Science.gov

Sample records for rnas controlling outer

  1. PGC-Enriched miRNAs Control Germ Cell Development

    PubMed Central

    Bhin, Jinhyuk; Jeong, Hoe-Su; Kim, Jong Soo; Shin, Jeong Oh; Hong, Ki Sung; Jung, Han-Sung; Kim, Changhoon; Hwang, Daehee; Kim, Kye-Seong

    2015-01-01

    Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development. PMID:26442865

  2. Hypothalamic miRNAs: emerging roles in energy balance control

    PubMed Central

    Schneeberger, Marc; Gomez-Valadés, Alicia G.; Ramirez, Sara; Gomis, Ramon; Claret, Marc

    2015-01-01

    The hypothalamus is a crucial central nervous system area controlling appetite, body weight and metabolism. It consists in multiple neuronal types that sense, integrate and generate appropriate responses to hormonal and nutritional signals partly by fine-tuning the expression of specific batteries of genes. However, the mechanisms regulating these neuronal gene programmes in physiology and pathophysiology are not completely understood. MicroRNAs (miRNAs) are key regulators of gene expression that recently emerged as pivotal modulators of systemic metabolism. In this article we will review current evidence indicating that miRNAs in hypothalamic neurons are also implicated in appetite and whole-body energy balance control. PMID:25729348

  3. Optogenetic Control of Mouse Outer Hair Cells.

    PubMed

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L

    2016-01-19

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. PMID:26789771

  4. Differentially expressed lncRNAs and mRNAs identified by microarray analysis in GBS patients vs healthy controls

    PubMed Central

    Xu, Jing; Gao, Chao; Zhang, Fang; Ma, Xiaofeng; Peng, Xiaolin; Zhang, Rongxin; Kong, Dexin; Simard, Alain R.; Hao, Junwei

    2016-01-01

    The aim of our present study was to determine whether message RNAs (mRNAs) and long noncoding RNAs (lncRNAs) are expressed differentially in patients with Guillain-Barré syndrome (GBS) compared with healthy controls. The mRNA and lncRNA profiles of GBS patients and healthy controls were generated by using microarray analysis. From microarray analysis, we listed 310 mRNAs and 114 lncRNAs with the mRMR software classed into two sample groups, GBS patients and healthy controls. KEGG mapping demonstrated that the top seven signal pathways may play important roles in GBS development. Several GO terms, such as cytosol, cellular macromolecular complex assembly, cell cycle, ligase activity, protein catabolic process, etc., were enriched in gene lists, suggesting a potential correlation with GBS development. Co-expression network analysis indicated that 113 lncRNAs and 303 mRNAs were included in the co-expression network. Our present study showed that these differentially expressed mRNAs and lncRNAs may play important roles in GBS development, which provides basic information for defining the mechanism(s) that promote GBS. PMID:26898505

  5. Controlling Laser Spot Size in Outer Space

    NASA Technical Reports Server (NTRS)

    Bennett, Harold E.

    2005-01-01

    Three documents discuss a method of controlling the diameter of a laser beam projected from Earth to any altitude ranging from low orbit around the Earth to geosynchronous orbit. Such laser beams are under consideration as means of supplying power to orbiting spacecraft at levels of the order of tens of kilowatts apiece. Each such beam would be projected by use of a special purpose telescope having an aperture diameter of 15 m or more. Expanding the laser beam to such a large diameter at low altitude would prevent air breakdown and render the laser beam eyesafe. Typically, the telescope would include an adaptive-optics concave primary mirror and a convex secondary mirror. The laser beam transmitted out to the satellite would remain in the near field on the telescope side of the beam waist, so that the telescope focal point would remain effective in controlling the beam width. By use of positioning stages having submicron resolution and repeatability, the relative positions of the primary and secondary mirrors would be adjusted to change the nominal telescope object and image distances to obtain the desired beam diameter (typically about 6 m) at the altitude of the satellite. The limiting distance D(sub L) at which a constant beam diameter can be maintained is determined by the focal range of the telescope 4 lambda f(sup 2) where lambda is the wavelength and f the f/number of the primary mirror. The shorter the wavelength and the faster the mirror, the longer D(sub L) becomes.

  6. MicroRNAs: Control and Loss of Control in Human Physiology and Disease

    PubMed Central

    Li, Min; Marin-Muller, Christian; Bharadwaj, Uddalak; Chow, Kwong-Hon; Yao, Qizhi; Chen, Changyi

    2010-01-01

    Analysis of the human genome indicated that a large fraction of the genome sequences are RNAs that do not encode any proteins, also known as non-coding RNAs. MicroRNAs (miRNAs) are a group of small non-coding RNA molecules, with 20–22-nucleotide (nt) in length, and are predicted to control the activity of approximately 30% of all protein-coding genes in mammals. miRNAs play important roles in many diseases including cancer, cardiovascular disease, and immune disorders. The expression of miRNAs can be regulated by epigenetic modification, DNA copy number change, and genetic mutations. miRNAs can serve as a valuable therapeutic target for a large number of diseases. For miRNAs with oncogenic capabilities, potential therapies include miRNA silencing, antisense blocking, and miRNA modifications. For miRNAs with tumor suppression functions, over-expression of those miRNAs might be a useful strategy to inhibit tumor growth. In this review, we discuss the current progress of miRNA research, regulation of miRNA expression, prediction of miRNA targets, and regulatory role of miRNAs in human physiology and diseases, with a specific focus on miRNAs in pancreatic cancer, liver cancer, colon rectal cancer, cardiovascular disease, immune system, and infectious disease. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in miRNAs as important mediators in human physiology and diseases. PMID:19030926

  7. Transcription control by long non-coding RNAs

    PubMed Central

    Faust, Tyler

    2012-01-01

    Non-coding RNAs have been found to regulate many cellular processes and thus expand the functional genetic repertoire contained within the genome. With the recent advent of genomic tools, it is now evident that these RNA molecules play central regulatory roles in many transcriptional programs. Here we discuss how they are targeted to promoters in several cases and how they operate at specific points in the transcription cycle to precisely control gene expression. PMID:22414755

  8. Control of mitochondrial activity by miRNAs

    PubMed Central

    Li, Peifeng; Jiao, Jianqing; Gao, Guifeng; Prabhakar, Bellur S.

    2012-01-01

    Mitochondria supply energy for physiological function and they participate in the regulation of other cellular events including apoptosis, calcium homeostasis and production of reactive oxygen species. Thus, mitochondria play a critical role in the cells. However, dysfunction of mitochondria is related to a variety of pathological processes and diseases. MicroRNAs (miRNAs) are a class of small noncoding RNAs about 22 nucleotides long, and they can bind to the 3′ un-translated region (3′UTR) of mRNAs, thereby inhibiting mRNA translation or promoting mRNA degradation. We summarize the molecular regulation of mitochondrial metabolism, structure and function by miRNAs. Modulation of miRNAs levels may provide a new therapeutic approach for the treatment of mitochondria-related diseases. PMID:22135235

  9. Dynamic features of gene expression control by small regulatory RNAs.

    PubMed

    Mitarai, Namiko; Benjamin, Julie-Anna M; Krishna, Sandeep; Semsey, Szabolcs; Csiszovszki, Zsolt; Massé, Eric; Sneppen, Kim

    2009-06-30

    Small regulatory RNAs (sRNAs) in eukaryotes and bacteria play an important role in the regulation of gene expression either by binding to regulatory proteins or directly to target mRNAs. Two of the best-characterized bacterial sRNAs, Spot42 and RyhB, form a complementary pair with the ribosome binding region of their target mRNAs, thereby inhibiting translation or promoting mRNA degradation. To investigate the steady-state and dynamic potential of such sRNAs, we examine the 2 key parameters characterizing sRNA regulation: the capacity to overexpress the sRNA relative to its target mRNA and the speed at which the target mRNA is irreversibly inactivated. We demonstrate different methods to determine these 2 key parameters, for Spot42 and RyhB, which combine biochemical and genetic experiments with computational analysis. We have developed a mathematical model that describes the functional properties of sRNAs with various characteristic parameters. We observed that Spot42 and RyhB function in distinctive parameter regimes, which result in divergent mechanisms. PMID:19541626

  10. lincRNAs act in the circuitry controlling pluripotency and differentiation

    PubMed Central

    Guttman, Mitchell; Donaghey, Julie; Carey, Bryce W.; Garber, Manuel; Grenier, Jennifer K.; Munson, Glen; Young, Geneva; Lucas, Anne Bergstrom; Ach, Robert; Bruhn, Laurakay; Yang, Xiaoping; Amit, Ido; Meissner, Alexander; Regev, Aviv; Rinn, John L.; Root, David E.; Lander, Eric S.

    2011-01-01

    While thousands of large intergenic non-coding RNAs (lincRNAs) have been identified in mammals, few have been functionally characterized, leading to debate about their biological role. To address this, we performed loss-of-function studies on most lincRNAs expressed in mouse embryonic stem cells (ESC) and characterized the effects on gene expression. Here we show that knockdown of lincRNAs has major consequences on gene expression patterns, comparable to knockdown of well-known ESC regulators. Notably, lincRNAs primarily affect gene expression in trans. Knockdown of dozens of lincRNAs causes either exit from the pluripotent state or upregulation of lineage commitment programs. We integrate lincRNAs into the molecular circuitry of ESCs and show that lincRNA genes are regulated by key transcription factors and that lincRNA transcripts bind to multiple chromatin regulatory proteins to affect shared gene expression programs. Together, the results demonstrate that lincRNAs have key roles in the circuitry controlling ESC state. PMID:21874018

  11. Environmental control of microRNAs in the nervous system: Implications in plasticity and behavior.

    PubMed

    Codocedo, Juan F; Inestrosa, Nibaldo C

    2016-01-01

    The discovery of microRNAs (miRNAs) a little over 20 years ago was revolutionary given that miRNAs are essential to numerous physiological and physiopathological processes. Currently, several aspects of the biogenic process of miRNAs and of the translational repression mechanism exerted on their targets mRNAs are known in detail. In fact, the development of bioinformatics tools for predicting miRNA targets has established that miRNAs have the potential to regulate almost all known biological processes. Therefore, the identification of the signals and molecular mechanisms that regulate miRNA function is relevant to understanding the role of miRNAs in both pathological and adaptive processes. Recently, a series of studies has focused on miRNA expression in the brain, establishing that their levels are altered in response to various environmental factors (EFs), such as light, sound, odorants, nutrients, drugs and stress. In this review, we discuss how exposure to various EFs modulates the expression and function of several miRNAs in the nervous system and how this control determines adaptation to their environment, behavior and disease state. PMID:26593111

  12. Control of competence by related non-coding csRNAs in Streptococcus pneumoniae R6

    PubMed Central

    Laux, Anke; Sexauer, Anne; Sivaselvarajah, Dineshan; Kaysen, Anne; Brückner, Reinhold

    2015-01-01

    The two-component regulatory system CiaRH of Streptococcus pneumoniae is involved in β-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, virulence, and competence. The response regulator CiaR controls, among other genes, expression of five highly similar small non-coding RNAs, designated csRNAs. These csRNAs control competence development by targeting comC, encoding the precursor of the competence stimulating peptide, which is essential to initiate the regulatory cascade leading to competence. In addition, another gene product of the CiaR regulon, the serine protease HtrA, is also involved in competence control. In the absence of HtrA, five csRNAs could suppress competence, but one csRNA alone was not effective. To determine if all csRNAs are needed, reporter gene fusions to competence genes were used to monitor competence gene expression in the presence of different csRNAs. These experiments showed that two csRNAs were not enough to prevent competence, but combinations of three csRNAs, csRNA1,2,3, or csRNA1,2,4 were sufficient. In S. pneumoniae strains expressing only csRNA5, a surprising positive effect was detected on the level of early competence gene expression. Hence, the role of the csRNAs in competence regulation is more complex than anticipated. Mutations in comC (comC8) partially disrupting predicted complementarity to the csRNAs led to competence even in the presence of all csRNAs. Reconstitution of csRNA complementarity to comC8 restored competence suppression. Again, more than one csRNA was needed. In this case, even two mutated csRNAs complementary to comC8, csRNA1–8 and csRNA2–8, were suppressive. In conclusion, competence in S. pneumoniae is additively controlled by the csRNAs via post-transcriptional regulation of comC. PMID:26257773

  13. Identification of Stably Expressed lncRNAs as Valid Endogenous Controls for Profiling of Human Glioma

    PubMed Central

    Kraus, Theo F. J.; Greiner, Andrea; Guibourt, Virginie; Lisec, Kristina; Kretzschmar, Hans A.

    2015-01-01

    Background: Recent research indicates that long non-coding RNAs (lncRNA) represent a new family of RNAs that is of fundamental importance for controlling transcription and translation. Thereby, there is increasing evidence that lncRNAs are also important in tumourigenesis. Thereby valid expression profiling using quantitative PCR requires suitable, stably expressed normalisers to achieve reliable and reproducible data. However, no systematic analysis of suitable references in lncRNA studies in human glioma has been performed yet. Methods: In this study, we investigated 90 lncRNAs in 30 tissue specimen for the expression stability in human diffuse astrocytoma (WHO-Grade II), anaplastic astrocytoma (WHO-Grade III) and glioblastoma (WHO-Grade IV) both alone as well as in comparison with normal white matter. Our identification procedure included a rigorous bioinformatical selection process that resulted in the inclusion of only highly abundant, equally expressed lncRNAs for further analysis. Additionally, lncRNAs were classified according to their stability value using the NormFinder algorithm. Results: We identified 24 appropriate normalisers suitable for studies in diffuse astrocytoma, 22 for studies in anaplastic astrocytoma and 12 for studies in glioblastoma. Comparing all three glioma entities 7 lncRNAs showed stable expression levels. Addition of normal brain tissue resulted in only 4 suitable lncRNAs. Conclusions: Our findings indicate that 4 lncRNAs (HOXA6as, H19 upstream conserved 1 and 2, Zfhx2as and BC200) are suitable as normalisers in glioma and normal brain. These lncRNAs may thus be regarded as universal references being applicable for the accurate normalisation of lncRNA expression profiling in various glioma (WHO-Grades II-IV) alone and in combination with brain tissue. This enables to perform valid longitudinal studies, e.g. of glioma before and after malignisation to identify changes of lncRNA expressions probably driving malignant transformation

  14. Determining Associations between Human Diseases and non-coding RNAs with Critical Roles in Network Control.

    PubMed

    Kagami, Haruna; Akutsu, Tatsuya; Maegawa, Shingo; Hosokawa, Hiroshi; Nacher, Jose C

    2015-01-01

    Deciphering the association between life molecules and human diseases is currently an important task in systems biology. Research over the past decade has unveiled that the human genome is almost entirely transcribed, producing a vast number of non-protein-coding RNAs (ncRNAs) with potential regulatory functions. More recent findings suggest that many diseases may not be exclusively linked to mutations in protein-coding genes. The combination of these arguments poses the question of whether ncRNAs that play a critical role in network control are also enriched with disease-associated ncRNAs. To address this question, we mapped the available annotated information of more than 350 human disorders to the largest collection of human ncRNA-protein interactions, which define a bipartite network of almost 93,000 interactions. Using a novel algorithmic-based controllability framework applied to the constructed bipartite network, we found that ncRNAs engaged in critical network control are also statistically linked to human disorders (P-value of P = 9.8 × 10(-109)). Taken together, these findings suggest that the addition of those genes that encode optimized subsets of ncRNAs engaged in critical control within the pool of candidate genes could aid disease gene prioritization studies. PMID:26459019

  15. Determining Associations between Human Diseases and non-coding RNAs with Critical Roles in Network Control

    NASA Astrophysics Data System (ADS)

    Kagami, Haruna; Akutsu, Tatsuya; Maegawa, Shingo; Hosokawa, Hiroshi; Nacher, Jose C.

    2015-10-01

    Deciphering the association between life molecules and human diseases is currently an important task in systems biology. Research over the past decade has unveiled that the human genome is almost entirely transcribed, producing a vast number of non-protein-coding RNAs (ncRNAs) with potential regulatory functions. More recent findings suggest that many diseases may not be exclusively linked to mutations in protein-coding genes. The combination of these arguments poses the question of whether ncRNAs that play a critical role in network control are also enriched with disease-associated ncRNAs. To address this question, we mapped the available annotated information of more than 350 human disorders to the largest collection of human ncRNA-protein interactions, which define a bipartite network of almost 93,000 interactions. Using a novel algorithmic-based controllability framework applied to the constructed bipartite network, we found that ncRNAs engaged in critical network control are also statistically linked to human disorders (P-value of P = 9.8 × 10-109). Taken together, these findings suggest that the addition of those genes that encode optimized subsets of ncRNAs engaged in critical control within the pool of candidate genes could aid disease gene prioritization studies.

  16. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer

    PubMed Central

    2013-01-01

    Background The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. Results Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. Conclusions These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal. PMID:23876380

  17. Dual-spin attitude control for outer planet missions

    NASA Technical Reports Server (NTRS)

    Ward, R. S.; Tauke, G. J.

    1977-01-01

    The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.

  18. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast

    PubMed Central

    Bumgarner, Stacie L.; Dowell, Robin D.; Grisafi, Paula; Gifford, David K.; Fink, Gerald R.

    2009-01-01

    The identification of specific functional roles for the numerous long noncoding (nc)RNAs found in eukaryotic transcriptomes is currently a matter of intense study amid speculation that these ncRNAs have key regulatory roles. We have identified a pair of cis-interfering ncRNAs in yeast that contribute to the control of variegated gene expression at the FLO11 locus by implementing a regulatory circuit that toggles between two stable states. These capped, polyadenylated ncRNAs are transcribed across the large intergenic region upstream of the FLO11 ORF. As with mammalian long intervening (li)ncRNAs, these yeast ncRNAs (ICR1 and PWR1) are themselves regulated by transcription factors (Sfl1 and Flo8) and chromatin remodelers (Rpd3L) that are key elements in phenotypic transitions in yeast. The mechanism that we describe explains the unanticipated role of a histone deacetylase complex in activating gene expression, because Rpd3L mutants force the ncRNA circuit into a state that silences the expression of the adjacent variegating gene. PMID:19805129

  19. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi

    PubMed Central

    Tu, Kimberly C.; Bassler, Bonnie L.

    2007-01-01

    Quorum sensing is a cell–cell communication mechanism that bacteria use to collectively regulate gene expression and, at a higher level, to coordinate group behavior. In the bioluminescent marine bacterium Vibrio harveyi, sensory information from three independent quorum-sensing systems converges on the shared response regulator LuxO. When LuxO is phosphorylated, it activates the expression of a putative repressor that destabilizes the mRNA encoding the master quorum-sensing transcriptional regulator LuxR. In the closely related species Vibrio cholerae, this repressor was revealed to be the RNA chaperone Hfq together with four small regulatory RNAs (sRNAs) called Qrr1–4 (quorum regulatory RNA). Here, we identify five Qrr sRNAs that control quorum sensing in V. harveyi. Mutational analysis reveals that only four of the five Qrrs are required for destabilization of the luxR mRNA. Surprisingly, unlike in V. cholerae where the sRNAs act redundantly, in V. harveyi, the Qrr sRNAs function additively to control quorum sensing. This latter mechanism produces a gradient of LuxR that, in turn, enables differential regulation of quorum-sensing target genes. Other regulators appear to be involved in control of V. harveyi qrr expression, allowing the integration of additional sensory information into the regulation of quorum-sensing gene expression. PMID:17234887

  20. Translational control and target recognition by Escherichia coli small RNAs in vivo

    PubMed Central

    Urban, Johannes H.; Vogel, Jörg

    2007-01-01

    Small non-coding RNAs (sRNAs) are an emerging class of regulators of bacterial gene expression. Most of the regulatory Escherichia coli sRNAs known to date modulate translation of trans-encoded target mRNAs. We studied the specificity of sRNA target interactions using gene fusions to green fluorescent protein (GFP) as a novel reporter of translational control by bacterial sRNAs in vivo. Target sequences were selected from both monocistronic and polycistronic mRNAs. Upon expression of the cognate sRNA (DsrA, GcvB, MicA, MicC, MicF, RprA, RyhB, SgrS and Spot42), we observed highly specific translation repression/activation of target fusions under various growth conditions. Target regulation was also tested in mutants that lacked Hfq or RNase III, or which expressed a truncated RNase E (rne701). We found that translational regulation by these sRNAs was largely independent of full-length RNase E, e.g. despite the fact that ompA fusion mRNA decay could no longer be promoted by MicA. This is the first study in which multiple well-defined E.coli sRNA target pairs have been studied in a uniform manner in vivo. We expect our GFP fusion approach to be applicable to sRNA targets of other bacteria, and also demonstrate that Vibrio RyhB sRNA represses a Vibrio sodB fusion when co-expressed in E.coli. PMID:17264113

  1. Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs.

    PubMed

    Pirouz, Mehdi; Du, Peng; Munafò, Marzia; Gregory, Richard I

    2016-08-16

    Mutations in the 3'-5' exonuclease DIS3L2 are associated with Perlman syndrome and hypersusceptibility to Wilms tumorigenesis. Previously, we found that Dis3l2 specifically recognizes and degrades uridylated pre-let-7 microRNA. However, the widespread relevance of Dis3l2-mediated decay of uridylated substrates remains unknown. Here, we applied an unbiased RNA immunoprecipitation strategy to identify Dis3l2 targets in mouse embryonic stem cells. The disease-associated long noncoding RNA (lncRNA) Rmrp, 7SL, as well as several other Pol III-transcribed noncoding RNAs (ncRNAs) were among the most highly enriched Dis3l2-bound RNAs. 3'-Uridylated Rmrp, 7SL, and small nuclear RNA (snRNA) species were highly stabilized in the cytoplasm of Dis3l2-depleted cells. Deep sequencing analysis of Rmrp 3' ends revealed extensive oligouridylation mainly on transcripts with imprecise ends. We implicate the terminal uridylyl transferases (TUTases) Zcchc6/11 in the uridylation of these ncRNAs, and biochemical reconstitution assays demonstrate the sufficiency of TUTase-Dis3l2 for Rmrp decay. This establishes Dis3l2-mediated decay (DMD) as a quality-control pathway that eliminates aberrant ncRNAs. PMID:27498873

  2. Competing Interactions of RNA-Binding Proteins, MicroRNAs, and Their Targets Control Neuronal Development and Function

    PubMed Central

    Gardiner, Amy S.; Twiss, Jeffery L.; Perrone-Bizzozero, Nora I.

    2015-01-01

    Post-transcriptional mechanisms play critical roles in the control of gene expression during neuronal development and maturation as they allow for faster responses to environmental cues and provide spatially-restricted compartments for local control of protein expression. These mechanisms depend on the interaction of cis-acting elements present in the mRNA sequence and trans-acting factors, such as RNA-binding proteins (RBPs) and microRNAs (miRNAs) that bind to those cis-elements and regulate mRNA stability, subcellular localization, and translation. Recent studies have uncovered an unexpected complexity in these interactions, where coding and non-coding RNAs, termed competing endogenous RNAs (ceRNAs), compete for binding to miRNAs. This competition can, thereby, control a larger number of miRNA target transcripts. However, competing RNA networks also extend to competition between target mRNAs for binding to limited amounts of RBPs. In this review, we present evidence that competitions between target mRNAs for binding to RBPs also occur in neurons, where they affect transcript stability and transport into axons and dendrites as well as translation. In addition, we illustrate the complexity of these mechanisms by demonstrating that RBPs and miRNAs also compete for target binding and regulation. PMID:26512708

  3. Evaluation of an Outer Loop Retrofit Architecture for Intelligent Turbofan Engine Thrust Control

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Sowers, T. Shane

    2006-01-01

    The thrust control capability of a retrofit architecture for intelligent turbofan engine control and diagnostics is evaluated. The focus of the study is on the portion of the hierarchical architecture that performs thrust estimation and outer loop thrust control. The inner loop controls fan speed so the outer loop automatically adjusts the engine's fan speed command to maintain thrust at the desired level, based on pilot input, even as the engine deteriorates with use. The thrust estimation accuracy is assessed under nominal and deteriorated conditions at multiple operating points, and the closed loop thrust control performance is studied, all in a complex real-time nonlinear turbofan engine simulation test bed. The estimation capability, thrust response, and robustness to uncertainty in the form of engine degradation are evaluated.

  4. Control by a hair’s breadth: the role of microRNAs in the skin

    PubMed Central

    Ning, Matthew S.; Andl, Thomas

    2012-01-01

    microRNAs have continued to attract enormous interest in the scientific community ever since their discovery. Their allure stems from their unique role in posttranscriptional gene expression control as well as their potential application as therapeutic targets in various disease pathologies. While much is known concerning their general biological function, such as their interaction with RNA-Induced Silencing Complexes (RISC), many important questions still remain unanswered, especially regarding their functions in the skin. In this review, we summarize our current knowledge of the role of microRNAs in the skin in order to shine new light on our understanding of cutaneous biology and emphasize the significance of these small, single-stranded RNA molecules in the largest organ of the human body. Key events in epidermal and hair follicle biology, including differentiation, proliferation, and pigmentation, all involve microRNAs. We explore the role of microRNAs in several cutaneous processes, such as appendage formation, wound-healing, epithelial-mesenchymal transition, carcinogenesis, immune response, and aging. In addition, we discuss current trends in research and offer suggestions for future studies. PMID:22983383

  5. A late-acting quality control process for mature eukaryotic rRNAs.

    PubMed

    LaRiviere, Frederick J; Cole, Sarah E; Ferullo, Daniel J; Moore, Melissa J

    2006-11-17

    Ribosome biogenesis is a multifaceted process involving a host of trans-acting factors mediating numerous chemical reactions, RNA conformational changes, and RNA-protein associations. Given this high degree of complexity, tight quality control is likely crucial to ensure structural and functional integrity of the end products. We demonstrate that ribosomal RNAs (rRNAs) containing individual point mutations, in either the 25S peptidyl transferase center or 18S decoding site, that adversely affect ribosome function are strongly downregulated in Saccharomyces cerevisiae. This downregulation occurs via decreased stability of the mature rRNA contained in fully assembled ribosomes and ribosomal subunits. Thus, eukaryotes possess a quality-control mechanism, nonfunctional rRNA decay (NRD), capable of detecting and eliminating the rRNA component of mature ribosomes. PMID:17188037

  6. Role of MicroRNAs in Controlling Gene Expression in Different Segments of the Human Epididymis

    PubMed Central

    Belleannée, Clémence; Calvo, Ezéquiel; Thimon, Véronique; Cyr, Daniel G.; Légaré, Christine; Garneau, Louis; Sullivan, Robert

    2012-01-01

    Background The molecular mechanisms implicated in regionalized gene expression in the human epididymis have not yet been fully elucidated. Interestingly, more than 200 microRNAs (miRNAs) have been identified in the human epididymis and could be involved in the regulation of mRNA stability and post-transcriptional expression in this organ. Methods Using a miRNA microarray approach, we investigated the correlation between miRNA signatures and gene expression profiles found in three distinct regions (caput, corpus and cauda) of human epididymides from 3 donors. In silico prediction of transcript miRNA targets was performed using TargetScan and Miranda software's. FHCE1 immortalized epididymal cell lines were cotransfected with mimic microRNAs and plasmid constructs containing the 3′UTR of predicted target genes downstream of the luciferase gene. Results We identified 35 miRNAs differentially expressed in the distinct segments of the epididymis (fold change ≥2, P-value≤0.01). Among these miRNAs, miR-890, miR-892a, miR-892b, miR-891a, miR-891b belonging to the same epididymis-enriched cluster located on the X chromosome, are significantly more expressed in the corpus and cauda regions than in the caput. Interestingly, a strong negative correlation (r = −0,89, P-value≤0.001) was found between the pattern of expression of miR-892b and its potential mRNA target Esrrg (Estrogen Related Receptor Gamma) and with miR-145 and Cldn10 mRNA (r = −0,92, P-value≤0.001). We confirmed that miR-145 and miR-892b inhibit the expression of the luciferase reporter via Cldn10 and Esrrg 3′ UTRs, respectively. Conclusion Our study shows that the expression of miRNAs is segmented along the human epididymis and correlates with the pattern of target gene expression in different regions. Therefore, epididymal miRNAs may be in control of the maintenance of gene expression profile in the epididymis, which dictates segment-specific secretion of proteins and establishes

  7. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*

    PubMed Central

    Carrer, Michele; Liu, Ning; Grueter, Chad E.; Williams, Andrew H.; Frisard, Madlyn I.; Hulver, Matthew W.; Bassel-Duby, Rhonda; Olson, Eric N.

    2012-01-01

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome. PMID:22949648

  8. MicroRNAs control transcription factor NF-kB (p65) expression in human ovarian cells.

    PubMed

    Sirotkin, Alexander V; Alexa, Richard; Kišová, Gabriela; Harrath, Abdel Halim; Alwasel, Saleh; Ovcharenko, Dmitriy; Mlynček, Miloš

    2015-05-01

    MicroRNAs (miRNAs) are known to influence ovarian cell proliferation, apoptosis and hormone release, but it remains unknown whether miRNAs affect ovarian functions via transcription factors. We examined the effect of miRNAs on nuclear factor-κappaB (NF-kB) (p65) expression in human ovarian luteinized granulosa cells. We transfected cultured primary human ovarian luteinized granulosa cells with 80 different constructs encoding human pre-miRNAs and then evaluated NF-kB (p65) expression (percentage of cells containing p65) by immunocytochemistry. We found that 21 of the constructs stimulated NF-kB (p65) expression and 18 of the constructs inhibited NF-kB (p65) expression. This is the first direct demonstration that miRNAs affect NF-kB (p65) expression and the first genome-scale miRNA screen to identify upregulation and downregulation of NF-kB accumulation by miRNAs in the ovary. Novel miRNAs that affect the NF-kB signalling pathway could be useful for the control of NF-kB-dependent reproductive processes and the treatment of NF-kB-dependent reproductive disorders. PMID:25403593

  9. Taylor-Couette flow control using the outer cylinder cross-section variation strategy

    NASA Astrophysics Data System (ADS)

    Oualli, Hamid; Lalaoua, Adel; Hanchi, Samir; Bouabdallah, Ahcene

    2013-01-01

    A numerical study of a controlled flow evolving in a Taylor-Couette system is presented in this paper. The study is devoted to investigate the effect of the outer cylinder cross-section variation on the flow behavior. It is aimed to make assessment of the flow response in terms of the criticality of the early transitional flow regimes and the accompanying flow topology alterations. The numerical simulations are carried out on the Fluent software package for a three-dimensional incompressible flow. The basic system is characterized by a height H = 200 mm, a ratio of the inner to the outer cylinders radii η = 0.9, an aspect ratio corresponding to the cylinders height reported to the gap length Г = 40 and a ratio of the gap to the radius of the inner cylinder δ = 0.1. The numerical deformation of the outer cylinder is executed using the dynamic mesh program according to a predefined function implemented in a homemade program as an UDF (user defined function). It is established that the first instability mode of transition is retarded from Tac1 = 41.33, corresponding to the first Taylor number critical value, to Tac1 = 70 when the deforming amplitude is equal to 15% the external cylinder diameter value. This flow relaminarization process is accompanied by substantial modifications in the flow behavior and configuration.

  10. Regulatory RNAs

    PubMed Central

    Vazquez-Anderson, Jorge; Contreras, Lydia M

    2013-01-01

    RNAs have many important functional properties, including that they are independently controllable and highly tunable. As a result of these advantageous properties, their use in a myriad of sophisticated devices has been widely explored. Yet, the exploitation of RNAs for synthetic applications is highly dependent on the ability to characterize the many new molecules that continue to be discovered by large-scale sequencing and high-throughput screening techniques. In this review, we present an exhaustive survey of the most recent synthetic bacterial riboswitches and small RNAs while emphasizing their virtues in gene expression management. We also explore the use of these RNA components as building blocks in the RNA synthetic biology toolbox and discuss examples of synthetic RNA components used to rewire bacterial regulatory circuitry. We anticipate that this field will expand its catalog of smart devices by mimicking and manipulating natural RNA mechanisms and functions. PMID:24356572

  11. Identification of microRNAs by small RNA deep sequencing for synthetic microRNA mimics to control Spodoptera exigua.

    PubMed

    Zhang, Yu Liang; Huang, Qi Xing; Yin, Guo Hua; Lee, Samantha; Jia, Rui Zong; Liu, Zhi Xin; Yu, Nai Tong; Pennerman, Kayla K; Chen, Xin; Guo, An Ping

    2015-02-25

    Beet armyworm, Spodoptera exigua, is a major pest of cotton around the world. With the increase of resistance to Bacillus thuringiensis (Bt) toxin in transgenic cotton plants, there is a need to develop an alternative control approach that can be used in combination with Bt transgenic crops as part of resistance management strategies. MicroRNAs (miRNAs), a non-coding small RNA family (18-25 nt), play crucial roles in various biological processes and over-expression of miRNAs has been shown to interfere with the normal development of insects. In this study, we identified 127 conserved miRNAs in S. exigua by using small RNA deep sequencing technology. From this, we tested the effects of 11 miRNAs on larval development. We found three miRNAs, Sex-miR-10-1a, Sex-miR-4924, and Sex-miR-9, to be differentially expressed during larval stages of S. exigua. Oral feeding experiments using synthetic miRNA mimics of Sex-miR-10-1a, Sex-miR-4924, and Sex-miR-9 resulted in suppressed growth of S. exigua and mortality. Over-expression of Sex-miR-4924 caused a significant reduction in the expression level of chitinase 1 and caused abortive molting in the insects. Therefore, we demonstrated a novel approach of using miRNA mimics to control S. exigua development. PMID:25528266

  12. Negative Feedback Loops Involving Small Regulatory RNAs Precisely Control the Vibrio harveyi Quorum-Sensing Response

    PubMed Central

    Tu, Kimberly C.; Long, Tao; Svenningsen, Sine L.; Wingreen, Ned S.; Bassler, Bonnie L.

    2010-01-01

    Summary Quorum sensing (QS) bacteria assess population density through secretion and detection of molecules called autoinducers (AIs). We identify and characterize two Vibrio harveyi negative feedback loops that facilitate precise transitions between low-cell-density (LCD) and high-cell-density (HCD) states. The QS central regulator LuxO autorepresses its own transcription and the Qrr small regulatory RNAs (sRNAs) posttranscriptionally repress luxO. Disrupting feedback increases the concentration of AIs required for cells to transit from LCD to HCD QS modes. Thus, the two cooperative negative feedback loops determine the point at which V. harveyi has reached a quorum and control the range of AIs over which the transition occurs. Negative feedback regulation also constrains the range of QS output – by preventing sRNA levels from becoming too high and preventing luxO mRNA levels from reaching zero. We suggest that sRNA-mediated feedback regulation is a network design feature that permits fine-tuning of gene regulation and maintenance of homeostasis. PMID:20188674

  13. Local structural controls on outer-rise faulting, hydration, and seismicity in the Alaska subduction zone

    NASA Astrophysics Data System (ADS)

    Shillington, D. J.; Becel, A.; Nedimovic, M. R.; Kuehn, H.; Webb, S. C.; Li, J.; Keranen, K. M.; Abers, G. A.

    2013-12-01

    We present evidence from marine geophysical data that pre-existing structures in the incoming oceanic plate off the Alaska Peninsula control bending faulting and hydration at the outer rise, which in turn correlate to changes in the abundance of interplate and intermediate-depth earthquakes within the subduction zone. Thus, pre-existing heterogeneities in the downgoing plate can result in significant variations in plate hydration over relatively small distances and may in part explain the observed global diversity of seismicity in subduction zones. ALEUT MCS and bathymetry data reveal large changes in the style and amount of bending in the incoming plate. To the west, outboard of the Shumagin Gap, there is significant bending faulting, with fault offsets up to ~250 m at the seafloor and larger offsets at depth. Faults create rugged topography at the seafloor, and sediment cover is thin (~0.5 km). Most faults have strikes within ~25 degrees of the trench. In contrast, the downgoing plate outboard of the Semidi segment to the east exhibits less dramatic bending faulting, with maximum offsets at the seafloor of 30 m, and the sediment cover is thicker (>1 km). These along-strike changes in faulting correlate with changes in the expected orientation of pre-existing structures in the incoming oceanic crust, which is nearly parallel to the trench near the Shumagin Gap, but highly oblique to the trench near the Semidi segment. This implies that more favorably-oriented pre-existing structures may facilitate bending faulting. P-wave velocity models from wide-angle seismic data reveal that along-strike changes in faulting are accompanied by variations in the velocity structure of the incoming plate. Mantle velocities are reduced by ~0.5 km/s at the outer rise off the Shumagin Gap, where significant bending faulting is observed. We interpret decreased velocities to represent serpentinization of the upper mantle. In contrast, the velocity structure is more variable off the

  14. Regulatory RNAs controlling vascular (dys)function by affecting TGF-ß family signalling

    PubMed Central

    Kurakula, Kondababu; Goumans, Marie-Jose; ten Dijke, Peter

    2015-01-01

    Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Over the last few years, microRNAs (miRNAs) have emerged as master regulators of gene expression in cardiovascular biology and disease. miRNAs are small endogenous non-coding RNAs that usually bind to 3′ untranslated region (UTR) of their target mRNAs and inhibit mRNA stability or translation of their target genes. miRNAs play a dynamic role in the pathophysiology of many CVDs through their effects on target mRNAs in vascular cells. Recently, numerous miRNAs have been implicated in the regulation of the transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) signalling pathway which plays crucial roles in diverse biological processes, and is involved in pathogenesis of many diseases including CVD. This review gives an overview of current literature on the role of miRNAs targeting TGF-β/BMP signalling in vascular cells, including endothelial cells and smooth muscle cells. We also provide insight into how this miRNA-mediated regulation of TGF-β/BMP signalling might be used to harness CVD. PMID:26862319

  15. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting.

    PubMed

    Brennan-Laun, Sarah E; Ezelle, Heather J; Li, Xiao-Ling; Hassel, Bret A

    2014-04-01

    RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications. PMID:24697205

  16. RNase-L Control of Cellular mRNAs: Roles in Biologic Functions and Mechanisms of Substrate Targeting

    PubMed Central

    Brennan-Laun, Sarah E.; Ezelle, Heather J.; Li, Xiao-Ling

    2014-01-01

    RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications. PMID:24697205

  17. Characterization of Small RNAs Derived from tRNAs, rRNAs and snoRNAs and Their Response to Heat Stress in Wheat Seedlings

    PubMed Central

    Sun, Qixin; Yao, Yingyin

    2016-01-01

    Small RNAs (sRNAs) derived from non-coding RNAs (ncRNAs), such as tRNAs, rRNAs and snoRNAs, have been identified in various organisms. Several observations have indicated that cleavage of tRNAs and rRNAs is induced by various stresses. To clarify whether sRNAs in wheat derived from tRNAs (stRNAs), rRNAs (srRNAs) and snoRNAs (sdRNAs) are produced specifically in association with heat stress responses, we carried out a bioinformatic analysis of sRNA libraries from wheat seedlings and performed comparisons between control and high-temperature-treated samples to measure the differential abundance of stRNAs, srRNAs and sdRNAs. We found that the production of sRNAs from tRNAs, 5.8S rRNAs, and 28S rRNAs was more specific than that from 5S rRNAs and 18S rRNAs, and more than 95% of the stRNAs were processed asymmetrically from the 3’ or 5’ ends of mature tRNAs. We identified 333 stRNAs and 8,822 srRNAs that were responsive to heat stress. Moreover, the expression of stRNAs derived from tRNA-Val-CAC, tRNA-Thr-UGU, tRNA-Tyr-GUA and tRNA-Ser-UGA was not only up-regulated under heat stress but also induced by osmotic stress, suggesting that the increased cleavage of tRNAs might be a mechanism that developed in wheat seedlings to help them cope with adverse environmental conditions. PMID:26963812

  18. A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles.

    PubMed

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R

    2014-12-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  19. A Shigella flexneri Virulence Plasmid Encoded Factor Controls Production of Outer Membrane Vesicles

    PubMed Central

    Sidik, Saima; Kottwitz, Haila; Benjamin, Jeremy; Ryu, Julie; Jarrar, Ameer; Garduno, Rafael; Rohde, John R.

    2014-01-01

    Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA. PMID:25378474

  20. Processes controlling the characteristics of the surficial sand sheet, U.S. Atlantic outer continental shelf

    USGS Publications Warehouse

    Knebel, H. J.

    1981-01-01

    A review of recent data on the velocity of bottom currents, the frequency of bottom-sediment movement, the kinds and amounts of suspended sediments in near-bottom waters, and the acoustic and sedimentary features of subbottom strata indicates that the characteristics of the ubiquitous sand sheet on the Atlantic outer continental shelf of the United States have been controlled by a variety of past and present processes. Although these processes collectively have had a widespread effect on the characteristics of the sand sheet, the relative importance of each process changes geographically. On Georges Bank, late Pleistocene glaciations along with modern tidal currents and the regional circulation pattern have played a dominant role. On the Middle Atlantic shelf, ancestral rivers, former near-shore processes, and modern wind- and wave-generated currents are important factors. On the South Atlantic shelf, the sediments reflect subaerial weathering, erosion or nondeposition over or near hardgrounds, and the production of biogenic carbonate. Other processes such as the movement of water masses, bioturbation, and bottom fishing probably have affected the sediments in all areas. A knowledge of the various factors affecting the sand sheet is fundamental to an understanding of its general geologic history and to the paleoenvironmental interpretation of ancient sand strata. ?? 1981.

  1. [Non-coding RNAs and diseases].

    PubMed

    Huang, Y; Wang, J P; Yu, X L; Wang, Z V; Xu, T S; Cheng, X C

    2013-01-01

    With the completion of large scale genomic sequencing, a great number of non-conding RNAs (ncRNAs) have been discovered and capture the attention of the biological sciences community. All known ncRNAs may be divided into two groups, namely: i) small ncRNAs, which comprise microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and short interfering RNAs (siRNAs), and ii) several thousands of long ncRNAs (IncRNAs). NcRNAs were shown to be involved in eukaryotic growth and development, cell proliferation and differentiation, apoptosis, epigenetic modifications, and also the complex control and pathogenesis of various diseases. In this paper, knowledge on the ncRNAs, which functioning is associated with human diseases, has been summarized. PMID:24466743

  2. Bicaudal-C spatially controls translation of vertebrate maternal mRNAs

    PubMed Central

    Zhang, Yan; Cooke, Amy; Park, Sookhee; Dewey, Colin N.; Wickens, Marvin; Sheets, Michael D.

    2013-01-01

    The Xenopus Cripto-1 protein is confined to the cells of the animal hemisphere during early embryogenesis where it regulates the formation of anterior structures. Cripto-1 protein accumulates only in animal cells because cripto-1 mRNA in cells of the vegetal hemisphere is translationally repressed. Here, we show that the RNA binding protein, Bicaudal-C (Bic-C), functioned directly in this vegetal cell-specific repression. While Bic-C protein is normally confined to vegetal cells, ectopic expression of Bic-C in animal cells repressed a cripto-1 mRNA reporter and associated with endogenous cripto-1 mRNA. Repression by Bic-C required its N-terminal domain, comprised of multiple KH motifs, for specific binding to relevant control elements within the cripto-1 mRNA and a functionally separable C-terminal translation repression domain. Bic-C-mediated repression required the 5′ CAP and translation initiation factors, but not a poly(A) tail or the conserved SAM domain within Bic-C. Bic-C-directed immunoprecipitation followed by deep sequencing of associated mRNAs identified multiple Bic-C-regulated mRNA targets, including cripto-1 mRNA, providing new insights and tools for understanding the role of Bic-C in vertebrate development. PMID:24062572

  3. A Multi-RNAi Microsponge Platform for Simultaneous Controlled Delivery of Multiple Small Interfering RNAs.

    PubMed

    Roh, Young Hoon; Deng, Jason Z; Dreaden, Erik C; Park, Jae Hyon; Yun, Dong Soo; Shopsowitz, Kevin E; Hammond, Paula T

    2016-03-01

    Packaging multiple small interfering RNA (siRNA) molecules into nanostructures at precisely defined ratios is a powerful delivery strategy for effective RNA interference (RNAi) therapy. We present a novel RNA nanotechnology based approach to produce multiple components of polymerized siRNA molecules that are simultaneously self-assembled and densely packaged into composite sponge-like porous microstructures (Multi-RNAi-MSs) by rolling circle transcription. The Multi-RNAi-MSs were designed to contain a combination of multiple polymeric siRNA molecules with precisely controlled stoichiometry within a singular microstructure by manipulating the types and ratios of the circular DNA templates. The Multi-RNAi-MSs were converted into nanosized complexes by polyelectrolyte condensation to manipulate their physicochemical properties (size, shape, and surface charge) for favorable delivery, while maintaining the multifunctional properties of the siRNAs for combined therapeutic effects. These Multi-RNAi-MS systems have great potential in RNAi-mediated biomedical applications, for example, for the treatment of cancer, genetic disorders, and viral infections. PMID:26695874

  4. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms

    PubMed Central

    Kim, Boseon; Ha, Minju; Loeff, Luuk; Chang, Hyeshik; Simanshu, Dhirendra K; Li, Sisi; Fareh, Mohamed; Patel, Dinshaw J; Joo, Chirlmin; Kim, V Narry

    2015-01-01

    Terminal uridylyl transferases (TUTs) function as integral regulators of microRNA (miRNA) biogenesis. Using biochemistry, single-molecule, and deep sequencing techniques, we here investigate the mechanism by which human TUT7 (also known as ZCCHC6) recognizes and uridylates precursor miRNAs (pre-miRNAs) in the absence of Lin28. We find that the overhang of a pre-miRNA is the key structural element that is recognized by TUT7 and its paralogues, TUT4 (ZCCHC11) and TUT2 (GLD2/PAPD4). For group II pre-miRNAs, which have a 1-nt 3′ overhang, TUT7 restores the canonical end structure (2-nt 3′ overhang) through mono-uridylation, thereby promoting miRNA biogenesis. For pre-miRNAs where the 3′ end is further recessed into the stem (as in 3′ trimmed pre-miRNAs), TUT7 generates an oligo-U tail that leads to degradation. In contrast to Lin28-stimulated oligo-uridylation, which is processive, a distributive mode is employed by TUT7 for both mono- and oligo-uridylation in the absence of Lin28. The overhang length dictates the frequency (but not duration) of the TUT7-RNA interaction, thus explaining how TUT7 differentiates pre-miRNA species with different overhangs. Our study reveals dual roles and mechanisms of uridylation in repair and removal of defective pre-miRNAs. PMID:25979828

  5. Rbfox3 Controls the Biogenesis of a Subset of MicroRNAs

    PubMed Central

    Kim, Kee K.; Yang, Yanqin; Zhu, Jun; Adelstein, Robert S.; Kawamoto, Sachiyo

    2014-01-01

    RNA-binding proteins (RBPs) regulate numerous aspects of gene expression, thus identification of endogenous targets of RBPs is important for understanding their functions in cells. Here we identified transcriptome-wide targets of Rbfox3 in neuronally differentiated P19 cells and mouse brain using Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP). Although Rbfox3 is known to regulate pre-mRNA splicing through binding to the UGCAUG motif, PAR-CLIP analysis revealed diverse Rbfox3 targets including primary-microRNAs (pri-miRNAs) which lack the UGCAUG motif. Induced expression and depletion of Rbfox3 led to changes in the expression levels of a subset of PAR-CLIP-detected miRNAs. In vitro analyses revealed that Rbfox3 functions as a positive and a negative regulator at the stage of pri-miRNA processing to precursor-miRNA. Rbfox3 binds directly to pri-miRNAs and regulates the recruitment of the microprocessor complex to pri-miRNAs. Our study proposes a novel function for Rbfox3 in miRNA biogenesis. PMID:25240799

  6. New Neurons in Aging Brains: Molecular Control by Small Non-Coding RNAs

    PubMed Central

    Schouten, Marijn; Buijink, M. Renate; Lucassen, Paul J.; Fitzsimons, Carlos P.

    2012-01-01

    Adult neurogenesis generates functional neurons from neural stem cells present in specific brain regions. It is largely confined to two main regions: the subventricular zone of the lateral ventricle, and the subgranular zone of the dentate gyrus (DG), in the hippocampus. With age, the function of the hippocampus and particularly the DG is impaired. For instance, adult neurogenesis is decreased with aging, in both proliferating and differentiation of newborn cells, while in parallel an age-associated decline in cognitive performance is often seen. Surprisingly, the synaptogenic potential of adult-born neurons is only marginally influenced by aging. Therefore, although proliferation, differentiation, and synaptogenesis of adult-born new neurons in the DG are closely related to each other, they are differentially affected by aging. In this review we discuss the crucial roles of a novel class of recently discovered modulators of gene expression, the small non-coding RNAs, in the regulation of adult neurogenesis. Multiple small non-coding RNAs are differentially expressed in the hippocampus. In particular a subgroup of the small non-coding RNAs, the microRNAs, fine-tune the progression of adult neurogenesis. This makes small non-coding RNAs appealing candidates to orchestrate the functional alterations in adult neurogenesis and cognition associated with aging. Finally, we summarize observations that link changes in circulating levels of steroid hormones with alterations in adult neurogenesis, cognitive decline, and vulnerability to psychopathology in advanced age, and discuss a potential interplay between steroid hormone receptors and microRNAs in cognitive decline in aging individuals. PMID:22363255

  7. Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components.

    PubMed

    Wynne, David J; Funabiki, Hironori

    2015-09-14

    It is widely accepted that the kinetochore is built on CENP-A-marked centromeric chromatin in a hierarchical order from inner to outer kinetochore. Recruitment of many kinetochore proteins depends on microtubule attachment status, but it remains unclear how their assembly/disassembly is orchestrated. Applying 3D structured illumination microscopy to Xenopus laevis egg extracts, here we reveal that in the absence of microtubule attachment, proteins responsible for lateral attachment and spindle checkpoint signaling expand to form micrometer-scale fibrous structures over CENP-A-free chromatin, whereas a core module responsible for end-on attachment (CENP-A, CENP-T, and Ndc80) does not. Both outer kinetochore proteins (Bub1, BubR1, Mad1, and CENP-E) and the inner kinetochore component CENP-C are integral components of the expandable module, whose assembly depends on multiple mitotic kinases (Aurora B, Mps1, and Plx1) and is suppressed by protein phosphatase 1. We propose that phospho-dependent coexpansion of CENP-C and outer kinetochore proteins promotes checkpoint signal amplification and lateral attachment, whereas their selective disassembly enables the transition to end-on attachment. PMID:26347137

  8. Kinetochore function is controlled by a phospho-dependent coexpansion of inner and outer components

    PubMed Central

    Wynne, David J.

    2015-01-01

    It is widely accepted that the kinetochore is built on CENP-A–marked centromeric chromatin in a hierarchical order from inner to outer kinetochore. Recruitment of many kinetochore proteins depends on microtubule attachment status, but it remains unclear how their assembly/disassembly is orchestrated. Applying 3D structured illumination microscopy to Xenopus laevis egg extracts, here we reveal that in the absence of microtubule attachment, proteins responsible for lateral attachment and spindle checkpoint signaling expand to form micrometer-scale fibrous structures over CENP-A–free chromatin, whereas a core module responsible for end-on attachment (CENP-A, CENP-T, and Ndc80) does not. Both outer kinetochore proteins (Bub1, BubR1, Mad1, and CENP-E) and the inner kinetochore component CENP-C are integral components of the expandable module, whose assembly depends on multiple mitotic kinases (Aurora B, Mps1, and Plx1) and is suppressed by protein phosphatase 1. We propose that phospho-dependent coexpansion of CENP-C and outer kinetochore proteins promotes checkpoint signal amplification and lateral attachment, whereas their selective disassembly enables the transition to end-on attachment. PMID:26347137

  9. LncRNAs and cancer

    PubMed Central

    Zhang, Rui; Xia, Li Qiong; Lu, Wen Wen; Zhang, Jing; Zhu, Jin-Shui

    2016-01-01

    Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs composed of >200 nucleotides. Recent studies have revealed that lncRNAs exert an important role in the development and progression of cancer. In this review, the involvement of the most extensively investigated lncRNAs in cancers of the digestive, respiratory, reproductive, urinary and central nervous systems are discussed. LncRNAs function via molecular and biochemical mechanisms that include cis- and trans-regulation of gene expression, epigenetic modulation in the nucleus and post-transcriptional control in the cytoplasm. Although the detailed biological functions and molecular mechanisms of the majority of lncRNAs remain to be elucidated, this review aims to provide a novel insight into the diagnosis and treatment of cancer using lncRNAs. PMID:27446422

  10. Riboswitch RNAs

    PubMed Central

    Smith, Angela M.; Fuchs, Ryan T.; Grundy, Frank J.; Henkin, Tina M.

    2016-01-01

    Riboswitches are cis-encoded, cis-acting RNA elements that directly sense a physiological signal. Signal response results in a change in RNA structure that impacts gene expression. Elements of this type play an important role in bacteria, where they regulate a variety of fundamental cellular pathways. Riboswitch-mediated gene regulation most commonly occurs by effects on transcription attenuation, to control whether a full-length transcript is synthesized, or on translation initiation, in which case the transcript is constitutively synthesized but binding of the translation initiation complex is modulated. An overview of the role of riboswitch RNAs in bacterial gene expression will be provided, and a few examples are described in more detail to illustrate the types of mechanisms that have been uncovered. PMID:20061810

  11. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    PubMed Central

    Chang, Richard Cheng-An; Ying, Wei; Bazer, Fuller W.; Zhou, Beiyan

    2014-01-01

    Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases. PMID:25014161

  12. Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans

    PubMed Central

    Schyth, Brian Dall; Bela-ong, Dennis Berbulla; Jalali, Seyed Amir Hossein; Kristensen, Lasse Bøgelund Juel; Einer-Jensen, Katja; Pedersen, Finn Skou; Lorenzen, Niels

    2015-01-01

    MicroRNAs (miRNAs) are ~22 base pair-long non-coding RNAs which regulate gene expression in the cytoplasm of eukaryotic cells by binding to specific target regions in mRNAs to mediate transcriptional blocking or mRNA cleavage. Through their fundamental roles in cellular pathways, gene regulation mediated by miRNAs has been shown to be involved in almost all biological phenomena, including development, metabolism, cell cycle, tumor formation, and host-pathogen interactions. To address the latter in a primitive vertebrate host, we here used an array platform to analyze the miRNA response in rainbow trout (Oncorhynchus mykiss) following inoculation with the virulent fish rhabdovirus Viral hemorrhagic septicaemia virus. Two clustered miRNAs, miR-462 and miR-731 (herein referred to as miR-462 cluster), described only in teleost fishes, were found to be strongly upregulated, indicating their involvement in fish-virus interactions. We searched for homologues of the two teleost miRNAs in other vertebrate species and investigated whether findings related to ours have been reported for these homologues. Gene synteny analysis along with gene sequence conservation suggested that the teleost fish miR-462 and miR-731 had evolved from the ancestral miR-191 and miR-425 (herein called miR-191 cluster), respectively. Whereas the miR-462 cluster locus is found between two protein-coding genes (intergenic) in teleost fish genomes, the miR-191 cluster locus is found within an intron of a protein-coding gene (intragenic) in the human genome. Interferon (IFN)-inducible and immune-related promoter elements found upstream of the teleost miR-462 cluster locus suggested roles in immune responses to viral pathogens in fish, while in humans, the miR-191 cluster functionally associated with cell cycle regulation. Stimulation of fish cell cultures with the IFN inducer poly I:C accordingly upregulated the expression of miR-462 and miR-731, while no stimulatory effect on miR-191 and miR-425

  13. Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control

    PubMed Central

    Eom, Taesun; Muslimov, Ilham A.; Tsokas, Panayiotis; Berardi, Valerio; Zhong, Jun; Sacktor, Todd C.

    2014-01-01

    In neurons, translational regulation of gene expression has been implicated in the activity-dependent management of synapto-dendritic protein repertoires. However, the fundamentals of stimulus-modulated translational control in neurons remain poorly understood. Here we describe a mechanism in which regulatory brain cytoplasmic (BC) RNAs cooperate with eukaryotic initiation factor 4B (eIF4B) to control translation in a manner that is responsive to neuronal activity. eIF4B is required for the translation of mRNAs with structured 5′ untranslated regions (UTRs), exemplified here by neuronal protein kinase Mζ (PKMζ) mRNA. Upon neuronal stimulation, synapto-dendritic eIF4B is dephosphorylated at serine 406 in a rapid process that is mediated by protein phosphatase 2A. Such dephosphorylation causes a significant decrease in the binding affinity between eIF4B and BC RNA translational repressors, enabling the factor to engage the 40S small ribosomal subunit for translation initiation. BC RNA translational control, mediated via eIF4B phosphorylation status, couples neuronal activity to translational output, and thus provides a mechanistic basis for long-term plastic changes in nerve cells. PMID:25332164

  14. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli

    PubMed Central

    Mika, Franziska; Hengge, Regine

    2014-01-01

    Amyloid curli fibers and cellulose are extracellular matrix components produced in the stationary phase top layer of E. coli macrocolonies, which confer physical protection, strong cohesion, elasticity, and wrinkled morphology to these biofilms. Curli and cellulose synthesis is controlled by a three-level transcription factor (TF) cascade with the RpoS sigma subunit of RNA polymerase at the top, the MerR-like TF MlrA, and the biofilm regulator CsgD, with two c-di-GMP control modules acting as key switching devices. Additional signal input and fine-tuning is provided by an entire series of small RNAs—ArcZ, DsrA, RprA, McaS, OmrA/OmrB, GcvB, and RydC—that differentially control all three TF modules by direct mRNA interaction. This review not only summarizes the mechanisms of action of these sRNAs, but also addresses the question of how these sRNAs and the regulators they target contribute to building the intriguing three-dimensional microarchitecture and macromorphology of these biofilms. PMID:25028968

  15. Pest control. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids.

    PubMed

    Zhang, Jiang; Khan, Sher Afzal; Hasse, Claudia; Ruf, Stephanie; Heckel, David G; Bock, Ralph

    2015-02-27

    Double-stranded RNAs (dsRNAs) targeted against essential genes can trigger a lethal RNA interference (RNAi) response in insect pests. The application of this concept in plant protection is hampered by the presence of an endogenous plant RNAi pathway that processes dsRNAs into short interfering RNAs. We found that long dsRNAs can be stably produced in chloroplasts, a cellular compartment that appears to lack an RNAi machinery. When expressed from the chloroplast genome, dsRNAs accumulated to as much as 0.4% of the total cellular RNA. Transplastomic potato plants producing dsRNAs targeted against the β-actin gene of the Colorado potato beetle, a notorious agricultural pest, were protected from herbivory and were lethal to its larvae. Thus, chloroplast expression of long dsRNAs can provide crop protection without chemical pesticides. PMID:25722411

  16. Noncoding Regulatory RNAs in Hematopoiesis.

    PubMed

    Jeong, M; Goodell, M A

    2016-01-01

    Hematopoiesis is a dynamic process in which blood cells are continuously generated from hematopoietic stem cells (HSCs). The regulatory mechanisms controlling HSC fate have been studied extensively over the past several decades. Although many protein-coding genes have been shown to regulate hematopoietic differentiation, additional levels of HSC regulation are not well studied. Advances in deep sequencing have revealed many new classes of regulatory noncoding RNAs (ncRNAs), such as enhancer RNAs and antisense ncRNAs. Functional analysis of some of these ncRNAs has provided insights into the molecular mechanisms that regulate hematopoietic development and disease. In this review, we summarize recent advances in our understanding of functional regulatory ncRNAs associated with hematopoietic self-renewal and differentiation, as well as those dysregulated ncRNAs involved in hematologic malignancies. PMID:27137659

  17. TSPO, a Mitochondrial Outer Membrane Protein, Controls Ethanol-Related Behaviors in Drosophila

    PubMed Central

    Lin, Ran; Rittenhouse, Danielle; Sweeney, Katelyn; Potluri, Prasanth; Wallace, Douglas C.

    2015-01-01

    The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs. PMID:26241038

  18. HALL EFFECT CONTROLLED GAS DYNAMICS IN PROTOPLANETARY DISKS. II. FULL 3D SIMULATIONS TOWARD THE OUTER DISK

    SciTech Connect

    Bai, Xue-Ning

    2015-01-10

    We perform three-dimensional stratified shearing-box magnetohydrodynamic (MHD) simulations on the gas dynamics of protoplanetary disks with a net vertical magnetic flux of B {sub z0}. All three nonideal MHD effects, Ohmic resistivity, the Hall effect, and ambipolar diffusion, are included in a self-consistent manner based on equilibrium chemistry. We focus on regions toward outer disk radii, from 5 to 60 AU, where Ohmic resistivity tends to become negligible, ambipolar diffusion dominates over an extended region across the disk height, and the Hall effect largely controls the dynamics near the disk midplane. We find that at around R = 5 AU the system launches a laminar or weakly turbulent magnetocentrifugal wind when the net vertical field B {sub z0} is not too weak. Moreover, the wind is able to achieve and maintain a configuration with reflection symmetry at the disk midplane. The case with anti-aligned field polarity (Ω⋅B{sub z0}<0) is more susceptible to the magnetorotational instability (MRI) when B {sub z0} decreases, leading to an outflow oscillating in radial directions and very inefficient angular momentum transport. At the outer disk around and beyond R = 30 AU, the system shows vigorous MRI turbulence in the surface layer due to far-UV ionization, which efficiently drives disk accretion. The Hall effect affects the stability of the midplane region to the MRI, leading to strong/weak Maxwell stress for aligned/anti-aligned field polarities. Nevertheless, the midplane region is only very weakly turbulent in both cases. Overall, the basic picture is analogous to the conventional layered accretion scenario applied to the outer disk. In addition, we find that the vertical magnetic flux is strongly concentrated into thin, azimuthally extended shells in most of our simulations beyond 15 AU, leading to enhanced radial density variations know as zonal flows. Theoretical implications and observational consequences are briefly discussed.

  19. MicroRNAs as biomarkers of hepatotoxicity in a randomized placebo-controlled study of simvastatin and ubiquinol supplementation.

    PubMed

    Pek, Sharon Lt; Tavintharan, Subramaniam; Woon, Kaing; Lin, Lifang; Ong, Choon Nam; Lim, Su Chi; Sum, Chee Fang

    2016-02-01

    Statins are potent cholesterol-lowering drugs and are generally well tolerated. Hepatotoxicity is a rare but serious adverse effect of statins; however, its mechanisms are not clear. Coenzyme Q10 deficiency has been suggested, and supplementation of reduced coenzyme Q10 (ubiquinol) has been shown to have hepatoprotective effects. MicroRNAs (miRNAs) are small nucleotides that have been shown to be up-regulated in drug-induced liver injury. We hypothesized that circulating miRNAs may be differentially regulated after simvastatin treatment and by comparing with that of simvastatin and ubiquinol supplementation could potentially uncover signatory miRNA profile for simvastatin-induced liver injury. In this double-blind, prospective, randomized-controlled trial, miRNA profiles and liver enzymes were compared between simvastatin-treated patients, with and without ubiquinol supplementation, over 12 weeks compared to baseline. miRNA expression was further validated in HepG2 liver cell lines by real-time PCR. Changes in miR-192, miR-146a, miR-148a, miR-15a, and miR-21 were positively correlated (p<0.05) with alanine aminotransferase in simvastatin-only treated patients. In ubiquinol supplementation group, alanine aminotransferase and alkaline phosphatase were significantly down-regulated after 12 weeks and changes in miR-15a, miR-21 and miR-33a were negatively correlated with alkaline phosphatase (p < 0.05). Bioinformatics analyses predicted that miRNA regulation in simvastatin group was related to reduce proliferation and adenosine triphosphate-binding cassette transporters. Ubiquinol supplementation additionally regulated miRNAs that inhibit apoptotic and inflammatory pathways, suggesting potential hepatoprotective effects. Our results suggest that 20 mg/day of simvastatin does not have significant risk of hepatotoxicity and ubiquinol supplementation may, at the miRNA level, provide potential beneficial changes to reduce the effects of coenzyme Q10 deficiency in the

  20. Oceanographic controls on sedimentary and geochemical facies on the Peru outer shelf and upper slope

    USGS Publications Warehouse

    Arthur, Michael A.; Dean, Walter E.

    2013-01-01

    Concentrations and characteristics of organic matter in surface sediments deposited under an intense oxygen-minimum zone (OMZ) on the Peru margin were mapped and studied in samples from deck-deployed box cores and push cores acquired by submersible on two east-west transects spanning depths of 75 to 1,000 meters (m) at 12°S and 13.5°S. On the basis of sampling and analyses of the top 1–2 centimeters (cm) of available cores, three main belts of sediments were identified on each transect with increasing depth: (1) muds rich in organic carbon (OC); (2) authigenic phosphatic mineral crusts and pavements; and (3) glaucony facies. Sediments rich in OC on the 12°S transect were mainly located on the outer shelf and upper slope (150–350 m), but they occurred in much shallower water (approximately 100 m) on the 13.5°S transect. The organic matter is almost entirely marine as confirmed by Rock-Eval pyrolysis and isotopic composition of OC. Concentrations of OC are highest (up to 18 percent) in sediments within the OMZ where dissolved oxygen (DO) concentrations are 3+,Al,Mg)2(Si,Al)4O10(OH)2. The glaucony on the 13.5°S transect forms by alteration of one or more original “framework” minerals (carbonate and [or] aluminosilicates) to form pellital aggregates of Fe-, K-, and Mg-rich clay minerals. Because Fe, K, and Mg are derived from seawater, sedimentation rates must be extremely slow in order for the original framework minerals to remain in contact with seawater. The close association of glaucony and phosphorite indicates a delicate balance between the slightly oxidizing conditions at the base of the OMZ that form glaucony and the slightly reducing conditions that mobilize iron and phosphate to form phosphorite.

  1. MicroRNAs and oncogenic transcriptional regulatory networks controlling metabolic reprogramming in cancers.

    PubMed

    Pinweha, Pannapa; Rattanapornsompong, Khanti; Charoensawan, Varodom; Jitrapakdee, Sarawut

    2016-01-01

    Altered cellular metabolism is a fundamental adaptation of cancer during rapid proliferation as a result of growth factor overstimulation. We review different pathways involving metabolic alterations in cancers including aerobic glycolysis, pentose phosphate pathway, de novo fatty acid synthesis, and serine and glycine metabolism. Although oncoproteins, c-MYC, HIF1α and p53 are the major drivers of this metabolic reprogramming, post-transcriptional regulation by microRNAs (miR) also plays an important role in finely adjusting the requirement of the key metabolic enzymes underlying this metabolic reprogramming. We also combine the literature data on the miRNAs that potentially regulate 40 metabolic enzymes responsible for metabolic reprogramming in cancers, with additional miRs from computational prediction. Our analyses show that: (1) a metabolic enzyme is frequently regulated by multiple miRs, (2) confidence scores from prediction algorithms might be useful to help narrow down functional miR-mRNA interaction, which might be worth further experimental validation. By combining known and predicted interactions of oncogenic transcription factors (TFs) (c-MYC, HIF1α and p53), sterol regulatory element binding protein 1 (SREBP1), 40 metabolic enzymes, and regulatory miRs we have established one of the first reference maps for miRs and oncogenic TFs that regulate metabolic reprogramming in cancers. The combined network shows that glycolytic enzymes are linked to miRs via p53, c-MYC, HIF1α, whereas the genes in serine, glycine and one carbon metabolism are regulated via the c-MYC, as well as other regulatory organization that cannot be observed by investigating individual miRs, TFs, and target genes. PMID:27358718

  2. Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: From controlled drug intake to escalated drug intake.

    PubMed

    Du, Hao-Yue; Cao, Dan-Ni; Chen, Ying; Wang, Lv; Wu, Ning; Li, Jin

    2016-01-12

    Drug addiction is a process that transits from recreative and regular drug use into compulsive drug use. The two patterns of drug use, controlled drug intake and escalated drug intake, represent different stages in the development of drug addiction; and escalation of drug use is a hallmark of addiction. Accumulating studies indicate that microRNAs (miRNAs) play key regulatory roles in drug addiction. However, the molecular adaptations in escalation of drug use, as well as the difference in the adaptations between escalated and controlled drug use, remain unclear. In the present study, 28 altered miRNAs in the prefrontal cortex (PFC) were found in the groups of controlled methamphetamine self-administration (1h/session) and escalated self-administration (6h/session), and some of them were validated. Compared with saline control group, miR-186 was verified to be up-regulated while miR-195 and miR-329 were down-regulated in the rats with controlled methamphetamine use. In the rats with escalated drug use, miR-127, miR-186, miR-222 and miR-24 were verified to be up-regulated while miR-329 was down-regulated compared with controls. Furthermore, bioinformatic analysis indicated that the predicted targets of these verified miRNAs involved in the processes of neuronal apoptosis and synaptic plasticity. However, the putative regulated molecules may be different between controlled and escalated drug use groups. Taken together, we detected the altered miRNAs in rat PFC under the conditions of controlled methamphetamine use and escalated use respectively, which may extend our understanding of the molecular adaptations underlying the transition from controlled drug use to addiction. PMID:26592480

  3. MicroRNAs and atherosclerosis

    PubMed Central

    Madrigal-Matute, Julio; Rotllan, Noemi; Aranda, Juan F.; Fernández-Hernando, Carlos

    2014-01-01

    MicroRNAs (miRNAs) are small (~22nucleotide) sequences of RNA that regulate gene expression at posttranscriptional level. MiRNA/mRNA base pairing complementarity provokes mRNA decay and consequent gene silencing. These endogenous gene expression inhibitors were primarily described in cancer but recent exciting findings have also demonstrated a key role in cardiovascular diseases (CVDs) including atherosclerosis. MiRNAs controls endothelial cell (EC), vascular smooth muscle cell (VSMC) and macrophage functions, and thereby regulate the progression of atherosclerosis. MiRNAs expression is modulated by different stimuli involved in every stage of atherosclerosis and conversely miRNAs modulates several pathways implicated in plaque development such as cholesterol metabolism. In the present review, we focus on the importance of miRNAs in atherosclerosis and we further discuss their potential use as biomarkers and therapeutic targets in CVDs. PMID:23512606

  4. Non-coding RNAs and atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos

    2014-01-01

    Non-coding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer and cardiovascular diseases (CVDs) including atherosclerosis. The best-characterized ncRNAs are the microRNAs (miRNAs), which are small, ~22 nucleotide (nt) sequences of RNA that regulate gene expression at the posttranscriptional level through transcript degradation or translational repression. MiRNAs control several aspects of atherosclerosis including endothelial cell, vascular smooth cell, and macrophage functions as well as lipoprotein metabolism. Apart from miRNAs, recently ncRNAs, especially long ncRNAs (lncRNAs), have emerged as important potential regulators of the progression of atherosclerosis. However, the molecular mechanism of their regulation and function as well as significance of other ncRNAs such as small nucleolar RNAs (snoRNAs) during atherogenesis is largely unknown. In this review, we summarize the recent findings in the field, highlighting the importance of ncRNAs in atherosclerosis and discuss their potential use as therapeutic targets in CVDs. PMID:24623179

  5. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization

    PubMed Central

    Guan, Yan-Qing; Zheng, Zhe; Huang, Zheng; Li, Zhibin; Niu, Shuiqin; Liu, Jun-Ming

    2014-01-01

    Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance. PMID:24845203

  6. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization

    NASA Astrophysics Data System (ADS)

    Guan, Yan-Qing; Zheng, Zhe; Huang, Zheng; Li, Zhibin; Niu, Shuiqin; Liu, Jun-Ming

    2014-05-01

    Nanomagnetic materials offer exciting avenues for advancing cancer therapies. Most researches have focused on efficient delivery of drugs in the body by incorporating various drug molecules onto the surface of nanomagnetic particles. The challenge is how to synthesize low toxic nanocarriers with multi-target drug loading. The cancer cell death mechanisms associated with those nanocarriers remain unclear either. Following the cell biology mechanisms, we develop a liquid photo-immobilization approach to attach doxorubicin, folic acid, tumor necrosis factor-α, and interferon-γ onto the oleic acid molecules coated Fe3O4 magnetic nanoparticles to prepare a kind of novel inner/outer controlled multi-target magnetic nanoparticle drug carrier. In this work, this approach is demonstrated by a variety of structural and biomedical characterizations, addressing the anti-cancer effects in vivo and in vitro on the HeLa, and it is highly efficient and powerful in treating cancer cells in a valuable programmed cell death mechanism for overcoming drug resistance.

  7. Translational control by 5'-untranslated regions of eukaryotic mRNAs.

    PubMed

    Hinnebusch, Alan G; Ivanov, Ivaylo P; Sonenberg, Nahum

    2016-06-17

    The eukaryotic 5' untranslated region (UTR) is critical for ribosome recruitment to the messenger RNA (mRNA) and start codon choice and plays a major role in the control of translation efficiency and shaping the cellular proteome. The ribosomal initiation complex is assembled on the mRNA via a cap-dependent or cap-independent mechanism. We describe various mechanisms controlling ribosome scanning and initiation codon selection by 5' upstream open reading frames, translation initiation factors, and primary and secondary structures of the 5'UTR, including particular sequence motifs. We also discuss translational control via phosphorylation of eukaryotic initiation factor 2, which is implicated in learning and memory, neurodegenerative diseases, and cancer. PMID:27313038

  8. Novel primate miRNAs co-evolved with ancient target genes in germinal zone specific expression patterns

    PubMed Central

    Arcila, Mary L; Betizeau, Marion; Cambronne, Xiaolu A; Guzman, Elmer; Doerflinger, Nathalie; Bouhallier, Frantz; Zhou, Hongjun; Wu, Bian; Rani, Neha; Bassett, Dani S; Borello, Ugo; Huissoud, Cyril; Goodman, Richard H; Dehay, Colette; Kosik, Kenneth S

    2014-01-01

    Summary Major non primate-primate differences in corticogenesis include the dimensions, precursor lineages and developmental timing of the germinal zones (GZ). microRNAs (miRNAs) of laser dissected GZ compartments and cortical plate (CP) from embryonic E80 macaque visual cortex were deep sequenced. The CP and the GZ including Ventricular Zone (VZ), outer and inner subcompartments of the Outer SubVentricular Zone (OSVZ) in area 17 displayed unique miRNA profiles. miRNAs present in primate, but absent in rodent, contributed disproportionately to the differential expression between GZ sub-regions. Prominent among the validated targets of these miRNAs were cell-cycle and neurogenesis regulators. Co-evolution between the emergent miRNAs and their targets suggested that novel miRNAs became integrated into ancient gene circuitry to exert additional control over proliferation. We conclude that multiple cell-cycle regulatory events contribute to the emergence of primate-specific cortical features, including the OSVZ, generated enlarged supragranular layers, largely responsible for the increased primate cortex computational abilities. PMID:24583023

  9. Novel primate miRNAs coevolved with ancient target genes in germinal zone-specific expression patterns.

    PubMed

    Arcila, Mary L; Betizeau, Marion; Cambronne, Xiaolu A; Guzman, Elmer; Doerflinger, Nathalie; Bouhallier, Frantz; Zhou, Hongjun; Wu, Bian; Rani, Neha; Bassett, Danielle S; Borello, Ugo; Huissoud, Cyril; Goodman, Richard H; Dehay, Colette; Kosik, Kenneth S

    2014-03-19

    Major nonprimate-primate differences in cortico-genesis include the dimensions, precursor lineages, and developmental timing of the germinal zones (GZs). microRNAs (miRNAs) of laser-dissected GZ compartments and cortical plate (CP) from embryonic E80 macaque visual cortex were deep sequenced. The CP and the GZ including ventricular zone (VZ) and outer and inner subcompartments of the outer subventricular zone (OSVZ) in area 17 displayed unique miRNA profiles. miRNAs present in primate, but absent in rodent, contributed disproportionately to the differential expression between GZ subregions. Prominent among the validated targets of these miRNAs were cell-cycle and neurogenesis regulators. Coevolution between the emergent miRNAs and their targets suggested that novel miRNAs became integrated into ancient gene circuitry to exert additional control over proliferation. We conclude that multiple cell-cycle regulatory events contribute to the emergence of primate-specific cortical features, including the OSVZ, generated enlarged supragranular layers, largely responsible for the increased primate cortex computational abilities. PMID:24583023

  10. microRNAs in cancer

    PubMed Central

    Di Leva, Gianpiero; Garofalo, Michela; Croce, Carlo M.

    2014-01-01

    MicroRNAs are small non coding RNAs that typically inhibit the translation and stability of messanger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of the miRNA genomics, biogenesis and function, we discuss the effects of miRNA deregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies. PMID:24079833

  11. Long noncoding RNAs in innate immunity

    PubMed Central

    Zhang, Yuan; Cao, Xuetao

    2016-01-01

    Long noncoding RNAs (lncRNAs) have been shown to play important roles in immune cell development and immune responses through different mechanisms, such as dosage compensation, imprinting, enhancer function, and transcriptional regulation. Although the functions of most lncRNAs are unclear, some lncRNAs have been found to control transcriptional or post-transcriptional regulation of the innate and adaptive immune responses via new methods of protein–protein interactions or pairing with DNA and RNA. Interestingly, increasing evidence has elucidated the importance of lncRNAs in the interaction between hosts and pathogens. In this review, an overview of the lncRNAs modes of action, as well as the important and diversified roles of lncRNAs in immunity, are provided, and an emerging paradigm of lncRNAs in regulating innate immune responses is highlighted. PMID:26277893

  12. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    PubMed Central

    Khraiwesh, Basel; Zhu, Jian-Kang; Zhu, Jianhua

    2011-01-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. PMID:21605713

  13. Post-Transcriptional Control of the Hypoxic Response by RNA-Binding Proteins and MicroRNAs.

    PubMed

    Gorospe, Myriam; Tominaga, Kumiko; Wu, Xue; Fähling, Michael; Ivan, Mircea

    2011-01-01

    Mammalian gene expression patterns change profoundly in response to low oxygen levels. These changes in gene expression programs are strongly influenced by post-transcriptional mechanisms mediated by mRNA-binding factors: RNA-binding proteins (RBPs) and microRNAs (miRNAs). Here, we review the RBPs and miRNAs that modulate mRNA turnover and translation in response to hypoxic challenge. RBPs such as HuR (human antigen R), PTB (polypyrimidine tract-binding protein), heterogeneous nuclear ribonucleoproteins (hnRNPs), tristetraprolin, nucleolin, iron-response element-binding proteins (IRPs), and cytoplasmic polyadenylation-element-binding proteins (CPEBs), selectively bind to numerous hypoxia-regulated transcripts and play a major role in establishing hypoxic gene expression patterns. MiRNAs including miR-210, miR-373, and miR-21 associate with hypoxia-regulated transcripts and further modulate the levels of the encoded proteins to implement the hypoxic gene expression profile. We discuss the potent regulation of hypoxic gene expression by RBPs and miRNAs and their integrated actions in the cellular hypoxic response. PMID:21747757

  14. Characterization of Circular RNAs.

    PubMed

    Zhang, Yang; Yang, Li; Chen, Ling-Ling

    2016-01-01

    Accumulated lines of evidence reveal that a large number of circular RNAs are produced in transcriptomes from fruit fly to mouse and human. Unlike linear RNAs shaped with 5' cap and 3' tail, circular RNAs are characterized by covalently closed loop structures without open terminals, thus requiring specific treatments for their identification and validation. Here, we describe a detailed pipeline for the characterization of circular RNAs. It has been successfully applied to the study of circular intronic RNAs derived from intron lariats (ciRNAs) and circular RNAs produced from back spliced exons (circRNAs) in human. PMID:26721494

  15. Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice.

    PubMed

    Wei, Liya; Gu, Lianfeng; Song, Xianwei; Cui, Xiekui; Lu, Zhike; Zhou, Ming; Wang, Lulu; Hu, Fengyi; Zhai, Jixian; Meyers, Blake C; Cao, Xiaofeng

    2014-03-11

    Transposable elements (TEs) and repetitive sequences make up over 35% of the rice (Oryza sativa) genome. The host regulates the activity of different TEs by different epigenetic mechanisms, including DNA methylation, histone H3K9 methylation, and histone H3K4 demethylation. TEs can also affect the expression of host genes. For example, miniature inverted repeat TEs (MITEs), dispersed high copy-number DNA TEs, can influence the expression of nearby genes. In plants, 24-nt small interfering RNAs (siRNAs) are mainly derived from repeats and TEs. However, the extent to which TEs, particularly MITEs associated with 24-nt siRNAs, affect gene expression remains elusive. Here, we show that the rice Dicer-like 3 homolog OsDCL3a is primarily responsible for 24-nt siRNA processing. Impairing OsDCL3a expression by RNA interference caused phenotypes affecting important agricultural traits; these phenotypes include dwarfism, larger flag leaf angle, and fewer secondary branches. We used small RNA deep sequencing to identify 535,054 24-nt siRNA clusters. Of these clusters, ∼82% were OsDCL3a-dependent and showed significant enrichment of MITEs. Reduction of OsDCL3a function reduced the 24-nt siRNAs predominantly from MITEs and elevated expression of nearby genes. OsDCL3a directly targets genes involved in gibberellin and brassinosteroid homeostasis; OsDCL3a deficiency may affect these genes, thus causing the phenotypes of dwarfism and enlarged flag leaf angle. Our work identifies OsDCL3a-dependent 24-nt siRNAs derived from MITEs as broadly functioning regulators for fine-tuning gene expression, which may reflect a conserved epigenetic mechanism in higher plants with genomes rich in dispersed repeats or TEs. PMID:24554078

  16. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane

    PubMed Central

    Sen, Aditya; Cox, Rachel T.

    2016-01-01

    ABSTRACT Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu), a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1–Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1–Parkin pathway. PMID:26834020

  17. Long noncoding RNAs in hematopoiesis

    PubMed Central

    Zhang, Xu; Hu, Wenqian

    2016-01-01

    Mammalian development is under tight control to ensure precise gene expression. Recent studies reveal a new layer of regulation of gene expression mediated by long noncoding RNAs. These transcripts are longer than 200nt that do not have functional protein coding capacity. Interestingly, many of these long noncoding RNAs are expressed with high specificity in different types of cells, tissues, and developmental stages in mammals, suggesting that they may have functional roles in diverse biological processes. Here, we summarize recent findings of long noncoding RNAs in hematopoiesis, which is one of the best-characterized mammalian cell differentiation processes. Then we provide our own perspectives on future studies of long noncoding RNAs in this field. PMID:27508063

  18. Role of Small RNAs in Trypanosomatid Infections

    PubMed Central

    Linhares-Lacerda, Leandra; Morrot, Alexandre

    2016-01-01

    Trypanosomatid parasites survive and replicate in the host by using mechanisms that aim to establish a successful infection and ensure parasite survival. Evidence points to microRNAs as new players in the host-parasite interplay. MicroRNAs are small non-coding RNAs that control proteins levels via post-transcriptional gene down-regulation, either within the cells where they were produced or in other cells via intercellular transfer. These microRNAs can be modulated in host cells during infection and are among the growing group of small regulatory RNAs, for which many classes have been described, including the transfer RNA-derived small RNAs. Parasites can either manipulate microRNAs to evade host-driven damage and/or transfer small RNAs to host cells. In this mini-review, we present evidence for the involvement of small RNAs, such as microRNAs, in trypanosomatid infections which lack RNA interference. We highlight both microRNA profile alterations in host cells during those infections and the horizontal transfer of small RNAs and proteins from parasites to the host by membrane-derived extracellular vesicles in a cell communication mechanism. PMID:27065454

  19. In vitro and ex vivo delivery of short hairpin RNAs for control of hepatitis C viral transcript expression.

    PubMed

    Lonze, Bonnie E; Holzer, Horatio T; Knabel, Matthew K; Locke, Jayme E; DiCamillo, Gregory A; Karhadkar, Sunil S; Montgomery, Robert A; Sun, Zhaoli; Warren, Daniel S; Cameron, Andrew M

    2012-04-01

    Recurrent hepatitis C virus (HCV) infection is the most common cause of graft loss and patient death after transplantation for HCV cirrhosis. Transplant surgeons have access to uninfected explanted livers before transplantation and an opportunity to deliver RNA interference-based protective gene therapy to uninfected grafts. Conserved HCV sequences were used to design short interfering RNAs and test their ability to knockdown HCV transcript expression in an in vitro model, both by transfection and when delivered via an adeno-associated viral vector. In a rodent model of liver transplantation, portal venous perfusion of explanted grafts with an adeno-associated viral vector before transplantation produced detectable short hairpin RNA transcript expression after transplantation. The ability to deliver anti-HCV short hairpin RNAs to uninfected livers before transplantation and subsequent exposure to HCV offers hope for the possibility of preventing the currently inevitable subsequent infection of liver grafts with HCV. PMID:22508787

  20. Structure and Gene-Silencing Mechanisms of Small Noncoding RNAs

    NASA Astrophysics Data System (ADS)

    Chu, Chia-Ying; Rana, Tariq M.

    Small (19-31-nucleotides) noncoding RNAs were identified in the past 10 years for their distinct function in gene silencing. The best known gene-silencing phenomenon, RNA interference (RNAi), is triggered in a sequence-specific manner by endogenously produced or exogenously introduced small doubled-stranded RNAs. As knowledge of the structure and function of the RNAi machinery has expanded, this phenomenon has become a powerful tool for biochemical research; it has enormous potential for therapeutics. This chapter summarizes significant aspects of three major classes of small noncoding, regulatory RNAs: small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi-interacting RNAs (piRNAs). Here, we focus on the biogenesis of these small RNAs, their structural features and coupled effectors as well as the mechanisms of each small regulatory RNA pathway which reveal fascinating ways by which gene silencing is controlled and fine-tuned at an epigenetic level.

  1. MicroRNAs and cell cycle of malignant glioma.

    PubMed

    Ouyang, Qing; Xu, Lunshan; Cui, Hongjuan; Xu, Minhui; Yi, Liang

    2016-01-01

    The control of malignant glioma cell cycle by microRNAs (miRNAs) is well established. The deregulation of miRNAs in glioma may contribute to tumor proliferation by directly targeting the critical cell-cycle regulators. Tumor suppressive miRNAs inhibit cell cycle through repressing the expression of positive cell-cycle regulators. However, oncogenic miRNAs promote the cell-cycle progression by targeting cell-cycle negative regulators. Recent studies have identified that transcription factors had involved in the expression of miRNAs. Transcription factors and miRNAs are implicated in regulatory network of glioma cell cycle, the deregulation of these transcription factors might be a cause of the deregulation of miRNAs. Abnormal versions of miRNAs have been implicated in the cell cycle of glioma. Based on those, miRNAs are excellent biomarker candidates and potential targets for therapeutic intervention in glioma. PMID:26000816

  2. Horizontal Transfer of Small RNAs to and from Plants

    PubMed Central

    Han, Lu; Luan, Yu-Shi

    2015-01-01

    Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs. PMID:26697056

  3. Horizontal Transfer of Small RNAs to and from Plants.

    PubMed

    Han, Lu; Luan, Yu-Shi

    2015-01-01

    Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates, and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs). sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs) and small interfering RNAs (siRNAs), are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs. PMID:26697056

  4. Role of plasma MicroRNAs in the early diagnosis of non-small-cell lung cancers: a case-control study

    PubMed Central

    Wang, Xin; Zhi, Xiuyi; Zhang, Yi; An, Guangyu

    2016-01-01

    Background Lung cancer is a leading cause of cancer death worldwide. Early diagnosis is essential for improvements of prognosis and survival of the patients. Altered expressions in many cancer types including lung cancer and stable existence in plasma make microRNAs (miRNAs) a group of potentially useful biomarkers for clinical assessments of patients with lung cancer. In this study, we evaluate the potential values of miRNAs as plasma biomarkers for early diagnosis in non-small-cell lung cancers (NSCLC) by comparing with other typical plasma biomarkers. Methods We analyzed the clinical and laboratory characteristics of 59 early-staged NSCLC (I–IIIA) patients and non-cancer controls by 1:1 matching age and gender from January 2012 to February 2014 in Xuanwu Hospital, Beijing, China. Peripheral blood samples from patients and controls before surgery were collected, and plasma was separated. Expression of ten miRNAs in the plasma of the patients and controls was detected by quantitative real-time polymerase chain reaction. Other typical markers, such as SCC, CEA, and CYFRA21-1 in plasma were also detected. The early diagnostic ability of miRNAs and other markers were evaluated by receiver-operating-characteristic (ROC) curve analysis. The sensitivity, specificity, and area under the curve were calculated for the cut-off value. Results Plasma CYFRA21-1, miRNA-486 and miRNA-210 levels were significantly different in patients with NSCLC than those in controls (CYFRA21-1: 8.896±7.681 vs. 5.892±6.028, P=0.020; miR-486: 2.778±0.778 vs. 1.746±0.892, P<0.001; miR-210: 4.836±3.374 vs. 2.829±2.503, P<0.001). Area under ROC curve of CYFRA21-1, miR-486 and miR-210 were 0.624 (sensitivity: 0.576, specificity: 0.797), 0.848 (sensitivity: 0.831, specificity: 0.780) and 0.751 (sensitivity: 0.746, specificity: 0.746), respectively. The optimal cut-off value of CYFRA21-1, miRNA-486 and miRNA-210 were 6.595, 1.988 and 3.341, respectively to discriminate patients from controls

  5. Synoptic controls of outer mesoscale convective systems with high impact rainfall in western north pacific tropical cyclones

    NASA Astrophysics Data System (ADS)

    Chen, Buo-Fu; Elsberry, Russell L.; Lee, Cheng-Shang

    2016-02-01

    The generality of our conceptual model of Outer Mesoscale Convective System (OMCS) formation in western North Pacific Tropical Cyclones (TCs) that was based on a case study of Typhoon Fengshen (2008) is examined with a data base of 80 OMCSs during 1999-2009. Formations of 41 "Intersection type (Itype)" OMCSs are similar to our conceptual model in that the key feature is an elongated moisture band in the northerly TC circulation that interacts with the southwest monsoon flow. Two subtypes of these I-type OMCSs are defined based on different formation locations relative to the TC center, and relative to the monsoon flow, that lead to either outward or more cyclonic propagation of the OMCSs. Twenty-five "Upstream type (U-type)" OMCSs form in a similar moisture band, but upstream of the intersection of the outer TC circulation with the monsoon flow. Another 12 "Monsoon type (Mtype)" OMCSs are different from our conceptual model as the formation locations are within the monsoon flow south to the confluence region of TC northerly circulation with the monsoon flow. In all of these OMCSs, the monsoon flow is an important contributor to their climatology and synoptic environment. Expanded conceptual models of where the threat of heavy rainfall associated with the four types of OMCSs may be expected are provided based on different OMCS formation locations relative to the TC center and different propagation vectors in a storm-relative coordinate system.

  6. Progress and prospects of long noncoding RNAs in lipid homeostasis

    PubMed Central

    Chen, Zheng

    2015-01-01

    Background Long noncoding RNAs (lncRNAs) are a novel group of universally present, non-coding RNAs (>200 nt) that are increasingly recognized as key regulators of many physiological and pathological processes. Scope of review Recent publications have shown that lncRNAs influence lipid homeostasis by controlling lipid metabolism in the liver and by regulating adipogenesis. lncRNAs control lipid metabolism-related gene expression by either base-pairing with RNA and DNA or by binding to proteins. Major conclusions The recent advances and future prospects in understanding the roles of lncRNAs in lipid homeostasis are discussed. PMID:26977388

  7. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells.

    PubMed Central

    Makino, S; van Putten, J P; Meyer, T F

    1991-01-01

    Neisseria gonorrhoeae is a facultative intracellular bacterium capable of penetrating into certain human epithelial cell types. In order to identify gonococcal factors essential for invading Chang human conjunctiva cells, a gentamicin selection assay for the quantification of viable intracellular bacteria was used in conjunction with microscopy. The results demonstrate a correlation between the invasive behaviour of gonococci and the expression of Opa proteins, a family of variable outer membrane proteins present in all pathogenic Neisseria species. However, only particular Opa proteins supported invasion into Chang cells as indicated by the use of two unrelated gonococcal strains. Invasion was sensitive to cytochalasin D, and strong adherence mediated by the Opa proteins appeared to be essential for the internalization of gonococci. In contrast pili, which also conferred binding to Chang conjunctiva cells, did not support cellular invasion but rather were inhibitory. Images PMID:1673923

  8. Two conserved arginine residues from the SK3 potassium channel outer vestibule control selectivity of recognition by scorpion toxins.

    PubMed

    Feng, Jing; Hu, Youtian; Yi, Hong; Yin, Shijin; Han, Song; Hu, Jun; Chen, Zongyun; Yang, Weishan; Cao, Zhijian; De Waard, Michel; Sabatier, Jean-Marc; Li, Wenxin; Wu, Yingliang

    2013-05-01

    Potassium channel functions are often deciphered by using selective and potent scorpion toxins. Among these toxins, only a limited subset is capable of selectively blocking small conductance Ca(2+)-activated K(+) (SK) channels. The structural bases of this selective SK channel recognition remain unclear. In this work, we demonstrate the key role of the electric charges of two conserved arginine residues (Arg-485 and Arg-489) from the SK3 channel outer vestibule in the selective recognition by the SK3-blocking BmP05 toxin. Indeed, individually substituting these residues with histidyl or lysyl (maintaining the positive electric charge partially or fully), although decreasing BmP05 affinity, still preserved the toxin sensitivity profile of the SK3 channel (as evidenced by the lack of recognition by many other types of potassium channel-sensitive charybdotoxin). In contrast, when Arg-485 or Arg-489 of the SK3 channel was mutated to an acidic (Glu) or alcoholic (Ser) amino acid residue, the channel lost its sensitivity to BmP05 and became susceptible to the "new" blocking activity by charybdotoxin. In addition to these SK3 channel basic residues important for sensitivity, two acidic residues, Asp-492 and Asp-518, also located in the SK3 channel outer vestibule, were identified as being critical for toxin affinity. Furthermore, molecular modeling data indicate the existence of a compact SK3 channel turret conformation (like a peptide screener), where the basic rings of Arg-485 and Arg-489 are stabilized by strong ionic interactions with Asp-492 and Asp-518. In conclusion, the unique properties of Arg-485 and Arg-489 (spatial orientations and molecular interactions) in the SK3 channel account for its toxin sensitivity profile. PMID:23511633

  9. Non-coding RNAs: Classification, Biology and Functioning.

    PubMed

    Hombach, Sonja; Kretz, Markus

    2016-01-01

    One of the long-standing principles of molecular biology is that DNA acts as a template for transcription of messenger RNAs, which serve as blueprints for protein translation. A rapidly growing number of exceptions to this rule have been reported over the past decades: they include long known classes of RNAs involved in translation such as transfer RNAs and ribosomal RNAs, small nuclear RNAs involved in splicing events, and small nucleolar RNAs mainly involved in the modification of other small RNAs, such as ribosomal RNAs and transfer RNAs. More recently, several classes of short regulatory non-coding RNAs, including piwi-associated RNAs, endogenous short-interfering RNAs and microRNAs have been discovered in mammals, which act as key regulators of gene expression in many different cellular pathways and systems. Additionally, the human genome encodes several thousand long non-protein coding RNAs >200 nucleotides in length, some of which play crucial roles in a variety of biological processes such as epigenetic control of chromatin, promoter-specific gene regulation, mRNA stability, X-chromosome inactivation and imprinting. In this chapter, we will introduce several classes of short and long non-coding RNAs, describe their diverse roles in mammalian gene regulation and give examples for known modes of action. PMID:27573892

  10. Thermoelectric Outer Planets Spacecraft (TOPS)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research and advanced development work is reported on a ballistic-mode, outer planet spacecraft using radioisotope thermoelectric generator (RTG) power. The Thermoelectric Outer Planet Spacecraft (TOPS) project was established to provide the advanced systems technology that would allow the realistic estimates of performance, cost, reliability, and scheduling that are required for an actual flight mission. A system design of the complete RTG-powered outer planet spacecraft was made; major technical innovations of certain hardware elements were designed, developed, and tested; and reliability and quality assurance concepts were developed for long-life requirements. At the conclusion of its active phase, the TOPS Project reached its principal objectives: a development and experience base was established for project definition, and for estimating cost, performance, and reliability; an understanding of system and subsystem capabilities for successful outer planets missions was achieved. The system design answered long-life requirements with massive redundancy, controlled by on-board analysis of spacecraft performance data.

  11. The Bicoid Stability Factor Controls Polyadenylation and Expression of Specific Mitochondrial mRNAs in Drosophila melanogaster

    PubMed Central

    Grönke, Sebastian; Stewart, James B.; Mourier, Arnaud; Ruzzenente, Benedetta; Kukat, Christian; Wibom, Rolf; Habermann, Bianca; Partridge, Linda; Larsson, Nils-Göran

    2011-01-01

    The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation. PMID:22022283

  12. EBV Noncoding RNAs.

    PubMed

    Skalsky, Rebecca L; Cullen, Bryan R

    2015-01-01

    EBV expresses a number of viral noncoding RNAs (ncRNAs) during latent infection, many of which have known regulatory functions and can post-transcriptionally regulate viral and/or cellular gene expression. With recent advances in RNA sequencing technologies, the list of identified EBV ncRNAs continues to grow. EBV-encoded RNAs (EBERs) , the BamHI-A rightward transcripts (BARTs) , a small nucleolar RNA (snoRNA) , and viral microRNAs (miRNAs) are all expressed during EBV infection in a variety of cell types and tumors. Recently, additional novel EBV ncRNAs have been identified. Viral miRNAs, in particular, have been under extensive investigation since their initial identification over ten years ago. High-throughput studies to capture miRNA targets have revealed a number of miRNA-regulated viral and cellular transcripts that tie into important biological networks. Functions for many EBV ncRNAs are still unknown; however, roles for many EBV miRNAs in latency and in tumorigenesis have begun to emerge. Ongoing mechanistic studies to elucidate the functions of EBV ncRNAs should unravel additional roles for ncRNAs in the viral life cycle. In this chapter, we will discuss our current knowledge of the types of ncRNAs expressed by EBV, their potential roles in viral latency, and their potential involvement in viral pathogenesis. PMID:26428375

  13. Two promoters and two translation start sites control the expression of the Shigella flexneri outer membrane protease IcsP

    PubMed Central

    Hensley, Christopher T.; Kamneva, Olga K.; Levy, Karen M.; Labahn, Stephanie K.; Africa, Lia A.; Wing, Helen J.

    2011-01-01

    The Shigella flexneri outer membrane protease IcsP proteolytically cleaves the actin-based motility protein IcsA from the bacterial surface. The icsP gene is monocistronic and lies downstream of an unusually large intergenic region on the Shigella virulence plasmid. In silico analysis of this region predicts a second transcription start site 84 bp upstream of the first. Primer extension analyses and beta-galactosidase assays demonstrate that both transcription start sites are used. Both promoters are regulated by the Shigella virulence gene regulator VirB and both respond similarly to conditions known to influence Shigella virulence gene expression (iron concentration, pH, osmotic pressure, and phase of growth). The newly identified promoter lies upstream of a Shine-Dalgarno sequence and second 5’-ATG-3’, which is in frame with the annotated icsP gene. The use of either translation start site leads to the production of IcsP capable of proteolytically cleaving IcsA. A bioinformatic scan of the Shigella genome reveals multiple occurrences of in-frame translation start sites associated with putative Shine –Dalgarno sequences, immediately upstream and downstream of annotated open reading frames. Taken together, our observations support the possibility that the use of in-frame translation start sites may generate different protein isoforms, thereby expanding the proteome encoded by bacterial genomes. PMID:21225241

  14. Specific Localization of the Drosophila Telomere Transposon Proteins and RNAs, Give Insight in Their Behavior, Control and Telomere Biology in This Organism

    PubMed Central

    López-Panadès, Elisenda; Gavis, Elizabeth R.; Casacuberta, Elena

    2015-01-01

    Drosophila telomeres constitute a remarkable exception to the telomerase mechanism. Although maintaining the same cytological and functional properties as telomerase maintain telomeres, Drosophila telomeres embed the telomere retrotransposons whose specific and highly regulated terminal transposition maintains the appropriate telomere length in this organism. Nevertheless, our current understanding of how the mechanism of the retrotransposon telomere works and which features are shared with the telomerase system is very limited. We report for the first time a detailed study of the localization of the main components that constitute the telomeres in Drosophila, HeT-A and TART RNAs and proteins. Our results in wild type and mutant strains reveal localizations of HeT-A Gag and TART Pol that give insight in the behavior of the telomere retrotransposons and their control. We find that TART Pol and HeT-A Gag only co-localize at the telomeres during the interphase of cells undergoing mitotic cycles. In addition, unexpected protein and RNA localizations with a well-defined pattern in cells such as the ovarian border cells and nurse cells, suggest possible strategies for the telomere transposons to reach the oocyte, and/or additional functions that might be important for the correct development of the organism. Finally, we have been able to visualize the telomere RNAs at different ovarian stages of development in wild type and mutant lines, demonstrating their presence in spite of being tightly regulated by the piRNA mechanism. PMID:26068215

  15. Expanding the RpoS/σS-Network by RNA Sequencing and Identification of σS-Controlled Small RNAs in Salmonella

    PubMed Central

    Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Monot, Marc; Jagla, Bernd; Coppée, Jean-Yves; Dupuy, Bruno; Norel, Françoise

    2014-01-01

    The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore the σS-dependent transcriptome of S. Typhimurium during late stationary phase in rich medium. This study confirms the large regulatory scope of σS and provides insights into the physiological functions of σS in Salmonella. Extensive regulation by σS of genes involved in metabolism and membrane composition, and down-regulation of the respiratory chain functions, were important features of the σS effects on gene transcription that might confer fitness advantages to bacterial cells and/or populations under starving conditions. As an example, we show that arginine catabolism confers a competitive fitness advantage in stationary phase. This study also provides a firm basis for future studies to address molecular mechanisms of indirect regulation of gene expression by σS. Importantly, the σS-controlled downstream network includes small RNAs that might endow σS with post-transcriptional regulatory functions. Of these, four (RyhB-1/RyhB-2, SdsR, SraL) were known to be controlled by σS and deletion of the sdsR locus had a competitive fitness cost in stationary phase. The σS-dependent control of seven additional sRNAs was confirmed in Northern experiments. These findings will inspire future studies to investigate molecular mechanisms and the physiological impact of post-transcriptional regulation by σS. PMID:24810289

  16. Expanding the RpoS/σS-network by RNA sequencing and identification of σS-controlled small RNAs in Salmonella.

    PubMed

    Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Monot, Marc; Jagla, Bernd; Coppée, Jean-Yves; Dupuy, Bruno; Norel, Françoise

    2014-01-01

    The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore the σS-dependent transcriptome of S. Typhimurium during late stationary phase in rich medium. This study confirms the large regulatory scope of σS and provides insights into the physiological functions of σS in Salmonella. Extensive regulation by σS of genes involved in metabolism and membrane composition, and down-regulation of the respiratory chain functions, were important features of the σS effects on gene transcription that might confer fitness advantages to bacterial cells and/or populations under starving conditions. As an example, we show that arginine catabolism confers a competitive fitness advantage in stationary phase. This study also provides a firm basis for future studies to address molecular mechanisms of indirect regulation of gene expression by σS. Importantly, the σS-controlled downstream network includes small RNAs that might endow σS with post-transcriptional regulatory functions. Of these, four (RyhB-1/RyhB-2, SdsR, SraL) were known to be controlled by σS and deletion of the sdsR locus had a competitive fitness cost in stationary phase. The σS-dependent control of seven additional sRNAs was confirmed in Northern experiments. These findings will inspire future studies to investigate molecular mechanisms and the physiological impact of post-transcriptional regulation by σS. PMID:24810289

  17. MicroRNAs regulate osteogenesis and chondrogenesis

    SciTech Connect

    Dong, Shiwu; Yang, Bo; Guo, Hongfeng; Kang, Fei

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  18. Creating small transcription activating RNAs.

    PubMed

    Chappell, James; Takahashi, Melissa K; Lucks, Julius B

    2015-03-01

    We expanded the mechanistic capability of small RNAs by creating an entirely synthetic mode of regulation: small transcription activating RNAs (STARs). Using two strategies, we engineered synthetic STAR regulators to disrupt the formation of an intrinsic transcription terminator placed upstream of a gene in Escherichia coli. This resulted in a group of four highly orthogonal STARs that had up to 94-fold activation. By systematically modifying sequence features of this group, we derived design principles for STAR function, which we then used to forward engineer a STAR that targets a terminator found in the Escherichia coli genome. Finally, we showed that STARs could be combined in tandem to create previously unattainable RNA-only transcriptional logic gates. STARs provide a new mechanism of regulation that will expand our ability to use small RNAs to construct synthetic gene networks that precisely control gene expression. PMID:25643173

  19. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  20. Growth Hormone-Regulated mRNAs and miRNAs in Chicken Hepatocytes

    PubMed Central

    Wang, Huijuan; Shao, Fang; Yu, JianFeng; Jiang, Honglin; Han, Yaoping; Gong, Daoqing; Gu, Zhiliang

    2014-01-01

    Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis and miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GH-upregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism. PMID:25386791

  1. The roles of microRNAs and siRNAs in mammalian spermatogenesis.

    PubMed

    Hilz, Stephanie; Modzelewski, Andrew J; Cohen, Paula E; Grimson, Andrew

    2016-09-01

    MicroRNAs and siRNAs, both of which are AGO-bound small RNAs, are essential for mammalian spermatogenesis. Although their precise germline roles remain largely uncharacterized, recent discoveries suggest that they function in mechanisms beyond microRNA-mediated post-transcriptional control, playing roles in DNA repair and transcriptional regulation within the nucleus. Here, we discuss the latest findings regarding roles for AGO proteins and their associated small RNAs in the male germline. We integrate genetic, clinical and genomics data, and draw upon findings from non-mammalian models, to examine potential roles for AGO-bound small RNAs during spermatogenesis. Finally, we evaluate the emerging and differing roles for AGOs and AGO-bound small RNAs in the male and female germlines, suggesting potential reasons for these sexual dimorphisms. PMID:27578177

  2. Small RNAs meet their targets: When methylation defends miRNAs from uridylation

    PubMed Central

    Ren, Guodong; Chen, Xuemei; Yu, Bin

    2014-01-01

    Small RNAs are incorporated into Argonaute protein-containing complexes to guide the silencing of target RNAs in both animals and plants. The abundance of endogenous small RNAs is precisely controlled at multiple levels including transcription, processing and Argonaute loading. In addition to these processes, 3′ end modification of small RNAs, the topic of a research area that has rapidly evolved over the last several years, adds another layer of regulation of their abundance, diversity and function. Here, we review our recent understanding of small RNA 3′ end methylation and tailing. PMID:25483033

  3. MicroRNAs tune cerebral cortical neurogenesis

    PubMed Central

    Volvert, M-L; Rogister, F; Moonen, G; Malgrange, B; Nguyen, L

    2012-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that promote post-transcriptional silencing of genes involved in a wide range of developmental and pathological processes. It is estimated that most protein-coding genes harbor miRNA recognition sequences in their 3′ untranslated region and are thus putative targets. While functions of miRNAs have been extensively characterized in various tissues, their multiple contributions to cerebral cortical development are just beginning to be unveiled. This review aims to outline the evidence collected to date demonstrating a role for miRNAs in cerebral corticogenesis with a particular emphasis on pathways that control the birth and maturation of functional excitatory projection neurons. PMID:22858543

  4. miRNAs in human cancer

    PubMed Central

    Farazi, Thalia A.; Spitzer, Jessica I.; Morozov, Pavel; Tuschl, Thomas

    2010-01-01

    Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20- to 23-nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and invasion. miRNA targeting is mostly achieved through specific base-pairing interactions between the 5′ end (“seed” region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3′ UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis, and mechanism of target recognition examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease specific expression, they hold potential as therapeutic targets and novel biomarkers. PMID:21125669

  5. Target activation by regulatory RNAs in bacteria

    PubMed Central

    Papenfort, Kai; Vanderpool, Carin K.

    2015-01-01

    Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5′ untranslated region (UTR), the coding sequence or the 3′ UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation. PMID:25934124

  6. Non coding RNAs in aortic aneurysmal disease.

    PubMed

    Duggirala, Aparna; Delogu, Francesca; Angelini, Timothy G; Smith, Tanya; Caputo, Massimo; Rajakaruna, Cha; Emanueli, Costanza

    2015-01-01

    An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair. In addition, patients may harbor concurrent disease contraindicating surgical intervention. Collectively, these factors have driven the search for alternative methods of identifying, monitoring and treating aortic aneurisms using less invasive approaches. Non-coding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs have opened the field of ncRNAs capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers for aortic aneurysm. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focus at ncRNA roles in aorta aneurysms. We discuss the potential of therapeutic interventions targeting ncRNAs and we describe the research models allowing for mechanistic studies and clinical translation attempts for controlling aneurysm progression. Furthermore, we discuss the potential role of microRNAs and lncRNAs as clinical biomarkers. PMID:25883602

  7. Non coding RNAs in aortic aneurysmal disease

    PubMed Central

    Duggirala, Aparna; Delogu, Francesca; Angelini, Timothy G.; Smith, Tanya; Caputo, Massimo; Rajakaruna, Cha; Emanueli, Costanza

    2015-01-01

    An aneurysm is a local dilatation of a vessel wall which is >50% its original diameter. Within the spectrum of cardiovascular diseases, aortic aneurysms are among the most challenging to treat. Most patients present acutely after aneurysm rupture or dissection from a previous asymptomatic condition and are managed by open surgical or endovascular repair. In addition, patients may harbor concurrent disease contraindicating surgical intervention. Collectively, these factors have driven the search for alternative methods of identifying, monitoring and treating aortic aneurisms using less invasive approaches. Non-coding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs have opened the field of ncRNAs capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers for aortic aneurysm. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focus at ncRNA roles in aorta aneurysms. We discuss the potential of therapeutic interventions targeting ncRNAs and we describe the research models allowing for mechanistic studies and clinical translation attempts for controlling aneurysm progression. Furthermore, we discuss the potential role of microRNAs and lncRNAs as clinical biomarkers. PMID:25883602

  8. Methanotroph outer membrane preparation.

    PubMed

    Karlsen, Odd A; Berven, Frode S; Jensen, Harald B; Fjellbirkeland, Anne

    2011-01-01

    All presently known methanotrophs are gram-negative bacteria suggesting that they are surrounded by a two-layered membrane: an inner or cytoplasmic membrane and an outer membrane. In the methanotroph Methylococcus capsulatus (Bath), separation of the two membranes has allowed studies on protein and lipid composition of the outer membrane. Its outer membrane can be isolated from purified cell envelopes by selective solubilization of the inner membranes with the detergent Triton X-100. The proteins associated with the outer membrane can further be fractionated into integral and tightly associated proteins and peripheral loosely associated proteins. We present here protocols for this fractionation and show how the proteins associated with the outer leaflet of the outer membrane can be isolated and identified by whole-cell biotin surface labeling. PMID:21419921

  9. Flux control exerted by mitochondrial outer membrane carnitine palmitoyltransferase over beta-oxidation, ketogenesis and tricarboxylic acid cycle activity in hepatocytes isolated from rats in different metabolic states.

    PubMed Central

    Drynan, L; Quant, P A; Zammit, V A

    1996-01-01

    The Flux Control Coefficients of mitochondrial outer membrane carnitine palmitoyltransferase (CPT I) with respect to the overall rates of beta-oxidation, ketogenesis and tricarboxylic acid cycle activity were measured in hepatocytes isolated from rats in different metabolic states (fed, 24 h-starved, starved-refed and starved/insulin-treated). These conditions were chosen because there is controversy as to whether, when significant control ceases to be exerted by CPT I over the rate of fatty oxidation [Moir and Zammit (1994) Trends Biochem. Sci. 19, 313-317], this is transferred to one or more steps proximal to acylcarnitine synthesis (e.g. decreased delivery of fatty acids to the liver) or to the reaction catalysed by mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase [Hegardt (1995) Biochem. Soc. Trans. 23, 486-490]. Therefore isolated hepatocytes were used in the present study to exclude the involvement of changes in the rate of delivery of non-esterified fatty acids (NEFA) to the liver, such as occur in vivo, and to ascertain whether, under conditions of constant supply of NEFA, CPT I retains control over the relevant fluxes of fatty acid oxidation to ketones and carbon dioxide, or whether control is transferred to another (intrahepatocytic) site. The results clearly show that the Flux Control Coefficients of CPT I with respect to overall beta-oxidation and ketogenesis are very high under all conditions investigated, indicating that control is not lost to another intrahepatic site during the metabolic transitions studied. The control of CPT I over tricarboxylic acid cycle activity was always very low. The significance of these findings for the integration of fatty acid and carbohydrate metabolism in the liver is discussed. PMID:8760364

  10. Adenovirus Virus-Associated RNA Is Processed to Functional Interfering RNAs Involved in Virus Production

    PubMed Central

    Aparicio, Oscar; Razquin, Nerea; Zaratiegui, Mikel; Narvaiza, Iñigo; Fortes, Puri

    2006-01-01

    Posttranscriptional gene silencing allows sequence-specific control of gene expression. Specificity is guaranteed by small antisense RNAs such as microRNAs (miRNAs) or small interfering RNAs (siRNAs). Functional miRNAs derive from longer double-stranded RNA (dsRNA) molecules that are cleaved to pre-miRNAs in the nucleus and are transported by exportin 5 (Exp 5) to the cytoplasm. Adenovirus-infected cells express virus-associated (VA) RNAs, which are dsRNA molecules similar in structure to pre-miRNAs. VA RNAs are also transported by Exp 5 to the cytoplasm, where they accumulate. Here we show that small RNAs derived from VA RNAs (svaRNAs), similar to miRNAs, can be found in adenovirus-infected cells. VA RNA processing to svaRNAs requires neither viral replication nor viral protein expression, as evidenced by the fact that svaRNA accumulation can be detected in cells transfected with VA sequences. svaRNAs are efficiently bound by Argonaute 2, the endonuclease of the RNA-induced silencing complex, and behave as functional siRNAs, in that they inhibit the expression of reporter genes with complementary sequences. Blocking svaRNA-mediated inhibition affects efficient adenovirus production, indicating that svaRNAs are required for virus viability. Thus, svaRNA-mediated silencing could represent a novel mechanism used by adenoviruses to control cellular or viral gene expression. PMID:16415015

  11. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  12. Estrogen Receptor α Controls a Gene Network in Luminal-Like Breast Cancer Cells Comprising Multiple Transcription Factors and MicroRNAs

    PubMed Central

    Cicatiello, Luigi; Mutarelli, Margherita; Grober, Oli M.V.; Paris, Ornella; Ferraro, Lorenzo; Ravo, Maria; Tarallo, Roberta; Luo, Shujun; Schroth, Gary P.; Seifert, Martin; Zinser, Christian; Luisa Chiusano, Maria; Traini, Alessandra; De Bortoli, Michele; Weisz, Alessandro

    2010-01-01

    Luminal-like breast tumor cells express estrogen receptor α (ERα), a member of the nuclear receptor family of ligand-activated transcription factors that controls their proliferation, survival, and functional status. To identify the molecular determinants of this hormone-responsive tumor phenotype, a comprehensive genome-wide analysis was performed in estrogen stimulated MCF-7 and ZR-75.1 cells by integrating time-course mRNA expression profiling with global mapping of genomic ERα binding sites by chromatin immunoprecipitation coupled to massively parallel sequencing, microRNA expression profiling, and in silico analysis of transcription units and receptor binding regions identified. All 1270 genes that were found to respond to 17β-estradiol in both cell lines cluster in 33 highly concordant groups, each of which showed defined kinetics of RNA changes. This hormone-responsive gene set includes several direct targets of ERα and is organized in a gene regulation cascade, stemming from ligand-activated receptor and reaching a large number of downstream targets via AP-2γ, B-cell activating transcription factor, E2F1 and 2, E74-like factor 3, GTF2IRD1, hairy and enhancer of split homologue-1, MYB, SMAD3, RARα, and RXRα transcription factors. MicroRNAs are also integral components of this gene regulation network because miR-107, miR-424, miR-570, miR-618, and miR-760 are regulated by 17β-estradiol along with other microRNAs that can target a significant number of transcripts belonging to one or more estrogen-responsive gene clusters. PMID:20348243

  13. Apple miRNAs and tasiRNAs with novel regulatory networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MiRNAs, negatively affecting gene expression at the post-transcriptional levels, have been shown to control numerous genes involved in various biological and metabolic processes. To date, the identification of miRNAs in plants focused on certain model plants, such as Arabidopsis and rice. Investig...

  14. MicroRNAs and photocarcinogenesis.

    PubMed

    Syed, Deeba N; Lall, Rahul K; Mukhtar, Hasan

    2015-01-01

    As a new class of sequence-specific regulators of gene expression, the microRNAs (miRNA) form a regulatory network with growth factors and transcription factors participating in various biological processes. It is now being recognized that the various key processes involved in cancer induction are under the control of these small noncoding RNAs, which regulate ~30% of all human genes by targeting sequences in their 3'-untranslated regions. Photocarcinogenesis is a complex interplay of signaling events in the UV exposed human skin including DNA damage and repair, apoptosis, cell survival, mutations and the immune system. In this review, we have scrutinized the role of miRNAs in skin cancer biology focusing on the three most common types of skin cancer namely the basal cell carcinoma, squamous cell carcinoma and cutaneous malignant melanoma. An overview of these studies will be useful in gaining insights into the mechanisms of cancer development in the human skin. A better understanding of the functionality of miRNAs will have enormous implications to risk assessment, and to target interventions against signaling events involved in photocarcinogenesis. PMID:25227270

  15. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes

    PubMed Central

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-01-01

    ABSTRACT Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233

  16. RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.

    PubMed

    Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle

    2016-02-01

    Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233

  17. The Outer Limits: English.

    ERIC Educational Resources Information Center

    Tyler, Barbara R.; Biesekerski, Joan

    The Quinmester course "The Outer Limits" involves an exploration of unknown worlds, mental and physical, through fiction and nonfiction. Its purpose is to focus attention on the ongoing conquest of the frontiers of the mind, the physical world, and outer space. The subject matter includes identification and investigation of unknown worlds in the…

  18. The non-coding RNAs as riboregulators

    PubMed Central

    Erdmann, Volker A.; Barciszewska, Miroslawa Z.; Szymanski, Maciej; Hochberg, Abraham; Groot, Nathan de; Barciszewski, Jan

    2001-01-01

    The non-coding RNAs database (http://biobases.ibch.poznan.pl/ncRNA/) contains currently available data on RNAs, which do not have long open reading frames and act as riboregulators. Non-coding RNAs are involved in the specific recognition of cellular nucleic acid targets through complementary base pairing to control cell growth and differentiation. Some of them are connected with several well known developmental and neuro­behavioral disorders. We have divided them into four groups. This paper is a short introduction to the database and presents its latest, updated edition. PMID:11125087

  19. Transcriptome-wide investigation of circular RNAs in rice

    PubMed Central

    Lu, Tingting; Cui, Lingling; Zhou, Yan; Zhu, Chuanrang; Fan, Danlin; Gong, Hao; Zhao, Qiang; Zhou, Congcong; Zhao, Yan; Lu, Danfeng; Luo, Jianghong; Wang, Yongchun; Tian, Qilin; Feng, Qi; Huang, Tao; Han, Bin

    2015-01-01

    Various stable circular RNAs (circRNAs) are newly identified to be the abundance of noncoding RNAs in Archaea, Caenorhabditis elegans, mice, and humans through high-throughput deep sequencing coupled with analysis of massive transcriptional data. CircRNAs play important roles in miRNA function and transcriptional controlling by acting as competing endogenous RNAs or positive regulators on their parent coding genes. However, little is known regarding circRNAs in plants. Here, we report 2354 rice circRNAs that were identified through deep sequencing and computational analysis of ssRNA-seq data. Among them, 1356 are exonic circRNAs. Some circRNAs exhibit tissue-specific expression. Rice circRNAs have a considerable number of isoforms, including alternative backsplicing and alternative splicing circularization patterns. Parental genes with multiple exons are preferentially circularized. Only 484 circRNAs have backsplices derived from known splice sites. In addition, only 92 circRNAs were found to be enriched for miniature inverted-repeat transposable elements (MITEs) in flanking sequences or to be complementary to at least 18-bp flanking intronic sequences, indicating that there are some other production mechanisms in addition to direct backsplicing in rice. Rice circRNAs have no significant enrichment for miRNA target sites. A transgenic study showed that overexpression of a circRNA construct could reduce the expression level of its parental gene in transgenic plants compared with empty-vector control plants. This suggested that circRNA and its linear form might act as a negative regulator of its parental gene. Overall, these analyses reveal the prevalence of circRNAs in rice and provide new biological insights into rice circRNAs. PMID:26464523

  20. Transcriptome-wide investigation of circular RNAs in rice.

    PubMed

    Lu, Tingting; Cui, Lingling; Zhou, Yan; Zhu, Chuanrang; Fan, Danlin; Gong, Hao; Zhao, Qiang; Zhou, Congcong; Zhao, Yan; Lu, Danfeng; Luo, Jianghong; Wang, Yongchun; Tian, Qilin; Feng, Qi; Huang, Tao; Han, Bin

    2015-12-01

    Various stable circular RNAs (circRNAs) are newly identified to be the abundance of noncoding RNAs in Archaea, Caenorhabditis elegans, mice, and humans through high-throughput deep sequencing coupled with analysis of massive transcriptional data. CircRNAs play important roles in miRNA function and transcriptional controlling by acting as competing endogenous RNAs or positive regulators on their parent coding genes. However, little is known regarding circRNAs in plants. Here, we report 2354 rice circRNAs that were identified through deep sequencing and computational analysis of ssRNA-seq data. Among them, 1356 are exonic circRNAs. Some circRNAs exhibit tissue-specific expression. Rice circRNAs have a considerable number of isoforms, including alternative backsplicing and alternative splicing circularization patterns. Parental genes with multiple exons are preferentially circularized. Only 484 circRNAs have backsplices derived from known splice sites. In addition, only 92 circRNAs were found to be enriched for miniature inverted-repeat transposable elements (MITEs) in flanking sequences or to be complementary to at least 18-bp flanking intronic sequences, indicating that there are some other production mechanisms in addition to direct backsplicing in rice. Rice circRNAs have no significant enrichment for miRNA target sites. A transgenic study showed that overexpression of a circRNA construct could reduce the expression level of its parental gene in transgenic plants compared with empty-vector control plants. This suggested that circRNA and its linear form might act as a negative regulator of its parental gene. Overall, these analyses reveal the prevalence of circRNAs in rice and provide new biological insights into rice circRNAs. PMID:26464523

  1. Plant subviral RNAs as a long noncoding RNA (lncRNA): Analogy with animal lncRNAs in host-virus interactions.

    PubMed

    Shimura, Hanako; Masuta, Chikara

    2016-01-01

    Satellite RNAs (satRNAs) and viroids belong to the group called subviral agents and are the smallest pathogens of plants. In general, small satRNAs and viroids are 300-400 nt in size and do not encode any functional proteins; they are thus regarded as so-called long noncoding RNAs (lncRNAs). These lncRNAs are receiving great attention as a new RNA class involved in gene regulation to control important biological processes such as gene transcription and epigenetic regulation. A substantial number of lncRNAs in animal cells have been found to play important roles in the interactions between a virus and its host. We here discuss the pathogenicity of subviral RNAs (especially satRNAs) in plant cells and their functions as lncRNAs associated with viral diseases, using animal lncRNAs as an analogy. Because, unlike animal lncRNAs, plant subviral RNAs can replicate and accumulate at very high levels in infected cells, we here considered the unique possibility that the RNA silencing machinery of plants, an important defense mechanism against virus infection, may have brought about the replication ability of subviral molecules. In addition, we also discuss the possibility that satRNAs may have arisen from plant-virus interactions in virus-infected cells. Understanding the molecular functions of these unique lncRNAs in plants will enable us to reveal the most plausible origins of these subviral RNAs. PMID:26116900

  2. MicroRNAs in Rice Innate Immunity.

    PubMed

    Baldrich, Patricia; San Segundo, Blanca

    2016-12-01

    MicroRNAs (miRNAs) are short regulatory non-coding RNAs that guide gene silencing in most eukaryotes. They regulate gene expression by triggering sequence-specific cleavage or translational repression of target transcripts. Plant miRNAs are known to play important roles in a wide range of developmental processes. Increasing evidence also supports that the modulation of miRNA levels plays an important role in reprogramming plant responses to abiotic stress (drought, cold, salinity and nutrient deficiency) and biotic stress (antibacterial resistance). Most of these studies were carried out in the model plant Arabidopsis thaliana. During the last years, the adoption of high-throughput sequencing technologies has significantly contributed to uncover multiple miRNAs while allowing miRNA profiling in plants. However, although a plethora of rice miRNAs have been shown to be regulated by pathogen infection, the biological function remains largely unknown for most of them. In this review, we summarize our current understanding on the contribution of miRNAs to rice immunity and discuss their potential applications in rice biotechnology. A better understanding of the miRNA species controlling rice immunity may lead to practical biotechnological applications leading to the development of appropriate strategies for rice protection. PMID:26897721

  3. Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study

    PubMed Central

    Murray, Daniel D.; Suzuki, Kazuo; Law, Matthew; Trebicka, Jonel; Neuhaus, Jacquie; Wentworth, Deborah; Johnson, Margaret; Vjecha, Michael J.; Kelleher, Anthony D.; Emery, Sean

    2015-01-01

    Introduction The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR-145 correlated with nadir CD4+ T cell count. Discussion No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection. PMID:26465293

  4. Noncoding RNAs and Cancer

    PubMed Central

    Naeini, Mozhgan Moslemi; Ardekani, Ali M.

    2009-01-01

    The eukaryotic complexity involves the expression and regulation of genes via RNA-DNA, RNA-RNA, DNA-protein and RNA-protein interactions. Recently, the role of RNA molecules in the regulation of genes in higher organisms has become more evident, especially with the discovery that about 97% of the transcriptional output in higher organisms are represented as noncoding RNAs: rRNA, snoRNAs, tRNA, transposable elements, 5’ and 3’ untranslated regions, introns, intergenic regions and microRNAs. MicroRNAs function by negatively regulating gene expression via degradation or translational inhibition of their target mRNAs and thus participate in a wide variety of physiological and pathological cellular processes including: development, cell proliferation, differentiation, and apoptosis pathways. MicroRNA expression profiles in many types of cancers have been identified. Recent reports have revealed that the expression profiles of microRNAs change in various human cancers and appear to function as oncogenes or tumor suppressors. Abnormal microRNA expression has increasingly become a common feature of human cancers. In this review, we summarize the latest progress on the involvement of microRNAs in different types of cancer and their potential use as potential diagnostic and prognostic tumor biomarkers in the future. PMID:23407615

  5. MicroRNAs Are Part of the Regulatory Network that Controls EGF Induced Apoptosis, Including Elements of the JAK/STAT Pathway, in A431 Cells

    PubMed Central

    Alanazi, Ibrahim; Hoffmann, Peter; Adelson, David L.

    2015-01-01

    MiRNAs are known to regulate gene expression and in the context of cancer have been shown to regulate metastasis, cell proliferation and cell death. In this report we describe potential miRNA regulatory roles with respect to induction of cell death by pharmacologic dose of Epidermal Growth Factor (EGF). Our previous work suggested that multiple pathways are involved in the induction of apoptosis, including interferon induced genes, cytokines, cytoskeleton and cell adhesion and TP53 regulated genes. Using miRNA time course expression profiling of EGF treated A431 cells and coupling this to our previous gene expression and proteomic data, we have been able to implicate a number of additional miRNAs in the regulation of apoptosis. Specifically we have linked miR-134, miR-145, miR-146b-5p, miR-432 and miR-494 to the regulation of both apoptotic and anti-apoptotic genes expressed as a function of EGF treatment. Whilst additional miRNAs were differentially expressed, these had the largest number of apoptotic and anti-apoptotic targets. We found 5 miRNAs previously implicated in the regulation of apoptosis and our results indicate that an additional 20 miRNAs are likely to be involved based on their correlated expression with targets. Certain targets were linked to multiple miRNAs, including PEG10, BTG1, ID1, IL32 and NCF2. Some miRNAs that target the interferon pathway were found to be down regulated, consistent with a novel layer of regulation of interferon pathway components downstream of JAK/STAT. We have significantly expanded the repertoire of miRNAs that may regulate apoptosis in cancer cells as a result of this work. PMID:25781916

  6. Noncoding RNAs in breast cancer.

    PubMed

    Lo, Pang-Kuo; Wolfson, Benjamin; Zhou, Xipeng; Duru, Nadire; Gernapudi, Ramkishore; Zhou, Qun

    2016-05-01

    The mammalian transcriptome has recently been revealed to encompass a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. MicroRNAs (miRNAs), the best studied of the short noncoding RNAs (sncRNAs), have been extensively characterized with regard to their biogenesis, function and importance in tumorigenesis. Another class of sncRNAs called piwi-interacting RNAs (piRNAs) has also gained attention recently in cancer research owing to their critical role in stem cell regulation. Long noncoding RNAs (lncRNAs) of >200 nucleotides in length have recently emerged as key regulators of developmental processes, including mammary gland development. lncRNA dysregulation has also been implicated in the development of various cancers, including breast cancer. In this review, we describe and discuss the roles of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the initiation and progression of breast tumorigenesis, with a focus on outlining the molecular mechanisms of oncogenic and tumor-suppressor ncRNAs. Moreover, the current and potential future applications of ncRNAs to clinical breast cancer research are also discussed, with an emphasis on ncRNA-based diagnosis, prognosis and future therapeutics. PMID:26685283

  7. Outer planet satellites

    SciTech Connect

    Schenk, P.M. )

    1991-01-01

    Recent findings on the outer-planet satellites are presented, with special consideration given to data on the rheologic properties of ice on icy satellites, the satellite surfaces and exogenic processes, cratering on dead cratered satellites, volcanism, and the interiors of outer-planet satellites. Particular attention is given to the state of Titan's surface and the properties of Triton, Pluto, and Charon. 210 refs.

  8. Long noncoding RNAs in aging and age-related diseases.

    PubMed

    Kour, Sukhleen; Rath, Pramod C

    2016-03-01

    Aging is the universal, intrinsic, genetically-controlled, evolutionarily-conserved and time-dependent intricate biological process characterised by the cumulative decline in the physiological functions and their coordination in an organism after the attainment of adulthood resulting in the imbalance of neurological, immunological and metabolic functions of the body. Various biological processes and mechanisms along with altered levels of mRNAs and proteins have been reported to be involved in the progression of aging. It is one of the major risk factors in the patho-physiology of various diseases and disorders. Recently, the discovery of pervasive transcription of a vast pool of heterogeneous regulatory noncoding RNAs (ncRNAs), including small ncRNAs (sncRNAs) and long ncRNAs (lncRNAs), in the mammalian genome have provided an alternative way to study and explore the missing links in the aging process, its mechanism(s) and related diseases in a whole new dimension. The involvement of small noncoding RNAs in aging and age-related diseases have been extensively studied and recently reviewed. However, lncRNAs, whose function is far less explored in relation to aging, have emerged as a class of major regulators of genomic functions. Here, we have described some examples of known as well as novel lncRNAs that have been implicated in the progression of the aging process and age-related diseases. This may further stimulate research on noncoding RNAs and the aging process. PMID:26655093

  9. Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis

    PubMed Central

    Liu, Xiao-Yang; Wang, Liang; Yu, Bin; Zhuang, Qian-yu; Wang, Yi-Peng

    2015-01-01

    Purpose. Adolescent idiopathic scoliosis (AIS), the most common pediatric spinal deformity, is considered a complex genetic disease. Causing genes and pathogenesis of AIS are still unclear. This study was designed to identify differentially expressed long noncoding RNAs (lncRNAs) involving the pathogenesis of AIS. Methods. We first performed comprehensive screening of lncRNA and mRNA in AIS patients and healthy children using Agilent human lncRNA + mRNA Array V3.0 microarray. LncRNAs expression in different AIS patients was further evaluated using quantitative PCR. Results. A total of 139 lncRNAs and 546 mRNAs were differentially expressed between AIS patients and healthy control. GO and Pathway analysis showed that these mRNAs might be involved in bone mineralization, neuromuscular junction, skeletal system morphogenesis, nucleotide and nucleic acid metabolism, and regulation of signal pathway. Four lncRNAs (ENST00000440778.1, ENST00000602322.1, ENST00000414894.1, and TCONS_00028768) were differentially expressed between different patients when grouped according to age, height, classification, severity of scoliosis, and Risser grade. Conclusions. This study demonstrates the abnormal expression of lncRNAs and mRNAs in AIS, and the expression of some lncRNAs was related to clinical features. This study is helpful for further understanding of lncRNAs in pathogenesis, treatment, and prognosis of AIS. PMID:26421281

  10. Circulating miRNAs as Potential Marker for Pulmonary Hypertension

    PubMed Central

    Wei, Chuanyu; Henderson, Heather; Spradley, Christopher; Li, Li; Kim, Il-Kwon; Kumar, Sandeep; Hong, Nayeon; Arroliga, Alejandro C.; Gupta, Sudhiranjan

    2013-01-01

    MircoRNAs (miRNAs) are small non-coding RNAs that govern the gene expression and, play significant role in the pathogenesis of heart failure. The detection of miRNAs in circulation of pulmonary hypertensive (PH) human subjects remains elusive. In the current study, we determined the pattern of miRNAs of mild-to-severe human PH subjects and, compared them with the control subjects by miRNA array. Blood was obtained using fluoroscopic and waveform guided catheterization from the distal (pulmonary artery) port of the catheter. A total 40 human subjects were included in the study and, the degree of PH was determined by mean pulmonary arterial pressure. Among several miRNAs in the array, we validated 14 miRNAs and, the data were consistent with the array profile. We identified several novel downregulated miRNAs (miR-451, miR-1246) and upregulated miRNAs (miR-23b, miR-130a and miR-191) in the circulation of PH subjects. Our study showed novel set of miRNAs which are dysregulated in PH and, are directly proportional to the degree of PH. These miRNAs may be considered as potential biomarker for early detection of PH. PMID:23717609

  11. Noncoding RNAs, Emerging Regulators in Root Endosymbioses.

    PubMed

    Lelandais-Brière, Christine; Moreau, Jérémy; Hartmann, Caroline; Crespi, Martin

    2016-03-01

    Endosymbiosis interactions allow plants to grow in nutrient-deficient soil environments. The arbuscular mycorrhizal (AM) symbiosis is an ancestral interaction between land plants and fungi, whereas nitrogen-fixing symbioses are highly specific for certain plants, notably major crop legumes. The signaling pathways triggered by specific lipochitooligosaccharide molecules involved in these interactions have common components that also overlap with plant root development. These pathways include receptor-like kinases, transcription factors (TFs), and various intermediate signaling effectors, including noncoding (nc)RNAs. These latter molecules have emerged as major regulators of gene expression and small ncRNAs, composed of micro (mi)RNAs and small interfering (si)RNAs, are known to control gene expression at transcriptional (chromatin) or posttranscriptional levels. In this review, we describe exciting recent data connecting variants of conserved si/miRNAs with the regulation of TFs, such as NSP2, NFY-A1, auxin-response factors, and AP2-like proteins, known to be involved in symbiosis. The link between hormonal regulations and these si- and miRNA-TF nodes is proposed in a model in which different feedback loops or regulations controlling endosymbiosis signaling are integrated. The diversity and emerging regulatory networks of young legume miRNAs are also highlighted. PMID:26894282

  12. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs) are small, non-coding RNAs of 20 to 24 nucleotides that regulate gene expression and responses to biotic and abiotic stress. Till now, no reports have previously been published concerning miRNAs in celery. Results Two small RNAs libraries were constructed from two celery varieties, ‘Jinnan Shiqin’ and ‘Ventura’, and characterized by deep sequencing. A total of 431 (418 known and 13 novel) and 346 (341 known and five novel) miRNAs were identified in celery varieties ‘Jinnan Shiqin’ and ‘Ventura’, respectively. Potential miRNA-target genes were predicted and annotated by screening diverse protein databases, including Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes. Significant differential expression between the two varieties was seen for 221 miRNAs. qRT-PCR was used to analyze the abundance of six miRNAs under cold and heat stress conditions. The results showed that miRNAs may have important functions in controlling temperature stress in celery. Conclusion A large number of miRNAs were identified in celery, and their target genes, functional annotations, and gene expression patterns have been explored. These findings provide the first information on celery miRNAs and enhance understanding of celery miRNA regulatory mechanisms under extreme temperature stress. PMID:24673837

  13. Regulatory RNAs in Bacteria

    PubMed Central

    Waters, Lauren S.; Storz, Gisela

    2011-01-01

    RNA regulators in bacteria are a heterogenous group of molecules that act by various mechanisms to modulate a wide range of physiological responses. One class comprises riboswitches, which are parts of the mRNAs they regulate. These leader sequences fold into structures amenable to conformational changes upon the binding of small molecules. Riboswitches thus sense and respond to the availability of various nutrients in the cell. Other small transcripts bind to proteins, among them global regulators, and antagonize their functions. The largest and most extensively studied set of small RNA regulators act through base pairing with RNAs, usually modulating the translation and stability of mRNAs. The majority of these small RNAs regulate responses to changes in environmental conditions. Finally, a recently discovered group of RNA regulators, known as the CRISPR RNAs, contain short regions of homology to bacteriophage and plasmid sequences. CRISPR RNAs interfere with bacteriophage infection and plasmid conjugation by targeting the homologous foreign DNA through an unknown mechanism. Here we discuss what is known about these RNA regulators, as well as the many intriguing questions that remain to be addressed. PMID:19239884

  14. Integrated analysis of noncoding RNAs and mRNAs reveals their potential roles in the biological activities of the growth hormone receptor.

    PubMed

    Chang, Lei; Qi, Haolong; Xiao, Yusha; Li, Changsheng; Wang, Yitao; Guo, Tao; Liu, Zhisu; Liu, Quanyan

    2016-08-01

    Accumulating evidence has indicated that noncoding RNAs (ncRNAs) have important regulatory potential in various biological processes. The molecular mechanisms by which growth hormone receptor (GHR) deficiency protects against age-related pathologies, reduces the incidence and delays the occurrence of fatal neoplasms are unclear. The aim of this study was to investigate miRNA, lncRNA and mRNA expression profiles and the potential functional roles of these RNA molecules in GHR knockout (GHR-KO) mice. Microarray expression profiles of miRNAs, lncRNAs and mRNAs were determined in wild type control mice and in GHR-KO mice. Differential expression, pathway and gene network analyses were developed to identify the possible biological roles of functional RNA molecules. Compared to wild type control mice, 1695 lncRNAs, 914 mRNAs and 9 miRNAs were upregulated and 1747 lncRNAs, 786 mRNAs and 21 miRNAs were downregulated in female GHR-KO mice. Moreover, 1265 lncRNAs, 724 mRNAs and 41 miRNAs were upregulated and 1377 lncRNAs, 765 mRNAs and 16 miRNAs were downregulated in male GHR-KO mice compared to wild type mice. Co-expression analysis of mRNAs, lncRNAs, and miRNAs showed that mRNAs including Hemxi2, Ero1Ib, 4933434i20RIK, Pde7a and Lgals1, lncRNAs including ASMM9PARTA014848, EL605414-P1, ASMM9PARTA051724, ASMM9PARTA045378 and ASMM9PARTA049185, and miRNAs including miR-188-3p, miR-690, miR-709 and miR-710 are situated at the core position of a three-dimensional lncRNA-mRNA-miRNA regulatory network. KEGG analysis showed that the most significantly regulated pathway was steroid hormone biosynthesis. We identified a set of lncRNAs, miRNAs and mRNAs that were aberrantly expressed in GHR-KO mice. Our results provide a foundation and an expansive view of the biological activities of the GHR. PMID:27064376

  15. EXPRESSION PROFILES OF MICRO-RNAS IN SWINE MUSCLE DEVELOPMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRs) are small ~18-22 nucleotide-long non-coding RNAs that have been shown to control gene expression by inhibiting translation or targeting messenger RNA for degradation. MiRs have been implicated in control of development, tissue homeostasis, and immune response. We examined the expr...

  16. Noncoding RNAs in Endocrine Malignancy

    PubMed Central

    Kentwell, Jessica; Gundara, Justin S.

    2014-01-01

    Only recently has it been uncovered that the mammalian transcriptome includes a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. Among numerous kinds of ncRNAs, short noncoding RNAs, such as microRNAs, have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. Long noncoding RNAs (lncRNAs) have only recently been implicated in playing a key regulatory role in cancer biology. The deregulation of ncRNAs has been demonstrated to have important roles in the regulation and progression of cancer development. In this review, we describe the roles of both short noncoding RNAs (including microRNAs, small nuclear RNAs, and piwi-interacting RNAs) and lncRNAs in carcinogenesis and outline the possible underlying genetic mechanisms, with particular emphasis on clinical applications. The focus of our review includes studies from the literature on ncRNAs in traditional endocrine-related cancers, including thyroid, parathyroid, adrenal gland, and gastrointestinal neuroendocrine malignancies. The current and potential future applications of ncRNAs in clinical cancer research is also discussed, with emphasis on diagnosis and future treatment. PMID:24718512

  17. The implication of microRNAs and endo-siRNAs in animal germline and early development.

    PubMed

    Dallaire, Alexandra; Simard, Martin J

    2016-08-01

    Germ cells provide maternal mRNAs that are stored in the oocyte, and later translated at a specific time of development. In this context, gene regulation depends mainly on post-transcriptional mechanisms that contribute to keep maternal transcripts in a stable and translationally silent state. In recent years, small non-coding RNAs, such as microRNAs have emerged as key post-transcriptional regulators of gene expression. microRNAs control the translation efficiency and/or stability of targeted mRNAs. microRNAs are present in animal germ cells and maternally inherited microRNAs are abundant in early embryos. However, it is not known how microRNAs control the stability and translation of maternal transcripts. In this review, we will discuss the implication of germline microRNAs in regulating animal oogenesis and early embryogenesis as well as compare their roles with endo-siRNAs, small RNA species that share key molecular components with the microRNA pathway. PMID:27287880

  18. Outer Planet Flagship Mission

    NASA Astrophysics Data System (ADS)

    Cutts, James; Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  19. Outer Planet Flagship Missions

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J.; Cutts, J. A.

    2008-05-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEM and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn and Europa/Jupiter Missions. We provide the background, organization and schedule that are presently envisaged for these two mission studies.

  20. Outer Planets Flagship Mission

    NASA Astrophysics Data System (ADS)

    Niebur, C.; Dudzinski, L.; Coradini, M.; Lebreton, J. P.; Cutts, J. A.

    2008-09-01

    Studies for Outer Planet Missions have been ongoing for many years, but in 2007 NASA commissioned four specific studies to be considered for further examination; the Europa Explorer, Titan Explorer, Enceladus Mission and Jupiter Science Orbiter. During the same time frame ESA invited Outer Planet proposals under the Cosmic Vision call. Two were submitted, TandEm and LaPlace, which focused on Titan/Enceladus and Jupiter System science respectively. In 2008, NASA selected two of the missions, Europa Explorer and Titan Explorer, and ESA selected the two outer planet proposals for further study. This poster describes the process by which NASA and ESA are collaborating on the current studies which are now named the Titan/Saturn (TSSM) and Europa/Jupiter Missions (EJSM). We provide an update on the background, organization and schedule for these two mission studies.

  1. Outer membrane protein purification.

    PubMed

    Arigita, C; Jiskoot, W; Graaf, M R; Kersten, G F

    2001-01-01

    The major outer membrane proteins (OMPs) from Neisseria meningitidis, which are expressed at high levels, are subdivided in five classes based on molecular weight (1,2) (see Table 1). Table 1 Major Meningococcal Outer-Membrane Proteins Outer-membrane proteins Name Molecular maass Function/characteristics Class 1 PorA 44-47 kDa Porin Class 2/3 PorB 37-42 kDa Porin Class 4 Rmp Reductionmodifiableprotein, unknown Class 5 Opa 26-30 kDa Adhesion,opacity protein Opc 25 kDa Invasion, opacity protein Iron-regulated proteins Mirp 37 kDa Iron acquisition (?);majoriron-regulatedprotein FrpB 70 kDa Ferric enterobactin receptor (also FetA) Adapted from ref. (1). PMID:21336748

  2. Saturn's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Schardt, A. W.; Behannon, K. W.; Carbary, J. F.; Eviatar, A.; Lepping, R. P.; Siscoe, G. L.

    1983-01-01

    Similarities between the Saturnian and terrestrial outer magnetosphere are examined. Saturn, like Earth, has a fully developed magnetic tail, 80 to 100 RS in diameter. One major difference between the two outer magnetospheres is the hydrogen and nitrogen torus produced by Titan. This plasma is, in general, convected in the corotation direction at nearly the rigid corotation speed. Energies of magnetospheric particles extend to above 500 keV. In contrast, interplanetary protons and ions above 2 MeV have free access to the outer magnetosphere to distances well below the Stormer cutoff. This access presumably occurs through the magnetotail. In addition to the H+, H2+, and H3+ ions primarily of local origin, energetic He, C, N, and O ions are found with solar composition. Their flux can be substantially enhanced over that of interplanetary ions at energies of 0.2 to 0.4 MeV/nuc.

  3. A Comprehensive Expression Profile of MicroRNAs and Other Classes of Non-Coding Small RNAs in Barley Under Phosphorous-Deficient and -Sufficient Conditions

    PubMed Central

    Hackenberg, Michael; Huang, Po-Jung; Huang, Chun-Yuan; Shi, Bu-Jun; Gustafson, Perry; Langridge, Peter

    2013-01-01

    Phosphorus (P) is essential for plant growth. MicroRNAs (miRNAs) play a key role in phosphate homeostasis. However, little is known about P effect on miRNA expression in barley (Hordeum vulgare L.). In this study, we used Illumina's next-generation sequencing technology to sequence small RNAs (sRNAs) in barley grown under P-deficient and P-sufficient conditions. We identified 221 conserved miRNAs and 12 novel miRNAs, of which 55 were only present in P-deficient treatment while 32 only existed in P-sufficient treatment. Total 47 miRNAs were significantly differentially expressed between the two P treatments (|log2| > 1). We also identified many other classes of sRNAs, including sense and antisense sRNAs, repeat-associated sRNAs, transfer RNA (tRNA)-derived sRNAs and chloroplast-derived sRNAs, and some of which were also significantly differentially expressed between the two P treatments. Of all the sRNAs identified, antisense sRNAs were the most abundant sRNA class in both P treatments. Surprisingly, about one-fourth of sRNAs were derived from the chloroplast genome, and a chloroplast-encoded tRNA-derived sRNA was the most abundant sRNA of all the sRNAs sequenced. Our data provide valuable clues for understanding the properties of sRNAs and new insights into the potential roles of miRNAs and other classes of sRNAs in the control of phosphate homeostasis. PMID:23266877

  4. MicroRNAs in rheumatoid arthritis.

    PubMed

    Salehi, Eisa; Eftekhari, Rahil; Oraei, Mona; Gharib, Alvand; Bidad, Katayoon

    2015-04-01

    The role of genetic and epigenetic factors in the development of rheumatic diseases has been an interesting field of research over the past decades all around the world. Research on the role of microRNAs (miRNAs) in rheumatoid arthritis (RA) has been active and ongoing, and investigations have attempted to use miRNAs as biomarkers in disease diagnosis, prognosis, and treatment. This review focuses on experimental researches in the field of miRNAs and RA to present the data available up to this date and includes researches searched by keywords "microRNA" and "rheumatoid arthritis" in PubMed from 2008 to January 2015. All references were also searched for related papers. miRNAs are shown to act as proinflammatory or anti-inflammatory agents in diverse cell types, and their role seems to be regulatory in most instances. Researchers have evaluated miRNAs in patients compared to controls or have investigated their role by overexpressing or silencing them. Multiple targets have been identified in vivo, in vitro, or in silico, and the researches still continue to show their efficacy in clinical settings. PMID:25736037

  5. Expression of microRNAs in fibroblast of pterygium

    PubMed Central

    Lee, Joon H.; Jung, Sun-Ah; Kwon, Young-A; Chung, Jae-Lim; Kim, Ungsoo Samuel

    2016-01-01

    AIM To screen microRNAs (miRNAs) and set up target miRNAs in pterygium. METHODS Primary fibroblasts were isolated from pterygium and Tenon's capsule and cultured. Immunocytochemical analysis and Western blotting were performed to confirm the culture of fibroblasts. In all, 1733 miRNAs were screened in the first step by using GeneChip® miRNA3.0 Array. Specific miRNAs involved in the pathogenesis of pterygium were subsequently determined using the following criteria: 1) high reproducibility in a repetitive test; 2) base log value of >7.0 for both control and pterygial fibroblasts; and 3) log ratio of >1.0 between pterygial fibroblasts and control fibroblasts. RESULTS Primary screening showed that 887/1733 miRNAs were up-regulated and 846/1733 miRNAs were down-regulated in pterygial fibroblasts compared with those in control fibroblasts. Of the 1733 miRNAs screened, 4 miRNAs, namely, miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p, met the above-mentioned criteria. Primary screening showed that these 4 miRNAs were up-regulated in pterygial fibroblasts compared with control fibroblasts and that miRNA-143a-3p had the highest mean ratio compared with the miRNAs in control fibroblasts. CONCLUSION miRNA-143a-3p, miRNA-181a-2-3p, miRNA-377-5p and miRNA-411a-5p are up-regulated in pterygial fibroblasts compared with control fibroblasts, suggesting their involvement in the pathogenesis of pterygium. PMID:27500101

  6. Epstein-Barr viral microRNAs target caspase 3.

    PubMed

    Harold, Cecelia; Cox, Diana; Riley, Kasandra J

    2016-01-01

    The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that transforms B cells and causes several malignancies including Burkitt's lymphoma. EBV differentially expresses at least 49 mature microRNAs (miRNAs) during latency in various infected epithelial and B cells. Recent high-throughput studies and functional assays have begun to reveal the function of the EBV miRNAs suggesting roles in latency, cell cycle control, and apoptosis. In particular, the central executioner of apoptosis, Caspase 3 (CASP3), was proposed as a target of select EBV miRNAs. However, whether CASP3 is truly a target of EBV miRNAs, and if so, which specific miRNAs target CASP3 is still under debate. Based on previously published high-throughput biochemical data and a bioinformatic analysis of the entire CASP3 3'-UTR, we identified 12 EBV miRNAs that have one or more seed binding sites in the CASP3 3'-UTR. We individually tested all 12 miRNAs for repression of CASP3 in luciferase reporter assays, and nine showed statistically significant (P < 0.001) repression of a full-length CASP3 reporter. Further, three EBV miRNAs, including BART22, exhibited repression of endogenous CASP3 protein. These data confirm that CASP3 is a direct target of specific EBV BART miRNAs. PMID:27565721

  7. Transposon Defense by Endo-siRNAs, piRNAs and Somatic pilRNAs in Drosophila: Contributions of Loqs-PD and R2D2

    PubMed Central

    Mirkovic-Hösle, Milijana; Förstemann, Klaus

    2014-01-01

    Transposable elements are a serious threat for genome integrity and their control via small RNA mediated silencing pathways is an ancient strategy. The fruit fly Drosophila melanogaster has two silencing activities that target transposons: endogenous siRNAs (esiRNAs or endo-siRNAs) and Piwi-interacting small RNAs (piRNAs). The biogenesis of endo-siRNAs involves the Dicer-2 co-factors Loqs-PD, which acts predominantly during processing of dsRNA by Dcr-2, and R2D2, which primarily helps to direct siRNAs into the RNA interference effector Ago2. Nonetheless, loss of either protein is not sufficient to produce a phenotype comparable with a dcr-2 mutation. We provide further deep sequencing evidence supporting the notion that R2D2 and Loqs-PD have partially overlapping function. Certain transposons display a preference for either dsRBD-protein during production or loading; this appeared to correlate neither with overall abundance, classification of the transposon or a specific site of genomic origin. The endo-siRNA biogenesis pathway in germline operates according to the same principles as the existing model for the soma, and its impairment does not significantly affect piRNAs. Expanding the analysis, we confirmed the occurrence of somatic piRNA-like RNAs (pilRNAs) that show a ping-pong signature. We detected expression of the Piwi-family protein mRNAs only barely above background, indicating that the somatic pilRNAs may arise from a small sub-population of somatic cells that express a functional piRNA pathway. PMID:24454776

  8. Dysregulated expression of microRNAs and mRNAs in myocardial infarction

    PubMed Central

    Wang, Yaping; Pan, Xiaohong; Fan, Youqi; Hu, Xinyang; Liu, Xianbao; Xiang, Meixiang; Wang, Jian’an

    2015-01-01

    Acute myocardial infarction (AMI) is a major cause of mortality in the general population. However, the molecular phenotypes and therapeutic targets of AMI patients remain unclear. By profiling genome-wide transcripts and microRNAs (miRNAs) in a cohort of 23 AMI patients and 23 non-AMI patients, we found 218 dysregulated genes identified in the infarcted heart tissues from AMI patients relative to non-AMI controls. Pathway enrichment analysis of the dysregulated genes pointed to cell signaling/communication, cell/organism defense and cell structure/motility. We next compared the expression profiles of potential regulating miRNAs, suggesting that dysregulation of a number of AMI-associated genes (e.g., IL12A, KIF1A, HIF1α and CDK13) may be attributed to the dysregulation of their respective regulating miRNAs. One potentially pathogenic miRNA-mRNA pair, miR-210-HIF1α, was confirmed in a mouse model of myocardial infarction (MI). Inhibition of miR-210 expression improved the survival and cardiac function of MI mice. In conclusion, we presented the pathologic relationships between miRNAs and their gene targets in AMI. Such deregulated microRNAs and mRNAs like miR-210 serve as novel therapeutic targets of AMI. PMID:26807177

  9. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  10. Non-coding RNAs including miRNAs, piRNAs, and tRNAs in human cancer

    PubMed Central

    Heyns, Mieke; Kovalchuk, Olga

    2015-01-01

    Over 98% of our genes code for RNA transcripts that will never become translated into protein. Numerous non-coding RNA (ncRNA) transcripts are structurally and functionally diverse. In particular, micro RNAs (miRNAs), piwi-interacting RNAs (piRNAs), and, more recently, transfer RNAs (tRNAs) are implicated as regulators of key genes and processes that are involved in various human diseases, including cancer. Here, we summarize the recent findings and perspectives in the small RNA and cancer research. PMID:26405161

  11. Circular RNAs are abundant, conserved, and associated with ALU repeats

    PubMed Central

    Jeck, William R.; Sorrentino, Jessica A.; Wang, Kai; Slevin, Michael K.; Burd, Christin E.; Liu, Jinze; Marzluff, William F.; Sharpless, Norman E.

    2013-01-01

    Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a “backsplice”) and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression. PMID:23249747

  12. The role of microRNAs in bone remodeling

    PubMed Central

    Jing, Dian; Hao, Jin; Shen, Yu; Tang, Ge; Li, Mei-Le; Huang, Shi-Hu; Zhao, Zhi-He

    2015-01-01

    Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes. PMID:26208037

  13. Bioinformatics of prokaryotic RNAs

    PubMed Central

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes. PMID:24755880

  14. Bioinformatics of prokaryotic RNAs.

    PubMed

    Backofen, Rolf; Amman, Fabian; Costa, Fabrizio; Findeiß, Sven; Richter, Andreas S; Stadler, Peter F

    2014-01-01

    The genome of most prokaryotes gives rise to surprisingly complex transcriptomes, comprising not only protein-coding mRNAs, often organized as operons, but also harbors dozens or even hundreds of highly structured small regulatory RNAs and unexpectedly large levels of anti-sense transcripts. Comprehensive surveys of prokaryotic transcriptomes and the need to characterize also their non-coding components is heavily dependent on computational methods and workflows, many of which have been developed or at least adapted specifically for the use with bacterial and archaeal data. This review provides an overview on the state-of-the-art of RNA bioinformatics focusing on applications to prokaryotes. PMID:24755880

  15. Noncoding RNAs and pancreatic cancer

    PubMed Central

    Peng, Juan-Fei; Zhuang, Yan-Yan; Huang, Feng-Ting; Zhang, Shi-Neng

    2016-01-01

    Noncoding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer. The best-characterized ncRNAs are the microRNAs (miRNAs), which are short, approximately 22-nucleotide sequences of RNA of approximately 22-nucleotide in length that regulate gene expression at the posttranscriptional level, through transcript degradation or translational repression. MiRNAs can function as master gene regulators, impacting a variety of cellular pathways important to normal cellular functions as well as cancer development and progression. In addition to miRNAs, long ncRNAs, which are transcripts longer than 200 nucleotides, have recently emerged as novel drivers of tumorigenesis. However, the molecular mechanisms of their regulation and function, and the significance of other ncRNAs such as piwi-interacting RNAs in pancreas carcinogenesis are largely unknown. This review summarizes the growing body of evidence supporting the vital roles of ncRNAs in pancreatic cancer, focusing on their dysregulation through both genetic and epigenetic mechanisms, and highlighting the promise of ncRNAs in diagnostic and therapeutic applications of pancreatic cancer. PMID:26811626

  16. Satellite RNAs and Satellite Viruses.

    PubMed

    Palukaitis, Peter

    2016-03-01

    Satellite RNAs and satellite viruses are extraviral components that can affect either the pathogenicity, the accumulation, or both of their associated viruses while themselves being dependent on the associated viruses as helper viruses for their infection. Most of these satellite RNAs are noncoding RNAs, and in many cases, have been shown to alter the interaction of their helper viruses with their hosts. In only a few cases have the functions of these satellite RNAs in such interactions been studied in detail. In particular, work on the satellite RNAs of Cucumber mosaic virus and Turnip crinkle virus have provided novel insights into RNAs functioning as noncoding RNAs. These effects are described and potential roles for satellite RNAs in the processes involved in symptom intensification or attenuation are discussed. In most cases, models describing these roles involve some aspect of RNA silencing or its suppression, either directly or indirectly involving the particular satellite RNA. PMID:26551994

  17. Frontotemporal Lobar Degeneration and MicroRNAs

    PubMed Central

    Piscopo, Paola; Albani, Diego; Castellano, Anna E.; Forloni, Gianluigi; Confaloni, Annamaria

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) includes a spectrum of disorders characterized by changes of personality and social behavior and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly microRNAs (miRNAs). Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107, and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD. PMID:26903860

  18. MicroRNAs and Drug Addiction

    PubMed Central

    Bali, Purva; Kenny, Paul J.

    2012-01-01

    Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Non-coding RNAs (ncRNAs) are key regulators of almost all aspects of cellular physiology. MicroRNAs (miRNAs) are small (∼21–23 nucleotides) ncRNAs transcripts that regulate gene expression at the post-transcriptional level. Recently, miRNAs were shown to play key roles in the drug-induced remodeling of brain reward systems that likely drives the emergence of addiction. Here, we review evidence suggesting that one particular miRNA, miR-212, plays a particularly prominent role in vulnerability to cocaine addiction. We review evidence showing that miR-212 expression is increased in the dorsal striatum of rats that show compulsive-like cocaine-taking behaviors. Increases in miR-212 expression appear to protect against cocaine addiction, as virus-mediated striatal miR-212 overexpression decreases cocaine consumption in rats. Conversely, disruption of striatal miR-212 signaling using an antisense oligonucleotide increases cocaine intake. We also review data that identify two mechanisms by which miR-212 may regulate cocaine intake. First, miR-212 has been shown to amplify striatal cAMP response element binding protein (CREB) signaling through a mechanism involving activation of Raf1 kinase. Second, miR-212 was also shown to regulate cocaine intake by repressing striatal expression of methyl CpG binding protein 2 (MeCP2), consequently decreasing protein levels of brain-derived neurotrophic factor (BDNF). The concerted actions of miR-212 on striatal CREB and MeCP2/BDNF activity greatly attenuate the motivational effects of cocaine. These findings highlight the unique role for miRNAs in simultaneously controlling multiple signaling cascades implicated in addiction. PMID:23717324

  19. Expression Profiles of Long Noncoding RNAs and Messenger RNAs in Mn-Exposed Hippocampal Neurons of Sprague–Dawley Rats Ascertained by Microarray: Implications for Mn-Induced Neurotoxicity

    PubMed Central

    Yang, Xiaobo; Liang, Guiqiang; Zhang, Li’e; Li, Qin; Xiong, Feng; Peng, Suwan; Ma, Yifei; Huang, Xiaowei; Zou, Yunfeng

    2016-01-01

    Manganese (Mn) is an essential trace element, while excessive expose may induce neurotoxicity. Recently, lncRNAs have been extensively studied and it has been confirmed that lncRNAs participate in neural functions and aberrantly expressed lncRNAs are involved in neurological diseases. However, the pathological effects of lncRNAs on Mn-induced neurotoxicity remain unclear. In this study, the expression profiles of lncRNAs and messenger RNAs (mRNAs) were identified in Mn-treated hippocampal neurons and control neurons via microarray. Bioinformatic methods and intersection analysis were also employed. Results indicated that 566, 1161, and 1474 lncRNAs meanwhile 1848, 3228, and 4022 mRNAs were aberrantly expressed in low, intermediate, and high Mn-exposed groups compared with the control group, respectively. Go analysis determined that differentially expressed mRNAs were targeted to biological processes, cellular components, and molecular functions. Pathway analysis indicated that these mRNAs were enriched in insulin secretion, cell cycle, and DNA replication. Intersection analysis denominated that 135 lncRNAs and 373 mRNAs were consistently up-regulated while 150 lncRNAs and 560 mRNAs were consistently down-regulated. Meanwhile, lncRNA BC079195 was significantly up-regulated while lncRNAs uc.229- and BC089928 were significantly down-regulated in three comparison groups. The relative expression levels of 3 lncRNAs and 4 mRNAs were validated through qRT-PCR. To the best of our knowledge, this study is the first to identify the expression patterns of lncRNAs and mRNAs in hippocampal neurons of Sprague–Dawley rats. The results may provide evidence on underlying mechanisms of Mn-induced neurotoxicity, and aberrantly expressed lncRNAs/mRNAs may be useful in further investigations to detect early symptoms of Mn-induced neuropsychiatric disorders in the central nervous system. PMID:26745496

  20. Circular RNAs in Eukaryotic Cells

    PubMed Central

    Chen, Liang; Huang, Chuan; Wang, Xiaolin; Shan, Ge

    2015-01-01

    Circular RNAs (circRNAs) are now recognized as large species of transcripts in eukaryotic cells. From model organisms such as C. elegans, Drosophila, mice to human beings, thousands of circRNAs formed from back-splicing of exons have been identified. The known complexity of transcriptome has been greatly expanded upon the discovery of these RNAs. Studies about the biogenesis and physiological functions have yielded substantial knowledge for the circRNAs, and they are now more likely to be viewed as regulatory elements coded by the genome rather than unavoidable noise of gene expression. Certain human diseases may also relate to circRNAs. These circRNAs show diversifications in features such as sequence composition and cellular localization, and thus we propose that they may be divided into subtypes such as cytoplasmic circRNAs, nuclear circRNAs, and exon-intron circRNAs (EIciRNAs). Here we summarize and discuss knowns and unknowns for these RNAs, and we need to keep in mind that the whole field is still at the beginning of exciting explorations. PMID:27047251

  1. Grapevine microRNAs responsive to exogenous gibberellin

    PubMed Central

    2014-01-01

    Background MicroRNAs (miRNAs), involving in various biological and metabolic processes, have been discovered and analyzed in quite a number of plants species, such as Arabidopsis, rice and other plants. However, there have been few reports about grapevine miRNAs in response to gibberelline (GA3). Results Solexa technology was used to sequence small RNA libraries constructed from grapevine berries treated with GA3 and the control. A total of 122 known and 90 novel grapevine miRNAs (Vvi-miRNAs) were identified. Totally, 137 ones were found to be clearly responsive to GA3, among which 58 were down-regulated, 51 were up-regulated, 21 could only be detected in the control, and seven were only detected in the treatment. Subsequently, we found that 28 of them were differentially regulated by GA3, with 12 conserved and 16 novel Vvi-miRNAs, based on the analysis of qRT-PCR essays. There existed some consistency in expression levels of GA3-responsive Vvi-miRNAs between high throughput sequencing and qRT-PCR essays. In addition, 117 target genes for 29 novel miRNAs were predicted. Conclusions Deep sequencing of short RNAs from grapevine berries treated with GA3 and the control identified 137 GA3-responsive miRNAs, among which 28 exhibited different expression profiles of response to GA3 in the diverse developmental stages of grapevine berries. These identified Vvi-miRNAs might be involved in the grapevine berry development and response to environmental stresses. PMID:24507455

  2. Regulation of Skeletal Muscle by microRNAs.

    PubMed

    Diniz, Gabriela Placoná; Wang, Da-Zhi

    2016-01-01

    MicroRNAs (miRNAs) are a class of small noncoding RNAs highly conserved across species. miRNAs regulate gene expression posttranscriptionally by base pairing to complementary sequences mainly in the 3'-untranslated region of their target mRNAs to induce mRNA cleavage and translational repression. Thousands of miRNAs have been identified in human and their function has been linked to the regulation of both physiological and pathological processes. The skeletal muscle is the largest human organ responsible for locomotion, posture, and body metabolism. Several conditions such as aging, immobilization, exercise, and diet are associated with alterations in skeletal muscle structure and function. The genetic and molecular pathways that regulate muscle development, function, and regeneration as well as muscular disease have been well established in past decades. In recent years, numerous studies have underlined the importance of miRNAs in the control of skeletal muscle development and function, through its effects on several biological pathways critical for skeletal muscle homeostasis. Furthermore, it has become clear that alteration of the expression of many miRNAs or genetic mutations of miRNA genes is associated with changes on myogenesis and on progression of several skeletal muscle diseases. The present review provides an overview of the current studies and recent progress in elucidating the complex role exerted by miRNAs on skeletal muscle physiology and pathology. © 2016 American Physiological Society. Compr Physiol 6:1279-1294, 2016. PMID:27347893

  3. Noncoding RNAs in Tumor Epithelial-to-Mesenchymal Transition

    PubMed Central

    Lin, Ching-Wen; Lin, Pei-Ying; Yang, Pan-Chyr

    2016-01-01

    Epithelial-derived tumor cells acquire the capacity for epithelial-to-mesenchymal transition (EMT), which enables them to invade adjacent tissues and/or metastasize to distant organs. Cancer metastasis is the main cause of cancer-related death. Molecular mechanisms involved in the switch from an epithelial phenotype to mesenchymal status are complicated and are controlled by a variety of signaling pathways. Recently, a set of noncoding RNAs (ncRNAs), including miRNAs and long noncoding RNAs (lncRNAs), were found to modulate gene expressions at either transcriptional or posttranscriptional levels. These ncRNAs are involved in EMT through their interplay with EMT-related transcription factors (EMT-TFs) and EMT-associated signaling. Reciprocal regulatory interactions between lncRNAs and miRNAs further increase the complexity of the regulation of gene expression and protein translation. In this review, we discuss recent findings regarding EMT-regulating ncRNAs and their associated signaling pathways involved in cancer progression. PMID:26989421

  4. MicroRNAs as novel regulators of stem cell fate

    PubMed Central

    Choi, Eunhyun; Choi, Eunmi; Hwang, Ki-Chul

    2013-01-01

    Mounting evidence in stem cell biology has shown that microRNAs (miRNAs) play a crucial role in cell fate specification, including stem cell self-renewal, lineage-specific differentiation, and somatic cell reprogramming. These functions are tightly regulated by specific gene expression patterns that involve miRNAs and transcription factors. To maintain stem cell pluripotency, specific miRNAs suppress transcription factors that promote differentiation, whereas to initiate differentiation, lineage-specific miRNAs are upregulated via the inhibition of transcription factors that promote self-renewal. Small molecules can be used in a similar manner as natural miRNAs, and a number of natural and synthetic small molecules have been isolated and developed to regulate stem cell fate. Using miRNAs as novel regulators of stem cell fate will provide insight into stem cell biology and aid in understanding the molecular mechanisms and crosstalk between miRNAs and stem cells. Ultimately, advances in the regulation of stem cell fate will contribute to the development of effective medical therapies for tissue repair and regeneration. This review summarizes the current insights into stem cell fate determination by miRNAs with a focus on stem cell self-renewal, differentiation, and reprogramming. Small molecules that control stem cell fate are also highlighted. PMID:24179605

  5. Interspecies Regulation of MicroRNAs and Their Targets

    PubMed Central

    Ha, Misook; Pang, Mingxiong; Agarwal, Vikram; Chen, Z. Jeffrey

    2008-01-01

    MicroRNAs (miRNAs) are 20−24 nucleotide RNA molecules that play essential roles in posttranscriptional regulation of target genes. In animals, miRNAs bind to target mRNA through imperfect complementary sequences that are usually located at the 3’ untranslated regions (UTRs), leading to translational repression or transcript degradation. In plants, miRNAs predominately mediate degradation of target mRNAs via perfect or near-perfect complementary sequences. MicroRNA targets include a large number of transcription factors, suggesting a role of miRNAs in the control of regulatory networks and cellular growth and development. Many miRNAs and their targets are conserved among plants or animals, whereas some are specific to a few plant or animal lineages. Conserved miRNAs do not necessarily exhibit the same expression levels or patterns in different species or at different stages within a species. Therefore, sequence and expression divergence in miRNAs between species may affect miRNA accumulation and target regulation in interspecific hybrids and allopolyploids that contain two or more divergent genomes, leading to developmental changes and phenotypic variation in the new species. PMID:18407843

  6. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  7. Identification of Cassava MicroRNAs under Abiotic Stress

    PubMed Central

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  8. Processing of intronic microRNAs

    PubMed Central

    Kim, Young-Kook; Kim, V Narry

    2007-01-01

    The majority of human microRNA (miRNA) loci are located within intronic regions and are transcribed by RNA polymerase II as part of their hosting transcription units. The primary transcripts are cleaved by Drosha to release ∼70 nt pre-miRNAs that are subsequently processed by Dicer to generate mature ∼22 nt miRNAs. It is generally believed that intronic miRNAs are released by Drosha from excised introns after the splicing reaction has occurred. However, our database searches and experiments indicate that intronic miRNAs can be processed from unspliced intronic regions before splicing catalysis. Intriguingly, cleavage of an intron by Drosha does not significantly affect the production of mature mRNA, suggesting that a continuous intron may not be required for splicing and that the exons may be tethered to each other. Hence, Drosha may cleave intronic miRNAs between the splicing commitment step and the excision step, thereby ensuring both miRNA biogenesis and protein synthesis from a single primary transcript. Our study provides a novel example of eukaryotic gene organization and RNA-processing control. PMID:17255951

  9. Untranslated regions of mRNAs

    PubMed Central

    Mignone, Flavio; Gissi, Carmela; Liuni, Sabino; Pesole, Graziano

    2002-01-01

    Gene expression is finely regulated at the post-transcriptional level. Features of the untranslated regions of mRNAs that control their translation, degradation and localization include stem-loop structures, upstream initiation codons and open reading frames, internal ribosome entry sites and various cis-acting elements that are bound by RNA-binding proteins. PMID:11897027

  10. Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis

    PubMed Central

    Katiyar, Amit; Smita, Shuchi; Muthusamy, Senthilkumar K.; Chinnusamy, Viswanathan; Pandey, Dev M.; Bansal, Kailash C.

    2015-01-01

    Small non-coding RNAs (sRNAs) namely microRNAs (miRNAs) and trans-acting small interfering RNAs (tasi-RNAs) play a crucial role in post-transcriptional regulation of gene expression and thus the control plant development and stress responses. In order to identify drought-responsive miRNAs and tasi-RNAs in sorghum, we constructed small RNA libraries from a drought tolerant (M35-1) and susceptible (C43) sorghum genotypes grown under control and drought stress conditions, and sequenced by Illumina Genome Analyzer IIx. Ninety seven conserved and 526 novel miRNAs representing 472 unique miRNA families were identified from sorghum. Ninety-six unique miRNAs were found to be regulated by drought stress, of which 32 were up- and 49 were down-regulated (fold change ≥ 2 or ≤ −2) at least in one genotype, while the remaining 15 miRNAs showed contrasting drought-regulated expression pattern between genotypes. A maximum of 17 and 18 miRNAs was differentially regulated under drought stress condition in the sensitive and tolerant genotypes, respectively. These results suggest that genotype dependent stress responsive regulation of miRNAs may contribute, at least in part, to the differential drought tolerance of sorghum genotypes. We also identified two miR390-directed TAS3 gene homologs and the auxin response factors as tasi-RNA targets. We predicted more than 1300 unique target genes for the novel and conserved miRNAs. These target genes were predicted to be involved in different cellular, metabolic, response to stimulus, biological regulation, and developmental processes. Genome-wide identification of stress-responsive miRNAs, tasi-RNAs and their targets identified in this study will be useful in unraveling the molecular mechanisms underlying drought stress responses and genetic improvement of biomass production and stress tolerance in sorghum. PMID:26236318

  11. Reciprocal regulation of long noncoding RNAs THBS4-003 and THBS4 control migration and invasion in prostate cancer cell lines

    PubMed Central

    Liu, Jinliang; Cheng, Gong; Yang, Haiwei; Deng, Xiaheng; Qin, Chao; Hua, Lixin; Yin, Changjun

    2016-01-01

    Increasing evidence implicates long noncoding RNAs (lncRNAs), a class of noncoding RNAs >200 nucleotides in length, in the development of cancer. However, the mechanism underlying the effects of lncRNAs in prostate cancer (PCa) remains to be elucidated. The present study aimed to investigate the role of lncRNA-THBS4-003 in the pathogensis of PCa. In the present study, a microarray containing 8,277 lncRNA probes and 32,207 mRNA probes were used to identify dysregulated mRNAs in three patients with PCa, and reverse transcription-quantitative polymerase chain reaction was used to determine the expression levels of thrombospondin 4 (THBS4) and lncRNA-THBS4-003 in 46 primary PCa and adjacent non-tumor tissue samples. The expression levels of THBS4 were determined in six samples of PCa and adjacent non-tumor tissues using Western blot analysis. The effects of forced THBS4 knockdown and lncRNA-THBS4-003 knockdown in the two PCa cell lines, DU145 and PC-3, were evaluated using cell migration and invasion assays, as well as using Western blot analysis. Of the 40,484 probes in the microarray, 354 were significantly upregulated (P<0.05; fold-change >2). The most significantly upregulated mRNA was THBS4. The expression levels of THBS4 and lncRNA-THBS4-003 in the 46 primary PCa samples was significantly higher, compared with that in the adjacent non-tumor tissue samples. Patients with Gleason scores >7 exhibited higher expression levels of lncRNA-THBS4-003, compared with patients with lower scores. Knockdown of THBS4 or lncRNA-THBS4-003 significantly reduced the migratory and invasive abilities of the PCa cells in vitro, and decreased the expression levels of p38 and matrix metal-loproteinase (MMP)-9. These findings suggested that the reciprocal regulation of lncRNA-THBS4-003 and THBS4 contributed to the pathogenesis of PCa. Therefore silencing lncRNA-THBS4-003 or THBS4 may inhibit PCa cell migration and invasion, and regulate the levels of MMP-9 through the mitogen

  12. Long-noncoding RNAs in basal cell carcinoma.

    PubMed

    Sand, Michael; Bechara, Falk G; Sand, Daniel; Gambichler, Thilo; Hahn, Stephan A; Bromba, Michael; Stockfleth, Eggert; Hessam, Schapoor

    2016-08-01

    Long noncoding RNAs (lncRNAs) are fundamental regulators of pre- and post-transcriptional gene regulation. Over 35,000 different lncRNAs have been described with some of them being involved in cancer formation. The present study was initiated to describe differentially expressed lncRNAs in basal cell carcinoma (BCC). Patients with BCC (n = 6) were included in this study. Punch biopsies were harvested from the tumor center and nonlesional epidermal skin (NLES, control, n = 6). Microarray-based lncRNA and mRNA expression profiles were identified through screening for 30,586 lncRNAs and 26,109 protein-coding transcripts (mRNAs). The microarray data were validated by RT-PCR in a second set of BCC versus control samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of mRNAs were performed to assess biologically relevant pathways. A total of 1851 lncRNAs were identified as being significantly up-regulated, whereas 2165 lncRNAs were identified as being significantly down-regulated compared to nonlesional skin (p < 0.05). Oncogenic and/or epidermis-specific lncRNAs, such as CASC15 or ANRIL, were among the differentially expressed sequences. GO analysis showed that the highest enriched GO targeted by up-regulated transcripts was "extracellular matrix." KEGG pathway analysis showed the highest enrichment scores in "Focal adhesion." BCC showed a significantly altered lncRNA and mRNA expression profile. Dysregulation of previously described lncRNAs may play a role in the molecular pathogenesis of BCC and should be subject of further analysis. PMID:26861560

  13. Utility of MicroRNAs and siRNAs in Cervical Carcinogenesis

    PubMed Central

    Díaz-González, Sacnite del Mar; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3′-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  14. Utility of microRNAs and siRNAs in cervical carcinogenesis.

    PubMed

    Díaz-González, Sacnite del Mar; Deas, Jessica; Benítez-Boijseauneau, Odelia; Gómez-Cerón, Claudia; Bermúdez-Morales, Victor Hugo; Rodríguez-Dorantes, Mauricio; Pérez-Plasencia, Carlos; Peralta-Zaragoza, Oscar

    2015-01-01

    MicroRNAs and siRNAs belong to a family of small noncoding RNAs which bind through partial sequence complementarity to 3'-UTR regions of mRNA from target genes, resulting in the regulation of gene expression. MicroRNAs have become an attractive target for genetic and pharmacological modulation due to the critical function of their target proteins in several signaling pathways, and their expression profiles have been found to be altered in various cancers. A promising technology platform for selective silencing of cell and/or viral gene expression using siRNAs is currently in development. Cervical cancer is the most common cancer in women in the developing world and sexually transmitted infection with HPV is the cause of this malignancy. Therefore, a cascade of abnormal events is induced during cervical carcinogenesis, including the induction of genomic instability, reprogramming of cellular metabolic pathways, deregulation of cell proliferation, inhibition of apoptotic mechanisms, disruption of cell cycle control mechanisms, and alteration of gene expression. Thus, in the present review article, we highlight new research on microRNA expression profiles which may be utilized as biomarkers for cervical cancer. Furthermore, we discuss selective silencing of HPV E6 and E7 with siRNAs which represents a potential gene therapy strategy against cervical cancer. PMID:25874209

  15. Getting to PTI of bacterial RNAs: Triggering plant innate immunity by extracellular RNAs from bacteria.

    PubMed

    Park, Yong-Soon; Lee, Boyoung; Ryu, Choong-Min

    2016-07-01

    Defense against diverse biotic and abiotic stresses requires the plant to distinguish between self and non-self signaling molecules. Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are pivotal for triggering innate immunity in plants. Unlike in animals and humans, the precise roles of nucleic acids in plant innate immunity are unclear. We therefore investigated the effects of infiltration of total Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) RNAs into Arabidopsis plants. The pathogen population was 10-fold lower in bacterial RNAs pre-treated Arabidopsis plants than in the control. Bacterial RNAs purity was confirmed by physical (sonication) and chemical (RNase A and proteinase K digestion) methods. The perception of bacterial RNAs, especially rRNAs, positively regulated mitogen-activated protein kinase (MAPK) and induced a reactive oxygen species burst, callose deposition, salicylic acid (SA) and jasmonic acid (JA) signaling, and defense-related genes. Therefore, bacterial RNAs function as a new MAMP that activates plant innate immunity, providing a new paradigm for plant-microbe interactions. PMID:27301792

  16. Most mammalian mRNAs are conserved targets of microRNAs

    PubMed Central

    Friedman, Robin C.; Farh, Kyle Kai-How; Burge, Christopher B.; Bartel, David P.

    2009-01-01

    MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2–7), particularly those in 3′ untranslated regions (3′UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3′UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the “offset 6mer,” to be detected. In total, >45,000 miRNA target sites within human 3′UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3′ end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (PCT) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3′-compensatory sites), are available at the TargetScan website, which displays the PCT for each site and each predicted target. PMID:18955434

  17. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.

    1998-01-01

    The Principal Investigator's responsibilities on this grant fell into two categories according to his participation. In the nomenclature work of the International Astronomical Union (IAU). Owen is chair of the Task Group for the Outer Solar System. He is also a member of the IAU's Working Group on Planetary and Satellite Nomenclature (WGPSN) which is composed of the chairs of the several Task Groups plus the presidents of two IAU Commissions and several outside consultants. The WGPSN is presided over by its President, Professor Kaare Aksnes from the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway.

  18. Jupiter's outer atmosphere.

    NASA Technical Reports Server (NTRS)

    Brice, N. M.

    1973-01-01

    The current state of the theory of Jupiter's outer atmosphere is briefly reviewed. The similarities and dissimilarities between the terrestrial and Jovian upper atmospheres are discussed, including the interaction of the solar wind with the planetary magnetic fields. Estimates of Jovian parameters are given, including magnetosphere and auroral zone sizes, ionospheric conductivity, energy inputs, and solar wind parameters at Jupiter. The influence of the large centrifugal force on the cold plasma distribution is considered. The Jovian Van Allen belt is attributed to solar wind particles diffused in toward the planet by dynamo electric fields from ionospheric neutral winds, and the consequences of this theory are indicated.

  19. RNAs with multiple personalities.

    PubMed

    Maute, Roy L; Dalla-Favera, Riccardo; Basso, Katia

    2014-01-01

    In the last decade, advances in sequencing technology and a renewed focus on the regulatory potential of RNA molecules have combined to stimulate an enormous expansion in the catalog of known eukaryotic RNAs. Beyond the sheer numerical diversity of RNA species, recent studies have begun to uncover hints of even greater functional complexity. An increasing number of RNA molecules, including those from classic, well-studied classes, have been found to act in previously unanticipated regulatory roles, or as substrate for the biogenesis of functionally distinct RNA molecules, or both. Thus, these molecules can fulfill multiple, parallel functions, compounding the already rich landscape of RNA biology, and potentially connecting disparate biological regulatory networks in unexpected ways. In this article, we review recently discovered instances of RNA multifunctionality, with a particular focus on regulatory small RNAs. PMID:24039180

  20. Small regulatory RNAs in Archaea

    PubMed Central

    Babski, Julia; Maier, Lisa-Katharina; Heyer, Ruth; Jaschinski, Katharina; Prasse, Daniela; Jäger, Dominik; Randau, Lennart; Schmitz, Ruth A; Marchfelder, Anita; Soppa, Jörg

    2014-01-01

    Small regulatory RNAs (sRNAs) are universally distributed in all three domains of life, Archaea, Bacteria, and Eukaryotes. In bacteria, sRNAs typically function by binding near the translation start site of their target mRNAs and thereby inhibit or activate translation. In eukaryotes, miRNAs and siRNAs typically bind to the 3′-untranslated region (3′-UTR) of their target mRNAs and influence translation efficiency and/or mRNA stability. In archaea, sRNAs have been identified in all species investigated using bioinformatic approaches, RNomics, and RNA-Seq. Their size can vary significantly between less than 50 to more than 500 nucleotides. Differential expression of sRNA genes has been studied using northern blot analysis, microarrays, and RNA-Seq. In addition, biological functions have been unraveled by genetic approaches, i.e., by characterization of designed mutants. As in bacteria, it was revealed that archaeal sRNAs are involved in many biological processes, including metabolic regulation, adaptation to extreme conditions, stress responses, and even in regulation of morphology and cellular behavior. Recently, the first target mRNAs were identified in archaea, including one sRNA that binds to the 5′-region of two mRNAs in Methanosarcina mazei Gö1 and a few sRNAs that bind to 3′-UTRs in Sulfolobus solfataricus, three Pyrobaculum species, and Haloferax volcanii, indicating that archaeal sRNAs appear to be able to target both the 5′-UTR or the 3′-UTRs of their respective target mRNAs. In addition, archaea contain tRNA-derived fragments (tRFs), and one tRF has been identified as a major ribosome-binding sRNA in H. volcanii, which downregulates translation in response to stress. Besides regulatory sRNAs, archaea contain further classes of sRNAs, e.g., CRISPR RNAs (crRNAs) and snoRNAs. PMID:24755959

  1. Mechanisms of regulation of mature miRNAs.

    PubMed

    Towler, Benjamin P; Jones, Christopher I; Newbury, Sarah F

    2015-12-01

    miRNAs are short RNA molecules of ∼22-nt in length that play important roles in post-transcriptional control of gene expression. miRNAs normally function as negative regulators of mRNA expression by binding complementary sequences in the 3'-UTR of target mRNAs and causing translational repression and/or target degradation. Much research has been undertaken to enhance understanding of the biogenesis, function and targeting of miRNAs. However, until recently, the mechanisms underlying the regulation of the levels of mature miRNAs themselves have been largely overlooked. Although it has generally been assumed that miRNAs are stable molecules, recent evidence indicates that the stability of specific mature miRNAs can be regulated during key cellular and developmental processes in certain cell types. Here we discuss the current knowledge of the mechanisms by which mature miRNAs are regulated in the cell and the factors that contribute to the control of their stability. PMID:26614662

  2. Role of miRNAs and epigenetics in neural stem cell fate determination

    PubMed Central

    Lopez-Ramirez, Miguel Alejandro; Nicoli, Stefania

    2014-01-01

    The regulation of gene expression that determines stem cell fate determination is tightly controlled by both epigenetic and posttranscriptional mechanisms. Indeed, small non-coding RNAs such as microRNAs (miRNAs) are able to regulate neural stem cell fate by targeting chromatin-remodeling pathways. Here, we aim to summarize the latest findings regarding the feedback network of epigenetics and miRNAs during embryonic and adult neurogenesis. PMID:24342893

  3. The role of microRNAs in Epstein-Barr virus latency and lytic reactivation.

    PubMed

    Forte, Eleonora; Luftig, Micah A

    2011-12-01

    Oncogenic viruses reprogram host gene expression driving proliferation, ensuring survival, and evading the immune response. The recent appreciation of microRNAs (miRNAs) as small non-coding RNAs that broadly regulate gene expression has provided new insight into this complex scheme of host control. This review highlights the role of viral and cellular miRNAs during the latent and lytic phases of the EBV life cycle. PMID:21835261

  4. The role of microRNAs in Epstein-Barr virus latency and lytic reactivation

    PubMed Central

    Forte, Eleonora; Luftig, Micah A.

    2016-01-01

    Oncogenic viruses reprogram host gene expression driving proliferation, ensuring survival, and evading the immune response. The recent appreciation of microRNAs (miRNAs) as small non-coding RNAs that broadly regulate gene expression has provided new insight into this complex scheme of host control. This review highlights the role of viral and cellular miRNAs during the latent and lytic phases of the EBV life cycle. PMID:21835261

  5. Outer planets satellites

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1983-01-01

    The present investigation takes into account the published literature on outer planet satellites for 1979-1982. It is pointed out that all but three (the moon and the two Martian satellites) of the known planetary satellites are found in the outer solar system. Most of these are associated with the three regular satellite systems of Jupiter, Saturn, and Uranus. The largest satellites are Titan in the Saturn system and Ganymede and Callisto in the Jupiter system. Intermediate in size between Mercury and Mars, each has a diameter of about 5000 km. Presumably each has an internal composition about 60 percent rock and 40 ice, and each is differentiated with a dense core extending out about 75 percent of the distance to the surface, with a mantle of high-pressure ice and a crust of ordinary ice perhaps 100 km thick. Attention is also given to Io, Europa, the icy satellites of Saturn, the satellites of Uranus, the small satellites of Jupiter and Saturn, Triton and the Pluto system, and plans for future studies.

  6. MicroRNAs in the Neural Retina

    PubMed Central

    Cooper, Nigel G. F.

    2014-01-01

    The health and function of the visual system rely on a collaborative interaction between diverse classes of molecular regulators. One of these classes consists of transcription factors, which are known to bind to DNA and control the transcription activities of their target genes. For a long time, it was thought that the transcription factors were the only regulators of gene expression. More recently, however, a novel class of regulators emerged. This class consists of a large number of small noncoding endogenous RNAs, namely, miRNAs. The miRNAs compose an essential component of posttranscriptional gene regulation, since they ultimately control the fate of gene transcripts. The retina, as a part of the central nervous system, is a well-established model for unraveling the molecular mechanisms underlying neuronal and glial functions. Numerous recent efforts have been made towards identification of miRNAs and their inferred roles in the visual pathway. In this review, we summarize the current state of our knowledge regarding the expression and function of miRNA in the neural retina and we discuss their potential uses as biomarkers for some retinal disorders. PMID:24745005

  7. Structured RNAs that evade or confound exonucleases: function follows form.

    PubMed

    Akiyama, Benjamin M; Eiler, Daniel; Kieft, Jeffrey S

    2016-02-01

    Cells contain powerful RNA decay machinery to eliminate unneeded RNA from the cell, and this process is an important and regulated part of controlling gene expression. However, certain structured RNAs have been found that can robustly resist degradation and extend the lifetime of an RNA. In this review, we present three RNA structures that use a specific three-dimensional fold to provide protection from RNA degradation, and discuss how the recently-solved structures of these RNAs explain their function. Specifically, we describe the Xrn1-resistant RNAs from arthropod-borne flaviviruses, exosome-resistant long non-coding RNAs associated with lung cancer metastasis and found in Kaposi's sarcoma-associated herpesvirus, and tRNA-like sequences occurring in certain plant viruses. These three structures reveal three different mechanisms to protect RNAs from decay and suggest RNA structure-based nuclease resistance may be a widespread mechanism of regulation. PMID:26797676

  8. Functional regulatory roles of microRNAs in atherosclerosis.

    PubMed

    Gao, Ya; Peng, Juan; Ren, Zhong; He, Ni-Ya; Li, Qing; Zhao, Xue-Shan; Wang, Mei-Mei; Wen, Hong-Yan; Tang, Zhi-Han; Jiang, Zhi-Sheng; Wang, Gui-Xue; Liu, Lu-Shan

    2016-09-01

    MicroRNAs are a group of endogenously small non-coding RNA molecules that downregulate gene expression at the post-transcriptional level through binding to the 3'UTR of target mRNAs. Recent findings have revealed a key role for microRNAs in the pathophysiological processes of atherosclerosis. As a complex disease, atherosclerosis is influenced by a combination of multiple genes and environmental factors. Both of them play a role in atherogenesis by affecting different types of cells (such as endothelial cell, vascular smooth muscle cell and monocyte/macrophage) function. MicroRNAs control the senescence and dysfunction of endothelial cells, proliferation and migration of vascular smooth muscle cells, and macrophage-driven cytokine production and polarization. By these effects, microRNAs can influence the processes of atherosclerosis and may represent new molecular targets for therapy. PMID:27384386

  9. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends.

    PubMed

    Kaerkitcha, Navaporn; Chuangchote, Surawut; Sagawa, Takashi

    2016-12-01

    Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz. inner and outer nozzle-ends are balanced in the same level), inward, and outward coaxial nozzles. The influence of the applied voltage on these three types of coaxial nozzles was studied. Specific surface area, pore size diameter, crystallinity, and degree of graphitization of the hollow and mesoporous structures of carbon nanofibers obtained after carbonization of the as spun PMMA/PAN nanofibers were characterized by BET analyses, X-ray diffraction, and Raman spectroscopy in addition to the conductivity measurements. It was found that specific surface area, crystallinity, and graphitization degree of the HCNFs affect the electrical conductivity of the carbon nanofibers. PMID:27067734

  10. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends

    NASA Astrophysics Data System (ADS)

    Kaerkitcha, Navaporn; Chuangchote, Surawut; Sagawa, Takashi

    2016-04-01

    Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz . inner and outer nozzle-ends are balanced in the same level), inward, and outward coaxial nozzles. The influence of the applied voltage on these three types of coaxial nozzles was studied. Specific surface area, pore size diameter, crystallinity, and degree of graphitization of the hollow and mesoporous structures of carbon nanofibers obtained after carbonization of the as spun PMMA/PAN nanofibers were characterized by BET analyses, X-ray diffraction, and Raman spectroscopy in addition to the conductivity measurements. It was found that specific surface area, crystallinity, and graphitization degree of the HCNFs affect the electrical conductivity of the carbon nanofibers.

  11. Noncoding RNAs in the regulation of skeletal muscle biology in health and disease.

    PubMed

    Simionescu-Bankston, Adriana; Kumar, Ashok

    2016-08-01

    Skeletal muscle is composed of multinucleated myofibers that arise from the fusion of myoblasts during development. Skeletal muscle is essential for various body functions such as maintaining posture, locomotion, breathing, and metabolism. Skeletal muscle undergoes remarkable adaptations in response to environmental stimuli leading to atrophy or hypertrophy. Moreover, degeneration of skeletal muscle is a common feature in a number of muscular disorders including muscular dystrophy. Emerging evidence suggests that noncoding RNAs, such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are critical for skeletal muscle physiology. Several miRNAs and lncRNAs have now been found to control skeletal muscle development and regeneration. Noncoding RNAs also play an important role in the regulation of skeletal muscle mass in adults. Furthermore, aberrant expression of miRNAs and lncRNAs has been observed in several muscular disorders. In this article, we discuss the mechanisms of action of miRNAs and lncRNAs in skeletal muscle formation, growth, regeneration, and disease. We further highlight potential therapeutic strategies for utilizing noncoding RNAs to improve skeletal muscle function. PMID:27377406

  12. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel( ii ) complex containing proton relays in the second and outer coordination spheres

    SciTech Connect

    Das, Parthapratim; Ho, Ming-Hsun; O'Hagan, Molly; Shaw, Wendy J.; Morris Bullock, R.; Raugei, Simone; Helm, Monte L.

    2014-01-01

    A nickel bis(diphosphine) complex containing proton relays in the second and outer coordination spheres, Ni(PCy2N(CH2)2OMe)2, (PCy2N(CH2)2OMe = 1,5-di(methoxyethyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex results in rapid formation of three isomers of the doubly protonated Ni(0) complex, [Ni(PCy2N(CH2)2OMe2H)2]2+. The three isomers show fast intramolecular interconversion at 40 °C, unique to this complex in this class of catalysts. Under conditions of 1.0 atm H2 using H2O as a base, catalytic oxidation proceeds at a turnover frequency of 5 s-1 and an overpotential of 720 mV, as determined from the potential at half of the catalytic current. Compared to the previously reported Ni(PCy2NBn)2 complex, the new complex operates at a faster rate and at a lower overpotential. The results of this study indicate that the presence of the pendant methoxy group in the outer coordination sphere of the catalyst plays a key role, facilitating intramolecular proton movement prior to intermolecular proton removal required to complete the catalytic cycle. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  13. Inner and outer beauty.

    PubMed

    Raymond, Kenneth N; Brown, Casey J

    2012-01-01

    Symmetry and pattern are precious forms of beauty that can be appreciated on both the macroscopic and molecular scales. Crystallographers have long appreciated the intimate connections between symmetry and molecular structure, reflected in their appreciation for the artwork of Escher. This admiration has been applied in the design of highly symmetrical coordination compounds. Two classes of materials are discussed: extended coordination arrays and discrete supramolecular assemblies. Extended coordination polymers have been implemented in gas separation and storage due to the remarkably porosity of these materials, aided by the ability to design ever-larger inner spaces within these frameworks. In the case of discrete symmetrical structures, defined inner and outer space present a unique aesthetic and chemical environment. The consequent host-guest chemistry and applications in catalysis are discussed. PMID:22076081

  14. Outer atmospheric research

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability.

  15. Control of gene expression at a bacterial leader RNA, the agn43 gene encoding outer membrane protein Ag43 of Escherichia coli.

    PubMed

    Wallecha, Anu; Oreh, Heather; van der Woude, Marjan W; deHaseth, Pieter L

    2014-08-01

    The family of agn alleles in Escherichia coli pathovars encodes autotransporters that have been implicated in biofilm formation, autoaggregation, and attachment to cells. The alleles all have long leader RNAs preceding the Ag43 translation initiation codon. Here we present an analysis of the agn43 leader RNA from E. coli K-12. We demonstrate the presence of a rho-independent transcription terminator just 28 bp upstream of the main translation start codon and show that it is functional in vitro. Our data indicate that an as-yet-unknown mechanism of antitermination of transcription must be operative in earlier phases of growth. However, as bacterial cell cultures mature, progressively fewer transcripts are able to bypass this terminator. In the K-12 leader sequence, two in-frame translation initiation codons have been identified, one upstream and the other downstream of the transcription terminator. For optimal agn43 expression, both codons need to be present. Translation from the upstream start codon leads to increased downstream agn43 expression. Our findings have revealed two novel modes of regulation of agn43 expression in the leader RNA in addition to the previously well-characterized regulation of phase variation at the agn43 promoter. PMID:24837285

  16. MicroRNAs in Liver Health and Disease

    PubMed Central

    Ghoshal, Kalpana

    2013-01-01

    MicroRNAs (miRNAs), a class of short non-coding RNAs, have been studied intensely and extensively in the past decade in every aspect of biological processes, including cell differentiation, proliferation and death. These findings pointed out the pivotal role of miRNA in posttranscriptional control of gene expression in animals and established miRNAs as therapeutic targets for different pathophysiological processes, including liver disease. Here we have discussed the recent advances made in identifying the miRNAs deregulated in different liver diseases such as obesity, hepatitis, alcoholic and nonalcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma, as well as pathophysiological conditions such as developmental abnormality. We have specifically reviewed the role of miRNAs in these diseases and discussed critically potential impacts of these miRNAs as biomarkers and/or therapeutic targets in liver pathobiology in the clinical setting. Finally, we have highlighted the latest techniques or preclinical and/or clinical trials that are being developed to replenish or inhibit the deregulated miRNAs. PMID:23565350

  17. Perspectives of Long Non-Coding RNAs in Cancer Diagnostics

    PubMed Central

    Reis, Eduardo M.; Verjovski-Almeida, Sergio

    2012-01-01

    Long non-coding RNAs (lncRNAs) transcribed from intergenic and intronic regions of the human genome constitute a broad class of cellular transcripts that are under intensive investigation. While only a handful of lncRNAs have been characterized, their involvement in fundamental cellular processes that control gene expression highlights a central role in cell homeostasis. Not surprisingly, aberrant expression of regulatory lncRNAs has been increasingly documented in different types of cancer, where they can mediate both oncogenic or tumor suppressor effects. Interaction with chromatin remodeling complexes that promote silencing of specific genes or modulation of splicing factor proteins seem to be two general modes of lncRNA regulation, but it is conceivable that additional mechanisms of action are yet to be unveiled. LncRNAs show greater tissue specificity compared to protein-coding mRNAs making them attractive in the search of novel diagnostics/prognostics cancer biomarkers in body fluid samples. In fact, lncRNA prostate cancer antigen 3 can be detected in urine samples and has been shown to improve diagnosis of prostate cancer. We suggest that an unbiased screening of the presence of RNAs in easily accessible body fluids such as serum and urine might reveal novel circulating lncRNAs as potential biomarkers in many types of cancer. Annotation and functional characterization of the lncRNA complement of the cancer transcriptome will conceivably provide new venues for early diagnosis and treatment of the disease. PMID:22408643

  18. miRNAs in the Pathogenesis of Systemic Lupus Erythematosus

    PubMed Central

    Qu, Bo; Shen, Nan

    2015-01-01

    MicroRNAs (miRNAs) were first discovered as regulatory RNAs that controlled the timing of the larval development of Caenorhabditis elegans. Since then, nearly 30,000 mature miRNA products have been found in many species, including plants, warms, flies and mammals. Currently, miRNAs are well established as endogenous small (~22 nt) noncoding RNAs, which have functions in regulating mRNA stability and translation. Owing to intensive investigations during the last decade, miRNAs were found to play essential roles in regulating many physiological and pathological processes. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by elevated autoantibodies against nuclear antigens and excessive inflammatory responses affecting multiple organs. Although efforts were taken and theories were produced to elucidate the pathogenesis of SLE, we still lack sufficient knowledge about the disease for developing effective therapies for lupus patients. Recent advances indicate that miRNAs are involved in the development of SLE, which gives us new insights into the pathogenesis of SLE and might lead to the finding of new therapeutic targets. Here, we will review recent discoveries about how miRNAs are involved in the pathogenesis of SLE and how it can promote the development of new therapy. PMID:25927578

  19. Population genomic analysis of gibberellin-responsive long non-coding RNAs in Populus.

    PubMed

    Tian, Jiaxing; Song, Yuepeng; Du, Qingzhang; Yang, Xiaohui; Ci, Dong; Chen, Jinhui; Xie, Jianbo; Li, Bailian; Zhang, Deqiang

    2016-04-01

    Long non-coding RNAs (lncRNAs) participate in a wide range of biological processes, but lncRNAs in plants remain largely unknown; in particular, we lack a systematic identification of plant lncRNAs involved in hormone responses. Moreover, allelic variation in lncRNAs remains poorly characterized at a large scale. Here, we conducted high-throughput RNA-sequencing of leaves from control and gibberellin (GA)-treated Populus tomentosa and identified 7655 reliably expressed lncRNAs. Among the 7655 lncRNAs, the levels of 410 lncRNAs changed in response to GA. Seven GA-responsive lncRNAs were predicted to be putative targets of 18 miRNAs, and one GA-responsive lncRNA (TCONS_00264314) was predicted to be a target mimic of ptc-miR6459b. Computational analysis predicted 939 potential cis-regulated target genes and 965 potential trans-regulated target genes for GA-responsive lncRNAs. Functional annotation of these potential target genes showed that they participate in many different biological processes, including auxin signal transduction and synthesis of cellulose and pectin, indicating that GA-responsive lncRNAs may influence growth and wood properties. Finally, single nucleotide polymorphism (SNP)-based association analysis showed that 112 SNPs from 52 GA-responsive lncRNAs and 1014 SNPs from 296 potential target genes were significantly associated with growth and wood properties. Epistasis analysis also provided evidence for interactions between lncRNAs and their potential target genes. Our study provides a comprehensive view of P. tomentosa lncRNAs and offers insights into the potential functions and regulatory interactions of GA-responsive lncRNAs, thus forming the foundation for future functional analysis of GA-responsive lncRNAs in P. tomentosa. PMID:26912799

  20. Bacterial transfer RNAs

    PubMed Central

    Shepherd, Jennifer; Ibba, Michael

    2015-01-01

    Transfer RNA is an essential adapter molecule that is found across all three domains of life. The primary role of transfer RNA resides in its critical involvement in the accurate translation of messenger RNA codons during protein synthesis and, therefore, ultimately in the determination of cellular gene expression. This review aims to bring together the results of intensive investigations into the synthesis, maturation, modification, aminoacylation, editing and recycling of bacterial transfer RNAs. Codon recognition at the ribosome as well as the ever-increasing number of alternative roles for transfer RNA outside of translation will be discussed in the specific context of bacterial cells. PMID:25796611

  1. Viral noncoding RNAs: more surprises

    PubMed Central

    Tycowski, Kazimierz T.; Guo, Yang Eric; Lee, Nara; Moss, Walter N.; Vallery, Tenaya K.; Xie, Mingyi

    2015-01-01

    Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles—including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation—have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action. PMID:25792595

  2. Changing expression profiles of lncRNAs, mRNAs, circRNAs and miRNAs during osteoclastogenesis

    PubMed Central

    Dou, Ce; Cao, Zhen; Yang, Bo; Ding, Ning; Hou, Tianyong; Luo, Fei; Kang, Fei; Li, Jianmei; Yang, Xiaochao; Jiang, Hong; Xiang, Junyu; Quan, Hongyu; Xu, Jianzhong; Dong, Shiwu

    2016-01-01

    Bone is a dynamic organ continuously undergoing shaping, repairing and remodeling. The homeostasis of bone is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclasts (OCs) are specialized multinucleated cells derived from hematopoietic stem cells (HSCs) or monocytes/macrophage progenitor cells. There are different stages during osteoclastogenesis, and one of the most important steps to form functional osteoclasts is realized by cell-cell fusion. In our study, microarray was performed to detect the expression profiles of lncRNA, mRNA, circRNA and miRNA at different stages during osteoclastogenesis of RAW264.7 cells. Often changed RNAs were selected and clustered among the four groups with Venn analysis. The results revealed that expressions of 518 lncRNAs, 207 mRNAs, 24 circRNAs and 37 miRNAs were often altered at each stage during OC differentiation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analysis were performed to predict the functions of differentially expressed lncRNAs and co-expressed potential targeting genes. Co-expression networks of lncRNA-mRNA and circRNA-miRNA were constructed based on the correlation analysis between the differentially expressed RNAs. The present study provided a systematic perspective on the potential function of non-coding RNAs (ncRNAs) during osteoclastogenesis. PMID:26856880

  3. MYCN-targeting miRNAs are predominantly downregulated during MYCN‑driven neuroblastoma tumor formation.

    PubMed

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R; Mets, Evelien; Althoff, Kristina; Cheung, Belamy B; Schulte, Johannes H; Mestdagh, Pieter; Vandesompele, Jo; Marshall, Glenn M; De Preter, Katleen; Speleman, Frank

    2015-03-10

    MYCN is a transcription factor that plays key roles in both normal development and cancer. In neuroblastoma, MYCN acts as a major oncogenic driver through pleiotropic effects regulated by multiple protein encoding genes as well as microRNAs (miRNAs). MYCN activity is tightly controlled at the level of transcription and protein stability through various mechanisms. Like most genes, MYCN is further controlled by miRNAs, but the full complement of all miRNAs implicated in this process has not been determined through an unbiased approach. To elucidate the role of miRNAs in regulation of MYCN, we thus explored the MYCN-miRNA interactome to establish miRNAs controlling MYCN expression levels. We combined results from an unbiased and genome-wide high-throughput miRNA target reporter screen with miRNA and mRNA expression data from patients and a murine neuroblastoma progression model. We identified 29 miRNAs targeting MYCN, of which 12 miRNAs are inversely correlated with MYCN expression or activity in neuroblastoma tumor tissue. The majority of MYCN-targeting miRNAs in neuroblastoma showed a decrease in expression during murine MYCN-driven neuroblastoma tumor development. Therefore, we provide evidence that MYCN-targeting miRNAs are preferentially downregulated in MYCN-driven neuroblastoma, suggesting that MYCN negatively controls the expression of these miRNAs, to safeguard its expression. PMID:25294817

  4. Non-coding RNAs in Mammary Gland Development and Disease.

    PubMed

    Sandhu, Gurveen K; Milevskiy, Michael J G; Wilson, Wesley; Shewan, Annette M; Brown, Melissa A

    2016-01-01

    Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease. PMID:26659490

  5. Strategy for outer planets exploration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    NASA's Planetary Programs Office formed a number of scientific working groups to study in depth the potential scientific return from the various candidate missions to the outer solar system. The results of these working group studies were brought together in a series of symposia to evaluate the potential outer planet missions and to discuss strategies for exploration of the outer solar system that were consistent with fiscal constraints and with anticipated spacecraft and launch vehicle capabilities. A logical, scientifically sound, and cost effective approach to exploration of the outer solar system is presented.

  6. Cross-talks between microRNAs and mRNAs in pancreatic tissues of streptozotocin-induced type 1 diabetic mice

    PubMed Central

    TIAN, CAIMING; OUYANG, XIAOXI; LV, QING; ZHANG, YAOU; XIE, WEIDONG

    2015-01-01

    Network cross-talks between microRNAs (miRNAs) and mRNAs may be useful to elucidate the pathological mechanisms of pancreatic islet cells in diabetic individuals. The aim of the present study was to investigate the cross-talks between miRNAs and mRNAs in pancreatic tissues of streptozotocin-induced diabetic mice through microarray and bioinformatic methods. Based on the miRNA microarray, 64 upregulated and 72 downregulated miRNAs were observed in pancreatic tissues in diabetic mice compared to the normal controls. Based on the mRNA microarrray, 507 upregulated mRNAs and 570 downregulated mRNAs were identified in pancreatic tissues in diabetic mice compared to the normal controls. Notably, there were 246 binding points between upregulated miRNA and downregulated mRNAs; simultaneously, there were 583 binding points between downregulated miRNA and upregulated mRNAs. These changed mRNA may potentially involve the following signaling pathways: Insulin secretion, pancreatic secretion, mammalian target of rapamycin signaling pathway, forkhead box O signaling pathway and phosphatidylinositol 3-kinase-protein kinase B signaling. The fluctuating effects of miRNAs and matched mRNAs indicated that miRNAs may have wide cross-talks with mRNAs in pancreatic tissues of type 1 diabetic mice. The cross-talks may play important roles in contributing to impaired islet functions and the development of diabetes. However, further functional validation should be conducted in the future. PMID:26137232

  7. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud

    PubMed Central

    Niu, Qingfeng; Li, Jianzhao; Cai, Danying; Qian, Minjie; Jia, Huimin; Bai, Songling; Hussain, Sayed; Liu, Guoqin; Teng, Yuanwen; Zheng, Xiaoyan

    2016-01-01

    Bud dormancy in perennial plants is indispensable to survival over winter and to regrowth and development in the following year. However, the molecular pathways of endo-dormancy induction, maintenance, and release are still unclear, especially in fruit crops. To identify genes with roles in regulating endo-dormancy, 30 MIKCC-type MADS-box genes were identified in the pear genome and characterized. The 30 genes were analysed to determine their phylogenetic relationships with homologous genes, genome locations, gene structure, tissue-specific transcript profiles, and transcriptional patterns during flower bud dormancy in ‘Suli’ pear (Pyrus pyrifolia white pear group). The roles in regulating bud dormancy varied among the MIKC gene family members. Yeast one-hybrid and transient assays showed that PpCBF enhanced PpDAM1 and PpDAM3 transcriptional activity during the induction of dormancy, probably by binding to the C-repeat/DRE binding site, while DAM proteins inhibited the transcriptional activity of PpFT2 during dormancy release. In the small RNA-seq analysis, 185 conserved, 24 less-conserved, and 32 pear-specific miRNAs with distinct expression patterns during bud dormancy were identified. Joint analyses of miRNAs and MIKC genes together with degradome data showed that miR6390 targeted PpDAM transcripts and degraded them to release PpFT2. Our data show that cross-talk among PpCBF, PpDAM, PpFT2, and miR6390 played important roles in regulating endo-dormancy. A model for the molecular mechanism of dormancy transition is proposed: short-term chilling in autumn activates the accumulation of CBF, which directly promotes DAM expression; DAM subsequently inhibits FT expression to induce endo-dormancy, and miR6390 degrades DAM genes to release endo-dormancy. PMID:26466664

  8. Genome-wide identification and functional analysis of long noncoding RNAs involved in the response to graphene oxide.

    PubMed

    Wu, Qiuli; Zhou, Xuefeng; Han, Xiaoxiao; Zhuo, Yizhou; Zhu, Siting; Zhao, Yunli; Wang, Dayong

    2016-09-01

    Long noncoding RNAs (lncRNAs), which are defined as noncoding RNAs having at least 200 nucleotides, can potentially regulate various biological processes. However, the roles of lncRNAs in regulating cellular response to engineered nanomaterials (ENMs) are still unclear. Using Hiseq 2000 sequencing technique, we performed a genome-wide screen to identify lncRNAs involved in the control of toxicity of graphene oxide (GO) using in vivo Caenorhabditis elegans assay system. HiSeq 2000 sequencing, followed by quantitative analysis, identified only 34 dysregulated lncRNAs in GO exposed nematodes. Bioinformatics analysis implies the biological processes and signaling pathways mediated by candidate lncRNAs involved in the control of GO toxicity. A lncRNAs-miRNAs network possibly involved in the control of GO toxicity was further raised. Moreover, we identified the shared lncRNAs based on the molecular regulation basis for chemical surface modifications and/or genetic mutations in reducing GO toxicity. We further provide direct evidence that these shared lncRNAs, linc-37 and linc-14, were involved in the control of chemical surface modifications and genetic mutations in reducing GO toxicity. linc-37 binding to transcriptional factor FOXO/DAF-16 might be important for the control of GO toxicity. Our whole-genome identification and functional analysis of lncRNAs highlights the important roles of lncRNAs based molecular mechanisms for cellular responses to ENMs in organisms. PMID:27348851

  9. Non-coding RNAs: Epigenetic regulators of bone development and homeostasis.

    PubMed

    Hassan, Mohammad Q; Tye, Coralee E; Stein, Gary S; Lian, Jane B

    2015-12-01

    Non-coding RNAs (ncRNAs) have evolved in eukaryotes as epigenetic regulators of gene expression. The most abundant regulatory ncRNAs are the 20-24 nt small microRNAs (miRNAs) and long non-coding RNAs (lncRNAs, <200 nt). Each class of ncRNAs operates through distinct mechanisms, but their pathways to regulating gene expression are interrelated in ways that are just being recognized. While the importance of lncRNAs in epigenetic control of transcription, developmental processes and human traits is emerging, the identity of lncRNAs in skeletal biology is scarcely known. However, since the first profiling studies of miRNA at stages during osteoblast and osteoclast differentiation, over 1100 publications related to bone biology and pathologies can be found, as well as many recent comprehensive reviews summarizing miRNA in skeletal cells. Delineating the activities and targets of specific miRNAs regulating differentiation of osteogenic and resorptive bone cells, coupled with in vivo gain- and loss-of-function studies, discovered unique mechanisms that support bone development and bone homeostasis in adults. We present here "guiding principles" for addressing biological control of bone tissue formation by ncRNAs. This review emphasizes recent advances in understanding regulation of the process of miRNA biogenesis that impact on osteogenic lineage commitment, transcription factors and signaling pathways. Also discussed are the approaches to be pursued for an understanding of the role of lncRNAs in bone and the challenges in addressing their multiple and complex functions. Based on new knowledge of epigenetic control of gene expression to be gained for ncRNA regulation of the skeleton, new directions for translating the miRNAs and lncRNAs into therapeutic targets for skeletal disorders are possible. This article is part of a Special Issue entitled Epigenetics and Bone. PMID:26039869

  10. Characterization of Pseudomonas aeruginosa LpxT reveals dual positional lipid A kinase activity and coordinated control of outer membrane modification

    PubMed Central

    Nowicki, Emily M.; O’Brien, John P.; Brodbelt, Jennifer S.; Trent, M. Stephen

    2014-01-01

    Summary Gram-negative bacteria have evolved modification machinery to promote a dynamic outer membrane in response to a continually fluctuating environment. The kinase LpxT, for example, adds a phosphate group to the lipid A moiety of some Gram-negatives including Escherichia coli and Salmonella enterica. LpxT activity is inhibited under conditions that compromise membrane integrity, resulting instead in the addition of positively charged groups to lipid A that increase membrane stability and provide resistance to cationic antimicrobial peptides. We have now identified a functional lpxT ortholog in P. aeruginosa. LpxTPa has unique enzymatic characteristics, as it is able to phosphorylate P. aeruginosa lipid A at two sites of the molecule. Surprisingly, a previously uncharacterized lipid A 4′-dephospho-1-triphosphate species was detected. LpxTPa activity is inhibited by magnesium independently of lpxTPa transcription. Modulation of LpxTPa activity is influenced by transcription of the lipid A aminoarabinose transferase ArnT, known to be activated in response to limiting magnesium. These results demonstrate a divergent activity of LpxTPa, and suggest the existence of a coordinated regulatory mechanism that permits adaptation to a changing environment. PMID:25223756

  11. Non-coding RNAs, the cutting edge of histone messages

    PubMed Central

    Köhn, Marcel; Hüttelmaier, Stefan

    2016-01-01

    ABSTRACT In metazoan the 3′-end processing of histone mRNAs is a conserved process involving the concerted action of many protein factors and the non-coding U7 snRNA. Recently, we identified that the processing of histone pre-mRNAs is promoted by an additional ncRNA, the Y3-derived Y3** RNA. U7 modulates the association of the U7 snRNP whereas Y3** promotes recruitment of CPSF (cleavage and polyadenylation specific factor) proteins to nascent histone transcripts at histone locus bodies (HLBs) in mammals. This enhances the 3′-end cleavage of nascent histone pre-mRNAs and modulates HLB assembly. Here we discuss new insights in the role of ncRNAs in the spatiotemporal control of histone synthesis. We propose that ncRNAs scaffold the formation of functional protein-RNA complexes and their sequential deposition on nascent histone pre-mRNAs at HLBs. These findings add to the multiple roles of ncRNAs in controlling gene expression and may provide new avenues for targeting histone synthesis in cancer. PMID:26909464

  12. Non-coding RNAs, the cutting edge of histone messages.

    PubMed

    Köhn, Marcel; Hüttelmaier, Stefan

    2016-04-01

    In metazoan the 3'-end processing of histone mRNAs is a conserved process involving the concerted action of many protein factors and the non-coding U7 snRNA. Recently, we identified that the processing of histone pre-mRNAs is promoted by an additional ncRNA, the Y3-derived Y3** RNA. U7 modulates the association of the U7 snRNP whereas Y3** promotes recruitment of CPSF (cleavage and polyadenylation specific factor) proteins to nascent histone transcripts at histone locus bodies (HLBs) in mammals. This enhances the 3'-end cleavage of nascent histone pre-mRNAs and modulates HLB assembly. Here we discuss new insights in the role of ncRNAs in the spatiotemporal control of histone synthesis. We propose that ncRNAs scaffold the formation of functional protein-RNA complexes and their sequential deposition on nascent histone pre-mRNAs at HLBs. These findings add to the multiple roles of ncRNAs in controlling gene expression and may provide new avenues for targeting histone synthesis in cancer. PMID:26909464

  13. MicroRNAs and Potential Targets in Osteosarcoma: Review

    PubMed Central

    Sampson, Valerie B.; Yoo, Soonmoon; Kumar, Asmita; Vetter, Nancy S.; Kolb, E. Anders

    2015-01-01

    Osteosarcoma is the most common bone cancer in children and young adults. Surgery and multi-agent chemotherapy are the standard treatment regimens for this disease. New therapies are being investigated to improve overall survival in patients. Molecular targets that actively modulate cell processes, such as cell-cycle control, cell proliferation, metabolism, and apoptosis, have been studied, but it remains a challenge to develop novel, effective-targeted therapies to treat this heterogeneous and complex disease. MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating cell processes including growth, development, and disease. miRNAs function as oncogenes or tumor suppressors to regulate gene and protein expression. Several studies have demonstrated the involvement of miRNAs in the pathogenesis of osteosarcoma with the potential for development in disease diagnostics and therapeutics. In this review, we discuss the current knowledge on the role of miRNAs and their target genes and evaluate their potential use as therapeutic agents in osteosarcoma. We also summarize the efficacy of inhibition of oncogenic miRNAs or expression of tumor suppressor miRNAs in preclinical models of osteosarcoma. Recent progress on systemic delivery as well as current applications for miRNAs as therapeutic agents has seen the advancement of miR-34a in clinical trials for adult patients with non-resectable primary liver cancer or metastatic cancer with liver involvement. We suggest a global approach to the understanding of the pathogenesis of osteosarcoma may identify candidate miRNAs as promising biomarkers for this rare disease. PMID:26380245

  14. Outer Solar System Nomenclature

    NASA Technical Reports Server (NTRS)

    Owen, Tobias C.; Grant, John (Technical Monitor)

    2003-01-01

    This grant has supported work by T. Owen and B. A. Smith on planetary and satellite nomenclature, carried out under the general auspices of the International Astronomical Union (IAU). The IAU maintains a Working Group on Planetary and Satellite Nomenclature (WGPSN) whose current chair is Prof.Kaare Aksnes of the Rosseland Institute for Theoretical Astrophysics in Oslo, Norway. Both Owen and Smith are members of the WGPSN; Owen as chair of the Outer Solar System Task Group, and Smith as chair of the Mars Task Group. The major activity during the last grant period (2002) was the approval of several new names for features on Mars by Smith's group and features on Jovian satellites plus new names for satellites of Jupiter, Saturn and Uranus by Owen's group. Much of this work was accomplished by e-mail exchanges, but the new nomenclature was formally discussed and approved at a meeting of the WGPSN held in conjunction with the Division for Planetary Sciences meeting in Birmingham, Alabama in October 2002.

  15. 2'Fluoro Modification Differentially Modulates the Ability of RNAs to Activate Pattern Recognition Receptors.

    PubMed

    Lee, Youngju; Urban, Johannes H; Xu, Li; Sullenger, Bruce A; Lee, Jaewoo

    2016-06-01

    Although the use of RNAs has enormous therapeutic potential, these RNA-based therapies can trigger unwanted inflammatory responses by the activation of pattern recognition receptors (PRRs) and cause harmful side effects. In contrast, the immune activation by therapeutic RNAs can be advantageous for treating cancers. Thus, the immunogenicity of therapeutic RNAs should be deliberately controlled depending on the therapeutic applications of RNAs. In this study, we demonstrated that RNAs containing 2'fluoro (2'F) pyrimidines differentially controlled the activation of PRRs. The activity of RNAs that stimulate toll-like receptors 3 and 7 was abrogated by the incorporation of 2'F pyrimidine. By contrast, incorporation of 2'F pyrimidines enhanced the activity of retinoic acid-inducible gene 1-stimulating RNAs. Furthermore, we found that transfection with RNAs containing 2'F pyrimidine and 5' triphosphate (5'ppp) increased cell death and interferon-β expression in human cancer cells compared with transfection with 2'hydroxyl 5'ppp RNAs, whereas RNAs containing 2'O-methyl pyrimidine and 5'ppp completely abolished the induction of cell death and cytokine expression in the cells. Our findings suggest that incorporation of 2'F and 2'O-methyl nucleosides is a facile approach to differentially control the ability of therapeutic RNAs to activate or limit immune and inflammatory responses depending on therapeutic applications. PMID:26789413

  16. Aberrantly Expressed lncRNAs in Primary Varicose Great Saphenous Veins

    PubMed Central

    Wang, Jing; Chen, Guo-Jun; Xu, Liang; Xie, Duan-Yang; Yuan, Tian-You; Zhang, Da-Sheng; Zhang, Hong; Chen, Yi-Han

    2014-01-01

    Long non-coding RNAs (lncRNAs) are key regulatory molecules involved in a variety of biological processes and human diseases. However, the pathological effects of lncRNAs on primary varicose great saphenous veins (GSVs) remain unclear. The purpose of the present study was to identify aberrantly expressed lncRNAs involved in the prevalence of GSV varicosities and predict their potential functions. Using microarray with 33,045 lncRNA and 30,215 mRNA probes, 557 lncRNAs and 980 mRNAs that differed significantly in expression between the varicose great saphenous veins and control veins were identified in six pairs of samples. These lncRNAs were sub-grouped and mRNAs expressed at different levels were clustered into several pathways with six focused on metabolic pathways. Quantitative real-time PCR replication of nine lncRNAs was performed in 32 subjects, validating six lncRNAs (AF119885, AK021444, NR_027830, G36810, NR_027927, uc.345-). A coding-non-coding gene co-expression network revealed that four of these six lncRNAs may be correlated with 11 mRNAs and pathway analysis revealed that they may be correlated with another 8 mRNAs associated with metabolic pathways. In conclusion, aberrantly expressed lncRNAs for GSV varicosities were here systematically screened and validated and their functions were predicted. These findings provide novel insight into the physiology of lncRNAs and the pathogenesis of varicose veins for further investigation. These aberrantly expressed lncRNAs may serve as new therapeutic targets for varicose veins. The Human Ethnics Committee of Shanghai East Hospital, Tongji University School of Medicine approved the study (NO.: 2011-DF-53). PMID:24497937

  17. The role of long non-coding RNAs in genome formatting and expression

    PubMed Central

    Angrand, Pierre-Olivier; Vennin, Constance; Le Bourhis, Xuefen; Adriaenssens, Eric

    2015-01-01

    Long non-coding RNAs (lncRNAs) are transcripts without protein-coding potential but having a pivotal role in numerous biological functions. Long non-coding RNAs act as regulators at different levels of gene expression including chromatin organization, transcriptional regulation, and post-transcriptional control. Misregulation of lncRNAs expression has been found to be associated to cancer and other human disorders. Here, we review the different types of lncRNAs, their mechanisms of action on genome formatting and expression and emphasized on the multifaceted action of the H19 lncRNA. PMID:25972893

  18. MicroRNAs and pharmacogenomics.

    PubMed

    Shomron, Noam

    2010-05-01

    Pharmacogenomics studies the influence of genomics on drug response safety and efficacy. Although research in this field was initiated many years ago, few functional applications are currently in use at the clinic. MicroRNAs (miRNAs) are short noncoding RNAs that bind genes and silence their expression. MiRNAs are encoded by the genome and expressed in all animal cells. MiRNAs are predicted to target approximately half of all human genes, and as a result regulate many cellular processes. The current focus of pharmacogenomics is the identification of polymorphisms in candidate genes coding for drug-metabolizing enzymes, drug transporters and drug targets. Here we call for the evaluation of miRNAs as an additional regulatory layer affecting pharmacogenomics. To illustrate the potential of miRNAs for affecting drug response we performed in silico evaluation of miRNA binding regions in genes known to affect drug response. We suggest that miR-133 and miR-137 may affect VKORC1 expression while miR-22 may affect MTHFR expression. We propose that miRNAs play a central role as a novel regulatory layer affecting drug metabolism and drug targets, and thus should be taken into consideration when conducting pharmacogenomic studies. PMID:20415550

  19. A systematic study on dysregulated microRNAs in cervical cancer development.

    PubMed

    He, Yuqing; Lin, Juanjuan; Ding, Yuanlin; Liu, Guodong; Luo, Yanhong; Huang, Mingyuan; Xu, Chengkai; Kim, Taek-Kyun; Etheridge, Alton; Lin, Mi; Kong, Danli; Wang, Kai

    2016-03-15

    MicroRNAs (miRNAs) are short regulatory RNAs that modulate the transcriptome and proteome at the post-transcriptional level. To obtain a better understanding on the role of miRNAs in the progression of cervical cancer, meta-analysis and gene set enrichment analysis were used to analyze published cervical cancer miRNA studies. From 85 published reports, which include 3,922 cases and 2,099 noncancerous control tissue samples, 63 differentially expressed miRNAs (DEmiRNAs) were identified in different stages of cervical cancer development (CIN 1-3 and CC). It was found that some of the dysregulated miRNAs were associated with specific stages of cervical cancer development. To illustrate the impact of miRNAs on the pathogenesis of cervical cancer, a miRNA-mRNA interaction network on selected pathways was built by integrating viral oncoproteins, dysregulated miRNAs and their predicted/validated targets. The results indicated that the deregulated miRNAs at the different stages of cervical cancer were functionally involved in several key cancer related pathways, such as cell cycle, p53 and Wnt signaling pathways. These dysregulated miRNAs could play an important role in cervical cancer development. Some of the stage-specific miRNAs can also be used as biomarkers for cancer classification and monitoring the progression of cancer development. PMID:26032913

  20. Localized RNAs and their functions.

    PubMed

    Ding, D; Lipshitz, H D

    1993-10-01

    The eukaryotic cell is partitioned by membranes into spatially and functionally discrete subcellular organelles. In addition, the cytoplasm itself is partitioned into discrete subregions that carry out specific functions. Such compartmentation can be achieved by localizing proteins and RNAs to different subcellular regions. This review will focus on localized RNAs, with a particular emphasis on RNA localization mechanisms and on the possible biological functions of localization of these RNAs. In recent years, an increasing number of localized RNAs have been identified in a variety of cell types among many animal species. Emphasis here will be on localized RNAs in the most intensively studied systems-Drosophila and Xenopus eggs and early embryos. PMID:7506023

  1. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility

    PubMed Central

    Hong, Yeting; Wang, Cheng; Fu, Zheng; Liang, Hongwei; Zhang, Suyang; Lu, Meiling; Sun, Wu; Ye, Chao; Zhang, Chen-Yu; Zen, Ke; Shi, Liang; Zhang, Chunni; Chen, Xi

    2016-01-01

    Although piwi-interacting RNAs (piRNAs) play pivotal roles in spermatogenesis, little is known about piRNAs in the seminal plasma of infertile males. In this study, we systematically investigated the profiles of seminal plasma piRNAs in infertile males to identify piRNAs that are altered during infertility and evaluate their diagnostic value. Seminal plasma samples were obtained from 211 infertile patients (asthenozoospermia and azoospermia) and 91 fertile controls. High-throughput sequencing technology was employed to screen piRNA profiles in seminal plasma samples pooled from healthy controls and infertile patients. The results identified 61 markedly altered piRNAs in infertile patient groups compared with control group. Next, a quantitative RT-PCR assay was conducted in the training and validation sets to measure and confirm the concentrations of altered piRNAs. The results identified a panel of 5 piRNAs that were significantly decreased in seminal plasma of infertile patients compared with healthy controls. ROC curve analysis and risk score analysis revealed that the diagnostic potential of these 5 piRNAs to distinguish asthenozoospermic and azoospermic individuals from healthy controls was high. In summary, this study identifies a panel of piRNAs that can accurately distinguish fertile from infertile males. This finding may provide pathophysiological clues about the development of infertility. PMID:27068805

  2. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility.

    PubMed

    Hong, Yeting; Wang, Cheng; Fu, Zheng; Liang, Hongwei; Zhang, Suyang; Lu, Meiling; Sun, Wu; Ye, Chao; Zhang, Chen-Yu; Zen, Ke; Shi, Liang; Zhang, Chunni; Chen, Xi

    2016-01-01

    Although piwi-interacting RNAs (piRNAs) play pivotal roles in spermatogenesis, little is known about piRNAs in the seminal plasma of infertile males. In this study, we systematically investigated the profiles of seminal plasma piRNAs in infertile males to identify piRNAs that are altered during infertility and evaluate their diagnostic value. Seminal plasma samples were obtained from 211 infertile patients (asthenozoospermia and azoospermia) and 91 fertile controls. High-throughput sequencing technology was employed to screen piRNA profiles in seminal plasma samples pooled from healthy controls and infertile patients. The results identified 61 markedly altered piRNAs in infertile patient groups compared with control group. Next, a quantitative RT-PCR assay was conducted in the training and validation sets to measure and confirm the concentrations of altered piRNAs. The results identified a panel of 5 piRNAs that were significantly decreased in seminal plasma of infertile patients compared with healthy controls. ROC curve analysis and risk score analysis revealed that the diagnostic potential of these 5 piRNAs to distinguish asthenozoospermic and azoospermic individuals from healthy controls was high. In summary, this study identifies a panel of piRNAs that can accurately distinguish fertile from infertile males. This finding may provide pathophysiological clues about the development of infertility. PMID:27068805

  3. Transfer RNA-derived small RNAs in the cancer transcriptome.

    PubMed

    Green, Darrell; Fraser, William D; Dalmay, Tamas

    2016-06-01

    The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis. These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity. RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of interest in a 'larger' small RNA, the transfer RNA (tRNA). Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation. Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control

  4. Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria

    PubMed Central

    2013-01-01

    Background Non-coding RNAs (ncRNAs) are key regulatory elements that control a wide range of cellular processes in all bacteria in which they have been studied. Taking advantage of recent technological innovations, we set out to fully explore the ncRNA potential of the multicellular, antibiotic-producing Streptomyces bacteria. Results Using a comparative RNA sequencing analysis of three divergent model streptomycetes (S. coelicolor, S. avermitilis and S. venezuelae), we discovered hundreds of novel cis-antisense RNAs and intergenic small RNAs (sRNAs). We identified a ubiquitous antisense RNA species that arose from the overlapping transcription of convergently-oriented genes; we termed these RNA species ‘cutoRNAs’, for convergent untranslated overlapping RNAs. Conservation between different classes of ncRNAs varied greatly, with sRNAs being more conserved than antisense RNAs. Many species-specific ncRNAs, including many distinct cutoRNA pairs, were located within antibiotic biosynthetic clusters, including the actinorhodin, undecylprodigiosin, and coelimycin clusters of S. coelicolor, the chloramphenicol cluster of S. venezuelae, and the avermectin cluster of S. avermitilis. Conclusions These findings indicate that ncRNAs, including a novel class of antisense RNA, may exert a previously unrecognized level of regulatory control over antibiotic production in these bacteria. Collectively, this work has dramatically expanded the ncRNA repertoire of three Streptomyces species and has established a critical foundation from which to investigate ncRNA function in this medically and industrially important bacterial genus. PMID:23947565

  5. Circulating RNAs as new biomarkers for detecting pancreatic cancer

    PubMed Central

    Kishikawa, Takahiro; Otsuka, Motoyuki; Ohno, Motoko; Yoshikawa, Takeshi; Takata, Akemi; Koike, Kazuhiko

    2015-01-01

    Pancreatic cancer remains difficult to treat and has a high mortality rate. It is difficult to diagnose early, mainly due to the lack of screening imaging modalities and specific biomarkers. Consequently, it is important to develop biomarkers that enable the detection of early stage tumors. Emerging evidence is accumulating that tumor cells release substantial amounts of RNA into the bloodstream that strongly resist RNases in the blood and are present at sufficient levels for quantitative analyses. These circulating RNAs are upregulated in the serum and plasma of cancer patients, including those with pancreatic cancer, compared with healthy controls. The majority of RNA biomarker studies have assessed circulating microRNAs (miRs), which are often tissue-specific. There are few reports of the tumor-specific upregulation of other types of small non-coding RNAs (ncRNAs), such as small nucleolar RNAs and Piwi-interacting RNAs. Long ncRNAs (lncRNAs), such as HOTAIR and MALAT1, in the serum/plasma of pancreatic cancer patients have also been reported as diagnostic and prognostic markers. Among tissue-derived RNAs, some miRs show increased expression even in pre-cancerous tissues, and their expression profiles may allow for the discrimination between a chronic inflammatory state and carcinoma. Additionally, some miRs and lncRNAs have been reported with significant alterations in expression according to disease progression, and they may thus represent potential candidate diagnostic or prognostic biomarkers that may be used to evaluate patients once detection methods in peripheral blood are well established. Furthermore, recent innovations in high-throughput sequencing techniques have enabled the discovery of unannotated tumor-associated ncRNAs and tumor-specific alternative splicing as novel and specific biomarkers of cancers. Although much work is required to clarify the release mechanism, origin of tumor-specific circulating RNAs, and selectivity of carrier complexes

  6. Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Lu, Xuke; Chen, Xiugui; Mu, Min; Wang, Junjuan; Wang, Xiaoge; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Guo, Lixue; Ye, Wuwei

    2016-01-01

    Recent researches on long noncoding RNAs (lncRNAs) have expanded our horizon of gene regulation and the cellular complexity. However, the number, characteristics and expression patterns of lncRNAs remain poorly characterized and how these lncRNAs biogenesis are regulated in response to drought stress in cotton are still largely unclear. In the study, using a reproducibility-based RNA-sequencing and bioinformatics strategy to analyze the lncRNAs of 9 samples under three different environment stresses (control, drought stress and re-watering, three replications), we totally identified 10,820 lncRNAs of high-confidence through five strict steps filtration, of which 9,989 were lincRNAs, 153 were inronic lncRNAs, 678 were anti-sense lncRNAs. Coding function analysis showed 6,470 lncRNAs may have the ability to code proteins. Small RNAs precursor analysis revealed that 196 lncRNAs may be the precursors to small RNAs, most of which (35.7%, 70) were miRNAs. Expression patterns analysis showed that most of lncRNAs were expressed at a low level and most inronic lncRNAs (75.95%) had a consistent expression pattern with their adjacent protein-coding genes. Further analysis of transcriptome data uncovered that lncRNAs XLOC_063105 and XLOC_115463 probably function in regulating two adjacent coding genes CotAD_37096 and CotAD_12502, respectively. Investigations of the content of plant hormones and proteomics analysis under drought stress also complemented the prediction. We analyzed the characteristics and the expression patterns of lncRNAs under drought stress and re-watering treatment, and found lncRNAs may be likely to involve in regulating plant hormones pathway in response to drought stress. PMID:27294517

  7. Genome-Wide Analysis of Long Noncoding RNAs and Their Responses to Drought Stress in Cotton (Gossypium hirsutum L.).

    PubMed

    Lu, Xuke; Chen, Xiugui; Mu, Min; Wang, Junjuan; Wang, Xiaoge; Wang, Delong; Yin, Zujun; Fan, Weili; Wang, Shuai; Guo, Lixue; Ye, Wuwei

    2016-01-01

    Recent researches on long noncoding RNAs (lncRNAs) have expanded our horizon of gene regulation and the cellular complexity. However, the number, characteristics and expression patterns of lncRNAs remain poorly characterized and how these lncRNAs biogenesis are regulated in response to drought stress in cotton are still largely unclear. In the study, using a reproducibility-based RNA-sequencing and bioinformatics strategy to analyze the lncRNAs of 9 samples under three different environment stresses (control, drought stress and re-watering, three replications), we totally identified 10,820 lncRNAs of high-confidence through five strict steps filtration, of which 9,989 were lincRNAs, 153 were inronic lncRNAs, 678 were anti-sense lncRNAs. Coding function analysis showed 6,470 lncRNAs may have the ability to code proteins. Small RNAs precursor analysis revealed that 196 lncRNAs may be the precursors to small RNAs, most of which (35.7%, 70) were miRNAs. Expression patterns analysis showed that most of lncRNAs were expressed at a low level and most inronic lncRNAs (75.95%) had a consistent expression pattern with their adjacent protein-coding genes. Further analysis of transcriptome data uncovered that lncRNAs XLOC_063105 and XLOC_115463 probably function in regulating two adjacent coding genes CotAD_37096 and CotAD_12502, respectively. Investigations of the content of plant hormones and proteomics analysis under drought stress also complemented the prediction. We analyzed the characteristics and the expression patterns of lncRNAs under drought stress and re-watering treatment, and found lncRNAs may be likely to involve in regulating plant hormones pathway in response to drought stress. PMID:27294517

  8. Prevention of the Outer Space Weaponization

    NASA Astrophysics Data System (ADS)

    Zhukov, Gennady P.

    2002-01-01

    9 states. The satellites of various functions (early warning, communication, data acquisition, reconnaissance and navigation) were actively used and continue to be used with the purposes of raising efficiency of ground armed forces, especially in fight against international terrorism. At the same time such satellites are not a weapon in the sense of that word since they do not create the threats of armed attack in outer space or from outer space. Moreover, they promote maintaining of stability in the international relations. For this reason the reconnaissance and data acquisition satellites used for the verification of observance by States of the arms limitation agreements are under international protection as national technical means of the control. Similar protection is enjoyed by the early warning satellites. With the help of space communication facilities the more reliable operative connection of the statesmen is organized in the strained situations. By this way the probability of making of the incorrect retaliatory decisions in critical political situations is reduced. At the same time it's necessary to take into consideration that the activities of such satellite systems are tightly connected with ground armed forces of the states. the earth, what from the point of view of international law may be qualified as establishing a partial demilitarization regime in outer space. After the prohibition of anti-satellite weapons (ASAT) and anti-satellite (ASAT) weapons it will be possible to speak about establishing of an international legal regime of complete demilitarization in outer space eliminating any kinds of weapon from outer space. in a peaceful time. weaponization.The main task of this paper is to analyze and to discuss the present binding regime of the outer space deweaponization and particular measures on consolidation and strengthening of this regime. agreements of the Russian Federation and the USA into multilateral Treaties. Such "immunity" would cover

  9. Characterization of transcriptomes of cochlear inner and outer hair cells.

    PubMed

    Liu, Huizhan; Pecka, Jason L; Zhang, Qian; Soukup, Garrett A; Beisel, Kirk W; He, David Z Z

    2014-08-13

    Inner hair cells (IHCs) and outer hair cells (OHCs) are the two types of sensory receptor cells that are critical for hearing in the mammalian cochlea. IHCs and OHCs have different morphology and function. The genetic mechanisms that define their morphological and functional specializations are essentially unknown. The transcriptome reflects the genes that are being actively expressed in a cell and holds the key to understanding the molecular mechanisms of the biological properties of the cell. Using DNA microarray, we examined the transcriptome of 2000 individually collected IHCs and OHCs from adult mouse cochleae. We show that 16,647 and 17,711 transcripts are expressed in IHCs and OHCs, respectively. Of those genes, ∼73% are known genes, 22% are uncharacterized sequences, and 5.0% are noncoding RNAs in both populations. A total of 16,117 transcripts are expressed in both populations. Uniquely and differentially expressed genes account for <15% of all genes in either cell type. The top 10 differentially expressed genes include Slc17a8, Dnajc5b, Slc1a3, Atp2a3, Osbpl6, Slc7a14, Bcl2, Bin1, Prkd1, and Map4k4 in IHCs and Slc26a5, C1ql1, Strc, Dnm3, Plbd1, Lbh, Olfm1, Plce1, Tectb, and Ankrd22 in OHCs. We analyzed commonly and differentially expressed genes with the focus on genes related to hair cell specializations in the apical, basolateral, and synaptic membranes. Eighty-three percent of the known deafness-related genes are expressed in hair cells. We also analyzed genes involved in cell-cycle regulation. Our dataset holds an extraordinary trove of information about the molecular mechanisms underlying hair cell morphology, function, pathology, and cell-cycle control. PMID:25122905

  10. Role of miRNAs in muscle stem cell biology: proliferation, differentiation and death.

    PubMed

    Crippa, Stefania; Cassano, Marco; Sampaolesi, Maurilio

    2012-01-01

    miRNAs are small non-coding RNAs that regulate post-transcriptionally gene expression by degradation or translational repression of specific target mRNAs. In the 90s, lin-4 and let-7 were firstly identified as small regulatory RNAs able to control C. elegans larval development, by specifically targeting the 3'UTR of lin-14 and lin-28, respectively. These findings have introduced a novel and wide layer of complexity in the regulation of mRNA and protein expression. Lin-4 and let-7 are now considered the founding members of an abundant class of small fine-tuned RNAs, called microRNAs (miRNAs), in viruses, green algae, plants, flies, worms, and in mammals. In humans, the estimated number of genes encoding for miRNAs is as high as 1000 and around 30% of the protein-coding genes are post-transcriptionally controlled by miRNAs. This article reviews the role of miRNAs in regulating several biological responses in muscle cells, ranging from proliferation, differentiation and adaptation to stress cues. Cardiac and skeletal muscles are powerful examples to summarize the activity of miRNAs in cell fate specification, lineage differentiation and metabolic pathways. Indeed, specific miRNAs control the number of proliferating muscle progenitors to guarantee the proper formation of the heart and muscle fibers and to assure the self-renewal of muscle progenitors during adult tissue regeneration. On the other side, several other miRNAs promote the differentiation of muscle progenitors into skeletal myofibers or into cardiomyocytes, where metabolic activity, survival and remodeling process in response to stress, injury and chronic diseases are also fine-tuned by miRNAs. PMID:22352753

  11. The Leptospiral Outer Membrane

    PubMed Central

    Haake, David A; Zückert, Wolfram R

    2015-01-01

    The outer membrane (OM) is the front line of leptospiral interactions with their environment and the mammalian host. Unlike most invasive spirochetes, pathogenic leptospires must be able survive in both free-living and host-adapted states. As organisms move from one set of environmental conditions to another, the OM must cope with a series of conflicting challenges. For example, the OM must be porous enough to allow nutrient uptake, yet robust enough to defend the cell against noxious substances. In the host, the OM presents a surface decorated with adhesins and receptors for attaching to, and acquiring, desirable host molecules such as the complement regulator, Factor H. On the other hand, the OM must enable leptospires to evade detection by the host’s immune system on their way from sites of invasion through the bloodstream to the protected niche of the proximal tubule. The picture that is emerging of the leptospiral OM is that, while it shares many of the characteristics of the OMs of spirochetes and Gram-negative bacteria, it is also unique and different in ways that make it of general interest to microbiologists. For example, unlike most other pathogenic spirochetes, the leptospiral OM is rich in lipopolysaccharide (LPS). Leptospiral LPS is similar to that of Gram-negative bacteria but has a number of unique structural features that may explain why it is not recognized by the LPS-specific Toll-like receptor 4 of humans. As in other spirochetes, lipoproteins are major components of the leptospiral OM, though their roles are poorly understood. The functions of transmembrane OMPs in many cases are better understood thanks to homologies with their Gram-negative counterparts and the emergence of improved genetic techniques. This chapter will review recent discoveries involving the leptospiral OM and its role in leptospiral physiology and pathogenesis. Readers are referred to earlier, excellent summaries related to this subject (Adler and de la Peña Moctezuma

  12. Long noncoding RNAs and neuroblastoma

    PubMed Central

    Pandey, Gaurav Kumar; Kanduri, Chandrasekhar

    2015-01-01

    Neuroblastoma is a disease that affects infants and despite intense multimodal therapy, high-risk patients have low survival rates (<50%). In recent years long noncoding RNAs (lncRNAs) have become the cutting edge of cancer research with inroads made in understanding their roles in multiple cancer types, including prostate and breast cancers. The roles of lncRNAs in neuroblastoma have just begun to be elucidated. This review summarises where we are with regards to lncRNAs in neuroblastoma. The known mechanistic roles of lncRNAs during neuroblastoma pathogenesis are discussed, as well as the relationship between lncRNA expression and the differentiation capacity of neuroblastoma cells. We speculate about the use of some of these lncRNAs, such as those mapping to the 6p22 hotspot, as biomarkers for neuroblastoma prognosis and treatment. This novel way of thinking about both neuroblastoma and lncRNAs brings a new perspective to the prognosis and treatment of high-risk patients. PMID:26087192

  13. Stable intronic sequence RNAs (sisRNAs): a new layer of gene regulation.

    PubMed

    Osman, Ismail; Tay, Mandy Li-Ian; Pek, Jun Wei

    2016-09-01

    Upon splicing, introns are rapidly degraded. Hence, RNAs derived from introns are commonly deemed as junk sequences. However, the discoveries of intronic-derived small nucleolar RNAs (snoRNAs), small Cajal body associated RNAs (scaRNAs) and microRNAs (miRNAs) suggested otherwise. These non-coding RNAs are shown to play various roles in gene regulation. In this review, we highlight another class of intron-derived RNAs known as stable intronic sequence RNAs (sisRNAs). sisRNAs have been observed since the 1980 s; however, we are only beginning to understand their biological significance. Recent studies have shown or suggested that sisRNAs regulate their own host's gene expression, function as molecular sinks or sponges, and regulate protein translation. We propose that sisRNAs function as an additional layer of gene regulation in the cells. PMID:27147469

  14. Performance, Stability, and Control Investigation at Mach Numbers from 0.4 to 0.9 of a Model of the "Swallow" with Outer Wing Panels Swept 25 degree with and without Power Simulation

    NASA Technical Reports Server (NTRS)

    Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.

  15. Viruses, microRNAs, and Host Interactions

    PubMed Central

    Skalsky, Rebecca L.; Cullen, Bryan R.

    2013-01-01

    The most significant recent advance in biomedical research has been the discovery of the~22-nt long class of non-coding RNAs designated as microRNAs (miRNAs). These regulatory RNAs provide a unique level of post-transcriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, including especially herpesviruses, also encode miRNAs and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally-influenced cellular miRNAs, and their relationship to viral infection. PMID:20477536

  16. Long noncoding RNAs in hematopoietic malignancies.

    PubMed

    Rodríguez-Malavé, Norma I; Rao, Dinesh S

    2016-05-01

    Recent years have witnessed the discovery of several classes of noncoding RNAs (ncRNAs), which are indispensable for the regulation of cellular processes. Many of these RNAs are regulatory in nature with functions in gene expression regulation such as piwi-interacting RNAs, small interfering RNAs and micro RNAs. Long noncoding RNAs (lncRNAs) comprise the most recently characterized class. LncRNAs are involved in transcriptional regulation, chromatin remodeling, imprinting, splicing, and translation, among other critical functions in the cell. Recent studies have elucidated the importance of lncRNAs in hematopoietic development. Dysregulation of lncRNA expression is a feature of various diseases and cancers, and is also seen in hematopoietic malignancies. This article focuses on lncRNAs that have been implicated in the pathogenesis of hematopoietic malignancies. PMID:26612601

  17. Small regulatory RNAs from low-GC Gram-positive bacteria

    PubMed Central

    Brantl, Sabine; Brückner, Reinhold

    2014-01-01

    Small regulatory RNAs (sRNAs) that act by base-pairing were first discovered in so-called accessory DNA elements—plasmids, phages, and transposons—where they control replication, maintenance, and transposition. Since 2001, a huge body of work has been performed to predict and identify sRNAs in a multitude of bacterial genomes. The majority of chromosome-encoded sRNAs have been investigated in E. coli and other Gram-negative bacteria. However, during the past five years an increasing number of sRNAs were found in Gram-positive bacteria. Here, we outline our current knowledge on chromosome-encoded sRNAs from low-GC Gram-positive species that act by base-pairing, i.e., an antisense mechanism. We will focus on sRNAs with known targets and defined regulatory mechanisms with special emphasis on Bacillus subtilis. PMID:24576839

  18. Role of Osterix and MicroRNAs in Bone Formation and Tooth Development

    PubMed Central

    Wang, Chuan; Liao, Haiqing; Cao, Zhengguo

    2016-01-01

    Osterix (Osx) is an osteoblast-specific transcription factor that is essential for bone formation. MicroRNAs (miRNAs) are ~22-nucleotide-long noncoding RNAs that play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. They can also control osteoblast-mediated bone formation and osteoclast-related bone remodeling. The vital roles of Osx and miRNAs during bone formation have been well studied, but very few studies have discussed their co-functions and the relationships between them. In this review, we outline the significant functions of Osx and miRNAs on certain cell types during osteogenesis and illustrate their roles during tooth development. More importantly, we discuss the relationship between Osx and miRNAs, which we believe could lead to a new treatment for skeletal and periodontal diseases. PMID:27543160

  19. Identification and Characterization of MicroRNAs from Tree Peony (Paeonia ostii) and Their Response to Copper Stress

    PubMed Central

    Jin, Qijiang; Xue, Zeyun; Dong, Chunlan; Wang, Yanjie; Chu, Lingling; Xu, Yingchun

    2015-01-01

    MicroRNAs (miRNAs) are a class of non-coding, small RNAs recognized as important regulators of gene expression. Although plant miRNAs have been extensively studied in model systems, less is known in other plants with limited genome sequence data, including Paeonia ostii. In this work, we used high-throughput sequencing to identify conserved and nonconserved miRNAs and other short RNAs in Paeonia ostii under control and copper stressed condition. 102 previously known plant miRNAs were identified and classified into 89 families according to their gene sequence identity. Some miRNAs were highly conserved in the plant kingdom suggesting that these miRNA play important and conserved roles. Combined our transcriptome sequencing data of Paeonia ostii under same conditions, 34 novel potential miRNAs were identified. The potential targets of the identified known and novel miRNAs were also predicted based on sequence homology search. Comparing the two libraries, it was observed that 12 conserved miRNAs and 18 novel miRNAs showed significantly changes in response to copper stress. Some of the new identified potential miRNAs might be involved in Paeonia ostii-specific regulating mechanisms under copper stress. These results provide a framework for further analysis of miRNAs and their role in regulating Paeonia ostii response to copper stress. PMID:25658957

  20. Distinct Expression of Long Non-Coding RNAs in an Alzheimer's Disease Model.

    PubMed

    Lee, Doo Young; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Dong-Kyu; Yoo, Jung-Seok; Sunwoo, Jun-Sang; Byun, Jung-Ick; Shin, Jung-Won; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun; Chu, Kon

    2015-01-01

    With the recent advancement in transcriptome-wide profiling approach, numerous non-coding transcripts previously unknown have been identified. Among the non-coding transcripts, long non-coding RNAs (lncRNAs) have received increasing attention for their capacity to modulate transcriptional regulation. Although alterations in the expressions of non-coding RNAs have been studied in Alzheimer's disease (AD), most research focused on the involvement of microRNAs, and comprehensive expression profiling of lncRNAs in AD has been lacking. In this study, microarray analysis was performed to procure the expression profile of lncRNAs dysregulated in a triple transgenic model of AD (3xTg-AD). A total of 4,622 lncRNAs were analyzed: 205 lncRNAs were significantly dysregulated in 3xTg-AD compared with control mice, and 230 lncRNAs were significantly dysregulated within 3xTg-AD in an age-dependent manner (≥2.0-fold, p < 0.05). Among these, 27 and 15 lncRNAs, respectively, had adjacent protein-coding genes whose expressions were also significantly dysregulated. A majority of these lncRNAs and their adjacent genes shared the same direction of dysregulation. For these pairs of lncRNAs and adjacent genes, significant Gene Ontology terms were DNA-dependent regulation of transcription, transcription regulator activity, and embryonic organ morphogenesis. One of the most highly upregulated lncRNAs had a 395 bp core sequence that overlapped with multiple chromosomal regions. This is the first study that comprehensively identified dysregulated lncRNAs in 3xTg-AD mice and will likely facilitate the development of therapeutics targeting lncRNAs in AD. PMID:25624420

  1. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  2. MicroRNAs and oncolytic viruses.

    PubMed

    Ruiz, Autumn J; Russell, Stephen J

    2015-08-01

    MicroRNAs regulate gene expression in mammalian cells and often exhibit tissue-specific expression patterns. Incorporation of microRNA target sequences can be used to control exogenous gene expression and viral tropism in specific tissues to enhance the therapeutic indices of oncolytic viruses expressing therapeutic transgenes. Continued development of this targeting strategy has resulted in the generation of unattenuated oncolytic viruses with enhanced potency, broad species-tropisms and reduced off-target toxicities in multiple-tissues simultaneously. Furthermore, oncolytic viruses have been used to enhance the delivery, duration and therapeutic efficacy of microRNA-based therapeutics designed to either restore or inhibit the function of dysregulated microRNAs in cancer cells. Recent efforts focused on combining oncolytic virotherapy and microRNA regulation have generated increasingly potent and safe cancer therapeutics. PMID:25863717

  3. 6. OUTER BLAST DOOR, WEST REAR. Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. OUTER BLAST DOOR, WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  4. Role of the mTORC1 Complex in Satellite Cell Activation by RNA-Induced Mitochondrial Restoration: Dual Control of Cyclin D1 through MicroRNAs

    PubMed Central

    Jash, Sukanta; Dhar, Gunjan; Ghosh, Utpalendu

    2014-01-01

    During myogenesis, satellite stem cells (SCs) are induced to proliferate and differentiate to myogenic precursors. The role of energy sensors such as the AMP-activated protein kinase (AMPK) and the mammalian Target of Rapamycin (mTOR) in SC activation is unclear. We previously observed that upregulation of ATP through RNA-mediated mitochondrial restoration (MR) accelerates SC activation following skeletal muscle injury. We show here that during regeneration, the AMPK-CRTC2-CREB and Raptor-mTORC-4EBP1 pathways were rapidly activated. The phosho-CRTC2-CREB complex was essential for myogenesis and activated transcription of the critical cell cycle regulator cyclin D1 (Ccnd1). Knockdown (KD) of either mTORC or its subunit Raptor delayed SC activation without influencing the differentiation program. KD of 4EBP1 had no effect on SC activation but enhanced myofiber size. mTORC1 positively regulated Ccnd1 translation but destabilized Ccnd1 mRNA. These antithetical effects of mTORC1 were mediated by two microRNAs (miRs) targeted to the 3′ untranslated region (UTR) of Ccnd1 mRNA: miR-1 was downregulated in mTORC-KD muscle, and depletion of miR-1 resulted in increased levels of mRNA without any effect on Ccnd1 protein. In contrast, miR-26a was upregulated upon mTORC depletion, while anti-miR-26a oligonucleotide specifically stimulated Ccnd1 protein expression. Thus, mTORC may act as a timer of satellite cell proliferation during myogenesis. PMID:25047835

  5. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development.

    PubMed

    Yuan, Shuiqiao; Schuster, Andrew; Tang, Chong; Yu, Tian; Ortogero, Nicole; Bao, Jianqiang; Zheng, Huili; Yan, Wei

    2016-02-15

    Although it is believed that mammalian sperm carry small noncoding RNAs (sncRNAs) into oocytes during fertilization, it remains unknown whether these sperm-borne sncRNAs truly have any function during fertilization and preimplantation embryonic development. Germline-specific Dicer and Drosha conditional knockout (cKO) mice produce gametes (i.e. sperm and oocytes) partially deficient in miRNAs and/or endo-siRNAs, thus providing a unique opportunity for testing whether normal sperm (paternal) or oocyte (maternal) miRNA and endo-siRNA contents are required for fertilization and preimplantation development. Using the outcome of intracytoplasmic sperm injection (ICSI) as a readout, we found that sperm with altered miRNA and endo-siRNA profiles could fertilize wild-type (WT) eggs, but embryos derived from these partially sncRNA-deficient sperm displayed a significant reduction in developmental potential, which could be rescued by injecting WT sperm-derived total or small RNAs into ICSI embryos. Disrupted maternal transcript turnover and failure in early zygotic gene activation appeared to associate with the aberrant miRNA profiles in Dicer and Drosha cKO spermatozoa. Overall, our data support a crucial function of paternal miRNAs and/or endo-siRNAs in the control of the transcriptomic homeostasis in fertilized eggs, zygotes and two-cell embryos. Given that supplementation of sperm RNAs enhances both the developmental potential of preimplantation embryos and the live birth rate, it might represent a novel means to improve the success rate of assisted reproductive technologies in fertility clinics. PMID:26718009

  6. Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs

    PubMed Central

    Martínez-Salas, Encarnación; Piñeiro, David; Fernández, Noemí

    2012-01-01

    The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m7G(5′)ppp(5′)N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5′UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms. PMID:22536116

  7. Performance, Stability, and Control Investigation at Mach Numbers from 0.60 to 1.05 of a Model of the "Swallow" with Outer Wing Panels Swept 75 degree with and without Power Simulations

    NASA Technical Reports Server (NTRS)

    Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model with the outer wing panels swept 75 deg. has been conducted in the Langley 16-foot transonic tunnel. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. The engine nacelles incorporated swept lateral and vertical fins for aerodynamic stability and control. Jet-off data were obtained with flow-through nacelles, simulating inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained at Mach numbers from 0.60 to 1.05 through a range of angles of attack and angles of side-slip. Control characteristics were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control. The results indicate that the basic wing-body configuration becomes neutrally stable or unstable at a lift coefficient of 0.15; addition of nacelles with fins delayed instability to a lift coefficient of 0.30. Addition of nacelles to the wing-body configuration increased minimum drag from 0.0058 to 0.0100 at a Mach number of 0.60 and from 0.0080 to 0.0190 at a Mach number of 1.05 with corresponding reductions in maximum lift-drag ratio of 12 percent and 33 percent, respectively. The nacelle-fin combinations were ineffective as longitudinal controls but were adequate as directional and lateral controls. The model with nacelles and fins was directionally and laterally stable; the stability generally increased with increasing lift. Jet interference effects on stability and control characteristics were small but the adverse effects on drag were greater than would be expected for isolated nacelles.

  8. microRNAs of parasitic helminths – Identification, characterization and potential as drug targets

    PubMed Central

    Britton, Collette; Winter, Alan D.; Gillan, Victoria; Devaney, Eileen

    2014-01-01

    microRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. They were first identified in the free-living nematode Caenorhabditis elegans, where the miRNAs lin-4 and let-7 were shown to be essential for regulating correct developmental progression. The sequence of let-7 was subsequently found to be conserved in higher organisms and changes in expression of let-7, as well as other miRNAs, are associated with certain cancers, indicating important regulatory roles. Some miRNAs have been shown to have essential functions, but the roles of many are currently unknown. With the increasing availability of genome sequence data, miRNAs have now been identified from a number of parasitic helminths, by deep sequencing of small RNA libraries and bioinformatic approaches. While some miRNAs are widely conserved in a range of organisms, others are helminth-specific and many are novel to each species. Here we review the potential roles of miRNAs in regulating helminth development, in interacting with the host environment and in development of drug resistance. Use of fluorescently-labeled small RNAs demonstrates uptake by parasites, at least in vitro. Therefore delivery of miRNA inhibitors or mimics has potential to alter miRNA activity, providing a useful tool for probing the roles of miRNAs and suggesting novel routes to therapeutics for parasite control. PMID:25057458

  9. Separation of Circulating MicroRNAs Using Apheresis in Patients With Systemic Lupus Erythematosus.

    PubMed

    Kusaoi, Makio; Yamaji, Ken; Ishibe, Yusuke; Murayama, Go; Nemoto, Takuya; Sekiya, Fumio; Kon, Takayuki; Ogasawara, Michihiro; Kempe, Kazuo; Tamura, Naoto; Takasaki, Yoshinari

    2016-08-01

    MicroRNAs (miRNAs), which are important inhibitors of mRNA translation, participate in differentiation, migration, cell proliferation, and cell death. The pathology of miRNAs results in alterations in protein expression. Recently, miRNAs circulating in peripheral blood have been shown to control the synthesis and translation of proteins at distal sites after intake into local cells. A number of studies are currently being conducted to investigate how to use miRNAs in disease treatment, but no studies have attempted to alleviate disease by directly eliminating miRNAs from blood. Therefore, we examined whether the removal or reduction of circulating miRNAs with apheresis improved pathologies caused by miRNAs. After approval of the study by our medical school's ethics committee, we collected blood and separated plasma samples from three patients with systemic lupus erythematosus who were undergoing plasmapheresis at our hospital. Peripheral blood was collected before and after it was passed through a primary membrane, centrifuged, and used to extract circulating miRNAs. A comprehensive expression analysis was then performed with a miRNA array chip. The levels of expression of a large number of circulating miRNAs were measured in the plasma samples separated by the primary membranes from all 3 patients with systemic lupus erythematosus. We present the first report that circulating miRNAs in peripheral blood can be separated and possibly directly removed using membrane separation apheresis. PMID:27523074

  10. microRNAs of parasitic helminths - Identification, characterization and potential as drug targets.

    PubMed

    Britton, Collette; Winter, Alan D; Gillan, Victoria; Devaney, Eileen

    2014-08-01

    microRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation. They were first identified in the free-living nematode Caenorhabditis elegans, where the miRNAs lin-4 and let-7 were shown to be essential for regulating correct developmental progression. The sequence of let-7 was subsequently found to be conserved in higher organisms and changes in expression of let-7, as well as other miRNAs, are associated with certain cancers, indicating important regulatory roles. Some miRNAs have been shown to have essential functions, but the roles of many are currently unknown. With the increasing availability of genome sequence data, miRNAs have now been identified from a number of parasitic helminths, by deep sequencing of small RNA libraries and bioinformatic approaches. While some miRNAs are widely conserved in a range of organisms, others are helminth-specific and many are novel to each species. Here we review the potential roles of miRNAs in regulating helminth development, in interacting with the host environment and in development of drug resistance. Use of fluorescently-labeled small RNAs demonstrates uptake by parasites, at least in vitro. Therefore delivery of miRNA inhibitors or mimics has potential to alter miRNA activity, providing a useful tool for probing the roles of miRNAs and suggesting novel routes to therapeutics for parasite control. PMID:25057458