Science.gov

Sample records for rna modular units

  1. Modular weapon control unit

    SciTech Connect

    Boccabella, M.F.; McGovney, G.N.

    1997-01-01

    The goal of the Modular Weapon Control Unit (MWCU) program was to design and develop a reconfigurable weapon controller (programmer/sequencer) that can be adapted to different weapon systems based on the particular requirements for that system. Programmers from previous systems are conceptually the same and perform similar tasks. Because of this commonality and the amount of re-engineering necessary with the advent of every new design, the idea of a modular, adaptable system has emerged. Also, the controller can be used in more than one application for a specific weapon system. Functionality has been divided into a Processor Module (PM) and an Input/Output Module (IOM). The PM will handle all operations that require calculations, memory, and timing. The IOM will handle interfaces to the rest of the system, input level shifting, output drive capability, and detection of interrupt conditions. Configuration flexibility is achieved in two ways. First, the operation of the PM is determined by a surface mount Read-Only Memory (ROM). Other surface-mount components can be added or neglected as necessary for functionality. Second, IOMs consist of configurable input buffers, configurable output drivers, and configurable interrupt generation. Further, these modules can be added singly or in groups to a Processor Module to achieve the required I/O configuration. The culmination of this LDRD was the building of both Processor Module and Input/Output Module. The MWCU was chosen as a test system to evaluate Low-Temperature Co-fired Ceramic (LTCC) technology, desirable for high component density and good thermal characteristics.

  2. CRISPR-Mediated Modular RNA-Guided Regulation

    E-print Network

    Lim, Wendell

    Resource CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes Luke A. The CRISPR- associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA indicates that CRISPR interference (CRISPRi)-medi- ated transcriptional repression is highly specific. Our

  3. Intramolecular phenotypic capacitance in a modular RNA molecule

    PubMed Central

    Hayden, Eric J.; Bendixsen, Devin P.; Wagner, Andreas

    2015-01-01

    Phenotypic capacitance refers to the ability of a genome to accumulate mutations that are conditionally hidden and only reveal phenotype-altering effects after certain environmental or genetic changes. Capacitance has important implications for the evolution of novel forms and functions, but experimentally studied mechanisms behind capacitance are mostly limited to complex, multicomponent systems often involving several interacting protein molecules. Here we demonstrate phenotypic capacitance within a much simpler system, an individual RNA molecule with catalytic activity (ribozyme). This naturally occurring RNA molecule has a modular structure, where a scaffold module acts as an intramolecular chaperone that facilitates folding of a second catalytic module. Previous studies have shown that the scaffold module is not absolutely required for activity, but dramatically decreases the concentration of magnesium ions required for the formation of an active site. Here, we use an experimental perturbation of magnesium ion concentration that disrupts the folding of certain genetic variants of this ribozyme and use in vitro selection followed by deep sequencing to identify genotypes with altered phenotypes (catalytic activity). We identify multiple conditional mutations that alter the wild-type ribozyme phenotype under a stressful environmental condition of low magnesium ion concentration, but preserve the phenotype under more relaxed conditions. This conditional buffering is confined to the scaffold module, but controls the catalytic phenotype, demonstrating how modularity can enable phenotypic capacitance within a single macromolecule. RNA’s ancient role in life suggests that phenotypic capacitance may have influenced evolution since life’s origins. PMID:26401020

  4. Engineering modular 'ON' RNA switches using biological components.

    PubMed

    Ceres, Pablo; Trausch, Jeremiah J; Batey, Robert T

    2013-12-01

    Riboswitches are cis-acting regulatory elements broadly distributed in bacterial mRNAs that control a wide range of critical metabolic activities. Expression is governed by two distinct domains within the mRNA leader: a sensory 'aptamer domain' and a regulatory 'expression platform'. Riboswitches have also received considerable attention as important tools in synthetic biology because of their conceptually simple structure and the ability to obtain aptamers that bind almost any conceivable small molecule using in vitro selection (referred to as SELEX). In the design of artificial riboswitches, a significant hurdle has been to couple the two domains enabling their efficient communication. We previously demonstrated that biological transcriptional 'OFF' expression platforms are easily coupled to diverse aptamers, both biological and SELEX-derived, using simple design rules. Here, we present two modular transcriptional 'ON' riboswitch expression platforms that are also capable of hosting foreign aptamers. We demonstrate that these biological parts can be used to facilely generate artificial chimeric riboswitches capable of robustly regulating transcription both in vitro and in vivo. We expect that these modular expression platforms will be of great utility for various synthetic biological applications that use RNA-based biosensors. PMID:23999097

  5. RNA backbone: Consensus all-angle conformers and modular string nomenclature (an RNA

    E-print Network

    Williams, Loren

    the seven-angle dezabgd combinations empirically found favorable for the sugar-to-sugar ``suite'' unit, (except for very high- resolution crystal structures, seldom attainable for RNA molecules of biologically

  6. Structural basis for the modular recognition of single-stranded RNA by PPR proteins

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Li, Quanxiu; Yan, Chuangye; Liu, Ying; Liu, Junjie; Yu, Feng; Wang, Zheng; Long, Jiafu; He, Jianhua; Wang, Hong-Wei; Wang, Jiawei; Zhu, Jian-Kang; Shi, Yigong; Yan, Nieng

    2013-12-01

    Pentatricopeptide repeat (PPR) proteins represent a large family of sequence-specific RNA-binding proteins that are involved in multiple aspects of RNA metabolism. PPR proteins, which are found in exceptionally large numbers in the mitochondria and chloroplasts of terrestrial plants, recognize single-stranded RNA (ssRNA) in a modular fashion. The maize chloroplast protein PPR10 binds to two similar RNA sequences from the ATPI-ATPH and PSAJ-RPL33 intergenic regions, referred to as ATPH and PSAJ, respectively. By protecting the target RNA elements from 5' or 3' exonucleases, PPR10 defines the corresponding 5' and 3' messenger RNA termini. Despite rigorous functional characterizations, the structural basis of sequence-specific ssRNA recognition by PPR proteins remains to be elucidated. Here we report the crystal structures of PPR10 in RNA-free and RNA-bound states at resolutions of 2.85 and 2.45Å, respectively. In the absence of RNA binding, the nineteen repeats of PPR10 are assembled into a right-handed superhelical spiral. PPR10 forms an antiparallel, intertwined homodimer and exhibits considerable conformational changes upon binding to its target ssRNA, an 18-nucleotide PSAJ element. Six nucleotides of PSAJ are specifically recognized by six corresponding PPR10 repeats following the predicted code. The molecular basis for the specific and modular recognition of RNA bases A, G and U is revealed. The structural elucidation of RNA recognition by PPR proteins provides an important framework for potential biotechnological applications of PPR proteins in RNA-related research areas.

  7. RNA Backbone: Consensus All-angle Conformers and Modular String Nomenclature

    E-print Network

    Richardson, David

    found favorable for the sugar-to-sugar "suite" unit within which the angle correlations are strongest (e with the backbone, however (except for very high resolution crystal structures, seldom attainable for RNA molecules

  8. Human Factors Issues For Multi-Modular Reactor Units

    SciTech Connect

    Tuan Q Tran; Humberto E. Garcia; Ronald L. Boring; Jeffrey C. Joe; Bruce P. Hallbert

    2007-08-01

    Smaller and multi-modular reactor (MMR) will be highly technologically-advanced systems allowing more system flexibility to reactors configurations (e.g., addition/deletion of reactor units). While the technical and financial advantages of systems may be numerous, MMR presents many human factors challenges that may pose vulnerability to plant safety. An important human factors challenge in MMR operation and performance is the monitoring of data from multiple plants from centralized control rooms where human operators are responsible for interpreting, assessing, and responding to different system’s states and failures (e.g., simultaneously monitoring refueling at one plant while keeping an eye on another plant’s normal operating state). Furthermore, the operational, safety, and performance requirements for MMR can seriously change current staffing models and roles, the mode in which information is displayed, procedures and training to support and guide operators, and risk analysis. For these reasons, addressing human factors concerns in MMR are essential in reducing plant risk.

  9. KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED MANIPULATOR UNITS

    SciTech Connect

    Salerno, R. J.

    1994-06-01

    Decontamination and Dismantling (D&D) activities within the U.S. Department of Energy (DOE) require a long reach manipulator with a large load capacity. Variable Geometry Trusses (VGTs) are a unique class of mechanical structures which allow the advantages of truss structures for large scale applications to be applied to large robotic manipulators. Individual VGT units may be assembled to create a modular, long-reach, truss-type manipulator. Each module of such a manipulator system is either a static truss section or one of several possible VGT geometries. While many potential applications exist for this technology, the present work is largely motivated by the need for generic robotic systems for remote manipulation. A manipulator system based on VGT modules provides several advantages. The reconfigurable nature of the manipulator system allows it to be adapted on site to unforeseen conditions. The kinematic redundancy of the manipulator enables it to work effectively even in a highly obstructed workspace. The parallel structure of the truss modules enables the manipulator to be withdrawn in the event of a structural failure. Finally, the open framework of the modules provides a clear, protected passageway for control and power cabling, waste conveyance, or other services required at the end effector. As is implied in a truss structure, all primary members of a VGT are ideally loaded in pure tension or compression. This results in an extremely stiff and strong manipulator system with minimal overall weight. Careful design of the joints of a VGT is very important to the overall stiffness and accuracy of the structure, as several links (as many as six) are joined together at each joint. The greatest disadvantage to this approach to manipulator design has traditionally been that the kinematics of VGT structures are complex and poorly understood. This report specifically addresses the kinematics of several possible geometries for the individual VGT units. Equations and solution techniques are developed for solving the "forward" or "direct" and "inverse" kinematic problems for these geometries. The" forward" kinematic problem is that of finding the position and orientation of the distal end of the VGT relative to the proximal end, given the specific displacements of the (linear) actuators. This problem is rarely solvable in closed form. However, powerful iterative algorithms capable of solution in real time on typical modern robot control hardware are presented. The "inverse" kinematic problem is that of finding the required actuator displacements given the position and orientation of the distal end of the VGT relative to the proximal end. For specific VGT geometries, closed-form solutions are presented. For the more general problem, iterative algorithms capable of solution in real time are again derived and presented.

  10. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.

  11. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes

    PubMed Central

    Gilbert, Luke A.; Larson, Matthew H.; Morsut, Leonardo; Liu, Zairan; Brar, Gloria A.; Torres, Sandra E.; Stern-Ginossar, Noam; Brandman, Onn; Whitehead, Evan H.; Doudna, Jennifer A.; Lim, Wendell A.; Weissman, Jonathan S.; Qi, Lei S.

    2013-01-01

    SUMMARY The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells with the site of delivey determined solely by a co-expressed short guide (sg)RNA. Coupling of dCas9 to a transcriptional repressor domain can robustly silence expression of multiple endogenous genes RNA-seq analysis indicates that CRISPR interference (CRISPRi)-mediated transcriptional repression is highly specific. Our results establish that the CRISPR system can be used as a modular and flexible DNA-binding platform for the recruitment of proteins to a target DNA sequence and reveal the potential of CRISPRi as a general tool for the precise regulation of gene expression in eukaryotic cells. PMID:23849981

  12. 7 CFR Exhibit B to Subpart A of... - Requirements for Modular/Panelized Housing Units

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... particular family in accordance with 7 CFR part 3550. VII. Noncompliance Issues. A. When minor issues are... 7 Agriculture 12 2010-01-01 2010-01-01 false Requirements for Modular/Panelized Housing Units B Exhibit B to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture...

  13. 7 CFR Exhibit B to Subpart A of... - Requirements for Modular/Panelized Housing Units

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... particular family in accordance with 7 CFR part 3550. VII. Noncompliance Issues. A. When minor issues are... 7 Agriculture 12 2011-01-01 2011-01-01 false Requirements for Modular/Panelized Housing Units B Exhibit B to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture...

  14. 7 CFR Exhibit B to Subpart A of... - Requirements for Modular/Panelized Housing Units

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... particular family in accordance with 7 CFR part 3550. VII. Noncompliance Issues. A. When minor issues are... 7 Agriculture 12 2012-01-01 2012-01-01 false Requirements for Modular/Panelized Housing Units B Exhibit B to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture...

  15. 7 CFR Exhibit B to Subpart A of... - Requirements for Modular/Panelized Housing Units

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... particular family in accordance with 7 CFR part 3550. VII. Noncompliance Issues. A. When minor issues are... 7 Agriculture 12 2013-01-01 2013-01-01 false Requirements for Modular/Panelized Housing Units B Exhibit B to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture...

  16. 7 CFR Exhibit B to Subpart A of... - Requirements for Modular/Panelized Housing Units

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... particular family in accordance with 7 CFR part 3550. VII. Noncompliance Issues. A. When minor issues are... 7 Agriculture 12 2014-01-01 2013-01-01 true Requirements for Modular/Panelized Housing Units B Exhibit B to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture...

  17. Specific and Modular Binding Code for Cytosine Recognition in Pumilio/FBF (PUF) RNA-binding Domains

    SciTech Connect

    Dong, Shuyun; Wang, Yang; Cassidy-Amstutz, Caleb; Lu, Gang; Bigler, Rebecca; Jezyk, Mark R.; Li, Chunhua; Tanaka Hall, Traci M.; Wang, Zefeng

    2011-10-28

    Pumilio/fem-3 mRNA-binding factor (PUF) proteins possess a recognition code for bases A, U, and G, allowing designed RNA sequence specificity of their modular Pumilio (PUM) repeats. However, recognition side chains in a PUM repeat for cytosine are unknown. Here we report identification of a cytosine-recognition code by screening random amino acid combinations at conserved RNA recognition positions using a yeast three-hybrid system. This C-recognition code is specific and modular as specificity can be transferred to different positions in the RNA recognition sequence. A crystal structure of a modified PUF domain reveals specific contacts between an arginine side chain and the cytosine base. We applied the C-recognition code to design PUF domains that recognize targets with multiple cytosines and to generate engineered splicing factors that modulate alternative splicing. Finally, we identified a divergent yeast PUF protein, Nop9p, that may recognize natural target RNAs with cytosine. This work deepens our understanding of natural PUF protein target recognition and expands the ability to engineer PUF domains to recognize any RNA sequence.

  18. Modular premotor drives and unit bursts as primitives for frog motor behaviors.

    PubMed

    Hart, Corey B; Giszter, Simon F

    2004-06-01

    Spinal cord modularity impacts on our understanding of reflexes, development, descending systems in normal motor control, and recovery from injury. We used independent component analysis and best-basis or matching pursuit wavepacket analysis to extract the composition and temporal structure of bursts in hindlimb muscles of frogs. These techniques make minimal a priori assumptions about drive and motor pattern structure. We compared premotor drive and burst structures in spinal frogs with less reduced frogs with a fuller repertoire of locomotory, kicking, and scratching behaviors. Six multimuscle drives explain most of the variance of motor patterns (approximately 80%). Each extracted drive was activated with pulses at a single time scale or common duration (approximately 275 msec) burst structure. The data show that complex behaviors in brainstem frogs arise as a result of focusing drives to smaller core groups of muscles. Brainstem drives were subsets of the muscle groups from spinal frogs. The 275 msec burst duration was preserved across all behaviors and was most precise in brainstem frogs. These data support a modular decomposition of frog behaviors into a small collection of unit burst generators and associated muscle drives in spinal cord. Our data also show that the modular organization of drives seen in isolated spinal cord is fine-tuned by descending controls to enable a fuller movement repertoire. The unit burst generators and their associated muscle synergies extracted here link the biomechanical "primitives," described earlier in the frog, rat, and cat, and to the elements of pattern generation examined in fictive preparations. PMID:15175397

  19. Multi-unit Operations in Non-Nuclear Systems: Lessons Learned for Small Modular Reactors

    SciTech Connect

    OHara J. M.; Higgins, J.; DAgostino, A.

    2012-01-17

    The nuclear-power community has reached the stage of proposing advanced reactor designs to support power generation for decades to come. Small modular reactors (SMRs) are one approach to meet these energy needs. While the power output of individual reactor modules is relatively small, they can be grouped to produce reactor sites with different outputs. Also, they can be designed to generate hydrogen, or to process heat. Many characteristics of SMRs are quite different from those of current plants and may be operated quite differently. One difference is that multiple units may be operated by a single crew (or a single operator) from one control room. The U.S. Nuclear Regulatory Commission (NRC) is examining the human factors engineering (HFE) aspects of SMRs to support licensing reviews. While we reviewed information on SMR designs to obtain information, the designs are not completed and all of the design and operational information is not yet available. Nor is there information on multi-unit operations as envisioned for SMRs available in operating experience. Thus, to gain a better understanding of multi-unit operations we sought the lesson learned from non-nuclear systems that have experience in multi-unit operations, specifically refineries, unmanned aerial vehicles and tele-intensive care units. In this paper we report the lessons learned from these systems and the implications for SMRs.

  20. Extreme environment capable, modular and scalable power processing unit for solar electric propulsion

    NASA Astrophysics Data System (ADS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  1. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; DelCastillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  2. Extreme Environment Capable, Modular and Scalable Power Processing Unit for Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Carr, Gregory A.; Iannello, Christopher J.; Chen, Yuan; Hunter, Don J.; Del Castillo, Linda; Bradley, Arthur T.; Stell, Christopher; Mojarradi, Mohammad M.

    2013-01-01

    This paper is to present a concept of a modular and scalable High Temperature Boost (HTB) Power Processing Unit (PPU) capable of operating at temperatures beyond the standard military temperature range. The various extreme environments technologies are also described as the fundamental technology path to this concept. The proposed HTB PPU is intended for power processing in the area of space solar electric propulsion, where the reduction of in-space mass and volume are desired, and sometimes even critical, to achieve the goals of future space flight missions. The concept of the HTB PPU can also be applied to other extreme environment applications, such as geothermal and petroleum deep-well drilling, where higher temperature operation is required.

  3. GROSS-STARK UNITS AND p-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE

    E-print Network

    Darmon, Henri

    GROSS-STARK UNITS AND p-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE HENRI DARMON, ALAN LAUDER AND VICTOR ROTGER attach* *ed to a triple (f, g, h) of classical eigenforms of weights (2, 1, 1). When f is a cusp

  4. GROSS-STARK UNITS AND p-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE

    E-print Network

    Darmon, Henri

    GROSS-STARK UNITS AND p-ADIC ITERATED INTEGRALS ATTACHED TO MODULAR FORMS OF WEIGHT ONE HENRI-adic iterated integrals attached to a triple (f, g, h) of classical eigenforms of weights (2, 1, 1). When f is a weight two Eisenstein series rather than a cusp form. The resulting formula involves the p

  5. A Modular Approach to Arithmetic and Logic Unit Design on a Reconfigurable Hardware Platform for Educational Purpose

    NASA Astrophysics Data System (ADS)

    Oztekin, Halit; Temurtas, Feyzullah; Gulbag, Ali

    The Arithmetic and Logic Unit (ALU) design is one of the important topics in Computer Architecture and Organization course in Computer and Electrical Engineering departments. There are ALU designs that have non-modular nature to be used as an educational tool. As the programmable logic technology has developed rapidly, it is feasible that ALU design based on Field Programmable Gate Array (FPGA) is implemented in this course. In this paper, we have adopted the modular approach to ALU design based on FPGA. All the modules in the ALU design are realized using schematic structure on Altera's Cyclone II Development board. Under this model, the ALU content is divided into four distinct modules. These are arithmetic unit except for multiplication and division operations, logic unit, multiplication unit and division unit. User can easily design any size of ALU unit since this approach has the modular nature. Then, this approach was applied to microcomputer architecture design named BZK.SAU.FPGA10.0 instead of the current ALU unit.

  6. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes

    Cancer.gov

    The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA.

  7. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes | Office of Cancer Genomics

    Cancer.gov

    The genetic interrogation and reprogramming of cells requires methods for robust and precise targeting of genes for expression or repression. The CRISPR-associated catalytically inactive dCas9 protein offers a general platform for RNA-guided DNA targeting. Here, we show that fusion of dCas9 to effector domains with distinct regulatory functions enables stable and efficient transcriptional repression or activation in human and yeast cells, with the site of delivery determined solely by a coexpressed short guide (sg)RNA.

  8. Life Extension Program for the Modular Caustic Side Solvent Extraction Unit at Savannah River Site - 13179

    SciTech Connect

    Samadi, Azadeh

    2013-07-01

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. Currently, the Actinide Removal Process (ARP) and the CSSX process are deployed in the (ARP)/Modular CSSX Unit (MCU), to process salt waste for permanent disposition. The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. The original plant was permitted for a three year design life; however, given the successful operation of the plant, a life extension program was completed to continue operations. The program included detailed engineering analyses of the life-expectancy of passive and active components, resulting in component replacement and/or maintenance and monitoring program improvements. The program also included a review of the operations and resulted in a series of operational improvements. Since the improvements have been made, an accelerated processing rate has been demonstrated. In addition, plans for instituting a next-generation solvent are in place and will enhance the decontamination factors. (author)

  9. Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation

    PubMed Central

    Kolodziejczyk, Aleksandra A.; Kim, Jong Kyoung; Tsang, Jason C.H.; Ilicic, Tomislav; Henriksson, Johan; Natarajan, Kedar N.; Tuck, Alex C.; Gao, Xuefei; Bühler, Marc; Liu, Pentao; Marioni, John C.; Teichmann, Sarah A.

    2015-01-01

    Summary Embryonic stem cell (ESC) culture conditions are important for maintaining long-term self-renewal, and they influence cellular pluripotency state. Here, we report single cell RNA-sequencing of mESCs cultured in three different conditions: serum, 2i, and the alternative ground state a2i. We find that the cellular transcriptomes of cells grown in these conditions are distinct, with 2i being the most similar to blastocyst cells and including a subpopulation resembling the two-cell embryo state. Overall levels of intercellular gene expression heterogeneity are comparable across the three conditions. However, this masks variable expression of pluripotency genes in serum cells and homogeneous expression in 2i and a2i cells. Additionally, genes related to the cell cycle are more variably expressed in the 2i and a2i conditions. Mining of our dataset for correlations in gene expression allowed us to identify additional components of the pluripotency network, including Ptma and Zfp640, illustrating its value as a resource for future discovery. PMID:26431182

  10. 45 CFR 1309.34 - Costs of installation of modular unit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... in 45 CFR part 74 and 45 CFR part 92, all reasonable costs necessary to the installation of a modular... funds. Such costs include, but are not limited to, payments for public utility hook-ups, site...

  11. 45 CFR 1309.34 - Costs of installation of modular unit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in 45 CFR part 74 and 45 CFR part 92, all reasonable costs necessary to the installation of a modular... funds. Such costs include, but are not limited to, payments for public utility hook-ups, site...

  12. 45 CFR 1309.34 - Costs of installation of modular unit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in 45 CFR part 74 and 45 CFR part 92, all reasonable costs necessary to the installation of a modular... funds. Such costs include, but are not limited to, payments for public utility hook-ups, site...

  13. 45 CFR 1309.34 - Costs of installation of modular unit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... in 45 CFR part 74 and 45 CFR part 92, all reasonable costs necessary to the installation of a modular... funds. Such costs include, but are not limited to, payments for public utility hook-ups, site...

  14. 45 CFR 1309.34 - Costs of installation of modular unit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in 45 CFR part 74 and 45 CFR part 92, all reasonable costs necessary to the installation of a modular... funds. Such costs include, but are not limited to, payments for public utility hook-ups, site...

  15. The ribosomal RNA transcription unit of Entamoeba invadens: accumulation of unprocessed pre-rRNA and a long non coding RNA during encystation.

    PubMed

    Ojha, Sandeep; Singh, Nishant; Bhattacharya, Alok; Bhattacharya, Sudha

    2013-01-01

    The ribosomal RNA genes in Entamoeba spp. are located on extrachromosomal circular molecules. Unlike model organisms where rRNA transcription stops during growth stress, Entamoeba histolytica continues transcription; but unprocessed pre-rRNA accumulates during stress, along with a novel class of circular transcripts from the 5'-external transcribed spacer (ETS). To determine the fate of rRNA transcription during stage conversion between trophozoite to cyst we analyzed Entamoeba invadens, a model system for differentiation studies in Entamoeba. We characterized the complete rDNA transcription unit by mapping the ends of pre-rRNA and mature rRNAs. The 3' end of mature 28S rRNA was located 321 nt downstream of the end predicted by sequence homology with E. histolytica. The major processing sites were mapped in external and internal transcribed spacers. The promoter located within 146 nt upstream of 5' ETS was used to transcribe the pre-rRNA. On the other hand, a second promoter located at the 3' end of 28S rDNA was used to transcribe almost the entire intergenic spacer into a long non coding (nc) RNA (>10 kb). Interestingly we found that the levels of pre-rRNA and long ncRNA, measured by northern hybridization, decreased initially in cells shifted to encystation medium, after which they began to increase and reached high levels by 72 h when mature cysts were formed. Unlike E. histolytica, no circular transcripts were found in E. invadens. E. histolytica and E. invadens express fundamentally different ncRNAs from the rDNA locus, which may reflect their adaptation to different hosts (human and reptiles, respectively). This is the first description of rDNA organization and transcription in E. invadens, and provides the framework for further studies on regulation of rRNA synthesis during cyst formation. PMID:24200639

  16. Examination of Organic Carryover from 2-cm Contactors to Support the Modular CSSX Unit

    SciTech Connect

    Nash, Charles A.; Norato, Michael A.; Walker; D. Douglas; Pierce, Robert A.; Eubanks, Ronnye A.; Clark, James D.; Smith, Wilson M. Jr.; Crump, Stephen L.; Nelson, D. Zane; Fink, Samuel D.; Peters, Thomas B.; May, Cecil G.; Herman, David T.; Bolton, Henry L.

    2005-04-29

    A bank of four 2-cm centrifugal contactors was operated in countercurrent fashion to help address questions about organic carryover for the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The contactors, having weirs sized for strip operation, were used to examine carryover for both strip effluent (SE) and decontaminated salt solution (DSS). Since only one bank of contactors was available in the short time frame of this work, the organic phase and only one aqueous phase were present in the flow loops at a time. Personnel maintained flowsheet-typical organic phase to aqueous phase (O:A) flow ratios when varying flow rates. Solvent from two different batches were tested with strip solution. In addition, potential mitigations of pH adjustment and coalescing media were examined. The experiment found that organic carryover after decanting averaged 220 ppm by mass with a range of 74 to 417 ppm of Isopar{reg_sign} L for strip effluent (SE)/organic solvent contacts. These values are based on measured modifier. Values were bounded by a value of 95 ppm based upon Isopar{reg_sign} L values as reported. The higher modifier-based numbers are considered more reliable at this time. Carryover of Isopar{reg_sign} L in DSS simulant averaged 77 ppm by mass with a range of 70 to 88 ppm of Isopar{reg_sign} L based on modifier content. The carryover was bounded by a value of 19 ppm based upon Isopar{reg_sign} L values as reported. More work is needed to resolve the discrepancy between modifier and Isopar{reg_sign} L values. The work did not detect organic droplets greater than 18 microns in SE. Strip output contained droplets down to 0.5 micron in size. Droplets in DSS were almost monodisperse by comparison, having a size range 4.7 +/- 1.6 micron in one test and 5.2 +/- 0.8 micron in the second demonstration. Optical microscopy provided qualitative results confirming the integrity of droplet size measurements in this work. Acidic or basic adjustments of aqueous strip solution from pH 3 to 1 and from pH 3 to 11 were not effective in clarifying the aqueous dispersions of organic droplets. Use of a 0.7-micron rated glass fiber filter of 3/4 mm thickness under gravity flow provided significant reduction in organic content and increased clarity. A 2 inch element stack of ''Teflon{reg_sign} Fiber Interceptor-Pak{trademark}'' media from ACS Separations, Inc. was not effective in clarifying DSS simulant.

  17. NEXT GENERATION SOLVENT MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect

    Fondeur, F.; Peters, T.; Fink, S.

    2011-09-29

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil{reg_sign}, Tefzel{reg_sign} and Isolast{reg_sign}) in the modified NGS (where the concentration of the guanidine suppressor and MaxCalix was varied systematically) showed that guanidine (LIX{reg_sign}79) selectively affected Tefzel{reg_sign} (by an increase in size and lowering its density). The copolymer structure of Tefzel{reg_sign} and possibly its porosity allows for the easier diffusion of guanidine. Tefzel{reg_sign} is used as the seat material in some of the valves at MCU. Long term exposure to guanidine, may make the valves hard to operate over time due to the seat material (Tefzel{reg_sign}) increasing in size. However, since the physical changes of Tefzel{reg_sign} in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel{reg_sign} seating material. PEEK, Grafoil{reg_sign} and Isolast{reg_sign} were not affected by guanidine and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and no leachate was observed in the NGS from any of the polymers studied.

  18. Life extension program for the modular caustic side solvent extraction unit at Savannah River Site

    SciTech Connect

    Samadi-Dezfouli, Azadeh

    2012-11-14

    Caustic Side Solvent Extraction (CSSX) is currently used at the U.S. Department of Energy (DOE) Savannah River Site (SRS) for removal of cesium from the high-level salt-wastes stored in underground tanks. At SRS, the CSSX process is deployed in the Modular CSSX Unit (MCU). The CSSX technology utilizes a multi-component organic solvent and annular centrifugal contactors to extract cesium from alkaline salt waste. Coalescers and decanters process the Decontaminated Salt Solution (DSS) and Strip Effluent (SE) streams to allow recovery and reuse of the organic solvent and to limit the quantity of solvent transferred to the downstream facilities. MCU is operated in series with the Actinide Removal Process (ARP) which removes strontium and actinides from salt waste utilizing monosodium titanate. ARP and MCU were developed and implemented as interim salt processing until future processing technology, the CSSX-based Salt Waste Processing Facility (SWPF), is operational. SWPF is slated to come on-line in October 2014. The three year design life of the ARP/MCU process, however, was reached in April 2011. Nevertheless, most of the individual process components are capable of operating longer. An evaluation determined ARP/MCU can operate until 2015 before major equipment failure is expected. The three year design life of the ARP/MCU Life Extension (ARP/MCU LE) program will bridge the gap between current ARP/MCU operations and the start of SWPF operation. The ARP/MCU LE program introduces no new technologies. As a portion of this program, a Next Generation Solvent (NGS) and corresponding flowsheet are being developed to provide a major performance enhancement at MCU. This paper discusses all the modifications performed in the facility to support the ARP/MCU Life Extension. It will also discuss the next generation chemistry, including NGS and new stripping chemistry, which will increase cesium removal efficiency in MCU. Possible implementation of the NGS chemistry in MCU accomplishes two objectives. MCU serves as a demonstration facility for improved flowsheet deployment at SWPF; operating with NGS and boric acid validates improved cesium removal performance and increased throughput as well as confirms Defense Waste Processing Facility (DWPF) ability to vitrify waste streams containing boron. NGS implementation at MCU also aids the ARP/MCU LE operation, mitigating the impacts of delays and sustaining operations until other technology is able to come on-line.

  19. 7 CFR 1924.8 - Development work for modular/panelized housing units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and construction. (f) Only one contract will be accepted for the completed house on the site owned or..., DEPARTMENT OF AGRICULTURE PROGRAM REGULATIONS CONSTRUCTION AND REPAIR Planning and Performing Construction... which the modular/panelized house is to be placed. (c) The manufacturer will provide a...

  20. 7 CFR 1924.8 - Development work for modular/panelized housing units.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...exhibit C of this subpart. Each set of drawings will contain the design of the foundation system required for the soil and slope conditions of the particular site on which the modular/panelized house is to be placed. (c) The...

  1. The Development of Entrepreneurs through Vocational Education. Introduction to Entrepreneurship. Modularized Instructional Units.

    ERIC Educational Resources Information Center

    Kalangi, Christopher J.; And Others

    Designed for first year students in postsecondary technical schools, this curriculum guide, comprising 22 modularized instructional subunits, is designed to create among the students (1) an awareness of the phenomenon of entrepreneurship, (2) motivation for exploring entrepreneurship as a distinct career option, (3) acquaintance with the skills,…

  2. Evidence for N(7) guanine methyl transferase activity encoded within the modular domain of RNA-dependent RNA polymerase L of a Morbillivirus.

    PubMed

    Gopinath, M; Shaila, M S

    2015-12-01

    Post-transcriptional modification of viral mRNA is essential for the translation of viral proteins by cellular translation machinery. Due to the cytoplasmic replication of Paramyxoviruses, the viral-encoded RNA-dependent RNA polymerase (RdRP) is thought to possess all activities required for mRNA capping and methylation. In the present work, using partially purified recombinant RNA polymerase complex of rinderpest virus expressed in insect cells, we demonstrate the in vitro methylation of capped mRNA. Further, we show that a recombinant C-terminal fragment (1717-2183 aa) of L protein is capable of methylating capped mRNA, suggesting that the various post-transcriptional activities of the L protein are located in independently folding domains. PMID:26446666

  3. Residual modular Galois representations Residual modular Galois

    E-print Network

    Sengun, Mehmet Haluk

    Residual modular Galois representations Residual modular Galois representations: images 2015 #12;Residual modular Galois representations Mod modular forms 1 Mod modular forms 2 Residual;Residual modular Galois representations Mod modular forms Let n be a positive integer. The congruence

  4. Design of a Modular 5-kW Power Processing Unit for the Next-Generation 40-cm Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas; Okada, Don; Pyter, Janusz; Wiseman, Steve

    2002-01-01

    NASA Glenn Research Center is developing a 5/10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard poster processing unit is being designed and fabricated. The design includes a beam supply consisting of four 1.1 kW power modules connected in parallel, equally sharing the output current. A novel phase-shifted/pulse-width-modulated dual full-bridge topology was chosen for its soft-switching characteristics. The proposed modular approach allows scalability to higher powers as well as the possibility of implementing an N+1 redundant beam supply. Efficiencies in excess of 96% were measured during testing of a breadboard beam power module. A specific mass of 3.0 kg/kW is expected for a flight PRO. This represents a 50% reduction from the state of the art NSTAR power processor.

  5. Modular architecture of protein binding units for designing properties of cellulose nanomaterials.

    PubMed

    Malho, Jani-Markus; Arola, Suvi; Laaksonen, Päivi; Szilvay, Géza R; Ikkala, Olli; Linder, Markus B

    2015-10-01

    Molecular biomimetic models suggest that proteins in the soft matrix of nanocomposites have a multimodular architecture. Engineered proteins were used together with nanofibrillated cellulose (NFC) to show how this type of architecture leads to function. The proteins consist of two cellulose-binding modules (CBM) separated by 12-, 24-, or 48-mer linkers. Engineering the linkers has a considerable effects on the interaction between protein and NFC in both wet colloidal state and a dry film. The protein optionally incorporates a multimerizing hydrophobin (HFB) domain connected by another linker. The modular structure explains effects in the hydrated gel state, as well as the deformation of composite materials through stress distribution and crosslinking. Based on this work, strategies can be suggested for tuning the mechanical properties of materials through the coupling of protein modules and their interlinking architectures. PMID:26305491

  6. Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterials

    PubMed Central

    Malho, Jani-Markus; Arola, Suvi; Laaksonen, Päivi; Szilvay, Géza R; Ikkala, Olli; Linder, Markus B

    2015-01-01

    Molecular biomimetic models suggest that proteins in the soft matrix of nanocomposites have a multimodular architecture. Engineered proteins were used together with nanofibrillated cellulose (NFC) to show how this type of architecture leads to function. The proteins consist of two cellulose-binding modules (CBM) separated by 12-, 24-, or 48-mer linkers. Engineering the linkers has a considerable effects on the interaction between protein and NFC in both wet colloidal state and a dry film. The protein optionally incorporates a multimerizing hydrophobin (HFB) domain connected by another linker. The modular structure explains effects in the hydrated gel state, as well as the deformation of composite materials through stress distribution and crosslinking. Based on this work, strategies can be suggested for tuning the mechanical properties of materials through the coupling of protein modules and their interlinking architectures. PMID:26305491

  7. RNA.

    ERIC Educational Resources Information Center

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  8. A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types

    PubMed Central

    Lever, Mark A.; Torti, Andrea; Eickenbusch, Philip; Michaud, Alexander B.; Šantl-Temkiv, Tina; Jørgensen, Bo Barker

    2015-01-01

    A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals. PMID:26042110

  9. Modular feed-forward active noise control units for ventilation ducts.

    PubMed

    Gardonio, P; Rohlfing, J

    2014-12-01

    This paper presents theoretical and experimental work on feed-forward active noise control for a ventilation duct. In particular three single channel control arrangements are investigated: (a) A classical widespread-mid-span configuration, where the control loudspeakers are located approximately half way through the duct and the reference and error microphones are placed close to inlet and outlet duct sections, respectively; (b) a compact-mid-span configuration, where both the reference and error microphones are moved close to the control loudspeakers to form a self-contained control unit, and (c) a compact-outlet configuration where the self-contained control unit is moved to the duct outlet. The two compact configurations offer self-evident practical installation and operation advantages. Moreover, the paper shows that they are characterized by much simpler control filters, which can be effectively implemented on modern audio digital signal processing boards and produce similar control performance to the classical widespread configuration. PMID:25480054

  10. Modular 5-kW Power-Processing Unit Being Developed for the Next-Generation Ion Engine

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Bond, Thomas H.; Okada, Don; Phelps, Keith; Pyter, Janusz; Wiseman, Steve

    2001-01-01

    The NASA Glenn Research Center is developing a 5- to 10-kW ion engine for a broad range of mission applications. Simultaneously, a 5-kW breadboard power-processing unit (PPU) is being designed and fabricated by Boeing Electron Dynamic Devices, Torrance, California, under contract with Glenn. The beam supply, which processes up to 90 percent of the power into this unit, consists of four 1.1-kW power modules connected in parallel, equally sharing the output current. The modular design allows scalability to higher powers as well as the possibility of implementing an N + 1 redundant beam supply. A novel phaseshifted/pulse-width-modulated, dual full-bridge topology was chosen for this module design for its efficient switching characteristics. A breadboard version of the beam power supply module was assembled. Efficiencies ranging between 91.6 and 96.9 percent were measured for an input voltage range of 80 to 160 V, an output voltage range of 800 to 1500 V, and output powers from 0.3 to 1.0 kW. This beam supply could result in a PPU with a total efficiency between 93 and 95 percent at a nominal input voltage of 100 V. This is up to a 4-percent improvement over the state-of-the-art PPU used for the Deep Space 1 mission. A flight-packaged PPU is expected to weigh no more than 15 kg, which represents a 50-percent reduction in specific mass from the Deep Space 1 design. This will make 5-kW ion propulsion very attractive for many planetary missions.

  11. tRNA derived insertion element in histone gene repeating unit of Drosophila melanogaster.

    PubMed Central

    Matsuo, Y; Yamazaki, T

    1989-01-01

    Analysis of 41 histone homologous clones from an isogenic gene library of Drosophila melanogaster showed that non-histone fragments interrupt the histone repetitive clusters at several sites. Long (L) and short (S) forms of the repeating units are distinguished by the insertion of 240 bp into the spacer between H1 and H3 of the L units; Each form appears to be clustered with its own kind. The complete DNA sequence of the histone 5.0 kb repeating unit was determined. Five histone genes (H1, H2A, H2B, H3, H4) were identified in a repeating unit and several sequence blocks common to the five histone genes were found in the 5'- and 3'-regions. The insertion sequence of 240 bp was found to be similar to the Alu family, an element derived from tRNA. PMID:2536150

  12. The Habitat Demonstration Unit Project: A Modular Instrumentation System for a Deep Space Habitat

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Kennedy, Kriss J.; Yim, Hester; Williamsn, Robert M.; Hafermalz, Scott; Wagner, Raymond S.

    2011-01-01

    NASA is focused on developing human exploration capabilities in low Earth orbit (LEO), expanding to near Earth asteroids (NEA), and finally to Mars. Habitation is a crucial aspect of human exploration, and a current focus of NASA activities. The Habitation Demonstration Unit (HDU) is a project focused on developing an autonomous habitation system that enables human exploration of space by providing engineers and scientists with a test bed to develop, integrate, test, and evaluate habitation systems. A critical feature of the HDU is the instrumentation system, which monitors key subsystems within the habitat. The following paper will discuss the HDU instrumentation system performance and lessons learned during the 2010 Desert Research and Technology Studies (D-RaTS). In addition, this paper will discuss the evolution of the instrumentation system to support the 2011 Deep Space Habitat configuration, the challenges, and the lessons learned of implementing this configuration. In 2010, the HDU was implemented as a pressurized excursion module (PEM) and was tested at NASA s D-RaTS in Arizona [1]. For this initial configuration, the instrumentation system design used features that were successful in previous habitat instrumentation projects, while also considering challenges, and implementing lessons learned [2]. The main feature of the PEM instrumentation system was the use of a standards-based wireless sensor node (WSN), implementing an IEEE 802.15.4 protocol. Many of the instruments were connected to several WSNs, which wirelessly transmitted data to the command and data handling system via a mesh network. The PEM instrumentation system monitored the HDU during field tests at D-RaTS, and the WSN data was later analyzed to understand the performance of this system. In addition, several lessons learned were gained from the field test experience, which fed into the instrumentation design of the next generation of the HDU.

  13. Evaluation of the feasibility and viability of modular pumped storage hydro (m-PSH) in the United States

    SciTech Connect

    Witt, Adam M.; Hadjerioua, Boualem; Martinez, Rocio; Bishop, Norm

    2015-09-01

    The viability of modular pumped storage hydro (m-PSH) is examined in detail through the conceptual design, cost scoping, and economic analysis of three case studies. Modular PSH refers to both the compactness of the project design and the proposed nature of product fabrication and performance. A modular project is assumed to consist of pre-fabricated standardized components and equipment, tested and assembled into modules before arrival on site. This technology strategy could enable m-PSH projects to deploy with less substantial civil construction and equipment component costs. The concept of m-PSH is technically feasible using currently available conventional pumping and turbine equipment, and may offer a path to reducing the project development cycle from inception to commissioning.

  14. LNA units present in the (2'-OMe)-RNA strand stabilize parallel duplexes (2'-OMe)-RNA/[All-R(P)-PS]-DNA and parallel triplexes (2'-OMe)-RNA/[All-R(P)-PS]-DNA/RNA. An improved tool for the inhibition of reverse transcription.

    PubMed

    Maciaszek, Anna; Krakowiak, Agnieszka; Janicka, Magdalena; Tomaszewska-Antczak, Agnieszka; Sobczak, Milena; Miko?ajczyk, Barbara; Guga, Piotr

    2015-02-28

    Homopurine phosphorothioate analogs of DNA, possessing all phosphorus atoms of RP configuration ([All-RP-PS]-DNA), when interact with appropriate complementary RNA or (2'-OMe)-RNA templates, form parallel triplexes or parallel duplexes of very high thermodynamic stability. The present results show that T-LNA or 5-Me-C-LNA units introduced into the parallel Hoogsteen-paired (2'-OMe)-RNA strands (up to four units in the oligomers of 9 or 12 nt in length) stabilize these parallel complexes. At neutral pH, dodecameric parallel duplexes have Tm values of 62-68 °C, which are by 4-10 °C higher than Tm for the reference duplex (with no LNA units present), while for the corresponding triplexes, Tm values exceeded 85 °C. For nonameric parallel duplexes, melting temperatures of 38-62 °C were found and (2'-OMe)-RNA oligomers containing 5-Me-C-LNA units stabilized the complexes more efficiently than the T-LNA containing congeners. In both series the stability of the parallel complexes increased with an increasing number of LNA units present. The same trend was observed in experiments of reverse transcription RNA?DNA (using AMV RT reverse transcriptase) where the formation of parallel triplexes (consisting of an RNA template, [All-RP-PS]-DNA nonamer and Hoogsteen-paired (2'-OMe)-RNA strands containing the LNA units) led to the efficient inhibition of the process. Under the best conditions checked (four 5-Me-C-LNA units, three-fold excess over the RNA template) the inhibition was 94% effective, compared to 71% inhibition observed in the reference system with the Hoogsteen-paired (2'-OMe)-RNA strand carrying no LNA units. This kind of complexation may "arrest" harmful RNA oligomers (e.g., viral RNA or mRNA of unwanted proteins) and, beneficially, exclude them from enzymatic processes, otherwise leading to viral or genetic diseases. PMID:25564351

  15. NEXT GENERATION SOLVENT-MATERIALS COMPATIBILITY WITH POLYMER COMPONENTS WITHIN MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT (FINAL REPORT)

    SciTech Connect

    Fondeur, F.; Peters, T.; Fink, S.

    2012-01-17

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and with the exception of CPVC, no leachate was observed in the NGS from any of the polymers studied. The testing shows no major concerns for compatibility over the short duration of these tests but does indicate that longer duration exposure studies are warranted, especially for Tefzel. However, the physical changes experienced by Tefzel in the improved solvent were comparable to the physical changes obtained when Tefzel is placed in CSSX baseline solvent. Therefore, there is no effect of the improved solvent beyond those observed in CSSX baseline solvent.

  16. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing. PMID:21405382

  17. Modular Entanglement

    E-print Network

    Giulia Gualdi; Salvatore M. Giampaolo; Fabrizio Illuminati

    2010-11-28

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  18. Modular Entanglement

    E-print Network

    Gualdi, Giulia; Illuminati, Fabrizio

    2010-01-01

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting blocks of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent blocks. We clarify the mechanisms underlying the onset of entanglement between distant and non-interacting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  19. RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: new candidates for the pathophysiology of facioscapulohumeral dystrophy.

    PubMed

    Snider, Lauren; Asawachaicharn, Amy; Tyler, Ashlee E; Geng, Linda N; Petek, Lisa M; Maves, Lisa; Miller, Daniel G; Lemmers, Richard J L F; Winokur, Sara T; Tawil, Rabi; van der Maarel, Silvère M; Filippova, Galina N; Tapscott, Stephen J

    2009-07-01

    Deletion of a subset of the D4Z4 macrosatellite repeats in the subtelomeric region of chromosome 4q causes facioscapulohumeral muscular dystrophy (FSHD) when occurring on a specific haplotype of 4qter (4qA161). Several genes have been examined as candidates for causing FSHD, including the DUX4 homeobox gene in the D4Z4 repeat, but none have been definitively shown to cause the disease, nor has the full extent of transcripts from the D4Z4 region been carefully characterized. Using strand-specific RT-PCR, we have identified several sense and antisense transcripts originating from the 4q D4Z4 units in wild-type and FSHD muscle cells. Consistent with prior reports, we find that the DUX4 transcript from the last (most telomeric) D4Z4 unit is polyadenylated and has two introns in its 3-prime untranslated region. In addition, we show that this transcript generates (i) small si/miRNA-sized fragments, (ii) uncapped, polyadenylated 3-prime fragments that encode the conserved C-terminal portion of DUX4 and (iii) capped and polyadenylated mRNAs that contain the double-homeobox domain of DUX4 but splice-out the C-terminal portion. Transfection studies demonstrate that translation initiation at an internal methionine can produce the C-terminal polypeptide and developmental studies show that this peptide inhibits myogenesis at a step between MyoD transcription and the activation of MyoD target genes. Together, we have identified new sense and anti-sense RNA transcripts, novel mRNAs and mi/siRNA-sized RNA fragments generated from the D4Z4 units that are new candidates for the pathophysiology of FSHD. PMID:19359275

  20. Characterization of solids deposited on the modular caustic-side solvent extraction unit (MCU) coalescer media removed in May and October 2014

    SciTech Connect

    Fondeur, F. F.

    2015-10-01

    During routine maintenance, the coalescers utilized in the Modular Caustic-Side Solvent Extraction Unit (MCU) processing of Salt Batch 6 and a portion of Salt Batch 7 were sampled and submitted to the Savannah River National Laboratory (SRNL) for characterization, for the purpose of identifying solid phase constituents that may be accumulating in these coalescers. Specifically, two samples were received and characterized: A decontaminated salt solution (DSS) coalescer sample and a strip effluent (SE) coalescer sample. Aliquots of the samples were analyzed by XRD, Fourier Transform Infrared (FTIR) Spectroscopy, SEM, and EDS. Other aliquots of the samples were leached in acid solution, and the leachates were analyzed by ICP-AES. In addition, modeling was performed to provide a basis for comparison of the analytical results.

  1. RESULTS FROM ANALYSIS OF THE FIRST AND SECOND STRIP EFFLUENT COALESCER ELEMENTS FROM RADIOACTIVE OPERATIONS OF THE MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT

    SciTech Connect

    Peters, T.; Fondeur, F.; Fink, S.

    2011-06-28

    The coalescer elements for the Strip Effluent (SE) acid within the Modular Caustic-Side Solvent Extraction Unit (MCU) experienced elevated differential pressure drop during radioactive operations. Following the end of operations for the first Macrobatch campaign and soon after start of the second Macrobatch campaign, personnel removed the coalescer media and provided to Savannah River National Laboratory (SRNL) for diagnostic investigation of the causes of reduced flow. This report summarizes those studies. Two Strip Effluent (SE) coalescers were delivered to the Savannah River National Laboratory (SRNL). One was removed from the Modular Caustic-Side Solvent Extraction Unit (MCU) between processing of Macrobatch 1 and 2 (coalescer 'Alpha'), and the second was removed from MCU after processing of {approx}24,000 gallons of salt solution (coalescer 'Beta'). Both coalescers underwent the same general strip acid flush program to reduce the dose and were delivered to SRNL for analysis of potential occluding solids. Analysis of Coalescer Alpha indicates the presence of aluminum hydroxide solids and aluminosilicate solids, while analysis of Coalescer Beta indicates the presence of aluminum hydroxide solids, but no aluminosilicates. Leaching studies on sections of both coalescers were performed. The results indicate that the coalescers had different amounts of solids present on them at the time of removal. Finally, samples of free liquids retrieved from both coalescers indicate no excessive amounts of CSSX solvent present. Given the strip acid flushing that occurred in the SE coalescers, the solids we detected on the coalescers are probably indicative of a larger quantity of these solids present before the strip acid flushing. Under this scenario, the excessive pressure drops are due to the solids and not from organic fouling.

  2. Modular spacetime

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2015-11-01

    We have recently introduced metastring theory as a reformulation of string theory which does not rely on an a priori spacetime interpretation or a presumption of locality found in local effective field theory. In this essay, we focus on the concept of modular spacetime as the natural quantum gravitational notion of spacetime that emerges from metastring theory.

  3. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions. These derivatives of partial theta functions play a key role in the partial theta formulation of the infinite family of quantum modular forms described above. Through the main theorems of this work, we gain further insight into mock modular forms, the role of partial theta functions in the theory of modular forms, and the newly defined quantum modular forms.

  4. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  5. Development of a portable, modular unit for the optimization of ultrasound-assisted oxidative desulfurization of diesel

    NASA Astrophysics Data System (ADS)

    Wan, Meng-Wei

    Due to the stringent rules requiring ultra-low sulfur content in diesel fuels, it is necessary to develop alternative methods of desulfurization of fossil fuel derived oil, such as diesel. Current technology is not sufficient to solve this problem. Ultrasound applied to oxidative desulfurization which combined three complementary techniques: ultrasonication, phase transfer catalysis (PTC) and transition metal catalyzed oxidation, has accomplished high sulfur removal in a short contact time at ambient temperature and atmospheric pressure. This research has successfully demonstrated that the higher oxidation efficiency of BT to BTO and free of any by-products by using tetraoctylammonium fluoride as phase transfer agent. The oxidation rate of BT to BTO increased with increasing the carbon chain length of QAS cations. Under the same length of carbon chain, the oxidation rate of BT to BTO increased with decreasing the molecular size of QAS anions. Moreover, for diesel fuels containing various levels of sulfur content, UAOD process followed by solvent extraction has demonstrated that the sulfur reduction can reach above 95 % removal efficiency or final sulfur content below 15 ppm in mild condition. For large-scale commercial production, this research has successfully developed and operated a continuous desulfurization unit, which consists of a sonoractor, an RF amplifier, a function generator, a pretreatment tank, and a pipeline system. A single unit only needed 2' x 4' x 1' space for installation. The results indicated that the remarkable 92% removal efficiency for the sulfur in marine logistic diesel, even at a treatment rate as high as 25 lb/hour which is approximately 2 barrels per day. Therefore, this sonoreactor demonstrated the feasibility of large-scale operation even in a relatively small installation with low capital investment and maintenance cost. It also ensures the safety considerations by operating with diluted hydrogen peroxide under ambient temperature and pressure.

  6. The modularity of pollination networks

    PubMed Central

    Olesen, Jens M.; Bascompte, Jordi; Dupont, Yoko L.; Jordano, Pedro

    2007-01-01

    In natural communities, species and their interactions are often organized as nonrandom networks, showing distinct and repeated complex patterns. A prevalent, but poorly explored pattern is ecological modularity, with weakly interlinked subsets of species (modules), which, however, internally consist of strongly connected species. The importance of modularity has been discussed for a long time, but no consensus on its prevalence in ecological networks has yet been reached. Progress is hampered by inadequate methods and a lack of large datasets. We analyzed 51 pollination networks including almost 10,000 species and 20,000 links and tested for modularity by using a recently developed simulated annealing algorithm. All networks with >150 plant and pollinator species were modular, whereas networks with <50 species were never modular. Both module number and size increased with species number. Each module includes one or a few species groups with convergent trait sets that may be considered as coevolutionary units. Species played different roles with respect to modularity. However, only 15% of all species were structurally important to their network. They were either hubs (i.e., highly linked species within their own module), connectors linking different modules, or both. If these key species go extinct, modules and networks may break apart and initiate cascades of extinction. Thus, species serving as hubs and connectors should receive high conservation priorities. PMID:18056808

  7. Modular shield

    DOEpatents

    Snyder, Keith W. (Sandia Park, NM)

    2002-01-01

    A modular system for containing projectiles has a sheet of material including at least a polycarbonate layer held by a metal frame having a straight frame member corresponding to each straight edge of the sheet. Each frame member has a U-shaped shield channel covering and holding a straight edge of the sheet and an adjacent U-shaped clamp channel rigidly held against the shield channel. A flexible gasket separates each sheet edge from its respective shield channel; and each frame member is fastened to each adjacent frame member only by clamps extending between adjacent clamp channels.

  8. Modular Certification

    NASA Technical Reports Server (NTRS)

    Rushby, John; Miner, Paul S. (Technical Monitor)

    2002-01-01

    Airplanes are certified as a whole: there is no established basis for separately certifying some components, particularly software-intensive ones, independently of their specific application in a given airplane. The absence of separate certification inhibits the development of modular components that could be largely "precertified" and used in several different contexts within a single airplane, or across many different airplanes. In this report, we examine the issues in modular certification of software components and propose an approach based on assume-guarantee reasoning. We extend the method from verification to certification by considering behavior in the presence of failures. This exposes the need for partitioning, and separation of assumptions and guarantees into normal and abnormal cases. We then identify three classes of property that must be verified within this framework: safe function, true guarantees, and controlled failure. We identify a particular assume-guarantee proof rule (due to McMillan) that is appropriate to the applications considered, and formally verify its soundness in PVS.

  9. Donor-Acceptor-Donor Modular Small Organic Molecules Based on the Naphthalene Diimide Acceptor Unit for Solution-Processable Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Patil, Hemlata; Gupta, Akhil; Bilic, Ante; Jackson, Sam Leslie; Latham, Kay; Bhosale, Sheshanath V.

    2014-09-01

    Two novel solution-processable small organic molecules, 4,9-bis(4-(diphenylamino)phenyl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8(2 H,7 H)-tetraone ( S6) and 4,9-bis(benzo[ b]thiophen-2-yl)-2,7-dioctylbenzo[3,8]phenanthroline-1,3,6,8 (2 H,7 H)-tetraone ( S7), have been successfully designed, synthesized, characterized, and applied in solution-processable photovoltaic devices. S6 and S7 contain a common electron-accepting moiety, naphthalene diimide (NDI), with different electron-donating moieties, triphenylamine ( S6) and benzothiophene ( S7), and are based on a donor-acceptor-donor structure. S7 was isolated as black, rod-shaped crystals. Its triclinic structure was determined by single crystal x-ray diffraction (XRD): space group , Z = 2, a = 9.434(5) Å, b = 14.460(7) Å, c = 15.359(8) Å, ? = 67.256(9) degrees, ? = 80.356(11) degrees, ? = 76.618(10) degrees, at 150 Kelvin (K), R = 0.073. Ultraviolet-visible absorption spectra revealed that use of triphenylamine donor functionality with the NDI acceptor unit resulted in an enhanced intramolecular charge transfer (ICT) transition and reduction of the optical band gap compared with the benzothiophene analogue. Solution-processable inverted bulk heterojunction devices with the structure indium tin oxide/zinc oxide (30 nm)/active layer/molybdenum trioxide (10 nm)/silver (100 nm) were fabricated with S6 and S7 as donors and (6,6)-phenyl C70-butyric acid methyl ester (PC70BM) as acceptor. Power conversion efficiencies of 0.22% for S6/PC70BM and 0.10% for S7/PC70BM were achieved for the preliminary photovoltaic devices under simulated AM 1.5 illumination (100 mW cm-2). This paper reports donor-acceptor-donor modular small organic molecules, with NDI as central accepting unit, that have been screened for use in solution-processable inverted photovoltaic devices.

  10. Evolutionary principles of modular gene regulation in yeasts

    E-print Network

    Thompson, Dawn A.

    Divergence in gene regulation can play a major role in evolution. Here, we used a phylogenetic framework to measure mRNA profiles in 15 yeast species from the phylum Ascomycota and reconstruct the evolution of their modular ...

  11. Quantum Chemical Benchmark Study on 46 RNA Backbone Families Using a Dinucleotide Unit.

    PubMed

    Kruse, Holger; Mladek, Arnost; Gkionis, Konstantinos; Hansen, Andreas; Grimme, Stefan; Sponer, Jiri

    2015-10-13

    We have created a benchmark set of quantum chemical structure-energy data denoted as UpU46, which consists of 46 uracil dinucleotides (UpU), representing all known 46 RNA backbone conformational families. Penalty-function-based restrained optimizations with COSMO TPSS-D3/def2-TZVP ensure a balance between keeping the target conformation and geometry relaxation. The backbone geometries are close to the clustering-means of their respective RNA bioinformatics family classification. High-level wave function methods (DLPNO-CCSD(T) as reference) and a wide-range of dispersion-corrected or inclusive DFT methods (DFT-D3, VV10, LC-BOP-LRD, M06-2X, M11, and more) are used to evaluate the conformational energies. The results are compared to the Amber RNA bsc0?OL3 force field. Most dispersion-corrected DFT methods surpass the Amber force field significantly in accuracy and yield mean absolute deviations (MADs) for relative conformational energies of ?0.4-0.6 kcal/mol. Double-hybrid density functionals represent the most accurate class of density functionals. Low-cost quantum chemical methods such as PM6-D3H+, HF-3c, DFTB3-D3, as well as small basis set calculations corrected for basis set superposition errors (BSSEs) by the gCP procedure are also tested. Unfortunately, the presently available low-cost methods are struggling to describe the UpU conformational energies with satisfactory accuracy. The UpU46 benchmark is an ideal test for benchmarking and development of fast methods to describe nucleic acids, including force fields. PMID:26574283

  12. Modular Optical PDV System

    SciTech Connect

    Araceli Rutkowski, David Esquibel

    2008-12-11

    A modular optical photon Doppler velocimetry (PDV) detector system has been developed by using readily available optical components with a 20-GHz Miteq optical detector into eight channels of single-wide modules integrated into a 3U rack unit (1U = 1.75 inches) with a common power supply. Optical fibers were precisely trimmed, welded, and timed within each unit. This system has been used to collect dynamic velocity data on various physics experiments. An optical power meter displays the laser input power to the module and optical power at the detector. An adjustable micro-electromechanical system (MEMS) optical attenuator is used to adjust the amount of unshifted light entering the detector. Front panel LEDs show the presence of power to the module. A fully loaded chassis with eight channels consumes 45 watts of power. Each chassis requires 1U spacing above and below for heat management. Modules can be easily replaced.

  13. Organization of modular networks

    E-print Network

    S. N. Dorogovtsev; J. F. F. Mendes; A. N. Samukhin; A. Y. Zyuzin

    2008-03-24

    We examine the global organization of heterogeneous equilibrium networks consisting of a number of well distinguished interconnected parts--``communities'' or modules. We develop an analytical approach allowing us to obtain the statistics of connected components and an intervertex distance distribution in these modular networks, and to describe their global organization and structure. In particular, we study the evolution of the intervertex distance distribution with an increasing number of interlinks connecting two infinitely large uncorrelated networks. We demonstrate that even a relatively small number of shortcuts unite the networks into one. In more precise terms, if the number of the interlinks is any finite fraction of the total number of connections, then the intervertex distance distribution approaches a delta-function peaked form, and so the network is united.

  14. DWPF Flowsheet Studies with Simulants to Determine Modular Caustic Side Solvent Extraction Unit Solvent Partitioning and Verify Actinide Removal Process Incorporation Strategy

    SciTech Connect

    Herman, C

    2006-04-21

    The Actinide Removal Process (ARP) facility and the Modular Caustic Side Solvent Extraction Unit (MCU) are scheduled to begin processing salt waste in fiscal year 2007. A portion of the streams generated in the salt processing facilities will be transferred to the Defense Waste Processing Facility (DWPF) to be incorporated in the glass matrix. Before the streams are introduced, a combination of impact analyses and research and development studies must be performed to quantify the impacts on DWPF processing. The Process Science & Engineering (PS&E) section of the Savannah River National Laboratory (SRNL) was requested via Technical Task Request (TTR) HLW/DWPF/TTR-2004-0031 to evaluate the impacts on DWPF processing. Simulant Chemical Process Cell (CPC) flowsheet studies have been performed using previous composition and projected volume estimates for the ARP sludge/monosodium titanate (MST) stream. Due to changes in the flammability control strategy for DWPF for salt processing, the incorporation strategy for ARP has changed and additional ARP flowsheet tests were necessary to validate the new processing strategy. The last round of ARP testing included the incorporation of the MCU stream and identified potential processing issues with the MCU solvent. The identified issues included the potential carry-over and accumulation of the MCU solvent components in the CPC condensers and in the recycle stream to the Tank Farm. Therefore, DWPF requested SRNL to perform additional MCU flowsheet studies to better quantify the organic distribution in the CPC vessels. The previous MCU testing used a Sludge Batch 4 (SB4) simulant since it was anticipated that both of these facilities would begin salt processing during SB4 processing. The same sludge simulant recipe was used in this round of ARP and MCU testing to minimize the number of changes between the two phases of testing so a better comparison could be made. ARP and MCU stream simulants were made for this phase of testing. The ARP stream represented the sludge/MST stream from Appendix E of the material balance provided by Subosits. The MCU stream represented the ''Maximum Volume'' case from the material balances provided by Campbell. The latest DWPF processing plan involves adding the ARP stream to the sludge at boiling in the Sludge Receipt and Adjustment Tank (SRAT). This would be accomplished before the SRAT receipt sample is taken and SRAT processing is initiated. The MCU stream will be added at boiling during the normal reflux phase of the SRAT cycle. The SRAT cycle will be considered complete once the MCU stream has been added. SRNL replicated this processing strategy in this testing.

  15. Modular robot

    DOEpatents

    Ferrante, Todd A. (Idaho Falls, ID)

    1997-01-01

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold.

  16. Modular robot

    DOEpatents

    Ferrante, T.A.

    1997-11-11

    A modular robot may comprise a main body having a structure defined by a plurality of stackable modules. The stackable modules may comprise a manifold, a valve module, and a control module. The manifold may comprise a top surface and a bottom surface having a plurality of fluid passages contained therein, at least one of the plurality of fluid passages terminating in a valve port located on the bottom surface of the manifold. The valve module is removably connected to the manifold and selectively fluidically connects the plurality of fluid passages contained in the manifold to a supply of pressurized fluid and to a vent. The control module is removably connected to the valve module and actuates the valve module to selectively control a flow of pressurized fluid through different ones of the plurality of fluid passages in the manifold. The manifold, valve module, and control module are mounted together in a sandwich-like manner and comprise a main body. A plurality of leg assemblies are removably connected to the main body and are removably fluidically connected to the fluid passages in the manifold so that each of the leg assemblies can be selectively actuated by the flow of pressurized fluid in different ones of the plurality of fluid passages in the manifold. 12 figs.

  17. Piecing together modular : understanding the benefits and limitations of modular construction methods for multifamily development

    E-print Network

    Cameron, Peter J. (Peter Jay)

    2007-01-01

    The primary purpose of this thesis is to explain the benefits and limitations of modular construction as it pertains to primarily wood-frame, multifamily housing in the United States. This thesis attempts to educate the ...

  18. Modular Generation and Customization

    E-print Network

    Edwards, Jonathan

    2008-10-10

    Modularity and flexibility can conflict in multi-language systems. For example, the templates commonly used to generate web pages must be manually updated when the database schema changes. Modularity can be improved by ...

  19. Portable modular detection system

    DOEpatents

    Brennan, James S. (Rodeo, CA); Singh, Anup (Danville, CA); Throckmorton, Daniel J. (Tracy, CA); Stamps, James F. (Livermore, CA)

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  20. Analysis of strand-specific RNA-seq data using machine learning reveals the structures of transcription units in Clostridium thermocellum

    PubMed Central

    Chou, Wen-Chi; Ma, Qin; Yang, Shihui; Cao, Sha; Klingeman, Dawn M.; Brown, Steven D.; Xu, Ying

    2015-01-01

    Identification of transcription units (TUs) encoded in a bacterial genome is essential to elucidation of transcriptional regulation of the organism. To gain a detailed understanding of the dynamically composed TU structures, we have used four strand-specific RNA-seq (ssRNA-seq) datasets collected under two experimental conditions to derive the genomic TU organization of Clostridium thermocellum using a machine-learning approach. Our method accurately predicted the genomic boundaries of individual TUs based on two sets of parameters measuring the RNA-seq expression patterns across the genome: expression-level continuity and variance. A total of 2590 distinct TUs are predicted based on the four RNA-seq datasets. Among the predicted TUs, 44% have multiple genes. We assessed our prediction method on an independent set of RNA-seq data with longer reads. The evaluation confirmed the high quality of the predicted TUs. Functional enrichment analyses on a selected subset of the predicted TUs revealed interesting biology. To demonstrate the generality of the prediction method, we have also applied the method to RNA-seq data collected on Escherichia coli and achieved high prediction accuracies. The TU prediction program named SeqTU is publicly available at https://code.google.com/p/seqtu/. We expect that the predicted TUs can serve as the baseline information for studying transcriptional and post-transcriptional regulation in C. thermocellum and other bacteria. PMID:25765651

  1. Detection of Tritrichomonas foetus by PCR and DNA enzyme immunoassay based on rRNA gene unit sequences.

    PubMed

    Felleisen, R S; Lambelet, N; Bachmann, P; Nicolet, J; Müller, N; Gottstein, B

    1998-02-01

    Tritrichomonas foetus is the causative agent of bovine tritrichomonosis, a sexually transmitted disease leading to infertility and abortion. Diagnosis is hampered by putative contamination of samples with intestinal or coprophilic trichomonadid protozoa which might be mistaken for T. foetus. Therefore, we developed a PCR test optimized for applicability in routine diagnosis. Amplification is based upon primers TFR3 and TFR4 directed to the rRNA gene units of T. foetus. In order to avoid potential carryover contamination by products of previous amplification reactions, conditions were adapted to the use of the uracil DNA glycosylase system. Furthermore, documentation and interpretation of results were facilitated by including a DNA enzyme immunoassay for the detection of amplification products. Specificity was confirmed with genomic material from different related trichomonadid protozoa. The high sensitivity of the test allowed the detection of a single T. foetus organism in diagnostic culture medium or about 50 parasites per ml of preputial washing fluid. The present methods are thus proposed as (i) confirmatory tests for microscopic diagnosis following diagnostic in vitro cultivation and (ii) a direct T. foetus screening test with diagnostic samples. PMID:9466768

  2. Single-Cell Analysis of RNA Virus Infection Identifies Multiple Genetically Diverse Viral Genomes within Single Infectious Units

    PubMed Central

    Combe, Marine; Garijo, Raquel; Geller, Ron; Cuevas, José M.; Sanjuán, Rafael

    2015-01-01

    Summary Genetic diversity enables a virus to colonize novel hosts, evade immunity, and evolve drug resistance. However, viral diversity is typically assessed at the population level. Given the existence of cell-to-cell variation, it is critical to understand viral genetic structure at the single-cell level. By combining single-cell isolation with ultra-deep sequencing, we characterized the genetic structure and diversity of a RNA virus shortly after single-cell bottlenecks. Full-length sequences from 881 viral plaques derived from 90 individual cells reveal that sequence variants pre-existing in different viral genomes can be co-transmitted within the same infectious unit to individual cells. Further, the rate of spontaneous virus mutation varies across individual cells, and early production of diversity depends on the viral yield of the very first infected cell. These results unravel genetic and structural features of a virus at the single-cell level, with implications for viral diversity and evolution. PMID:26468746

  3. Modular invariance and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Lokhande, Sagar Fakirchand; Mukhi, Sunil

    2015-06-01

    We study the Rényi and entanglement entropies for free 2d CFT's at finite temperature and finite size, with emphasis on their properties under modular transformations of the torus. We address the issue of summing over fermion spin structures in the replica trick, and show that the relation between entanglement and thermal entropy determines two different ways to perform this sum in the limits of small and large interval. Both answers are modular covariant, rather than invariant. Our results are compared with those for a free boson at unit radius in the two limits and complete agreement is found, supporting the view that entanglement respects Bose-Fermi duality. We extend our computations to multiple free Dirac fermions having correlated spin structures, dual to free bosons on the Spin(2d) weight lattice.

  4. Manufactured Housing--The Modular Home in Texas.

    ERIC Educational Resources Information Center

    Sindt, Roger P.

    This report deals principally with modular homes (permanently sited structures) although it also presents some recent information on mobile homes. In 1976, modular home construction companies were surveyed in Texas and across the United States to assess the extent of their construction activity and market penetration and to gather some insight…

  5. Microbial Contaminants of Cord Blood Units Identified by 16S rRNA Sequencing and by API Test System, and Antibiotic Sensitivity Profiling

    PubMed Central

    França, Luís; Simões, Catarina; Taborda, Marco; Diogo, Catarina; da Costa, Milton S.

    2015-01-01

    Over a period of ten months a total of 5618 cord blood units (CBU) were screened for microbial contamination under routine conditions. The antibiotic resistance profile for all isolates was also examined using ATB strips. The detection rate for culture positive units was 7.5%, corresponding to 422 samples.16S rRNA sequence analysis and identification with API test system were used to identify the culturable aerobic, microaerophilic and anaerobic bacteria from CBUs. From these samples we recovered 485 isolates (84 operational taxonomic units, OTUs) assigned to the classes Bacteroidia, Actinobacteria, Clostridia, Bacilli, Betaproteobacteria and primarily to the Gammaproteobacteria. Sixty-nine OTUs, corresponding to 447 isolates, showed 16S rRNA sequence similarities above 99.0% with known cultured bacteria. However, 14 OTUs had 16S rRNA sequence similarities between 95 and 99% in support of genus level identification and one OTU with 16S rRNA sequence similarity of 90.3% supporting a family level identification only. The phenotypic identification formed 29 OTUs that could be identified to the species level and 9 OTUs that could be identified to the genus level by API test system. We failed to obtain identification for 14 OTUs, while 32 OTUs comprised organisms producing mixed identifications. Forty-two OTUs covered species not included in the API system databases. The API test system Rapid ID 32 Strep and Rapid ID 32 E showed the highest proportion of identifications to the species level, the lowest ratio of unidentified results and the highest agreement to the results of 16S rRNA assignments. Isolates affiliated to the Bacilli and Bacteroidia showed the highest antibiotic multi-resistance indices and microorganisms of the Clostridia displayed the most antibiotic sensitive phenotypes. PMID:26512991

  6. Modular classes revisited

    E-print Network

    Janusz Grabowski

    2014-08-29

    We present a graded-geometric approach to modular classes of Lie algebroids and their generalizations, introducing in this setting an idea of relative modular class of a Dirac structure for a certain type of Courant algebroids, called projectable. This novel approach puts several concepts related to Poisson geometry and its generalizations in a new light and simplifies proofs. It gives, in particular, a nice geometric interpretation of modular classes of twisted-Poisson structures on Lie algebroids.

  7. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  8. Modular Buildings Buying Guide.

    ERIC Educational Resources Information Center

    Morris, Susan

    1991-01-01

    Suggests that child care program directors who are expanding their programs or opening new child care centers investigate the possibility of renting, leasing, or purchasing a modular building. Discusses the advantages of modular buildings over conventional building construction or rented space in an occupied building. Provides information about…

  9. Modular intelligent sensor system

    SciTech Connect

    Fuess, D.A.

    1993-06-17

    This paper describes a sensor system architecture suitable for application in systems intended for battery powered unattended use. The modularity concept addresses the logical interconnects between modules, the electrical interconnects between modules, and a system for the generalization of data to permit modular processing.

  10. A modular adjoint approach to aircraft mission analysis and optimization

    E-print Network

    Papalambros, Panos

    § DB Consulting Inc., Berkshire, United Kingdom Aircraft design and trajectory optimization mission analysis and trajectory optimization tool that is efficient, robust, and modular. This enables large-scale optimization in problems involving trajectory and other disciplines. The most important

  11. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  12. Modularity in signaling systems.

    PubMed

    Del Vecchio, Domitilla

    2012-08-01

    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications. PMID:22871977

  13. Modularity and mental architecture.

    PubMed

    Robbins, Philip

    2013-11-01

    Debates about the modularity of cognitive architecture have been ongoing for at least the past three decades, since the publication of Fodor's landmark book The Modularity of Mind. According to Fodor, modularity is essentially tied to informational encapsulation, and as such is only found in the relatively low-level cognitive systems responsible for perception and language. According to Fodor's critics in the evolutionary psychology camp, modularity simply reflects the fine-grained functional specialization dictated by natural selection, and it characterizes virtually all aspects of cognitive architecture, including high-level systems for judgment, decision making, and reasoning. Though both of these perspectives on modularity have garnered support, the current state of evidence and argument suggests that a broader skepticism about modularity may be warranted. WIREs Cogn Sci 2013, 4:641-649. doi: 10.1002/wcs.1255 CONFLICT OF INTEREST: The author has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304269

  14. Autonomous intelligent modular surveillance system (AIM2S)

    NASA Astrophysics Data System (ADS)

    Markov, Vladimir; Khizhnyak, Anatoliy; Chavez, Joseph; Kupiec, Stephen; Erwin, Daniel A.; Liu, Shiang

    2012-06-01

    This paper discusses the design and development of an autonomous intelligent modular surveillance system (AIM2S). The system represents a novel class of "smart" surveillance platforms that integrates multiple sensors on an open-bus chassis. AIM2S modular architecture allows plug & play system operation, enabling its performance as a standalone unit or in conjunction with other systems. The integration of multiple smart sensors facilitates the affective fusion of heterogeneous data sources to obtain previously unavailable state information.

  15. Modular optical detector system

    DOEpatents

    Horn, Brent A. (Livermore, CA); Renzi, Ronald F. (Tracy, CA)

    2006-02-14

    A modular optical detector system. The detector system is designed to detect the presence of molecules or molecular species by inducing fluorescence with exciting radiation and detecting the emitted fluorescence. Because the system is capable of accurately detecting and measuring picomolar concentrations it is ideally suited for use with microchemical analysis systems generally and capillary chromatographic systems in particular. By employing a modular design, the detector system provides both the ability to replace various elements of the detector system without requiring extensive realignment or recalibration of the components as well as minimal user interaction with the system. In addition, the modular concept provides for the use and addition of a wide variety of components, including optical elements (lenses and filters), light sources, and detection means, to fit particular needs.

  16. Symmetric modular torsatron

    DOEpatents

    Rome, J.A.; Harris, J.H.

    1984-01-01

    A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.

  17. Siberian company starts up modular refinery

    SciTech Connect

    1996-03-18

    Uraineftegas, a subsidiary of Russian oil giant Lukoil, has started up Siberia`s first modular crude distillation unit. The 2,000 b/d refinery was designed and manufactured by Ventech Engineers Inc., Pasadena, Tex. Uraineftegas is based in Urai, Siberia. Located in the Tyumen region on the Konda river, the remote town is accessible only by air and water. Most of Urai`s crude production--about 50,000 b/d, according to Ventech president Bill Stanley--is shipped by pipeline to the refining centers at Ufa and Omsk. Because there are no products pipelines in which to ship fuels back to Urai, the town needed a small refinery in order to produce its own fuels. This report briefly describes the design ad operation of these modular units. It describes construction techniques and temperature control equipment used to maintain an operational environment under severe winter weather.

  18. Modular Assembled Space Telescope

    NASA Technical Reports Server (NTRS)

    Feinberg, Lee D.; Budinoff, Jason; MacEwen, Howard; Matthews, Gary; Postman, Marc

    2013-01-01

    We present a new approach to building a modular segmented space telescope that greatly leverages the heritage of the Hubble Space Telescope and the James Webb Space Telescope. The modular design in which mirror segments are assembled into identical panels allows for economies of scale and for efficient space assembly that make a 20-m aperture approach cost effective. This assembly approach can leverage NASA's future capabilities and has the power to excite the public's imagination. We discuss the science drivers, basic architecture, technology, and leveraged NASA infrastructure, concluding with a proposed plan for going forward.

  19. Modular biowaste monitoring system

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1975-01-01

    The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.

  20. Criteria for software modularization

    NASA Technical Reports Server (NTRS)

    Card, David N.; Page, Gerald T.; Mcgarry, Frank E.

    1985-01-01

    A central issue in programming practice involves determining the appropriate size and information content of a software module. This study attempted to determine the effectiveness of two widely used criteria for software modularization, strength and size, in reducing fault rate and development cost. Data from 453 FORTRAN modules developed by professional programmers were analyzed. The results indicated that module strength is a good criterion with respect to fault rate, whereas arbitrary module size limitations inhibit programmer productivity. This analysis is a first step toward defining empirically based standards for software modularization.

  1. RNA Interference

    MedlinePLUS

    ... NIGMS Home > Science Education > RNA Interference Fact Sheet RNA Interference Fact Sheet Tagline (Optional) Middle/Main Content Area What is RNA interference? RNA interference (RNAi) is a natural process ...

  2. Modular Integrated Energy Systems

    E-print Network

    Oak Ridge National Laboratory

    consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are: · Develop a set of "reference" CAD-based IES modular system designs, · Develop a supervisory control system having on-line optimization, · Develop a 1000 Ton exhaust

  3. Modular Integrated Energy Systems

    E-print Network

    Oak Ridge National Laboratory

    at the Ft. Bragg site consists of a gas turbine-generator, a heat recovery steam generator, and a waste heat fired absorption chiller. The key goals of the project are: · Develop a set of "reference" CAD-based IES modular system designs, · Develop a supervisory control system having on-line optimization, · Develop

  4. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  5. Modular microdrop generator.

    PubMed

    Schäfer, J; Mondia, J P; Sharma, R; Lu, Z H; Wang, L J

    2007-06-01

    We present the design of a simple, modular, and inexpensive generator for droplets with diameters of 20-150 microm. The instrument is based on piezoelectric pressure injection. Its main components, their functionality, and instructions for reliable operation are described in detail. The option of charging microdrops is also discussed. PMID:17614646

  6. MRV - Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Ridley, Justin; Bluethmann, Bill

    2015-01-01

    The Modular Robotic Vehicle, or MRV, completed in 2013, was developed at the Johnson Space Center in order to advance technologies which have applications for future vehicles both in space and on Earth. With seating for two people, MRV is a fully electric vehicle modeled as a "city car", suited for busy urban environments.

  7. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  8. The principal mRNA nuclear export factor NXF1:NXT1 forms a symmetric binding platform that facilitates export of retroviral CTE-RNA.

    PubMed

    Aibara, Shintaro; Katahira, Jun; Valkov, Eugene; Stewart, Murray

    2015-02-18

    The NXF1:NXT1 complex (also known as TAP:p15) is a general mRNA nuclear export factor that is conserved from yeast to humans. NXF1 is a modular protein constructed from four domains (RRM, LRR, NTF2-like and UBA domains). It is currently unclear how NXF1:NXT1 binds transcripts and whether there is higher organization of the NXF1 domains. We report here the 3.4 Å resolution crystal structure of the first three domains of human NXF1 together with NXT1 that has two copies of the complex in the asymmetric unit arranged to form an intimate domain-swapped dimer. In this dimer, the linkers between the NXF1 LRR and NTF2-like domains interact with NXT1, generating a 2-fold symmetric platform in which the RNA-binding RRM, LRR and NTF2-like domains are arranged on one face. In addition to bulk transcripts, NXF1:NXT1 also facilitates the export of unspliced retroviral genomic RNA from simple type-D retroviruses such as SRV-1 that contain a constitutive transport element (CTE), a cis-acting 2-fold symmetric RNA stem-loop motif. Complementary structural, biochemical and cellular techniques indicated that the formation of a symmetric RNA binding platform generated by dimerization of NXF1:NXT1 facilitates the recognition of CTE-RNA and promotes its nuclear export. PMID:25628361

  9. Modularization of passive solar

    SciTech Connect

    Maloney, T.

    1980-01-01

    Ways of modularizing component parts of passive soalr systems for the manufactured housing industry are discussed. Site-filled water mass modules installed in south-facing stud spaces, glazing systems, sun-rooms and roof apertures are being explored and constructed. Even though the houses are being designed without pre-selected sites, they are expected to perform well given the variable deployment of the south-facing wall system. Any facade of the house will be able to accept the sun's energy. While some of the solutions involve specific products and techniques, it is the general conclusion that low-cost, modular solar components can be worked into solar building designs without great regard for the final site. This makes marketing easier and costs lower with the result of more installations.

  10. The universal modular platform

    SciTech Connect

    North, R.B.

    1995-10-01

    A new and patented design for offshore wellhead platforms has been developed to meet a `fast track` requirement for increased offshore production, from field locations not yet identified. The new design uses modular construction to allow for radical changes in the water depth of the final location and assembly line efficiency in fabrication. By utilizing high strength steels and structural support from the well conductors the new design accommodates all planned production requirements on a support structure significantly lighter and less expensive than the conventional design it replaces. Twenty two platforms based on the new design were ready for installation within 18 months of the project start. Installation of the new platforms began in 1992 for drilling support and 1993 for production support. The new design has become the Company standard for all future production platforms. Large saving and construction costs have been realized through its light weight, flexibility in both positioning and water depth, and its modular construction.

  11. Modular integrated video system

    SciTech Connect

    Gaertner, K.J.; Heaysman, B.; Holt, R.; Sonnier, C.

    1986-01-01

    The Modular Integrated Video System (MIVS) is intended to provide a simple, highly reliable closed circuit television (CCTV) system capable of replacing the IAEA Twin Minolta Film Camera Systems in those safeguards facilities where mains power is readily available, and situations where it is desired to have the CCTV camera separated from the CCTV recording console. This paper describes the MIVS and the Program Plan which is presently being followed for the development, testing, and implementation of the system.

  12. RNA genetics

    SciTech Connect

    Domingo, E. ); Holland, J.J. . Dept. of Biology); Ahlquist, P. . Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: Retroviruses, Viroids, and RNA recombination, Volume 2. Topics covered include: Replication of retrovirus genomes, Hepatitis B virus replication, and Evolution of RNA viruses.

  13. SMEX-Lite Modular Solar Array Architecture

    NASA Technical Reports Server (NTRS)

    Lyons, John

    2002-01-01

    For the most part, Goddard solar arrays have been custom designs that are unique to each mission. The solar panel design has been frozen prior to issuing an RFP for their procurement. There has typically been 6-9 months between RFP release and contract award, followed by an additional 24 months for performance of the contract. For Small Explorer (SMEX) missions, with three years between mission definition and launch, this has been a significant problem. The SMEX solar panels have been sufficiently small that the contract performance period has been reduced to 12-15 months. The bulk of this time is used up in the final design definition and fabrication of flight solar cell assemblies. Even so, it has been virtually impossible to have the spacecraft design at a level of maturity sufficient to freeze the solar panel geometry and release the RFP in time to avoid schedule problems with integrating the solar panels to the spacecraft. With that in mind, the SMEX-Lite project team developed a modular architecture for the assembly of solar arrays to greatly reduce the cost and schedule associated with the development of a mission- specific solar array. In the modular architecture, solar cells are fabricated onto small substrate panels. This modular panel (approximately 8.5" x 17" in this case) becomes the building block for constructing solar arrays for multiple missions with varying power requirements and geometrical arrangements. The mechanical framework that holds these modules together as a solar array is the only mission-unique design, changing in size and shape as required for each mission. There are several advantages to this approach. First, the typical solar array development cycle requires a mission unique design, procurement, and qualification including a custom qualification panel. With the modular architecture, a single qualification of the SMEX-Lite modules and the associated mechanical framework in a typical configuration provided a qualification by similarity to multiple missions. It then becomes possible to procure solar array modules in advance of mission definition and respond quickly and inexpensively to a selected mission's unique requirements. The solar array modular architecture allows the procurement of solar array modules before the array geometry has been frozen. This reduces the effect of procurement lead-time on the mission integration and test flow by as much as 50%. Second, by spreading the non-recurring costs over multiple missions, the cost per unit area is also reduced. In the case of the SMEX-Lite procurement, this reduction was by about one third of the cost per unit area compared to previous SMEX mission-unique procurements. Third, the modular architecture greatly facilitates the infusion of new solar cell technologies into flight programs as these technologies become available. New solar cell technologies need only be fabricated onto a standard-sized module to be incorporated into the next available mission. The modular solar array can be flown in a mixed configuration with some new and some standard cell technologies. Since each module has its own wiring terminals, the array can be arranged as desired electrically with little impact to cost and schedule. The solar array modular architecture does impose some additional constraints on systems and subsystem engineers. First, they must work with discrete solar array modules rather than size the array to fit exactly within an available envelope. The array area is constrained to an integer multiple of the module area. Second, the modular design is optimized for space radiation and thermal environments not greatly different from a typical SMEX LEO environment. For example, a mission with a highly elliptical orbit (e.g., Polar, SMEX/FAST) would require thicker coverglasses to protect the solar cells from the more intense radiation environment.

  14. The Semantics of the Modular Architecture of Protein Structures.

    PubMed

    Hleap, Jose Sergio; Blouin, Christian

    2016-01-01

    Protein structures can be conceptualized as context-aware self-organizing systems. One of its emerging properties is a modular architecture. Such modular architecture has been identified as domains and defined as its units of evolution and function. However, this modular architecture is not exclusively defined by domains. Also, the definition of a domain is an ongoing debate. Here we propose differentiating structural, evolutionary and functional domains as distinct concepts. Defining domains or modules is confounded by diverse definitions of the concept, and also by other elements inherent to protein structures. An apparent hierarchy in protein structure architecture is one of these elements, where lower level interactions may create noise for the definition of higher levels. Diverse modularity-molding factors such as folding, function, and selection, can have a misleading effect when trying to define a given type of module. It is thus important to keep in mind this complexity when defining modularity in protein structures and interpreting the outcome modularity inference approaches. PMID:26412786

  15. 76 FR 13661 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``FRL's'') That Are Part of Larger Pneumatic Systems and the FRL Units They...

  16. 75 FR 63198 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters, Regulators, and Lubricators (``Frl's'') That Are Part of Larger Pneumatic Systems and the FRL Units They...

  17. Modular biometric system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Viazanko, Michael; O'Looney, Jimmy; Szu, Harold

    2009-04-01

    Modularity Biometric System (MBS) is an approach to support AiTR of the cooperated and/or non-cooperated standoff biometric in an area persistent surveillance. Advanced active and passive EOIR and RF sensor suite is not considered here. Neither will we consider the ROC, PD vs. FAR, versus the standoff POT in this paper. Our goal is to catch the "most wanted (MW)" two dozens, separately furthermore ad hoc woman MW class from man MW class, given their archrivals sparse front face data basis, by means of various new instantaneous input called probing faces. We present an advanced algorithm: mini-Max classifier, a sparse sample realization of Cramer-Rao Fisher bound of the Maximum Likelihood classifier that minimize the dispersions among the same woman classes and maximize the separation among different man-woman classes, based on the simple feature space of MIT Petland eigen-faces. The original aspect consists of a modular structured design approach at the system-level with multi-level architectures, multiple computing paradigms, and adaptable/evolvable techniques to allow for achieving a scalable structure in terms of biometric algorithms, identification quality, sensors, database complexity, database integration, and component heterogenity. MBS consist of a number of biometric technologies including fingerprints, vein maps, voice and face recognitions with innovative DSP algorithm, and their hardware implementations such as using Field Programmable Gate arrays (FPGAs). Biometric technologies and the composed modularity biometric system are significant for governmental agencies, enterprises, banks and all other organizations to protect people or control access to critical resources.

  18. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  19. Modular Nuclearity and Localization

    E-print Network

    Detlev Buchholz; Gandalf Lechner

    2004-02-26

    Within the algebraic setting of quantum field theory, a condition is given which implies that the intersection of algebras generated by field operators localized in wedge--shaped regions of two--dimensional Minkowski space is non--trivial; in particular, there exist compactly localized operators in such theories which can be interpreted as local observables. The condition is based on spectral (nuclearity) properties of the modular operators affiliated with wedge algebras and the vacuum state and is of interest in the algebraic approach to the formfactor program, initiated by Schroer. It is illustrated here in a simple class of examples.

  20. Multimission modular spacecraft (MMS)

    NASA Technical Reports Server (NTRS)

    Falkenhayn, Edward, Jr.

    1988-01-01

    This paper discusses the design requirements for the low-cost standard spacecraft development which has come to be known as the Multimission Modular Spacecraft (MMS). The paper presents the wide range of launch configurations of the MMS users, the population of programs using the MMS, and the cost effectiveness of the MMS concept. The paper addresses the in-orbit serviceability of the design as demonstrated by the successful SMM repair, and the recent selection of MMS for the Explorer Platform, which features in-orbit payload exchanges.

  1. Modular space structures

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1980-01-01

    The Extendable Tetrahedral Truss orbiting antenna concept, comprising the use of prefabricated, automatically deployable lattice structures and their subsequent assembly into larger structures suitable for microwave antenna use, is described. It is assumed that the Space Shuttle Orbiter payload bay will be able to accommodate only modular portions of the structural system required, and that the Space Shuttle crew will furnish the manual labor entailed by orbital assembly. It is concluded that a deployable beam module system may be a more elegant design solution than the alternative triangular-module system.

  2. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  3. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Rossetti, Dino; Keer, Beth; Panek, John; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  4. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Ritter, Bob; Reed, Benjamin; Cepollina, Frank

    2015-01-01

    Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-­-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-­- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.

  5. Modularity and Specialized Learning: Reexamining Behavior-Based Artificial Intelligence

    E-print Network

    Bryson, Joanna J.

    Modularity and Specialized Learning: Reexamining Behavior-Based Artificial Intelligence Joanna J. Bryson Artificial models of natural Intelligence University of Bath, BA2 7AY, United Kingdom J intelligence is a well-known mod- ular theory of intelligent design, but has not been used sys- tematically

  6. Developing Modular and Adaptable Courseware Using TeachML.

    ERIC Educational Resources Information Center

    Wehner, Frank; Lorz, Alexander

    This paper presents the use of an XML grammar for two complementary projects--CHAMELEON (Cooperative Hypermedia Adaptive MultimEdia Learning Objects) and EIT (Enabling Informal Teamwork). Areas of applications are modular courseware documents and the collaborative authoring process of didactical units. A number of requirements for a suitable…

  7. A Precompiler For Modular, Transportable Pascal Max J. Egenhofer

    E-print Network

    Egenhofer, Max J.

    of modular programming. On the other hand, the tools were powerful enough to develop large software systems. On the other hand, programs are compilation units with a single executable main program. Programs cannot define-oriented software systems require support from programming languages to produce reusable code. Pascal lacks

  8. Modular dynamics in diamonds

    E-print Network

    Romeo Brunetti; Valter Moretti

    2010-09-25

    We investigate the relation between the actions of Tomita-Takesaki modular operators for local von Neumann algebras in the vacuum for free massive and massless bosons in four dimensional Minkowskian spacetime. In particular, we prove a long-standing conjecture that says that the generators of the mentioned actions differ by a pseudo-differential operator of order zero. To get that, one needs a careful analysis of the interplay of the theories in the bulk and at the boundary of double cones (a.k.a. diamonds). After introducing some technicalities, we prove the crucial result that the vacuum state for massive bosons in the bulk of a double cone restricts to a KMS state at its boundary, and that the restriction of the algebra at the boundary does not depend anymore on the mass. The origin of such result lies in a careful treatment of classical Cauchy and Goursat problems for the Klein-Gordon equation as well as the application of known general mathematical techniques, concerning the interplay of algebraic structures related with the bulk and algebraic structures related with the boundary of the double cone, arising from quantum field theories in curved spacetime. Our procedure gives explicit formulas for the modular group and its generator in terms of integral operators acting on symplectic space of solutions of massive Klein-Gordon Cauchy problem.

  9. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  10. Modular antenna design study

    NASA Technical Reports Server (NTRS)

    Ribble, J. W.

    1981-01-01

    The mechanical design of a modular antenna concept was developed sufficiently to allow manufacture of a working demonstration model of a module, to predict mass properties, and to make performance estimates for antenna reflectors composed of these modules. The primary features of this concept are: (1) each module is an autonomous structural element which can be attached to adjacent modules through a three point connection; (2) the upper surface is a folding hexagonal truss plate mechanism which serves as the supporting structure for a reflective surface; and (3) the entire truss and surface can be folded into a cylindrical envelope in which all truss elements are essentially parallel. The kinematic studies and engineering demonstration model fully verified the deployment kinematics, stowing philosophy, and deployment sequencing for large antenna modules. It was established that such modules can be stowed in packages as small as 25 cm in diameter, using 1.27 cm diameter structural tubes. The development activity indicates that this deployable modular approach towards building large structures in space will support erection of 450 m apertures for operation up to 3 GHz with a single space shuttle flight.

  11. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark A; Shen, Clifton Kwang-Fu

    2015-02-10

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  12. Modular radiochemistry synthesis system

    DOEpatents

    Satyamurthy, Nagichettiar; Barrio, Jorge R.; Amarasekera, Bernard; Van Dam, R. Michael; Olma, Sebastian; Williams, Dirk; Eddings, Mark; Shen, Clifton Kwang-Fu

    2015-12-15

    A modular chemical production system includes multiple modules for performing a chemical reaction, particularly of radiochemical compounds, from a remote location. One embodiment comprises a reaction vessel including a moveable heat source with the position thereof relative to the reaction vessel being controllable from a remote position. Alternatively the heat source may be fixed in location and the reaction vial is moveable into and out of the heat source. The reaction vessel has one or more sealing plugs, the positioning of which in relationship to the reaction vessel is controllable from a remote position. Also the one or more reaction vessel sealing plugs can include one or more conduits there through for delivery of reactants, gases at atmospheric or an elevated pressure, inert gases, drawing a vacuum and removal of reaction end products to and from the reaction vial, the reaction vial with sealing plug in position being operable at elevated pressures. The modular chemical production system is assembled from modules which can each include operating condition sensors and controllers configured for monitoring and controlling the individual modules and the assembled system from a remote position. Other modules include, but are not limited to a Reagent Storage and Delivery Module, a Cartridge Purification Module, a Microwave Reaction Module, an External QC/Analysis/Purification Interface Module, an Aliquotting Module, an F-18 Drying Module, a Concentration Module, a Radiation Counting Module, and a Capillary Reactor Module.

  13. Modular Robotic Vehicle

    NASA Technical Reports Server (NTRS)

    Borroni-Bird, Christopher E. (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Ambrose, Robert O. (Inventor); Bluethmann, William J. (Inventor); Junkin, Lucien Q. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor); Lapp, Anthony Joseph (Inventor); Ridley, Justin S. (Inventor)

    2015-01-01

    A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.

  14. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-12-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  15. Modular power converter having fluid cooled support

    DOEpatents

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-09-06

    A support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  16. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units

    PubMed Central

    Westcott, Sarah L.

    2015-01-01

    Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units (OTUs) that are then used to analyze complex microbial communities. A number of methods have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading to confusion over which method is optimal. A recent study suggested that a clustering method should be selected based on its ability to generate stable OTU assignments that do not change as additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU assignments, the ability of the method to properly represent the distances between the sequences, is more important. Methods. Our analysis implemented six de novo clustering algorithms including the single linkage, complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy clustering, and Swarm and the open and closed-reference methods. Using two previously published datasets we used the Matthew’s Correlation Coefficient (MCC) to assess the stability and quality of OTU assignments. Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending on the dataset being analyzed, the average linkage and the distance and abundance-based greedy clustering methods generated OTUs that were more likely to represent the actual distances between sequences than the open and closed-reference methods. We also demonstrated that for the greedy algorithms VSEARCH produced assignments that were comparable to those produced by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were used to identify the closest reference, the OTU assignments were sensitive to the order of the reference sequences because the reference sequences can be identical over the region being considered. More troubling was the observation that while both USEARCH and VSEARCH have a high level of sensitivity to detect reference sequences, the specificity of those matches was poor relative to the true best match. Discussion. Our analysis calls into question the quality and stability of OTU assignments generated by the open and closed-reference methods as implemented in current version of QIIME. This study demonstrates that de novo methods are the optimal method of assigning sequences into OTUs and that the quality of these assignments needs to be assessed for multiple methods to identify the optimal clustering method for a particular dataset. PMID:26664811

  17. Modular Flooring System

    NASA Technical Reports Server (NTRS)

    Thate, Robert

    2012-01-01

    The modular flooring system (MFS) was developed to provide a portable, modular, durable carpeting solution for NASA fs Robotics Alliance Project fs (RAP) outreach efforts. It was also designed to improve and replace a modular flooring system that was too heavy for safe use and transportation. The MFS was developed for use as the flooring for various robotics competitions that RAP utilizes to meet its mission goals. One of these competitions, the FIRST Robotics Competition (FRC), currently uses two massive rolls of broadloom carpet for the foundation of the arena in which the robots are contained during the competition. The area of the arena is approximately 30 by 72 ft (approximately 9 by 22 m). This carpet is very cumbersome and requires large-capacity vehicles, and handling equipment and personnel to transport and deploy. The broadloom carpet sustains severe abuse from the robots during a regular three-day competition, and as a result, the carpet is not used again for competition. Similarly, broadloom carpets used for trade shows at convention centers around the world are typically discarded after only one use. This innovation provides a green solution to this wasteful practice. Each of the flooring modules in the previous system weighed 44 lb (.20 kg). The improvements in the overall design of the system reduce the weight of each module by approximately 22 lb (.10 kg) (50 %), and utilize an improved "module-to-module" connection method that is superior to the previous system. The MFS comprises 4-by-4-ft (.1.2-by- 1.2-m) carpet module assemblies that utilize commercially available carpet tiles that are bonded to a lightweight substrate. The substrate surface opposite from the carpeted surface has a module-to-module connecting interface that allows for the modules to be connected, one to the other, as the modules are constructed. This connection is hidden underneath the modules, creating a smooth, co-planar flooring surface. The modules are stacked and strapped onto durable, commercially available drywall carts for storage and/or transportation. This method of storage and transportation makes it very convenient and safe when handling large quantities of modules.

  18. 1 Modular Design multiple choice quiz

    E-print Network

    Verschelde, Jan

    / 28 #12;modular design software cycle & quality 1 Modular Design multiple choice quiz bottom-up design to Computer Science (MCS 260) software cycle & quality L-22 4 March 2015 5 / 28 #12;modular design software cycle & quality 1 Modular Design multiple choice quiz bottom-up design 2 Python Implementation

  19. Some new modular equations and their applications

    NASA Astrophysics Data System (ADS)

    Yi, Jinhee; Sim, Hyo Seob

    2006-07-01

    Ramanujan derived 23 beautiful eta-function identities, which are certain types of modular equations. We found more than 70 of certain types of modular equations by using Garvan's Maple q-series package. In this paper, we prove some new modular equations which we found by employing the theory of modular form and we give some applications for them.

  20. Modular arctic structures system

    SciTech Connect

    Reusswig, G. H.

    1984-12-04

    A modular and floatable offshore exploration and production platform system for use in shallow arctic waters is disclosed. A concrete base member is floated to the exploration or production site, and ballated into a predredged cavity. The cavity and base are sized to provide a stable horizontal base 30 feet below the mean water/ice plane. An exploration or production platform having a massive steel base is floated to the site and ballasted into position on the base. Together, the platform, base and ballast provide a massive gravity structure that is capable of resisting large ice and wave forces that impinge on the structure. The steel platform has a sloping hourglass profile to deflect horizontal ice loads vertically, and convert the horizontal load to a vertical tensile stress, which assists in breaking the ice as it advances toward the structure.

  1. Modular error embedding

    DOEpatents

    Sandford, II, Maxwell T. (Los Alamos, NM); Handel, Theodore G. (Los Alamos, NM); Ettinger, J. Mark (Los Alamos, NM)

    1999-01-01

    A method of embedding auxiliary information into the digital representation of host data containing noise in the low-order bits. The method applies to digital data representing analog signals, for example digital images. The method reduces the error introduced by other methods that replace the low-order bits with auxiliary information. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user through use of a digital key. The modular error embedding method includes a process to permute the order in which the host data values are processed. The method doubles the amount of auxiliary information that can be added to host data values, in comparison with bit-replacement methods for high bit-rate coding. The invention preserves human perception of the meaning and content of the host data, permitting the addition of auxiliary data in the amount of 50% or greater of the original host data.

  2. Modular electronics packaging system

    NASA Technical Reports Server (NTRS)

    Hunter, Don J. (Inventor)

    2001-01-01

    A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.

  3. Fast Quantum Modular Exponentiation Architecture for Shor's Factorization Algorithm

    E-print Network

    Archimedes Pavlidis; Dimitris Gizopoulos

    2013-11-04

    We present a novel and efficient in terms of circuit depth design for Shor's quantum factorization algorithm. The circuit effectively utilizes a diverse set of adders based on the quantum Fourier transform (QFT) Draper's adders to build more complex arithmetic blocks: quantum multiplier/accumulators by constants and quantum dividers by constants. These arithmetic blocks are effectively architected into a generic modular quantum multiplier which is the fundamental block for modular exponentiation circuit, the most computational intensive part of Shor's algorithm. The proposed modular exponentiation circuit has a depth of about $2000n^{2}$ and requires $9n+2$ qubits, where $n$ is the number of bits of the classical number to be factored. The total quantum cost of the proposed design is $1600n^{3}$. The circuit depth can be further decreased by more than three times if the approximate QFT implementation of each adder unit is exploited.

  4. RNA genetics

    SciTech Connect

    Domingo, E. ); Holland, J.J. . Dept. of Biology); Ahlquist, P. . Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA gentics: Variability of RNA genomes, Volume III. Topics covered include: High error rate, population equilibrium, and evolution of RNA replication systems; Influenza viruses; High rate of nutation and evolution; and Sequence space and quasi species distribution.

  5. RNA genetics

    SciTech Connect

    Domingo, E. ); Holland, J.J. . Dept. of Biology); Ahlquist, P. . Dept. of Plant Pathology)

    1988-01-01

    This book contains the proceedings on RNA genetics: RNA-directed virus replication Volume 1. Topics covered include: Replication of the poliovirus genome; Influenza viral RNA transcription and replication; and Relication of the reoviridal: Information derived from gene cloning and expression.

  6. Kernel for modular robot applications: Automatic modeling techniques

    SciTech Connect

    Chen, I.M.; Yeo, S.H.; Chen, G.; Yang, G.

    1999-02-01

    A modular robotic system consists of standardized joint and link units that an be assembled into various kinematic configurations for different types of tasks. For the control and simulation of such a system, manual derivation of the kinematic and dynamic models, as well as the error model for kinematic calibration, require tremendous effort, because the models constantly change as the robot geometry is altered after module reconfiguration. This paper presents a frame-work to facilitate the model-generation procedure for the control and simulation of the modular robot system. A graph technique, termed kinematic graphs and realized through assembly incidence matrices (AIM), is introduced to represent the module-assembly sequence and robot geometry. The kinematics and dynamics are formulated based on a local representation of the theory of lie groups and Lie algebras. The automatic model-generation procedure starts with a given assembly graph of the modular robot. Kinematic, dynamic, and error models of the robot are then established, based on the local representations and iterative graph-traversing algorithms. This approach can be applied to a modular robot with both serial and branch-type geometries, and arbitrary degrees of freedom. Furthermore, the AIM of the robot naturally leads to solving the task-oriented optimal configuration problem in modular robots. There is no need to maintain a huge library of robot models, and the footprint of the overall software system can be reduced.

  7. Modularity, Relativism, and Neural Constructivism 

    E-print Network

    Toribio, Josefa

    2002-01-01

    Fodor (1983) claims that the modularity of mind (the relatively encapsulated, insulated, special-purpose nature of the psychological mechanisms of perception) helps undermine relativism in various forms. I shall show ...

  8. Eulerian series as modular forms

    NASA Astrophysics Data System (ADS)

    Bringmann, Kathrin; Ono, Ken; Rhoades, Robert C.

    2008-10-01

    In 1988, Hickerson proved the celebrated ``mock theta conjectures'' in a collection of ten identities from Ramanujan's ``lost notebook'' which express certain modular forms as linear combinations of mock theta functions. In the context of Maass forms, these identities arise from the peculiar phenomenon that two different harmonic Maass forms may have the same non-holomorphic parts. Using this perspective, we construct several infinite families of modular forms which are differences of mock theta functions.

  9. Modular designs highlight several new rigs

    SciTech Connect

    Rappold, K.

    1995-12-04

    A new platform drilling rig for offshore Trinidad and two new land rigs for the former Soviet Union feature the latest in drilling and construction technology and modular components for quick rig up/rig down. The Sundowner 801 was mock-up tested in Galveston, TX, a few weeks ago in preparation for its load-out to the Dolphin field offshore Trinidad. Two other new units, UNOC 500 DE series land rigs, were recently constructed and mock-up tested in Ekaterinburg, Russia, for upcoming exploratory work for RAO Gazprom, a large natural gas producer in Russia. These rigs are unique in that they were constructed from new components made both in the US and in Russia. The paper describes all three units.

  10. Spacecraft Modularity for Serviceable Satellites

    NASA Technical Reports Server (NTRS)

    Rossetti, Dino; Keer, Beth; Panek, John; Reed, Benjamin; Cepollina, Frank; Ritter, Robert

    2015-01-01

    Satellite servicing has been a proven capability of NASA since the first servicing missions in the 1980s with astronauts on the space shuttle. This capability enabled the on-orbit assembly of the International Space Station (ISS) and saved the Hubble Space Telescope (HST) mission following the discovery of the flawed primary mirror. The effectiveness and scope of servicing opportunities, especially using robotic servicers, is a function of how cooperative a spacecraft is. In this paper, modularity will be presented as a critical design aspect for a spacecraft that is cooperative from a servicing perspective. Different features of modularity are discussed using examples from HST and the Multimission Modular Spacecraft (MMS) program from the 1980s and 1990s. The benefits of modularity will be presented including those directly related to servicing and those outside of servicing including reduced costs and increased flexibility. The new Reconfigurable Operational spacecraft for Science and Exploration (ROSE) concept is introduced as an affordable implementation of modularity that provides cost savings and flexibility. Key aspects of the ROSE architecture are discussed such as the module design and the distributed avionics architecture. The ROSE concept builds on the experience from MMS and due to its modularity, would be highly suitable as a future client for on-orbit servicing.

  11. Modular Isotopic Thermoelectric Generator

    SciTech Connect

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  12. Modular Approach to Spintronics.

    PubMed

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  13. Modular Approach to Spintronics

    PubMed Central

    Camsari, Kerem Yunus; Ganguly, Samiran; Datta, Supriyo

    2015-01-01

    There has been enormous progress in the last two decades, effectively combining spintronics and magnetics into a powerful force that is shaping the field of memory devices. New materials and phenomena continue to be discovered at an impressive rate, providing an ever-increasing set of building blocks that could be exploited in designing transistor-like functional devices of the future. The objective of this paper is to provide a quantitative foundation for this building block approach, so that new discoveries can be integrated into functional device concepts, quickly analyzed and critically evaluated. Through careful benchmarking against available theory and experiment we establish a set of elemental modules representing diverse materials and phenomena. These elemental modules can be integrated seamlessly to model composite devices involving both spintronic and nanomagnetic phenomena. We envision the library of modules to evolve both by incorporating new modules and by improving existing modules as the field progresses. The primary contribution of this paper is to establish the ground rules or protocols for a modular approach that can build a lasting bridge between materials scientists and circuit designers in the field of spintronics and nanomagnetics. PMID:26066079

  14. Amphibious modular robotic astrobiology

    NASA Astrophysics Data System (ADS)

    Yim, Mark; Shirmohammadi, Babak; Benelli, David

    2007-04-01

    This paper presents the design of a robot that can traverse land, water, as well as quicksand-like mud. The robot is low cost and modular allowing the replacement of a variety of arms suitable for many of the tasks associated with astrobiological exploration. An astrobiologist on a field study will spend most of the time walking around and exploring the site looking for areas of interest which will be tested in situ or sampled for testing offsite. For a robot replicating these tasks, it must be able to locomote in that terrain, sense the interesting features (or provide sensing for teleoperation), and do a variety of manipulation tasks once an area of interest is reached. The configurations for this robot include 10's of modules that can achieve astrobiological tasks such as amphibious locomotion, digging, core sampling, probing, liquid sampling and exploration. This paper also presents results from the first experiments of this platform at Lake Tyrrell, a salt lake in Australia.

  15. RNA-protein interaction methods to study viral IRES elements.

    PubMed

    Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Lozano, Gloria; Diaz-Toledano, Rosa; Martínez-Salas, Encarnación

    2015-12-01

    Translation control often takes place through the mRNA untranslated regions, involving direct interactions with RNA-binding proteins (RBPs). Internal ribosome entry site elements (IRESs) are cis-acting RNA regions that promote translation initiation using a cap-independent mechanism. A subset of positive-strand RNA viruses harbor IRESs as a strategy to ensure efficient viral protein synthesis. IRESs are organized in modular structural domains with a division of functions. However, viral IRESs vary in nucleotide sequence, secondary RNA structure, and transacting factor requirements. Therefore, in-depth studies are needed to understand how distinct types of viral IRESs perform their function. In this review we describe methods to isolate and identify RNA-binding proteins important for IRES activity, and to study the impact of RNA structure and RNA-protein interactions on IRES activity. PMID:26142759

  16. Modular Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2015-01-01

    High efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRG) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high specific power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTG). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and DOE called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provide about 50 to 450 watts DC to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and similar to the MMRTG. However, the reliability should be significantly increased compared to ASRG.

  17. A neural network with modular hierarchical learning

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F. (inventor); Toomarian, Nikzad (inventor)

    1994-01-01

    This invention provides a new hierarchical approach for supervised neural learning of time dependent trajectories. The modular hierarchical methodology leads to architectures which are more structured than fully interconnected networks. The networks utilize a general feedforward flow of information and sparse recurrent connections to achieve dynamic effects. The advantages include the sparsity of units and connections, the modular organization. A further advantage is that the learning is much more circumscribed learning than in fully interconnected systems. The present invention is embodied by a neural network including a plurality of neural modules each having a pre-established performance capability wherein each neural module has an output outputting present results of the performance capability and an input for changing the present results of the performance capabilitiy. For pattern recognition applications, the performance capability may be an oscillation capability producing a repeating wave pattern as the present results. In the preferred embodiment, each of the plurality of neural modules includes a pre-established capability portion and a performance adjustment portion connected to control the pre-established capability portion.

  18. INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL

    SciTech Connect

    Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

    2007-12-01

    With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

  19. Residual modular Galois representations: definition Image of Residual modular Galois representations

    E-print Network

    Sengun, Mehmet Haluk

    Residual modular Galois representations: definition Image of Residual modular Galois representations Images of residual modular Galois representations Samuele Anni Heeze, 27th may 2011 Reducing Lizards upper half plane tessellation by M.C. Escher. Samuele Anni Images of residual modular Galois

  20. Structure of the second domain of the Bacillus subtilis DEAD-box RNA helicase YxiN

    SciTech Connect

    Caruthers, Jonathan M.; Hu, YaoXiong; McKay, David B.

    2006-12-01

    The structure of the second helicase domain of the B. subtilis YxiN protein, a DEAD-box RNA helicase, is presented. The Bacillus subtilis RNA helicase YxiN is a modular three-domain protein. The first two domains form a conserved helicase core that couples an ATPase activity to an RNA duplex-destabilization activity, while the third domain recognizes a stem-loop of 23S ribosomal RNA with high affinity and specificity. The structure of the second domain, amino-acid residues 207–368, has been solved to 1.95 Å resolution, revealing a parallel ??-fold. The crystallographic asymmetric unit contains two protomers; superposition shows that they differ substantially in two segments of peptide that overlap the conserved helicase sequence motifs V and VI, while the remainder of the domain is isostructural. The conformational variability of these segments suggests that induced fit is intrinsic to the recognition of ligands (ATP and RNA) and the coupling of the ATPase activity to conformational changes.

  1. RNA helicases

    PubMed Central

    Ranji, Arnaz

    2010-01-01

    RNA helicases serve multiple roles at the virus-host interface. In some situations, RNA helicases are essential host factors to promote viral replication; however, in other cases they serve as a cellular sensor to trigger the antiviral state in response to viral infection. All family members share the conserved ATP-dependent catalytic core linked to different substrate recognition and protein-protein interaction domains. These flanking domains can be shuffled between different helicases to achieve functional diversity. This review summarizes recent studies, This review summarizes recent studies of RNA helicases in virus biology. First, RNA helicases are catalysts of progressive RNA-protein rearrangements that begin at gene transcription and culminate in release of infectious virus. Second, RNA helicases can act as a scaffold for alternative protein-protein interactions that can defeat the antiviral state. The mounting fundamental understanding of RNA helicases is being used to develop selective and efficacious drugs against human and animal pathogens. The analysis of RNA helicases in virus model systems continues to provide insights into virology, cell biology and immunology and has provided fresh perspective to continue unraveling the complexity of virus-host interactions. PMID:21173576

  2. Modular hybrid plasma reactor and related systems and methods

    DOEpatents

    Kong, Peter C.; Grandy, Jon D.; Detering, Brent A.

    2010-06-22

    A device, method and system for generating a plasma is disclosed wherein an electrical arc is established and the movement of the electrical arc is selectively controlled. In one example, modular units are coupled to one another to collectively define a chamber. Each modular unit may include an electrode and a cathode spaced apart and configured to generate an arc therebetween. A device, such as a magnetic or electromagnetic device, may be used to selectively control the movement of the arc about a longitudinal axis of the chamber. The arcs of individual modules may be individually controlled so as to exhibit similar or dissimilar motions about the longitudinal axis of the chamber. In another embodiment, an inlet structure may be used to selectively define the flow path of matter introduced into the chamber such that it travels in a substantially circular or helical path within the chamber.

  3. Modular radioisotope AMTEC power system

    SciTech Connect

    Sievers, R.K.; Hunt, T.K.; Ivanenok, J.F.; Pantolin, J.E.; Butkiewicz, D.A. )

    1993-01-10

    The Alakli Metal Thermal to Electric Converter (AMTEC) technology is extremely amenable to a modular configuration. Several modular designs have been proposed for coupling to the radioisotope general purpose heat source (GPHS). Current AMTEC cell designs, producing approximately 5 W at over 20% efficiency, can be integrated into a radioisotope heated module that provides 10--28 per 250 W[sub th] GPHS. The mass of these modules is approximately 4 kg. The cell design used in this concept is under development. The first generation model has already been operated for one year. Smaller, higher efficiency cells are now being fabricated.

  4. Adaptability Through Modular Materials

    ERIC Educational Resources Information Center

    Hull, Daniel M.; And Others

    1974-01-01

    Several short articles describe programs utilizing laser/electro-optics technology curriculum materials developed by Technical Education Research Centers (TERC): at undergraduate and graduate levels in universities; in a city college; in continuing education; and in industry. Modules, independent units based on booklets or films, include…

  5. Modular differential equations for characters of RCFT

    E-print Network

    Peter Bantay

    2010-05-12

    We discuss methods, based on the theory of vector-valued modular forms, to determine all modular differential equations satisfied by the conformal characters of RCFT; these modular equations are related to the null vector relations of the operator algebra. Besides describing effective algorithmic procedures, we illustrate our methods on an explicit example.

  6. Modularity in Cognition: Framing the Debate

    ERIC Educational Resources Information Center

    Barrett, H. Clark; Kurzban, Robert

    2006-01-01

    Modularity has been the subject of intense debate in the cognitive sciences for more than 2 decades. In some cases, misunderstandings have impeded conceptual progress. Here the authors identify arguments about modularity that either have been abandoned or were never held by proponents of modular views of the mind. The authors review arguments that…

  7. Novel domains in the hnRNP G/RBMX protein with distinct roles in RNA binding and targeting nascent transcripts

    PubMed Central

    Kanhoush, Rasha; Beenders, Brent; Perrin, Caroline; Moreau, Jacques

    2010-01-01

    The heterogenous nuclear ribonucleoprotein G (hnRNP G) controls the alternative splicing of several pre-mRNas. While hnRNP G displays an amino terminal RNA recognition motif (RRM), we find that this motif is paradoxically not implicated in the recruitment of hnRNP G to nascent transcripts in amphibian oocytes. In fact, a deletion analysis revealed that targeting of hnRNP G to active transcription units depends on another domain, centrally positioned, and consisting of residues 186–236. We show that this domain acts autonomously and thus is named NTD for nascent transcripts targeting domain. Furthermore, using an RNA probe previously characterized in vitro as an RNA that interacts specifically with hnRNP G, we demonstrate a new auxiliary RNA binding domain (RBD). It corresponds to a short region of 58 residues positioned at the carboxyl terminal end of the protein, which recognizes an RNA motif predicted to adopt an hairpin structure. The fact that the NTD acts independently from both the RRM and the RBD strongly suggests that the initial recruitment of hnRNP G to nascent pre-mRNAs is independent of its sequence-specific RNA binding properties. Together, these findings highlight the modular organization of hnRNP G and offer new insights into its multifunctional roles. PMID:21327109

  8. Modularity Matters Most Robert Harper

    E-print Network

    Spirtes, Peter

    to interfaces. We claim that this methodology makes a higher degree of software correctness possible than has efforts in various areas such as software engineering, programming languages, and logic. Software today software quality. We advocate a view of modularity that emphasizes not the mere assembling of software

  9. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  10. Teaching Creation: A Modular Approach

    ERIC Educational Resources Information Center

    Bosworth, David A.

    2007-01-01

    The present article describes a modular approach to teaching Genesis 1-3 that values depth over breadth even in an introductory class. The module allows students to learn about the text and its original context by orienting discussion around contemporary issues of practical concern. Specifically, the creation-evolution debates provide an…

  11. A Modular Voting Architecture ("Frogs")

    E-print Network

    Rivest, Ronald L.

    A Modular Voting Architecture ("Frogs") Shuki Bruck (CalTech) David Jefferson (Compaq) Ronald L. Rivest (MIT) (WOTE, August 28, 2001) #12;Outline !Moving from paper " electronic !Voting with frogs !Advantages of frogs !Security !Conclusions #12;What's next in voting? !We propose a practical voting system

  12. TARDIS, a targeted RNA directional sequencing method for rare RNA discovery.

    PubMed

    Portal, Maximiliano M; Pavet, Valeria; Erb, Cathie; Gronemeyer, Hinrich

    2015-12-01

    High-throughput transcriptional analysis has unveiled a myriad of novel RNAs. However, technical constraints in RNA sequencing library preparation and platform performance hamper the identification of rare transcripts contained within the RNA repertoire. Herein we present targeted-RNA directional sequencing (TARDIS), a hybridization-based method that allows subsets of RNAs contained within the transcriptome to be interrogated independently of transcript length, function, the presence or absence of poly-A tracts, or the mechanism of biogenesis. TARDIS is a modular protocol that is subdivided into four main phases, including the generation of random DNA traps covering the region of interest, purification of input RNA material, DNA trap-based RNA capture, and finally RNA-sequencing library construction. Importantly, coupling RNA capture to strand-specific RNA sequencing enables robust identification and reconstruction of novel transcripts, the definition of sense and antisense RNA pairs and, by the concomitant analysis of long and natural small RNA pools, it allows the user to infer potential precursor-product relations. TARDIS takes ?10 d to implement. PMID:26513670

  13. RNA Research

    NASA Technical Reports Server (NTRS)

    1998-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. It is widely believed that this RNA World was extensive and therefore a sophisticated nucleic acid replication machinery would presumably predate the translation machinery which would not be needed until later stages in the development of life. This view of an extended RNA World is not necessarily correct. From the point of view of exobiology, the difference in these two views mainly affects the significance of studies of the extent of catalysis possible by RNA- In either case, the origin of the translation machinery and the principles of RNA evolution remain central problems in exobiology. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modem organisms came to exist by the time of the last common ancestor (as detected by 16S RRNA sequence studies). Third, the RNAs that comprise the ribosome are themselves likely of very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.

  14. Putting Non-coding RNA on Display with CRISPR.

    PubMed

    Perez-Pinera, Pablo; Jones, Matthew F; Lal, Ashish; Lu, Timothy K

    2015-07-16

    In a recent issue of Nature Methods, Shechner et al. (2015) reported the development of CRISPR Display (CRISP-Disp), which is a sophisticated, flexible, modular, and multiplexable platform for targeting different types of non-coding RNAs (ncRNAs) to genomic loci. CRISP-Disp will facilitate synthetic-biology applications and enable the elucidation of ncRNA functions. PMID:26186289

  15. Multi-purpose modular plug and play architecture for space systems: Design, integration and testing

    NASA Astrophysics Data System (ADS)

    Pitterà, T.; D'Errico, M.

    2011-09-01

    Design and integration of a modular architecture for a versatile, reconfigurable and re-adaptable space vehicle is presented with application to a small rover. To gain modularity, both at system and subsystem level, attention has been paid to the selection of interfaces and of an adequate data and power bus. A modular system, based on CAN and SpaceWire data communication bus, has been designed and a first level of distributed intelligence has been achieved using PIC micro-controllers in each subsystem. The modules have been designed with the same mechanical interface to obtain a 2D repetitive pattern. In order to test this architecture aboard a rover, some basic sub-systems, such as the power control unit, the battery control unit, the engine control unit and a PC104-based computer have been integrated and preliminarily tested.

  16. MODFLOW-2000, the U.S. Geological Survey modular ground-water model -- Documentation of the Model-Layer Variable-Direction Horizontal Anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) package

    USGS Publications Warehouse

    Anderman, Evan R.; Kipp, K.L.; Hill, Mary C.; Valstar, Johan; Neupauer, R.M.

    2002-01-01

    This report documents the model-layer variable-direction horizontal anisotropy (LVDA) capability of the Hydrogeologic-Unit Flow (HUF) Package of MODFLOW-2000. The LVDA capability allows the principal directions of horizontal anisotropy to be different than the model-grid row and column directions, and for the directions to vary on a cell-by-cell basis within model layers. The HUF Package calculates effective hydraulic properties for model grid cells based on hydraulic properties of hydrogeologic units with thicknesses defined independently of the model layers. These hydraulic properties include, among other characteristics, hydraulic conductivity and a horizontal anisotropy ratio. Using the LVDA capability, horizontal anisotropy direction is defined for model grid cells within which one or more hydrogeologic units may occur. For each grid cell, the HUF Package calculates the effective horizontal hydraulic conductivity along the primary direction of anisotropy using the hydrogeologic-unit hydraulic conductivities, and calculates the effective horizontal hydraulic conductivity along the orthogonal anisotropy direction using the effective primary direction hydraulic conductivities and horizontal anisotropy ratios. The direction assigned to the model layer effective primary hydraulic conductivity is specified using a new data set defined by the LVDA capability, when active, to calculate coefficients needed to solve the ground-water flow equation. Use of the LVDA capability is illustrated in four simulation examples, which also serve to verify hydraulic heads, advective-travel paths, and sensitivities calculated using the LVDA capability. This version of the LVDA capability defines variable-direction horizontal anisotropy using model layers, not the hydrogeologic units defined by the HUF Package. This difference needs to be taken into account when designing model layers and hydrogeologic units to produce simulations that accurately represent a given field problem. This might be a reason, for example, to make model layer boundaries coincide with hydrogeologic-unit boundaries in all or part of a model grid.

  17. Modular construction of mammalian gene circuits using TALE transcriptional repressors

    PubMed Central

    Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2014-01-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches employing feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation. PMID:25643171

  18. Modular construction of mammalian gene circuits using TALE transcriptional repressors.

    PubMed

    Li, Yinqing; Jiang, Yun; Chen, He; Liao, Weixi; Li, Zhihua; Weiss, Ron; Xie, Zhen

    2015-03-01

    An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches using feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation. PMID:25643171

  19. Antares: A low cost modular launch vehicle for the future

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  20. Modular Inflation and the Curvaton

    SciTech Connect

    Lazarides, George

    2007-01-12

    Supersymmetric Peccei-Quinn models which provide a suitable candidate for the curvaton field are studied. These models also solve the {mu} problem, while generating the Peccei-Quinn scale dynamically. The curvaton is a pseudo Nambu-Goldstone boson corresponding to an angular degree of freedom orthogonal to the axion. Its order parameter increases substantially following a phase transition during inflation.s results in a drastic amplification of the curvaton perturbations. Consequently, these models are able to accommodate low-scale inflation with Hubble parameter at the TeV scale such as modular inflation. We find that modular inflation with the orthogonal axion as curvaton can indeed account for the observations for natural values of the parameters. In particular, the spectral index can easily be made adequately lower than unity in accord with the recent data.

  1. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zavesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thruster subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the space shuttle interim upper stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes or an all heat pipe system. The propellant storage and feed system and thruster gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  2. Health Monitoring to Support Advanced Small Modular Reactors

    SciTech Connect

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep

    2013-08-01

    Advanced small modular reactors (aSMRs) are based on advanced reactor concepts, some of which were promoted by the Generation IV International Forum, and are being considered for diverse missions including desalination of water, production of hydrogen, etc. While the existing fleet of commercial nuclear reactors provides baseload electricity, it is conceivable that aSMRs could be implemented for both baseload and load following applications. The effect of diverse operating missions and unit modularity on plant operations and maintenance (O&M) is not fully understood and limiting these costs will be essential to successful deployment of aSMRs. Integrated health monitoring concepts are proposed to support the safe and affordable operation of aSMRs over their lifetime by enabling management of significant in-vessel and in-containment active and passive components.

  3. Modular thrust subsystem approaches to solar electric propulsion module design

    NASA Technical Reports Server (NTRS)

    Cake, J. E.; Sharp, G. R.; Oglebay, J. C.; Shaker, F. J.; Zevesky, R. J.

    1976-01-01

    Three approaches are presented for packaging the elements of a 30 cm ion thrustor subsystem into a modular thrust subsystem. The individual modules, when integrated into a conceptual solar electric propulsion module are applicable to a multimission set of interplanetary flights with the Space Shuttle/Interim Upper Stage as the launch vehicle. The emphasis is on the structural and thermal integration of the components into the modular thrust subsystems. Thermal control for the power processing units is either by direct radiation through louvers in combination with heat pipes of an all heat pipe system. The propellant storage and feed system and thrustor gimbal system concepts are presented. The three approaches are compared on the basis of mass, cost, testing, interfaces, simplicity, reliability, and maintainability.

  4. SIEGEL MODULAR FORMS IN SAGE NATHAN C. RYAN

    E-print Network

    Ryan, Nathan C.

    SIEGEL MODULAR FORMS IN SAGE NATHAN C. RYAN A classical modular form is a periodic function. In computer algebra systems such as Sage [9] and MAGMA [2] a generic classical modular form is computed via optimized implementations in Sage. A Siegel modular form of genus n is, roughly speaking, a modular form

  5. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2013-02-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks.

  6. Modular Platforms for Optofluidic Systems

    NASA Astrophysics Data System (ADS)

    Brammer, Marko; Mappes, Timo

    2014-01-01

    Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

  7. Multidimensional bioseparation with modular microfluidics

    SciTech Connect

    Chirica, Gabriela S.; Renzi, Ronald F.

    2013-08-27

    A multidimensional chemical separation and analysis system is described including a prototyping platform and modular microfluidic components capable of rapid and convenient assembly, alteration and disassembly of numerous candidate separation systems. Partial or total computer control of the separation system is possible. Single or multiple alternative processing trains can be tested, optimized and/or run in parallel. Examples related to the separation and analysis of human bodily fluids are given.

  8. CAMAC modular programmable function generator

    SciTech Connect

    Turner, G.W.; Suehiro, S.; Hendricks, R.W.

    1980-12-01

    A CAMAC modular programmable function generator has been developed. The device contains a 1024 word by 12-bit memory, a 12-bit digital-to-analog converter with a 600 ns settling time, an 18-bit programmable frequency register, and two programmable trigger output registers. The trigger registers can produce programmed output logic transitions at various (binary) points in the output function curve, and are used to synchronize various other data acquisition devices with the function curve.

  9. Mock Modular Mathieu Moonshine Modules

    E-print Network

    Miranda C. N. Cheng; Xi Dong; John F. R. Duncan; Sarah Harrison; Shamit Kachru; Timm Wrase

    2015-08-10

    We construct super vertex operator algebras which lead to modules for moonshine relations connecting the four smaller sporadic simple Mathieu groups with distinguished mock modular forms. Starting with an orbifold of a free fermion theory, any subgroup of Co_0 that fixes a 3-dimensional subspace of its unique non-trivial 24-dimensional representation commutes with a certain N=4 superconformal algebra. Similarly, any subgroup of Co_0 that fixes a 2-dimensional subspace of the 24-dimensional representation commutes with a certain N=2 superconformal algebra. Through the decomposition of the corresponding twined partition functions into characters of the N=4 (resp. N=2) superconformal algebra, we arrive at mock modular forms which coincide with the graded characters of an infinite-dimensional Z-graded module for the corresponding group. The Mathieu groups are singled out amongst various other possibilities by the moonshine property: requiring the corresponding weak Jacobi forms to have certain asymptotic behaviour near cusps. Our constructions constitute the first examples of explicitly realized modules underlying moonshine phenomena relating mock modular forms to sporadic simple groups. Modules for other groups, including the sporadic groups of McLaughlin and Higman--Sims, are also discussed.

  10. MOCK MODULAR FORMS AS p-ADIC MODULAR FORMS KATHRIN BRINGMANN, PAVEL GUERZHOY, AND BEN KANE

    E-print Network

    Bringmann, Kathrin

    MOCK MODULAR FORMS AS p-ADIC MODULAR FORMS KATHRIN BRINGMANN, PAVEL GUERZHOY, AND BEN KANE Abstract a stimulating work environment. 1 #12;2 KATHRIN BRINGMANN, PAVEL GUERZHOY, AND BEN KANE Following Zagier [22

  11. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory

    PubMed Central

    Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721

  12. Self-assembling RNA square

    PubMed Central

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-01-01

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop–receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 ? of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform. PMID:21464284

  13. Self-assembling RNA square

    SciTech Connect

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-12-22

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

  14. Combustion Power Unit--400: CPU-400.

    ERIC Educational Resources Information Center

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  15. Crystal Structure of Rcl1 an Essential Component of the Eukaryal pre-rRNA Processosome Implicated in 18s rRNA Biogenesis

    SciTech Connect

    T Tanaka; P Smith; S Shuman

    2011-12-31

    Rcl1 is an essential nucleolar protein required for U3 snoRNA-guided pre-rRNA processing at sites flanking the 18S rRNA sequence. A potential catalytic role for Rcl1 during pre-rRNA cleavage has been suggested based on its primary structure similarity to RNA 3'-terminal phosphate cyclase (Rtc) enzymes, which perform nucleotidyl transfer and phosphoryl transfer reactions at RNA ends. Here, we report the 2.6 {angstrom} crystal structure of a biologically active yeast Rcl1, which illuminates its modular 4-domain architecture and overall homology with RNA cyclases while revealing numerous local differences that account for why Rtcs possess metal-dependent adenylyltransferase activity and Rcls do not. A conserved oxyanion-binding site in Rcl1 was highlighted for possible catalytic or RNA-binding functions. However, the benign effects of mutations in and around the anion site on Rcl1 activity in vivo militate against such a role.

  16. Cascading dynamics in modular networks

    NASA Astrophysics Data System (ADS)

    Galstyan, Aram; Cohen, Paul

    2007-03-01

    In this paper we study a simple cascading process in a structured heterogeneous population, namely, a network composed of two loosely coupled communities. We demonstrate that under certain conditions the cascading dynamics in such a network has a two-tiered structure that characterizes activity spreading at different rates in the communities. We study the dynamics of the model using both simulations and an analytical approach based on annealed approximation and obtain good agreement between the two. Our results suggest that network modularity might have implications in various applications, such as epidemiology and viral marketing.

  17. Functional Annotation of Hierarchical Modularity

    PubMed Central

    Padmanabhan, Kanchana; Wang, Kuangyu; Samatova, Nagiza F.

    2012-01-01

    In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function–hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of “enriched” functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13). PMID:22496762

  18. Modular microfluidic systems using reversibly attached PDMS fluid control modules

    NASA Astrophysics Data System (ADS)

    Skafte-Pedersen, Peder; Sip, Christopher G.; Folch, Albert; Dufva, Martin

    2013-05-01

    The use of soft lithography-based poly(dimethylsiloxane) (PDMS) valve systems is the dominating approach for high-density microscale fluidic control. Integrated systems enable complex flow control and large-scale integration, but lack modularity. In contrast, modular systems are attractive alternatives to integration because they can be tailored for different applications piecewise and without redesigning every element of the system. We present a method for reversibly coupling hard materials to soft lithography defined systems through self-aligning O-ring features thereby enabling easy interfacing of complex-valve-based systems with simpler detachable units. Using this scheme, we demonstrate the seamless interfacing of a PDMS-based fluid control module with hard polymer chips. In our system, 32 self-aligning O-ring features protruding from the PDMS fluid control module form chip-to-control module interconnections which are sealed by tightening four screws. The interconnection method is robust and supports complex fluidic operations in the reversibly attached passive chip. In addition, we developed a double-sided molding method for fabricating PDMS devices with integrated through-holes. The versatile system facilitates a wide range of applications due to the modular approach, where application specific passive chips can be readily attached to the flow control module.

  19. Modular robotics and intelligent imaging for unmanned systems

    NASA Astrophysics Data System (ADS)

    Chen, Chung-Hao; Cheng, Chang; Page, David; Koschan, Andreas; Abidi, Mongi

    2006-05-01

    The Imaging, Robotics, and Intelligent Systems (IRIS) Laboratory at the University of Tennessee is currently developing a modular approach to unmanned systems to increase mission flexibility and aid system interoperability for security and surveillance applications. The main focus of the IRIS research is the development of sensor bricks where the term brick denotes a self-contained system that consists of the sensor itself, a processing unit, wireless communications, and a power source. Prototypes of a variety of sensor bricks have been developed. These systems include a thermal imaging brick, a quad video brick, a 3D range brick, and a nuclear (gamma ray and neutron) detection bricks. These bricks have been integrated in a modular fashion into mobility platforms to form functional unmanned systems. Research avenues include sensor processing algorithms, system integration, communications architecture, multi-sensor fusion, sensor planning, sensor-based localization, and path planning. This research is focused towards security and surveillance applications such as under vehicle inspection, wide-area perimeter surveillance, and high value asset monitoring. This paper presents an overview of the IRIS research activities in modular robotics and includes results from prototype systems.

  20. The relative efficiency of modular and non-modular networks of different size.

    PubMed

    Tosh, Colin R; McNally, Luke

    2015-03-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: 'small' and 'large', and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

  1. The relative efficiency of modular and non-modular networks of different size

    PubMed Central

    Tosh, Colin R.; McNally, Luke

    2015-01-01

    Most biological networks are modular but previous work with small model networks has indicated that modularity does not necessarily lead to increased functional efficiency. Most biological networks are large, however, and here we examine the relative functional efficiency of modular and non-modular neural networks at a range of sizes. We conduct a detailed analysis of efficiency in networks of two size classes: ‘small’ and ‘large’, and a less detailed analysis across a range of network sizes. The former analysis reveals that while the modular network is less efficient than one of the two non-modular networks considered when networks are small, it is usually equally or more efficient than both non-modular networks when networks are large. The latter analysis shows that in networks of small to intermediate size, modular networks are much more efficient that non-modular networks of the same (low) connective density. If connective density must be kept low to reduce energy needs for example, this could promote modularity. We have shown how relative functionality/performance scales with network size, but the precise nature of evolutionary relationship between network size and prevalence of modularity will depend on the costs of connectivity. PMID:25631996

  2. Workshop on Modularization, Composition, and Generative Techniques

    E-print Network

    Apel, Sven

    Workshop on Modularization, Composition, and Generative Techniques for Product Line Engineering and Mathematics University of Passau, Germany October 2008 #12;Preface Product Line Engineering (PLE on Modularization, Composition, and Generative Techniques for Product Line Engineering (McGPLE) aims at expanding

  3. On modular transformations of toric conformal blocks

    NASA Astrophysics Data System (ADS)

    Nemkov, N.

    2015-10-01

    We derive and solve the difference equations on the toric modular kernel following from the consistency relations in the fusion algebra. The result is explicit and simple series expansion for the toric modular kernel of non-degenerate Virasoro conformal blocks. We show that this expansion is equivalent to the celebrated integral representation due to J. Teschner.

  4. A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES

    E-print Network

    Florida, University of

    1 A MODULAR, SCALABLE, ARCHITECTURE FOR UNMANNED VEHICLES David G. Armstrong II, Carl D. Crane III, Florida ABSTRACT: A modular, scalable architecture for use on unmanned vehicles has been developed Architecture for Unmanned Ground Systems (JAUGS) Working Group. Keywords: Architectures, Autonomous Vehicles

  5. Overland Tidal Power Generation Using Modular Tidal Prism

    SciTech Connect

    Khangaonkar, Tarang; Yang, Zhaoqing; Geerlofs, Simon H.; Copping, Andrea

    2010-03-01

    Naturally occurring sites with sufficient kinetic energy suitable for tidal power generation with sustained currents > 1 to 2 m/s are relatively rare. Yet sites with greater than 3 to 4 m of tidal range are relatively common around the U.S. coastline. Tidal potential does exist along the shoreline but is mostly distributed, and requires an approach which allows trapping and collection to also be conducted in a distributed manner. In this paper we examine the feasibility of generating sustainable tidal power using multiple nearshore tidal energy collection units and present the Modular Tidal Prism (MTP) basin concept. The proposed approach utilizes available tidal potential by conversion into tidal kinetic energy through cyclic expansion and drainage from shallow modular manufactured overland tidal prisms. A preliminary design and configuration of the modular tidal prism basin including inlet channel configuration and basin dimensions was developed. The unique design was shown to sustain momentum in the penstocks during flooding as well as ebbing tidal cycles. The unstructured-grid finite volume coastal ocean model (FVCOM) was used to subject the proposed design to a number of sensitivity tests and to optimize the size, shape and configuration of MTP basin for peak power generation capacity. The results show that an artificial modular basin with a reasonable footprint (? 300 acres) has the potential to generate 10 to 20 kw average energy through the operation of a small turbine located near the basin outlet. The potential of generating a total of 500 kw to 1 MW of power through a 20 to 40 MTP basin tidal power farms distributed along the coastline of Puget Sound, Washington, is explored.

  6. Modular classes of skew algebroid relations

    E-print Network

    Grabowski, Janusz

    2011-01-01

    Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E* which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e. mod(E)=0. Further, relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and that of a Poisson map.

  7. Modular classes of skew algebroid relations

    E-print Network

    Janusz Grabowski

    2011-08-11

    Skew algebroid is a natural generalization of the concept of Lie algebroid. In this paper, for a skew algebroid E, its modular class mod(E) is defined in the classical as well as in the supergeometric formulation. It is proved that there is a homogeneous nowhere-vanishing 1-density on E* which is invariant with respect to all Hamiltonian vector fields if and only if E is modular, i.e. mod(E)=0. Further, relative modular class of a subalgebroid is introduced and studied together with its application to holonomy, as well as modular class of a skew algebroid relation. These notions provide, in particular, a unified approach to the concepts of a modular class of a Lie algebroid morphism and that of a Poisson map.

  8. Experimental Study of Active Vibration Suppression Structure Using Modular Control Patch*

    E-print Network

    Experimental Study of Active Vibration Suppression Structure Using Modular Control Patch* Gangbing results of vibration suppressicln of a flexible structure using a miniaturized digital controller, called for the United States Air Force for future space vibration control. In this research, the MCP is used

  9. Active vibration suppression of a exible structure using smart material and a modular control patch

    E-print Network

    Active vibration suppression of a ¯exible structure using smart material and a modular control of vibration suppression of a ¯exible structure using smart materials and a miniaturized digital controller and was developed by TRW for the United States Air Force for future space vibration control. In this research

  10. Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing

    NASA Technical Reports Server (NTRS)

    Dobbs, Carl, Sr.

    2012-01-01

    A hardware unit has been designed that reduces the cost, in terms of performance and power consumption, for implementing N-modular redundancy (NMR) in a multiprocessor device. The innovation monitors transactions to memory, and calculates a form of sumcheck on-the-fly, thereby relieving the processors of calculating the sumcheck in software

  11. Learning modular policies for robotics.

    PubMed

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

  12. Learning modular policies for robotics

    PubMed Central

    Neumann, Gerhard; Daniel, Christian; Paraschos, Alexandros; Kupcsik, Andras; Peters, Jan

    2014-01-01

    A promising idea for scaling robot learning to more complex tasks is to use elemental behaviors as building blocks to compose more complex behavior. Ideally, such building blocks are used in combination with a learning algorithm that is able to learn to select, adapt, sequence and co-activate the building blocks. While there has been a lot of work on approaches that support one of these requirements, no learning algorithm exists that unifies all these properties in one framework. In this paper we present our work on a unified approach for learning such a modular control architecture. We introduce new policy search algorithms that are based on information-theoretic principles and are able to learn to select, adapt and sequence the building blocks. Furthermore, we developed a new representation for the individual building block that supports co-activation and principled ways for adapting the movement. Finally, we summarize our experiments for learning modular control architectures in simulation and with real robots. PMID:24966830

  13. A modular BLSS simulation model

    NASA Technical Reports Server (NTRS)

    Rummel, John D.; Volk, Tyler

    1987-01-01

    A bioregenerative life support system (BLSS) for extraterrestrial use will be faced with coordination problems more acute than those in any ecosystem found on Earth. A related problem in BLSS design is providing an interface between the various life support processors, one that will allow for their coordination while still allowing for system expansion. A modular model is presented of a BLSS that interfaces system processors only with the material storage reservoirs, allowing those reservoirs to act as the principal buffers in the system and thus minimizing difficulties with processor coordination. The modular nature of the model allows independent development of the detailed submodels that exist within the model framework. Using this model, BLSS dynamics were investigated under normal conditions and under various failure modes. Partial and complete failures of various components, such as the waste processors or the plants themselves, drive transient responses in the model system, allowing the examination of the effectiveness of the system reservoirs as buffers. The results from simulations help to determine control strategies and BLSS design requirements. An evolved version could be used as an interactive control aid in a future BLSS.

  14. Modular polynomials via isogeny volcanoes

    E-print Network

    Broker, Reinier; Sutherland, Andrew V

    2010-01-01

    We present a new algorithm to compute the classical modular polynomial Phi_n in the rings Z[X,Y] and (Z/mZ)[X,Y], for a prime n and any positive integer m. Our approach uses the graph of n-isogenies to efficiently compute Phi_n mod p for many primes p of a suitable form, and then applies the Chinese Remainder Theorem (CRT). Under the Generalized Riemann Hypothesis (GRH), we achieve an expected running time of O(n^3 (log n)^3 log log n), and compute Phi_n mod m using O(n^2 (log n)^2 + n^2 log m) space. We have used the new algorithm to compute Phi_n with n over 5000, and Phi_n mod m with n over 20000. We also consider several modular functions g for which Phi_n^g is smaller than Phi_n, allowing us to handle n over 60000.

  15. Modular countermine payload for small robots

    NASA Astrophysics Data System (ADS)

    Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  16. Modular Countermine Payload for Small Robots

    SciTech Connect

    Herman Herman; Doug Few; Roelof Versteeg; Jean-Sebastien Valois; Jeff McMahill; Michael Licitra; Edward Henciak

    2010-04-01

    Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.

  17. RNA-Catalyzed RNA Polymerization: Accurate and

    E-print Network

    Bartel, David

    for general polymerization (7). De- rivatives of self-splicing introns are able to join oligonucleotidesRNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension Wendy K. Johnston, Peter J. Unrau,* Michael S. Lawrence, Margaret E. Glasner, David P. Bartel The RNA world

  18. Modular optimization of multi-gene pathways for fumarate production.

    PubMed

    Chen, Xiulai; Zhu, Pan; Liu, Liming

    2016-01-01

    Microbial fumarate production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here, we report a modular engineering approach that systematically removed metabolic pathway bottlenecks and led to significant titer improvements in a multi-gene fumarate metabolic pathway. On the basis of central pathway architecture, yeast fumarate biosynthesis was re-cast into three modules: reduction module, oxidation module, and byproduct module. We targeted reduction module and oxidation module to the cytoplasm and the mitochondria, respectively. Combinatorially tuning pathway efficiency by constructing protein fusions RoMDH-P160A and KGD2-SUCLG2 and optimizing metabolic balance by controlling genes RoPYC, RoMDH-P160A, KGD2-SUCLG2 and SDH1 expression strengths led to significantly improved fumarate production (20.46g/L). In byproduct module, synthetizing DNA-guided scaffolds and designing sRNA switchs enabled further production improvement up to 33.13g/L. These results suggest that modular pathway engineering can systematically optimize biosynthesis pathways to enable an efficient production of fumarate. PMID:26241189

  19. Small Modular Reactors: Institutional Assessment

    SciTech Connect

    Joseph Perkowski, Ph.D.

    2012-06-01

    ? Objectives include, among others, a description of the basic development status of “small modular reactors” (SMRs) focused primarily on domestic activity; investigation of the domestic market appeal of modular reactors from the viewpoints of both key energy sector customers and also key stakeholders in the financial community; and consideration of how to proceed further with a pro-active "core group" of stakeholders substantially interested in modular nuclear deployment in order to provide the basis to expedite design/construction activity and regulatory approval. ? Information gathering was via available resources, both published and personal communications with key individual stakeholders; published information is limited to that already in public domain (no confidentiality); viewpoints from interviews are incorporated within. Discussions at both government-hosted and private-hosted SMR meetings are reflected herein. INL itself maintains a neutral view on all issues described. Note: as per prior discussion between INL and CAP, individual and highly knowledgeable senior-level stakeholders provided the bulk of insights herein, and the results of those interviews are the main source of the observations of this report. ? Attachment A is the list of individual stakeholders consulted to date, including some who provided significant earlier assessments of SMR institutional feasibility. ? Attachments B, C, and D are included to provide substantial context on the international status of SMR development; they are not intended to be comprehensive and are individualized due to the separate nature of the source materials. Attachment E is a summary of the DOE requirements for winning teams regarding the current SMR solicitation. Attachment F deserves separate consideration due to the relative maturity of the SMART SMR program underway in Korea. Attachment G provides illustrative SMR design features and is intended for background. Attachment H is included for overview purposes and is a sampling of advanced SMR concepts, which will be considered as part of the current DOE SMR program but whose estimated deployment time is beyond CAP’s current investment time horizon. Attachment I is the public DOE statement describing the present approach of their SMR Program.

  20. Size reduction of complex networks preserving modularity

    SciTech Connect

    Arenas, A.; Duch, J.; Fernandez, A.; Gomez, S.

    2008-12-24

    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  1. Size reduction of complex networks preserving modularity

    NASA Astrophysics Data System (ADS)

    Arenas, A.; Duch, J.; Fernández, A.; Gómez, S.

    2007-06-01

    The ubiquity of modular structure in real-world complex networks is the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the non-deterministic polynomial-time hard (NP-hard) class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining their modularity. This size reduction allows use of heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the extremal optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.

  2. A MODULAR ACTUATOR ARCHITECTURE FOR ROBOTIC APPLICATIONS

    SciTech Connect

    2001-07-01

    The United States Department of Energy (DOE) Complexes perform numerous hazardous material handling operations within the confines of a glovebox. The DOE is continuing to seek more efficient and safer means of handling these materials inside gloveboxes rather than the conventional, labor-intensive method through lead lined gloves. The use of glovebox automation technology will also be critical to the DOE in its efforts to comply with its mandated ALARA principles in handling the hazardous materials associated with the cleanup process. Operations associated with materials processing in a glovebox are similar to many industrial tasks, but the unique glovebox environment and Plutonium material properties create a unique set of challenges for conventional automation machinery. Such properties include: Low to moderate levels of ionizing radiation, high abrasiveness, corrosiveness, pyrophoric tendencies, rapid dispersal and permeation of environment, diffuses quickly, and possible incompatible material interaction. The glovebox presents the following challenges: existing gloveboxes may not be readily altered or even modified at all, complex mechanical operations for maintenance and repair are difficult or impossible through gloves, failed equipment may not be removed easily or at all. If a broken piece of equipment cannot be bagged-out through a glove port (approximately 216 mm (8 1/2 inch) diameter) it must remain in place. Broken equipment obstructs further operations. If it renders the entire glovebox unusable, a significant volume of waste is generated and an expensive system must be disposed of and replaced. A moderate sized glovebox alone costs between $250,000 and $500,000 and an equipment malfunction, which penetrates the glovebox and exposes the room to Plutonium or other toxic materials, is catastrophic. In addition to the human exposure issues, cleanup can easily run into the millions of dollars. A solution to the issues described above is ARM Automation Inc.'s (ARM) modular robotic manipulator technology developed for DOE EM operations, which addresses many of the issues discussed in the previous section. This manipulator system has the capability of custom configurations, which accommodate common glovebox tasks such as materials repackaging. The modular nature and quick connects of this system simplify installations into ''hot'' boxes and any potential modifications or repair therein. In the field of automation and robotics, a very common element is one used to generate motion for precise positioning of loads. One example of such an automation component would be an individual joint within an industrial robotic manipulator. This component consists of a tightly integrated package containing an electric motor, gear train, output support bearings, position sensors, brake, servo-amplifier and communications controller. Within the context of this paper, this key building block is referred to as an actuator module. With regard to the needs of the EM, [8] and [9] have shown that while each focus area has unique requirements for robotic automation at a system or manipulator level, their requirements at the actuator level are very similar. Thereby, a modular approach to automation which utilizes a small set of versatile actuator modules can be used to construct a broad range of robotic systems and automation cells suited to EM applications. By providing a pre-engineered, pre-integrated motion system to different robotics users within the DOE, new automation systems can be more quickly created without extensive expertise in motion control or the expense of building custom equipment.

  3. Rational design of efficient modular cells.

    PubMed

    Trinh, Cong T; Liu, Yan; Conner, David J

    2015-11-01

    The modular cell design principle is formulated to devise modular (chassis) cells. These cells can be assembled with exchangeable production modules in a plug-and-play fashion to build microbial cell factories for efficient combinatorial biosynthesis of novel molecules, requiring minimal iterative strain optimization steps. A modular cell is designed to be auxotrophic, containing core metabolic pathways that are necessary but insufficient to support cell growth and maintenance. To be functional, it must tightly couple with an exchangeable production module containing auxiliary metabolic pathways that not only complement cell growth but also enhance production of targeted molecules. We developed a MODCELL (modular cell) framework based on metabolic pathway analysis to implement the modular cell design principle. MODCELL identifies genetic modifications and requirements to construct modular cell candidates and their associated exchangeable production modules. By defining the degree of similarity and coupling metrics, MODCELL can evaluate which exchangeable production module(s) can be tightly coupled with a modular cell candidate. We first demonstrated how MODCELL works in a step-by-step manner for example metabolic networks, and then applied it to design modular Escherichia coli cells for efficient combinatorial biosynthesis of five alcohols (ethanol, propanol, isopropanol, butanol and isobutanol) and five butyrate esters (ethyl butyrate, propyl butyrate, isopropyl butyrate, butyl butyrate and isobutyl butyrate) from pentose sugars (arabinose and xylose) and hexose sugars (glucose, mannose, and galactose) under anaerobic conditions. We identified three modular cells, MODCELL1, MODCELL2 and MODCELL3, that can couple well with Group 1 of modules (ethanol, isobutanol, butanol, ethyl butyrate, isobutyl butyrate, butyl butyrate), Group 2 (isopropanol, isopropyl butyrate), and Group 3 (propanol, isopropanol), respectively. We validated the design of MODCELL1 for anaerobic production of ethanol, butanol, and ethyl butyrate using experimental data available in literature. PMID:26497627

  4. Integrated Modular Engine technology needs

    NASA Astrophysics Data System (ADS)

    Harmon, Timothy J.; Briley, Gary; Pauckert, Ron; Vilja, John

    1993-06-01

    An Integrated Modular Engine (IME) system conceptual design has been developed for meeting the upper stage propulsion requirements. This design was used to identify key technical areas for further development and demonstration. A number of factors are favorable for introducing advanced technologies: new materials are available, controls and health monitoring are vastly more capable, and new fabrication methods are coming on-line. Furthermore, recent innovative integrated propulsion system architecture designs leverage the benefits throughout the stage. All needed technologies are compatible with near-term initial launch capability around the year 2000. These technologies do not require extensive, time-consuming, or expensive development programs to bring these technologies to fruition. This paper describes those technologies that need to be developed to support an IME development program which would result in an affordable propulsion system applicable to a wide range of missions, i.e., upper stage, space-based, transfer, lunar lander, lunar ascent, and Mars lander propulsion systems.

  5. BESST: A Miniature, Modular Radiometer

    NASA Technical Reports Server (NTRS)

    Warden, Robert; Good, William; Baldwin-Stevens, Erik

    2010-01-01

    A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.

  6. A Modular Approach to Redundant Robot Control

    SciTech Connect

    Anderson, R.J.

    1997-12-01

    This paper describes a modular approach for computing redundant robot kinematics. First some conventional redundant control methods are presented and shown to be `passive control laws`, i.e. they can be represented by a network consisting of passive elements. These networks are then put into modular form by applying scattering operator techniques. Additional subnetwork modules can then be added to further shape the motion. Modules for obstacle detection, joint limit avoidance, proximity sensing, and for imposing nonlinear velocity constraints are presented. The resulting redundant robot control system is modular, flexible and robust.

  7. MODULAR MANIPULATOR FOR ROBOTICS APPLICATIONS

    SciTech Connect

    Joseph W. Geisinger, Ph.D.

    2001-07-31

    ARM Automation, Inc. is developing a framework of modular actuators that can address the DOE's wide range of robotics needs. The objective of this effort is to demonstrate the effectiveness of this technology by constructing a manipulator from these actuators within a glovebox for Automated Plutonium Processing (APP). At the end of the project, the system of actuators was used to construct several different manipulator configurations, which accommodate common glovebox tasks such as repackaging. The modular nature and quickconnects of this system simplify installation into ''hot'' boxes and any potential modifications or repair therein. This work focused on the development of self-contained robotic actuator modules including the embedded electronic controls for the purpose of building a manipulator system. Both of the actuators developed under this project contain the control electronics, sensors, motor, gear train, wiring, system communications and mechanical interfaces of a complete robotics servo device. Test actuators and accompanying DISC{trademark}s underwent validation testing at The University of Texas at Austin and ARM Automation, Inc. following final design and fabrication. The system also included custom links, an umbilical cord, an open architecture PC-based system controller, and operational software that permitted integration into a completely functional robotic manipulator system. The open architecture on which this system is based avoids proprietary interfaces and communication protocols which only serve to limit the capabilities and flexibility of automation equipment. The system was integrated and tested in the contractor's facility for intended performance and operations. The manipulator was tested using the full-scale equipment and process mock-ups. The project produced a practical and operational system including a quantitative evaluation of its performance and cost.

  8. Osmotrophy in modular Ediacara organisms

    PubMed Central

    Laflamme, Marc; Xiao, Shuhai; Kowalewski, Micha?

    2009-01-01

    The Ediacara biota include macroscopic, morphologically complex soft-bodied organisms that appear globally in the late Ediacaran Period (575–542 Ma). The physiology, feeding strategies, and functional morphology of the modular Ediacara organisms (rangeomorphs and erniettomorphs) remain debated but are critical for understanding their ecology and phylogeny. Their modular construction triggered numerous hypotheses concerning their likely feeding strategies, ranging from micro-to-macrophagus feeding to photoautotrophy to osmotrophy. Macrophagus feeding in rangeomorphs and erniettomorphs is inconsistent with their lack of oral openings, and photoautotrophy in rangeomorphs is contradicted by their habitats below the photic zone. Here, we combine theoretical models and empirical data to evaluate the feasibility of osmotrophy, which requires high surface area to volume (SA/V) ratios, as a primary feeding strategy of rangeomorphs and erniettomorphs. Although exclusively osmotrophic feeding in modern ecosystems is restricted to microscopic bacteria, this study suggests that (i) fractal branching of rangeomorph modules resulted in SA/V ratios comparable to those observed in modern osmotrophic bacteria, and (ii) rangeomorphs, and particularly erniettomorphs, could have achieved osmotrophic SA/V ratios similar to bacteria, provided their bodies included metabolically inert material. Thus, specific morphological adaptations observed in rangeomorphs and erniettomorphs may have represented strategies for overcoming physiological constraints that typically make osmotrophy prohibitive for macroscopic life forms. These results support the viability of osmotrophic feeding in rangeomorphs and erniettomorphs, help explain their taphonomic peculiarities, and point to the possible importance of earliest macroorganisms for cycling dissolved organic carbon that may have been present in abundance during Ediacaran times. PMID:19706530

  9. A Nucleolar PUF RNA-binding Protein with Specificity for a Unique RNA Sequence.

    PubMed

    Zhang, Chi; Muench, Douglas G

    2015-12-11

    PUF proteins are a conserved group of sequence specific RNA-binding proteins that bind to RNA in a modular fashion. The RNA-binding domain of PUF proteins typically consists of eight clustered Puf repeats. Plant genomes code for large families of PUF proteins that show significant variability in their predicted Puf repeat number, organization, and amino acid sequence. Here we sought to determine whether the observed variability in the RNA-binding domains of four plant PUFs results in a preference for nonclassical PUF RNA target sequences. We report the identification of a novel RNA binding sequence for a nucleolar Arabidopsis PUF protein that contains an atypical RNA-binding domain. The Arabidopsis PUM23 (APUM23) binding sequence was 10 nucleotides in length, contained a centrally located UUGA core element, and had a preferred cytosine at nucleotide position 8. These RNA sequence characteristics differ from those of other PUF proteins, because all natural PUFs studied to date bind to RNAs that contain a conserved UGU sequence at their 5' end and lack specificity for cytosine. Gel mobility shift assays validated the identity of the APUM23 binding sequence and supported the location of 3 of the 10 predicted Puf repeats in APUM23, including the cytosine-binding repeat. The preferred 10-nucleotide sequence bound by APUM23 is present within the 18S rRNA sequence, supporting the known role of APUM23 in 18S rRNA maturation. This work also reveals that APUM23, an ortholog of yeast Nop9, could provide an advanced structural backbone for Puf repeat engineering and target-specific regulation of cellular RNAs. PMID:26487722

  10. Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles

    PubMed Central

    2015-01-01

    Control over cellular delivery of different functionalities and their synchronized activation is a challenging task. We report several RNA and RNA/DNA-based nanoparticles designed to conditionally activate the RNA interference in various human cells. These nanoparticles allow precise control over their formulation, stability in blood serum, and activation of multiple functionalities. Importantly, interferon and pro-inflammatory cytokine activation assays indicate the significantly lower responses for DNA nanoparticles compared to the RNA counterparts, suggesting greater potential of these molecules for therapeutic use. PMID:25521794

  11. RNA -RNA Interaction Prediction and Antisense RNA Target Search

    E-print Network

    gene expres- sion in C.elegans, Drosophila and other organisms; they are known to regulate plasmid copy, or measuring the stability of such a joint structure. In this paper, we describe the RNA-RNA inter- action editing, mRNA splicing, developmental regulation, and plasmid copy-number regulation. Antisense RNAs

  12. Multi-scale modularity and motif distributional effect in metabolic networks.

    PubMed

    Gao, Shang; Chen, Alan; Rahmani, Ali; Zeng, Jia; Tan, Mehmet; Alhajj, Reda; Rokne, Jon; Demetrick, Douglas; Wei, Xiaohui

    2016-01-01

    Metabolism is a set of fundamental processes that play important roles in a plethora of biological and medical contexts. It is understood that the topological information of reconstructed metabolic networks, such as modular organization, has crucial implications on biological functions. Recent interpretations of modularity in network settings provide a view of multiple network partitions induced by different resolution parameters. Here we ask the question: How do multiple network partitions affect the organization of metabolic networks? Since network motifs are often interpreted as the super families of evolved units, we further investigate their impact under multiple network partitions and investigate how the distribution of network motifs influences the organization of metabolic networks. We studied Homo sapiens, Saccharomyces cerevisiae and Escherichia coli metabolic networks; we analyzed the relationship between different community structures and motif distribution patterns. Further, we quantified the degree to which motifs participate in the modular organization of metabolic networks. PMID:26412791

  13. How to facet a gemstone: from potential modularity to the proof of Serre's modularity conjecture

    E-print Network

    Dieulefait, Luis

    2007-01-01

    In this survey paper we present recent results obtained by Khare, Wintenberger and the author that have led to a proof of Serre's conjecture, such as existence of compatible families, modular upper bounds for universal deformation rings and existence of minimal lifts, prime switching and modularity propagation, weight reduction (via existence of conjugates) and (iterated) killing ramification. The main tools used in the proof of these results are modularity lifting theorems a la Wiles and a result of potential modularity due to R. Taylor.

  14. Theory for the Emergence of Modularity in Complex Systems

    NASA Astrophysics Data System (ADS)

    Deem, Michael; Park, Jeong-Man

    2013-03-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a theory for the dynamics of modularity in these systems. We find a principle of least action for the evolved modularity at long times. In addition, we find a fluctuation dissipation relation for the rate of change of modularity at short times. We discuss a number of biological and social systems that can be understood with this framework. The modularity of the protein-protein interaction network increases when yeast are exposed to heat shock, and the modularity of the protein-protein networks in both yeast and E. coli appears to have increased over evolutionary time. Food webs in low-energy, stressful environments are more modular than those in plentiful environments, arid ecologies are more modular during droughts, and foraging of sea otters is more modular when food is limiting. The modularity of social networks changes over time: stock brokers instant messaging networks are more modular under stressful market conditions, criminal networks are more modular under increased police pressure, and world trade network modularity has decreased

  15. COMPONENT VERSION IN MODULAR TOTAL HIP REVISION

    PubMed Central

    Kopec, Michael A.; Pemberton, Aaron; Milbrandt, Joseph C.; Allan, Gordon

    2009-01-01

    Morphologic changes of the proximal femur make revision total hip arthroplasty challenging. Metaphyseal retroversion and diaphyseal varus are common in this scenario. Twenty-one total hip revisions using a modular femoral prosthesis were examined by obtaining three radiographs (A/P, surgical lateral, and true lateral of the femur) to assemble CAD models for determining the range of modular component positioning. An average of femoral neck anteversion was observed. Seventeen of 21 cases (81%) had retroverted metaphyseal segments (?23.2°+/?17.4°) and/or varus stems (?32.1°+/?13.0°). Neck anteversion averaged 21.4°(+/?10.0°). One of 21 cases (5%) resulted in component orientation similar to a non-modular prosthesis. Modular components provide options to accommodate proximal femoral remodeling not afforded by monobloc stems in total hip revision surgery. PMID:19742077

  16. XAUV : modular high maneuverability autonomous underwater vehicle

    E-print Network

    Walker, Daniel G. (Daniel George)

    2009-01-01

    The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

  17. Modular, Intelligent Power Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Button, Robert

    2006-01-01

    NASA's new Space Exploration Initiative demands that vehicles, habitats, and rovers achieve unprecedented levels of reliability, safety, effectiveness, and affordability. Modular and intelligent electrical power systems are critical to achieving those goals. Modular electrical power systems naturally increase reliability and safety through built-in fault tolerance. These modular systems also enable standardization across a multitude of systems, thereby greatly increasing affordability of the programs. Various technologies being developed to support this new paradigm for space power systems will be presented. Examples include the use of digital control in power electronics to enable better performance and advanced modularity functions such as distributed, master-less control and series input power conversion. Also, digital control and robust communication enables new levels of power system control, stability, fault detection, and health management. Summary results from recent development efforts are presented along with expected future technology development needs required to support NASA's ambitious space exploration goals.

  18. Modular Heat Exchanger With Integral Heat Pipe

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    1992-01-01

    Modular heat exchanger with integral heat pipe transports heat from source to Stirling engine. Alternative to heat exchangers depending on integrities of thousands of brazed joints, contains only 40 brazed tubes.

  19. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio...

  20. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio...

  1. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio...

  2. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio...

  3. FINITELY BASED MODULAR CONGRUENCE VARIETIES ARE DISTRIBUTIVE

    E-print Network

    Freese, Ralph S.

    Universalis, 32 (1994) 104­114 c 1994 Birkh¨auser Verlag, Basel R. Dedekind introduced the modular law with atoms a1, . . . , an, and additional elements {cij : 1 i, j n, i = j}, satisfying ai cij = aj cij

  4. Modular biowaste monitoring system conceptual design

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  5. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be... shielded. The physical crystal and tuning capacitors may be located external to the shielded radio...

  6. Optimal Network Modularity for Information Diffusion

    NASA Astrophysics Data System (ADS)

    Nematzadeh, Azadeh; Ferrara, Emilio; Flammini, Alessandro; Ahn, Yong-Yeol

    2014-08-01

    We investigate the impact of community structure on information diffusion with the linear threshold model. Our results demonstrate that modular structure may have counterintuitive effects on information diffusion when social reinforcement is present. We show that strong communities can facilitate global diffusion by enhancing local, intracommunity spreading. Using both analytic approaches and numerical simulations, we demonstrate the existence of an optimal network modularity, where global diffusion requires the minimal number of early adopters.

  7. Group I Ribozymes as a Paradigm for RNA Folding and Evolution

    NASA Astrophysics Data System (ADS)

    Woodson, Sarah A.; Chauhan, Seema

    Group I ribozymes are an ancient class of RNA catalysts that serve as a paradigm for the self-assembly of complex structures of non-coding RNA. The diversity of subtypes illustrates the modular character of RNA architecture and the potential for the evolution of new functions. The folding mechanisms of group I ribozymes illustrate the hierarchy of folding transitions and the importance of kinetic partitioning among competing folding pathways. Studies on group I splicing factors demonstrate how proteins facilitate the assembly of splicing complexes by stabilizing tertiary interactions between domains and by ATP-dependent cycles of RNA unfolding.

  8. Introduction of an RNA stability element at the 5'-end of an antisense RNA cassette increases the inhibition of target RNA translation.

    PubMed

    Engdahl, H M; Lindell, M; Wagner, E G

    2001-02-01

    This communication describes improvement strategies used on a previously described two-unit antisense RNA cassette system. This cassette system encodes RNA with noncontiguous regions of complementarity to a bacterial target RNA, lacI mRNA. One of the units of complementarity was contained within an RNA stem-loop resembling that of the very efficient, naturally occurring antisense RNA CopA. As relatively low inhibitory activity was obtained previously, we tested variants in which several stem-loops were combined within one RNA, each of them directed against a different stretch of target RNA. One to four stem-loop RNAs were tested and found to be relatively ineffective, likely because of low metabolic stability. To increase the intracellular stability of these and other antisense RNAs, a stabilizer element (stem-loop derived from gene 32 mRNA of phage T4) was inserted at their 5'-ends. The results indicate that addition of this element indeed increased antisense RNA efficiency in vivo. As expected, this effect was primarily due to a longer antisense RNA half-life, as shown by RNA abundance (Northern analysis) and decay rates (rifampicin runout experiments). In summary, the results reported indicate that rational design of antisense RNA is feasible, but that the degree of inhibition (approximately 75% maximum inhibition) accomplished here could still be improved. PMID:11258619

  9. RNA as an Enzyme.

    ERIC Educational Resources Information Center

    Cech, Thomas R.

    1986-01-01

    Reviews current findings that explain RNA's function as an enzyme in addition to being an informational molecule. Highlights recent research efforts and notes changes in the information base on RNA activity. Includes models and diagrams of RNA activity. (ML)

  10. [RNA polymerase ribozymes

    E-print Network

    Lawrence, Michael S. (Michael Scott), 1975-

    2005-01-01

    The RNA World is a hypothetical ancient evolutionary era during which RNA was both genome and catalyst. During that time, RNA was the only kind of enzyme yet in existence, and one of its chief duties was the replication ...

  11. Modular Power Converters for PV Applications

    SciTech Connect

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need for detailed design of new power converters for each new application or installation. One set of modules and controllers can be pre-developed and the only design question would be how many modules need to be in series or parallel for the specific power requirement. Then, a designer can put the modules together and add the intelligent reconfigurable controller. The controller determines how many modules are connected, but it might also ask for user input for the specific application during setup. The modules include protection against faults and can reset it, if necessary. In case of a power device failure, the controller reconfigures itself to continue limited operation until repair which might be as simple as taking the faulty module out and inserting a new module. The result is cost savings in design, maintenance, repair, and a grid that is more reliable and available. This concept would be a perfect fit for the recently announced funding opportunity announcement (DE-FOA-0000653) on Plug and Play Photovoltaics.

  12. RNA Chaperones and the RNA Folding Problem*

    E-print Network

    Herschlag, Dan

    problem. For example, in vitro self-splicing reactions of group I introns, which are 200 nucleotidesRNA Chaperones and the RNA Folding Problem* Daniel Herschlag From the Department of Biochemistry, Stanford University, Stanford, California 94305-5307 Functional and structural inter-relationships of RNA

  13. Modular Modeling System Model Builder

    SciTech Connect

    McKim, C.S.; Matthews, M.T.

    1996-12-31

    The latest release of the Modular Modeling System (MMS) Model Builder adds still more time-saving features to an already powerful MMS dynamic-simulation tool set. The Model Builder takes advantage of 32-bit architecture within the Microsoft Windows 95/NT{trademark} Operating Systems to better integrate a mature library of power-plant components. In addition, the MMS Library of components can now be modified and extended with a new tool named MMS CompGen{trademark}. The MMS Model Builder allows the user to quickly build a graphical schematic representation for a plant by selecting from a library of predefined power plant components to dynamically simulate their operation. In addition, each component has a calculation subroutine stored in a dynamic-link library (DLL), which facilitates the determination of a steady-state condition and performance of routine calculations for the component. These calculations, termed auto-parameterization, help avoid repetitive and often tedious hand calculations for model initialization. In striving to meet the needs for large models and increase user productivity, the MMS Model Builder has been completely revamped to make power plant model creation and maintainability easier and more efficient.

  14. Optical backplane for modular avionics

    NASA Astrophysics Data System (ADS)

    Bogenberger, R.; Krumpholz, O.

    1994-10-01

    An experimental study was carried out by DASA and Daimler Benz Research to demonstrate the feasibility of fiber optic technology for use in Modular Avionics. In the first step of the study an inter module communication up to 16 subscribers, with interconnection length of about 1 m was demonstrated. Backplanes being composed of multimode and monomode fibers were tested in a configuration of 4 parallel data channels, each running with 1 GBit/s. This paper will resume results of investigations as: power budget, influence of modal noise with multimode fibers, effects of feedback, as well as optical interference caused by reflections. The paper then goes on to describe the transparency for given protocols (e.g., PI-bus). A prospect of problems arising of optical interconnections of a relatively large number of subscribers and possible solutions by using in-line amplifiers (optically) are reviewed. The backplane implementation is prepared to be arranged as a serial/parallel bus or a part of a switched network. Finally, this paper will give a synopsis of optical backplane solutions.

  15. Modular Wideband Active Vibration Absorber

    NASA Technical Reports Server (NTRS)

    Zewari, Wahid; Lee, Kenneth Y.; Smith, David R.

    1999-01-01

    A comparison of space experiments with previous missions shows a common theme. Some of the recent experiments are based on the scientific fundamentals of instruments of prior years. However, the main distinguishing characteristic is the embodiment of advances in engineering and manufacturing in order to extract clearer and sharper images and extend the limits of measurement. One area of importance to future missions is providing vibration free observation platforms at acceptable costs. It has been shown by researchers that vibration problems cannot be eliminated by passive isolation techniques alone. Therefore, various organizations have conducted research in the area of combining active and passive vibration control techniques. The essence of this paper is to present progress in what is believed to be a new concept in this arena. It is based on the notion that if one active element in a vibration transmission path can provide a reasonable vibration attenuation, two active elements in series may provide more control options and better results. The paper presents the functions of a modular split shaft linear actuator developed by NASA's Goddard Space Flight Center and University of Massachusetts Lowell. It discusses some of the control possibilities facilitated by the device. Some preliminary findings and problems are also discussed.

  16. Modular Chemistry: Secondary Building Units as a Basis for

    E-print Network

    Yaghi, Omar M.

    on the global economy and the fascinating prospects that open networks offer for building complexity of the SBUs and linkers leads to prediction of the framework topology, and in turn to the design and synthesis and predicting topologies of structures, and as synthetic modules for the construction of robust frameworks

  17. A non-coordinatizable sectionally complemented modular lattice with a large Jónsson four-frame

    E-print Network

    Friedrich Wehrung

    2010-08-16

    A sectionally complemented modular lattice L is coordinatizable if it is isomorphic to the lattice L(R) of all principal right ideals of some von Neumann regular (not necessarily unital) ring R. We say that L has a large 4-frame if it has a homogeneous sequence (a_0,a_1,a_2,a_3) such that the neutral ideal generated by a_0 is L. J\\'onsson proved in 1962 that if L has a countable cofinal sequence and a large 4-frame, then it is coordinatizable; whether the cofinal sequence assumption could be dispensed with was left open. We solve this problem by finding a non-coordinatizable sectionally complemented modular lattice L with a large 4-frame; it has cardinality aleph one. Furthermore, L is an ideal in a (necessarily coordinatizable) complemented modular lattice with a spanning 5-frame. Our proof uses Banaschewski functions. A Banaschewski function on a bounded lattice L is an antitone self-map of L that picks a complement for each element of L. In an earlier paper, we proved that every countable complemented modular lattice has a Banaschewski function. We prove that there exists a unit-regular ring R of cardinality aleph one and index of nilpotence 3 such that L(R) has no Banaschewski function.

  18. Teleoperated Modular Robots for Lunar Operations

    NASA Technical Reports Server (NTRS)

    Globus, Al; Hornby, Greg; Larchev, Greg; Hancher, Matt; Cannon, Howard; Lohn, Jason

    2004-01-01

    Solar system exploration is currently carried out by special purpose robots exquisitely designed for the anticipated tasks. However, all contingencies for in situ resource utilization (ISRU), human habitat preparation, and exploration will be difficult to anticipate. Furthermore, developing the necessary special purpose mechanisms for deployment and other capabilities is difficult and error prone. For example, the Galileo high gain antenna never opened, severely restricting the quantity of data returned by the spacecraft. Also, deployment hardware is used only once. To address these problems, we are developing teleoperated modular robots for lunar missions, including operations in transit from Earth. Teleoperation of lunar systems from Earth involves a three second speed-of-light delay, but experiment suggests that interactive operations are feasible.' Modular robots typically consist of many identical modules that pass power and data between them and can be reconfigured for different tasks providing great flexibility, inherent redundancy and graceful degradation as modules fail. Our design features a number of different hub, link, and joint modules to simplify the individual modules, lower structure cost, and provide specialized capabilities. Modular robots are well suited for space applications because of their extreme flexibility, inherent redundancy, high-density packing, and opportunities for mass production. Simple structural modules can be manufactured from lunar regolith in situ using molds or directed solar sintering. Software to direct and control modular robots is difficult to develop. We have used genetic algorithms to evolve both the morphology and control system for walking modular robots3 We are currently using evolvable system technology to evolve controllers for modular robots in the ISS glove box. Development of lunar modular robots will require software and physical simulators, including regolith simulation, to enable design and test of robot software and hardware, particularly automation software. Ready access to these simulators could provide opportunities for contest-driven development ala RoboCup (http://www.robocup.org/). Licensing of module designs could provide opportunities in the toy market and for spin-off applications.

  19. Endomorphisms on half-sided modular inclusions

    SciTech Connect

    Svegstrup, Rolf Dyre

    2006-12-15

    In algebraic quantum field theory we consider nets of von Neumann algebras indexed over regions of the space time. Wiesbrock [''Conformal quantum field theory and half-sided modular inclusions of von Neumann algebras,'' Commun. Math. Phys. 158, 537-543 (1993)] has shown that strongly additive nets of von Neumann algebras on the circle are in correspondence with standard half-sided modular inclusions. We show that a finite index endomorphism on a half-sided modular inclusion extends to a finite index endomorphism on the corresponding net of von Neumann algebras on the circle. Moreover, we present another approach to encoding endomorphisms on nets of von Neumann algebras on the circle into half-sided modular inclusions. There is a natural way to associate a weight to a Moebius covariant endomorphism. The properties of this weight have been studied by Bertozzini et al. [''Covariant sectors with infinite dimension and positivity of the energy,'' Commun. Math. Phys. 193, 471-492 (1998)]. In this paper we show the converse, namely, how to associate a Moebius covariant endomorphism to a given weight under certain assumptions, thus obtaining a correspondence between a class of weights on a half-sided modular inclusion and a subclass of the Moebius covariant endomorphisms on the associated net of von Neumann algebras. This allows us to treat Moebius covariant endomorphisms in terms of weights on half-sided modular inclusions. As our aim is to provide a framework for treating endomorphisms on nets of von Neumann algebras in terms of the apparently simpler objects of weights on half-sided modular inclusions, we lastly give some basic results for manipulations with such weights.

  20. Modular Approach to Instrumental Analysis.

    ERIC Educational Resources Information Center

    Deming, Richard L.; And Others

    1982-01-01

    To remedy certain deficiencies, an instrument analysis course was reorganized into six one-unit modules: optical spectroscopy, magnetic resonance, separations, electrochemistry, radiochemistry, and computers and interfacing. Selected aspects of the course are discussed. (SK)

  1. Advanced Modular Inverter Technology Development

    SciTech Connect

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  2. T7-RNA Polymerase

    NASA Technical Reports Server (NTRS)

    1997-01-01

    T7-RNA Polymerase grown on STS-81. Structure-Function Relationships of RNA Polymerase: DNA-dependent RNA polymerase is the key enzyme responsible for the biosynthesis of RNA, a process known as transcription. Principal Investigator's include Dr. Dan Carter, Dr. B.C. Wang, and Dr. John Rose of New Century Pharmaceuticals.

  3. CCR RNA Biology Initiative

    Cancer.gov

    March 11-12, 2015Natcher Conference Center at NIHBethesda, Maryland Organized by the CCR Initiative in RNA Biology, this symposium will bring together internationally renowned experts in the field of RNA Biology, with the focus on: RNA Processing RNA Stru

  4. Branched modular primers in DNA sequencing

    SciTech Connect

    Mugasimangalam, R.C.; Shmulevitz, M. |; Ramanathan, V.

    1997-08-01

    The need to synthesize new sequencing primers, such as in primer walking, can be eliminated by assembling modular primers from oligonucleotide modules selected from presynthesized libraries. Our earlier modular primers consisted of 5-mers, 6-mers or 7-mers, annealing to the template contiguously with each other. Here we introduce a novel {open_quotes}branched{close_quotes} type of modular primer with a distinctly different specificity mechanism. The concept of a {open_quotes}branched{close_quotes} primer involves modules that are physically linked by annealing to each other as well as to the target, forming a branched structure of the 3-way junction type. While contiguous modular primers are made specific by the preference of the polymerase for longer primer, branched primers, in contrast, owe their specificity to cooperative annealing of their modules to the intended site on the template. This cooperativity of annealing to the template is provided by mutually complementary segments in the two modules that bind each other. Thus the primer-template complex is no longer limited to linear sequences, but acquires another, second dimension giving the modular primer new functionality.

  5. Modular Manufacturing Simulator: Users Manual

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Modular Manufacturing Simulator (MMS) has been developed for the beginning user of computer simulations. Consequently, the MMS cannot model complex systems that require branching and convergence logic. Once a user becomes more proficient in computer simulation and wants to add more complexity, the user is encouraged to use one of the many available commercial simulation systems. The (MMS) is based on the SSE5 that was developed in the early 1990's by the University of Alabama in Huntsville (UAH). A recent survey by MSFC indicated that the simulator has been a major contributor to the economic impact of the MSFC technology transfer program. Many manufacturers have requested additional features for the SSE5. Consequently, the following features have been added to the MMS that are not available in the SSE5: runs under Windows, print option for both input parameters and output statistics, operator can be fixed at a station or assigned to a group of stations, operator movement based on time limit, part limit, or work-in-process (WIP) limit at next station. The movement options for a moveable operators are: go to station with largest WIP, rabbit chase where operator moves in circular sequence between stations, and push/pull where operator moves back and forth between stations. This user's manual contains the necessary information for installing the MMS on a PC, a description of the various MMS commands, and the solutions to a number of sample problems using the MMS. Also included in the beginning of this report is a brief discussion of technology transfer.

  6. Prognostics Health Management for Advanced Small Modular Reactor Passive Components

    SciTech Connect

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Mitchell, Mark R.; Wootan, David W.; Hirt, Evelyn H.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2013-10-18

    In the United States, sustainable nuclear power to promote energy security is a key national energy priority. Advanced small modular reactors (AdvSMR), which are based on modularization of advanced reactor concepts using non-light-water reactor (LWR) coolants such as liquid metal, helium, or liquid salt may provide a longer-term alternative to more conventional LWR-based concepts. The economics of AdvSMRs will be impacted by the reduced economy-of-scale savings when compared to traditional LWRs and the controllable day-to-day costs of AdvSMRs are expected to be dominated by operations and maintenance costs. Therefore, achieving the full benefits of AdvSMR deployment requires a new paradigm for plant design and management. In this context, prognostic health management of passive components in AdvSMRs can play a key role in enabling the economic deployment of AdvSMRs. In this paper, the background of AdvSMRs is discussed from which requirements for PHM systems are derived. The particle filter technique is proposed as a prognostics framework for AdvSMR passive components and the suitability of the particle filter technique is illustrated by using it to forecast thermal creep degradation using a physics-of-failure model and based on a combination of types of measurements conceived for passive AdvSMR components.

  7. Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1,

    E-print Network

    Sontag, Eduardo

    Modular cell biology: retroactivity and insulation Domitilla Del Vecchio1, *, Alexander J Ninfa2 a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation: computational methods; metabolic and regulatory networks Keywords: feedback; insulation; modularity; singular

  8. Modular Apparatus and Method for Attaching Multiple Devices

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S (Inventor)

    2015-01-01

    A modular apparatus for attaching sensors and electronics is disclosed. The modular apparatus includes a square recess including a plurality of cavities and a reference cavity such that a pressure sensor can be connected to the modular apparatus. The modular apparatus also includes at least one voltage input hole and at least one voltage output hole operably connected to each of the plurality of cavities such that voltage can be applied to the pressure sensor and received from the pressure sensor.

  9. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation

    NASA Technical Reports Server (NTRS)

    Krichevsky, A. M.; Kosik, K. S.

    2001-01-01

    RNA granules are a macromolecular structure observed in neurons, where they serve as motile units that translocate mRNAs. Isolated RNA granules are highly enriched in Staufen protein and ultrastructurally contain densely packed clusters of ribosomes. With depolarization, many mRNAs, including those involved in plasticity, rapidly shift from the RNA granule fraction to polysomes. Depolarization reorganizes granules and induces a less compact organization of their ribosomes. RNA granules are not translationally competent, as indicated by the failure to incorporate radioactive amino acids and the absence of eIF4E, 4G, and tRNAs. We concluded that RNA granules are a local storage compartment for mRNAs under translational arrest but are poised for release to actively translated pools. Local release of mRNAs and ribosomes from granules may serve as a macromolecular mechanism linking RNA localization to translation and synaptic plasticity.

  10. Dynamics of overlapping structures in modular networks.

    PubMed

    Almendral, J A; Leyva, I; Li, D; Sendiña-Nadal, I; Havlin, S; Boccaletti, S

    2010-07-01

    Modularity is a fundamental feature of real networks, being intimately bounded to their functionality, i.e., to their capability of performing parallel tasks in a coordinated way. Although the modular structure of real graphs has been intensively studied, very little is known on the interactions between functional modules of a graph. Here, we present a general method based on synchronization of networking oscillators, that is able to detect overlapping structures in multimodular environments. We furthermore report the full analytical and theoretical description on the relationship between the overlapping dynamics and the underlying network topology. The method is illustrated by means of a series of applications. PMID:20866697

  11. Antisense-RNA regulation and RNA interference.

    PubMed

    Brantl, Sabine

    2002-05-01

    For a long time, RNA has been merely regarded as a molecule that can either function as a messenger (mRNA) or as part of the translational machinery (tRNA, rRNA). Meanwhile, it became clear that RNAs are versatile molecules that do not only play key roles in many important biological processes like splicing, editing, protein export and others, but can also--like enzymes--act catalytically. Two important aspects of RNA function--antisense-RNA control and RNA interference (RNAi)--are emphasized in this review. Antisense-RNA control functions in all three kingdoms of life--although the majority of examples are known from bacteria. In contrast, RNAi, gene silencing triggered by double-stranded RNA, the oldest and most ubiquitous antiviral system, is exclusively found in eukaryotes. Our current knowledge about occurrence, biological roles and mechanisms of action of antisense RNAs as well as the recent findings about involved genes/enzymes and the putative mechanism of RNAi are summarized. An interesting intersection between both regulatory mechanisms is briefly discussed. PMID:12020814

  12. Modular wind electric power plant

    SciTech Connect

    Jacobs, M.L.; Jacobs, P.R.

    1980-10-14

    A wind electric power plant has the working components thereof assembled and aligned as a stub tower, then tested at the factory prior to shipment of the assembled stub tower to a use site. The power plant includes adjusting wedges for establishing and maintaining proper alignment between an alternator and a drive unit during shipment and installation.

  13. A modular cage system design for continuous medium to large scale in vivo-rearing of predatory mites (Acari: phytoseiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new stackable modular system was developed for continuous in-vivo production of phytoseiid mites. The system consists of cage units that are filled with lima bean, Phaseolus lunatus, or red beans, P. vulgaris, leaves infested with high levels of the two-spotted spider mites, Tetranychus urticae. T...

  14. Montgomery Modular Multiplication on ARM-NEON Revisited

    E-print Network

    International Association for Cryptologic Research (IACR)

    Montgomery Modular Multiplication on ARM-NEON Revisited Hwajeong Seo1 , Zhe Liu2 , Johann Großsch NEON) has initiated a massive body of research on vector-parallel implementations of Montgomery modular modular multiplication on ARM-NEON platforms. Detailed benchmarking results obtained on an ARM Cortex-A9

  15. Residual properties of the modular group and other free products

    E-print Network

    Liebeck, M. W.

    Residual properties of the modular group and other free products Martin W. Liebeck Department Jerusalem 91904 Israel Abstract Using a probabilistic approach we establish new residual properties of the modular group PSL2(Z), and of more general free products. We prove that the modular group is residually

  16. Understanding the Emergence of Modularity in Neural Systems

    ERIC Educational Resources Information Center

    Bullinaria, John A.

    2007-01-01

    Modularity in the human brain remains a controversial issue, with disagreement over the nature of the modules that exist, and why, when, and how they emerge. It is a natural assumption that modularity offers some form of computational advantage, and hence evolution by natural selection has translated those advantages into the kind of modular

  17. Modular design in natural and biomimetic soft materials.

    PubMed

    Kushner, Aaron M; Guan, Zhibin

    2011-09-19

    Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems. PMID:21898722

  18. On modular ball-quotient surfaces with Kodaira dimension one

    E-print Network

    Momot, Aleksander

    2010-01-01

    Let $\\Gamma \\subset \\mathbf{PU}(2,1)$ be a lattice which is not co-compact, of finite Bergman-covolume and acting freely on the open unit ball $\\mathbf{B} \\subset \\mathbb{C}^2$. Then the compactification $X = \\bar{\\Gamma \\setminus \\mathbf{B}}$ is a smooth projective surface with an elliptic compactification divisor $D = X \\setminus (\\Gamma \\setminus \\mathbf{B})$. In this short note we discover a new class of unramified ball-quotients $X$. We treat ball-quotients $X$ with $kod(X) = h^1(X, \\mathcal{O}_X) = 1$ and prove that all minimal surfaces with finite Mordell-Weil group in the class described are pull-backs of the elliptic modular surface which parametrizes triples $(E,x,y)$ of elliptic curves $E$ with $6$-torsion points $x,y \\in E[6]$ such that $\\Z x+\\Z y = E[36]$.

  19. A Modular Sensorized Mat for Monitoring Infant Posture

    PubMed Central

    Donati, Marco; Cecchi, Francesca; Bonaccorso, Filippo; Branciforte, Marco; Dario, Paolo; Vitiello, Nicola

    2014-01-01

    We present a novel sensorized mat for monitoring infant's posture through the measure of pressure maps. The pressure-sensitive mat is based on an optoelectronic technology developed in the last few years at Scuola Superiore Sant'Anna: a soft silicone skin cover, which constitutes the mat, participates in the transduction principle and provides the mat with compliance. The device has a modular structure (with a minimum of one and a maximum of six sub-modules, and a total surface area of about 1 m2) that enables dimensional adaptation of the pressure-sensitive area to different specific applications. The system consists of on-board electronics for data collection, pre-elaboration, and transmission to a remote computing unit for analysis and posture classification. In this work we present a complete description of the sensing apparatus along with its experimental characterization and validation with five healthy infants. PMID:24385029

  20. Designing and using RNA scaffolds to assemble proteins in vivo.

    PubMed

    Delebecque, Camille J; Silver, Pamela A; Lindner, Ariel B

    2012-10-01

    RNA scaffolds are synthetic noncoding RNA molecules with engineered 3D folding harnessed to spatially organize proteins in vivo. Here we provide a protocol to design, express and characterize RNA scaffolds and their cognate proteins within 1 month. The RNA scaffold designs described here are based on either monomeric or multimeric units harboring RNA aptamers as protein docking sites. The scaffolds and proteins are cloned into inducible plasmids and expressed to form functional assemblies. RNA scaffolds find applications in many fields in which in vivo organization of biomolecules is of interest. RNA scaffolds provide extended flexibility compared with DNA or protein scaffolding strategies through programmed modulation of multiple protein stoichiometry and numbers, as well as the proteins' relative distances and spatial orientations. For synthetic biology, RNA scaffolds provide a new platform that can be used to increase yields of sequential metabolic pathways. PMID:22955695

  1. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013 229 A Modular 1 mm Die-Stacked Sensing Platform

    E-print Network

    Cafarella, Michael J.

    IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 1, JANUARY 2013 229 A Modular 1 mm Die with compatibility to commercial C protocols. A self-adapting power management unit is proposed for efficient battery voltage down conversion for wide range of battery voltages and load current. The power man- agement unit

  2. Variation in the ITS-1 and ITS-2 rRNA genomic regions of Cytauxzoon felis from bobcats and pumas in the eastern United States and comparison with sequences from domestic cats.

    PubMed

    Shock, Barbara C; Birkenheuer, Adam J; Patton, Laura L; Olfenbuttel, Colleen; Beringer, Jeff; Grove, Daniel M; Peek, Matt; Butfiloski, Joseph W; Hughes, Daymond W; Lockhart, J Mitchell; Cunningham, Mark W; Brown, Holly M; Peterson, David S; Yabsley, Michael J

    2012-11-23

    Cytauxzoon felis, a tick-borne protozoan parasite, is the causative agent of cytauxzoonosis in domestic cats in the United States. The natural reservoir for this parasite is the bobcat (Lynx rufus), which typically does not develop clinical signs. Although not likely important reservoirs, C. felis has also been detected in pumas (Puma concolor) in Florida and Louisiana. Recent studies suggest that specific genotypes of C. felis that circulate in domestic cats may be associated with variable clinical outcomes and specific spatial locations. In the current study, we investigated the intraspecific variation of the C. felis internal transcribed spacer (ITS)-1 and ITS-2 rRNA regions from 145 wild felids (139 bobcats and six pumas) from 11 states (Florida, Georgia, Kansas, Kentucky, Louisiana, Missouri, North Carolina, North Dakota, South Carolina, Oklahoma, and Pennsylvania). Unambiguous ITS-1 and ITS-2 data were obtained for 144 and 112 samples, respectively, and both ITS-1 and ITS-2 sequences were obtained for 111 (77%) samples. For the ITS-1 region, sequences from 65 samples collected from wild felids were identical to those previously reported in domestic cats, while the other 79 sequences were unique. C. felis from 45 bobcats and one puma had ITS-1 sequences identical to the most common sequence reported from domestic cats. Within the ITS-2 region, sequences from 49 bobcats were identical to those previously reported in domestic cats and 63 sequences were unique (with some occurring in more than one bobcat). The most common ITS-2 sequence from domestic cats was also common in wild felids (31 bobcats and a puma). Samples from three pumas from Florida and two bobcats from Missouri had a 40- or 41-bp insert in the ITS-2 similar to one described previously in a domestic cat from Arkansas. Additionally, a previously undescribed 198- or 199-bp insert was detected in the ITS-2 sequence from four bobcats. Collectively, based on combined ITS-1 and ITS-2 sequences, five different genotypes were detected in the wild felids. Genotype ITSa was the most common genotype (11 bobcats and one puma) and fewer numbers of ITSb, ITSe, ITSg, and ITSi were detected in bobcats. These data indicate that, based on ITS-1 and ITS-2 sequences, numerous C. felis strains may circulate in wild felids. PMID:22776107

  3. Modular microfluidic system for biological sample preparation

    DOEpatents

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  4. Modular arithmetic weight and cyclic shifting.

    NASA Technical Reports Server (NTRS)

    Hartman, W. F.

    1972-01-01

    This note shows that the modular arithmetic weight of an integer is invariant to the cyclic shifts of its radix-2 form. This result leads to a reduced search for the minimum weight codeword in a cyclic AN-code as well as to a better understanding of previous work.

  5. Modularity and Implementation of Mathematical Operational Semantics

    E-print Network

    Hutton, Graham

    MSFP 2008 Modularity and Implementation of Mathematical Operational Semantics Mauro Jaskelioff1 operational semantics is a popular technique for specifying the meaning of programs by means of inductive clauses. One seeks syntactic restrictions on those clauses so that the resulting operational semantics

  6. Modular differential equations and null vectors

    E-print Network

    Matthias R. Gaberdiel; Christoph A. Keller

    2012-01-27

    We show that every modular differential equation of a rational conformal field theory comes from a null vector in the vacuum Verma module. We also comment on the implications of this result for the consistency of the extremal self-dual conformal field theories at c=24 k.

  7. Honeywell Modular Automation System Computer Software Documentation

    SciTech Connect

    CUNNINGHAM, L.T.

    1999-09-27

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2.

  8. 1 INTRODUCTION The modular finitedifference groundwater flow

    E-print Network

    Russell, Thomas F.

    1 INTRODUCTION The modular finite­difference ground­water flow model (MODFLOW) developed by the U­dimensional ground­water systems (McDonald & Harbaugh, 1988, Harbaugh & McDonald, 1996). MOC3D is a solute is optimal for advection­ dominated systems, which are typical of many field problems involving ground­water

  9. Modular Infrastructure for Rapid Flight Software Development

    NASA Technical Reports Server (NTRS)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  10. Modular polynomial arithmetic in partial fraction decomposition

    NASA Technical Reports Server (NTRS)

    Abdali, S. K.; Caviness, B. F.; Pridor, A.

    1977-01-01

    Algorithms for general partial fraction decomposition are obtained by using modular polynomial arithmetic. An algorithm is presented to compute inverses modulo a power of a polynomial in terms of inverses modulo that polynomial. This algorithm is used to make an improvement in the Kung-Tong partial fraction decomposition algorithm.

  11. What Symbionts Teach us about Modularity

    PubMed Central

    Porcar, Manuel; Latorre, Amparo; Moya, Andrés

    2013-01-01

    The main goal of Synthetic Biology (SB) is to apply engineering principles to biotechnology in order to make life easier to engineer. These engineering principles include modularity: decoupling of complex systems into smaller, orthogonal sub-systems that can be used in a range of different applications. The successful use of modules in engineering is expected to be reproduced in synthetic biological systems. But the difficulties experienced up to date with SB approaches question the short-term feasibility of designing life. Considering the “engineerable” nature of life, here we discuss the existence of modularity in natural living systems, particularly in symbiotic interactions, and compare the behavior of such systems, with those of engineered modules. We conclude that not only is modularity present but it is also common among living structures, and that symbioses are a new example of module-like sub-systems having high similarity with modularly designed ones. However, we also detect and stress fundamental differences between man-made and biological modules. Both similarities and differences should be taken into account in order to adapt SB design to biological laws. PMID:25023877

  12. Consciousness in SLA: A Modular Perspective

    ERIC Educational Resources Information Center

    Truscott, John

    2015-01-01

    Understanding the place of consciousness in second language acquisition (SLA) is crucial for an understanding of how acquisition occurs. Considerable work has been done on this topic, but nearly all of it assumes a highly non-modular view, according to which language and its development is "nothing special". As this assumption runs…

  13. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

  14. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

  15. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

  16. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

  17. 47 CFR 15.212 - Modular transmitters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...modular transmitter must have their own shielding. The physical crystal and tuning capacitors may be located external to the shielded...Only the radio front end must be shielded. The physical crystal and tuning capacitors may be located external to the...

  18. Modular Coating for Flexible Gas Turbine Operation

    NASA Astrophysics Data System (ADS)

    Zimmermann, J. R. A.; Schab, J. C.; Stankowski, A.; Grasso, P. D.; Olliges, S.; Leyens, C.

    2015-11-01

    In heavy duty gas turbines, the loading boundary conditions of MCrAlY systems are differently weighted for different operation regimes as well as for each turbine component or even in individual part locations. For an overall optimized component protection it is therefore of interest to produce coatings with flexible and individually tailored properties. In this context, ALSTOM developed an Advanced Modular Coating Technology (AMCOTEC™), which is based on several powder constituents, each providing specific properties to the final coating, in combination with a new application method, allowing in-situ compositional changes. With this approach, coating properties, such as oxidation, corrosion, and cyclic lifetime, etc., can be modularly adjusted for individual component types and areas. For demonstration purpose, a MCrAlY coating with modular ductility increase was produced using the AMCOTEC™ methodology. The method was proven to be cost effective and a highly flexible solution, enabling fast compositional screening. A calculation method for final coating composition was defined and validated. The modular addition of ductility agent enabled increasing the coating ductility with up to factor 3 with only slight decrease of oxidation resistance. An optimum composition with respect to ductility is reached with addition of 20 wt.% of ductility agent.

  19. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... should consider cancellation of the solicitation in accordance with 48 CFR 14.209 or 15.206(e). To the... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Modular contracting. 39... increments to take advantage of any evolution in technology or needs that occur during implementation and...

  20. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... should consider cancellation of the solicitation in accordance with 48 CFR 14.209 or 15.206(e). To the... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Modular contracting. 39... increments to take advantage of any evolution in technology or needs that occur during implementation and...

  1. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... should consider cancellation of the solicitation in accordance with 48 CFR 14.209 or 15.206(e). To the... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Modular contracting. 39... increments to take advantage of any evolution in technology or needs that occur during implementation and...

  2. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... should consider cancellation of the solicitation in accordance with 48 CFR 14.209 or 15.206(e). To the... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Modular contracting. 39... increments to take advantage of any evolution in technology or needs that occur during implementation and...

  3. 48 CFR 39.103 - Modular contracting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... should consider cancellation of the solicitation in accordance with 48 CFR 14.209 or 15.206(e). To the... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Modular contracting. 39... increments to take advantage of any evolution in technology or needs that occur during implementation and...

  4. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, Charlie; Crook, Jerry

    1997-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for a generic, advanced engine control system that will result in lower software maintenance (operations) costs. It effectively accommodates software requirements changes that occur due to hardware. technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives and benefits of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishment are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software, architecture, reuse software, and reduced software reverification time related to software changes. Currently, the program is focused on supporting MSFC in accomplishing a Space Shuttle Main Engine (SSME) hot-fire test at Stennis Space Center and the Low Cost Boost Technology (LCBT) Program.

  5. Modular Rocket Engine Control Software (MRECS)

    NASA Technical Reports Server (NTRS)

    Tarrant, C.; Crook, J.

    1998-01-01

    The Modular Rocket Engine Control Software (MRECS) Program is a technology demonstration effort designed to advance the state-of-the-art in launch vehicle propulsion systems. Its emphasis is on developing and demonstrating a modular software architecture for advanced engine control systems that will result in lower software maintenance (operations) costs. It effectively accommodates software requirement changes that occur due to hardware technology upgrades and engine development testing. Ground rules directed by MSFC were to optimize modularity and implement the software in the Ada programming language. MRECS system software and the software development environment utilize Commercial-Off-the-Shelf (COTS) products. This paper presents the objectives, benefits, and status of the program. The software architecture, design, and development environment are described. MRECS tasks are defined and timing relationships given. Major accomplishments are listed. MRECS offers benefits to a wide variety of advanced technology programs in the areas of modular software architecture, reuse software, and reduced software reverification time related to software changes. MRECS was recently modified to support a Space Shuttle Main Engine (SSME) hot-fire test. Cold Flow and Flight Readiness Testing were completed before the test was cancelled. Currently, the program is focused on supporting NASA MSFC in accomplishing development testing of the Fastrac Engine, part of NASA's Low Cost Technologies (LCT) Program. MRECS will be used for all engine development testing.

  6. Unifying two Graph Decompositions with Modular Decomposition

    E-print Network

    Fondements et Applications, Université Paris 7

    Unifying two Graph Decompositions with Modular Decomposition Binh-Minh Bui-Xuan1 , Michel Habib2, tournaments, digraphs, and 2-structures. We show that, under some axioms, a unique decomposition tree exists computation, and decomposition tree computation when the tree exists. Our results unify many known

  7. The Road to Feature Modularity? [Discussion Paper

    E-print Network

    Apel, Sven

    and interfaces. Behind the discussion of modularity is lurking another discussion about taking an open-world view or a closed-world view on features. In an open-world view not all features are necessarily known, whereas, in a closed-world view, we globally reason about a closed set of feature implementations. How suitable

  8. RNA-Catalyzed RNA Ligation on an External RNA Template

    NASA Technical Reports Server (NTRS)

    McGinness, Kathleen E.; Joyce, Gerald F.

    2002-01-01

    Variants of the hc ligase ribozyme, which catalyzes ligation of the 3' end of an RNA substrate to the 5' end of the ribozyme, were utilized to evolve a ribozyme that catalyzes ligation reactions on an external RNA template. The evolved ribozyme catalyzes the joining of an oligonucleotide 3'-hydroxyl to the 5'-triphosphate of an RNA hairpin molecule. The ribozyme can also utilize various substrate sequences, demonstrating a largely sequence-independent mechanism for substrate recognition. The ribozyme also carries out the ligation of two oligonucleotides that are bound at adjacent positions on a complementary template. Finally, it catalyzes addition of mononucleoside '5-triphosphates onto the '3 end of an oligonucleotide primer in a template-dependent manner. The development of ribozymes that catalyze polymerase-type reactions contributes to the notion that an RNA world could have existed during the early history of life on Earth.

  9. Performance Evaluation for Modular, Scalable Overhead Cooling Systems In Data Centers

    SciTech Connect

    Xu, TengFang T.

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants' input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 1. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable overhead cooling system. The system was tested in a hot/cold aisle environment without separation, or containment or the hot or cold aisles. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  10. Performance Evaluation for a Modular, Scalable Passive Cooling System in Data Centers

    SciTech Connect

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected passive, modular localized cooling solution provided by vendor 4. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a passive, modular, scalable liquid cooling system in this study. The scope is to quantify energy performance of the modular cooling unit corresponding to various server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  11. Performance Evaluation for Modular, Scalable Cooling Systems with Hot Aisle Containment in Data Centers

    SciTech Connect

    Adams, Barbara J

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. Naturally, the trend toward higher power density resulting from current and future generations of servers has, in the meanwhile, created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 2. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable pair of chilled water cooling modules that were tested in a hot/cold aisle environment with hot aisle containment. The scope of this report is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures. The information generated from this testing when combined with a concurrent research study to document the energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  12. Performance Evaluation for Modular, Scalable Liquid-Rack Cooling Systems in Data Centers

    SciTech Connect

    Xu, TengFang

    2009-05-01

    Scientific and enterprise data centers, IT equipment product development, and research data center laboratories typically require continuous cooling to control inlet air temperatures within recommended operating levels for the IT equipment. The consolidation and higher density aggregation of slim computing, storage and networking hardware has resulted in higher power density than what the raised-floor system design, coupled with commonly used computer rack air conditioning (CRAC) units, was originally conceived to handle. Many existing data centers and newly constructed data centers adopt CRAC units, which inherently handle heat transfer within data centers via air as the heat transfer media. This results in energy performance of the ventilation and cooling systems being less than optimal. Understanding the current trends toward higher power density in IT computing, more and more IT equipment manufacturers are designing their equipment to operate in 'conventional' data center environments, while considering provisions of alternative cooling solutions to either their equipment or supplemental cooling in rack or row systems. In the meanwhile, the trend toward higher power density resulting from current and future generations of servers has created significant opportunities for precision cooling suppliers to engineer and manufacture packaged modular and scalable systems. The modular and scalable cooling systems aim at significantly improving efficiency while addressing the thermal challenges, improving reliability, and allowing for future needs and growth. Such pre-engineered and manufactured systems may be a significant improvement over current design; however, without an energy efficiency focus, their applications could also lead to even lower energy efficiencies in the overall data center infrastructure. The overall goal of the project supported by California Energy Commission was to characterize four commercially available, modular cooling systems installed in a data center. Such modular cooling systems are all scalable localized units, and will be evaluated in terms of their operating energy efficiency in a real data center, respectively, as compared to the energy efficiency of traditional legacy data center cooling systems. The technical objective of this project was to evaluate the energy performance of one of the four commercially available modular cooling systems installed in a data center in Sun Microsystems, Inc. This report is the result of a test plan that was developed with the industrial participants input, including specific design and operating characteristics of the selected modular localized cooling solution provided by vendor 3. The technical evaluation included monitoring and measurement of selected parameters, and establishing and calculating energy efficiency metrics for the selected cooling product, which is a modular, scalable liquid-rack cooling system in this study. The scope is to quantify energy performance of the modular cooling unit in operation as it corresponds to a combination of varied server loads and inlet air temperatures, under various chilled-water supply temperatures. The information generated from this testing when combined with documented energy efficiency of the host data center's central chilled water cooling plant can be used to estimate potential energy savings from implementing modular cooling compared to conventional cooling in data centers.

  13. Modularisation: Aspects of the Debate in Germany and the United Kingdom.

    ERIC Educational Resources Information Center

    Zedler, Reinhard; And Others

    1996-01-01

    Includes four theme articles: "Some Remarks on Modular Training in the Federal Republic of Germany" (Zedler); "Modular Initial and Continuing Education and Training: A Comparative Survey of the Education System in the United Kingdom and Germany" (Hammer); "Modules in Vocational Training" (Wiegand); and "Modularisation and Qualification Reform in…

  14. Electronic fingerprinting of RNA

    E-print Network

    Gegenheimer, Peter Albert

    1988-01-01

    Software has been developed to assist RNA fingerprinting analysis. One program generates, from a DNA sequence data file, the oligonucleotides resulting from digestion of an RNA transcript labeled with any specified ...

  15. Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT){sub n} {center_dot} (GA){sub n} microsatellite embedded within the U2 repeat unit

    SciTech Connect

    Liao, D.; Weiner, A.M.

    1995-12-10

    The RNU2 locus encoding human U2 small nuclear RNA (snRNA) is organized as a nearly perfect tandem array containing 5 to 22 copies of a 5.8-kb repeat unit. Just downstream of the U2 snRNA gene in each 5.8-kb repeat unit lies a large (CT){sub n}{center_dot}(GA){sub n} dinucleotide repeat (n {approx} 70). This form of genomic organization, in which one repeat is embedded within another, provides an unusual opportunity to study the balance of forces maintaining the homogeneity of both kinds of repeats. Using a combination of field inversion gel electrophoresis and polymerase chain reaction, we have been able to study the CT microsatellites within individual U2 tandem arrays. We find that the CT microsatellites within an RNU2 allele exhibit significant length polymorphism, despite the remarkable homogeneity of the surrounding U2 repeat units. Length polymorphism is due primarily to loss or gain of CT dinucleotide repeats, but other types of deletions, insertions, and substitutions are also frequent. Polymorphism is greatly reduced in regions where pure (CT){sub n} tracts are interrupted by occasional G residues, suggesting that irregularities stabilize both the length and the sequence of the dinucleotide repeat. We further show that the RNU2 loci of other catarrhine primates (gorilla, chimpanzee, ogangutan, and baboon) contain orthologous CT microsatellites; these also exhibit length polymorphism, but are highly divergent from each other. Thus, although the CT microsatellite is evolving far more rapidly than the rest of the U2 repeat unit, it has persisted through multiple speciation events spanning >35 Myr. The persistence of the CT microsatellite, despite polymorphism and rapid evolution, suggests that it might play a functional role in concerted evolution of the RNU2 loci, perhaps as an initiation site for recombination and/or gene conversion. 70 refs., 5 figs.

  16. Photovoltaic stand-alone modular systems, phase 2

    NASA Technical Reports Server (NTRS)

    Naff, G. J.; Marshall, N. A.

    1983-01-01

    The final hardware and system qualification phase of a two part stand-alone photovoltaic (PV) system development is covered. The final design incorporated modular, power blocks capable of expanding incrementally from 320 watts to twenty kilowatts (PK). The basic power unit (PU) was nominally rated 1.28 kWp. The controls units, power collection buses and main lugs, electrical protection subsystems, power switching, and load management circuits are housed in a common control enclosure. Photo-voltaic modules are electrically connected in a horizontal daisy-chain method via Amp Solarlok plugs mating with compatible connectors installed on the back side of each photovoltaic module. A pair of channel rails accommodate the mounting of the modules into a frameless panel support structure. Foundations are of a unique planter (tub-like) configuration to allow for world-wide deployment without restriction as to types of soil. One battery string capable of supplying approximately 240 ampere hours nominal of carryover power is specified for each basic power unit. Load prioritization and shedding circuits are included to protect critical loads and selectively shed and defer lower priority or noncritical power demands. The baseline system, operating at approximately 2 1/2 PUs (3.2 kW pk.) was installed and deployed. Qualification was successfully complete in March 1983; since that time, the demonstration system has logged approximately 3000 hours of continuous operation under load without major incident.

  17. Multifunctional RNA Nanoparticles

    PubMed Central

    2015-01-01

    Our recent advancements in RNA nanotechnology introduced novel nanoscaffolds (nanorings); however, the potential of their use for biomedical applications was never fully revealed. As presented here, besides functionalization with multiple different short interfering RNAs for combinatorial RNA interference (e.g., against multiple HIV-1 genes), nanorings also allow simultaneous embedment of assorted RNA aptamers, fluorescent dyes, proteins, as well as recently developed RNA–DNA hybrids aimed to conditionally activate multiple split functionalities inside cells. PMID:25267559

  18. Ensemble structure of the modular and flexible full-length vesicular stomatitis virus phosphoprotein.

    PubMed

    Leyrat, Cédric; Schneider, Robert; Ribeiro, Euripedes A; Yabukarski, Filip; Yao, Mingxi; Gérard, Francine C A; Jensen, Malene Ringkjøbing; Ruigrok, Rob W H; Blackledge, Martin; Jamin, Marc

    2012-10-19

    The phosphoprotein (P) is an essential component of the viral replication machinery of non-segmented negative-strand RNA viruses, connecting the viral polymerase to its nucleoprotein-RNA template and acting as a chaperone of the nucleoprotein by preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of vesicular stomatitis virus (VSV) forms homodimers and possesses a modular organization comprising two stable, well-structured domains concatenated with two intrinsically disordered regions. Here, we used a combination of nuclear magnetic resonance spectroscopy and small-angle X-ray scattering to depict VSV P as an ensemble of continuously exchanging conformers that captures the dynamic character of this protein. We discuss the implications of the dynamics and the large conformational space sampled by VSV P in the assembly and functioning of the viral transcription/replication machinery. PMID:22789567

  19. Overview of the Westinghouse Small Modular Reactor building layout

    SciTech Connect

    Cronje, J. M.; Van Wyk, J. J.; Memmott, M. J.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)

  20. RNA Captor: A Tool for RNA Characterization

    PubMed Central

    Clepet, Christian

    2011-01-01

    Background In the genome era, characterizing the structure and the function of RNA molecules remains a major challenge. Alternative transcripts and non-protein-coding genes are poorly recognized by the current genome-annotation algorithms and efficient tools are needed to isolate the less-abundant or stable RNAs. Results A universal RNA-tagging method using the T4 RNA ligase 2 and special adapters is reported. Based on this system, protocols for RACE PCR and full-length cDNA library construction have been developed. The RNA tagging conditions were thoroughly optimized and compared to previous methods by using a biochemical oligonucleotide tagging assay and RACE PCRs on a range of transcripts. In addition, two large-scale full-length cDNA inventories relying on this method are presented. Conclusion The RNA Captor is a straightforward and accessible protocol. The sensitivity of this approach was shown to be higher compared to previous methods, and applicable on messenger RNAs, non-protein-coding RNAs, transcription-start sites and microRNA-directed cleavage sites of transcripts. This strategy could also be used to study other classes of RNA and in deep sequencing experiments. PMID:21533245

  1. Integrated Modular Avionics for Spacecraft: Earth Observation Use Case Demonstrator

    NASA Astrophysics Data System (ADS)

    Deredempt, Marie-Helene; Rossignol, Alain; Hyounet, Philippe

    2013-08-01

    Integrated Modular Avionics (IMA) for Space, as European Space Agency initiative, aimed to make applicable to space domain the time and space partitioning concepts and particularly the ARINC 653 standard [1][2]. Expected benefits of such an approach are development flexibility, capability to provide differential V&V for different criticality level functionalities and to integrate late or In-Orbit delivery. This development flexibility could improve software subcontracting, industrial organization and software reuse. Time and space partitioning technique facilitates integration of software functions as black boxes and integration of decentralized function such as star tracker in On Board Computer to save mass and power by limiting electronics resources. In aeronautical domain, Integrated Modular Avionics architecture is based on a network of LRU (Line Replaceable Unit) interconnected by AFDX (Avionic Full DupleX). Time and Space partitioning concept is applicable to LRU and provides independent partitions which inter communicate using ARINC 653 communication ports. Using End System (LRU component) intercommunication between LRU is managed in the same way than intercommunication between partitions in LRU. In such architecture an application developed using only communication port can be integrated in an LRU or another one without impacting the global architecture. In space domain, a redundant On Board Computer controls (ground monitoring TM) and manages the platform (ground command TC) in terms of power, solar array deployment, attitude, orbit, thermal, maintenance, failure detection and recovery isolation. In addition, Payload units and platform units such as RIU, PCDU, AOCS units (Star tracker, Reaction wheels) are considered in this architecture. Interfaces are mainly realized through MIL-STD-1553B busses and SpaceWire and this could be considered as the main constraint for IMA implementation in space domain. During the first phase of IMA SP project, ARINC653 impact was analyzed. Requirements and architecture for space domain were defined [3][4] and System Executive platforms (based on Xtratum, Pike OS, and AIR) were developed with RTEMS as Guest OS. This paper focuses on the demonstrator developed by Astrium as part of IMA SP project. This demonstrator has the objective to confirm operational software partitioning feasibility above Xtratum System Executive Platform with acceptable CPU overhead.

  2. Relative Importance of Modularity and Other Morphological Attributes on Different Types of Lithic Point Weapons: Assessing Functional Variations

    PubMed Central

    González-José, Rolando; Charlin, Judith

    2012-01-01

    The specific using of different prehistoric weapons is mainly determined by its physical properties, which provide a relative advantage or disadvantage to perform a given, particular function. Since these physical properties are integrated to accomplish that function, examining design variables and their pattern of integration or modularity is of interest to estimate the past function of a point. Here we analyze a composite sample of lithic points from southern Patagonia likely formed by arrows, thrown spears and hand-held points to test if they can be viewed as a two-module system formed by the blade and the stem, and to evaluate the degree in which shape, size, asymmetry, blade: stem length ratio, and tip angle explain the observed variance and differentiation among points supposedly aimed to accomplish different functions. To do so we performed a geometric morphometric analysis on 118 lithic points, departing from 24 two-dimensional landmark and semi landmarks placed on the point's contour. Klingenberg's covariational modularity tests were used to evaluate different modularity hypotheses, and a composite PCA including shape, size, asymmetry, blade: stem length ratio, and tip angle was used to estimate the importance of each attribute to explaining variation patterns. Results show that the blade and the stem can be seen as “near decomposable units” in the points integrating the studied sample. However, this modular pattern changes after removing the effects of reduction. Indeed, a resharpened point tends to show a tip/rest of the point modular pattern. The composite PCA analyses evidenced three different patterns of morphometric attributes compatible with arrows, thrown spears, and hand-held tools. Interestingly, when analyzed independently, these groups show differences in their modular organization. Our results indicate that stone tools can be approached as flexible designs, characterized by a composite set of interacting morphometric attributes, and evolving on a modular way. PMID:23094104

  3. Probing Xist RNA Structure in Cells Using Targeted Structure-Seq

    PubMed Central

    Rutenberg-Schoenberg, Michael; Simon, Matthew D.

    2015-01-01

    The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function. PMID:26646615

  4. Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup, and Oxygen Separation Equipment; Task 1: Cost Estimates of Small Modular Systems

    SciTech Connect

    Nexant Inc.

    2006-05-01

    This deliverable is the Final Report for Task 1, Cost Estimates of Small Modular Systems, as part of NREL Award ACO-5-44027, ''Equipment Design and Cost Estimation for Small Modular Biomass Systems, Synthesis Gas Cleanup and Oxygen Separation Equipment''. Subtask 1.1 looked into processes and technologies that have been commercially built at both large and small scales, with three technologies, Fluidized Catalytic Cracking (FCC) of refinery gas oil, Steam Methane Reforming (SMR) of Natural Gas, and Natural Gas Liquids (NGL) Expanders, chosen for further investigation. These technologies were chosen due to their applicability relative to other technologies being considered by NREL for future commercial applications, such as indirect gasification and fluidized bed tar cracking. Research in this subject is driven by an interest in the impact that scaling has on the cost and major process unit designs for commercial technologies. Conclusions from the evaluations performed could be applied to other technologies being considered for modular or skid-mounted applications.

  5. Cytoplasmic Z-RNA

    SciTech Connect

    Zarling, D.A.; Calhoun, C.J.; Hardin, C.C.; Zarling, A.H.

    1987-09-01

    Specific immunochemical probes for Z-RNA were generated and characterized to search for possible Z-RNA-like double helices in cells. Z-RNA was detected in the cytoplasm of fixed protozoan cells by immunofluorescence microscopy using these anti-Z-RNA IgCs. In contrast, autoimmune or experimentally elicited anti-DNA antibodies, specifically reactive with B-DNA or Z-DNA, stained the nuclei. Pre-or nonimmune IgGs did not bind to the cells. RNase A or T1 digestion eliminated anti-Z-RNA IgG binding to cytoplasmic determinants; however, DNase I or mung bean nuclease had no effect. Doxorubicin and ethidium bromide prevented anti-Z-RNA antibody binding; however, actinomycin D, which does not bind double-stranded RNA, did not. Anti-Z-RNA immunofluorescence was specifically blocked in competition assays by synthetic Z-RNA but not Z-DNA, A-RNA, or single-stranded RNAs. Thus, some cytoplasmic sequences in fixed cells exist in the left-handed Z-RNA conformation.

  6. Mapping RNA-seq Reads with STAR.

    PubMed

    Dobin, Alexander; Gingeras, Thomas R

    2015-01-01

    Mapping of large sets of high-throughput sequencing reads to a reference genome is one of the foundational steps in RNA-seq data analysis. The STAR software package performs this task with high levels of accuracy and speed. In addition to detecting annotated and novel splice junctions, STAR is capable of discovering more complex RNA sequence arrangements, such as chimeric and circular RNA. STAR can align spliced sequences of any length with moderate error rates, providing scalability for emerging sequencing technologies. STAR generates output files that can be used for many downstream analyses such as transcript/gene expression quantification, differential gene expression, novel isoform reconstruction, and signal visualization. In this unit, we describe computational protocols that produce various output files, use different RNA-seq datatypes, and utilize different mapping strategies. STAR is open source software that can be run on Unix, Linux, or Mac OS X systems. © 2015 by John Wiley & Sons, Inc. PMID:26334920

  7. Preliminary design study. Shuttle modular scanning spectroradiometer

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Fundamental concepts on which to base a detailed design for a Shuttle Modular Scanning Spectroradiometer were developed, and a preliminary design is presented. The recommended design features modularity and flexibility. It includes a 75-cm f/1.7-telescope assembly in an all-reflective Schmidt configuration, a solid state scan system (pushbroom) with high resolution over a 15 deg field of view, and ten detector channels covering the spectral range from 0.45 to 12.5 micrometers. It uses charge transfer device techniques to accommodate a large number of detector elements for earth observation measurements. Methods for in-flight radiometric calibration, for image motion compensation, and for data processing are described. Recommendations for ground support equipment are included, and interfaces with the shuttle orbiter vehicle are illustrated.

  8. Detecting multipartite spatial entanglement with modular variables

    NASA Astrophysics Data System (ADS)

    Barros, M. R.; Farías, O. J.; Keller, A.; Coudreau, T.; Milman, P.; Walborn, S. P.

    2015-08-01

    Interference phenomena of quantum systems have been studied in the context of fundamental aspects of quantum physics and are considered a necessary resource for quantum information. Here we investigate the interference of multiparticle wave packets in terms of modular variables, which is a natural and convenient way to describe two or more interfering wave functions. Through the modular-variable description, interesting phenomena appear such as the complementarity between the number of wave packets and the width of the peaks of the momentum distribution. In the multipartite case, this effect produces quantum entanglement. We derive entanglement criteria that test for bipartite entanglement in generic bipartitions of a multipartite quantum state and use these criteria to test for genuine D -partite entanglement.

  9. Modular, Reconfigurable, High-Energy Technology Development

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Howell, Joe

    2006-01-01

    The Modular, Reconfigurable High-Energy (MRHE) Technology Demonstrator project was to have been a series of ground-based demonstrations to mature critical technologies needed for in-space assembly of a highpower high-voltage modular spacecraft in low Earth orbit, enabling the development of future modular solar-powered exploration cargo-transport vehicles and infrastructure. MRHE was a project in the High Energy Space Systems (HESS) Program, within NASA's Exploration Systems Research and Technology (ESR&T) Program. NASA participants included Marshall Space Flight Center (MSFC), the Jet Propulsion Laboratory (JPL), and Glenn Research Center (GRC). Contractor participants were the Boeing Phantom Works in Huntsville, AL, Lockheed Martin Advanced Technology Center in Palo Alto, CA, ENTECH, Inc. in Keller, TX, and the University of AL Huntsville (UAH). MRHE's technical objectives were to mature: (a) lightweight, efficient, high-voltage, radiation-resistant solar power generation (SPG) technologies; (b) innovative, lightweight, efficient thermal management systems; (c) efficient, 100kW-class, high-voltage power delivery systems from an SPG to an electric thruster system; (d) autonomous rendezvous and docking technology for in-space assembly of modular, reconfigurable spacecraft; (e) robotic assembly of modular space systems; and (f) modular, reconfigurable distributed avionics technologies. Maturation of these technologies was to be implemented through a series of increasingly-inclusive laboratory demonstrations that would have integrated and demonstrated two systems-of-systems: (a) the autonomous rendezvous and docking of modular spacecraft with deployable structures, robotic assembly, reconfiguration both during assembly and (b) the development and integration of an advanced thermal heat pipe and a high-voltage power delivery system with a representative lightweight high-voltage SPG array. In addition, an integrated simulation testbed would have been developed containing software models representing the technologies being matured in the laboratory demos. The testbed would have also included models for non-MRHE developed subsystems such as electric propulsion, so that end-to-end performance could have been assessed. This paper presents an overview of the MRHE Phase I activities at MSFC and its contractor partners. One of the major Phase I accomplishments is the assembly demonstration in the Lockheed Martin Advanced Technology Center (LMATC) Robot-Satellite facility, in which three robot-satellites successfully demonstrated rendezvous & docking, self-assembly, reconfiguration, adaptable GN&C, deployment, and interfaces between modules. Phase I technology maturation results from ENTECH include material recommendations for radiation hardened Stretched Lens Array (SLA) concentrator lenses, and a design concept and test results for a hi-voltage PV receiver. UAH's accomplishments include Supertube heatpipe test results, which support estimates of thermal conductivities at 30,000 times that of an equivalent silver rod. MSFC performed systems trades and developed a preliminary concept design for a 100kW-class modular reconfigurable solar electric propulsion transport vehicle, and Boeing Phantom Works in Huntsville performed assembly and rendezvous and docking trades. A concept animation video was produced by SAIC, wllich showed rendezvous and docking and SLA-square-rigger deployment in LEO.

  10. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    SciTech Connect

    Harto, Andang Widi

    2012-06-06

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  11. Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report

    SciTech Connect

    John Reardon; Art Lilley

    2004-06-15

    On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

  12. Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system

    NASA Astrophysics Data System (ADS)

    Harto, Andang Widi

    2012-06-01

    Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

  13. Molecular Cell RNA Polymerase I Stability Couples

    E-print Network

    Chanfreau, Guillaume

    the transcription of ribosomal DNA (rDNA) by RNA polymerase I (RNAPI). Negative regulation of RNAPI activity rDNA transcription units, whereas regulation of RNAPI transcription factors directly controls RNAPI is controlled by two major mech- anisms: epigenetic control of rDNA chromatin can modulate the number of active

  14. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  15. Predicting thermal displacements in modular tool systems

    NASA Astrophysics Data System (ADS)

    Wessel, Niels; Konvicka, Jan; Weidermann, Frank; Nestmann, Steffen; Neugebauer, Raimund; Schwarz, Udo; Wessel, Anita; Kurths, Jürgen

    2004-03-01

    In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated first from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and again get promising results. The thermally induced errors can be estimated with 1-2 ?m accuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems.

  16. Maass Forms and Quantum Modular Forms

    NASA Astrophysics Data System (ADS)

    Rolen, Larry

    This thesis describes several new results in the theory of harmonic Maass forms and related objects. Maass forms have recently led to a flood of applications throughout number theory and combinatorics in recent years, especially following their development by the work of Bruinier and Funke the modern understanding Ramanujan's mock theta functions due to Zwegers. The first of three main theorems discussed in this thesis concerns the integrality properties of singular moduli. These are well-known to be algebraic integers, and they play a beautiful role in complex multiplication and explicit class field theory for imaginary quadratic fields. One can also study "singular moduli" for special non-holomorphic functions, which are algebraic but are not necessarily algebraic integers. Here we will explain the phenomenon of integrality properties and provide a sharp bound on denominators of symmetric functions in singular moduli. The second main theme of the thesis concerns Zagier's recent definition of a quantum modular form. Since their definition in 2010 by Zagier, quantum modular forms have been connected to numerous different topics such as strongly unimodal sequences, ranks, cranks, and asymptotics for mock theta functions. Motivated by Zagier's example of the quantum modularity of Kontsevich's "strange" function F(q), we revisit work of Andrews, Jimenez-Urroz, and Ono to construct a natural vector-valued quantum modular form whose components. The final chapter of this thesis is devoted to a study of asymptotics of mock theta functions near roots of unity. In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. The theory of mock theta functions has been brought to fruition using the framework of harmonic Maass forms, thanks to Zwegers. Despite this understanding, little attention has been given to Ramanujan's original definition. Here we prove that Ramanujan's examples do indeed satisfy his original definition.

  17. Global vaccination strategies in Modular Networks

    NASA Astrophysics Data System (ADS)

    Parousis-Orthodoxou, K. J.; Stamos, M. M.; Vlachos, D. S.

    2013-02-01

    We study the effect of vaccinating networks with different growing strategies, using various techniques that require the complete knowledge of the network. The goal is to restrain the epidemic before it spreads throughout the network and target the few key nodes that will help contain it. Our target networks are chosen to have relatively large modularity index and various immunization techniques are applied to them.

  18. Modular Habitats Comprising Rigid and Inflatable Modules

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2010-01-01

    Modular, lightweight, fully equipped buildings comprising hybrids of rigid and inflatable structures can be assembled on Earth and then transported to and deployed on the Moon for use as habitats. Modified versions of these buildings could also prove useful on Earth as shelters that can be rapidly and easily erected in emergency situations and/or extreme environments: examples include shelters for hurricane relief and for Antarctic exploration.

  19. Modular test facility for HTS insert coils

    SciTech Connect

    Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2009-10-01

    The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

  20. The Modular Building Block data bus

    SciTech Connect

    Not Available

    1987-05-01

    This document presents a generic description of the Modular Building Block data bus which also includes the bus control processor. The data bus uses coaxial cable as the physical communication medium and employs frequency division multiplexing to accommodate audio, digital, and video signals from a wide variety of computers, radios, telephones, PBXs, cryptos, and other mission equipment. Other documents generated as part of the design definition for specific applications will provide details on subjects such as power levels, power consumption, and frequency allocations.

  1. Copper vapor laser modular packaging assembly

    DOEpatents

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  2. Modular architecture for robotics and teleoperation

    DOEpatents

    Anderson, Robert J. (11908 Ibex Ave., N.E., Albuquerque, NM 87111)

    1996-12-03

    Systems and methods for modularization and discretization of real-time robot, telerobot and teleoperation systems using passive, network based control laws. Modules consist of network one-ports and two-ports. Wave variables and position information are passed between modules. The behavior of each module is decomposed into uncoupled linear-time-invariant, and coupled, nonlinear memoryless elements and then are separately discretized.

  3. Small Modular Reactors (468th Brookhaven Lecture)

    SciTech Connect

    Bari, Robert

    2011-04-20

    With good reason, much more media attention has focused on nuclear power plants than solar farms, wind farms, or hydroelectric plants during the past month and a half. But as nations around the world demand more energy to power everything from cell phone batteries to drinking water pumps to foundries, nuclear plants are the only non-greenhouse-gas producing option that can be built to operate almost anywhere, and can continue to generate power during droughts, after the sun sets, and when winds die down. To supply this demand for power, designers around the world are competing to develop more affordable nuclear reactors of the future: small modular reactors. Brookhaven Lab is working with DOE to ensure that these reactors are designed to be safe for workers, members of surrounding communities, and the environment and to ensure that the radioactive materials and technology will only be used for peaceful purposes, not weapons. In his talk, Bari will discuss the advantages and challenges of small modular reactors and what drives both international and domestic interest in them. He will also explain how Brookhaven Lab and DOE are working to address the challenges and provide a framework for small modular reactors to be commercialized.

  4. MACOP modular architecture with control primitives

    PubMed Central

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  5. Modularity of a Cambrian ptychoparioid trilobite cranidium.

    PubMed

    Webster, Mark; Zelditch, Miriam L

    2011-01-01

    Modularity of the cranidium of Crassifimbra? metalaspis, a Cambrian ptychoparioid trilobite, is investigated using landmark-based geometric morphometric methods to gain insight into the integration among morphogenetic processes responsible for shaping the head of an ancient arthropod. Of particular interest is the extent to which the structure of phenotypic integration was governed by direct interactions among developmental pathways, because these interactions may generate long-term constraints on evolutionary innovation. A modified two-way ANOVA decomposes cranidial shape variation into components representing symmetric variation among individuals and fluctuating asymmetry (FA). The structure of integration of each of these components is inferred from correlated deviations in shape among nine partitions of the cranidium. Significant correlation among partitions in FA indicates direct interactions among their respective developmental pathways. An a priori hypothesis that modularity was determined by functional association among partitions is not well supported by the among-partition correlation structure for either component of variation. Instead, exploratory analyses reveal that phenotypic integration was strongly influenced by spatially localized morphogenetic controls. Comparison of the structures of the Individuals and FA components of variation reveals that the two share relatively few commonalities: the structure of phenotypic integration was only weakly influenced by direct interactions. The large contribution of parallel variation to phenotypic integration suggests that modularity was unlikely to have imposed a long-term constraint on evolutionary innovation in these early trilobites. PMID:21210946

  6. MACOP modular architecture with control primitives.

    PubMed

    Waegeman, Tim; Hermans, Michiel; Schrauwen, Benjamin

    2013-01-01

    Walking, catching a ball and reaching are all tasks in which humans and animals exhibit advanced motor skills. Findings in biological research concerning motor control suggest a modular control hierarchy which combines movement/motor primitives into complex and natural movements. Engineers inspire their research on these findings in the quest for adaptive and skillful control for robots. In this work we propose a modular architecture with control primitives (MACOP) which uses a set of controllers, where each controller becomes specialized in a subregion of its joint and task-space. Instead of having a single controller being used in this subregion [such as MOSAIC (modular selection and identification for control) on which MACOP is inspired], MACOP relates more to the idea of continuously mixing a limited set of primitive controllers. By enforcing a set of desired properties on the mixing mechanism, a mixture of primitives emerges unsupervised which successfully solves the control task. We evaluate MACOP on a numerical model of a robot arm by training it to generate desired trajectories. We investigate how the tracking performance is affected by the number of controllers in MACOP and examine how the individual controllers and their generated control primitives contribute to solving the task. Furthermore, we show how MACOP compensates for the dynamic effects caused by a fixed control rate and the inertia of the robot. PMID:23888140

  7. Ribonuclease T1 generates circular RNA molecules from viroid-specific RNA transcripts by cleavage and intramolecular ligation.

    PubMed Central

    Tsagris, M; Tabler, M; Sänger, H L

    1991-01-01

    A 406 nucleotide long potato spindle tuber viroid (PSTVd)-specific linear RNA transcript was synthesized in vitro and subjected to limited digestion with ribonuclease (RNase) T1. Under certain conditions this guanosine-specific endoribonuclease proved to be capable of processing the longer-than-unit-length, precursor-like viroid RNA transcript by cleaving out a linear 358 nucleotide long product and ligating that to a circular RNA molecule. The new finding that RNase T1 acts as an RNA processing enzyme and, in particular, as an RNA 'circulase' can be explained by the unique structural preconditions inherent in the viroid-specific substrate and by the well characterized two-step cleavage mechanism of the enzyme. These in vitro potentials of RNase T1 suggest that also in vivo procaryotic and eucaryotic RNases with a similar reaction mechanism might not only be involved in RNA degradation and trimming, but also in processing, ligation and recombination of RNA. Images PMID:1709278

  8. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    SciTech Connect

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

  9. Brain modularity controls the critical behavior of spontaneous activity.

    PubMed

    Russo, R; Herrmann, H J; de Arcangelis, L

    2014-01-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure. PMID:24621482

  10. Brain modularity controls the critical behavior of spontaneous activity

    NASA Astrophysics Data System (ADS)

    Russo, R.; Herrmann, H. J.; de Arcangelis, L.

    2014-03-01

    The human brain exhibits a complex structure made of scale-free highly connected modules loosely interconnected by weaker links to form a small-world network. These features appear in healthy patients whereas neurological diseases often modify this structure. An important open question concerns the role of brain modularity in sustaining the critical behaviour of spontaneous activity. Here we analyse the neuronal activity of a model, successful in reproducing on non-modular networks the scaling behaviour observed in experimental data, on a modular network implementing the main statistical features measured in human brain. We show that on a modular network, regardless the strength of the synaptic connections or the modular size and number, activity is never fully scale-free. Neuronal avalanches can invade different modules which results in an activity depression, hindering further avalanche propagation. Critical behaviour is solely recovered if inter-module connections are added, modifying the modular into a more random structure.

  11. The Emergence of Modularity in Biological Systems

    PubMed Central

    Lorenz, Dirk M.; Jeng, Alice; Deem, Michael W.

    2015-01-01

    In this review, we discuss modularity and hierarchy in biological systems. We review examples from protein structure, genetics, and biological networks of modular partitioning of the geometry of biological space. We review theories to explain modular organization of biology, with a focus on explaining how biology may spontaneously organize to a structured form. That is, we seek to explain how biology nucleated from among the many possibilities in chemistry. The emergence of modular organization of biological structure will be described as a symmetry-breaking phase transition, with modularity as the order parameter. Experimental support for this description will be reviewed. Examples will be presented from pathogen structure, metabolic networks, gene networks, and protein-protein interaction networks. Additional examples will be presented from ecological food networks, developmental pathways, physiology, and social networks. There once were two watchmakers, named Hora and Tempus, who manufactured very fine watches. Both of them were highly regarded, and the phones in their workshops rang frequently — new customers were constantly calling them. However, Hora prospered, while Tempus became poorer and poorer and finally lost his shop. What was the reason? The watches the men made consisted of about 1,000 parts each. Tempus had so constructed his that if he had one partly assembled and had to put it down — to answer the phone say— it immediately fell to pieces and had to be reassembled from the elements. The better the customers liked his watches, the more they phoned him, the more difficult it became for him to find enough uninterrupted time to finish a watch. The watches that Hora made were no less complex than those of Tempus. But he had designed them so that he could put together subassemblies of about ten elements each. Ten of these subassemblies, again, could be put together into a larger subassembly; and a system of ten of the latter sub-assemblies constituted the whole watch. Hence, when Hora had to put down a partly assembled watch in order to answer the phone, he lost only a small part of his work, and he assembled his watches in only a fraction of the man-hours it took Tempus.”H. A. Simon, The Architecture of Complexity, 1962 [1]. PMID:21353651

  12. pRNA

    PubMed Central

    Wehner, Stefanie; Dörrich, Anja K; Ciba, Philipp; Wilde, Annegret; Marz, Manja

    2014-01-01

    Promoter-associated RNAs (pRNAs) are a family of ~90–100 nt-long divergent RNAs overlapping the promoter of the rRNA (rDNA) operon. pRNA transcripts interact with TIP5, a component of the chromatin remodeling complex NoRC, which recruits enzymes for heterochromatin formation and mediates silencing of rRNA genes. Here we present a comprehensive analysis of pRNA homologs, including different versions per species, as result of in silico studies in available metazoan genome assemblies. Comparative sequence analysis and secondary structure prediction ended up in two possible secondary structures, which let us assume a possible dual function of pRNAs for regulation of rRNA operons. Furthermore, we validated parts of our computational predictions experimentally by RT-PCR and sequencing. A representative seed alignment of the pRNA family, annotated with possible secondary structures was released to the Rfam database. PMID:24440945

  13. A Universal Protein Tag for Delivery of SiRNA-Aptamer Chimeras

    PubMed Central

    Liu, Hong Yan; Gao, Xiaohu

    2013-01-01

    siRNA-aptamer chimeras have emerged as one of the most promising approaches for targeted delivery of siRNA due to the modularity of their diblock RNA structure, relatively lower cost over other targeted delivery approaches, and, most importantly, the outstanding potential for clinical translation. However, additional challenges must be addressed for efficient RNA interference (RNAi), in particular, endosomal escape. Currently, vast majority of siRNA delivery vehicles are based on cationic materials, which form complexes with negatively charged siRNA. Unfortunately, these approaches complicate the formulations again by forming large complexes with heterogeneous sizes, unfavorable surface charges, colloidal instability, and poor targeting ligand orientation. Here, we report the development of a small and simple protein tag that complements the therapeutic and targeting functionalities of chimera with two functional domains: a dsRNA binding domain (dsRBD) for siRNA docking and a pH-dependent polyhistidine to disrupt endosomal membrane. The protein selectively tags along the siRNA block of individual chimera, rendering the overall size of the complex small, desirable for deep tissue penetration, and the aptamer block accessible for target recognition. More interestingly, we found that extending the c-terminal polyhistidine segment in the protein tag to 18 amino acids completely abolishes the RNA binding function of dsRBD. PMID:24196104

  14. Theory of force-extension curves for modular proteins and DNA hairpins

    NASA Astrophysics Data System (ADS)

    Bonilla, L. L.; Carpio, A.; Prados, A.

    2015-05-01

    We study a model describing the force-extension curves of modular proteins, nucleic acids, and other biomolecules made out of several single units or modules. At a mesoscopic level of description, the configuration of the system is given by the elongations of each of the units. The system free energy includes a double-well potential for each unit and an elastic nearest-neighbor interaction between them. Minimizing the free energy yields the system equilibrium properties whereas its dynamics is given by (overdamped) Langevin equations for the elongations, in which friction and noise amplitude are related by the fluctuation-dissipation theorem. Our results, both for the equilibrium and the dynamical situations, include analytical and numerical descriptions of the system force-extension curves under force or length control and agree very well with actual experiments in biomolecules. Our conclusions also apply to other physical systems comprising a number of metastable units, such as storage systems or semiconductor superlattices.

  15. Indoor unit for electric heat pump

    DOEpatents

    Draper, R.; Lackey, R.S.; Fagan, T.J. Jr.; Veyo, S.E.; Humphrey, J.R.

    1984-05-22

    An indoor unit for an electric heat pump is provided in modular form including a refrigeration module, an air mover module, and a resistance heat package module, the refrigeration module including all of the indoor refrigerant circuit components including the compressor in a space adjacent the heat exchanger, the modules being adapted to be connected to air flow communication in several different ways as shown to accommodate placement of the unit in various orientations. 9 figs.

  16. Fault-tree analysis using modular logic models

    SciTech Connect

    Varnado, G.B.; Horton, W.; Lobner, P.

    1981-01-01

    Nuclear power plants have many features in common. The functions and configuration of safety systems, and the types of components used in the systems are similar for different plants. We developed modular logic models to represent the fundamental fault logic for many commonly occurring nuclear power plant features. We further defined procedures to guide the fault tree analyst through the process of altering and connecting appropriate modular logic models to build detailed fault trees for specific systems. An interactive computer system is used to assemble and alter the modular logic models. This paper discusses the modular logic approach to fault tree analysis and describes the tools currently available to support the approach.

  17. De novo design of heat-repressible RNA thermosensors in E. coli.

    PubMed

    Hoynes-O'Connor, Allison; Hinman, Kristina; Kirchner, Lukas; Moon, Tae Seok

    2015-07-13

    RNA-based temperature sensing is common in bacteria that live in fluctuating environments. Most naturally-occurring RNA thermosensors are heat-inducible, have long sequences, and function by sequestering the ribosome binding site in a hairpin structure at lower temperatures. Here, we demonstrate the de novo design of short, heat-repressible RNA thermosensors. These thermosensors contain a cleavage site for RNase E, an enzyme native to Escherichia coli and many other organisms, in the 5' untranslated region of the target gene. At low temperatures, the cleavage site is sequestered in a stem-loop, and gene expression is unobstructed. At high temperatures, the stem-loop unfolds, allowing for mRNA degradation and turning off expression. We demonstrated that these thermosensors respond specifically to temperature and provided experimental support for the central role of RNase E in the mechanism. We also demonstrated the modularity of these RNA thermosensors by constructing a three-input composite circuit that utilizes transcriptional, post-transcriptional, and post-translational regulation. A thorough analysis of the 24 thermosensors allowed for the development of design guidelines for systematic construction of similar thermosensors in future applications. These short, modular RNA thermosensors can be applied to the construction of complex genetic circuits, facilitating rational reprogramming of cellular processes for synthetic biology applications. PMID:25979263

  18. De novo design of heat-repressible RNA thermosensors in E. coli

    PubMed Central

    Hoynes-O'Connor, Allison; Hinman, Kristina; Kirchner, Lukas; Moon, Tae Seok

    2015-01-01

    RNA-based temperature sensing is common in bacteria that live in fluctuating environments. Most naturally-occurring RNA thermosensors are heat-inducible, have long sequences, and function by sequestering the ribosome binding site in a hairpin structure at lower temperatures. Here, we demonstrate the de novo design of short, heat-repressible RNA thermosensors. These thermosensors contain a cleavage site for RNase E, an enzyme native to Escherichia coli and many other organisms, in the 5? untranslated region of the target gene. At low temperatures, the cleavage site is sequestered in a stem–loop, and gene expression is unobstructed. At high temperatures, the stem–loop unfolds, allowing for mRNA degradation and turning off expression. We demonstrated that these thermosensors respond specifically to temperature and provided experimental support for the central role of RNase E in the mechanism. We also demonstrated the modularity of these RNA thermosensors by constructing a three-input composite circuit that utilizes transcriptional, post-transcriptional, and post-translational regulation. A thorough analysis of the 24 thermosensors allowed for the development of design guidelines for systematic construction of similar thermosensors in future applications. These short, modular RNA thermosensors can be applied to the construction of complex genetic circuits, facilitating rational reprogramming of cellular processes for synthetic biology applications. PMID:25979263

  19. The CMS Modular Track Finder boards, MTF6 and MTF7

    NASA Astrophysics Data System (ADS)

    Acosta, D.; Brown, G.; Carnes, A.; Carver, M.; Curry, D.; Di Giovanni, G. P.; Furic, I.; Kropivnitskaya, A.; Madorsky, A.; Matveev, M.; Padley, P.; Rank, D.; Reeves, C.; Scurlock, B.; Wang, S.

    2013-12-01

    To accommodate the increase in energy and luminosity of the upgraded LHC, the CMS Endcap Muon Level 1 Trigger system has to be significantly modified. To provide the best track reconstruction, the Trigger system must now import all available trigger primitives generated by Cathode Strip Chambers and by other regional subsystems, such as Resistive Plate Chambers. In addition to massive input bandwidth, this also requires a significant increase in logic and memory resources. To satisfy these requirements, a new Sector Processor unit for muon track finding is being designed. This unit follows the micro-TCA standard recently adopted by CMS. It consists of three modules. The Core Logic module houses the large FPGA that contains the processing logic and multi-gigabit serial links for data exchange. The Optical module contains optical receivers and transmitters; it communicates with the Core Logic module via a custom backplane section. The Look-Up Table module contains a large amount of low-latency memory that is used to assign the final transverse momentum of the muon candidate tracks. The name of the unitModular Track Finder — reflects the modular approach used in the design. Presented here are the details of the hardware design of the prototype unit based on Xilinx's Virtex-6 FPGA family, MTF6, as well as results of the conducted tests. Also presented are plans for the pre-production prototype based on the Virtex-7 FPGA family, MTF7.

  20. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments

    E-print Network

    Amemori, Ken-ichi

    We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome–matrisome domains participate in modular reinforcement learning (RL). ...

  1. Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide-bond formation,

    E-print Network

    Yonath, Ada E.

    Minireview Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation Rehovot, Israel b Max-Planck-Research Unit for Ribosomal Structure, 22603 Hamburg, Germany Received 11 The linkage between internal ribosomal symmetry and transfer RNA (tRNA) positioning confirmed positional

  2. RNA-Magnesium-Protein Interactions in Large Ribosomal Subunit Anton S. Petrov,,

    E-print Network

    Williams, Loren

    RNA-Magnesium-Protein Interactions in Large Ribosomal Subunit Anton S. Petrov,,§ Chad R. Bernier of Technology, Atlanta, Georgia 30332, United States ABSTRACT: Some of the magnesium ions in the ribosome are coordinated by multiple rRNA phosphate groups. These magnesium ions link distal sequences of rRNA, primarily

  3. Ribonucleic acid (RNA) biosynthesis in human cancer.

    PubMed

    Hajjawi, Omar S

    2015-01-01

    In many respects, the most remarkable chemical substances within the genome of eukaryotic cells are remarkable proteins which are the critical structural and functional units of living cells. The specifications for everything that goes in the cell are natural digital-to-digital decoding process in an archive sequence by deoxyribonucleic acid (DNA) and an articulate construction by ribonucleic acid (RNA). The products of DNA transcription are long polymers of ribonucleotides rather than deoxyribonucleotides and are termed ribonucleic acids. Certain deoxyribonucleotide sequences, or genes, give rise to transfer RNA (tRNA) and other ribosomal RNA (rRNA) when transcribed. The ribonucleotide sequences fold extensively and rRNA is associated with specific proteins to yield the essential cell components, ribosomes. Transcription of other special sequences yields messenger RNAs (mRNAs) that contain ribonucleotide sequences that will be ultimately translated into new types of amino acid sequences of functional cellular protein molecules. This switch to a different variety of cellular molecular sequences is complex, but each sequence of the three ribonucleotides specifies the insertion of one particular amino acid into the polypeptide chain under production. Whilst mRNA is considered the vehicle by which genetic information is transmitted from the genome and allocated in the appropriate cytoplasmic sites for translation into protein via cap-dependent mechanism, the actual translation depends also on the presence of other so-called household and luxury protein molecules. Recent evidence suggests RNA species are required at initiation, because treatment of cells with antibiotics or drugs that inhibit RNA synthesis cause a decrease in protein synthesis. The rRNA is necessary as a structural constituent of the ribosomes upon which translation takes place, whereas tRNA is necessary as an adaptor in amino acid activation and elongation protein chains to ribosomes. In this article, we review malignant tumor, with stem like properties, and recent technical advances into the phenomenon of micro-particles and micro-vesicles containing cell-free nucleic acids that circulate plasma. New areas of research have been opened into screening tumor telomerase progression, prognosis of aptamers targeting cell surface, monitoring the efficacy of anticancer therapies, oncogenic transformation of host cell, and RNA polymerases role in the cell cycle progression and differentiation. PMID:25717284

  4. Promoting RNA helical stacking via A-minor junctions

    PubMed Central

    Geary, Cody; Chworos, Arkadiusz; Jaeger, Luc

    2011-01-01

    RNA molecules take advantage of prevalent structural motifs to fold and assemble into well-defined 3D architectures. The A-minor junction is a class of RNA motifs that specifically controls coaxial stacking of helices in natural RNAs. A sensitive self-assembling supra-molecular system was used as an assay to compare several natural and previously unidentified A-minor junctions by native polyacrylamide gel electrophoresis and atomic force microscopy. This class of modular motifs follows a topological rule that can accommodate a variety of interchangeable A-minor interactions with distinct local structural motifs. Overall, two different types of A-minor junctions can be distinguished based on their functional self-assembling behavior: one group makes use of triloops or GNRA and GNRA-like loops assembling with helices, while the other takes advantage of more complex tertiary receptors specific for the loop to gain higher stability. This study demonstrates how different structural motifs of RNA can contribute to the formation of topologically equivalent helical stacks. It also exemplifies the need of classifying RNA motifs based on their tertiary structural features rather than secondary structural features. The A-minor junction rule can be used to facilitate tertiary structure prediction of RNAs and rational design of RNA parts for nanobiotechnology and synthetic biology. PMID:20876687

  5. An Overview of the Safety Case for Small Modular Reactors

    SciTech Connect

    Ingersoll, Daniel T

    2011-01-01

    Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term inherently safe designs, which later evolved into passively safe terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States.

  6. CCR RNA Biology Initiative

    Cancer.gov

    If you are a CCR PI, Staff Scientist or Staff Clinician and are interested in joining the CCR RNA Biology Initiative, or have questions about the site, please contact Brenda Boersma or Joe Ziegelbauer. All others are welcome to join the CCR RNA Biology li

  7. Lightweight composites for modular panelized construction

    NASA Astrophysics Data System (ADS)

    Vaidya, Amol S.

    Rapid advances in construction materials technology have enabled civil engineers to achieve impressive gains in the safety, economy, and functionality of structures built to serve the common needs of society. Modular building systems is a fast-growing modern, form of construction gaining recognition for its increased efficiency and ability to apply modern technology to the needs of the market place. In the modular construction technique, a single structural panel can perform a number of functions such as providing thermal insulation, vibration damping, and structural strength. These multifunctional panels can be prefabricated in a manufacturing facility and then transferred to the construction site. A system that uses prefabricated panels for construction is called a "panelized construction system". This study focuses on the development of pre-cast, lightweight, multifunctional sandwich composite panels to be used for panelized construction. Two thermoplastic composite panels are proposed in this study, namely Composite Structural Insulated Panels (CSIPs) for exterior walls, floors and roofs, and Open Core Sandwich composite for multifunctional interior walls of a structure. Special manufacturing techniques are developed for manufacturing these panels. The structural behavior of these panels is analyzed based on various building design codes. Detailed descriptions of the design, cost analysis, manufacturing, finite element modeling and structural testing of these proposed panels are included in this study in the of form five peer-reviewed journal articles. The structural testing of the proposed panels involved in this study included flexural testing, axial compression testing, and low and high velocity impact testing. Based on the current study, the proposed CSIP wall and floor panels were found satisfactory, based on building design codes ASCE-7-05 and ACI-318-05. Joining techniques are proposed in this study for connecting the precast panels on the construction site. Keywords: Modular panelized construction, sandwich composites, composite structural insulated panels (CSIPs).

  8. Understanding regulation of mRNA by RNA binding proteins

    E-print Network

    Robertson, Alexander De Jong

    2014-01-01

    Posttranscriptional regulation of mRNA by RNA-binding proteins plays key roles in regulating the transcriptome over the course of development, between tissues and in disease states. The specific interactions between mRNA ...

  9. Modular, Parallel Pulse-Shaping Filter Architectures

    NASA Technical Reports Server (NTRS)

    Gray, Andrew A.

    2003-01-01

    Novel architectures based on parallel subconvolution frequency-domain filtering methods have been developed for modular processing rate reduction of discrete-time pulse-shaping filters. Such pulse-shaping is desirable and often necessary to obtain bandwidth efficiency in very-high-rate wireless communications systems. In principle, this processing could be implemented in very-large-scale integrated (VLSI) circuits. Whereas other approaches to digital pulse-shaping are based primarily on time-domain processing concepts, the theory and design rules of the architectures presented here are founded on frequency-domain processing that has advantages in certain systems.

  10. Nucleic acid amplification using modular branched primers

    DOEpatents

    Ulanovsky, Levy (Westmont, IL)

    2001-01-01

    Methods and compositions expand the options for making primers for use in amplifying nucleic acid segments. The invention eliminates the step of custom synthesis of primers for Polymerase Chain Reactions (PCR). Instead of being custom-synthesized, a primer is replaced by a combination of several oligonucleotide modules selected from a pre-synthesized library. A modular combination of just a few oligonucleotides essentially mimics the performance of a conventional, custom-made primer by matching the sequence of the priming site in the template. Each oligonucleotide module has a segment that matches one of the stretches within the priming site.

  11. New Modular Camera No Ordinary Joe

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Although dubbed 'Little Joe' for its small-format characteristics, a new wavefront sensor camera has proved that it is far from coming up short when paired with high-speed, low-noise applications. SciMeasure Analytical Systems, Inc., a provider of cameras and imaging accessories for use in biomedical research and industrial inspection and quality control, is the eye behind Little Joe's shutter, manufacturing and selling the modular, multi-purpose camera worldwide to advance fields such as astronomy, neurobiology, and cardiology.

  12. Modular strategies for PET imaging agents

    SciTech Connect

    Hooker, , J.M.

    2010-03-01

    In recent years, modular and simplified chemical and biological strategies have been developed for the synthesis and implementation of positron emission tomography (PET) radiotracers. New developments in bioconjugation and synthetic methodologies, in combination with advances in macromolecular delivery systems and gene-expression imaging, reflect a need to reduce radiosynthesis burden in order to accelerate imaging agent development. These new approaches, which are often mindful of existing infrastructure and available resources, are anticipated to provide a more approachable entry point for researchers interested in using PET to translate in vitro research to in vivo imaging.

  13. Data Acquisition for Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  14. Modular Track System For Positioning Mobile Robots

    NASA Technical Reports Server (NTRS)

    Miller, Jeff

    1995-01-01

    Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.

  15. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin (Danbury, CT); Urko, Willam (West Granby, CT)

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  16. Modular platform for low-light microscopy.

    PubMed

    Kim, Tae Jin; Tuerkcan, Silvan; Ceballos, Andrew; Pratx, Guillem

    2015-11-01

    Cell imaging using low-light techniques such as bioluminescence, radioluminescence, and low-excitation fluorescence has received increased attention, particularly due to broad commercialization of highly sensitive detectors. However, the dim signals are still regarded as difficult to image using conventional microscopes, where the only low-light microscope in the market is primarily optimized for bioluminescence imaging. Here, we developed a novel modular microscope that is cost-effective and suitable for imaging different low-light luminescence modes. Results show that this microscope system features excellent aberration correction capabilities and enhanced image resolution, where bioluminescence, radioluminescence and epifluorescence images were captured and compared with the commercial bioluminescence microscope. PMID:26601020

  17. Intelligent subsystem interface for modular hardware system

    NASA Technical Reports Server (NTRS)

    Krening, Douglas N. (Inventor); Lannan, Gregory B. (Inventor); Schneiderwind, Michael J. (Inventor); Schneiderwind, Robert A. (Inventor); Caffrey, Robert T. (Inventor)

    2000-01-01

    A single chip application specific integrated circuit (ASIC) which provides a flexible, modular interface between a subsystem and a standard system bus. The ASIC includes a microcontroller/microprocessor, a serial interface for connection to the bus, and a variety of communications interface devices available for coupling to the subsystem. A three-bus architecture, utilizing arbitration, provides connectivity within the ASIC and between the ASIC and the subsystem. The communication interface devices include UART (serial), parallel, analog, and external device interface utilizing bus connections paired with device select signals. A low power (sleep) mode is provided as is a processor disable option.

  18. Prototype of the Modular Equipment Transporter (MET)

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A prototype of the Modular Equipment Transporter (MET), nicknamed the 'Rickshaw' after its shape and method of propulsion. This equipment was used by the Apollo 14 astronauts during their geological and lunar surface simulation training in the Pinacate volcanic area of northwestern Sonora, Mexico. The Apollo 14 crew will be the first one to use the MET. It will be a portable workbench with a place for the lunar handtools and their carrier, three cameras, two sample container bags, a Special Environmental Sample Container, spare film magazines, and a Lunar Surface Penetrometer.

  19. Modular platform for low-light microscopy

    PubMed Central

    Kim, Tae Jin; Tuerkcan, Silvan; Ceballos, Andrew; Pratx, Guillem

    2015-01-01

    Cell imaging using low-light techniques such as bioluminescence, radioluminescence, and low-excitation fluorescence has received increased attention, particularly due to broad commercialization of highly sensitive detectors. However, the dim signals are still regarded as difficult to image using conventional microscopes, where the only low-light microscope in the market is primarily optimized for bioluminescence imaging. Here, we developed a novel modular microscope that is cost-effective and suitable for imaging different low-light luminescence modes. Results show that this microscope system features excellent aberration correction capabilities and enhanced image resolution, where bioluminescence, radioluminescence and epifluorescence images were captured and compared with the commercial bioluminescence microscope. PMID:26601020

  20. Language constructs for modular parallel programs

    SciTech Connect

    Foster, I.

    1996-03-01

    We describe programming language constructs that facilitate the application of modular design techniques in parallel programming. These constructs allow us to isolate resource management and processor scheduling decisions from the specification of individual modules, which can themselves encapsulate design decisions concerned with concurrence, communication, process mapping, and data distribution. This approach permits development of libraries of reusable parallel program components and the reuse of these components in different contexts. In particular, alternative mapping strategies can be explored without modifying other aspects of program logic. We describe how these constructs are incorporated in two practical parallel programming languages, PCN and Fortran M. Compilers have been developed for both languages, allowing experimentation in substantial applications.

  1. DEAD-box RNA helicase domains exhibit a continuum between complete functional independence and high thermodynamic coupling in nucleotide and RNA duplex recognition

    PubMed Central

    Samatanga, Brighton; Klostermeier, Dagmar

    2014-01-01

    DEAD-box helicases catalyze the non-processive unwinding of double-stranded RNA (dsRNA) at the expense of adenosine triphosphate (ATP) hydrolysis. Nucleotide and RNA binding and unwinding are mediated by the RecA domains of the helicase core, but their cooperation in these processes remains poorly understood. We therefore investigated dsRNA and nucleotide binding by the helicase cores and the isolated N- and C-terminal RecA domains (RecA_N, RecA_C) of the DEAD-box proteins Hera and YxiN by steady-state and time-resolved fluorescence methods. Both helicases bind nucleotides predominantly via RecA_N, in agreement with previous studies on Mss116, and with a universal, modular function of RecA_N in nucleotide recognition. In contrast, dsRNA recognition is different: Hera interacts with dsRNA in the absence of nucleotide, involving both RecA domains, whereas for YxiN neither RecA_N nor RecA_C binds dsRNA, and the complete core only interacts with dsRNA after nucleotide has been bound. DEAD-box proteins thus cover a continuum from complete functional independence of their domains, exemplified by Mss116, to various degrees of inter-domain cooperation in dsRNA binding. The different degrees of domain communication and of thermodynamic linkage between dsRNA and nucleotide binding have important implications on the mechanism of dsRNA unwinding, and may help direct RNA helicases to their respective cellular processes. PMID:25123660

  2. Mosaic heterochrony and evolutionary modularity: the trilobite genus Zacanthopsis as a case study.

    PubMed

    Gerber, Sylvain; Hopkins, Melanie J

    2011-11-01

    Logical connections exist between evolutionary modularity and heterochrony, two unifying and structuring themes in the expanding field of evolutionary developmental biology. The former sees complex phenotypes as being made up of semi-independent units of evolutionary transformation; the latter requires such a modular organization of phenotypes to occur in a localized or mosaic fashion. This conceptual relationship is illustrated here by analyzing the evolutionary changes in the cranidial ontogeny of two related species of Cambrian trilobites. With arguments from comparative developmental genetics and functional morphology, we delineate putative evolutionary modules within the cranidium and examine patterns of evolutionary changes in ontogeny at both global and local scales. Results support a case of mosaic heterochrony, that is, a combination of local heterochronies affecting the different parts individuated in the cranidium, leading to the complex pattern of allometric repatterning observed at the global scale. Through this example, we show that recasting morphological analyses of complex phenotypes with a priori knowledge or hypotheses about their organizational and variational properties can significantly improve our interpretation and understanding of evolutionary changes among related taxa, fossil and extant. Such considerations open avenues to investigate the large-scale dynamics of modularity and its role in phenotypic evolution. PMID:22023589

  3. Project Antares: A low cost modular launch vehicle for the future

    NASA Technical Reports Server (NTRS)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

    1991-01-01

    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  4. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  5. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect

    Bernard, J.A. . Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. . Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  6. Towards a piRNA prediction using multiple kernel fusion and support vector machine

    PubMed Central

    Brayet, Jocelyn; Zehraoui, Farida; Jeanson-Leh, Laurence; Israeli, David; Tahi, Fariza

    2014-01-01

    Motivation: Piwi-interacting RNA (piRNA) is the most recently discovered and the least investigated class of Argonaute/Piwi protein-interacting small non-coding RNAs. The piRNAs are mostly known to be involved in protecting the genome from invasive transposable elements. But recent discoveries suggest their involvement in the pathophysiology of diseases, such as cancer. Their identification is therefore an important task, and computational methods are needed. However, the lack of conserved piRNA sequences and structural elements makes this identification challenging and difficult. Results: In the present study, we propose a new modular and extensible machine learning method based on multiple kernels and a support vector machine (SVM) classifier for piRNA identification. Very few piRNA features are known to date. The use of a multiple kernels approach allows editing, adding or removing piRNA features that can be heterogeneous in a modular manner according to their relevance in a given species. Our algorithm is based on a combination of the previously identified features [sequence features (k-mer motifs and a uridine at the first position) and piRNAs cluster feature] and a new telomere/centromere vicinity feature. These features are heterogeneous, and the kernels allow to unify their representation. The proposed algorithm, named piRPred, gives promising results on Drosophila and Human data and outscores previously published piRNA identification algorithms. Availability and implementation: piRPred is freely available to non-commercial users on our Web server EvryRNA http://EvryRNA.ibisc.univ-evry.fr Contact: tahi@ibisc.univ-evry.fr PMID:25161221

  7. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains

    PubMed Central

    Wright, Patrick R.; Georg, Jens; Mann, Martin; Sorescu, Dragos A.; Richter, Andreas S.; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R.; Backofen, Rolf

    2014-01-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  8. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains.

    PubMed

    Wright, Patrick R; Georg, Jens; Mann, Martin; Sorescu, Dragos A; Richter, Andreas S; Lott, Steffen; Kleinkauf, Robert; Hess, Wolfgang R; Backofen, Rolf

    2014-07-01

    CopraRNA (Comparative prediction algorithm for small RNA targets) is the most recent asset to the Freiburg RNA Tools webserver. It incorporates and extends the functionality of the existing tool IntaRNA (Interacting RNAs) in order to predict targets, interaction domains and consequently the regulatory networks of bacterial small RNA molecules. The CopraRNA prediction results are accompanied by extensive postprocessing methods such as functional enrichment analysis and visualization of interacting regions. Here, we introduce the functionality of the CopraRNA and IntaRNA webservers and give detailed explanations on their postprocessing functionalities. Both tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:24838564

  9. Parallelized extreme learning machine ensemble based on minmax modular network

    E-print Network

    Lu, Bao-Liang

    Available online 26 October 2013 Keywords: Extreme learning machine Min­max modular network Big data ensemble based on the Min­Max Modular network (M3 -network) to meet the challenge of the so-called big data- called big data. This term refers to a collection of data sets so large and complex that it becomes

  10. Advanced Modularity Design for The MIT Pebble Bed Reactor

    E-print Network

    volume. Once equipment in the space frame is installed, the space frame would then be shipped to the site. It is expected that this modularity approach will significantly shorten construction time and expense. This paper Beijing, CHINA, September 22-24, 2004 #Paper D14 1 #12;2 Advanced Modularity Design for The MIT Pebble Bed

  11. Modular Building Supplement: A Quick, Quality Solution for Schools.

    ERIC Educational Resources Information Center

    Goodmiller, Brian D.; Schendell, Derek G.

    2003-01-01

    This supplement presents three articles on modular construction that look at: "Fast Track Expansion for a New Jersey School" (involving a modular addition); "Precast Construction Helps Schools Meet Attendance Boom" (precast concrete components are quick, durable, and flexible); and "Airing HVAC Concerns" (poor indoor air quality in prefabricated…

  12. Modular Transformations of Ramanujan's Tenth Order Mock Theta Functions

    E-print Network

    Moore, Wynton

    2012-01-01

    The modular transformations of Ramanujan's tenth order mock theta functions are computed, beginning from Choi's Hecke-type identites and using Zwegers' results on indefinite theta series. Explicit completions and shadows are found as an intermediate step. Our result for the modular transformations confirms numerical work by Gordon and McIntosh, and a recent conjecture by Cheng, Duncan, and Harvey.

  13. Modular Transformations of Ramanujan's Tenth Order Mock Theta Functions

    E-print Network

    Wynton Moore

    2012-12-14

    The modular transformations of Ramanujan's tenth order mock theta functions are computed, beginning from Choi's Hecke-type identites and using Zwegers' results on indefinite theta series. Explicit completions and shadows are found as an intermediate step. Our result for the modular transformations confirms numerical work by Gordon and McIntosh, and a recent conjecture by Cheng, Duncan, and Harvey.

  14. Dynamic modularity in protein interaction networks predicts breast cancer outcome

    E-print Network

    Morris, Quaid

    Dynamic modularity in protein interaction networks predicts breast cancer outcome Ian W Taylor1 associated with oncogenesis. Analysis of two breast cancer patient cohorts revealed that altered modularity of the human interactome may be useful as an indicator of breast cancer prognosis. Transcriptome analyses have

  15. An explicit Schrödinger picture for Aharonov's Modular Variable concept

    E-print Network

    A. C. Lobo; C. A. Ribeiro

    2011-08-12

    We propose to address in a natural manner, the modular variable concept explicitly in a Schr\\"odinger picture. The idea of Modular Variables was introduced in 1969 by Aharonov, Pendleton and Petersen to explain certain non-local properties of quantum mechanics. Our approach to this subject is based on Schwinger's finite quantum kinematics and it's continuous limit.

  16. Modular Distributed Watershed Educational Toolbox (MOD-WET)

    E-print Network

    Margulis, Steven A.

    Modular Distributed Watershed Educational Toolbox (MOD-WET) User's Guide 2015b Edition This guide serves as a basic tutorial for setting up and running simulations using the MOD-WET watershed model September 2015 #12;MOD-WET 2015b Edition i Table of Contents 1. Introduction: Modular Distributed Watershed

  17. Modularity and Specialized Learning in the Organization of Behaviour

    E-print Network

    Bryson, Joanna J.

    Modularity and Specialized Learning in the Organization of Behaviour Joanna Bryson and Lynn Andrea modelling learning in specialised hybrid systems which can support both complex behaviour and neural structures and interactions we know to exist in animal brains. In particular, modularity is a much

  18. Modularity, individuality, and evo-devo in butterfly wings

    E-print Network

    Beldade, Patrícia

    Modularity, individuality, and evo-devo in butterfly wings Patri´cia Beldade*, Kees Koops, and Paul selection to explore the modular organization of butterfly wing patterns and the extent to which, in Bicyclus anynana butterflies, despite the evidence that all eyespots are developmentally coupled

  19. VMCrypt -Modular Software Architecture for Scalable Secure Computation

    E-print Network

    International Association for Cryptologic Research (IACR)

    VMCrypt - Modular Software Architecture for Scalable Secure Computation Lior Malka Jonathan Katz Abstract Garbled circuits play a key role in secure computation. Unlike previous work, which focused mainly on efficiency and automation aspects of secure computation, in this paper we focus on software modularity

  20. Modules of human micro-RNA co-target network

    NASA Astrophysics Data System (ADS)

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, P. K.

    2011-05-01

    Human micro RNAs (miRNAs) target about 90% of the coding genes and form a complex regulatory network. We study the community structure of the miRNA co-target network considering miRNAs as the nodes which are connected by weighted links. The weight of link that connects a pair of miRNAs denote the total number of common transcripts targeted by that pair. We argue that the network consists of about 74 modules, quite similar to the components (or clusters) obtained earlier [Online J Bioinformatics, 10,280], indicating that the components of the miRNA co-target network are self organized in a way to maximize the modularity.

  1. Modelling pre-rRNA 

    E-print Network

    Axt, Konstantin

    2013-06-29

    In this project rRNA maturation was investigated with the help of mathematical models of processing pathways from pre-rRNA to mature rRNA species. Previously described models were transferred from Excel to Mathematica. ...

  2. Building blocks of a fish head: Developmental and variational modularity in a complex system.

    PubMed

    Lehoux, Caroline; Cloutier, Richard

    2015-11-01

    Evolution of the vertebrate skull is developmentally constrained by the interactions among its anatomical systems, such as the dermatocranium and the sensory system. The interaction between the dermal bones and lateral line canals has been debated for decades but their morphological integration has never been tested. An ontogenetic series of 97 juvenile and adult Amia calva (Actinopterygii) was used to describe the patterning and modularity of sensory lateral line canals and their integration with supporting cranial bones. Developmental modules were tested for the otic canal and supratemporal commissure by computing correlations in the branching sequence of groups of pores. Landmarks were digitized on 25 specimens to test a priori hypotheses of variational and developmental modularity at the level of canals and dermal bones. Branching sequence suggests a specific patterning supported by significant positive correlations in the sequence of appearance of branches between bilateral sides. Differences in patterning between the otic canal and the supratemporal commissure and tests of modularity with geometric morphometrics suggest that both canals form distinct modules. The integration between bones and canals was insufficient to detect a module. However, both components were not independent. Groups of pores tended to disappear without affecting other groups of pores suggesting that they are quasi-independent units acting as modules. This study provides evidence of a hierarchical organization for the modular sensory system that could explain variation of pattern of canals among species and their association with dermal bones. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 614-628, 2015. © 2015 Wiley Periodicals, Inc. PMID:26227536

  3. Ab initio RNA folding

    NASA Astrophysics Data System (ADS)

    Cragnolini, Tristan; Derreumaux, Philippe; Pasquali, Samuela

    2015-06-01

    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, the need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties, when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.

  4. Intelligent Control of Modular Robotic Welding Cell

    SciTech Connect

    Smartt, Herschel Bernard; Kenney, Kevin Louis; Tolle, Charles Robert

    2002-04-01

    Although robotic machines are routinely used for welding, such machines do not normally incorporate intelligent capabilities. We are studying the general problem of formulating usable levels of intelligence into welding machines. From our perspective, an intelligent machine should: incorporate knowledge of the welding process, know if the process is operating correctly, know if the weld it is making is good or bad, have the ability to learn from its experience to perform welds, and be able to optimize its own performance. To this end, we are researching machine architecture, methods of knowledge representation, decision making and conflict resolution algorithms, methods of learning and optimization, human/machine interfaces, and various sensors. This paper presents work on the machine architecture and the human/machine interface specifically for a robotic, gas metal arc welding cell. Although the machine control problem is normally approached from the perspective of having a central body of control in the machine, we present a design using distributed agents. A prime goal of this work is to develop an architecture for an intelligent machine that will support a modular, plug and play standard. A secondary goal of this work is to formulate a human/machine interface that treats the human as an active agent in the modular structure.

  5. Modular cell biology: retroactivity and insulation

    PubMed Central

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input–output dynamic characteristics of transcriptional components, focusing on a property, which we call ‘retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  6. Modular cell biology: retroactivity and insulation.

    PubMed

    Del Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D

    2008-01-01

    Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior of its components, guaranteeing that the properties of individual components do not change upon interconnection. Just as electrical, hydraulic, and other physical systems often do not display modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study the effect of interconnections on the input-output dynamic characteristics of transcriptional components, focusing on a property, which we call 'retroactivity', that plays a role analogous to non-zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when the amount of transcription factor is comparable to, or smaller than, the amount of promoter-binding sites, or when the affinity of such binding sites is high. To attenuate the effect of retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics. We introduce, in particular, a mechanism based on a phosphorylation-dephosphorylation cycle. This mechanism enjoys a remarkable insulation property, due to the fast timescales of the phosphorylation and dephosphorylation reactions. PMID:18277378

  7. Modular inverse reinforcement learning for visuomotor behavior.

    PubMed

    Rothkopf, Constantin A; Ballard, Dana H

    2013-08-01

    In a large variety of situations one would like to have an expressive and accurate model of observed animal or human behavior. While general purpose mathematical models may capture successfully properties of observed behavior, it is desirable to root models in biological facts. Because of ample empirical evidence for reward-based learning in visuomotor tasks, we use a computational model based on the assumption that the observed agent is balancing the costs and benefits of its behavior to meet its goals. This leads to using the framework of reinforcement learning, which additionally provides well-established algorithms for learning of visuomotor task solutions. To quantify the agent's goals as rewards implicit in the observed behavior, we propose to use inverse reinforcement learning, which quantifies the agent's goals as rewards implicit in the observed behavior. Based on the assumption of a modular cognitive architecture, we introduce a modular inverse reinforcement learning algorithm that estimates the relative reward contributions of the component tasks in navigation, consisting of following a path while avoiding obstacles and approaching targets. It is shown how to recover the component reward weights for individual tasks and that variability in observed trajectories can be explained succinctly through behavioral goals. It is demonstrated through simulations that good estimates can be obtained already with modest amounts of observation data, which in turn allows the prediction of behavior in novel configurations. PMID:23832417

  8. Modularity, comparative cognition and human uniqueness.

    PubMed

    Shettleworth, Sara J

    2012-10-01

    Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  9. Metastring Theory and Modular Space-time

    E-print Network

    Laurent Freidel; Robert G. Leigh; Djordje Minic

    2015-02-27

    String theory is canonically accompanied with a space-time interpretation which determines S-matrix-like observables, and connects to the standard physics at low energies in the guise of local effective field theory. Recently, we have introduced a reformulation of string theory which does not rely on an {\\it a priori} space-time interpretation or a pre-assumption of locality. This \\hlt{metastring theory} is formulated in such a way that stringy symmetries (such as T-duality) are realized linearly. In this paper, we study metastring theory on a flat background and develop a variety of technical and interpretational ideas. These include a formulation of the moduli space of Lorentzian worldsheets, a careful study of the symplectic structure and consequently consistent closed and open boundary conditions, and the string spectrum and operator algebra. What emerges from these studies is a new quantum notion of space-time that we refer to as a quantum Lagrangian or equivalently a \\hlt{modular space-time}. This concept embodies the standard tenets of quantum theory and implements in a precise way a notion of {relative locality}. The usual string backgrounds (non-compact space-time along with some toroidally compactified spatial directions) are obtained from modular space-time by a limiting procedure that can be thought of as a correspondence limit.

  10. A Small Modular Laboratory Hall Effect Thruster

    NASA Astrophysics Data System (ADS)

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  11. Modular control of fusion power heating applications

    SciTech Connect

    Demers, D. R.

    2012-08-24

    This work is motivated by the growing demand for auxiliary heating on small and large machines worldwide. Numerous present and planned RF experiments (EBW, Lower Hybrid, ICRF, and ECH) are increasingly complex systems. The operational challenges are indicative of a need for components of real-time control that can be implemented with a moderate amount of effort in a time- and cost-effective fashion. Such a system will improve experimental efficiency, enhance experimental quality, and expedite technological advancements. The modular architecture of this control-suite serves multiple purposes. It facilitates construction on various scales from single to multiple controller systems. It enables expandability of control from basic to complex via the addition of modules with varying functionalities. It simplifies the control implementation process by reducing layers of software and electronic development. While conceived with fusion applications in mind, this suite has the potential to serve a broad range of scientific and industrial applications. During the Phase-I research effort we established the overall feasibility of this modular control-suite concept. We developed the fundamental modules needed to implement open-loop active-control and demonstrated their use on a microwave power deposition experiment.

  12. Modularity, comparative cognition and human uniqueness

    PubMed Central

    Shettleworth, Sara J.

    2012-01-01

    Darwin's claim ‘that the difference in mind between man and the higher animals … is certainly one of degree and not of kind’ is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the ‘core knowledge’ account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research. PMID:22927578

  13. On Metaplectic Modular Categories and Their Applications

    NASA Astrophysics Data System (ADS)

    Hastings, Matthew B.; Nayak, Chetan; Wang, Zhenghan

    2014-08-01

    For non-abelian simple objects in a unitary modular category, the density of their braid group representations, the # P-hard evaluation of their associated link invariants, and the BQP-completeness of their anyonic quantum computing models are closely related. We systematically study such properties of the non-abelian simple objects in the metaplectic modular categories SO( m)2 for an odd integer m ? 3. The simple objects with quantum dimensions have finite image braid group representations, and their link invariants are classically efficient to evaluate. We also provide classically efficient simulations of their braid group representations. These simulations of the braid group representations can be regarded as qudit generalizations of the Knill-Gottesmann theorem for the qubit case. The simple objects of dimension 2 give us a surprising result: while their braid group representations have finite images and are efficiently simulable classically after a generalized localization, their link invariants are # P-hard to evaluate exactly. We sharpen the # P-hardness by showing that any sufficiently accurate approximation of their associated link invariants is already # P-hard.

  14. Modular elastic patches – mechanical and biological effects

    PubMed Central

    Serban, Monica A.; Kluge, Jonathan A.; Laha, Michael M.; Kaplan, David L.

    2010-01-01

    A modular approach to engineering crosslinked elastic biomaterials is presented for fine tuning of material mechanical and biological properties. The three components, soluble elastin, hyaluronic acid and silk fibroin, contribute with different features to the overall properties of the final material system. The elastic biomaterial is chemically crosslinked via interaction between primary amine groups naturally present on the two proteins, silk and elastin, or chemically introduced on hyaluronan and N-succinimide functionalities of the crosslinker. The materials obtained by crosslinking the three components in different ratios have Young’s moduli ranging from ~700 kPa to 100 kPa, strain to failure between ~ 65-15 % and ultimate tensile strengths of ~ 50 to 20 kPa. The biological effects and enzymatic degradation rates of the different composites are also different based on material composition. These findings further underline the strength of modular, multi-component systems in creating a range of biomaterials, targeted tissue engineering and regenerative medicine applications, with application-tailored mechanical and biological properties. PMID:20712340

  15. Initial comparisons of modular-sized, integrated utility systems and conventional systems for several building types

    NASA Technical Reports Server (NTRS)

    Benson, H. E.; Monford, L. G., Jr.

    1976-01-01

    The results of a study of the application of a modular integrated utility system to six typical building types are compared with the application of a conventional utility system to the same facilities. The effects of varying the size and climatic location of the buildings and the size of the powerplants are presented. Construction details of the six building types (garden apartments, a high rise office building, high rise apartments, a shopping center, a high school, and a hospital) and typical site and floor plans are provided. The environmental effects, the unit size determination, and the market potential are discussed. The cost effectiveness of the various design options is not considered.

  16. Identification of miRNA-Target RNA Interactions Using CLASH.

    PubMed

    Helwak, Aleksandra; Tollervey, David

    2016-01-01

    We present a detailed protocol for the experimental identification of miRNA-target RNA interaction sites using cross-linking, ligation, and sequencing of hybrids (CLASH). The basis of the technique is the purification of UV-stabilized Argonaute (AGO)-RNA complexes assembled in living cells, with subsequent ligation of AGO-associated RNA-RNA duplexes to form chimeric RNAs. Following cDNA synthesis, DNA library preparation and high-throughput sequencing, interacting RNA molecules are unambiguously identified as chimeric reads in bioinformatic analysis of sequencing data. CLASH potentially recovers any RNA duplex that is bound by RNA-binding protein, so modified approaches would be suitable for the identification of many other inter- and intramolecular RNA-RNA interactions. Since CLASH analysis is independent of bioinformatic predictions it allows the identification and analysis of RNA targeting rules in an unbiased way. PMID:26463387

  17. Computing the modular curves Xsp(13), Xns(13) and XA4(13) using modular symbols in Sage

    E-print Network

    Cremona, John

    Computing the modular curves Xsp(13), Xns(13) and XA4(13) using modular symbols in Sage J. E. Cremona, B. S. Banwait August 16, 2013 Abstract This document is an annotated version of a Sage script.decomposition() 1 #12;The number of simple new summands is 10 and their dimensions are sage: [c.dimension() for c

  18. Designed Modular Proteins as Scaffolds To Stabilize Fluorescent Nanoclusters.

    PubMed

    Couleaud, Pierre; Adan-Bermudez, Sergio; Aires, Antonio; Mejías, Sara H; Sot, Begoña; Somoza, Alvaro; Cortajarena, Aitziber L

    2015-12-14

    Proteins have been used as templates to stabilize fluorescent metal nanoclusters thus obtaining stable fluorescent structures, and their fluorescent properties being modulated by the type of protein employed. Designed consensus tetratricopeptide repeat (CTPR) proteins are suited candidates as templates for the stabilization of metal nanoclusters due to their modular structural and functional properties. Here, we have studied the ability of CTPR proteins to stabilize fluorescent gold nanoclusters giving rise to designed functional hybrid nanostructures. First, we have investigated the influence of the number of CTPR units, as well as the presence of cysteine residues in the CTPR protein, on the fluorescent properties of the protein-stabilized gold nanoclusters. Synthetic protocols to retain the protein structure and function have been developed, since the structural and functional integrity of the protein template is critical for further applications. Finally, as a proof-of-concept, a CTPR module with specific binding capabilities has been used to stabilize gold nanoclusters with positive results. Remarkably, the protein-stabilized gold nanocluster obtained combines both the fluorescence properties of the nanoclusters and the functional properties of the protein. The fluorescence changes in nanoclusters fluorescence have been successfully used as a sensor to detect when the specific ligand was recognized by the CTPR module. PMID:26536489

  19. Modular operation of membrane bioreactors for higher hydraulic capacity utilisation.

    PubMed

    Veltmann, K; Palmowski, L M; Pinnekamp, J

    2011-01-01

    Using data from 6 full-scale municipal membrane bioreactors (MBR) in Germany the hydraulic capacity utilisation and specific energy consumption were studied and their connexion shown. The average hydraulic capacity utilisation lies between 14% and 45%. These low values are justified by the necessity to deal with intense rain events and cater for future flow increases. However, this low hydraulic capacity utilisation leads to high specific energy consumption. The optimisation of MBR operation requires a better utilisation of MBR hydraulic capacity, particularly under consideration of the energy-intensive membrane aeration. A first approach to respond to large influent flow fluctuations consists in adjusting the number of operating modules. This is practised by most MBR operators but so far mostly with variable flux and constant membrane aeration. A second approach is the real-time adjustment of membrane aeration in line with flux variations. This adjustment is not permitted under current manufacturers' warranty conditions. A further opportunity is a discontinuous operation, in which filtration takes place over short periods at high flux and energy for membrane aeration is saved during filtration pauses. The integration of a buffer volume is thereby indispensable. Overall a modular design with small units, which can be activated/ inactivated according to the influent flow and always operate under optimum conditions, enables a better utilisation of MBR hydraulic capacity and forms a solid base to reduce MBR energy demand. PMID:21436563

  20. A modular and programmable development platform for capsule endoscopy system.

    PubMed

    Khan, Tareq Hasan; Shrestha, Ravi; Wahid, Khan A

    2014-06-01

    The state-of-the-art capsule endoscopy (CE) technology offers painless examination for the patients and the ability to examine the interior of the gastrointestinal tract by a noninvasive procedure for the gastroenterologists. In this work, a modular and flexible CE development system platform consisting of a miniature field programmable gate array (FPGA) based electronic capsule, a microcontroller based portable data recorder unit and computer software is designed and developed. Due to the flexible and reprogrammable nature of the system, various image processing and compression algorithms can be tested in the design without requiring any hardware change. The designed capsule prototype supports various imaging modes including white light imaging (WLI) and narrow band imaging (NBI), and communicates with the data recorder in full duplex fashion, which enables configuring the image size and imaging mode in real time during examination. A low complexity image compressor based on a novel color-space is implemented inside the capsule to reduce the amount of RF transmission data. The data recorder contains graphical LCD for real time image viewing and SD cards for storing image data. Data can be uploaded to a computer or Smartphone by SD card, USB interface or by wireless Bluetooth link. Computer software is developed that decompresses and reconstructs images. The fabricated capsule PCBs have a diameter of 16 mm. An ex-vivo animal testing has also been conducted to validate the results. PMID:24859846

  1. Edinburgh Research Explorer Identification of protein binding sites on U3 snoRNA and pre-

    E-print Network

    Millar, Andrew J.

    In: Proceedings of the National Academy of Sciences of the United States of America - PNAS PublisherRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs' Proceedings of the National Academy of Sciences of the United States of America - PNAS, vol 106, no. 24, pp. 9613-9618., 10.1073/pnas

  2. Yeast nuclear RNA processing

    PubMed Central

    Bernstein, Jade; Toth, Eric A

    2012-01-01

    Nuclear RNA processing requires dynamic and intricately regulated machinery composed of multiple enzymes and their cofactors. In this review, we summarize recent experiments using Saccharomyces cerevisiae as a model system that have yielded important insights regarding the conversion of pre-RNAs to functional RNAs, and the elimination of aberrant RNAs and unneeded intermediates from the nuclear RNA pool. Much progress has been made recently in describing the 3D structure of many elements of the nuclear degradation machinery and its cofactors. Similarly, the regulatory mechanisms that govern RNA processing are gradually coming into focus. Such advances invariably generate many new questions, which we highlight in this review. PMID:22312453

  3. Functional conservation despite structural divergence in ligand-responsive RNA switches.

    PubMed

    Boerneke, Mark A; Dibrov, Sergey M; Gu, Jing; Wyles, David L; Hermann, Thomas

    2014-11-11

    An internal ribosome entry site (IRES) initiates protein synthesis in RNA viruses, including the hepatitis C virus (HCV). We have discovered ligand-responsive conformational switches in viral IRES elements. Modular RNA motifs of greatly distinct sequence and local secondary structure have been found to serve as functionally conserved switches involved in viral IRES-driven translation and may be captured by identical cognate ligands. The RNA motifs described here constitute a new paradigm for ligand-captured switches that differ from metabolite-sensing riboswitches with regard to their small size, as well as the intrinsic stability and structural definition of the constitutive conformational states. These viral RNA modules represent the simplest form of ligand-responsive mechanical switches in nucleic acids. PMID:25349403

  4. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

    PubMed Central

    Mannion, Niamh; Arieti, Fabiana; Gallo, Angela; Keegan, Liam P.; O’Connell, Mary A.

    2015-01-01

    The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases. PMID:26437436

  5. Compliant Modular Shape Memory Alloy Actuators

    E-print Network

    Karges, J.

    We have presented a simple but effective method to design flexible actuators. This process relies on understanding the behavior of a simple unit cell element built out of SMA sheet. The unit cell effectively uses the ...

  6. Delivery of RNA interference.

    PubMed

    Li, Charles X; Parker, Amy; Menocal, Ellen; Xiang, Shuanglin; Borodyansky, Laura; Fruehauf, Johannes H

    2006-09-01

    Over the last few years, RNA Interference (RNAi), a naturally occurring mechanism of gene regulation conserved in plant and mammalian cells, has opened numerous novel opportunities for basic research across the field of biology. While RNAi has helped accelerate discovery and understanding of gene functions, it also has great potential as a therapeutic and potentially prophylactic modality. Challenging diseases failing conventional therapeutics could become treatable by specific silencing of key pathogenic genes. More specifically, therapeutic targets previously deemed "undruggable" by small molecules, are now coming within reach of RNAi based therapy. For RNAi to be effective and elicit gene silencing response, the double-stranded RNA molecules must be delivered to the target cell. Unfortunately, delivery of these RNA duplexes has been challenging, halting rapid development of RNAi-based therapies. In this review we present current advancements in the field of siRNA delivery methods, including the pros and cons of each method. PMID:16940756

  7. Neurodegeneration the RNA way

    PubMed Central

    Renoux, Abigail J.; Todd, Peter K.

    2012-01-01

    The expression, processing, transport and activities of both coding and non-coding RNAs play critical roles in normal neuronal function and differentiation. Over the past decade, these same pathways have come under scrutiny as potential contributors to neurodegenerative disease. Here we focus broadly on the roles of RNA and RNA processing in neurodegeneration. We first discuss a set of “RNAopathies”, where non-coding repeat expansions drive pathogenesis through a surprisingly diverse set of mechanisms. We next explore an emerging class of “RNA binding proteinopathies” where redistribution and aggregation of the RNA binding proteins TDP-43 or FUS contribute to a potentially broad range of neurodegenerative disorders. Lastly, we delve into the potential contributions of alterations in both short and long non-coding RNAs to neurodegenerative illness. PMID:22079416

  8. Site Suitability and Hazard Assessment Guide for Small Modular Reactors

    SciTech Connect

    Wayne Moe

    2013-10-01

    Commercial nuclear reactor projects in the U.S. have traditionally employed large light water reactors (LWR) to generate regional supplies of electricity. Although large LWRs have consistently dominated commercial nuclear markets both domestically and abroad, the concept of small modular reactors (SMRs) capable of producing between 30 MW(t) and 900 MW(t) to generating steam for electricity is not new. Nor is the idea of locating small nuclear reactors in close proximity to and in physical connection with industrial processes to provide a long-term source of thermal energy. Growing problems associated continued use of fossil fuels and enhancements in efficiency and safety because of recent advancements in reactor technology suggest that the likelihood of near-term SMR technology(s) deployment at multiple locations within the United States is growing. Many different types of SMR technology are viable for siting in the domestic commercial energy market. However, the potential application of a particular proprietary SMR design will vary according to the target heat end-use application and the site upon which it is proposed to be located. Reactor heat applications most commonly referenced in connection with the SMR market include electric power production, district heating, desalinization, and the supply of thermal energy to various processes that require high temperature over long time periods, or a combination thereof. Indeed, the modular construction, reliability and long operational life purported to be associated with some SMR concepts now being discussed may offer flexibility and benefits no other technology can offer. Effective siting is one of the many early challenges that face a proposed SMR installation project. Site-specific factors dealing with support to facility construction and operation, risks to the plant and the surrounding area, and the consequences subsequent to those risks must be fully identified, analyzed, and possibly mitigated before a license will be granted to construct and operate a nuclear facility. Examples of significant site-related concerns include area geotechnical and geological hazard properties, local climatology and meteorology, water resource availability, the vulnerability of surrounding populations and the environmental to adverse effects in the unlikely event of radionuclide release, the socioeconomic impacts of SMR plant installation and the effects it has on aesthetics, proximity to energy use customers, the topography and area infrastructure that affect plant constructability and security, and concerns related to the transport, installation, operation and decommissioning of major plant components.

  9. Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods

    PubMed Central

    Li, Bingling; Ellington, Andrew D.; Chen, Xi

    2011-01-01

    Signal amplification is a key component of molecular detection. Enzyme-free signal amplification is especially appealing for the development of low-cost, point-of-care diagnostics. It has been previously shown that enzyme-free DNA circuits with signal-amplification capacity can be designed using a mechanism called ‘catalyzed hairpin assembly’. However, it is unclear whether the efficiency and modularity of such circuits is suitable for multiple analytical applications. We have therefore designed and characterized a simplified DNA circuit based on catalyzed hairpin assembly, and applied it to multiple different analytical formats, including fluorescent, colorimetric, and electrochemical and signaling. By optimizing the design of previous hairpin-based catalytic assemblies we found that our circuit has almost zero background and a high catalytic efficiency, with a kcat value above 1?min?1. The inherent modularity of the circuit allowed us to readily adapt our circuit to detect both RNA and small molecule analytes. Overall, these data demonstrate that catalyzed hairpin assembly is suitable for analyte detection and signal amplification in a ‘plug-and-play’ fashion. PMID:21693555

  10. Assembly of RNA nanostructures on supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma

    2014-12-01

    The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. Electronic supplementary information (ESI) available: Table with sequences of tRNA units used in this study; schematic structures of the RNA polyhedron and its building blocks; gel electrophoresis characterization of the RNA polyhedron and squares; AFM characterization of RNA tectosquare; schematic structures of RNA-9 and RNA-10 and their association with lipid bilayers; QCM-D frequency and dissipation data (as function of time) for adsorption of RNA polyhedrons, RNA squares and RNA9-10 TIRF images of RNA with Gelstar after photobleaching with analysis; Correlation plot in change of shear viscosity for TS3 and TO3-4 model

  11. RNA splicing and genes

    SciTech Connect

    Sharp, P.A.

    1988-11-25

    The splicing of long transcripts RNA (copied from DNA in the cell nucleus) into smaller specific mRNA is an important event in the regulation of gene expression in eukaryotic cells. The splicing reaction occurs as a late step in the nuclear pathway for synthesis of mRNAs. This pathway commences with initiation of transcription by RNA polymerase II and probably involves an integrated series of steps each dependent on previous events. Splicing of precursors to mRNAs involves the formation of a spliceosome complex containing 5' and 3' splice sites. This complex contains the evolutionary highly conserved small nuclear RNAs (snRNAs) Us, U4, U5, and U6. The most abundant snRNA, U1, is required to form the spliceosome and may be a part of the spliceosome. Analogues of these snRNAs have been identified in yeast. Assembly of the spliceosome probably involves the binding of a multi-snRNA complex containing U4, U5, and U6 snRNAs. Several observations suggest that the association of snRNAs in such complexes is quite dynamic. It is argued that the snRANs in the spliceosome form a catalytic RNA structure that is responsible for the cleavage and ligation steps during splicing.

  12. RNA-Sequencing of Staphylococcus aureus Messenger RNA.

    PubMed

    Carroll, Ronan K; Weiss, Andy; Shaw, Lindsey N

    2016-01-01

    RNA-sequencing (RNA-seq) is a technique that employs next-generation DNA-sequencing technology to simultaneously sequence all of the RNA transcripts in a cell. It can provide valuable insights into transcript and operon structure, and is rapidly replacing expression microarrays as the technique of choice for determining global gene expression profiles in bacteria. Herein we outline the procedures involved in performing RNA-seq with samples of RNA from Staphylococcus aureus. We draw particular attention to key aspects of sample preparation, such as RNA integrity and removal of ribosomal RNA, and provide details of critical steps in downstream data analysis. PMID:25646612

  13. Dendritic location of neural BC1 RNA.

    PubMed Central

    Tiedge, H; Fremeau, R T; Weinstock, P H; Arancio, O; Brosius, J

    1991-01-01

    In nerve cells, a specialized protein synthetic machinery is thought to operate in local compartments of dendrites, in particular beneath synaptic junctions, and thereby to facilitate swift adjustments of the postsynaptic protein repertoire in situ. This notion has been supported by the identification of polyribosomes and selected mRNAs in those compartments. In this study, we report the discovery of a specific RNA polymerase III transcript in dendrites. This RNA, a noncoding, 152-nucleotide-long, single-gene transcript known as BC1 RNA, is expressed almost exclusively in the nervous system. In adult rats as well as in immature rats in late developmental stages, BC1 RNA has been located in the dendrites and somata of a subset of neurons in the central and peripheral nervous system. The colocalization of BC1 RNA with dendritic mRNAs and polyribosomes may indicate a role--possibly within the functional unit of a high molecular mass ribonucleoprotein particle--in specific pre- or posttranslational processes in postsynaptic compartments of neurons. Images PMID:1706516

  14. Kahler stabilized, modular invariant heterotic string models

    SciTech Connect

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-03-19

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.

  15. Quadruped robots' modular trajectories: Stability issues

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.

    2012-09-01

    Pinto, Santos, Rocha and Matos [13, 12] study a CPG model for the generation of modular trajectories of quadruped robots. They consider that each movement is composed of two types of primitives: rhythmic and discrete. The rhythmic primitive models the periodic patterns and the discrete primitive is inserted as a perturbation of those patterns. In this paper we begin to tackle numerically the problem of the stability of that mathematical model. We observe that if the discrete part is inserted in all limbs, with equal values, and as an offset of the rhythmic part, the obtained gait is stable and has the same spatial and spatio-temporal symmetry groups as the purely rhythmic gait, differing only on the value of the offset.

  16. Modular, security enclosure and method of assembly

    DOEpatents

    Linker, Kevin L. (Albuquerque, NM); Moyer, John W. (Albuquerque, NM)

    1995-01-01

    A transportable, reusable rapidly assembled and disassembled, resizable modular, security enclosure utilizes a stepped panel construction. Each panel has an inner portion and an outer portion which form joints. A plurality of channels can be affixed to selected joints of the panels. Panels can be affixed to a base member and then affixed to one another by the use of elongated pins extending through the channel joints. Alternatively, the base member can be omitted and the panels themselves can be used as the floor of the enclosure. The pins will extend generally parallel to the joint in which they are located. These elongated pins are readily inserted into and removable from the channels in a predetermined sequence to allow assembly and disassembly of the enclosure. A door constructed from panels is used to close the opening to the enclosure.

  17. Modular, multi-level groundwater sampler

    DOEpatents

    Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1994-01-01

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  18. Random walks in directed modular networks

    NASA Astrophysics Data System (ADS)

    Comin, Cesar H.; Viana, Mateus P.; Antiqueira, Lucas; Costa, Luciano da F.

    2014-12-01

    Because diffusion typically involves symmetric interactions, scant attention has been focused on studying asymmetric cases. However, important networked systems underlain by diffusion (e.g. cortical networks and WWW) are inherently directed. In the case of undirected diffusion, it can be shown that the steady-state probability of the random walk dynamics is fully correlated with the degree, which no longer holds for directed networks. We investigate the relationship between such probability and the inward node degree, which we call efficiency, in modular networks. Our findings show that the efficiency of a given community depends mostly on the balance between its ingoing and outgoing connections. In addition, we derive analytical expressions to show that the internal degree of the nodes does not play a crucial role in their efficiency, when considering the Erd?s-Rényi and Barabási-Albert models. The results are illustrated with respect to the macaque cortical network, providing subsidies for improving transportation and communication systems.

  19. Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    PubMed Central

    2011-01-01

    Background In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. Results In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Conclusions Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format. PMID:21276272

  20. The Modular Modeling System (MMS): User's Manual

    USGS Publications Warehouse

    Leavesley, G.H.; Restrepo, P.J.; Markstrom, S.L.; Dixon, M.; Stannard, L.G.

    1996-01-01

    The Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide the research and operational framework needed to support development, testing, and evaluation of physical-process algorithms and to facilitate integration of user-selected sets of algorithms into operational physical-process models. MMS uses a module library that contains modules for simulating a variety of water, energy, and biogeochemical processes. A model is created by selectively coupling the most appropriate modules from the library to create a 'suitable' model for the desired application. Where existing modules do not provide appropriate process algorithms, new modules can be developed. The MMS user's manual provides installation instructions and a detailed discussion of system concepts, module development, and model development and application using the MMS graphical user interface.

  1. Horizontal modular dry irradiated fuel storage system

    DOEpatents

    Fischer, Larry E. (Los Gatos, CA); McInnes, Ian D. (San Jose, CA); Massey, John V. (San Jose, CA)

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  2. Modular properties of ribbon abelian categories

    E-print Network

    Volodymyr Lyubashenko

    2008-02-20

    A category N of labeled (oriented) trivalent graphs (nets) or ribbon graphs is extended by new generators called fusing, braiding, twist and switch with relations which can be called Moore--Seiberg relations. A functor to N is constructed from the category Surf of oriented surfaces with labeled boundary and their homeomorphisms. Given an (eventually non-semisimple) k-linear abelian ribbon braided category C with some finiteness conditions we construct a functor from a central extension of N with the set of labels ObC to k-vector spaces. Composing the functors we get a modular functor from a central extension of Surf to k-vector spaces. This is a mathematical paper which explains how to get proofs for its hep-th companion paper, which should be read first. Complete proofs are not given here. (Talk at Second Gauss Simposium, Munich, August 1993.)

  3. Generic small modular reactor plant design.

    SciTech Connect

    Lewis, Tom Goslee,; Cipiti, Benjamin B.; Jordan, Sabina Erteza; Baum, Gregory A.

    2012-12-01

    This report gives an overview of expected design characteristics, concepts, and procedures for small modular reactors. The purpose of this report is to provide those who are interested in reducing the cost and improving the safety of advanced nuclear power plants with a generic design that possesses enough detail in a non-sensitive manner to give merit to their conclusions. The report is focused on light water reactor technology, but does add details on what could be different in a more advanced design (see Appendix). Numerous reactor and facility concepts were used for inspiration (documented in the bibliography). The final design described here is conceptual and does not reflect any proposed concept or sub-systems, thus any details given here are only relevant within this report. This report does not include any design or engineering calculations.

  4. RSA and its Correctness through Modular Arithmetic

    NASA Astrophysics Data System (ADS)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  5. Dynamics on modular networks with heterogeneous correlations

    SciTech Connect

    Melnik, Sergey; Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG; CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP ; Porter, Mason A.; CABDyN Complexity Centre, University of Oxford, Oxford OX1 1HP ; Mucha, Peter J.; Institute for Advanced Materials, Nanoscience and Technology, University of North Carolina, Chapel Hill, North Carolina 27599-3216 ; Gleeson, James P.

    2014-06-15

    We develop a new ensemble of modular random graphs in which degree-degree correlations can be different in each module, and the inter-module connections are defined by the joint degree-degree distribution of nodes for each pair of modules. We present an analytical approach that allows one to analyze several types of binary dynamics operating on such networks, and we illustrate our approach using bond percolation, site percolation, and the Watts threshold model. The new network ensemble generalizes existing models (e.g., the well-known configuration model and Lancichinetti-Fortunato-Radicchi networks) by allowing a heterogeneous distribution of degree-degree correlations across modules, which is important for the consideration of nonidentical interacting networks.

  6. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  7. Modular Chemical Descriptor Language (MCDL): Stereochemical modules

    SciTech Connect

    Gakh, Andrei A; Burnett, Michael N; Trepalin, Sergei V.; Yarkov, Alexander V

    2011-01-01

    In our previous papers we introduced the Modular Chemical Descriptor Language (MCDL) for providing a linear representation of chemical information. A subsequent development was the MCDL Java Chemical Structure Editor which is capable of drawing chemical structures from linear representations and generating MCDL descriptors from structures. In this paper we present MCDL modules and accompanying software that incorporate unique representation of molecular stereochemistry based on Cahn-Ingold-Prelog and Fischer ideas in constructing stereoisomer descriptors. The paper also contains additional discussions regarding canonical representation of stereochemical isomers, and brief algorithm descriptions of the open source LINDES, Java applet, and Open Babel MCDL processing module software packages. Testing of the upgraded MCDL Java Chemical Structure Editor on compounds taken from several large and diverse chemical databases demonstrated satisfactory performance for storage and processing of stereochemical information in MCDL format.

  8. Biology Today: Respect for RNA.

    ERIC Educational Resources Information Center

    Flannery, Maura C., Ed.

    1991-01-01

    The high points of the story of RNA are presented. The functions of RNA within the cell, how these functions are carried out, and how they evolved are described. The topics of splicing, self-splicing, RNA editing, transcription and translation, and antisense RNA are discussed. (KR)

  9. Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA

    PubMed Central

    Smith, Cameron; Heyne, Steffen; Richter, Andreas S.; Will, Sebastian; Backofen, Rolf

    2010-01-01

    The Freiburg RNA tools web server integrates three tools for the advanced analysis of RNA in a common web-based user interface. The tools IntaRNA, ExpaRNA and LocARNA support the prediction of RNA–RNA interaction, exact RNA matching and alignment of RNA, respectively. The Freiburg RNA tools web server and the software packages of the stand-alone tools are freely accessible at http://rna.informatik.uni-freiburg.de. PMID:20444875

  10. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  11. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  12. Compact formulas for the completed mock modular forms

    NASA Astrophysics Data System (ADS)

    Eguchi, Tohru; Sugawara, Yuji

    2014-11-01

    In this paper we present a new compact expression of the elliptic genus of SL(2)/U(1)-supercoset theory by making use of the `spectral flow method' of the pathintegral evaluation. This new expression is written in a form like a Poincaré series with a non-holomorphic Gaussian damping factor, and manifestly shows the modular and spectral flow properties of a real analytic Jacobi form. As a related problem, we present similar compact formulas for the modular completions of various mock modular forms which appear in the representation theory of superconformal algebras.

  13. Modular hydride beds for mobile applications

    SciTech Connect

    Malinowski, M.E.; Stewart, K.D.

    1997-08-01

    Design, construction, initial testing and simple thermal modeling of modular, metal hydride beds have been completed. Originally designed for supplying hydrogen to a fuel cell on a mobile vehicle, the complete bed design consists of 8 modules and is intended for use on the Palm Desert Vehicle (PDV) under development at the Schatz Energy Center, Humbolt State University. Each module contains approximately 2 kg of a commercially available, low temperature, hydride-forming metal alloy. Waste heat from the fuel cell in the form of heated water is used to desorb hydrogen from the alloy for supplying feed hydrogen to the fuel cell. In order to help determine the performance of such a modular bed system, six modules were constructed and tested. The design and construction of the modules is described in detail. Initial testing of the modules both individually and as a group showed that each module can store {approximately} 30 g of hydrogen (at 165 PSIA fill pressure, 17 C), could be filled with hydrogen in 6 minutes at a nominal, 75 standard liters/min (slm) fueling rate, and could supply hydrogen during desorption at rates of 25 slm, the maximum anticipated hydrogen fuel cell input requirement. Tests made of 5 modules as a group indicated that the behavior of the group run in parallel both in fueling and gas delivery could be directly predicted from the corresponding, single module characteristics by using an appropriate scaling factor. Simple thermal modeling of a module as an array of cylindrical, hydride-filled tubes was performed. The predictions of the model are in good agreement with experimental data.

  14. Human Reliability Analysis for Small Modular Reactors

    SciTech Connect

    Ronald L. Boring; David I. Gertman

    2012-06-01

    Because no human reliability analysis (HRA) method was specifically developed for small modular reactors (SMRs), the application of any current HRA method to SMRs represents tradeoffs. A first- generation HRA method like THERP provides clearly defined activity types, but these activity types do not map to the human-system interface or concept of operations confronting SMR operators. A second- generation HRA method like ATHEANA is flexible enough to be used for SMR applications, but there is currently insufficient guidance for the analyst, requiring considerably more first-of-a-kind analyses and extensive SMR expertise in order to complete a quality HRA. Although no current HRA method is optimized to SMRs, it is possible to use existing HRA methods to identify errors, incorporate them as human failure events in the probabilistic risk assessment (PRA), and quantify them. In this paper, we provided preliminary guidance to assist the human reliability analyst and reviewer in understanding how to apply current HRA methods to the domain of SMRs. While it is possible to perform a satisfactory HRA using existing HRA methods, ultimately it is desirable to formally incorporate SMR considerations into the methods. This may require the development of new HRA methods. More practicably, existing methods need to be adapted to incorporate SMRs. Such adaptations may take the form of guidance on the complex mapping between conventional light water reactors and small modular reactors. While many behaviors and activities are shared between current plants and SMRs, the methods must adapt if they are to perform a valid and accurate analysis of plant personnel performance in SMRs.

  15. Modular System to Enable Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2012-01-01

    The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.

  16. Simultaneous RNA-DNA FISH.

    PubMed

    Lai, Lan-Tian; Meng, Zhenyu; Shao, Fangwei; Zhang, Li-Feng

    2016-01-01

    A highly useful tool for studying lncRNAs is simultaneous RNA-DNA FISH, which reveals the localization and quantitative information of RNA and DNA in cellular contexts. However, a simple combination of RNA FISH and DNA FISH often generates disappointing results because the fragile RNA signals are often damaged by the harsh conditions used in DNA FISH for denaturing the DNA. Here, we describe a robust and simple RNA-DNA FISH protocol, in which amino-labeled nucleic acid probes are used for RNA FISH. The method is suitable to detect single-RNA molecules simultaneously with DNA. PMID:26721488

  17. tRNA genes as transcriptional repressor elements.

    PubMed Central

    Hull, M W; Erickson, J; Johnston, M; Engelke, D R

    1994-01-01

    Eukaryotic genomes frequently contain large numbers of repetitive RNA polymerase III (pol III) promoter elements interspersed between and within RNA pol II transcription units, and in several instances a regulatory relationship between the two types of promoter has been postulated. In the budding yeast Saccharomyces cerevisiae, tRNA genes are the only known interspersed pol III promoter-containing repetitive elements, and we find that they strongly inhibit transcription from adjacent pol II promoters in vivo. This inhibition requires active transcription of the upstream tRNA gene but is independent of its orientation and appears not to involve simple steric blockage of the pol II upstream activator sites. Evidence is presented that different pol II promoters can be repressed by different tRNA genes placed upstream at varied distances in both orientations. To test whether this phenomenon functions in naturally occurring instances in which tRNA genes and pol II promoters are juxtaposed, we examined the sigma and Ty3 elements. This class of retrotransposons is always found integrated immediately upstream of different tRNA genes. Weakening tRNA gene transcription by means of a temperature-sensitive mutation in RNA pol III increases the pheromone-inducible expression of sigma and Ty3 elements up to 60-fold. Images PMID:8289806

  18. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  19. Genome-scale identification of miRNA-mRNA and miRNA-lncRNA interactions in domestic animals.

    PubMed

    Li, A; Zhang, J; Zhou, Z; Wang, L; Sun, X; Liu, Y

    2015-12-01

    Domestic animals show considerable genetic diversity. Previous studies suggested that animal phenotypes were affected by miRNA-mRNA interplay, but these studies focused mainly on the analysis of one or several miRNA-mRNA interactions. However, in this study, we investigated miRNA-mRNA and miRNA-lncRNA interactions on a genomic scale using miranda and targetscan algorithms. There has been strong directional artificial selection practiced during the domestication of animals. Thus, we investigated SNPs that were located in miRNAs and miRNA binding sites and found that several SNPs located in 3'-UTRs of mRNAs had the potential to affect miRNA-mRNA interactions. In addition, a database, named miRBond, was developed to provide visualization, analysis and downloading of the resulting datasets. Our results open the way to further experimental verification of miRNA-mRNA and miRNA-lncRNA interactions as well as the influence of SNPs upon such interplay. PMID:26360131

  20. A Boost for the Emerging Field of RNA Nanotechnology

    PubMed Central

    2011-01-01

    This Nano Focus article highlights recent advances in RNA nanotechnology as presented at the First International Conference of RNA Nanotechnology and Therapeutics, which took place in Cleveland, OH, USA (October 23–25, 2010) (http://www.eng.uc.edu/nanomedicine/RNA2010/), chaired by Peixuan Guo and co-chaired by David Rueda and Scott Tenenbaum. The conference was the first of its kind to bring together more than 30 invited speakers in the frontier of RNA nanotechnology from France, Sweden, South Korea, China, and throughout the United States to discuss RNA nanotechnology and its applications. It provided a platform for researchers from academia, government, and the pharmaceutical industry to share existing knowledge, vision, technology, and challenges in the field and promoted collaborations among researchers interested in advancing this emerging scientific discipline. The meeting covered a range of topics, including biophysical and single-molecule approaches for characterization of RNA nanostructures; structure studies on RNA nanoparticles by chemical or biochemical approaches, computation, prediction, and modeling of RNA nanoparticle structures; methods for the assembly of RNA nanoparticles; chemistry for RNA synthesis, conjugation, and labeling; and application of RNA nanoparticles in therapeutics. A special invited talk on the well-established principles of DNA nanotechnology was arranged to provide models for RNA nanotechnology. An Administrator from National Institutes of Health (NIH) National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer discussed the current nanocancer research directions and future funding opportunities at NCI. As indicated by the feedback received from the invited speakers and the meeting participants, this meeting was extremely successful, exciting, and informative, covering many groundbreaking findings, pioneering ideas, and novel discoveries. PMID:21604810

  1. Editor meets silencer: crosstalk between RNA editing and RNA interference

    PubMed Central

    Nishikura, Kazuko

    2010-01-01

    The most prevalent type of RNA editing is mediated by ADAR (adenosine deaminase acting on RNA) enzymes, which convert adenosines to inosines (a process known as A?I RNA editing) in double-stranded (ds)RNA substrates. A?I RNA editing was long thought to affect only selected transcripts by altering the proteins they encode. However, genome-wide screening has revealed numerous editing sites within inverted Alu repeats in introns and untranslated regions. Also, recent evidence indicates that A?I RNA editing crosstalks with RNA-interference pathways, which, like A?I RNA editing, involve dsRNAs. A?I RNA editing therefore seems to have additional functions, including the regulation of retrotransposons and gene silencing, which adds a new urgency to the challenges of fully understanding ADAR functions. PMID:17139332

  2. RNA function and phosphorus use by photosynthetic organisms

    PubMed Central

    Raven, John A.

    2013-01-01

    Phosphorus (P) in RNA accounts for half or more of the total non-storage P in oxygenic photolithotrophs grown in either P-replete or P-limiting growth conditions. Since many natural environments are P-limited for photosynthetic primary productivity, and peak phosphorus fertilizer production is inevitable, the paper analyses what economies in P allocation to RNA could, in principle, increase P-use efficiency of growth (rate of dry matter production per unit organism P). The possibilities of decreasing P allocation to RNA without decreasing growth rate include (1) more widespread down-regulation of RNA production in P-limited organisms, (2) optimal allocation of P to RNA, both spatially among cell compartments and organs, and temporally depending on the stage of growth, and (3) a constant rate of protein synthesis through the diel cycle. Acting on these suggestions would, however, be technically demanding. PMID:24421782

  3. Topology of RNA-RNA interaction structures.

    PubMed

    Andersen, Jørgen E; Huang, Fenix W D; Penner, Robert C; Reidys, Christian M

    2012-07-01

    The topological filtration of interacting RNA complexes is studied, and the role is analyzed of certain diagrams called irreducible shadows, which form suitable building blocks for more general structures. We prove that, for two interacting RNAs, called interaction structures, there exist for fixed genus only finitely many irreducible shadows. This implies that, for fixed genus, there are only finitely many classes of interaction structures. In particular, the simplest case of genus zero already provides the formalism for certain types of structures that occur in nature and are not covered by other filtrations. This case of genus zero interaction structures is already of practical interest, is studied here in detail, and is found to be expressed by a multiple context-free grammar that extends the usual one for RNA secondary structures. We show that, in O(n(6)) time and O(n(4)) space complexity, this grammar for genus zero interaction structures provides not only minimum free energy solutions but also the complete partition function and base pairing probabilities. PMID:22731621

  4. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  5. Interferences in quantum eraser reveal modular and weak values

    E-print Network

    Mirko Cormann; Mathilde Remy; Branko Kolaric; Yves Caudano

    2015-08-06

    In this letter, we present a new procedure to determine completely the complex modular values of arbitrary observables of pre- and post-selected ensembles, which works experimentally for both weak and strong measurement strengths. By controlling simultaneously the visibility and the phase of an interferometric experiment involving a qubit meter, we determine directly both the modulus and the argument of the modular value as a function of the measurement strength. Modular and weak values are closely related. When two entangled qubits are used as the probed and meter systems, the phase of the modular and weak values has a topological origin. Its physical significance can thus be used to evaluate the quantumness of weak values.

  6. Modularity and Commonality Research: Past Developments and Future Opportunities

    E-print Network

    Fixson, Sebastian K.

    2007-04-20

    Research on modularity and commonality has grown substantially over the past 15 years. Searching 36 journals over more than the past 35 years, I identify over 160 references in the engineering and management literature ...

  7. Retroactivity, modularity, and insulation in synthetic biology circuits

    E-print Network

    Lin, Allen

    2011-01-01

    A central concept in synthetic biology is the reuse of well-characterized modules. Modularity simplifies circuit design by allowing for the decomposition of systems into separate modules for individual construction. Complex ...

  8. Modularity, context dependence, and insulation in engineered biological circuits

    E-print Network

    Del Vecchio, Domitilla

    Modularity, context dependence, and insulation in engineered biological circuits Domitilla Del advances toward establishing a rigorous engi- neering framework for insulating parts and modules from focusing on rigorous engineering solutions that have been recently proposed to insulate parts

  9. Evolution in varying environments: rapid emergence of modular systems

    E-print Network

    Fernandez, Thomas

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Chapter 4 - Extinction in heterogeneous environments as a driving force for the emergence of modular species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 simulations that mimic natural evolution to study the evolution of simple model systems such as Logic circuits

  10. High level architecture evolved modular federation object model

    E-print Network

    Wang, Wenguang; Chen, Xin; Li, Qun; Wang, Weiping

    2009-01-01

    To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic Federation Object Model (FOM), a modular FOM was proposed by High Level Architecture (HLA) Evolved product development group. This paper reviews the state-of-the-art of HLA Evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and Base Object Model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate composable simulation both in academia and practice is presented and future directions are pointed out.

  11. Astronaut Alan Bean works on Modular Equipment Stowage Assembly

    NASA Technical Reports Server (NTRS)

    1969-01-01

    Astronaut Alan L. Bean, lunar module pilot for the Apollo 12 lunar landing mission, works at the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module during the mission's first extravehicular activity, EVA-1, on November 19, 1969.

  12. The bounds of the solutions to generalized modular equations

    NASA Astrophysics Data System (ADS)

    Wang, Gen-Di; Zhang, Xiao-Hui; Qiu, Song-Liang; Chu, Yu-Ming

    2006-09-01

    In this paper the authors study a monotonicity of several functions involving ma(r) and [mu]a(r). By using these results, the authors obtain some new bounds of the solutions of Ramanujan's generalized modular equations.

  13. Modular Wiring Offers Cost Savings and Future Flexibility.

    ERIC Educational Resources Information Center

    Ewald, Mike; Ewald, Ann O'Connor

    2002-01-01

    Discusses the advantages of modular wiring, a prefabricated wiring system that replaces branch circuits in buildings. Advantages include on-site and day-to-day labor savings, and future technology cost advantages. Includes questions to ask manufacturers. (EV)

  14. Modularity in design of the MIT Pebble Bed Reactor

    E-print Network

    Berte, Marc Vincent, 1977-

    2004-01-01

    The future of new nuclear power plant construction will depend in large part on the ability of designers to reduce capital, operations, and maintenance costs. One of the methods proposed, is to enhance the modularity of ...

  15. Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel

    E-print Network

    Steel, Daniel

    Cartwright on Causality: Methods, Metaphysics, and Modularity Daniel Steel Department of Philosophy 503 S Kedzie Hall Michigan State University East Lansing, MI 48824-1032 USA Email: steel@msu.edu #12

  16. Distributed algorithms for self-disassembly in modular robots

    E-print Network

    Gilpin, Kyle W

    2006-01-01

    We developed a modular robotic system that behaves as programmable matter. Specifically, we designed, implemented, and tested a collection of robots that, starting from an amorphous arrangement, can be assembled into ...

  17. Biosynthetic Modularity Rules in the Bisintercalator Family of Antitumor Compounds

    PubMed Central

    Fernández, Javier; Marín, Laura; Álvarez-Alonso, Raquel; Redondo, Saúl; Carvajal, Juan; Villamizar, Germán; Villar, Claudio J.; Lombó, Felipe

    2014-01-01

    Diverse actinomycetes produce a family of structurally and biosynthetically related non-ribosomal peptide compounds which belong to the chromodepsipeptide family. These compounds act as bisintercalators into the DNA helix. They give rise to antitumor, antiparasitic, antibacterial and antiviral bioactivities. These compounds show a high degree of conserved modularity (chromophores, number and type of amino acids). This modularity and their high sequence similarities at the genetic level imply a common biosynthetic origin for these pathways. Here, we describe insights about rules governing this modular biosynthesis, taking advantage of the fact that nowadays five of these gene clusters have been made public (thiocoraline, triostin, SW-163 and echinomycin/quinomycin). This modularity has potential application for designing and producing novel genetic engineered derivatives, as well as for developing new chemical synthesis strategies. These would facilitate their clinical development. PMID:24821625

  18. RESEARCH ARTICLE Open Access SMART: scalable and modular augmented reality

    E-print Network

    Kamat, Vineet R.

    RESEARCH ARTICLE Open Access SMART: scalable and modular augmented reality template for rapid of computer generated models to decision-makers. Augmented Reality (AR) visualization blends real's rapid creation of complex AR visual applications. Introduction Augmented Reality (AR) refers

  19. Modular ‘Click-in-Emulsion’ Bone-Targeted Nanogels

    E-print Network

    Heller, Daniel A.

    A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ~70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free ...

  20. Design of long span modular bridges for traffic detours

    E-print Network

    Potapova, Svetlana (Svetlana S.)

    2009-01-01

    The oncoming large amount of bridge replacements in the next 10 to 20 years called for a detailed examination of available replacement schemes which can have variable impact on user costs. Detouring traffic with a modular ...

  1. On modular transformations of non-degenerate toric conformal blocks

    E-print Network

    Nikita Nemkov

    2015-04-27

    We derive and solve the difference equations on the toric modular kernel following from the consistency relations in the fusion algebra. The result is explicit and simple series expansion for the toric modular kernel of non-degenerate Virasoro conformal blocks. We show that this expansion is equivalent to the celebrated integral representation due to B. Ponsot and J. Teschner. We also interpret obtained series representation as a non-perturbative expansion and note that this raises further questions.

  2. Fast Modular Exponentiation and Elliptic Curve Group Operation in Maple

    ERIC Educational Resources Information Center

    Yan, S. Y.; James, G.

    2006-01-01

    The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…

  3. Ramanujan type congruences for modular forms of several variables

    E-print Network

    Kikuta, Toshiyuki

    2012-01-01

    We give congruences between the Eisenstein series and a cusp form in the cases of Siegel modular forms and Hermitian modular forms. We should emphasize that there is a relation between the existence of a prime dividing the $k-1$-th generalized Bernoulli number and the existence of non-trivial Hermitian cusp forms of weight $k$. We will conclude by giving numerical examples for each case.

  4. Standardized Modular Power Interfaces for Future Space Explorations Missions

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard

    2015-01-01

    Earlier studies show that future human explorations missions are composed of multi-vehicle assemblies with interconnected electric power systems. Some vehicles are often intended to serve as flexible multi-purpose or multi-mission platforms. This drives the need for power architectures that can be reconfigured to support this level of flexibility. Power system developmental costs can be reduced, program wide, by utilizing a common set of modular building blocks. Further, there are mission operational and logistics cost benefits of using a common set of modular spares. These benefits are the goals of the Advanced Exploration Systems (AES) Modular Power System (AMPS) project. A common set of modular blocks requires a substantial level of standardization in terms of the Electrical, Data System, and Mechanical interfaces. The AMPS project is developing a set of proposed interface standards that will provide useful guidance for modular hardware developers but not needlessly constrain technology options, or limit future growth in capability. In 2015 the AMPS project focused on standardizing the interfaces between the elements of spacecraft power distribution and energy storage. The development of the modular power standard starts with establishing mission assumptions and ground rules to define design application space. The standards are defined in terms of AMPS objectives including Commonality, Reliability-Availability, Flexibility-Configurability and Supportability-Reusability. The proposed standards are aimed at assembly and sub-assembly level building blocks. AMPS plans to adopt existing standards for spacecraft command and data, software, network interfaces, and electrical power interfaces where applicable. Other standards including structural encapsulation, heat transfer, and fluid transfer, are governed by launch and spacecraft environments and bound by practical limitations of weight and volume. Developing these mechanical interface standards is more difficult but an essential part of defining physical building blocks of modular power. This presentation describes the AMPS projects progress towards standardized modular power interfaces.

  5. Modular Trough Power Plant Cycle and Systems Analysis

    SciTech Connect

    Price, H.; Hassani, V.

    2002-01-01

    This report summarizes an analysis to reduce the cost of power production from modular concentrating solar power plants through a relatively new and exciting concept that merges two mature technologies to produce distributed modular electric power in the range of 500 to 1,500 kWe. These are the organic Rankine cycle (ORC) power plant and the concentrating solar parabolic (CSP) trough technologies that have been developed independent of each other over many years.

  6. Complex Interplay among DNA Modification, Noncoding RNA Expression and Protein-Coding RNA Expression in Salvia miltiorrhiza Chloroplast Genome

    PubMed Central

    Chen, Haimei; Zhang, Jianhui; Yuan, George; Liu, Chang

    2014-01-01

    Salvia miltiorrhiza is one of the most widely used medicinal plants. As a first step to develop a chloroplast-based genetic engineering method for the over-production of active components from S. miltiorrhiza, we have analyzed the genome, transcriptome, and base modifications of the S. miltiorrhiza chloroplast. Total genomic DNA and RNA were extracted from fresh leaves and then subjected to strand-specific RNA-Seq and Single-Molecule Real-Time (SMRT) sequencing analyses. Mapping the RNA-Seq reads to the genome assembly allowed us to determine the relative expression levels of 80 protein-coding genes. In addition, we identified 19 polycistronic transcription units and 136 putative antisense and intergenic noncoding RNA (ncRNA) genes. Comparison of the abundance of protein-coding transcripts (cRNA) with and without overlapping antisense ncRNAs (asRNA) suggest that the presence of asRNA is associated with increased cRNA abundance (p<0.05). Using the SMRT Portal software (v1.3.2), 2687 potential DNA modification sites and two potential DNA modification motifs were predicted. The two motifs include a TATA box–like motif (CPGDMM1, “TATANNNATNA”), and an unknown motif (CPGDMM2 “WNYANTGAW”). Specifically, 35 of the 97 CPGDMM1 motifs (36.1%) and 91 of the 369 CPGDMM2 motifs (24.7%) were found to be significantly modified (p<0.01). Analysis of genes downstream of the CPGDMM1 motif revealed the significantly increased abundance of ncRNA genes that are less than 400 bp away from the significantly modified CPGDMM1motif (p<0.01). Taking together, the present study revealed a complex interplay among DNA modifications, ncRNA and cRNA expression in chloroplast genome. PMID:24914614

  7. Pyrite footprinting of RNA

    SciTech Connect

    Schlatterer, Joerg C.; Wieder, Matthew S.; Jones, Christopher D.; Pollack, Lois; Brenowitz, Michael

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer RNA structure is mapped by pyrite mediated {sup {center_dot}}OH footprinting. Black-Right-Pointing-Pointer Repetitive experiments can be done in a powdered pyrite filled cartridge. Black-Right-Pointing-Pointer High {sup {center_dot}}OH reactivity of nucleotides imply dynamic role in Diels-Alderase catalysis. -- Abstract: In RNA, function follows form. Mapping the surface of RNA molecules with chemical and enzymatic probes has revealed invaluable information about structure and folding. Hydroxyl radicals ({sup {center_dot}}OH) map the surface of nucleic acids by cutting the backbone where it is accessible to solvent. Recent studies showed that a microfluidic chip containing pyrite (FeS{sub 2}) can produce sufficient {sup {center_dot}}OH to footprint DNA. The 49-nt Diels-Alder RNA enzyme catalyzes the C-C bond formation between a diene and a dienophile. A crystal structure, molecular dynamics simulation and atomic mutagenesis studies suggest that nucleotides of an asymmetric bulge participate in the dynamic architecture of the ribozyme's active center. Of note is that residue U42 directly interacts with the product in the crystallized RNA/product complex. Here, we use powdered pyrite held in a commercially available cartridge to footprint the Diels-Alderase ribozyme with single nucleotide resolution. Residues C39 to U42 are more reactive to {sup {center_dot}}OH than predicted by the solvent accessibility calculated from the crystal structure suggesting that this loop is dynamic in solution. The loop's flexibility may contribute to substrate recruitment and product release. Our implementation of pyrite-mediated {sup {center_dot}}OH footprinting is a readily accessible approach to gleaning information about the architecture of small RNA molecules.

  8. Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2006-01-01

    Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.

  9. Modular, Cost-Effective, Extensible Avionics Architecture for Secure, Mobile Communications

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2007-01-01

    Current onboard communication architectures are based upon an all-in-one communications management unit. This unit and associated radio systems has regularly been designed as a one-off, proprietary system. As such, it lacks flexibility and cannot adapt easily to new technology, new communication protocols, and new communication links. This paper describes the current avionics communication architecture and provides a historical perspective of the evolution of this system. A new onboard architecture is proposed that allows full use of commercial-off-the-shelf technologies to be integrated in a modular approach thereby enabling a flexible, cost-effective and fully deployable design that can take advantage of ongoing advances in the computer, cryptography, and telecommunications industries.

  10. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOEpatents

    Noah, Karl S. (Idaho Falls, ID); Sayer, Raymond L. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID)

    1998-01-01

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams.

  11. Modular bioreactor for the remediation of liquid streams and methods for using the same

    DOEpatents

    Noah, K.S.; Sayer, R.L.; Thompson, D.N.

    1998-06-30

    The present invention is directed to a bioreactor system for the remediation of contaminated liquid streams. The bioreactor system is composed of at least one and often a series of sub-units referred to as bioreactor modules. The modular nature of the system allows bioreactor systems be subdivided into smaller units and transported to waste sites where they are combined to form bioreactor systems of any size. The bioreactor modules further comprises reactor fill materials in the bioreactor module that remove the contaminants from the contaminated stream. To ensure that the stream thoroughly contacts the reactor fill materials, each bioreactor module comprises means for directing the flow of the stream in a vertical direction and means for directing the flow of the stream in a horizontal direction. In a preferred embodiment, the reactor fill comprises a sulfate reducing bacteria which is particularly useful for precipitating metals from acid mine streams. 6 figs.

  12. An Integrated Analysis of miRNA, lncRNA, and mRNA Expression Profiles

    PubMed Central

    Guo, Li; Zhao, Yang; Yang, Sheng; Zhang, Hui; Chen, Feng

    2014-01-01

    Increasing amounts of evidence indicate that noncoding RNAs (ncRNAs) have important roles in various biological processes. Here, miRNA, lncRNA, and mRNA expression profiles were analyzed in human HepG2 and L02 cells using high-throughput technologies. An integrative method was developed to identify possible functional relationships between different RNA molecules. The dominant deregulated miRNAs were prone to be downregulated in tumor cells, and the most abnormal mRNAs and lncRNAs were always upregulated. However, the genome-wide analysis of differentially expressed RNA species did not show significant bias between up- and downregulated populations. miRNA-mRNA interaction was performed based on their regulatory relationships, and miRNA-lncRNA and mRNA-lncRNA interactions were thoroughly surveyed and identified based on their locational distributions and sequence correlations. Aberrantly expressed miRNAs were further analyzed based on their multiple isomiRs. IsomiR repertoires and expression patterns were varied across miRNA loci. Several specific miRNA loci showed differences between tumor and normal cells, especially with respect to abnormally expressed miRNA species. These findings suggest that isomiR repertoires and expression patterns might contribute to tumorigenesis through different biological roles. Systematic and integrative analysis of different RNA molecules with potential cross-talk may make great contributions to the unveiling of the complex mechanisms underlying tumorigenesis. PMID:25045664

  13. Modular robotics overview of the `state of the art`

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Hamel, W.R.

    1996-08-01

    The design of a robotic arm processing modular components and reconfigurable links is the general goal of a modular robotics development program. The impetus behind the pursuit of modular design is the remote engineering paradigm of improved reliability and availability provided by the ability to remotely maintain and repair a manipulator operating in a hazardous environment by removing and replacing worn or failed modules. Failed components can service off- line and away from hazardous conditions. The desire to reconfigure an arm to perform different tasks is also an important driver for the development of a modular robotic manipulator. In order to bring to fruition a truly modular manipulator, an array of technical challenges must be overcome. These range from basic mechanical and electrical design considerations such as desired kinematics, actuator types, and signal and transmission types and routings, through controls issues such as the need for control algorithms capable of stable free space and contact control, to computer and sensor design issues like consideration of the use of embedded processors and redundant sensors. This report presents a brief overview of the state of the art of technical issues relevant of modular robotic arm design. The focus is on breadth of coverage, rather than depth, in order to provide a reference frame for future development.

  14. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith developed synthesis & purification protocols in order to obtain large quantities of RNA oligomers for NMR studies. He succeeded in obtaining preliminary one dimensional spectra for an analog of the helix II/loop B/helix III domain of 5S rRNAs well as a 29mer which includes helix III and the highly characteristic 13 nucleotide loop C. Significant progress in laying the required groundwork for this work has been accomplished during the past year. A plasmid, pLeuS-1, carrying the E. coli leucine tRNA synthetase gene (LeuRS) has been obtained and used to overexpressed the leucine synthetase. A T7 runoff transcription has been established in our laboratory and successfully used to make both minihelix RNAs and tRNAs. In addition, encapsulation studies have been conducted and we have successfully encapsulated tRNA in lipid vesicles. Initial efforts to obtain peptide bond synthesis will be underway over the next several moths.

  15. Modular VO oriented Java EE service deployer

    NASA Astrophysics Data System (ADS)

    Molinaro, Marco; Cepparo, Francesco; De Marco, Marco; Knapic, Cristina; Apollo, Pietro; Smareglia, Riccardo

    2014-07-01

    The International Virtual Observatory Alliance (IVOA) has produced many standards and recommendations whose aim is to generate an architecture that starts from astrophysical resources, in a general sense, and ends up in deployed consumable services (that are themselves astrophysical resources). Focusing on the Data Access Layer (DAL) system architecture, that these standards define, in the last years a web based application has been developed and maintained at INAF-OATs IA2 (Italian National institute for Astrophysics - Astronomical Observatory of Trieste, Italian center of Astronomical Archives) to try to deploy and manage multiple VO (Virtual Observatory) services in a uniform way: VO-Dance. However a set of criticalities have arisen since when the VO-Dance idea has been produced, plus some major changes underwent and are undergoing at the IVOA DAL layer (and related standards): this urged IA2 to identify a new solution for its own service layer. Keeping on the basic ideas from VO-Dance (simple service configuration, service instantiation at call time and modularity) while switching to different software technologies (e.g. dismissing Java Reflection in favour of Enterprise Java Bean, EJB, based solution), the new solution has been sketched out and tested for feasibility. Here we present the results originating from this test study. The main constraints for this new project come from various fields. A better homogenized solution rising from IVOA DAL standards: for example the new DALI (Data Access Layer Interface) specification that acts as a common interface system for previous and oncoming access protocols. The need for a modular system where each component is based upon a single VO specification allowing services to rely on common capabilities instead of homogenizing them inside service components directly. The search for a scalable system that takes advantage from distributed systems. The constraints find answer in the adopted solutions hereafter sketched. The development of the new system using Java Enterprise technologies can better benefit from existing libraries to build up the single tokens implementing the IVOA standards. Each component can be built from single standards and each deployed service (i.e. service components instantiations) can consume the other components' exposed methods and services without the need of homogenizing them in dedicated libraries. Scalability can be achieved in an easier way by deploying components or sets of services on a distributed environment and using JNDI (Java Naming and Directory Interface) and RMI (Remote Method Invocation) technologies. Single service configuration will not be significantly different from the VO-Dance solution given that Java class instantiation that benefited from Java Reflection will only be moved to Java EJB pooling (and not, e.g. embedded in bundles for subsequent deployment).

  16. Stress Induces Changes in the Phosphorylation of Trypanosoma cruzi RNA Polymerase II, Affecting Its Association with Chromatin and RNA Processing

    PubMed Central

    Rocha, Antônio Augusto; Moretti, Nilmar Silvio

    2014-01-01

    The phosphorylation of the carboxy-terminal heptapeptide repeats of the largest subunit of RNA polymerase II (Pol II) controls several transcription-related events in eukaryotes. Trypanosomatids lack these typical repeats and display an unusual transcription control. RNA Pol II associates with the transcription site of the spliced leader (SL) RNA, which is used in the trans-splicing of all mRNAs transcribed on long polycistronic units. We found that Trypanosoma cruzi RNA Pol II associated with chromatin is highly phosphorylated. When transcription is inhibited by actinomycin D, the enzyme runs off from SL genes, remaining hyperphosphorylated and associated with polycistronic transcription units. Upon heat shock, the enzyme is dephosphorylated and remains associated with the chromatin. Transcription is partially inhibited with the accumulation of housekeeping precursor mRNAs, except for heat shock genes. DNA damage caused dephosphorylation and transcription arrest, with RNA Pol II dissociating from chromatin although staying at the SL. In the presence of calyculin A, the hyperphosphorylated form detached from chromatin, including the SL loci. These results indicate that in trypanosomes, the unusual RNA Pol II is phosphorylated during the transcription of SL and polycistronic operons. Different types of stresses modify its phosphorylation state, affecting pre-RNA processing. PMID:24813189

  17. Safety approaches for high power modular laser operation

    NASA Astrophysics Data System (ADS)

    Handren, R. T.

    1993-03-01

    Approximately 20 years ago, a program was initiated at the Lawrence Livermore National Laboratory (LLNL) to study the feasibility of using lasers to separate isotopes of uranium and other materials. Of particular interest was the development of a uranium enrichment method for the production of commercial nuclear power reactor fuel to replace current more expensive methods. The Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program progressed to the point where a plant-scale facility to demonstrate commercial feasibility was built and is being tested. The U-AVLIS Program uses copper vapor lasers which pump frequency selective dye lasers to photoionize uranium vapor produced by an electron beam. The selectively ionized isotopes are electrostatically collected. The copper lasers are arranged in oscillator/amplifier chains. The current configuration consists of 12 chains, each with a nominal output of 800 W for a system output in excess of 9 kW. The system requirements are for continuous operation (24 h a day, 7 days a week) and high availability. To meet these requirements, the lasers are designed in a modular form allowing for rapid change-out of the lasers requiring maintenance. Since beginning operation in early 1985, the copper lasers have accumulated over 2 million unit hours at a greater than 90% availability. The dye laser system provides approximately 2.5 kW average power in the visible wavelength range. This large-scale laser system has many safety considerations, including high-power laser beams, high voltage, and large quantities (approximately 3000 gal) of ethanol dye solutions. The Laboratory's safety policy requires that safety controls be designed into any process, equipment, or apparatus in the form of engineering controls. Administrative controls further reduce the risk to an acceptable level. Selected examples of engineering and administrative controls currently being used in the U-AVLIS Program are described.

  18. A Combinatorial Amino Acid Code for RNA Recognition by Pentatricopeptide Repeat Proteins

    PubMed Central

    Barkan, Alice; Rojas, Margarita; Fujii, Sota; Yap, Aaron; Chong, Yee Seng; Bond, Charles S.; Small, Ian

    2012-01-01

    The pentatricopeptide repeat (PPR) is a helical repeat motif found in an exceptionally large family of RNA–binding proteins that functions in mitochondrial and chloroplast gene expression. PPR proteins harbor between 2 and 30 repeats and typically bind single-stranded RNA in a sequence-specific fashion. However, the basis for sequence-specific RNA recognition by PPR tracts has been unknown. We used computational methods to infer a code for nucleotide recognition involving two amino acids in each repeat, and we validated this model by recoding a PPR protein to bind novel RNA sequences in vitro. Our results show that PPR tracts bind RNA via a modular recognition mechanism that differs from previously described RNA–protein recognition modes and that underpins a natural library of specific protein/RNA partners of unprecedented size and diversity. These findings provide a significant step toward the prediction of native binding sites of the enormous number of PPR proteins found in nature. Furthermore, the extraordinary evolutionary plasticity of the PPR family suggests that the PPR scaffold will be particularly amenable to redesign for new sequence specificities and functions. PMID:22916040

  19. GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules

    PubMed Central

    Jourdain, Alexis A.; Koppen, Mirko; Wydro, Mateusz; Rodley, Chris D.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.; Martinou, Jean-Claude

    2013-01-01

    Summary Various specialized domains have been described in the cytosol and the nucleus; however, little is known about compartmentalization within the mitochondrial matrix. GRSF1 (G-rich sequence factor 1) is an RNA binding protein that was previously reported to localize in the cytosol. We found that an isoform of GRSF1 accumulates in discrete foci in the mitochondrial matrix. These foci are composed of nascent mitochondrial RNA and also contain RNase P, an enzyme that participates in mitochondrial RNA processing. GRSF1 was found to interact with RNase P and to be required for processing of both classical and tRNA-less RNA precursors. In its absence, cleavage of primary RNA transcripts is abnormal, leading to decreased expression of mitochondrially encoded proteins and mitochondrial dysfunction. Our findings suggest that the foci containing GRSF1 and RNase P correspond to sites where primary RNA transcripts converge to be processed. We have termed these large ribonucleoprotein structures “mitochondrial RNA granules.” PMID:23473034

  20. Messenger RNA (mRNA) nanoparticle tumour vaccination

    NASA Astrophysics Data System (ADS)

    Phua, Kyle K. L.; Nair, Smita K.; Leong, Kam W.

    2014-06-01

    Use of mRNA-based vaccines for tumour immunotherapy has gained increasing attention in recent years. A growing number of studies applying nanomedicine concepts to mRNA tumour vaccination show that the mRNA delivered in nanoparticle format can generate a more robust immune response. Advances in the past decade have deepened our understanding of gene delivery barriers, mRNA's biological stability and immunological properties, and support the notion for engineering innovations tailored towards a more efficient mRNA nanoparticle vaccine delivery system. In this review we will first examine the suitability of mRNA for engineering manipulations, followed by discussion of a model framework that highlights the barriers to a robust anti-tumour immunity mediated by mRNA encapsulated in nanoparticles. Finally, by consolidating existing literature on mRNA nanoparticle tumour vaccination within the context of this framework, we aim to identify bottlenecks that can be addressed by future nanoengineering research.