motivations for creating MNNs: biological, psychological, hardware, and computational. Then, the general stages of MNN design are outlined and surveyed as well, viz., task decomposition techniques, learning schemes and multi-module decision-making strategies. Advantages and disadvantages of the surveyed methods are pointed out, and an assessment with respect to practical potential is provided. Finally, some general recommendations for future designs are presented. PMID:10529085

Auda, G; Kamel, M

1999-04-01

186

Functional annotation of hierarchical modularity.  

PubMed

In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function-hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its p-value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of "enriched" functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13). PMID:22496762

Padmanabhan, Kanchana; Wang, Kuangyu; Samatova, Nagiza F

2012-01-01

187

Functional Annotation of Hierarchical Modularity  

PubMed Central

In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function–hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of “enriched” functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13). PMID:22496762

Padmanabhan, Kanchana; Wang, Kuangyu; Samatova, Nagiza F.

2012-01-01

188

The relative efficiency of modular and non-modular networks of different size  

PubMed Central

Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

Tosh, Colin R.; McNally, Luke

2015-01-01

189

The relative efficiency of modular and non-modular networks of different size.  

PubMed

Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: 'small' and 'large', and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

Tosh, Colin R; McNally, Luke

2015-03-01

190

ASMPKS: an analysis system for modular polyketide synthases  

PubMed Central

Background Polyketides are secondary metabolites of microorganisms with diverse biological activities, including pharmacological functions such as antibiotic, antitumor and agrochemical properties. Polyketides are synthesized by serialized reactions of a set of enzymes called polyketide synthase(PKS)s, which coordinate the elongation of carbon skeletons by the stepwise condensation of short carbon precursors. Due to their importance as drugs, the volume of data on polyketides is rapidly increasing and creating a need for computational analysis methods for efficient polyketide research. Moreover, the increasing use of genetic engineering to research new kinds of polyketides requires genome wide analysis. Results We describe a system named ASMPKS (Analysis System for Modular Polyketide Synthesis) for computational analysis of PKSs against genome sequences. It also provides overall management of information on modular PKS, including polyketide database construction, new PKS assembly, and chain visualization. ASMPKS operates on a web interface to construct the database and to analyze PKSs, allowing polyketide researchers to add their data to this database and to use it easily. In addition, the ASMPKS can predict functional modules for a protein sequence submitted by users, estimate the chemical composition of a polyketide synthesized from the modules, and display the carbon chain structure on the web interface. Conclusion ASMPKS has powerful computation features to aid modular PKS research. As various factors, such as starter units and post-processing, are related to polyketide biosynthesis, ASMPKS will be improved through further development for study of the factors. PMID:17764579

Tae, Hongseok; Kong, Eun-Bae; Park, Kiejung

2007-01-01

191

Modular support blocks for fluid lines  

NASA Technical Reports Server (NTRS)

Modular line block comprises matched modular elements machined to accept fluid lines of different diameters. Modules can support different fluid-line configurations. Top and bottom surfaces are machined to accept dovetail strip used for holding modules together. End modules have holes drilled through to accept fastening screws.

Dimino, J. M.; Deskin, R. D.

1974-01-01

192

A new ordered bed modular reactor concept  

Microsoft Academic Search

The Ordered Bed Modular Reactor (OBMR) is an advanced modular HTGR design in which the annular reactor core is filled with an ordered bed of fuel spheres. This arrangement allows fuel elements to be poured into the core cavity which is shaped so that an ordered bed is formed and to be discharged from the core through the opening holes

Jiafu Tian

2007-01-01

193

Closed string couplings with modular properties  

NASA Astrophysics Data System (ADS)

Closed string couplings that give direct constructions of the fundamental region of the modular group are obtained. They arise from Riemann surfaces associated with functions that map strips into a given number of fundamental regions of the group of anharmonic ratios. A Prym differential underlies a tadpole-like graph giving three copies of the modular region.

Zwiebach, Barton

1989-04-01

194

SMASH: Modular Security for Mobile Agents  

E-print Network

SMASH: Modular Security for Mobile Agents TR-UTEDGE-2006-007 Adam Pridgen Christine Julien © Copyright 2006 The University of Texas at Austin #12;SMASH: Modular Security for Mobile Agents Adam Pridgen and Computer Engineering The University of Texas at Austin {atpridgen, c.julien}@mail.utexas.edu Mobile agent

Julien, Christine

195

Curriculum Development through YTS Modular Credit Accumulation.  

ERIC Educational Resources Information Center

This document reports the evaluation of the collaborately developed Modular Training Framework (MainFrame), a British curriculum development project, built around a commitment to a competency-based, modular credit accumulation program. The collaborators were three local education authorities (LEAs), those of Bedfordshire, Haringey, and Sheffield,…

Further Education Unit, London (England).

196

Evolutionary Connectionism and Mind\\/Brain Modularity  

Microsoft Academic Search

Brain\\/mind modularity is a contentious issue in cognitive science. Cognitivists tend to conceive of the mind as a set of distinct specialized modules and they believe that this rich modularity is basically innate. Cognitivist modules are theoretical entities which are postulated in \\

Raffaele Calabretta; Domenico Parisi

2001-01-01

197

A modular approach toward extremely large apertures  

Microsoft Academic Search

Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural\\/joints and design optimization on intermodule joints are needed.

A. A. Woods Jr.

1981-01-01

198

A modular approach toward extremely large apertures  

NASA Astrophysics Data System (ADS)

Modular antenna construction can provide a significant increase in reflector aperture size over deployable reflectors. The modular approach allows reflective mesh surfaces to be supported by a minimum of structure. The kinematics of the selected deployable design approach were validated by the subscale demonstration model. Further design refinements on the module structural/joints and design optimization on intermodule joints are needed.

Woods, A. A., Jr.

1981-02-01

199

Origin of Modularity in Recombination Evolution  

NASA Astrophysics Data System (ADS)

Modularity is a well-known phenomenon in biology. Modularity implies a hierarchical character, and is manifested in both phenotypic and genotypic levels. A module is defined, in general, as a component which operates relatively independently of other components of the system. The independence is in both the structural and functional levels. How does modularity originate? Evolvability is a selectable trait and modularity enhances evolvability. Thus, under conditions that select for evolvability, we expect to see the emergence of modularity. We used a spin-glass model to simulate the evolution of genomes. This model captures the interactions between amino acids or epistasis between genes. The evolutions include both sequence evolution and structure evolution. The environment changes and recombination plays an important role in evolution. We will present our result of the emergence of modularity, a symmetry breaking of the system. We will present the dependence of modularity on the amplitude and frequency of environment changing. The crucial role of recombination in the emergence of modularity will be discussed as well.

Sun, Jun; Deem, Michael

2007-03-01

200

Modular Construction: The Wave of the Future.  

ERIC Educational Resources Information Center

Modular construction of school buildings offers speed of construction, with 100 percent contractor responsibility for the completed structures. Under negotiated terms, modular projects can be purchased outright or through long-term leasing arrangements that provide ownership at the end of the lease period. (MLF)

Savage, Chuck

1989-01-01

201

Decentralized kinematics algorithm for modular space robots  

Microsoft Academic Search

The Communications Research Laboratory has been studying the inspection technology needed for the first step of an Orbital Maintenance System (OMS) for maintaining space systems by inspecting satellites, re-orbiting useless satellites, and simply repairing satellites in orbit. OMS will use a modular manipulator for remote inspection. One of the most important issues concerning control of the modular manipulator is a

Shinichi Kimura; Shigeru Tsuchiya

2000-01-01

202

Comparison of modular multipliers on FPGAs  

NASA Astrophysics Data System (ADS)

The choice of modular multiplication algorithms for hardware implementation is not a straightforward problem. In this paper, we analyze and compare FPGA implementations of several state-of-the-art dedicated modular multipliers. For a given constant modulus M, there are several possible methods for generating an optimized modular multiplier, i.e. the dedicated (X x Y) mod M operator. Those modular multipliers can be generated using two kinds of algorithms: those that work for all values of M and those that only work for specific values of the modulo such as 2n +/- 1. Several algorithms will be compared for both kind of algorithms. We also deal with two FPGA families, Virtex E and Virtex-II from Xilinx, to measure the impact of new specific built-in resources such as small embedded multipliers. The synthesizable VHDL files of the generated modular multipliers will be available on a web page.

Beuchat, Jean-Luc; Imbert, Laurent; Tisserand, Arnaud

2003-12-01

203

Modular polynomials via isogeny volcanoes  

E-print Network

We present a new algorithm to compute the classical modular polynomial Phi_n in the rings Z[X,Y] and (Z/mZ)[X,Y], for a prime n and any positive integer m. Our approach uses the graph of n-isogenies to efficiently compute Phi_n mod p for many primes p of a suitable form, and then applies the Chinese Remainder Theorem (CRT). Under the Generalized Riemann Hypothesis (GRH), we achieve an expected running time of O(n^3 (log n)^3 log log n), and compute Phi_n mod m using O(n^2 (log n)^2 + n^2 log m) space. We have used the new algorithm to compute Phi_n with n over 5000, and Phi_n mod m with n over 20000. We also consider several modular functions g for which Phi_n^g is smaller than Phi_n, allowing us to handle n over 60000.

Broker, Reinier; Sutherland, Andrew V

2010-01-01

204

Modular interactive graphics programming environment  

SciTech Connect

The currently popular device independent graphics packages, such as the SIGGRAPH core System or the Graphical Kernel system, do not support a number of capabilities routinely available in general purpose programming languages. As a result, high performance interactive hardware is not well served, and sophisticated applications are more difficult to reliably program than they should be. In general purpose programming languages, the absence of data types, modularity and parameters would not be tolerated. Yet in preparing tools for programming interactive graphics systems, such capabilities are routinely omitted. This research explores the potential for a modular graphics environment (MGE), proposes one such structure, and demonstrates the feasibility of the MGE. The MGE is a device independent set of structures which is coupled with the capability of a graphics package like the SIGGRAPH Core System would provide the graphics programmer a more complete set of programming tools than currently exists. The added capabilities include: graphical data types, graphics procedures, parameters to graphics procedures, and an interactive librarian. The research is primarily concerned with the potential for such an approach on interactive graphics programming involving dynamic manipulation of images.

Dellenback, S.W.

1985-01-01

205

A modular BLSS simulation model  

NASA Technical Reports Server (NTRS)

A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

Rummel, John D.; Volk, Tyler

1987-01-01

206

Learning modular policies for robotics  

PubMed Central

A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

2014-01-01

207

Learning modular policies for robotics.  

PubMed

A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

2014-01-01

208

A modular area surveillance system  

SciTech Connect

This paper describes the implementation of a modular, decentralized surveillance system which incorporates a range of sensors including TV cameras, ultrasonic and infra-red devices, and optical barriers. The key features of the approach are fault tolerance, modularity, and scalability, which are achieved through the use of a Decentralized Kalman Filter (DKF) as the main data association and tracking technique, and Dempster-Schafer evidential reasoning as the basis for combining estimates of target identity from the various sensors. The surveillance system is able to track multiple objects from multiple sensors, and can provide estimates of target identity fused over time. Results are communicated to the user through a graphical interface implemented under X Windows, which supports the designation of ``exclusion zones`` where the user can specify conditions for the triggering of an alarm. The paper is organized as follows. First, the authors discuss briefly the implementation of the surveillance system, using TV cameras as the main sensing devices and transputers for processing. Then the authors present the results of a limited experimental evaluation of the performance of the system. Finally, some conclusions are drawn and suggestions made for possible further work.

Greenway, P. [British Aerospace PLC, Bristol (United Kingdom). Sowerby Research Centre

1994-12-31

209

Overland Tidal Power Generation Using Modular Tidal Prism  

SciTech Connect

Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

2010-03-01

210

Highly modular bow-tie gene circuits with programmable dynamic behavior  

PubMed Central

Synthetic gene circuits often require extensive mutual optimization of their components for successful operation, while modular and programmable design platforms are rare. A possible solution lies in the “bow-tie” architecture, which stipulates a focal component - a “knot” - uncoupling circuits’ inputs and outputs, simplifying component swapping, and introducing additional layer of control. Here we construct, in cultured human cells, synthetic bow-tie circuits that transduce microRNA inputs into protein outputs with independently programmable logical and dynamic behavior. The latter is adjusted via two different knot configurations: a transcriptional activator causing the outputs to track input changes reversibly, and a recombinase-based cascade, converting transient inputs into permanent actuation. We characterize the circuits in HEK293 cells, confirming their modularity and scalability, and validate them using endogenous microRNA inputs in additional cell lines. This platform can be used for biotechnological and biomedical applications in vitro, in vivo, and potentially in human therapy. PMID:25311543

Prochazka, Laura; Angelici, Bartolomeo; Häfliger, Benjamin; Benenson, Yaakov

2014-01-01

211

Active vibration suppression of a exible structure using smart material and a modular control patch  

E-print Network

Active vibration suppression of a ¯exible structure using smart material and a modular control of vibration suppression of a ¯exible structure using smart materials and a miniaturized digital controller and was developed by TRW for the United States Air Force for future space vibration control. In this research

212

Vocational Training in Europe: Towards a Modular Form? Discussion Paper. CEDEFOP Panorama. First Edition.  

ERIC Educational Resources Information Center

Discussion of whether and to what extent initial vocational training and adult education in European Community (EC) member countries can assume a modular form hinges on the issue of the module as an organizational principle. In such a context, modules are viewed not as closed teaching and learning units but rather as integral parts of a more…

Sellin, Burkart

213

The Development of a Wireless Modular Health Monitoring System for Civil Structures  

Microsoft Academic Search

Current structural monitoring systems employ conventional cables to allow sensors to communicate their measurements to a central processing unit. Cabled based sensing systems for structures have high installation costs and leave wires vulnerable to ambient signal noise corruption. To address these disadvantages, a research effort has been initiated towards the development of a wireless modular monitoring system. The developed wireless

Jerome P. Lynch; Kincho H. Law; Erik G. Straser; Anne S. Kiremidjian; Tom W. Kenny

2001-01-01

214

Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing  

NASA Technical Reports Server (NTRS)

A hardware unit has been designed that reduces the cost, in terms of performance and power consumption, for implementing N-modular redundancy (NMR) in a multiprocessor device. The innovation monitors transactions to memory, and calculates a form of sumcheck on-the-fly, thereby relieving the processors of calculating the sumcheck in software

Dobbs, Carl, Sr.

2012-01-01

215

Modular Countermine Payload for Small Robots  

SciTech Connect

Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

2010-04-01

216

Assessment of Microbial Diversity in Four Southwestern United States Soils by 16S rRNA Gene Terminal Restriction Fragment Analysis  

PubMed Central

The ability of terminal restriction fragment (T-RFLP or TRF) profiles of 16S rRNA genes to provide useful information about the relative diversity of complex microbial communities was investigated by comparison with other methods. Four soil communities representing two pinyon rhizosphere and two between-tree (interspace) soil environments were compared by analysis of 16S rRNA gene clone libraries and culture collections (Dunbar et al., Appl. Environ. Microbiol. 65:1662–1669, 1998) and by analysis of 16S rDNA TRF profiles of community DNA. The TRF method was able to differentiate the four communities in a manner consistent with previous comparisons of the communities by analysis of 16S rDNA clone libraries. TRF profiles were not useful for calculating and comparing traditional community richness or evenness values among the four soil environments. Statistics calculated from RsaI, HhaI, HaeIII, and MspI profiles of each community were inconsistent, and the combined data were not significantly different between samples. The detection sensitivity of the method was tested. In standard PCRs, a seeded population comprising 0.1 to 1% of the total community could be detected. The combined results demonstrate that TRF analysis is an excellent method for rapidly comparing the relationships between bacterial communities in environmental samples. However, for highly complex communities, the method appears unable to provide classical measures of relative community diversity. PMID:10877790

Dunbar, John; Ticknor, Lawrence O.; Kuske, Cheryl R.

2000-01-01

217

Small Modular Reactors: Institutional Assessment  

SciTech Connect

? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview purposes and is a sampling of advanced SMR concepts, which will be considered as part of the current DOE SMR program but whose estimated deployment time is beyond CAP’s current investment time horizon. Attachment I is the public DOE statement describing the present approach of their SMR Program.

Joseph Perkowski, Ph.D.

2012-06-01

218

Size reduction of complex networks preserving modularity  

SciTech Connect

The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

2008-12-24

219

Modularized CRISPR/dCas9 effector toolkit for target-specific gene regulation.  

PubMed

The ability to control mammalian genes in a synergistic mode using synthetic transcription factors is highly desirable in fields of tissue engineering, stem cell reprogramming and fundamental research. In this study, we developed a standardized toolkit utilizing an engineered CRISPR/Cas9 system that enables customizable gene regulation in mammalian cells. The RNA-guided dCas9 protein was implemented as a programmable transcriptional activator or repressor device, including targeting of endogenous loci. For facile assembly of single or multiple CRISPR RNAs, our toolkit comprises a modular RNAimer plasmid, which encodes the required noncoding RNA components. PMID:25524106

Agne, Michael; Blank, Ilona; Emhardt, Alica J; Gäbelein, Christoph G; Gawlas, Fenja; Gillich, Nadine; Gonschorek, Patrick; Juretschke, Thomas J; Krämer, Stefan D; Louis, Natalie; Müller, Anne; Rudorf, Alina; Schäfer, Lisa M; Scheidmann, Manuel C; Schmunk, Lisa J; Schwenk, Philipp M; Stammnitz, Maximilian R; Warmer, Philipp M; Weber, Wilfried; Fischer, Adrian; Kaufmann, Beate; Wagner, Hanna J; Radziwill, Gerald

2014-12-19

220

A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS  

SciTech Connect

The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc.'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

None

2001-07-01

221

Modular Courses in British Higher Education: A Critical Assessment  

ERIC Educational Resources Information Center

The trends towards modular course structures is examined. British conceptions of modularization are compared with American interpretations of modular instruction, the former shown to be concerned almost exclusively with content, the latter attempting more radical changes in students' learning behavior. Rationales for British modular schemes are…

Church, Clive

1975-01-01

222

Analytical Spectroscopy Using Modular Systems  

NASA Astrophysics Data System (ADS)

This article describes the development of three analytical spectroscopy experiments that compare the determination of salicylic acid (SA) content in aspirin tablets. The experiments are based on UV vis, fluorescence, and Raman spectroscopies and utilize modular spectroscopic components. Students assemble their own instruments, optimize them with respect to signal-to-noise, generate calibration curves, determine the SA content in retail aspirin tablets, and assign features in the respective spectra to functional groups within the active material. Using this approach in the discovery-based setting, the students gain invaluable insight into method-specific parameters, such as instrumental components, sample preparation, and analytical capability. In addition, the students learn the fundamentals of fiber optics and signal processing using the low-cost CCD based spectroscopic components.

Patterson, Brian M.; Danielson, Neil D.; Lorigan, Gary A.; Sommer, André J.

2003-12-01

223

BESST: A Miniature, Modular Radiometer  

NASA Technical Reports Server (NTRS)

A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

Warden, Robert; Good, William; Baldwin-Stevens, Erik

2010-01-01

224

MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS  

SciTech Connect

ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

Joseph W. Geisinger, Ph.D.

2001-07-31

225

A Modular Approach to Redundant Robot Control  

SciTech Connect

This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be `passive control laws`, i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust.

Anderson, R.J.

1997-12-01

226

Towards a new Liquid Argon Imaging Chamber for the MODULAr project  

NASA Astrophysics Data System (ADS)

The MODULAr project foresees the exploitation of a new liquid Argon imaging detector, of at least 20 kt fiducial mass, to be operated in a shallow depth location under the Gran Sasso Mountain. It will be devoted to study neutrino oscillations with an optimized off-axis CNGS neutrino beam. Cosmic neutrinos as well as proton decay will also be addressed. The MODULAr detector will vastly inherit from the technology developed for ICARUS-T600. However, such an increase in the volume over the current ICARUS-T600 needs to be carefully considered. It is concluded that a single, huge volume is an inoperable and uneconomical solution for many reasons. A very large mass is best realized with a modular set of many identical, independent units, each of about 5 kt, ``cloning'' the basic technology of the ICARUS-T600. Several of such modular units will be assembled to reach at least 20 kt as initial sensitive volume. The increase of the active volume of about one order of magnitude with respect to the ICARUS-T600 detector requires some specific R&D activity, which will be implemented in a ~ 360 ton prototype unit (SLICE) of reduced length.

Angeli, D.; Baibussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Benetti, P.; Borio, A.; Calligarich, E.; Cambiaghi, M.; Cavanna, F.; Centro, S.; Cieslik, K.; Cocco, A. G.; Dolfini, R.; Gigli Berzolari, A.; Farnese, C.; Fava, A.; Ferrari, A.; Fiorillo, G.; Gibin, D.; Guglielmi, A.; Mannocchi, G.; Menegolli, A.; Meng, G.; Montanari, C.; Muraro, S.; Palamara, O.; Periale, L.; Picchi, P.; Pietropaolo, F.; Rappoldi, A.; Raselli, G. L.; Rossella, M.; Rubbia, C.; Sala, P.; Satta, G.; Varanini, F.; Ventura, S.; Vignoli, C.

2009-02-01

227

Shifting Responsibly: The Importance of Striatal Modularity to Reinforcement Learning in Uncertain Environments  

PubMed Central

We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome–matrisome domains participate in modular reinforcement learning (RL). Based on anatomical and physiological evidence, it has been suggested that the modular organization of the striatum could represent a learning architecture. There is not, however, a coherent view of how such a learning architecture could relate to the organization of striatal outputs into the direct and indirect pathways of the basal ganglia, nor a clear formulation of how such a modular architecture relates to the RL functions attributed to the striatum. Here, we hypothesize that striosome–matrisome modules not only learn to bias behavior toward specific actions, as in standard RL, but also learn to assess their own relevance to the environmental context and modulate their own learning and activity on this basis. We further hypothesize that the contextual relevance or “responsibility” of modules is determined by errors in predictions of environmental features and that such responsibility is assigned by striosomes and conveyed to matrisomes via local circuit interneurons. To examine these hypotheses and to identify the general requirements for realizing this architecture in the nervous system, we developed a simple modular RL model. We then constructed a network model of basal ganglia circuitry that includes these modules and the direct and indirect pathways. Based on simple assumptions, this model suggests that while the direct pathway may promote actions based on striatal action values, the indirect pathway may act as a gating network that facilitates or suppresses behavioral modules on the basis of striatal responsibility signals. Our modeling functionally unites the modular compartmental organization of the striatum with the direct–indirect pathway divisions of the basal ganglia, a step that we suggest will have important clinical implications. PMID:21660099

Amemori, Ken-ichi; Gibb, Leif G.; Graybiel, Ann M.

2011-01-01

228

RNA Research  

NASA Technical Reports Server (NTRS)

It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. It is widely believed that this RNA World was extensive and therefore a sophisticated nucleic acid replication machinery would presumably predate the translation machinery which would not be needed until later stages in the development of life. This view of an extended RNA World is not necessarily correct. From the point of view of exobiology, the difference in these two views mainly affects the significance of studies of the extent of catalysis possible by RNA- In either case, the origin of the translation machinery and the principles of RNA evolution remain central problems in exobiology. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modem organisms came to exist by the time of the last common ancestor (as detected by 16S RRNA sequence studies). Third, the RNAs that comprise the ribosome are themselves likely of very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.

1998-01-01

229

Modular Solar Electric Power (MSEP) Systems (Presentation)  

Microsoft Academic Search

This presentation discusses the development and deployment of Modular Solar Electric Power (MSEP) systems, the feasibility of application of existing binary power cycles to solar trough technology, and identification of next action items.

Hassani

2000-01-01

230

XAUV : modular high maneuverability autonomous underwater vehicle  

E-print Network

The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

Walker, Daniel G. (Daniel George)

2009-01-01

231

Modular Covariance, PCT, Spin and Statistics  

E-print Network

The notion of modular covariance is reviewed and the reconstruction of the Poincar\\'e group extended to the low-dimensional case. The relations with the PCT symmetry and the Spin and Statistics theorem are described.

Daniele Guido

1995-07-05

232

MARS software model for modeling modular manipulators  

NASA Astrophysics Data System (ADS)

In this paper we describe the application of the MARS model, for modelling and reasoning about modular robot systems, to modular manipulators. The MARS model provides a mechanism for describing robotic components and a method for reasoning about the interaction of these components in modular manipulator configurations. It specifically aims to articulate functionality that is a property of the whole manipulator, but which is not represented in any one component. This functionality arises, in particular, through the capacity for modules to inherit functionality from each other. The paper also uses the case of modular manipulators to illustrate a number of features of the MARS model, including the use of abstract and concrete module classes, and to identify some current limitations of the model. The latter provide the basis for ongoing development of the model.

McKee, Gerard T.; Fryer, J. A.; Schenker, Paul S.

2001-10-01

233

Modular biowaste monitoring system conceptual design  

NASA Technical Reports Server (NTRS)

The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

Fogal, G. L.

1974-01-01

234

Modular Heat Exchanger With Integral Heat Pipe  

NASA Technical Reports Server (NTRS)

Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

Schreiber, Jeffrey G.

1992-01-01

235

Modular invariance for vertex operator superalgebras  

E-print Network

We generalize Zhu's theorem on modular invariance of characters of vertex operator algebras (VOAs) to the setting of vertex operator superalgebras (VOSAs) with rational, rather than integer, conformal weights. To recover ...

Van Ekeren, Jethro (Jethro William)

2012-01-01

236

Modular digital holographic fringe data processing system  

NASA Technical Reports Server (NTRS)

A software architecture suitable for reducing holographic fringe data into useful engineering data is developed and tested. The results, along with a detailed description of the proposed architecture for a Modular Digital Fringe Analysis System, are presented.

Downward, J. G.; Vavra, P. C.; Schebor, F. S.; Vest, C. M.

1985-01-01

237

Theory for the Emergence of Modularity in Complex Systems  

NASA Astrophysics Data System (ADS)

Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

Deem, Michael; Park, Jeong-Man

2013-03-01

238

Data handling for the modular observatory  

NASA Technical Reports Server (NTRS)

The current paper summarizes work undertaken at TRW for the EOS satellite and related missions, and it presents conclusions that lead to a flexible and low-cost overall system implementation. It shows how the usual communication and data handling functions must be altered to meet the modularization ground rules, and it demonstrates the modularization that is possible in the handling of wideband payload data both on board and on the ground.

Taber, J. E.

1975-01-01

239

CNGS neutrino beam: the MODULAr project  

NASA Astrophysics Data System (ADS)

The MODULAr project is considering the opportunity for a new off-axis CNGS neutrino beam with the aim of improving the knowledge of ???? mixing angle by nearly an order of magnitude with respect to T2K expectations. A ˜ 20 kt liquid Argon TPC detector could be installed shallow-depth at the Gran Sasso, following the modular approach and the technology developed for ICARUS-T600.

Gibin, D.; Guglielmi, A.; Pietropaolo, F.; Rubbia, C.; Sala, P. R.

2009-03-01

240

Optimal Network Modularity for Information Diffusion  

NASA Astrophysics Data System (ADS)

We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

2014-08-01

241

Aminoacylating urzymes challenge the RNA world hypothesis.  

PubMed

We describe experimental evidence that ancestral peptide catalysts substantially accelerated development of genetic coding. Structurally invariant 120-130-residue Urzymes (Ur = primitive plus enzyme) derived from Class I and Class II aminoacyl-tRNA synthetases (aaRSs) acylate tRNA far faster than the uncatalyzed rate of nonribosomal peptide bond formation from activated amino acids. These new data allow us to demonstrate statistically indistinguishable catalytic profiles for Class I and II aaRSs in both amino acid activation and tRNA acylation, over a time period extending to well before the assembly of full-length enzymes and even further before the Last Universal Common Ancestor. Both Urzymes also exhibit ?60% of the contemporary catalytic proficiencies. Moreover, they are linked by ancestral sense/antisense genetic coding, and their evident modularities suggest descent from even simpler ancestral pairs also coded by opposite strands of the same gene. Thus, aaRS Urzymes substantially pre-date modern aaRS but are, nevertheless, highly evolved. Their unexpectedly advanced catalytic repertoires, sense/antisense coding, and ancestral modularities imply considerable prior protein-tRNA co-evolution. Further, unlike ribozymes that motivated the RNA World hypothesis, Class I and II Urzyme·tRNA pairs represent consensus ancestral forms sufficient for codon-directed synthesis of nonrandom peptides. By tracing aaRS catalytic activities back to simpler ancestral peptides, we demonstrate key steps for a simpler and hence more probable peptide·RNA development of rapid coding systems matching amino acids with anticodon trinucleotides. PMID:23867455

Li, Li; Francklyn, Christopher; Carter, Charles W

2013-09-13

242

Aminoacylating Urzymes Challenge the RNA World Hypothesis*?  

PubMed Central

We describe experimental evidence that ancestral peptide catalysts substantially accelerated development of genetic coding. Structurally invariant 120–130-residue Urzymes (Ur = primitive plus enzyme) derived from Class I and Class II aminoacyl-tRNA synthetases (aaRSs) acylate tRNA far faster than the uncatalyzed rate of nonribosomal peptide bond formation from activated amino acids. These new data allow us to demonstrate statistically indistinguishable catalytic profiles for Class I and II aaRSs in both amino acid activation and tRNA acylation, over a time period extending to well before the assembly of full-length enzymes and even further before the Last Universal Common Ancestor. Both Urzymes also exhibit ?60% of the contemporary catalytic proficiencies. Moreover, they are linked by ancestral sense/antisense genetic coding, and their evident modularities suggest descent from even simpler ancestral pairs also coded by opposite strands of the same gene. Thus, aaRS Urzymes substantially pre-date modern aaRS but are, nevertheless, highly evolved. Their unexpectedly advanced catalytic repertoires, sense/antisense coding, and ancestral modularities imply considerable prior protein-tRNA co-evolution. Further, unlike ribozymes that motivated the RNA World hypothesis, Class I and II Urzyme·tRNA pairs represent consensus ancestral forms sufficient for codon-directed synthesis of nonrandom peptides. By tracing aaRS catalytic activities back to simpler ancestral peptides, we demonstrate key steps for a simpler and hence more probable peptide·RNA development of rapid coding systems matching amino acids with anticodon trinucleotides. PMID:23867455

Li, Li; Francklyn, Christopher; Carter, Charles W.

2013-01-01

243

Experimental research on a modular miniaturization nanoindentation device  

NASA Astrophysics Data System (ADS)

Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.

Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang

2011-09-01

244

MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Three additions to the Hydrogeologic-Unit Flow (HUF) Package: Alternative storage for the uppermost active cells, Flows in hydrogeologic units, and the Hydraulic-coductivity depth-dependence (KDEP) capability  

USGS Publications Warehouse

The Hydrogeologic-Unit Flow (HUF) Package is an internal flow package for MODFLOW-2000 that allows the vertical geometry of the system hydrogeology to be defined differently than the definition of model layers. Effective hydraulic properties for the model layers are calculated using the hydraulic properties of the hydrogeologic units. The HUF Package can be used instead of the Block-Centered Flow (BCF) or the Layer Property Flow (LPF) Packages. This report documents three additions to the HUF Package.

Anderman, Evan R.; Hill, Mary C.

2003-01-01

245

A 3-d modular gripper design tool  

SciTech Connect

Modular fixturing kits are sets of components used for flexible, rapid construction of fixtures. A modular vise is a parallel-jaw vise, each jaw of which is a modular fixture plate with a regular grid of precisely positioned holes. To fixture a part, one places pins in some of the holes so that when the vise is closed, the part is reliably located and completely constrained. The modular vise concept can be adapted easily to the design of modular parallel-jaw grippers for robots. By attaching a grid-plate to each jaw of a parallel-jaw gripper, one gains the ability to easily construct high-quality grasps for a wide variety of parts from a standard set of hardware. Wallack and Canny developed an algorithm for planning planar grasp configurations for the modular vise. In this paper, the authors expand this work to produce a 3-d fixture/gripper design tool. They describe several analyses they have added to the planar algorithm, including a 3-d grasp quality metric based on force information, 3-d geometric loading analysis, and inter-gripper interference analysis. Finally, the authors describe two applications of their code. One of these is an internal application at Sandia, while the other shows a potential use of the code for designing part of an agile assembly line.

Brown, R.G.; Brost, R.C.

1997-02-01

246

Discovery and visualization of miRNA-mRNA functional modules within integrated data using bicluster analysis.  

PubMed

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcriptional level. An miRNA may target many messenger RNA (mRNA) transcripts, and each transcript may be targeted by multiple miRNAs. Our understanding of miRNA regulation is evolving to consider modules of miRNAs that regulate groups of functionally related mRNAs. Here we expand the model of miRNA functional modules and use it to guide the integration of miRNA and mRNA expression and target prediction data. We present evidence of cooperativity between miRNA classes within this integrated miRNA-mRNA association matrix. We then apply bicluster analysis to uncover miRNA functional modules within this integrated data set and develop a novel application to visualize and query these results. We show that this wholly unsupervised approach can discover a network of miRNA-mRNA modules that are enriched for both biological processes and miRNA classes. We apply this method to investigate the interplay of miRNAs and mRNAs in integrated data sets derived from neuroblastoma and human immune cells. This study is the first to apply the technique of biclustering to model functional modules within an integrated miRNA-mRNA association matrix. Results provide evidence of an extensive modular miRNA functional network and enable characterization of miRNA function and dysregulation in disease. PMID:24357407

Bryan, Kenneth; Terrile, Marta; Bray, Isabella M; Domingo-Fernandéz, Raquel; Watters, Karen M; Koster, Jan; Versteeg, Rogier; Stallings, Raymond L

2014-02-01

247

Discovery and visualization of miRNA–mRNA functional modules within integrated data using bicluster analysis  

PubMed Central

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at a post-transcriptional level. An miRNA may target many messenger RNA (mRNA) transcripts, and each transcript may be targeted by multiple miRNAs. Our understanding of miRNA regulation is evolving to consider modules of miRNAs that regulate groups of functionally related mRNAs. Here we expand the model of miRNA functional modules and use it to guide the integration of miRNA and mRNA expression and target prediction data. We present evidence of cooperativity between miRNA classes within this integrated miRNA–mRNA association matrix. We then apply bicluster analysis to uncover miRNA functional modules within this integrated data set and develop a novel application to visualize and query these results. We show that this wholly unsupervised approach can discover a network of miRNA–mRNA modules that are enriched for both biological processes and miRNA classes. We apply this method to investigate the interplay of miRNAs and mRNAs in integrated data sets derived from neuroblastoma and human immune cells. This study is the first to apply the technique of biclustering to model functional modules within an integrated miRNA–mRNA association matrix. Results provide evidence of an extensive modular miRNA functional network and enable characterization of miRNA function and dysregulation in disease. PMID:24357407

Bryan, Kenneth; Terrile, Marta; Bray, Isabella M.; Domingo-Fernandéz, Raquel; Watters, Karen M.; Koster, Jan; Versteeg, Rogier; Stallings, Raymond L.

2014-01-01

248

Recognition of duplex RNA by the deaminase domain of the RNA editing enzyme ADAR2  

PubMed Central

Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2?-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ?23 nt on the edited strand around the editing site in an asymmetric fashion (?18 nt on the 5? side and ?5 nt on the 3? side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes. PMID:25564529

Phelps, Kelly J.; Tran, Kiet; Eifler, Tristan; Erickson, Anna I.; Fisher, Andrew J.; Beal, Peter A.

2015-01-01

249

Better Extensibility through Modular Syntax  

E-print Network

of productions to provide encapsulation Modifications of units to capture extensions and subsets Flexible meaning Scannerless to also provide extensibility at lexical level Expressive module system Units returning null, strings, generic tree nodes, when passing value through #12;Modules Provide encapsulation

Grimm, Robert

250

Modular Toolkit for Data Processing (MDP): A Python Data Processing Framework  

PubMed Central

Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool. PMID:19169361

Zito, Tiziano; Wilbert, Niko; Wiskott, Laurenz; Berkes, Pietro

2008-01-01

251

Modular Toolkit for Data Processing (MDP): A Python Data Processing Framework.  

PubMed

Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool. PMID:19169361

Zito, Tiziano; Wilbert, Niko; Wiskott, Laurenz; Berkes, Pietro

2008-01-01

252

Modular Wideband Active Vibration Absorber  

NASA Technical Reports Server (NTRS)

A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

Smith, David R.; Zewari, Wahid; Lee, Kenneth Y.

1999-01-01

253

Systematic discovery of xist RNA binding proteins.  

PubMed

Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA-protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3' RNA processing machinery. Xist, an essential lncRNA for X chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK, which participates in Xist-mediated gene silencing and histone modifications but not Xist localization, and Drosophila Split ends homolog Spen, which interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A; Bharadwaj, Maheetha; Calabrese, J Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y

2015-04-01

254

Endomorphisms on half-sided modular inclusions  

SciTech Connect

In algebraic quantum field theory we consider nets of von Neumann algebras indexed over regions of the space time. Wiesbrock [''Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras,'' Commun. Math. Phys. 158, 537-543 (1993)] has shown that strongly additive nets of von Neumann algebras on the circle are in correspondence with standard half-sided modular inclusions. We show that a finite index endomorphism on a half-sided modular inclusion extends to a finite index endomorphism on the corresponding net of von Neumann algebras on the circle. Moreover, we present another approach to encoding endomorphisms on nets of von Neumann algebras on the circle into half-sided modular inclusions. There is a natural way to associate a weight to a Moebius covariant endomorphism. The properties of this weight have been studied by Bertozzini et al. [''Covariant sectors with infinite dimension and positivity of the energy,'' Commun. Math. Phys. 193, 471-492 (1998)]. In this paper we show the converse, namely, how to associate a Moebius covariant endomorphism to a given weight under certain assumptions, thus obtaining a correspondence between a class of weights on a half-sided modular inclusion and a subclass of the Moebius covariant endomorphisms on the associated net of von Neumann algebras. This allows us to treat Moebius covariant endomorphisms in terms of weights on half-sided modular inclusions. As our aim is to provide a framework for treating endomorphisms on nets of von Neumann algebras in terms of the apparently simpler objects of weights on half-sided modular inclusions, we lastly give some basic results for manipulations with such weights.

Svegstrup, Rolf Dyre [Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914 (Japan)

2006-12-15

255

Teleoperated Modular Robots for Lunar Operations  

NASA Technical Reports Server (NTRS)

Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot software and hardware, particularly automation software. Ready access to these simulators could provide opportunities for contest-driven development ala RoboCup (http://www.robocup.org/). Licensing of module designs could provide opportunities in the toy market and for spin-off applications.

Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

2004-01-01

256

Self-assembling RNA square  

SciTech Connect

The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas (UCSD)

2011-12-22

257

Advanced Modular Inverter Technology Development  

SciTech Connect

Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

Adam Szczepanek

2006-02-04

258

Modular Manufacturing Simulator: Users Manual  

NASA Technical Reports Server (NTRS)

The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

1997-01-01

259

Modular Rake of Pitot Probes  

NASA Technical Reports Server (NTRS)

The figure presents selected views of a modular rake of 17 pitot probes for measuring both transient and steady-state pressures in a supersonic wind tunnel. In addition to pitot tubes visible in the figure, the probe modules contain (1) high-frequency dynamic-pressure transducers connected through wires to remote monitoring circuitry and (2) flow passages that lead to tubes that, in turn, lead to remote steady-state pressure transducers. Prior pitot-probe rakes were fabricated as unitary structures, into which the individual pitot probes were brazed. Repair or replacement of individual probes was difficult, costly, and time-consuming because (1) it was necessary to remove entire rakes in order to unbraze individual malfunctioning probes and (2) the heat of unbrazing a failed probe and of brazing a new probe in place could damage adjacent probes. In contrast, the modules in the present probe are designed to be relatively quickly and easily replaceable with no heating and, in many cases, without need for removal of the entire rake from the wind tunnel. To remove a malfunctioning probe, one first removes a screw-mounted V-cross-section cover that holds the probe and adjacent probes in place. Then one removes a screw-mounted cover plate to gain access to the steady-state pressure tubes and dynamicpressure wires. Next, one disconnects the tube and wires of the affected probe. Finally, one installs a new probe in the reverse of the aforementioned sequence. The wire connections can be made by soldering, but to facilitate removal and installation, they can be made via miniature plugs and sockets. The connections between the probe flow passages and the tubes leading to the remote pressure sensors can be made by use of any of a variety of readily available flexible tubes that can be easily pulled off and slid back on for removal and installation, respectively.

Dunlap, Timothy A.; Henry, Michael W.; Homyk, Raymond P.

2004-01-01

260

RNA Chaperones and the RNA Folding Problem  

Microsoft Academic Search

Functional and structural inter-relationships of RNA and pro- teins in the execution and control of biological processes such as RNA processing, RNA splicing, and translation are increasingly apparent. In this minireview, I present an RNA chaperone hypoth- esis, which fosters the view that constraints imposed by fundamen- tal problems in the folding of RNA have profoundly influenced the nature of

Daniel Herschlag

261

Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis  

SciTech Connect

Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

T Tanaka; P Smith; S Shuman

2011-12-31

262

Prognostics Health Management for Advanced Small Modular Reactor Passive Components  

SciTech Connect

In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

2013-10-18

263

Time Triggered Protocol (TTP) for Integrated Modular Avionics  

NASA Technical Reports Server (NTRS)

Traditional avionics computing systems are federated, with each system provided on a number of dedicated hardware units. Federated applications are physically separated from one another and analysis of the systems is undertaken individually. Integrated Modular Avionics (IMA) takes these federated functions and integrates them on a common computing platform in a tightly deterministic distributed real-time network of computing modules in which the different applications can run. IMA supports different levels of criticality in the same computing resource and provides a platform for implementation of fault tolerance through hardware and application redundancy. Modular implementation has distinct benefits in design, testing and system maintainability. This paper covers the requirements for fault tolerant bus systems used to provide reliable communication between IMA computing modules. An overview of the Time Triggered Protocol (TTP) specification and implementation as a reliable solution for IMA systems is presented. Application examples in aircraft avionics and a development system for future space application are covered. The commercially available TTP controller can be also be implemented in an FPGA and the results from implementation studies are covered. Finally future direction for the application of TTP and related development activities are presented.

Motzet, Guenter; Gwaltney, David A.; Bauer, Guenther; Jakovljevic, Mirko; Gagea, Leonard

2006-01-01

264

Anatomical networks reveal the musculoskeletal modularity of the human head.  

PubMed

Mosaic evolution is a key mechanism that promotes robustness and evolvability in living beings. For the human head, to have a modular organization would imply that each phenotypic module could grow and function semi-independently. Delimiting the boundaries of head modules, and even assessing their existence, is essential to understand human evolution. Here we provide the first study of the human head using anatomical network analysis (AnNA), offering the most complete overview of the modularity of the head to date. Our analysis integrates the many biological dependences that tie hard and soft tissues together, arising as a consequence of development, growth, stresses and loads, and motion. We created an anatomical network model of the human head, where nodes represent anatomical units and links represent their physical articulations. The analysis of the human head network uncovers the presence of 10 musculoskeletal modules, deep-rooted in these biological dependences, of developmental and evolutionary significance. In sum, this study uncovers new anatomical and functional modules of the human head using a novel quantitative method that enables a more comprehensive understanding of the evolutionary anatomy of our lineage, including the evolution of facial expression and facial asymmetry. PMID:25656958

Esteve-Altava, Borja; Diogo, Rui; Smith, Christopher; Boughner, Julia C; Rasskin-Gutman, Diego

2015-01-01

265

A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS Travis Steven Schanz  

E-print Network

A TAXONOMY OF MODULAR GRIME IN DESIGN PATTERNS by Travis Steven Schanz A thesis submitted .......................................................................................21 3. MODULAR GRIME TAXONOMY .........................

Dyer, Bill

266

Modular categories and 3-manifold invariants  

SciTech Connect

The aim of this paper is to give a concise introduction to the theory of knot invariants and 3-manifold invariants which generalize the Jones polynomial and which may be considered as a mathematical version of the Witten invariants. Such a theory was introduced by N. Reshetikhin and the author on the ground of the theory of quantum groups. here we use more general algebraic objects, specifically, ribbon and modular categories. Such categories in particular arise as the categories of representations of quantum groups. The notion of modular category, interesting in itself, is closely related to the notion of modular tensor category in the sense of G. Moore and N. Seiberg. For simplicity we restrict ourselves in this paper to the case of closed 3-manifolds.

Tureav, V.G. (URA-CNRS, Dept. de Mathematique, Univ. Louis Pasteur, 7 rue Rene Descartes, 67084 Strasbourg Cedex (FR))

1992-06-01

267

Enhancing productivity with modular storage cabinets.  

PubMed

Several years before the advent of Medicare's prospective payment system and DRGs, which have caused many other hospitals to focus attention on cost reduction and central inventory control for the first time, St. Mary's had adopted central material management techniques. In recognizing that the cost of overhead materials cannot be passed along to the patients, the hospital took steps to keep these costs under control. Modular storage drawer cabinets are being used at the medical center to implement established policies because they proved to be more efficient than other material storage systems, including tote boxes, open shelving and wire-tray carts. As a capital equipment expenditure, the return-on-investment for these cabinets can be justified in terms of space savings estimated at 50% in the case of CSS. The flexibility, modularity and space efficiency of modular storage drawer cabinets meet St. Mary's desire to save time, energy and money. PMID:10278642

Baker, R; Montgomery, W G

1986-01-01

268

Online Scheduling in Modular Multimedia Systems with Stream Reuse #  

E-print Network

Online Scheduling in Modular Multimedia Systems with Stream Reuse # Michael K. Bradshaw, Jim Kurose {bradshaw, kurose, shenoy,towsley}@cs.umass.edu ABSTRACT When properly constructed, a modular multimedia

Massachusetts at Amherst, University of

269

Online Scheduling in Modular Multimedia Systems with Stream Reuse  

E-print Network

Online Scheduling in Modular Multimedia Systems with Stream Reuse Michael K. Bradshaw, Jim Kurose {bradshaw, kurose, shenoy,towsley}@cs.umass.edu ABSTRACT When properly constructed, a modular multimedia

Massachusetts at Amherst, University of

270

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,  

E-print Network

Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

Sontag, Eduardo

271

Modular robotic tiles: experiments for children with autism  

Microsoft Academic Search

We developed a modular robotic tile and a system composed of a number of these modular robotic tiles. The system composed\\u000a of the modular robotic tiles engages the user in physical activities, e.g., physiotherapy, sports, fitness, and entertainment.\\u000a The modular robotic tiles motivate the user to perform physical activities by providing immediate feedback based upon their\\u000a physical interaction with the

Henrik Hautop Lund; Martin Dam Pedersen; Richard Beck

2009-01-01

272

Questioning the Direct Relationship between Product Modularity and Retirement Cost  

Microsoft Academic Search

Modular product design has become a core element aspect of sustainable product design, particularly design for product retirement.\\u000a This work explores the relationship between product modularity and product retirement costs. Previous statements tying increased\\u000a modularity to decreased costs, specifically product retirement costs, motivated this work.\\u000a \\u000a Modular architecture is traditionally made up of functionally independent clusters of components. Past definitions of

Y. Zhang; J. K. Gershenson

2002-01-01

273

Decentralized kinematics algorithm for modular space robots  

NASA Astrophysics Data System (ADS)

The Communications Research Laboratory has been studying the inspection technology needed for the first step of an Orbital Maintenance System (OMS) for maintaining space systems by inspecting satellites, re-orbiting useless satellites, and simply repairing satellites in orbit. OMS will use a modular manipulator for remote inspection. One of the most important issues concerning control of the modular manipulator is a determination process that utilizes its decentralized control architecture. In this paper, we introduce a decentralized kinematics control algorithm that automatically adapts to partial faults and reconfigures itself.

Kimura, Shinichi; Tsuchiya, Shigeru

2000-10-01

274

RNA analysis by nuclease protection.  

PubMed

Nuclease protection assays (S1 nuclease protection and RNase protection) are extremely sensitive procedures for detection and quantitation of mRNA species in complex mixtures of total cellular RNA. These assays are well suited for mapping positions of external and internal junctions in RNA, such as transcription initiation and termination sites and intron/exon boundaries, and to discriminate between closely related targets by using probes designed to span the regions where the related genes differ the most. Also, because the size of the probes used in nuclease protection assays is a variable chosen by the investigator, probes may be designed to protect fragments of different sizes. This feature permits the simultaneous analysis of several different mRNAs in the same total RNA sample. In this unit, a method is included for RNase protection of target mRNA sequences, including hybridization of the probe to the target sequence, details of the actual protection assay, and detection of reaction products. An alternative method is provided for performing the RNase protection assay on a microvolume scale, which is useful when there are many samples to be analyzed. Support protocols describe synthesis and gel purification of labeled RNA probes; preparation of RNase-free yeast RNA, which acts as an aid in the quantitative precipitation of newly synthesized probe; and quantitation of target mRNA. A method describing S1 nuclease protection of target mRNA using either RNA or DNA probes is also included. Additional support protocols provide instructions for the preparation of radiolabeled DNA probes by primer-extension of double-stranded plasmid or PCR product using Klenow fragment of E. coli DNA polymerase I or Taq or Tth polymerase in a thermal cycler. Another radiolabeling method details 5' end labeling of oligodeoxynucleotides and oligoribonucleotides using T4 polynucleotide kinase. Additionally, a method is described for mapping transcription start sites using the S1 nuclease protection assay. PMID:18428580

Goldrick, Marianna; Kessler, Donald

2003-08-01

275

Value centric approach to target system modularization using multi-attribute tradespace exploration and network measures of component modularity  

E-print Network

Deciding where to modularize a system can have long-term impact on that systems value over its entire lifecycle. The modularity of a system can impact the systems flexibility, evolvability, scalability, mass, costs, and ...

Roark, Henry H., III

2012-01-01

276

24 CFR 3282.12 - Excluded structures-modular homes.  

Code of Federal Regulations, 2010 CFR

...2010-04-01 2010-04-01 false Excluded structures-modular homes. 3282...REGULATIONS General § 3282.12 Excluded structures—modular homes. ...Standards Act under which modular homes may be excluded from coverage of the Act if the...

2010-04-01

277

Modular invariance in conformal field theory Yi-Zhi Huang  

E-print Network

Modular invariance in conformal field theory Yi-Zhi Huang Department of Mathematics Rutgers(2, Z). #12;Modular invariance in conformal field theory The importance of modular invariance in conformal field theory and string theory was known for a long time. If one wants to construct conformal

Huang, Yi-Zhi

278

Montgomery Modular Multiplication on ARM-NEON Revisited  

E-print Network

Montgomery Modular Multiplication on ARM-NEON Revisited Hwajeong Seo1 , Zhe Liu2 , Johann GroÃ?sch NEON) has initiated a massive body of research on vector-parallel implementations of Montgomery modular modular multiplication on ARM-NEON platforms. Detailed benchmarking results obtained on an ARM Cortex-A9

279

Modularity in the Design of Complex Engineering Systems  

NASA Astrophysics Data System (ADS)

In the last decade, the concept of modularity has caught the attention of engineers, management researchers and corporate strategists in a number of industries. When a product or process is "modularized," the elements of its design are split up and assigned to modules according to a formal architecture or plan. From an engineering perspective, a modularization generally has three purposes:

Baldwin, Carliss Y.; Clark, Kim B.

280

Understanding the Emergence of Modularity in Neural Systems  

ERIC Educational Resources Information Center

Modularity in the human brain remains a controversial issue, with disagreement over the nature of the modules that exist, and why, when, and how they emerge. It is a natural assumption that modularity offers some form of computational advantage, and hence evolution by natural selection has translated those advantages into the kind of modular

Bullinaria, John A.

2007-01-01

281

Edinburgh Research Explorer Modular Physical Modeling Synthesis Environments on GPU  

E-print Network

of an acoustic character--one longstanding design principle underlying such methods has been, and continues to be modularity, or the decomposition of a complex instrument into simpler building blocks. In this paper, various of sound material of an acous- tic character. To this end, modularity is a useful design principle. Modular

Millar, Andrew J.

282

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM  

E-print Network

MODULAR PEBBLE BED REACTOR PROJECT UNIVERSITY RESEARCH CONSORTIUM ANNUAL REPORT INEEL/EXT-2000 Annual Report Page ii MODULAR PEBBLE BED REACTOR ABSTRACT This project is developing a fundamental conceptual design for a gas-cooled, modular, pebble bed reactor. Key technology areas associated

283

Standardization of Hepatitis C Virus RNA Quantification  

Microsoft Academic Search

It was recently recommended that hepatitis C virus (HCV) RNA quantification be used to tailor the duration of combined interferon alfa (IFN-?)\\/ribavirin therapy in patients infected by HCV genotypes 1, 4, and 5. This recommendation has been difficult to implement in the absence of standardized quantitative units for HCV RNA. The aim of this work was to define clinically relevant

Jean-Michel Pawlotsky; Magali Bouvier-Alias; Christophe Hezode; Francoise Darthuy; Jocelyne Remire; Daniel Dhumeaux

2000-01-01

284

A modular cage system design for continuous medium to large scale in vivo-rearing of predatory mites (Acari: phytoseiidae)  

Technology Transfer Automated Retrieval System (TEKTRAN)

A new stackable modular system was developed for continuous in-vivo production of phytoseiid mites. The system consists of cage units that are filled with lima bean, Phaseolus lunatus, or red beans, P. vulgaris, leaves infested with high levels of the two-spotted spider mites, Tetranychus urticae. T...

285

vol. 180, no. 3 the american naturalist september 2012 Evolution of Novel Mosaic Castes in Ants: Modularity,  

E-print Network

vol. 180, no. 3 the american naturalist september 2012 Evolution of Novel Mosaic Castes in Ants: Modularity, Phenotypic Plasticity, and Colonial Buffering Mathieu Molet,1, * Diana E. Wheeler,2 and Christian Peeters1 1. Laboratoire Ecologie et Evolution, CNRS Unite´ Mixte de Recherche 7625, Universite´ Pierre et

Danchin, Etienne

286

Our journey from a modular to a multimillion dollar education center: a rural hospital clinical education department's road to excellence.  

PubMed

This column discusses how a Midwest rural hospital's education department made the journey from a staff of four individuals located in a modular unit outside of the hospital to a multidisciplinary team reaching the hospital and the community from one of the most highly technologically advanced education centers in the nation. PMID:19904858

Desilets, Lynore D; Dickerson, Pamela S; Strong, Sherri; Debord, Dina; Butler, Allison

2009-11-01

287

The Effects of Aggregation Method and Variations in the Performance of Individual Students on Degree Classifications in Modular Degree Courses.  

ERIC Educational Resources Information Center

Considers implications of modularization of first degree courses in the United Kingdom, especially the effects of different systems for selecting and combining module marks on students' degree classifications. Discusses the effects of different systems of aggregation on student marks in different modules and ultimately on class placement and…

Simonite, Vanessa

2000-01-01

288

Modular system for data acquisition and control of experiments with digital output  

NASA Astrophysics Data System (ADS)

In the present work, the design of an efficient, modular, and scalable data acquisition and control system is described. It consists of an array of microcontrollers and memories, which feed a single concentrating unit whose information can be accessed by means of a universal series bus (USB) interface to be processed later on. Signal levels can be controlled through a set of digital potentiometers. This system is ideal for experiments with a large number of digital outputs.

Calabria, Mauro F.; Deza, Roberto R.

2010-11-01

289

Modular system for data acquisition and control of experiments with digital output.  

PubMed

In the present work, the design of an efficient, modular, and scalable data acquisition and control system is described. It consists of an array of microcontrollers and memories, which feed a single concentrating unit whose information can be accessed by means of a universal series bus (USB) interface to be processed later on. Signal levels can be controlled through a set of digital potentiometers. This system is ideal for experiments with a large number of digital outputs. PMID:21133489

Calabria, Mauro F; Deza, Roberto R

2010-11-01

290

Modular digital box-car for applications in pulsed laser spectroscopy  

Microsoft Academic Search

A digital box-car, designed to work with sources producing signals composed of single pulses or series of pulses, is described. Thanks to its modular design, the system can be employed as a single-photon counting or as a coincidence unit in many experimental situations. The box-car is based on a digitally controlled delay line, producing a delay in the interval 17

F. Fuso; E. Arimondo; M. Zieli´nski

1995-01-01

291

A Modular Sensorized Mat for Monitoring Infant Posture  

PubMed Central

We present a novel sensorized mat for monitoring infant's posture through the measure of pressure maps. The pressure-sensitive mat is based on an optoelectronic technology developed in the last few years at Scuola Superiore Sant'Anna: a soft silicone skin cover, which constitutes the mat, participates in the transduction principle and provides the mat with compliance. The device has a modular structure (with a minimum of one and a maximum of six sub-modules, and a total surface area of about 1 m2) that enables dimensional adaptation of the pressure-sensitive area to different specific applications. The system consists of on-board electronics for data collection, pre-elaboration, and transmission to a remote computing unit for analysis and posture classification. In this work we present a complete description of the sensing apparatus along with its experimental characterization and validation with five healthy infants. PMID:24385029

Donati, Marco; Cecchi, Francesca; Bonaccorso, Filippo; Branciforte, Marco; Dario, Paolo; Vitiello, Nicola

2014-01-01

292

Manipulation of RNA using engineered proteins with customized specificity.  

PubMed

A large number of RNA-binding proteins play critical roles in controlling eukaryotic gene expression at multiple RNA-processing steps. Many of these proteins have modular configuration, containing a RNA binding domain to recognize their target and functional module to affect RNA metabolism. This simple configuration motivated the design of artificial factors that specifically manipulate RNA. While significant progress has been made since 1990s to engineer DNA binding proteins with designed specificity, design of analogous RNA binding factors was not practical until recently. With the increasing complexity of biological pathways involving RNA regulation, engineering RNA binding factors with customized specificity and function has become an emerging field of research. Such factors can serve as novel method to manipulate RNA metabolism and thus are very useful in basic biological and medical research. Here we discuss the current advances in engineering RNA binding proteins, with emphasis on the design principles and their potential applications as new therapeutic reagents and basic biological tools. PMID:25201107

Choudhury, Rajarshi; Wang, Zefeng

2014-01-01

293

LEGO: a modular accelerator design code  

Microsoft Academic Search

An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used

Y. Cai; M. Donald; J. Irwin; Y. T. Yan

1997-01-01

294

LEGO: A MODULAR ACCELERATOR DESIGN CODE  

Microsoft Academic Search

An object-oriented accelerator design code has been de- signed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are

Y. Cai; M. Donald; J. Irwin; Y. T. Yan

1998-01-01

295

Designing modular architectures in the framework AKIRA  

Microsoft Academic Search

AKIRA is an open source framework designed for parallel, asynchronous and distributed computation, on the basis of some general architectural principles which are inspired by modular organization in biological systems. We introduce the motivation behind its design, the components of the framework and some examples of use: 1) a case study in a simple number domain, in which its capabilities

Giovanni Pezzulo; Gianguglielmo Calvi

2007-01-01

296

Modular learning models in forecasting natural phenomena.  

PubMed

Modular model is a particular type of committee machine and is comprised of a set of specialized (local) models each of which is responsible for a particular region of the input space, and may be trained on a subset of training set. Many algorithms for allocating such regions to local models typically do this in automatic fashion. In forecasting natural processes, however, domain experts want to bring in more knowledge into such allocation, and to have certain control over the choice of models. This paper presents a number of approaches to building modular models based on various types of splits of training set and combining the models' outputs (hard splits, statistically and deterministically driven soft combinations of models, 'fuzzy committees', etc.). An issue of including a domain expert into the modeling process is also discussed, and new algorithms in the class of model trees (piece-wise linear modular regression models) are presented. Comparison of the algorithms based on modular local modeling to the more traditional 'global' learning models on a number of benchmark tests and river flow forecasting problems shows their higher accuracy and transparency of the resulting models. PMID:16531005

Solomatine, D P; Siek, M B

2006-03-01

297

Design of a modular digital computer system  

NASA Technical Reports Server (NTRS)

A Central Control Element (CCE) module which controls the Automatically Reconfigurable Modular System (ARMS) and allows both redundant processing and multi-computing in the same computer with real time mode switching, is discussed. The same hardware is used for either reliability enhancement, speed enhancement, or for a combination of both.

1980-01-01

298

The modular ALMR (PRISM) fuel cycle  

Microsoft Academic Search

The modular reactor concept, PRISM (power reactor, innovative, small module), originated by General Electric in conjunction with the integral fast reactor (IFR) metal fuel being developed by Argonne National Laboratory (ANL), is the reference US Department of Energy advanced liquid-metal reactor (ALMR). The reference ALMR is unique in several ways; for example, it can produce (or breed) substantially more fissile

Thompson

1990-01-01

299

Modular Infrastructure for Rapid Flight Software Development  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

Pires, Craig

2010-01-01

300

Modular Building Institute 2001 Educational Showcase.  

ERIC Educational Resources Information Center

This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "An Architect's Perspective: Convincing a Skeptic" (Robert M. Iamello); (2) "66 Portables for San Mateo High" (Steven Williams); (3) "Case Study: Charter Schools"…

Modular Building Inst., Charlottesville, VA.

301

The Logical Modularity of Programs Daniel Ratiu  

E-print Network

to a dispersion of conceptually cohesive knowl- edge. In this paper, we use domain knowledge driven program experience with analyzing JHotDraw. Keywords-modularity of programs, domain knowledge driven program analysis. Heuristics of good object-oriented design advice that concepts of the modeled domain and their relations

Ratiu, Daniel

302

Modular High-Voltage Power Supplies design  

Microsoft Academic Search

Modular High Voltage Power Supplies (HVPS) have crucial advantages over one-module HVPS. The article is devoted to a new patented HVPS technology. The new method of HV generation creates new possibilities for advanced HVPS performance. New design makes HVPS much smaller and lighter. HVPS reliability is enhanced. Manufacturing cost is close to the cost of conventional HVPS. The HVPS consists

I. A. Krichtafovitch

1997-01-01

303

47 CFR 15.212 - Modular transmitters.  

Code of Federal Regulations, 2011 CFR

...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

2011-10-01

304

47 CFR 15.212 - Modular transmitters.  

Code of Federal Regulations, 2010 CFR

...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

2010-10-01

305

Honeywell Modular Automation System Computer Software Documentation  

SciTech Connect

This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

CUNNINGHAM, L.T.

1999-09-27

306

A Modular Curriculum in Information Studies.  

ERIC Educational Resources Information Center

Prepared under a contract between UNESCO and IFLA (the International Federation of Library Associations), this modular curriculum is intended as a resource from which curricula can be constructed by individual departments of information studies to meet local needs and circumstances. Following an introductory discussion and explanation of the…

Large, J. A.

307

Development of modular cable mesh deployable antenna  

Microsoft Academic Search

This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves

Akira Meguro; Jin Mitsugi; Kazuhide Andou

1993-01-01

308

What Symbionts Teach us about Modularity  

PubMed Central

The main goal of Synthetic Biology (SB) is to apply engineering principles to biotechnology in order to make life easier to engineer. These engineering principles include modularity: decoupling of complex systems into smaller, orthogonal sub-systems that can be used in a range of different applications. The successful use of modules in engineering is expected to be reproduced in synthetic biological systems. But the difficulties experienced up to date with SB approaches question the short-term feasibility of designing life. Considering the “engineerable” nature of life, here we discuss the existence of modularity in natural living systems, particularly in symbiotic interactions, and compare the behavior of such systems, with those of engineered modules. We conclude that not only is modularity present but it is also common among living structures, and that symbioses are a new example of module-like sub-systems having high similarity with modularly designed ones. However, we also detect and stress fundamental differences between man-made and biological modules. Both similarities and differences should be taken into account in order to adapt SB design to biological laws. PMID:25023877

Porcar, Manuel; Latorre, Amparo; Moya, Andrés

2013-01-01

309

Roombots—Modular Robots for Adaptive Furniture  

Microsoft Academic Search

We aim at merging technologies from Informa- tion Technology, Roomware, and Robotics in order to design adaptive and intelligent furniture. This paper presents the framework for modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. Self-reconfiguration planning

Alexander Sproewitz; Masoud Asadpour; Aude Billard; Pierre Dillenbourg; Auke Jan Ijspeert

310

A cutting sequencing approach to modular manufacturing  

Microsoft Academic Search

In this study, a two-stage algorithm is developed for the cutting sequencing problem in a modular manufacturing system consisting of four basic workstations. Since the flexibility of the system is dependent upon the cutting stage of raw materials, the study focuses particularly on this workstation. In the first stage of the algorithm, an integer linear programming model is used to

Tülin Yazgaç; Rifat Gürcan Özdemir

2004-01-01

311

Modular construction approach for advanced nuclear plants  

Microsoft Academic Search

Modular construction has been designated as one of the major features of the AP600 program, a small innovative 600-MW (electric) advanced light water reactor (ALWR) that is currently being developed by Westinghouse and its subcontractors. This program is sponsored by the US Department of Energy (DOE) in conjunction with several other DOE and Electric Power Research Institute ALWR programs. Two

F. T. Johnson; R. S. Orr; C. P. Boudreaux

1988-01-01

312

The Modular Market. Studies in Further Education.  

ERIC Educational Resources Information Center

Origins of modular courses and the module in British postcompulsory education are considered, along with characteristics of modules, credit transfer, five case studies, and marketing in further and higher education. A module is a measured part (or course) of an extended learning experience that leads to specified qualifications. A designated…

Theodossin, Ernest

313

Modularization--A Road to Relevance?  

ERIC Educational Resources Information Center

This paper describes a modular program at a community college for instructing non-science majors in college algebra. The two-course sequence is comprised of four modules each and successful completion of a module is required before a student proceeds to the next. Placement, grading policies, and scheduling are all discussed. A formative evaluation…

Palow, William P.

314

Building industrialization: robotized assembly of modular products  

Microsoft Academic Search

Purpose – The increasing of mechanization levels used in tasks execution in construction, as a way to increase productivity, requires its rationalization, the adoption of new assembly-ready materials and methods, and the application of robotics capabilities. In this way, using concepts as design for manufacture and assembly and lean construction, modular products can be developed for their assembly by robotics

Santiago Martinez; Alberto Jardon; Jose Maria Navarro; Patricia Gonzalez

2008-01-01

315

Modular arithmetic weight and cyclic shifting.  

NASA Technical Reports Server (NTRS)

This note shows that the modular arithmetic weight of an integer is invariant to the cyclic shifts of its radix-2 form. This result leads to a reduced search for the minimum weight codeword in a cyclic AN-code as well as to a better understanding of previous work.

Hartman, W. F.

1972-01-01

316

Modular polynomial arithmetic in partial fraction decomposition  

NASA Technical Reports Server (NTRS)

Algorithms for general partial fraction decomposition are obtained by using modular polynomial arithmetic. An algorithm is presented to compute inverses modulo a power of a polynomial in terms of inverses modulo that polynomial. This algorithm is used to make an improvement in the Kung-Tong partial fraction decomposition algorithm.

Abdali, S. K.; Caviness, B. F.; Pridor, A.

1977-01-01

317

Modularity, Development and 'Theory of Mind'  

Microsoft Academic Search

Psychologists and philosophers have recently been exploring whether the mechanisms which underlie the acquisition of 'theory of mind' (ToM) are best charac- terized as cognitive modules or as developing theories. In this paper, we attempt to clarify what a modular account of ToM entails, and why it is an attractive type of explanation. Intuitions and arguments in this debate often

Brian J. Scholl; Alan M. Leslie

1999-01-01

318

Modular Verification with Shared Abstractions Uri Juhasz  

E-print Network

structures. Our main idea is to verify that the inter-module sharing is restricted to a user ideas: (i) a controlled exposure of the inter-module sharing patterns: The user specifies the permittedModular Verification with Shared Abstractions Uri Juhasz Tel Aviv University urijuhasz

Rinetzky, Noam

319

Smart Memories: a modular reconfigurable architecture  

Microsoft Academic Search

Trends in VLSI technology scaling demand that future comput- ing devices be narrowly focused to achieve high performance and high efficiency, yet also target the high volumes and low costs of widely applicable general purpose designs. To address these conflicting requirements, we propose a modular reconfig- urable architecture called Smart Memories, targeted at com- puting needs in the 0.1?m technology

Ken Mai; Tim Paaske; Nuwan Jayasena; Ron Ho; William J. Dally; Mark Horowitz

2000-01-01

320

Design of a modular digital computer system  

NASA Technical Reports Server (NTRS)

A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

1973-01-01

321

Study of the modular organization of motor  

E-print Network

Study of the modular organization of motor control: experimental and modeling approaches Dr. Enrico. #12;Redundancy in motor control 5/9/2011 2Enrico Chiovetto A large number of joints implies a high level of redundancy #12;5/9/2011 3Enrico Chiovetto Motor primitives (MPs) M MP1 MP2 MPN 1C Motor Output

Schenato, Luca

322

Evolutionary Modular Neural Networks for Intelligent Systems  

E-print Network

Evolutionary Modular Neural Networks for Intelligent Systems Sung-Bae Cho* Dept. of Computer Science, Yonsei University, Sudaemoon-ku, Seoul 120-749, Korea The evolutionary approach to artificial. However, most evolutionary neural networks have paid little attention to the fact that they can evolve

Cho, Sung-Bae

323

Modular Building Institute 2002 Educational Showcase.  

ERIC Educational Resources Information Center

This publication contains brief articles concerned with modular school structures. Some articles offer examples of such structures at actual schools. The articles in this issue are: (1) "Re-Educating Schools" (Chuck Savage); (2) "Tax-Exempt Financing for Public Schools" (John Kennedy); (3) "Help Us Rebuild America" (Michael Roman); (4) "Case…

Modular Building Inst., Charlottesville, VA.

324

Modular differential equations and null vectors  

E-print Network

We show that every modular differential equation of a rational conformal field theory comes from a null vector in the vacuum Verma module. We also comment on the implications of this result for the consistency of the extremal self-dual conformal field theories at c=24 k.

Matthias R. Gaberdiel; Christoph A. Keller

2012-01-27

325

Distributed Coordination in Modular Precision Assembly Systems  

Microsoft Academic Search

A promising approach to enabling the rapid deployment and recon- figuration of automated assembly systems is to make use of coop- erating, modular, robust robotic agents. Over the past 5 years, the authors have been constructing just such a system suitable for assem- bly of high-precision, high-value products. Within this environment, each robotic agent executes its own program, coordinating its

Alfred A. Rizzi; Jay Gowdy; Ralph L. Hollis

2001-01-01

326

RNA?Directed rna polymerases of plants  

Microsoft Academic Search

The report in 1971 by Comuet and Astier?Manifacier that Chinese cabbage contains an active RNA?dependent RNA polymerase has been extended to all plants studied. This has met with much opposition because the central dogma of molecular biology requires no replication mechanism for RNA. Only upon RNA virus infection are such enzymes needed, and it was generally believed that these were

Albert Van Kammen

1986-01-01

327

RNA-binding strategies common to cold-shock domain- and RNA recognition motif-containing proteins.  

PubMed

Numerous RNA-binding proteins have modular structures, comprising one or several copies of a selective RNA-binding domain generally coupled to an auxiliary domain that binds RNA non-specifically. We have built and compared homology-based models of the cold-shock domain (CSD) of the Xenopus protein, FRGY2, and of the third RNA recognition motif (RRM) of the ubiquitous nucleolar protein, nucleolin. Our model of the CSD(FRG)-RNA complex constitutes the first prediction of the three-dimensional structure of a CSD-RNA complex and is consistent with the hypothesis of a convergent evolution of CSD and RRM towards a related single-stranded RNA-binding surface. Circular dichroism spectroscopy studies have revealed that these RNA-binding domains are capable of orchestrating similar types of RNA conformational change. Our results further show that the respective auxiliary domains, despite their lack of sequence homology, are functionally equivalent and indispensable for modulating the properties of the specific RNA-binding domains. A comparative analysis of FRGY2 and nucleolin C-terminal domains has revealed common structural features representing the signature of a particular type of auxiliary domain, which has co-evolved with the CSD and the RRM. PMID:11376140

Manival, X; Ghisolfi-Nieto, L; Joseph, G; Bouvet, P; Erard, M

2001-06-01

328

Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers  

SciTech Connect

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang

2009-05-01

329

Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers  

SciTech Connect

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang T.

2009-05-01

330

Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers  

SciTech Connect

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Adams, Barbara J

2009-05-01

331

Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers  

SciTech Connect

Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

Xu, TengFang

2009-05-01

332

Photovoltaic stand-alone modular systems, phase 2  

NASA Technical Reports Server (NTRS)

The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

Naff, G. J.; Marshall, N. A.

1983-01-01

333

Overview of the Westinghouse Small Modular Reactor building layout  

SciTech Connect

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)

Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

2012-07-01

334

Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations  

PubMed Central

The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104

González-José, Rolando; Charlin, Judith

2012-01-01

335

Relative importance of modularity and other morphological attributes on different types of lithic point weapons: assessing functional variations.  

PubMed

The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as "near decomposable units" in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104

González-José, Rolando; Charlin, Judith

2012-01-01

336

RAID: a comprehensive resource for human RNA-associated (RNA-RNA/RNA-protein) interaction.  

PubMed

Transcriptomic analyses have revealed an unexpected complexity in the eukaryote transcriptome, which includes not only protein-coding transcripts but also an expanding catalog of noncoding RNAs (ncRNAs). Diverse coding and noncoding RNAs (ncRNAs) perform functions through interaction with each other in various cellular processes. In this project, we have developed RAID (http://www.rna-society.org/raid), an RNA-associated (RNA-RNA/RNA-protein) interaction database. RAID intends to provide the scientific community with all-in-one resources for efficient browsing and extraction of the RNA-associated interactions in human. This version of RAID contains more than 6100 RNA-associated interactions obtained by manually reviewing more than 2100 published papers, including 4493 RNA-RNA interactions and 1619 RNA-protein interactions. Each entry contains detailed information on an RNA-associated interaction, including RAID ID, RNA/protein symbol, RNA/protein categories, validated method, expressing tissue, literature references (Pubmed IDs), and detailed functional description. Users can query, browse, analyze, and manipulate RNA-associated (RNA-RNA/RNA-protein) interaction. RAID provides a comprehensive resource of human RNA-associated (RNA-RNA/RNA-protein) interaction network. Furthermore, this resource will help in uncovering the generic organizing principles of cellular function network. PMID:24803509

Zhang, Xiaomeng; Wu, Deng; Chen, Liqun; Li, Xiang; Yang, Jinxurong; Fan, Dandan; Dong, Tingting; Liu, Mingyue; Tan, Puwen; Xu, Jintian; Yi, Ying; Wang, Yuting; Zou, Hua; Hu, Yongfei; Fan, Kaili; Kang, Juanjuan; Huang, Yan; Miao, Zhengqiang; Bi, Miaoman; Jin, Nana; Li, Kongning; Li, Xia; Xu, Jianzhen; Wang, Dong

2014-07-01

337

Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems  

SciTech Connect

This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

Nexant Inc.

2006-05-01

338

James (Jim) Watson wearing his RNA Tie Club tieSite: DNA Interactive (www.dnai.org)  

NSDL National Science Digital Library

Jim Watson in Moscow at the International Biochemical Congress, 1961, wearing his RNA Tie Club tie. RNA Tie Club members were united by their ties as well as a desir to understand the role of RNA in protein synthesis.

2008-03-26

339

Modular recognition of nucleic acids by PUF, TALE and PPR proteins.  

PubMed

Sequence specific binding of DNA and RNA is of fundamental importance in the regulation of cellular gene expression. Because of their modular structure repeat domain proteins are particularly well suited for these processes and have been widely adopted throughout evolution. Detailed biochemical and structural data has revealed the key residues responsible for recognition of RNA by Pumilio and FBF homology (PUF) repeat proteins and shown that the base specificity can be predicted and re-engineered. Recent work on the DNA-binding properties of transcription activator-like effector (TALE) proteins has shown that their specificity also relies on only a few key residues with a predictable code that can be used to design new DNA-binding proteins. Although less well understood, pentatricopeptide repeat (PPR) proteins contain motifs that appear to contribute to RNA recognition and comparisons to TALE and PUF proteins may help elucidate the code by which they recognize their RNA targets. Understanding how repeat proteins bind nucleic acids enables their biological roles to be uncovered and the design of engineered proteins with predictable RNA and DNA targets for use in biotechnology. PMID:22234420

Filipovska, Aleksandra; Rackham, Oliver

2012-03-01

340

Modular Curriculum for Hydrologic Advancement (MOCHA)  

NASA Astrophysics Data System (ADS)

In-class hydrology education is typically strongly biased towards the instructor's background and overcoming this limitation is burdensome within the time-constraints academia. This problem is particularly true for academics in tenure-track positions when most of the material development must occur. To overcome this challenge and advance a broader perspective of hydrology education, we are in the process of establishing the Modular Curriculum for Hydrologic Advancement (MOCHA). The objective is to create an evolving core curriculum for hydrology education freely available to, developed, and reviewed by the worldwide hydrologic community. We seek to establish an online faculty learning community for hydrology education and a modular core curriculum based on modern pedagogical standards. The goal of this effort is to support hydrology faculty in educating hydrologists that can solve today's and tomorrow's interdisciplinary problems that go far beyond the traditional disciplinary biased hydrology education most of us have experienced.

Kelleher, C.; Wagener, T.; Gooseff, M.; McGlynn, B.; Marshall, L.; Meixner, T.; McGuire, K.; Sharma, P.; Zuppe, S.; Pfeiffer, C.

2008-12-01

341

The Modular Curriculum for Hydrologic Advancement (MOCHA)  

NASA Astrophysics Data System (ADS)

In-class hydrology education is typically strongly biased towards the instructor's background and overcoming this limitation is overly burdensome within the time-constraints of the academic life. This is particularly true for academics in tenure-track positions when most of the material development has to occur. To overcome this issue, we are in the process of establishing the Modular Curriculum for Hydrologic Advancement (MOCHA). Our overall objective is to create an evolving core curriculum for hydrology education freely available to and developed and reviewed by the worldwide hydrologic community. We seek to establish an online faculty learning community for hydrology education and a modular core curriculum based on modern pedagogical standards. The goal of this effort is to support hydrology faculty in educating hydrologists that can solve today's and tomorrow's interdisciplinary problems that go far beyond the traditional disciplinary biased hydrology education most of us have experienced.

Wagener, T.; Kelleher, C.; Gooseff, M.; McGlynn, B.; Marshall, L.; Meixner, T.; McGuire, K.; Sharma, P.; Zappe, S.

2009-04-01

342

Modular stellarator reactor: a fusion power plant  

SciTech Connect

A comparative analysis of the modular stellarator and the torsatron concepts is made based upon a steady-state ignited, DT-fueled, reactor embodiment of each concept for use as a central electric-power station. Parametric tradeoff calculations lead to the selection of four design points for an approx. 4-GWt plant based upon Alcator transport scaling in l = 2 systems of moderate aspect ratio. The four design points represent high-aspect ratio. The four design points represent high-(0.08) and low-(0.04) beta versions of the modular stellarator and torsatron concepts. The physics basis of each design point is described together with supporting engineering and economic analyses. The primary intent of this study is the elucidation of key physics and engineering tradeoffs, constraints, and uncertainties with respect to the ultimate power reactor embodiment.

Miller, R.L.; Bathke, C.G.; Krakowski, R.A.; Heck, F.M.; Green, L.; Karbowski, J.S.; Murphy, J.H.; Tupper, R.B.; DeLuca, R.A.; Moazed, A.

1983-07-01

343

[Modularization by the open standard. (I)].  

PubMed

We are proceeding with the project called "Open LA21 Project" in the course of the clinical laboratory automation toward the 21st century. With the modular system that realizes integration, downsizing, a reasonable price, and is the future course in the clinical testing automation system as well, we aim to establish common standards among manufacturers as the only way to create user friendly market environments where the proper competition exists among the manufacturers. The common standards which are in preparation by the participating companies as "Open module system standards" are the standards which are going to be made public. They are intended to guarantee connection, compatibility of the products in conformity with the standards. In this project, we intend to realize the modular system that integrates each field, such as chemistry, hematology, coagulation/fibrinolysis, immunology, urinalysis in an early stage, and contribute positively to restructuring and upgrading the "raison d'etre" of the 21st century clinical testing. PMID:11215181

Hirano, H

2000-10-01

344

Toward the Modularization of Decision Support Systems  

NASA Astrophysics Data System (ADS)

Decision support systems are typically developed entirely from scratch without the use of modular components. This “stovepiped” approach is inefficient and costly because it prevents a developer from leveraging the data, models, tools, and services of other developers. Even when a decision support component is made available, it is difficult to know what problem it solves, how it relates to other components, or even that the component exists, The Spatial Decision Support (SDS) Consortium was formed in 2008 to organize the body of knowledge in SDS within a common portal. The portal identifies the canonical steps in the decision process and enables decision support components to be registered, categorized, and searched. This presentation describes how a decision support system can be assembled from modular models, data, tools and services, based on the needs of the Earth science application.

Raskin, R. G.

2009-12-01

345

Preliminary design study. Shuttle modular scanning spectroradiometer  

NASA Technical Reports Server (NTRS)

Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

1975-01-01

346

The Modular Helium Reactor for Hydrogen Production  

SciTech Connect

For electricity and hydrogen production, an advanced reactor technology receiving considerable international interest is a modular, passively-safe version of the high-temperature, gas-cooled reactor (HTGR), known in the U.S. as the Modular Helium Reactor (MHR), which operates at a power level of 600 MW(t). For hydrogen production, the concept is referred to as the H2-MHR. Two concepts that make direct use of the MHR high-temperature process heat are being investigated in order to improve the efficiency and economics of hydrogen production. The first concept involves coupling the MHR to the Sulfur-Iodine (SI) thermochemical water splitting process and is referred to as the SI-Based H2-MHR. The second concept involves coupling the MHR to high-temperature electrolysis (HTE) and is referred to as the HTE-Based H2-MHR.

E. Harvego; M. Richards; A. Shenoy; K. Schultz; L. Brown; M. Fukuie

2006-10-01

347

Modular organization of axial microcircuits in zebrafish  

PubMed Central

Locomotion requires precise control of spinal networks. In tetrapods and bipeds, dynamic regulation of locomotion is simplified by the modular organization of spinal limb circuits, but it is not known whether their predecessors, fish axial circuits, are similarly organized. Here, we demonstrate that the larval zebrafish spinal cord contains distinct, parallel microcircuits for independent control of dorsal and ventral musculature on each side of the body. During normal swimming, dorsal and ventral microcircuits are equally active; but during postural correction, fish differentially engage these microcircuits to generate torque for self-righting. These findings reveal greater complexity in the axial spinal networks responsible for swimming than previously recognized and suggest an early template of modular organization for more complex locomotor circuits in later vertebrates. PMID:24408436

Bagnall, Martha W.; McLean, David L.

2014-01-01

348

Resampling-based approaches to study variation in morphological modularity.  

PubMed

Modularity has been suggested to be connected to evolvability because a higher degree of independence among parts allows them to evolve as separate units. Recently, the Escoufier RV coefficient has been proposed as a measure of the degree of integration between modules in multivariate morphometric datasets. However, it has been shown, using randomly simulated datasets, that the value of the RV coefficient depends on sample size. Also, so far there is no statistical test for the difference in the RV coefficient between a priori defined groups of observations. Here, we (1), using a rarefaction analysis, show that the value of the RV coefficient depends on sample size also in real geometric morphometric datasets; (2) propose a permutation procedure to test for the difference in the RV coefficient between a priori defined groups of observations; (3) show, through simulations, that such a permutation procedure has an appropriate Type I error; (4) suggest that a rarefaction procedure could be used to obtain sample-size-corrected values of the RV coefficient; and (5) propose a nearest-neighbor procedure that could be used when studying the variation of modularity in geographic space. The approaches outlined here, readily extendable to non-morphometric datasets, allow study of the variation in the degree of integration between a priori defined modules. A Java application--that will allow performance of the proposed test using a software with graphical user interface--has also been developed and is available at the Morphometrics at Stony Brook Web page (http://life.bio.sunysb.edu/morph/). PMID:23874956

Fruciano, Carmelo; Franchini, Paolo; Meyer, Axel

2013-01-01

349

Modularity and predictability in cell signaling and decision making  

PubMed Central

Cells make decisions to differentiate, divide, or apoptose based on multiple signals of internal and external origin. These decisions are discrete outputs from dynamic networks comprised of signaling pathways. Yet the validity of this decomposition of regulatory proteins into distinct pathways is unclear because many regulatory proteins are pleiotropic and interact through cross-talk with components of other pathways. In addition to the deterministic complexity of interconnected networks, there is stochastic complexity arising from the fluctuations in concentrations of regulatory molecules. Even within a genetically identical population of cells grown in the same environment, cell-to-cell variations in mRNA and protein concentrations can be as high as 50% in yeast and even higher in mammalian cells. Thus, if everything is connected and stochastic, what hope could we have for a quantitative understanding of cellular decisions? Here we discuss the implications of recent advances in genomics, single-cell, and single-cell genomics technology for network modularity and cellular decisions. On the basis of these recent advances, we argue that most gene expression stochasticity and pathway interconnectivity is nonfunctional and that cellular decisions are likely much more predictable than previously expected. PMID:25368418

Atay, Oguzhan; Skotheim, Jan M.

2014-01-01

350

lazar: a modular predictive toxicology framework  

PubMed Central

lazar (lazy structure–activity relationships) is a modular framework for predictive toxicology. Similar to the read across procedure in toxicological risk assessment, lazar creates local QSAR (quantitative structure–activity relationship) models for each compound to be predicted. Model developers can choose between a large variety of algorithms for descriptor calculation and selection, chemical similarity indices, and model building. This paper presents a high level description of the lazar framework and discusses the performance of example classification and regression models. PMID:23761761

Maunz, Andreas; Gütlein, Martin; Rautenberg, Micha; Vorgrimmler, David; Gebele, Denis; Helma, Christoph

2013-01-01

351

Modular wall climbing robots with transition capability  

Microsoft Academic Search

This paper introduces two wall climbing robots based on different adhesive mechanisms: vortex attraction technique and the vacuum rotor package. The robots adopt modular design with each module can move on various smooth\\/rough surfaces independently while a combination of two modules can achieve wall-to-wall transition. Detailed description of the novel mechanical and electrical design is presented. Simulation is conducted to

Jizhong Xiao; Angel Calle; Ali Sadegh; Matthew Elliott

2005-01-01

352

Integrated modular water reactor (IMR) design  

Microsoft Academic Search

Integrated modular water reactor (IMR) has been developed as one of the advanced small-scale light water reactors, with a thermal output of 1000MW. The IMR adopts natural circulation and self-pressurization in the primary cooling system, and a reactor vessel built-in steam generators. The core design has been performed using the current light water reactor technology. Thermal-hydraulic sensitivity analyses have been

Koki Hibi; Hitoi Ono; Takashi Kanagawa

2004-01-01

353

[Fretting in modular design implant systems].  

PubMed

Fretting is a problem of load-bearing implants (hip, knee) especially when modular in design and employing different materials. In contrast, fretting has not yet been observed in dental implants. In the case of ceramic femoral heads and cups (e.g. BIOLOX) no problems with fretting have so far been reported. The state-of-the-art is discussed and assessed. PMID:8490086

Willmann, G

1993-03-01

354

Maass Forms and Quantum Modular Forms  

NASA Astrophysics Data System (ADS)

This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his original definition.

Rolen, Larry

355

Conformal branching rules and modular invariants  

Microsoft Academic Search

Using the outer automorphisms of the affine algebra SU(n), we show how the branching rules for the conformal subalgebra SU(pq) ? SU(p) × SU(q) may be simply calculated. We demonstrate that new modular invariant combinations of SU(n) characters are obtainable from the branching rules. The author's research was supported by a postdoctoral fellowship from NSERC of Canada, and by the

Mark A. Walton

1989-01-01

356

Global vaccination strategies in Modular Networks  

NASA Astrophysics Data System (ADS)

We study the effect of vaccinating networks with different growing strategies, using various techniques that require the complete knowledge of the network. The goal is to restrain the epidemic before it spreads throughout the network and target the few key nodes that will help contain it. Our target networks are chosen to have relatively large modularity index and various immunization techniques are applied to them.

Parousis-Orthodoxou, K. J.; Stamos, M. M.; Vlachos, D. S.

2013-02-01

357

Modular architecture for robotics and teleoperation  

DOEpatents

Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

1996-12-03

358

Modular tubular solar energy collector apparatus  

Microsoft Academic Search

The disclosure relates to a modular form of solar energy collector apparatus in which several double-wall glass tube collectors, each with vacuum jacket, depend from opposite sides of an elongated manifold. The manifold includes split halves of foamed polymer insulation and rigid fiberglass reinforced skin thereon, assembled about closed-looped, serpentine liquid carrying tubes preferably of metal or glass in U-tube

Nugent

1978-01-01

359

Copper vapor laser modular packaging assembly  

DOEpatents

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

Alger, T.W.; Ault, E.R.; Moses, E.I.

1992-12-01

360

Copper vapor laser modular packaging assembly  

DOEpatents

A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

1992-01-01

361

Small Modular Reactors (468th Brookhaven Lecture)  

SciTech Connect

With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

Bari, Robert

2011-04-20

362

Modular closed-loop control of diabetes.  

PubMed

Modularity plays a key role in many engineering systems, allowing for plug-and-play integration of components, enhancing flexibility and adaptability, and facilitating standardization. In the control of diabetes, i.e., the so-called "artificial pancreas," modularity allows for the step-wise introduction of (and regulatory approval for) algorithmic components, starting with subsystems for assured patient safety and followed by higher layer components that serve to modify the patient's basal rate in real time. In this paper, we introduce a three-layer modular architecture for the control of diabetes, consisting in a sensor/pump interface module (IM), a continuous safety module (CSM), and a real-time control module (RTCM), which separates the functions of insulin recommendation (postmeal insulin for mitigating hyperglycemia) and safety (prevention of hypoglycemia). In addition, we provide details of instances of all three layers of the architecture: the APS© serving as the IM, the safety supervision module (SSM) serving as the CSM, and the range correction module (RCM) serving as the RTCM. We evaluate the performance of the integrated system via in silico preclinical trials, demonstrating 1) the ability of the SSM to reduce the incidence of hypoglycemia under nonideal operating conditions and 2) the ability of the RCM to reduce glycemic variability. PMID:22481809

Patek, S D; Magni, L; Dassau, E; Karvetski, C; Toffanin, C; De Nicolao, G; Del Favero, S; Breton, M; Man, C Dalla; Renard, E; Zisser, H; Doyle, F J; Cobelli, C; Kovatchev, B P

2012-11-01

363

RAMS (Risk Analysis - Modular System) methodology  

SciTech Connect

The Risk Analysis - Modular System (RAMS) was developed to serve as a broad scope risk analysis tool for the Risk Assessment of the Hanford Mission (RAHM) studies. The RAHM element provides risk analysis support for Hanford Strategic Analysis and Mission Planning activities. The RAHM also provides risk analysis support for the Hanford 10-Year Plan development activities. The RAMS tool draws from a collection of specifically designed databases and modular risk analysis methodologies and models. RAMS is a flexible modular system that can be focused on targeted risk analysis needs. It is specifically designed to address risks associated with overall strategy, technical alternative, and `what if` questions regarding the Hanford cleanup mission. RAMS is set up to address both near-term and long-term risk issues. Consistency is very important for any comparative risk analysis, and RAMS is designed to efficiently and consistently compare risks and produce risk reduction estimates. There is a wide range of output information that can be generated by RAMS. These outputs can be detailed by individual contaminants, waste forms, transport pathways, exposure scenarios, individuals, populations, etc. However, they can also be in rolled-up form to support high-level strategy decisions.

Stenner, R.D.; Strenge, D.L.; Buck, J.W. [and others

1996-10-01

364

MACOP modular architecture with control primitives  

PubMed Central

Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

2013-01-01

365

Topological Strings And (Almost) Modular Forms  

SciTech Connect

The B-model topological string theory on a Calabi-Yau threefold X has a symmetry group {Lambda}, generated by monodromies of the periods of X. This acts on the topological string wave function in a natural way, governed by the quantum mechanics of the phase space H{sup 3}(X). We show that, depending on the choice of polarization, the genus g topological string amplitude is either a holomorphic quasi-modular form or an almost holomorphic modular form of weight 0 under {Lambda}. Moreover, at each genus, certain combinations of genus g amplitudes are both modular and holomorphic. We illustrate this for the local Calabi-Yau manifolds giving rise to Seiberg-Witten gauge theories in four dimensions and local IP{sub 2} and IP{sub 1} x IP{sub 1}. As a byproduct, we also obtain a simple way of relating the topological string amplitudes near different points in the moduli space, which we use to give predictions for Gromov-Witten invariants of the orbifold C{sub 3}/ZZ{sub 3}.

Aganagic, Mina; Bouchard, Vincent; Klemm, Albrecht

2007-05-04

366

Understanding Modularity in Molecular Networks Requires Dynamics  

NSDL National Science Digital Library

The era of genome sequencing has produced long lists of the molecular parts from which cellular machines are constructed. A fundamental goal in systems biology is to understand how cellular behavior emerges from the interaction in time and space of genetically encoded molecular parts, as well as nongenetically encoded small molecules. Networks provide a natural framework for the organization and quantitative representation of all the available data about molecular interactions. The structural and dynamic properties of molecular networks have been the subject of intense research. Despite major advances, bridging network structure to dynamics—and therefore to behavior—remains challenging. A key concept of modern engineering that recurs in the functional analysis of biological networks is modularity. Most approaches to molecular network analysis rely to some extent on the assumption that molecular networks are modular—that is, they are separable and can be studied to some degree in isolation. We describe recent advances in the analysis of modularity in biological networks, focusing on the increasing realization that a dynamic perspective is essential to grouping molecules into modules and determining their collective function.

Roger P. Alexander (Yale University; Program in Computational Biology and Bioinformatics REV)

2009-07-28

367

Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system  

NASA Astrophysics Data System (ADS)

Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

Harto, Andang Widi

2012-06-01

368

Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size  

PubMed Central

The multiple skeletal components of the skull originate asynchronously and their developmental schedule varies across amniotes. Here we present the embryonic ossification sequence of 134 species, covering all major groups of mammals and their close relatives. This comprehensive data set allows reconstruction of the heterochronic and modular evolution of the skull and the condition of the last common ancestor of mammals. We show that the mode of ossification (dermal or endochondral) unites bones into integrated evolutionary modules of heterochronic changes and imposes evolutionary constraints on cranial heterochrony. However, some skull-roof bones, such as the supraoccipital, exhibit evolutionary degrees of freedom in these constraints. Ossification timing of the neurocranium was considerably accelerated during the origin of mammals. Furthermore, association between developmental timing of the supraoccipital and brain size was identified among amniotes. We argue that cranial heterochrony in mammals has occurred in concert with encephalization but within a conserved modular organization. PMID:24704703

Koyabu, Daisuke; Werneburg, Ingmar; Morimoto, Naoki; Zollikofer, Christoph P. E.; Forasiepi, Analia M.; Endo, Hideki; Kimura, Junpei; Ohdachi, Satoshi D.; Truong Son, Nguyen; Sánchez-Villagra, Marcelo R.

2014-01-01

369

Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report  

SciTech Connect

On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

John Reardon; Art Lilley

2004-06-15

370

An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.  

PubMed

Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens. PMID:17591461

Nayak, Losiana; De, Rajat K

2007-12-01

371

Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system  

SciTech Connect

Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

2012-06-06

372

Linking product modularity and innovativeness to supply chain management in the Italian furniture industry  

Microsoft Academic Search

Much of the literature on modularity assumes that firms with modular products adopt modular organization. In the realm of supply chain management, no consensus has been reached on the effects of product modularity on supply chains (SC). This paper investigates whether SC choices depend on product modularity and innovativeness, and how SC choices can be aligned to these product features

Maria Caridi; Margherita Pero; Andrea Sianesi

2012-01-01

373

Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)  

SciTech Connect

High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

2009-10-01

374

[RNA polymerase ribozymes  

E-print Network

The RNA World is a hypothetical ancient evolutionary era during which RNA was both genome and catalyst. During that time, RNA was the only kind of enzyme yet in existence, and one of its chief duties was the replication ...

Lawrence, Michael S. (Michael Scott), 1975-

2005-01-01

375

RNA as an Enzyme.  

ERIC Educational Resources Information Center

Reviews current findings that explain RNA's function as an enzyme in addition to being an informational molecule. Highlights recent research efforts and notes changes in the information base on RNA activity. Includes models and diagrams of RNA activity. (ML)

Cech, Thomas R.

1986-01-01

376

Modularization and nuclear power. Report by the Technology Transfer Modularization Task Team  

SciTech Connect

This report describes the results of the work performed by the Technology Transfer Task Team on Modularization. This work was performed as part of the Technology Transfer work being performed under Department of Energy Contract 54-7WM-335406, between December, 1984 and February, 1985. The purpose of this task team effort was to briefly survey the current use of modularization in the nuclear and non-nuclear industries and to assess and evaluate the techniques available for potential application to nuclear power. A key conclusion of the evaluation was that there was a need for a study to establish guidelines for the future development of Light Water Reactor, High Temperature Gas Reactor and Liquid Metal Reactor plants. The guidelines should identify how modularization can improve construction, maintenance, life extension and decommissioning.

Not Available

1985-06-01

377

Brain modularity controls the critical behavior of spontaneous activity  

NASA Astrophysics Data System (ADS)

The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

Russo, R.; Herrmann, H. J.; de Arcangelis, L.

2014-03-01

378

Brain modularity controls the critical behavior of spontaneous activity.  

PubMed

The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure. PMID:24621482

Russo, R; Herrmann, H J; de Arcangelis, L

2014-01-01

379

Indoor unit for electric heat pump  

DOEpatents

An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

1984-05-22

380

The Selenocysteine tRNA Gene in Leishmania major Is Transcribed by both RNA Polymerase II and RNA Polymerase III.  

PubMed

Eukaryotic tRNAs, transcribed by RNA polymerase III (Pol III), contain boxes A and B as internal promoter elements. One exception is the selenocysteine (Sec) tRNA (tRNA-Sec), whose transcription is directed by an internal box B and three extragenic sequences in vertebrates. Here we report on the transcriptional analysis of the tRNA-Sec gene in the protozoan parasite Leishmania major. This organism has unusual mechanisms of gene expression, including Pol II polycistronic transcription and maturation of mRNAs by trans splicing, a process that attaches a 39-nucleotide miniexon to the 5' end of all the mRNAs. In L. major, tRNA-Sec is encoded by a single gene inserted into a Pol II polycistronic unit, in contrast to most tRNAs, which are clustered at the boundaries of polycistronic units. 5' rapid amplification of cDNA ends and reverse transcription-PCR experiments showed that some tRNA-Sec transcripts contain the miniexon at the 5' end and a poly(A) tail at the 3' end, indicating that the tRNA-Sec gene is polycistronically transcribed by Pol II and processed by trans splicing and polyadenylation, as was recently reported for the tRNA-Sec genes in the related parasite Trypanosoma brucei. However, nuclear run-on assays with RNA polymerase inhibitors and with cells that were previously UV irradiated showed that the tRNA-Sec gene in L. major is also transcribed by Pol III. Thus, our results indicate that RNA polymerase specificity in Leishmania is not absolute in vivo, as has recently been found in other eukaryotes. PMID:25548151

Padilla-Mejía, Norma E; Florencio-Martínez, Luis E; Moreno-Campos, Rodrigo; Vizuet-de-Rueda, Juan C; Cevallos, Ana M; Hernández-Rivas, Rosaura; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

2015-03-01

381

A graphical operations interface for modular surface systems  

E-print Network

This paper presents the design and implementation of algorithms for a new graphical operations interface system specifically adapted to operating modular reconfigurable articulated surface systems. Geometric models of ...

Vona, Marsette A.

382

p-adic coupling of mock modular forms and shadows  

PubMed Central

A “mock modular form” is the holomorphic part of a harmonic Maass form f. The nonholomorphic part of f is a period integral of its “shadow,” a cusp form g. A direct method for relating the coefficients of shadows and mock modular forms is not known. We solve these problems when the shadow is an integer weight newform. Our solution is p-adic, and it relies on our definition of an algebraic “regularized mock modular form.” As an application, we consider the modular solution to the cubic “arithmetic-geometric mean.” PMID:20308587

Guerzhoy, Pavel; Kent, Zachary A.; Ono, Ken

2010-01-01

383

Variation in the ITS-1 and ITS-2 rRNA genomic regions of Cytauxzoon felis from bobcats and pumas in the eastern United States and comparison with sequences from domestic cats.  

PubMed

Cytauxzoon felis, a tick-borne protozoan parasite, is the causative agent of cytauxzoonosis in domestic cats in the United States. The natural reservoir for this parasite is the bobcat (Lynx rufus), which typically does not develop clinical signs. Although not likely important reservoirs, C. felis has also been detected in pumas (Puma concolor) in Florida and Louisiana. Recent studies suggest that specific genotypes of C. felis that circulate in domestic cats may be associated with variable clinical outcomes and specific spatial locations. In the current study, we investigated the intraspecific variation of the C. felis internal transcribed spacer (ITS)-1 and ITS-2 rRNA regions from 145 wild felids (139 bobcats and six pumas) from 11 states (Florida, Georgia, Kansas, Kentucky, Louisiana, Missouri, North Carolina, North Dakota, South Carolina, Oklahoma, and Pennsylvania). Unambiguous ITS-1 and ITS-2 data were obtained for 144 and 112 samples, respectively, and both ITS-1 and ITS-2 sequences were obtained for 111 (77%) samples. For the ITS-1 region, sequences from 65 samples collected from wild felids were identical to those previously reported in domestic cats, while the other 79 sequences were unique. C. felis from 45 bobcats and one puma had ITS-1 sequences identical to the most common sequence reported from domestic cats. Within the ITS-2 region, sequences from 49 bobcats were identical to those previously reported in domestic cats and 63 sequences were unique (with some occurring in more than one bobcat). The most common ITS-2 sequence from domestic cats was also common in wild felids (31 bobcats and a puma). Samples from three pumas from Florida and two bobcats from Missouri had a 40- or 41-bp insert in the ITS-2 similar to one described previously in a domestic cat from Arkansas. Additionally, a previously undescribed 198- or 199-bp insert was detected in the ITS-2 sequence from four bobcats. Collectively, based on combined ITS-1 and ITS-2 sequences, five different genotypes were detected in the wild felids. Genotype ITSa was the most common genotype (11 bobcats and one puma) and fewer numbers of ITSb, ITSe, ITSg, and ITSi were detected in bobcats. These data indicate that, based on ITS-1 and ITS-2 sequences, numerous C. felis strains may circulate in wild felids. PMID:22776107

Shock, Barbara C; Birkenheuer, Adam J; Patton, Laura L; Olfenbuttel, Colleen; Beringer, Jeff; Grove, Daniel M; Peek, Matt; Butfiloski, Joseph W; Hughes, Daymond W; Lockhart, J Mitchell; Cunningham, Mark W; Brown, Holly M; Peterson, David S; Yabsley, Michael J

2012-11-23

384

Corrosion behavior of tantalum-coated cobalt-chromium modular necks compared to titanium modular necks in a simulator test.  

PubMed

This study compared the corrosion behavior of tantalum-coated cobalt-chromium modular necks with that of titanium alloy modular necks at their junction to titanium-alloy femoral stem. Tests were performed in a dry assembly and two wet assemblies, one contaminated with calf serum and the other contaminated with calf serum and bone particles. Whereas the titanium modular neck tested in the dry assembly showed no signs of corrosion, the titanium modular necks tested in both wet assemblies showed marked depositions and corrosive attacks. By contrast, the tantalum-coated cobalt-chromium modular necks showed no traces of corrosion or chemical attack in any of the three assemblies. This study confirms the protective effect of tantalum coating the taper region of cobalt-chromium modular neck components, suggesting that the use of tantalum may reduce the risk of implant failure due to corrosion. PMID:24099841

Dorn, Ulrich; Neumann, Daniel; Frank, Mario

2014-04-01

385

Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments  

E-print Network

We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome–matrisome domains participate in modular reinforcement learning (RL). ...

Amemori, Ken-ichi

386

Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo  

PubMed Central

The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA–RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self–self) or heteromeric (self–nonself) RNA–RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA–RNA self-assembly. PMID:23914307

Lease, Richard A.; Arluison, Véronique; Lavelle, Christophe

2013-01-01

387

Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT){sub n} {center_dot} (GA){sub n} microsatellite embedded within the U2 repeat unit  

SciTech Connect

The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT){sub n}{center_dot}(GA){sub n} dinucleotide repeat (n {approx} 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT){sub n} tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, ogangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion. 70 refs., 5 figs.

Liao, D.; Weiner, A.M. [Yale Univ., New Haven, CT (United States)] [Yale Univ., New Haven, CT (United States)

1995-12-10

388

An Overview of the Safety Case for Small Modular Reactors  

SciTech Connect

Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

Ingersoll, Daniel T [ORNL] [ORNL

2011-01-01

389

Imaging Total Stations - Modular and Integrated Concepts  

NASA Astrophysics Data System (ADS)

Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany

Hauth, Stefan; Schlüter, Martin

2010-05-01

390

Lightweight composites for modular panelized construction  

NASA Astrophysics Data System (ADS)

Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction site. Keywords: Modular panelized construction, sandwich composites, composite structural insulated panels (CSIPs).

Vaidya, Amol S.

391

T7-RNA Polymerase  

NASA Technical Reports Server (NTRS)

T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

1997-01-01

392

Modular superconducting magnetic energy storage inductor  

SciTech Connect

This patent describes a modular superconducting magnetic energy storage inductor apparatus. It comprises an annular dewar structure oriented in a substantially horizontal plane and containing a cryogenic fluid; a plurality of winding modules each comprising a multilayer, layer wound winding of superconducting material, the winding modules staked one on top of another in the annular dewar and immersed in the cryogenic fluid; means interconnecting the plurality of winding modules in at least one electrical circuit; and shorting switch means comprising for each winding module a single shorting switch connected across the winding of the winding module and selectively shorting the winding during an emergency dump of the cryogenic fluid from the dewar.

Logan, J.R.

1992-09-08

393

Data Acquisition for Modular Biometric Monitoring System  

NASA Technical Reports Server (NTRS)

A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

2014-01-01

394

Development of modular cable mesh deployable antenna  

NASA Astrophysics Data System (ADS)

This report describes a concept and key technologies for the modular mesh deployable antenna. The antenna reflector composed of independently manufactured and tested modules is presented. Each module consists of a mesh surface, a cable network, and a deployable truss structure. The cable network comprises three kinds of cables, surface, tie, and back cables. Adjustment of tie cable lengths improves the surface accuracy. Synchronous deployment truss structures are considered as a supporting structure. Their design method, BBM's (Bread Board Model) and deployment analysis are also explained.

Meguro, Akira; Mitsugi, Jin; Andou, Kazuhide

1993-03-01

395

Intelligent subsystem interface for modular hardware system  

NASA Technical Reports Server (NTRS)

A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

2000-01-01

396

Nucleic acid amplification using modular branched primers  

DOEpatents

Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

Ulanovsky, Levy (Westmont, IL); Raja, Mugasimangalam C. (Downers Grove, IL)

2001-01-01

397

Modular Track System For Positioning Mobile Robots  

NASA Technical Reports Server (NTRS)

Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

Miller, Jeff

1995-01-01

398

Language constructs for modular parallel programs  

SciTech Connect

We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

Foster, I.

1996-03-01

399

Cascades on correlated and modular random networks.  

PubMed

An analytical approach to determining the mean avalanche size in a broad class of dynamical models on random networks is introduced. Previous results on percolation transitions and epidemic sizes are shown to be special cases of the method. The time-dependence of cascades and extensions to networks with community structure or degree-degree correlations are discussed. Analytical results for the rate of spread of innovations in a modular network and for the size of k cores in networks with degree-degree correlations are confirmed with numerical simulations. PMID:18517700

Gleeson, James P

2008-04-01

400

Modular, Parallel Pulse-Shaping Filter Architectures  

NASA Technical Reports Server (NTRS)

Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

Gray, Andrew A.

2003-01-01

401

New Modular Camera No Ordinary Joe  

NASA Technical Reports Server (NTRS)

Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

2003-01-01

402

The Vienna RNA Websuite  

PubMed Central

The Vienna RNA Websuite is a comprehensive collection of tools for folding, design and analysis of RNA sequences. It provides a web interface to the most commonly used programs of the Vienna RNA package. Among them, we find folding of single and aligned sequences, prediction of RNA–RNA interactions, and design of sequences with a given structure. Additionally, we provide analysis of folding landscapes using the barriers program and structural RNA alignments using LocARNA. The web server together with software packages for download is freely accessible at http://rna.tbi.univie.ac.at/. PMID:18424795

Gruber, Andreas R.; Lorenz, Ronny; Bernhart, Stephan H.; Neuböck, Richard; Hofacker, Ivo L.

2008-01-01

403

Structure and Functional Analysis of the RNA and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein  

Microsoft Academic Search

Respiratory syncytial virus (RSV) protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp) complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to

Marie-Lise Blondot; Virginie Dubosclard; Jenna Fix; Safa Lassoued; Magali Aumont-Nicaise; François Bontems; Jean-François Eléouët; Christina Sizun

2012-01-01

404

Studies on the closed-loop digital control of multi-modular reactors  

SciTech Connect

This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering)

1992-11-01

405

Studies on the closed-loop digital control of multi-modular reactors. Final report  

SciTech Connect

This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

Bernard, J.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.; Henry, A.F.; Lanning, D.D.; Meyer, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

1992-11-01

406

Project Antares: A low cost modular launch vehicle for the future  

NASA Technical Reports Server (NTRS)

The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

1991-01-01

407

Synthetic biology devices and circuits for RNA-based 'smart vaccines': a propositional review.  

PubMed

Nucleic acid vaccines have been gaining attention as an alternative to the standard attenuated pathogen or protein based vaccine. However, an unrealized advantage of using such DNA or RNA based vaccination modalities is the ability to program within these nucleic acids regulatory devices that would provide an immunologist with the power to control the production of antigens and adjuvants in a desirable manner by administering small molecule drugs as chemical triggers. Advances in synthetic biology have resulted in the creation of highly predictable and modular genetic parts and devices that can be composed into synthetic gene circuits with complex behaviors. With the recent advent of modified RNA gene delivery methods and developments in the RNA replicon platform, we foresee a future in which mammalian synthetic biologists will create genetic circuits encoded exclusively on RNA. Here, we review the current repertoire of devices used in RNA synthetic biology and propose how programmable 'smart vaccines' will revolutionize the field of RNA vaccination. PMID:25566800

Andries, Oliwia; Kitada, Tasuku; Bodner, Katie; Sanders, Niek N; Weiss, Ron

2015-02-01

408

A Multi-Modular Neutronically Coupled Power Generation System  

E-print Network

The High Temperature Integrated Multi-Modular Thermal Reactor is a small modular reactor that uses an enhanced conductivity BeO-UO2 fuel with supercritical CO2 coolant to drive turbo-machinery in a direct Brayton cycle. The core consists of several...

Patel, Vishal

2012-07-16

409

Advanced Modularity Design for The MIT Pebble Bed Reactor  

E-print Network

Advanced Modularity Design for The MIT Pebble Bed Reactor Andrew C. Kadak Department of Nuclear Beijing, CHINA, September 22-24, 2004 #Paper D14 1 #12;2 Advanced Modularity Design for The MIT Pebble Bed Reactor Technology Institute of Nuclear and New Energy Technology Friendship Hotel, Haidian District

410

LOADING AND UNLOADING SCHEME OF THE ORDERED BED MODULAR REACTOR  

Microsoft Academic Search

The Ordered Bed Modular Reactor (OBMR) is an advanced modular HTGR design in which the annular reactor core is filled with an ordered bed of fuel spheres. The OBMR with batch-wise fuel loads requires the loading and unloading of fuel spheres of the core to be completed as quickly as possible in a shorter shutdown time and the fuel spheres

Jiafu Tian

411

Safety and control of modular liquid-metal reactors  

Microsoft Academic Search

As part of recent development efforts on advanced reactor designs Argonne National Laboratory has proposed the integral fast reactor (IFR) concept. The IFR concept is currently being applied to modular-sized reactors, which would be built in multiple power packs together with an integrated fuel-cycle facility. It has been amply demonstrated that the concept, as applied to modular designs, has significant

J. I. Sackett; R. H. Sevy; T. Y. C. Wei

1989-01-01

412

A Powerful Modular Computer On A Universal Building Module  

Microsoft Academic Search

This paper develops basic principles for constructing instruction sets for two modifications of a modular computer distinct from each other in both the width of the primary memory and the increment h in which consecutive computer sizes are formed. It is shown that since modular computers are assembled from universal modules using pin-to-pin connections only, in constructing an instruction set

Svetlana P. Kartashev; Steven I. Kartashev

1978-01-01

413

Spontaneous Evolution of Modularity in Neural Networks for Robot Locomotion  

E-print Network

Spontaneous Evolution of Modularity in Neural Networks for Robot Locomotion Christian Schluchter Morphology, Evolution & Cognition Lab, University of Vermont, USA Prof. Dr. Fumiya Iida Bio-Inspired Robotics computationally infeasible. To explore these issues, this work shows the evolution of modularity in neural

Daraio, Chiara

414

Task-dependent evolution of modularity in neural networks1  

E-print Network

Task-dependent evolution of modularity in neural networks1 Michael H¨usken, Christian Igel the evolution of connectionist models in the context of modular problems. For this purpose, we define is a result--or a by-product--of a creation process, e.g. of natural evolution in case of biological systems

Toussaint, Marc

415

Modular Building Supplement: A Quick, Quality Solution for Schools.  

ERIC Educational Resources Information Center

This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

Goodmiller, Brian D.; Schendell, Derek G.

2003-01-01

416

Exploring the Deployment Potential of Small Modular Reactors  

E-print Network

nuclear power, exploring the potential of small modular reactors (SMRs) proved challenging. MoreoverExploring the Deployment Potential of Small Modular Reactors Submitted in partial fulfillment be acknowledged. Copyrights (© 2012) of the two renderings in figure 17 belong to Babcock & Wilcox Nuclear Energy

417

Modular Covariance and the Algebraic PCT/Spin-Statistics Theorem  

E-print Network

In the theory of nets of observable algebras, the modular operators associated with wedge regions are expected to have a natural geometric action, a generalization of the Bisognano-Wichmann condition for nets associated with Poincare-covariant fields. Here many possible such modular covariance conditions are discussed (in spacetime of at least three dimensions), including several conditions previously proposed and known to imply versions of the PCT and spin-statistics theorems. The logical relations between these conditions are explored: for example, it is shown that most of them are equivalent, and that all of them follow from appropriate commutation relations for the modular automorphisms alone. These results allow us to reduce the study of modular covariance to the case of systems describing non-interacting particles. Given finitely many Poincare-covariant non-interacting particles of any given mass, it is shown that modular covariance and wedge duality must hold, and the modular operators for wedge regions must have the Bisognano-Wichmann form, so that the usual free fields are the only possibility. For models describing interacting particles, it is shown that if they have a complete scattering interpretation in terms of such non-interacting particles, then again modular covariance and wedge duality must hold, and the modular operators for wedge regions must have the Bisognano-Wichmann form, so that wedge duality and the PCT and spin-statistics theorems must hold.

D. R. Davidson

1995-11-29

418

Simplicity is not Simple: Tessellations and Modular Archi-  

E-print Network

Simplicity is not Simple: Tessellations and Modular Archi- tecture The 2000 MathFest in Los Angeles of fantastical hip furniture. We went in, fully expecting that our shabby clothing would result in a cool work- shop, and showed us how he had been using rhombic dodecahedra to develop a modular building

Taalman, Laura

419

Relational Thread-Modular Static Value Analysis by Abstract Interpretation  

E-print Network

Relational Thread-Modular Static Value Analysis by Abstract Interpretation Antoine Min´e CNRS & ´Ecole Normale Sup´erieure 45, rue d'Ulm 75005 Paris, France mine@di.ens.fr Abstract. We study thread-modular static analysis by abstract inter- pretation to infer the values of variables in concurrent programs. We

Paris-Sud XI, Université de

420

Modularity, individuality, and evo-devo in butterfly wings  

E-print Network

Modularity, individuality, and evo-devo in butterfly wings Patri´cia Beldade*, Kees Koops, and Paul selection to explore the modular organization of butterfly wing patterns and the extent to which, in Bicyclus anynana butterflies, despite the evidence that all eyespots are developmentally coupled

Beldade, Patrícia

421

An Integrated, Modular Framework for Computer Vision and Cognitive Robotics  

E-print Network

on perception has been an active component of developing artificial vision (or computer vision) systemsAn Integrated, Modular Framework for Computer Vision and Cognitive Robotics Research (icVision) J an easy-to-use, modular framework for performing computer vision related tasks in support of cognitive

Förster, Alexander

422

Modularity for Java and How OSGi Can Help  

E-print Network

Modularity for Java and How OSGi Can Help DECOR October 28th , 2004 Richard S. Hall #12;Software environment #12;Focus of my research Popularized by Java because of its simple dynamic code loading mechanisms of modularity mechanism The Java world has many frameworks and systems reinventing this wheel e.g., component

Paris-Sud XI, Université de

423

A Modular Framework for Multi-Agent Preference Elicitation  

E-print Network

A Modular Framework for Multi-Agent Preference Elicitation A dissertation presented by S´ebastien Lahaie to The School of Engineering and Applied Sciences in partial fulfillment of the requirements. Parkes S´ebastien Lahaie A Modular Framework for Multi-Agent Preference Elicitation Abstract I present

Chen, Yiling

424

Modular Laboratory Courses: An Alternative to a Traditional Laboratory Program  

ERIC Educational Resources Information Center

Our modular laboratory teaching program is characterized by two major features. First, each course is taught independently and not linked with a particular lecture course. Second, each course is designed to be completed within one-half semester or less. The modular organization has allowed incorporation of the latest technology, reduction of class…

Caprette, David R.; Armstrong, Sarah; Beason, K. Beth

2005-01-01

425

Toward a Product System Modularity Construct: Literature Review and Reconceptualization  

Microsoft Academic Search

Product modularity has been discussed in engineering and management literature for over forty years. During this time span, definitions and views on the meaning of product modularity proliferated to the extent that it is difficult to understand the essential traits of the concept. While definitional ambiguity is often a byproduct of academic debate, it hinders the advancement of scientific knowledge

Fabrizio Salvador

2007-01-01

426

Uni-drive modular robots: theory, design, and experiments  

Microsoft Academic Search

A modular serial robot consists of a chain of links and joints such that its configuration can be changed by the order and number of links and joints. Although theoretically a modular robot can take any configuration, the weight of the modules is usually the limiting factor in the number of modules that can be chained together. Since the actuator

Hamidreza Karbasi; Jan Paul Huissoon; Amir Khajepour

2004-01-01

427

Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation  

NASA Technical Reports Server (NTRS)

RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.

Krichevsky, A. M.; Kosik, K. S.

2001-01-01

428

Future Concepts for Modular, Intelligent Aerospace Power Systems  

NASA Technical Reports Server (NTRS)

Nasa's resent commitment to Human and Robotic Space Exploration obviates the need for more affordable and sustainable systems and missions. Increased use of modularity and on-board intelligent technologies will enable these lofty goals. To support this new paradigm, an advanced technology program to develop modular, intelligent power management and distribution (PMAD) system technologies is presented. The many benefits to developing and including modular functionality in electrical power components and systems are shown to include lower costs and lower mass for highly reliable systems. The details of several modular technologies being developed by NASA are presented, broken down into hierarchical levels. Modularity at the device level, including the use of power electronic building blocks, is shown to provide benefits in lowering the development time and costs of new power electronic components.

Button, Robert M.; Soeder, James F.

2004-01-01

429

Characterization of tectoRNA assembly with cationic conjugated polymers.  

PubMed

Association between RNAs with preprogrammed molecular recognition units can be quantified by using cationic, water-soluble conjugated polymers. The method uses a fluorophore-labeled probe RNA (RNA-F*), which is treated with a target structure (RNA-T). Heterodimer formation, (RNA-T/RNA-F*), increases the total negative charge on the F*-bearing macromolecule and reduces the number of negatively charged molecules (relative to unbound RNA-T+ RNA-F*). On the basis of electrostatic interactions, we anticipated more effective binding between CCP and (RNAT/RNA-F*), a reduction of the average CCP- - -F* distance, and more effective FRET upon excitation of the conjugated polymer. The resulting signals benefit from the optical amplification characteristic of emissive conjugated polymers. Solution dissociation constants can be determined by monitoring F* intensity changes as a function of [RNA-F*] and the ratio: [I(T) - I(NB)]/I(NB), where I(T) and I(NB) are the F* intensities in the presence of the target RNA (RNA-T) and a nonbinding RNA (RNA-NB), respectively, while keeping the concentration of the conjugated polymer constant. By focusing on [I(T) - I(NB)]/I(NB) as a function of RNA concentration, one can detect the concentration range wherein increased fluorescence is the result of dimerization. PMID:15053575

Liu, Bin; Baudrey, Stéphanie; Jaeger, Luc; Bazan, Guillermo C

2004-04-01

430

Modular control of fusion power heating applications  

SciTech Connect

This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

Demers, D. R.

2012-08-24

431

Modularity of Directed Networks: Cycle Decomposition Approach  

E-print Network

The problem of decomposing networks into modules (or clusters) has gained much attention in recent years, as it can account for a coarse-grained description of complex systems, often revealing functional subunits of these systems. A variety of module detection algorithms have been proposed, mostly oriented towards finding hard partitionings of undirected networks. Despite the increasing number of fuzzy clustering methods for directed networks, many of these approaches tend to neglect important directional information. In this paper, we present a novel random walk based approach for finding fuzzy partitions of directed, weighted networks, where edge directions play a crucial role in defining how well nodes in a module are interconnected. We will show that cycle decomposition of a random walk process connects the notion of network modules and information transport in a network, leading to a new, symmetric measure of node communication. walk process, for which we will prove that although being time-reversible it inherits all necessary information about directions and modular structure of the original network. Finally, we will use this measure to introduce a communication graph, for which we will show that although being undirected it inherits all necessary information about modular structures from the original network.

Natasa Djurdjevac Conrad; Ralf Banisch; Christof Schütte

2014-07-31

432

A modular spectral triple for ?-Minkowski space  

NASA Astrophysics Data System (ADS)

We present a spectral triple for ?-Minkowski space in two dimensions. Starting from an algebra naturally associated to this space, a Hilbert space is built using a weight which is invariant under the ?-Poincaré algebra. The weight satisfies a KMS condition and its associated modular operator plays an important role in the construction. This forces us to introduce two ingredients which have a modular flavour: the first is a twisted commutator, used to obtain a boundedness condition for the Dirac operator, and the second is a weight replacing the usual operator trace, used to measure the growth of the resolvent of the Dirac operator. We show that, under some assumptions related to the symmetries and the classical limit, there is a unique Dirac operator and automorphism such that the twisted commutator is bounded. Then, using the weight mentioned above, we compute the spectral dimension associated to the spectral triple and find that is equal to the classical dimension. Finally we briefly discuss the introduction of a real structure.

Matassa, Marco

2014-02-01

433

A Small Modular Laboratory Hall Effect Thruster  

NASA Astrophysics Data System (ADS)

Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

Lee, Ty Davis

434

Modularized study of human calcium signalling pathway.  

PubMed

Signalling pathways are complex biochemical networks responsible for regulation of numerous cellular functions. These networks function by serial and successive interactions among a large number of vital biomolecules and chemical compounds. For deciphering and analysing the underlying mechanism of such networks,a modularized study is quite helpful. Here we propose an algorithm for modularization of calcium signalling pathway of H. sapiens . The idea that "a node whose function is dependent on maximum number of other nodes tends to be the center of a sub network" is used to divide a large signalling network into smaller sub networks. Inclusion of node(s) into sub networks(s) is dependent on the outdegree of the node(s). Here outdegree of a node refers to the number of relations of the considered node lying outside the constructed sub network. Node(s) having more than c relations lying outside the expanding sub network have to be excluded from it. Here c is a specified variable based on user preference, which is finally fixed during adjustments of created sub networks, so that certain biological significance can be conferred on them. PMID:17914243

Nayak, Losiana; De, Rajat K

2007-08-01

435

Metastring Theory and Modular Space-time  

E-print Network

String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an {\\it a priori} space-time interpretation or a pre-assumption of locality. This \\hlt{metastring theory} is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a \\hlt{modular space-time}. This concept embodies the standard tenets of quantum theory and implements in a precise way a notion of {relative locality}. The usual string backgrounds (non-compact space-time along with some toroidally compactified spatial directions) are obtained from modular space-time by a limiting procedure that can be thought of as a correspondence limit.

Laurent Freidel; Robert G. Leigh; Djordje Minic

2015-02-27

436

Modular control of varied locomotor tasks in children with incomplete spinal cord injuries  

PubMed Central

A module is a functional unit of the nervous system that specifies functionally relevant patterns of muscle activation. In adults, four to five modules account for muscle activation during walking. Neurological injury alters modular control and is associated with walking impairments. The effect of neurological injury on modular control in children is unknown and may differ from adults due to their immature and developing nervous systems. We examined modular control of locomotor tasks in children with incomplete spinal cord injuries (ISCIs) and control children. Five controls (8.6 ± 2.7 yr of age) and five children with ISCIs (8.6 ± 3.7 yr of age performed treadmill walking, overground walking, pedaling, supine lower extremity flexion/extension, stair climbing, and crawling. Electromyograms (EMGs) were recorded in bilateral leg muscles. Nonnegative matrix factorization was applied, and the minimum number of modules required to achieve 90% of the “variance accounted for” (VAF) was calculated. On average, 3.5 modules explained muscle activation in the controls, whereas 2.4 modules were required in the children with ISCIs. To determine if control is similar across tasks, the module weightings identified from treadmill walking were used to reconstruct the EMGs from each of the other tasks. This resulted in VAF values exceeding 86% for each child and each locomotor task. Our results suggest that 1) modularity is constrained in children with ISCIs and 2) for each child, similar neural control mechanisms are used across locomotor tasks. These findings suggest that interventions that activate the neuromuscular system to enhance walking also may influence the control of other locomotor tasks. PMID:23761702

Tester, Nicole J.; Kautz, Steven A.; Howland, Dena R.; Clark, David J.; Garvan, Cyndi; Behrman, Andrea L.

2013-01-01

437

A hybrid generation system using variable speed wind turbines and diesel units  

Microsoft Academic Search

The paper presents a study of a power system consisting of wind turbines and diesel generation units. In the study, a direct drive modular permanent magnet generator is used for the wind turbine and a normal permanent magnet generator is used for the diesel generation unit. Both types of generation units are connected to the load via power electronic converters

Z. Chen; Y. Hu

2003-01-01

438

Generalization and modularization of two-dimensional adaptive coordinate transformations for the Fourier modal method.  

PubMed

The Fourier modal method (FMM) has advanced greatly by using adaptive coordinates and adaptive spatial resolution. The convergence characteristics were shown to be improved significantly, a construction principle for suitable meshes was demonstrated and a guideline for the optimal choice of the coordinate transformation parameters was found. However, the construction guidelines published so far rely on a certain restriction that is overcome with the formulation presented in this paper. Moreover, a modularization principle is formulated that significantly eases the construction of coordinate transformations in unit cells with reappearing shapes and complex sub-structures. PMID:24787828

Küchenmeister, Jens

2014-04-21

439

Initial comparisons of modular-sized, integrated utility systems and conventional systems for several building types  

NASA Technical Reports Server (NTRS)

The results of a study of the application of a modular integrated utility system to six typical building types are compared with the application of a conventional utility system to the same facilities. The effects of varying the size and climatic location of the buildings and the size of the powerplants are presented. Construction details of the six building types (garden apartments, a high rise office building, high rise apartments, a shopping center, a high school, and a hospital) and typical site and floor plans are provided. The environmental effects, the unit size determination, and the market potential are discussed. The cost effectiveness of the various design options is not considered.

Benson, H. E.; Monford, L. G., Jr.

1976-01-01

440

The Energy Systems Optimization Computer Program /ESOP/ developed for Modular Integrated Utility Systems /MIUS/ analysis  

NASA Technical Reports Server (NTRS)

A significant energy and cost savings can be obtained by integrating various utility services (space heating and cooling, electrical power generation, solid waste disposal, potable water, and waste water treatment) into a single unit which provides buildings or groups of buildings with these services. This paper presents a description of a computer program, called the Energy Systems Optimization Program (ESOP). This program predicts the loads, energy requirements, equipment sizes, and life-cycle costs of alternative methods of meeting these utility requirements. The program has been used extensively for performing energy analyses of Modular Integrated Utility Systems (MIUS).

Ferden, S. L.; Rochelle, W. C.; Stallings, R. D.; Brandli, A. E.; Lively, C. F., Jr.

1974-01-01

441

Numerical and experimental characterization of a novel modular passive micromixer.  

PubMed

This paper reports a new low-cost passive microfluidic mixer design, based on a replication of identical mixing units composed of microchannels with variable curvature (clothoid) geometry. The micromixer presents a compact and modular architecture that can be easily fabricated using a simple and reliable fabrication process. The particular clothoid-based geometry enhances the mixing by inducing transversal secondary flows and recirculation effects. The role of the relevant fluid mechanics mechanisms promoting the mixing in this geometry were analysed using computational fluid dynamics (CFD) for Reynolds numbers ranging from 1 to 110. A measure of mixing potency was quantitatively evaluated by calculating mixing efficiency, while a measure of particle dispersion was assessed through the lacunarity index. The results show that the secondary flow arrangement and recirculation effects are able to provide a mixing efficiency equal to 80 % at Reynolds number above 70. In addition, the analysis of particles distribution promotes the lacunarity as powerful tool to quantify the dispersion of fluid particles and, in turn, the overall mixing. On fabricated micromixer prototypes the microscopic-Laser-Induced-Fluorescence (?LIF) technique was applied to characterize mixing. The experimental results confirmed the mixing potency of the microdevice. PMID:22711456

Pennella, Francesco; Rossi, Massimiliano; Ripandelli, Simone; Rasponi, Marco; Mastrangelo, Francesco; Deriu, Marco A; Ridolfi, Luca; Kähler, Christian J; Morbiducci, Umberto

2012-10-01

442

Rat Ultrasonic Vocalization Shows Features of a Modular Behavior  

PubMed Central

Small units of production, or modules, can be effective building blocks of more complex motor behaviors. Recording underlying movements of vocal production in awake and spontaneously behaving male Sprague Dawley rats interacting with a female, I tested whether the underlying movements of ultrasonic calls can be described by modules. Movements were quantified by laryngeal muscle EMG activity and subglottal pressure changes. A module was defined by uniformity in both larynx movement and pressure pattern that resulted in a specific spectrographic feature. Modules are produced either singly (single module call type) or in combination with a different module (composite call type). Distinct modules were shown to be linearly (re)combined. Additionally, I found that modules produced during the same expiratory phase can be linked with or without a pause in laryngeal activity, the latter creating the spectrographic appearance of two separate calls. Results suggest that combining discrete modules facilitates generation of higher-order patterns, thereby increasing overall complexity of the vocal repertoire. With additional study, modularity and flexible laryngeal–respiratory coordination may prove to be a basal feature of mammalian vocal motor control. PMID:24828641

2014-01-01

443

A modular and programmable development platform for capsule endoscopy system.  

PubMed

The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results. PMID:24859846

Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A

2014-06-01

444

Embedding triple-modular redundancy into a hypercube architecture  

NASA Technical Reports Server (NTRS)

This paper describes an embedding of Triple Modular Redundancy (TMR) into a binary hypercube. The goal is to improve fault tolerance by masking any single-point faults. Each module of an application task is triplicated and executed in parallel on three nodes of a 2-dimensional subcube (Q2) of the hypercube. Each of these nodes also executes a voter process. The remaining node is used for message passing only. All outputs from the triplicated modules are voted on, and the voting results are transmitted to the appropriate destination. Thus, all interunit messages are also triplicated. We propose an embedding of TMR into a hypercube which can be implemented in a manner transparent to the application program. Subcubes are allocated so that the address space for the TMR units is also a hypercube. Hence, the subcube allocation and intermodule communication schemes are defined to be analogous to the schemes used in the nonredundant system. The embedded system is proven to mask all single-point faults.

Kiskis, Daniel L.; Shin, Kang G.

1988-01-01

445

Native replication intermediates of the yeast 20 S RNA virus have a single-stranded RNA backbone.  

PubMed

20 S RNA virus is a positive strand RNA virus found in Saccharomyces cerevisiae. The viral genome (2.5 kb) only encodes its RNA polymerase (p91) and forms a ribonucleoprotein complex with p91 in vivo. A lysate prepared from 20 S RNA-induced cells showed an RNA polymerase activity that synthesized the positive strands of viral genome. When in vitro products, after phenol extraction, were analyzed in a time course, radioactive nucleotides were first incorporated into double-stranded RNA (dsRNA) intermediates and then chased out to the final single-stranded RNA products. The positive and negative strands in these dsRNA intermediates were non-covalently associated, and the release of the positive strand products from the intermediates required a net RNA synthesis. We found, however, that these dsRNA intermediates were an artifact caused by phenol extraction. Native replication intermediates had a single-stranded RNA backbone as judged by RNase sensitivity experiments, and they migrated distinctly from a dsRNA form in non-denaturing gels. Upon completion of RNA synthesis, positive strand RNA products as well as negative strand templates were released from replication intermediates. These results indicate that the native replication intermediates consist of a positive strand of less than unit length and a negative strand template loosely associated, probably through the RNA polymerase p91. Therefore, W, a dsRNA form of 20 S RNA that accumulates in yeast cells grown at 37 degrees C, is not an intermediate in the 20 S RNA replication cycle, but a by-product. PMID:15611054

Fujimura, Tsutomu; Solórzano, Alicia; Esteban, Rosa

2005-02-25

446

The 5S rRNA gene in sea barley (Hordeum marinum Hudson sensu lato): sequence variation among repeat units and relationship to the X haplome in barley (Hordeum).  

PubMed

We have investigated the molecular diversity of the 5S rDNA units in sea barley, comprising Hordeum marinum and Hordeum geniculatum. Although we were unable to detect "short" units after screening of 639 clones, we found two unit classes, one 602-607 bp long and the other 507-512 bp long. We classify the shortest unit class of the two as belonging to the "long H1" unit class, identified in previous papers. The longest unit class is not similar to any unit class so far identified, and is therefore unique. It was coined by us as the "long X1," to reflect the X haplome. We present a summary of all the unit classes so far described in Hordeum. We carried out a cladistic analysis, based on the "long H1" (orthologous) sequences, that included H. vulgare, H. spontaneum, H. bulbosum, H. marinum, H. geniculatum, and H. bogdanii. As a result, the first three grouped in one clade, and the other three in the other clade, with the latter clade being more isolated. These results reflect current knowledge of relationships based on morphology, cytology, and genome analysis. Furthermore, the sequences from the 5S unit classes may be potentially useful as DNA probes for genomic identification and genetic transfer in the Triticeae. PMID:9809436

Baum, B R; Johnson, D A

1998-10-01

447

Site Suitability and Hazard Assessment Guide for Small Modular Reactors  

SciTech Connect

Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

Wayne Moe

2013-10-01

448

RNA-Catalyzed RNA Ligation on an External RNA Template  

NASA Technical Reports Server (NTRS)

Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

McGinness, Kathleen E.; Joyce, Gerald F.

2002-01-01

449

Modular hip implant fracture at the stem-sleeve interface.  

PubMed

The use of modular implants in femoral stem design has grown increasingly popular over the last decade because of the theoretical advantage of more flexibility and optimization of femoral anteversion, limb length, and femoral component offset. With the benefit of increased surgical flexibility, however, modularity also carries the theoretical risks of fretting at the modular surfaces, sequelae of wear debris, and possible failure and fracture of the stem at the modular junction. Indeed, there have been an increasing number of reports of modular implants failing due to fracture at modular junctions. The S-ROM prosthesis (DePuy Orthopaedics, Inc, Warsaw, Indiana), however, has a stellar clinical record and has been used with good results in both primary and revision total hip arthroplasty. Only a single case of S-ROM failure at the stem-sleeve interface has been reported in the orthopedic literature. The aim of this case report was to present a succinct history of proximal modularity in total hip arthroplasty and to describe the only known case of this type of catastrophic failure in an S-ROM prosthesis with a metal-on-metal bearing. Despite a low level of serum metal ions on presentation, scanning electron microscopy showed findings consistent with corrosive processes and pseudotumor was seen at revision surgery. [Orthopedics. 2015; 38(3):e234-e239.]. PMID:25760513

Parisi, Thomas; Burroughs, Brian; Kwon, Young-Min

2015-03-01

450

Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits  

PubMed Central

Background The modular design of synthetic gene circuits via composable parts (DNA segments) and pools of signal carriers (molecules such as RNA polymerases and ribosomes) has been successfully applied to bacterial systems. However, eukaryotic cells are becoming a preferential host for new synthetic biology applications. Therefore, an accurate description of the intricate network of reactions that take place inside eukaryotic parts and pools is necessary. Rule-based modeling approaches are increasingly used to obtain compact representations of reaction networks in biological systems. However, this approach is intrinsically non-modular and not suitable per se for the description of composable genetic modules. In contrast, the Model Description Language (MDL) adopted by the modeling tool ProMoT is highly modular and it enables a faithful representation of biological parts and pools. Results We developed a computational framework for the design of complex (eukaryotic) gene circuits by generating dynamic models of parts and pools via the joint usage of the BioNetGen rule-based modeling approach and MDL. The framework converts the specification of a part (or pool) structure into rules that serve as inputs for BioNetGen to calculate the part’s species and reactions. The BioNetGen output is translated into an MDL file that gives a complete description of all the reactions that take place inside the part (or pool) together with a proper interface to connect it to other modules in the circuit. In proof-of-principle applications to eukaryotic Boolean circuits with more than ten genes and more than one thousand reactions, our framework yielded proper representations of the circuits’ truth tables. Conclusions For the model-based design of increasingly complex gene circuits, it is critical to achieve exact and systematic representations of the biological processes with minimal effort. Our computational framework provides such a detailed and intuitive way to design new and complex synthetic gene circuits. PMID:23705868

2013-01-01

451

LEGO: A modular accelerator design code  

SciTech Connect

An object-oriented accelerator design code has been designed and implemented in a simple and modular fashion. It contains all major features of its predecessors: TRACY and DESPOT. All physics of single-particle dynamics is implemented based on the Hamiltonian in the local frame of the component. Components can be moved arbitrarily in the three dimensional space. Several symplectic integrators are used to approximate the integration of the Hamiltonian. A differential algebra class is introduced to extract a Taylor map up to arbitrary order. Analysis of optics is done in the same way both for the linear and nonlinear case. Currently, the code is used to design and simulate the lattices of the PEP-II. It will also be used for the commissioning.

Cai, Y.; Donald, M.; Irwin, J.; Yan, Y. [Stanford Univ., CA (US). Stanford Linear Accelerator Center

1997-08-01

452

RSA and its Correctness through Modular Arithmetic  

NASA Astrophysics Data System (ADS)

To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

Meelu, Punita; Malik, Sitender

2010-11-01

453

Modular, multi-level groundwater sampler  

DOEpatents

Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

1994-01-01

454

Modularized TGFbeta-Smad Signaling Pathway  

NASA Technical Reports Server (NTRS)

The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

2011-01-01

455

Dynamics on modular networks with heterogeneous correlations  

SciTech Connect

We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

Melnik, Sergey [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland) [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland); Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom) [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP (United Kingdom); Mucha, Peter J. [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States) [Department of Mathematics, Carolina Center for Interdisciplinary Applied Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599-3250 (United States); Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 (United States); Gleeson, James P. [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)] [MACSI, Department of Mathematics and Statistics, University of Limerick (Ireland)

2014-06-15

456

LST and instrument considerations. [modular design  

NASA Technical Reports Server (NTRS)

In order that the LST meet its scientific objectives and also be a National Astronomical Space Facility during the 1980's and 1990's, broad requirements have been levied by the scientific community. These scientific requirements can be directly translated into design requirements and specifications for the scientific instruments. The instrument ensemble design must be consistent with a 15-year operational lifetime. Downtime for major repair/refurbishment or instrument updating must be minimized. The overall efficiency and performance of the instruments should be maximized. Modularization of instruments and instrument subsystems, some degree of on-orbit servicing (both repair and replacement), on-axis location, minimizing the number of reflections within instruments, minimizing polarization effects, and simultaneous operation of the F/24 camera with other instruments, are just a few of the design guidelines and specifications which can and will be met in order that these broader scientific requirements be satisfied.-

Levin, G. M.

1974-01-01

457

Modularized Smad-regulated TGF? signaling pathway.  

PubMed

The transforming Growth Factor ? (TGF?) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGF? signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGF? receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGF? signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGF? signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. PMID:22892478

Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

2012-12-01

458

Modular Stellarator Fusion Reactor (MSR) concept  

SciTech Connect

A preliminary conceptual study has been made of the Modulator Stellarator Reactor (MSR) as a stedy-state, ignited, DT-fueled, magnetic fusion reactor. The MSR concept combines the physics of classic stellarator confinement with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4.8-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. Neither an economic analysis nor a detailed conceptual engineering design is presented here, as the primary intent of this scoping study is the elucidation of key physics tradeoffs, constraints, and uncertainties for the ultimate power-reactor embodiment.

Miller, R.L.; Krakowski, R.A.

1981-01-01

459

Research on a Reconfigurable Modular Manipulator System  

SciTech Connect

Research has been conducted on developing the theoretical basis and the technology for a Reconfigurable Modular Manipulation System (RMMS). Unlike a conventional manipulator which has a fixed configuration, the RMMS consists of a set of interchangeable modules that can be rapidly assembled into a system of manipulators with appropriate configurations depending on the specific task requirement. For effective development and use of such a versatile and flexible system a program of theoretical and experimental research has been pursued aimed at developing the basis for next generation of autonomous manipulator systems. The RMMS concept extends the idea of autonomy from sensor-based to configuration based autonomy. One of the important components is the development of design methodologies for mapping tasks into manipulator configurations and for automatic generatio