Science.gov

Sample records for robotic assembly machine

  1. Precision Robotic Assembly Machine

    SciTech Connect

    2009-08-14

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  2. Precision Robotic Assembly Machine

    ScienceCinema

    None

    2010-09-01

    The world's largest laser system is the National Ignition Facility (NIF), located at Lawrence Livermore National Laboratory. NIF's 192 laser beams are amplified to extremely high energy, and then focused onto a tiny target about the size of a BB, containing frozen hydrogen gas. The target must be perfectly machined to incredibly demanding specifications. The Laboratory's scientists and engineers have developed a device called the "Precision Robotic Assembly Machine" for this purpose. Its unique design won a prestigious R&D-100 award from R&D Magazine.

  3. 3D vision assisted flexible robotic assembly of machine components

    NASA Astrophysics Data System (ADS)

    Ogun, Philips S.; Usman, Zahid; Dharmaraj, Karthick; Jackson, Michael R.

    2015-12-01

    Robotic assembly systems either make use of expensive fixtures to hold components in predefined locations, or the poses of the components are determined using various machine vision techniques. Vision-guided assembly robots can handle subtle variations in geometries and poses of parts. Therefore, they provide greater flexibility than the use of fixtures. However, the currently established vision-guided assembly systems use 2D vision, which is limited to three degrees of freedom. The work reported in this paper is focused on flexible automated assembly of clearance fit machine components using 3D vision. The recognition and the estimation of the poses of the components are achieved by matching their CAD models with the acquired point cloud data of the scene. Experimental results obtained from a robot demonstrating the assembly of a set of rings on a shaft show that the developed system is not only reliable and accurate, but also fast enough for industrial deployment.

  4. Lessons from Two Years of Building Fusion Ignition Targets with the Precision Robotic Assembly Machine

    SciTech Connect

    Montesanti, R C; Alger, E T; Atherton, L J; Bhandarkar, S D; Castro, C; Dzenitis, E G; Hamza, A V; Klingmann, J L; Nikroo, A; Parham, T G; Reynolds, J L; Seugling, R M; Swisher, M F; Taylor, J S; Witte, M C

    2010-02-19

    The Precision Robotic Assembly Machine was developed to manufacture the small and intricate laser-driven fusion ignition targets that are being used in the world's largest and most energetic laser, the National Ignition Facility (NIF). The National Ignition Campaign (NIC) goal of using the NIF to produce a self-sustaining nuclear fusion burn with energy gain - for the first time ever in a laboratory setting - requires targets that are demanding in materials fabrication, machining, and assembly. We provide an overview of the design and function of the machine, with emphasis on the aspects that revolutionized how NIC targets are manufactured.

  5. Robotic Thumb Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Goza, S. Michael (Inventor)

    2013-01-01

    An improved robotic thumb for a robotic hand assembly is provided. According to one aspect of the disclosure, improved tendon routing in the robotic thumb provides control of four degrees of freedom with only five tendons. According to another aspect of the disclosure, one of the five degrees of freedom of a human thumb is replaced in the robotic thumb with a permanent twist in the shape of a phalange. According to yet another aspect of the disclosure, a position sensor includes a magnet having two portions shaped as circle segments with different center points. The magnet provides a linearized output from a Hall effect sensor.

  6. Robotics: self-reproducing machines.

    PubMed

    Zykov, Victor; Mytilinaios, Efstathios; Adams, Bryant; Lipson, Hod

    2005-05-12

    Self-reproduction is central to biological life for long-term sustainability and evolutionary adaptation. Although these traits would also be desirable in many engineered systems, the principles of self-reproduction have not been exploited in machine design. Here we create simple machines that act as autonomous modular robots and are capable of physical self-reproduction using a set of cubes. PMID:15889080

  7. Knowledge representation system for assembly using robots

    NASA Technical Reports Server (NTRS)

    Jain, A.; Donath, M.

    1987-01-01

    Assembly robots combine the benefits of speed and accuracy with the capability of adaptation to changes in the work environment. However, an impediment to the use of robots is the complexity of the man-machine interface. This interface can be improved by providing a means of using a priori-knowledge and reasoning capabilities for controlling and monitoring the tasks performed by robots. Robots ought to be able to perform complex assembly tasks with the help of only supervisory guidance from human operators. For such supervisory quidance, it is important to express the commands in terms of the effects desired, rather than in terms of the motion the robot must undertake in order to achieve these effects. A suitable knowledge representation can facilitate the conversion of task level descriptions into explicit instructions to the robot. Such a system would use symbolic relationships describing the a priori information about the robot, its environment, and the tasks specified by the operator to generate the commands for the robot.

  8. Machine intelligence for robotics applications

    SciTech Connect

    Weisbin, C.R.; Barhen, J.; de Saussure, G.; Hamel, W.R.; Jorgensen, C.; Oblow, E.M.; Ricks, R.E.

    1985-01-01

    The purpose of this paper is to review research in machine intelligence ongoing at the Center for Engineering Systems Advanced Research (CESAR). As a result of initial experimentation with our HERMIES-I mobile robot, hardware and software upgrades were implemented which enable fully asynchronous sonar operation, improved stepper motor control for the sensory platform, and more reliable wheel drive control. The current system, designated as HERMIES-II, is discussed. Successful demonstration of dead-reckoning navigation and the development of a sensor-based exploration and discovery algorithm which can now handle typical maze problems are reported. The development of HERMIES ''brain'' as a hypercube ensemble machine with concurrent computation and associated message passing is described. Algorithms for mapping precedence-constrained task graphs onto a hypercube yield results with high efficiency and proper load balance. A framework for a hybrid uncertainty analysis theory for decision making is described.

  9. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas M. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2013-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  10. Robotic Finger Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bridgwater, Lyndon (Inventor); Diftler, Myron A. (Inventor); Linn, Douglas Martin (Inventor); Platt, Robert J., Jr. (Inventor); Hargrave, Brian (Inventor); Askew, Scott R. (Inventor); Valvo, Michael C. (Inventor)

    2014-01-01

    A robotic hand includes a finger with first, second, and third phalanges. A first joint rotatably connects the first phalange to a base structure. A second joint rotatably connects the first phalange to the second phalange. A third joint rotatably connects the third phalange to the second phalange. The second joint and the third joint are kinematically linked such that the position of the third phalange with respect to the second phalange is determined by the position of the second phalange with respect to the first phalange.

  11. Turning assistive machines into assistive robots

    NASA Astrophysics Data System (ADS)

    Argall, Brenna D.

    2015-01-01

    For decades, the potential for automation in particular, in the form of smart wheelchairs to aid those with motor, or cognitive, impairments has been recognized. It is a paradox that often the more severe a person's motor impairment, the more challenging it is for them to operate the very assistive machines which might enhance their quality of life. A primary aim of my lab is to address this confound by incorporating robotics autonomy and intelligence into assistive machines turning the machine into a kind of robot, and offloading some of the control burden from the user. Robots already synthetically sense, act in and reason about the world, and these technologies can be leveraged to help bridge the gap left by sensory, motor or cognitive impairments in the users of assistive machines. This paper overviews some of the ongoing projects in my lab, which strives to advance human ability through robotics autonomy.

  12. Applying Machine Vision To Robotic Automation

    NASA Astrophysics Data System (ADS)

    Lee, Jay

    1987-10-01

    Machine vision is an integral part in industry automation. This paper will discuss the 3-D vision technology and its applications. A brief description of several turkey automation systems developed and being developed that using 3-D vision technology in the fields of inspection and robotic guidance&control will be presented. The applications range from advanced robotic technology in automotive car production to sophisticated robotic system for U.S. Navy and Air force. This 3-D vision measuring capability has proved to the versatile key to successfully implementing adaptively controlled robot motion and robot path. Other extension of the technology to provide 3-D volumetric sensing and research effort in integrating 3-D vision with CAD/CAM system are examined.

  13. Machine intelligence and robotics: Report of the NASA study group

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Opportunities for the application of machine intelligence and robotics in NASA missions and systems were identified. The benefits of successful adoption of machine intelligence and robotics techniques were estimated and forecasts were prepared to show their growth potential. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are presented.

  14. Molecular machines: Molecules bearing robotic arms

    NASA Astrophysics Data System (ADS)

    Aprahamian, Ivan

    2016-02-01

    Mass production at the nanoscale requires molecular machines that can control, with high fidelity, the spatial orientation of other reactive species. The demonstration of a synthetic system in which a molecular robotic arm can be used to manipulate the position of a chemical cargo is a significant step towards achieving this goal.

  15. Acquisition of Human Expertise in Robotic Assembly

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Sawaragi, Tetsuo; Tian, Yajie; Horiguchi, Yukio

    Robots must be presently taught by human workers to execute given manufacturing tasks. The current problem is that the task of teaching robots is rather time-consuming, especially within the robotic assembly domain. This problem is caused by insufficient accumulation of human expertise that should be reused in this domain. Therefore, a knowledge-intensive method for acquiring human expertise is proposed in this paper. Our method is able to acquire human expertise in the robotic assembly domain by observing robot-teaching demonstrations of human experts. What distinguishes our method from others is that there are two modes of learning: 1. learning from an example directly given by human workers, and 2. learning expertise on error recovery by observing revisions made by human workers in handling execution errors that occur in reusing previously acquired knowledge. The acquired human expertise is required to be represented in a way that satisfies two requirements. The first one is operability so that the representation is easy to transform into robot programs (commands & parameters). The second one is understandability so that the representation is easy for human workers to understand the robot program. A specific robot assembly example is given to illustrate the proposed method.

  16. Automated assembly of a tetrahedral truss structure using machine vision

    NASA Technical Reports Server (NTRS)

    Doggett, William R.

    1992-01-01

    The Automated Structures Assembly Laboratory is a unique facility at NASA Langley Research Center used to investigate the robotic assembly of truss structures. Two special-purpose end-effectors have been used to assemble 102 truss members and 12 panels into an 8-meter diameter structure. One end-effector is dedicated to truss member insertion, while a second end-effector is used to install panels. Until recently, the robot motions required to construct the structure were developed iteratively using the facility hardware. Recent work at Langley has resulted in a compact machine vision system capable of providing position information relative to targets on the structure. Use of the vision system to guide the robot from an approach point 10 to 18 inches from the structure, offsetting model inaccuracies, permits robot motion based on calculated points as a first step toward use of preplanned paths from an automated path planner. This paper presents recent work at Langley highlighting the application of the machine vision system during truss member insertion.

  17. Robotic System for Precision Assembly of NIF Ignition Targets

    SciTech Connect

    Montesanti, R C; Seugling, R M; Klingmann, J L; Dzenitis, E G; Alger, E T; Miller, G L; Kent, R A; Castro, C; Reynolds, J L; Carrillo, M A

    2008-08-27

    This paper provides an overview of the design and testing of a robotic system developed for assembling the inertial confinement fusion ignition targets (depicted in Figures 1 and 2) that will be fielded on the National Ignition Facility (NIF) laser [1]. The system, referred to as the Final Assembly Machine and shown in Figure 3, consists of six groups of stacked axes that allow manipulating millimeter-sized components with submicron precision, integrated with an optical coordinate measuring machine (OCMM) that provides in-situ metrology. Nineteen motorized axes and ten manual axes are used to control the position and orientation of five objects that are predominantly assembled together in a cubic centimeter work zone. An operator-in-the-loop provides top-level control of the system, making it more similar to a surgical robot than to a programmed computer-controlled machine tool. The operator is provided visual feedback by the vision system of the OCMM, and tactile feedback by force and torque sensors embedded in the tooling that holds the major components being assembled. The vision system is augmented with auxiliary mirrors providing multiple viewing directions, and is used to guide the approach and alignment of the components, and to measure the relative position and orientation of the components. The force and torque sensors are used to guide the final approach, alignment, and mating of the components that are designed to slip-fit together, and to monitor that mating while adhesively bonding those components and attaching the target base.

  18. Ongoing research using HERMIES: The Hostile Environment Robotic Machine Intelligence Experiment Series

    SciTech Connect

    Burks, B.L.; Spelt, P.F.

    1988-01-01

    In order to test and validate the hardware and software developed in the research activities of CESAR (Center of Engineering Systems Advanced Research) a series of mobile autonomous robotic vehicles are being assembled named HERMIES (Hostile Environment Robotic Machine Intelligence Experiment Series). The current experimental test bed HERMIES-IIB, is the third in the series. A description of the earlier HERMIES robots and research activities may be found in the literature. HERMIES-IIB has been operational for more than a year and is described in detail in this article and elsewhere. In addition to a description of the robot, this article details some of the experiments under way utilizing HERMIES-IIB. The fourth robot in the series, HERMIES-III, is currently being assembled and should be available for experiments during the fall of 1988. This robot and initial experiments planned for it are also briefly described in this paper. 26 refs., 7 figs.

  19. Development of a machine vision guidance system for automated assembly of space structures

    NASA Technical Reports Server (NTRS)

    Cooper, Eric G.; Sydow, P. Daniel

    1992-01-01

    The topics are presented in viewgraph form and include: automated structural assembly robot vision; machine vision requirements; vision targets and hardware; reflective efficiency; target identification; pose estimation algorithms; triangle constraints; truss node with joint receptacle targets; end-effector mounted camera and light assembly; vision system results from optical bench tests; and future work.

  20. Part identification in robotic assembly using vision system

    NASA Astrophysics Data System (ADS)

    Balabantaray, Bunil Kumar; Biswal, Bibhuti Bhusan

    2013-12-01

    Machine vision system acts an important role in making robotic assembly system autonomous. Identification of the correct part is an important task which needs to be carefully done by a vision system to feed the robot with correct information for further processing. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Interest point detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus it needs to choose the correct tool for the process with respect to the given environment. In this paper analysis of three major corner detection algorithms is performed on the basis of their accuracy, speed and robustness to noise. The work is performed on the Matlab R2012a. An attempt has been made to find the best algorithm for the problem.

  1. Insulation assembly for electric machine

    DOEpatents

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  2. Machine vision - Automated visual inspection and robot vision

    NASA Astrophysics Data System (ADS)

    Vernon, David

    The subject of machine vision is treated with emphasis on fundamental tools for image acquisition, processing, and analysis. Topics discussed include an introduction to computer vision, illumination and sensors, image acquisition and representation, fundamentals of digital image processing, the segmentation problem, and image analysis. The book also covers techniques for shape description, robot programming and robot vision, and an introduction to image understanding.

  3. Development of a machine vision system for automated structural assembly

    NASA Technical Reports Server (NTRS)

    Sydow, P. Daniel; Cooper, Eric G.

    1992-01-01

    Research is being conducted at the LaRC to develop a telerobotic assembly system designed to construct large space truss structures. This research program was initiated within the past several years, and a ground-based test-bed was developed to evaluate and expand the state of the art. Test-bed operations currently use predetermined ('taught') points for truss structural assembly. Total dependence on the use of taught points for joint receptacle capture and strut installation is neither robust nor reliable enough for space operations. Therefore, a machine vision sensor guidance system is being developed to locate and guide the robot to a passive target mounted on the truss joint receptacle. The vision system hardware includes a miniature video camera, passive targets mounted on the joint receptacles, target illumination hardware, and an image processing system. Discrimination of the target from background clutter is accomplished through standard digital processing techniques. Once the target is identified, a pose estimation algorithm is invoked to determine the location, in three-dimensional space, of the target relative to the robots end-effector. Preliminary test results of the vision system in the Automated Structural Assembly Laboratory with a range of lighting and background conditions indicate that it is fully capable of successfully identifying joint receptacle targets throughout the required operational range. Controlled optical bench test results indicate that the system can also provide the pose estimation accuracy to define the target position.

  4. Machine Vision Giving Eyes to Robots. Resources in Technology.

    ERIC Educational Resources Information Center

    Technology Teacher, 1990

    1990-01-01

    This module introduces machine vision, which can be used for inspection, robot guidance and part sorting. The future for machine vision will include new technology and will bring vision systems closer to the ultimate vision processor, the human eye. Includes a student quiz, outcomes, and activities. (JOW)

  5. Planning and scheduling for robotic assembly

    NASA Technical Reports Server (NTRS)

    Fox, Barry R.

    1987-01-01

    A system for reasoning about robotic assembly tasks is described. The first element of this system is a facility for itemizing the constraints which determine the admissible orderings over the activities to be sequenced. The second element is a facility which partitions the activities into independent subtasks and produces a set of admissible strategies for each. Finally, the system has facilities for constructing an admissible sequence of activities which is consistent with the given constraints. This can be done off-line, in advance of task execution, or it can be done incrementally, at execution time, according to conditions in the execution environment. The language of temporal constraints and the methods of inference presented in related papers are presented. It is shown how functional and spatial relationships between components impose temporal constraints on the order of assembly and how temporal constraints then imply admissible strategies and feasible sequences.

  6. Assembly For Moving a Robotic Device Along Selected Axes

    NASA Technical Reports Server (NTRS)

    Nowlin, Brentley Craig (Inventor); Koch, Lisa Danielle (Inventor)

    2001-01-01

    An assembly for moving a robotic device along selected axes includes a programmable logic controller (PLC) for controlling movement of the device along selected axes to effect movement of the device to a selected disposition. The PLC includes a plurality of single axis motion control modules, and a central processing unit (CPU) in communication with the motion control modules. A human-machine interface is provided for operator selection of configurations of device movements and is in communication with the CPU. A motor drive is in communication with each of the motion control modules and is operable to effect movement of the device along the selected axes to obtain movement of the device to the selected disposition.

  7. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  8. Machine vision - Automated visual inspection and robot vision

    SciTech Connect

    Vernon, D. )

    1991-01-01

    The subject of machine vision is treated with emphasis on fundamental tools for image acquisition, processing, and analysis. Topics discussed include an introduction to computer vision, illumination and sensors, image acquisition and representation, fundamentals of digital image processing, the segmentation problem, and image analysis. The book also covers techniques for shape description, robot programming and robot vision, and an introduction to image understanding. 250 refs.

  9. Implementation of a robotic flexible assembly system

    NASA Technical Reports Server (NTRS)

    Benton, Ronald C.

    1987-01-01

    As part of the Intelligent Task Automation program, a team developed enabling technologies for programmable, sensory controlled manipulation in unstructured environments. These technologies include 2-D/3-D vision sensing and understanding, force sensing and high speed force control, 2.5-D vision alignment and control, and multiple processor architectures. The subsequent design of a flexible, programmable, sensor controlled robotic assembly system for small electromechanical devices is described using these technologies and ongoing implementation and integration efforts. Using vision, the system picks parts dumped randomly in a tray. Using vision and force control, it performs high speed part mating, in-process monitoring/verification of expected results and autonomous recovery from some errors. It is programmed off line with semiautomatic action planning.

  10. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.

    PubMed

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children's social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a "mental model" of the robot, tailoring the tutoring to the robot's performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot's bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143

  11. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction

    PubMed Central

    de Greeff, Joachim; Belpaeme, Tony

    2015-01-01

    Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. PMID:26422143

  12. Free-floating dual-arm robots for space assembly

    NASA Technical Reports Server (NTRS)

    Agrawal, Sunil Kumar; Chen, M. Y.

    1994-01-01

    Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.

  13. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    PubMed

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination. PMID:19463056

  14. Inventing Japan's 'robotics culture': the repeated assembly of science, technology, and culture in social robotics.

    PubMed

    Sabanović, Selma

    2014-06-01

    Using interviews, participant observation, and published documents, this article analyzes the co-construction of robotics and culture in Japan through the technical discourse and practices of robotics researchers. Three cases from current robotics research--the seal-like robot PARO, the Humanoid Robotics Project HRP-2 humanoid, and 'kansei robotics' - show the different ways in which scientists invoke culture to provide epistemological grounding and possibilities for social acceptance of their work. These examples show how the production and consumption of social robotic technologies are associated with traditional crafts and values, how roboticists negotiate among social, technical, and cultural constraints while designing robots, and how humans and robots are constructed as cultural subjects in social robotics discourse. The conceptual focus is on the repeated assembly of cultural models of social behavior, organization, cognition, and technology through roboticists' narratives about the development of advanced robotic technologies. This article provides a picture of robotics as the dynamic construction of technology and culture and concludes with a discussion of the limits and possibilities of this vision in promoting a culturally situated understanding of technology and a multicultural view of science. PMID:25051586

  15. Optical assembly of bio-hybrid micro-robots.

    PubMed

    Barroso, Álvaro; Landwerth, Shirin; Woerdemann, Mike; Alpmann, Christina; Buscher, Tim; Becker, Maike; Studer, Armido; Denz, Cornelia

    2015-04-01

    The combination of micro synthetic structures with bacterial flagella motors represents an actual trend for the construction of self-propelled micro-robots. The development of methods for fabrication of these bacteria-based robots is a first crucial step towards the realization of functional miniature and autonomous moving robots. We present a novel scheme based on optical trapping to fabricate living micro-robots. By using holographic optical tweezers that allow three-dimensional manipulation in real time, we are able to arrange the building blocks that constitute the micro-robot in a defined way. We demonstrate exemplarily that our method enables the controlled assembly of living micro-robots consisting of a rod-shaped prokaryotic bacterium and a single elongated zeolite L crystal, which are used as model of the biological and abiotic components, respectively. We present different proof-of-principle approaches for the site-selective attachment of the bacteria on the particle surface. The propulsion of the optically assembled micro-robot demonstrates the potential of the proposed method as a powerful strategy for the fabrication of bio-hybrid micro-robots. PMID:25681045

  16. Machine vision calibration for a nuclear steam generator robot

    SciTech Connect

    Glass, S.W.; Fallon, J.B.; Reinholtz, C.F.; Abbott, A.L.

    1994-12-31

    Inspection and repair of pressurized water reactor steam generators are among the most costly and schedule-critical activities of a refueling outage. These. tasks are highly automated with robots and special tools. This paper describes a method of improving the calibration of a steam generator robot by adding a machine vision computer to the existing tool-head monocular video. The steam generators are heat exchangers containing several thousand tubes ranging from 20 to 40 m in length. Each tube is 1 to 2 cm in diameter with a wall thickness of {approximately} 1 mm. The tubes are welded into a thick tube sheet that caps a hemispherical or quarter-sphere plenum. Practically all work must be performed robotically because the plenum is a high-radiation area. A robotic arm with precise positioning capability must enter the plenum through a 40-cm passageway. Most arms are anchored to either the passageway or the tube sheet. The arm must identify each of the thousands of tubes by row and column number based on the measured robotic joint angles and the calibrated arm-to-tube sheet spatial transform.

  17. Pre-deformation for assembly performance of machine centers

    NASA Astrophysics Data System (ADS)

    Sun, Yongping; Wang, Delun; Dong, Huimin; Xue, Runiu; Yu, Shudong

    2014-05-01

    The current research of machine center accuracy in workspace mainly focuses on the poor geometric error subjected to thermal and gravity load while in operation, however, there are little researches focusing on the effect of machine center elastic deformations on workspace volume. Therefore, a method called pre-deformation for assembly performance is presented. This method is technically based on the characteristics of machine tool assembly and collaborative computer-aided engineering (CAE) analysis. The research goal is to enhance assembly performance, including straightness, positioning, and angular errors, to realize the precision of the machine tool design. A vertical machine center is taken as an example to illustrate the proposed method. The concept of travel error is defined to obtain the law of the guide surface. The machine center assembly performance is analyzed under cold condition and thermal balance condition to establish the function of pre-deformation. Then, the guide surface in normal direction is processed with the pre-deformation function, and the machine tool assembly performance is measured using a laser interferometer. The measuring results show that the straightness deviation of the Z component in the Y-direction is 158.9% of the allowable value primarily because of the gravity of the spindle head, and the straightness of the X and Y components is minimal. When the machine tool is processed in pre-deformation, the straightness of the Z axis moving component is reduced to 91.2%. This research proposes a pre-deformation machine center assembly method which has sufficient capacity to improving assembly accuracy of machine centers.

  18. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  19. Assembly processor program converts symbolic programming language to machine language

    NASA Technical Reports Server (NTRS)

    Pelto, E. V.

    1967-01-01

    Assembly processor program converts symbolic programming language to machine language. This program translates symbolic codes into computer understandable instructions, assigns locations in storage for successive instructions, and computer locations from symbolic addresses.

  20. Compensation for robot arm flexibility using machine intelligence

    NASA Astrophysics Data System (ADS)

    Kabiri, Peyman; Sherkat, Nasser; Shih, Chi-Hsien V.

    1998-10-01

    This paper reports a new approach to error compensation for inaccuracies in position control for the end-effector of a Robot Arm. The goal is to overcome the problem of inaccuracy, due to the low precision in manufacturing of Robot Arms and the flexibility of their structure, by means of machine intelligence. Utilizing a mesh sensory system, a Real Time Monitoring System is designed. The position of the end-effector is monitored in real time and the positioning data for the end-effector is collected. A direction independent filtering system is designed to eliminate the noise from the collected data. After extracting the error map from the collected data, a novel Proportional Keen Approximation Method is implemented to generalize the error map. One of the main features of this method is the elimination of the training stage as in the Artificial Neural Networks. Using the knowledge obtained from the maps, the system compensates for the errors.

  1. Path planning for robotic truss assembly

    NASA Technical Reports Server (NTRS)

    Sanderson, Arthur C.

    1993-01-01

    A new Potential Fields approach to the robotic path planning problem is proposed and implemented. Our approach, which is based on one originally proposed by Munger, computes an incremental joint vector based upon attraction to a goal and repulsion from obstacles. By repetitively adding and computing these 'steps', it is hoped (but not guaranteed) that the robot will reach its goal. An attractive force exerted by the goal is found by solving for the the minimum norm solution to the linear Jacobian equation. A repulsive force between obstacles and the robot's links is used to avoid collisions. Its magnitude is inversely proportional to the distance. Together, these forces make the goal the global minimum potential point, but local minima can stop the robot from ever reaching that point. Our approach improves on a basic, potential field paradigm developed by Munger by using an active, adaptive field - what we will call a 'flexible' potential field. Active fields are stronger when objects move towards one another and weaker when they move apart. An adaptive field's strength is individually tailored to be just strong enough to avoid any collision. In addition to the local planner, a global planning algorithm helps the planner to avoid local field minima by providing subgoals. These subgoals are based on the obstacles which caused the local planner to fail. A best-first search algorithm A* is used for graph search.

  2. Fusing human and machine skills for remote robotic operations

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Kim, Won S.; Venema, Steven C.; Bejczy, Antal K.

    1991-01-01

    The question of how computer assists can improve teleoperator trajectory tracking during both free and force-constrained motions is addressed. Computer graphics techniques which enable the human operator to both visualize and predict detailed 3D trajectories in real-time are reported. Man-machine interactive control procedures for better management of manipulator contact forces and positioning are also described. It is found that collectively, these novel advanced teleoperations techniques both enhance system performance and significantly reduce control problems long associated with teleoperations under time delay. Ongoing robotic simulations of the 1984 space shuttle Solar Maximum EVA Repair Mission are briefly described.

  3. Ground controlled robotic assembly operations for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1991-01-01

    A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.

  4. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    NASA Technical Reports Server (NTRS)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  5. Protein machines and self assembly in muscle organization

    NASA Technical Reports Server (NTRS)

    Barral, J. M.; Epstein, H. F.

    1999-01-01

    The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships. Copyright 1999 John Wiley & Sons, Inc.

  6. Machine intelligence and robotics: Report of the NASA study group. Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.

  7. Applications of artificial intelligence X: Machine vision and robotics; Proceedings of the Meeting, Orlando, FL, Apr. 22-24, 1992

    SciTech Connect

    Bowyer, K.W.

    1992-01-01

    Various papers on artificial intelligence in machine vision and robotics are presented. The general topics addressed include: design of a robot head, machine vision inspection techniques, segmentation of fused range and intensity imagery, parallel and VLSI architectures for machine vision, comparison of range image segmentation algorithms, state of the art in postcanny edge detection, simulation and visualization environments for autonomous robots, exploration of recognition by components representation and matching, reactive robotic control strategies, image processing techniques.

  8. Machine learning assembly landscapes from particle tracking data.

    PubMed

    Long, Andrew W; Zhang, Jie; Granick, Steve; Ferguson, Andrew L

    2015-11-01

    Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways. PMID:26338295

  9. Robotics. Programmable self-assembly in a thousand-robot swarm.

    PubMed

    Rubenstein, Michael; Cornejo, Alejandro; Nagpal, Radhika

    2014-08-15

    Self-assembly enables nature to build complex forms, from multicellular organisms to complex animal structures such as flocks of birds, through the interaction of vast numbers of limited and unreliable individuals. Creating this ability in engineered systems poses challenges in the design of both algorithms and physical systems that can operate at such scales. We report a system that demonstrates programmable self-assembly of complex two-dimensional shapes with a thousand-robot swarm. This was enabled by creating autonomous robots designed to operate in large groups and to cooperate through local interactions and by developing a collective algorithm for shape formation that is highly robust to the variability and error characteristic of large-scale decentralized systems. This work advances the aim of creating artificial swarms with the capabilities of natural ones. PMID:25124435

  10. Robotic U-shaped assembly line balancing using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Mukund Nilakantan, J.; Ponnambalam, S. G.

    2016-02-01

    Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.

  11. Impact of Robotic Dispensing Machines in German Pharmacies on Business Performance Indicators

    PubMed Central

    Ruhle, F; Braun, R; Ostermann, H

    2009-01-01

    Aims and objectives To assess the impact of robotic dispensing machines in community pharmacies on staff efficiency and sales of over-the-counter drugs. Setting The study was done on 253 community pharmacies in Germany that use a robotic dispensing machine manufactured by ROWA during 2008. Method Data concerning the financial and economic impact of using a robotic dispensing machine in community pharmacies was gathered using a structured questionnaire and analysed in terms of its financial implications. Key findings The response rate was 29%. In most pharmacies (79%) the robotic dispensing machine was retrofitted. In 59% of the pharmacies additional space was gained for self-service and behind-the-counter display. As a result of using a robotic dispensing machine, personnel costs were reduced by an average of 4.6% during the first 12 months after start-up. Over-the-counter sales increased in the same period by an average of 6.8%. Despite average initial costs of 118,000 euros, total costs within the first 12 months fell in 50% of cases and at least remained the same in 44%. Conclusions On average, robotic dispensing machines lead to modest savings in personnel costs and slight increases in sales of over-the-counter drugs. Substantial savings can be achieved only if the staffing level is adapted to the changed personnel requirements. PMID:21483538

  12. Truss Assembly and Welding by Intelligent Precision Jigging Robots

    NASA Technical Reports Server (NTRS)

    Komendera, Erik; Dorsey, John T.; Doggett, William R.; Correll, Nikolaus

    2014-01-01

    This paper describes an Intelligent Precision Jigging Robot (IPJR) prototype that enables the precise alignment and welding of titanium space telescope optical benches. The IPJR, equipped with micron accuracy sensors and actuators, worked in tandem with a lower precision remote controlled manipulator. The combined system assembled and welded a 2 m truss from stock titanium components. The calibration of the IPJR, and the difference between the predicted and the truss dimensions as-built, identified additional sources of error that should be addressed in the next generation of IPJRs in 2D and 3D.

  13. Reliability and availability analysis for robot subsystem in automotive assembly plant: a case study

    NASA Astrophysics Data System (ADS)

    Fudzin, A. F.; Majid, M. A. A.

    2015-12-01

    The automotive assembly plant in a manufacturing environment consists of conveying systems and robots. Robots with high reliability will ensure no interruption during production. This study is to analyze the individual robot reliability compared to reliability of robots subsystem in series configuration. Availability was computed based on individual robots breakdown data. Failures due to robots breakdown often occurred during the operations. Actual maintenance data for a period of seven years were used for the analysis. Incorporation of failures rate and mean time between failures yield the reliability computation with the assumption of constant failure rate. Result from the analysis based on 5000 operating hours indicated reliability of series configuration of robots in a subsystem decreased to 2.8% in comparison to 38% reliability of the individual robot with the lowest reliability. The calculated lowest availability of the robots is 99.41%. The robot with the lowest reliability and availability should be considered for replacement.

  14. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  15. The New Robotics-towards human-centered machines.

    PubMed

    Schaal, Stefan

    2007-07-01

    Research in robotics has moved away from its primary focus on industrial applications. The New Robotics is a vision that has been developed in past years by our own university and many other national and international research institutions and addresses how increasingly more human-like robots can live among us and take over tasks where our current society has shortcomings. Elder care, physical therapy, child education, search and rescue, and general assistance in daily life situations are some of the examples that will benefit from the New Robotics in the near future. With these goals in mind, research for the New Robotics has to embrace a broad interdisciplinary approach, ranging from traditional mathematical issues of robotics to novel issues in psychology, neuroscience, and ethics. This paper outlines some of the important research problems that will need to be resolved to make the New Robotics a reality. PMID:19404417

  16. Application of edge detection algorithm for vision guided robotics assembly system

    NASA Astrophysics Data System (ADS)

    Balabantaray, Bunil Kumar; Jha, Panchanand; Biswal, Bibhuti Bhusan

    2013-12-01

    Machine vision system has a major role in making robotic assembly system autonomous. Part detection and identification of the correct part are important tasks which need to be carefully done by a vision system to initiate the process. This process consists of many sub-processes wherein, the image capturing, digitizing and enhancing, etc. do account for reconstructive the part for subsequent operations. Edge detection of the grabbed image, therefore, plays an important role in the entire image processing activity. Thus one needs to choose the correct tool for the process with respect to the given environment. In this paper the comparative study of edge detection algorithm with grasping the object in robot assembly system is presented. The proposed work is performed on the Matlab R2010a Simulink. This paper proposes four algorithms i.e. Canny's, Robert, Prewitt and Sobel edge detection algorithm. An attempt has been made to find the best algorithm for the problem. It is found that Canny's edge detection algorithm gives better result and minimum error for the intended task.

  17. Verification Test of Automated Robotic Assembly of Space Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  18. Model-adaptive hybrid dynamic control for robotic assembly tasks

    SciTech Connect

    Austin, D.J.; McCarragher, B.J.

    1999-10-01

    A new task-level adaptive controller is presented for the hybrid dynamic control of robotic assembly tasks. Using a hybrid dynamic model of the assembly task, velocity constraints are derived from which satisfactory velocity commands are obtained. Due to modeling errors and parametric uncertainties, the velocity commands may be erroneous and may result in suboptimal performance. Task-level adaptive control schemes, based on the occurrence of discrete events, are used to change the model parameters from which the velocity commands are determined. Two adaptive schemes are presented: the first is based on intuitive reasoning about the vector spaces involved whereas the second uses a search region that is reduced with each iteration. For the first adaptation law, asymptotic convergence to the correct model parameters is proven except for one case. This weakness motivated the development of the second adaptation law, for which asymptotic convergence is proven in all cases. Automated control of a peg-in-hole assembly task is given as an example, and simulations and experiments for this task are presented. These results demonstrate the success of the method and also indicate properties for rapid convergence.

  19. Path planning algorithms for assembly sequence planning. [in robot kinematics

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Sanderson, Arthur C.

    1991-01-01

    Planning for manipulation in complex environments often requires reasoning about the geometric and mechanical constraints which are posed by the task. In planning assembly operations, the automatic generation of operations sequences depends on the geometric feasibility of paths which permit parts to be joined into subassemblies. Feasible locations and collision-free paths must be present for part motions, robot and grasping motions, and fixtures. This paper describes an approach to reasoning about the feasibility of straight-line paths among three-dimensional polyhedral parts using an algebra of polyhedral cones. A second method recasts the feasibility conditions as constraints in a nonlinear optimization framework. Both algorithms have been implemented and results are presented.

  20. Modelling and calibration technique of laser triangulation sensors for integration in robot arms and articulated arm coordinate measuring machines.

    PubMed

    Santolaria, Jorge; Guillomía, David; Cajal, Carlos; Albajez, José A; Aguilar, Juan J

    2009-01-01

    A technique for intrinsic and extrinsic calibration of a laser triangulation sensor (LTS) integrated in an articulated arm coordinate measuring machine (AACMM) is presented in this paper. After applying a novel approach to the AACMM kinematic parameter identification problem, by means of a single calibration gauge object, a one-step calibration method to obtain both intrinsic-laser plane, CCD sensor and camera geometry-and extrinsic parameters related to the AACMM main frame has been developed. This allows the integration of LTS and AACMM mathematical models without the need of additional optimization methods after the prior sensor calibration, usually done in a coordinate measuring machine (CMM) before the assembly of the sensor in the arm. The experimental tests results for accuracy and repeatability show the suitable performance of this technique, resulting in a reliable, quick and friendly calibration method for the AACMM final user. The presented method is also valid for sensor integration in robot arms and CMMs. PMID:22400001

  1. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    NASA Astrophysics Data System (ADS)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  2. Lightweight piston-rod assembly for a reciprocating machine

    DOEpatents

    Corey, John A.; Walsh, Michael M.

    1986-01-01

    In a reciprocating machine, there is provided a hollow piston including a dome portion on one end and a base portion on the opposite end. The base portion includes a central bore into which a rod is hermetically fixed in radial and angular alignment. The extending end of the rod has a reduced diameter portion adapted to fit into the central bore of a second member such as a cross-head assembly, and to be secured thereto in radial and axial alignment with the piston.

  3. Supporting robotics technology requirements through research in intelligent machines

    SciTech Connect

    Mann, R.C.

    1995-02-01

    {open_quotes}Safer, better, cheaper{close_quotes} are recurring themes in many robot development efforts. Significant improvements are being accomplished with existing technology, but basic research sets the foundations for future improvements and breakthrough discoveries. Advanced robots represent systems that integrate the three basic functions of sensing, reasoning, and acting (locomotion and manipulation) into one functional unit. Depending on the application requirements, some of these functions are implemented at a more or less advanced level than others. For example, some navigation tasks can be accomplished with purely reactive control and do not require sophisticated reasoning and planning methodologies. Robotics work at the Oak Ridge National Laboratory (ORNL) spans the spectrum from basic research to application-specific development and rapid prototyping of systems. This presentation summarizes recent highlights of the robotics research activities at ORNL.

  4. Provision of Controlled Motion Accuracy of Industrial Robots and Multiaxis Machines by the Method of Integrated Deviations Correction

    NASA Astrophysics Data System (ADS)

    Krakhmalev, O. N.; Petreshin, D. I.; Fedonin, O. N.

    2016-04-01

    There is a developed method of correction of the integrated motion deviations of industrial robots and multiaxis machines, which are caused by the primary geometrical deviations of their segments. This method can be used to develop a control system providing the motion correction for industrial robots and multiaxis machines.

  5. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  6. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  7. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  8. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  9. 30 CFR 18.80 - Approval of machines assembled with certified or explosion-proof components.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Machines Assembled With Certified or Explosion-Proof Components,...

  10. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  11. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    NASA Astrophysics Data System (ADS)

    Dabby, Nadine L.

    Computer science and electrical engineering have been the great success story of the twentieth century. The neat modularity and mapping of a language onto circuits has led to robots on Mars, desktop computers and smartphones. But these devices are not yet able to do some of the things that life takes for granted: repair a scratch, reproduce, regenerate, or grow exponentially fast--all while remaining functional. This thesis explores and develops algorithms, molecular implementations, and theoretical proofs in the context of "active self-assembly" of molecular systems. The long-term vision of active self-assembly is the theoretical and physical implementation of materials that are composed of reconfigurable units with the programmability and adaptability of biology's numerous molecular machines. En route to this goal, we must first find a way to overcome the memory limitations of molecular systems, and to discover the limits of complexity that can be achieved with individual molecules. One of the main thrusts in molecular programming is to use computer science as a tool for figuring out what can be achieved. While molecular systems that are Turing-complete have been demonstrated [Winfree, 1996], these systems still cannot achieve some of the feats biology has achieved. One might think that because a system is Turing-complete, capable of computing "anything," that it can do any arbitrary task. But while it can simulate any digital computational problem, there are many behaviors that are not "computations" in a classical sense, and cannot be directly implemented. Examples include exponential growth and molecular motion relative to a surface. Passive self-assembly systems cannot implement these behaviors because (a) molecular motion relative to a surface requires a source of fuel that is external to the system, and (b) passive systems are too slow to assemble exponentially-fast-growing structures. We call these behaviors "energetically incomplete" programmable

  12. Developments in brain-machine interfaces from the perspective of robotics.

    PubMed

    Kim, Hyun K; Park, Shinsuk; Srinivasan, Mandayam A

    2009-04-01

    Many patients suffer from the loss of motor skills, resulting from traumatic brain and spinal cord injuries, stroke, and many other disabling conditions. Thanks to technological advances in measuring and decoding the electrical activity of cortical neurons, brain-machine interfaces (BMI) have become a promising technology that can aid paralyzed individuals. In recent studies on BMI, robotic manipulators have demonstrated their potential as neuroprostheses. Restoring motor skills through robot manipulators controlled by brain signals may improve the quality of life of people with disability. This article reviews current robotic technologies that are relevant to BMI and suggests strategies that could improve the effectiveness of a brain-operated neuroprosthesis through robotics. PMID:19230997

  13. Vector-algebra approach to extract Denavit-Hartenberg parameters of assembled robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.

    1983-01-01

    The Denavit-Hartenberg parameters characterize the joint axis systems in a robot arm and, naturally, appear in the transformation matrices from one joint axis system to another. These parameters are needed in the control of robot arms and in the passage of sensor information along the arm. This paper presents a vector algebra method to determine these parameters for any assembled robot arm. The idea is to measure the location of the robot hand (or extension) for different joint angles and then use these measurements to calculate the parameters.

  14. A machine reading system for assembling synthetic paleontological databases.

    PubMed

    Peters, Shanan E; Zhang, Ce; Livny, Miron; Ré, Christopher

    2014-01-01

    Many aspects of macroevolutionary theory and our understanding of biotic responses to global environmental change derive from literature-based compilations of paleontological data. Existing manually assembled databases are, however, incomplete and difficult to assess and enhance with new data types. Here, we develop and validate the quality of a machine reading system, PaleoDeepDive, that automatically locates and extracts data from heterogeneous text, tables, and figures in publications. PaleoDeepDive performs comparably to humans in several complex data extraction and inference tasks and generates congruent synthetic results that describe the geological history of taxonomic diversity and genus-level rates of origination and extinction. Unlike traditional databases, PaleoDeepDive produces a probabilistic database that systematically improves as information is added. We show that the system can readily accommodate sophisticated data types, such as morphological data in biological illustrations and associated textual descriptions. Our machine reading approach to scientific data integration and synthesis brings within reach many questions that are currently underdetermined and does so in ways that may stimulate entirely new modes of inquiry. PMID:25436610

  15. A Machine Reading System for Assembling Synthetic Paleontological Databases

    PubMed Central

    Peters, Shanan E.; Zhang, Ce; Livny, Miron; Ré, Christopher

    2014-01-01

    Many aspects of macroevolutionary theory and our understanding of biotic responses to global environmental change derive from literature-based compilations of paleontological data. Existing manually assembled databases are, however, incomplete and difficult to assess and enhance with new data types. Here, we develop and validate the quality of a machine reading system, PaleoDeepDive, that automatically locates and extracts data from heterogeneous text, tables, and figures in publications. PaleoDeepDive performs comparably to humans in several complex data extraction and inference tasks and generates congruent synthetic results that describe the geological history of taxonomic diversity and genus-level rates of origination and extinction. Unlike traditional databases, PaleoDeepDive produces a probabilistic database that systematically improves as information is added. We show that the system can readily accommodate sophisticated data types, such as morphological data in biological illustrations and associated textual descriptions. Our machine reading approach to scientific data integration and synthesis brings within reach many questions that are currently underdetermined and does so in ways that may stimulate entirely new modes of inquiry. PMID:25436610

  16. An Approach to Self-Assembling Swarm Robots Using Multitree Genetic Programming

    PubMed Central

    An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach. PMID:23861655

  17. An approach to self-assembling swarm robots using multitree genetic programming.

    PubMed

    Lee, Jong-Hyun; Ahn, Chang Wook; An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach. PMID:23861655

  18. A robot arm simulation with a shared memory multiprocessor machine

    NASA Technical Reports Server (NTRS)

    Kim, Sung-Soo; Chuang, Li-Ping

    1989-01-01

    A parallel processing scheme for a single chain robot arm is presented for high speed computation on a shared memory multiprocessor. A recursive formulation that is derived from a virtual work form of the d'Alembert equations of motion is utilized for robot arm dynamics. A joint drive system that consists of a motor rotor and gears is included in the arm dynamics model, in order to take into account gyroscopic effects due to the spinning of the rotor. The fine grain parallelism of mechanical and control subsystem models is exploited, based on independent computation associated with bodies, joint drive systems, and controllers. Efficiency and effectiveness of the parallel scheme are demonstrated through simulations of a telerobotic manipulator arm. Two different mechanical subsystem models, i.e., with and without gyroscopic effects, are compared, to show the trade-off between efficiency and accuracy.

  19. ISS Robotic Assembly Analysis Using MAGIK (Manipulator Analysis - Graphic, Interactive, Kinematic)

    NASA Technical Reports Server (NTRS)

    Bevill, Pat

    2010-01-01

    Using a National Aeronautics and Space Administration (NASA) developed kinematic analysis tool, the robotic tasks needed to assemble the large elements (truss segments and pressurized modules) of the International Space Station (ISS) can be carefully analyzed to ensure the tasks are kinematically feasible early in the hardware and assembly sequence development.

  20. A hardware/software environment to support R D in intelligent machines and mobile robotic systems

    SciTech Connect

    Mann, R.C.

    1990-01-01

    The Center for Engineering Systems Advanced Research (CESAR) serves as a focal point at the Oak Ridge National Laboratory (ORNL) for basic and applied research in intelligent machines. R D at CESAR addresses issues related to autonomous systems, unstructured (i.e. incompletely known) operational environments, and multiple performing agents. Two mobile robot prototypes (HERMIES-IIB and HERMIES-III) are being used to test new developments in several robot component technologies. This paper briefly introduces the computing environment at CESAR which includes three hypercube concurrent computers (two on-board the mobile robots), a graphics workstation, VAX, and multiple VME-based systems (several on-board the mobile robots). The current software environment at CESAR is intended to satisfy several goals, e.g.: code portability, re-usability in different experimental scenarios, modularity, concurrent computer hardware transparent to applications programmer, future support for multiple mobile robots, support human-machine interface modules, and support for integration of software from other, geographically disparate laboratories with different hardware set-ups. 6 refs., 1 fig.

  1. Problem-Solving at a Circuit-Board Assembly Machine: A Microanalysis.

    ERIC Educational Resources Information Center

    Kleifgen, Jo Anne; Frenz-Belken, Patricia

    A study described machine operators' problem-solving actions at a computerized circuit-board assembly machine in a small manufacturing plant located on the West Coast. Participants were a machine operator and his supervisor, both from Vietnam, who were building large prototype boards for a major computer corporation. Over a 6.5 minute interval,…

  2. Experimental Demonstration of Technologies for Autonomous On-Orbit Robotic Assembly

    NASA Technical Reports Server (NTRS)

    LeMaster, Edward A.; Schaechter, David B.; Carrington, Connie K.

    2006-01-01

    The Modular Reconfigurable High Energy (MRHE) program aimed to develop technologies for the automated assembly and deployment of large-scale space structures and aggregate spacecraft. Part of the project involved creation of a terrestrial robotic testbed for validation and demonstration of these technologies and for the support of future development activities. This testbed was completed in 2005, and was thereafter used to demonstrate automated rendezvous, docking, and self-assembly tasks between a group of three modular robotic spacecraft emulators. This paper discusses the rationale for the MRHE project, describes the testbed capabilities, and presents the MRHE assembly demonstration sequence.

  3. Machining, Assembly, and Characterization of a Meso-Scale Double Shell Target

    SciTech Connect

    Bono, M J; Hibbard, R L

    2003-10-21

    Several issues related to the manufacture of precision meso-scale assemblies have been identified as part of an effort to fabricate an assembly consisting of machined polymer hemispherical shells and machined aerogel. The assembly, a double shell laser target, is composed of concentric spherical layers that were machined on a lathe and then assembled. This production effort revealed several meso-scale manufacturing techniques that worked well, such as the machining of aerogel with cutting tools to form low density structures, and the development of an assembly manipulator that allows control of the assembly forces to within a few milliNewtons. Limitations on the use of vacuum chucks for meso-scale components were also identified. Many of the lessons learned in this effort are not specific to double shell targets and may be relevant to the production of other meso-scale devices.

  4. Locomotion training of legged robots using hybrid machine learning techniques

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible

  5. Error modeling and sensitivity analysis of a parallel robot with SCARA(selective compliance assembly robot arm) motions

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhen; Xie, Fugui; Liu, Xinjun; Zhou, Yanhua

    2014-07-01

    Parallel robots with SCARA(selective compliance assembly robot arm) motions are utilized widely in the field of high speed pick-and-place manipulation. Error modeling for these robots generally simplifies the parallelogram structures included by the robots as a link. As the established error model fails to reflect the error feature of the parallelogram structures, the effect of accuracy design and kinematic calibration based on the error model come to be undermined. An error modeling methodology is proposed to establish an error model of parallel robots with parallelogram structures. The error model can embody the geometric errors of all joints, including the joints of parallelogram structures. Thus it can contain more exhaustively the factors that reduce the accuracy of the robot. Based on the error model and some sensitivity indices defined in the sense of statistics, sensitivity analysis is carried out. Accordingly, some atlases are depicted to express each geometric error's influence on the moving platform's pose errors. From these atlases, the geometric errors that have greater impact on the accuracy of the moving platform are identified, and some sensitive areas where the pose errors of the moving platform are extremely sensitive to the geometric errors are also figured out. By taking into account the error factors which are generally neglected in all existing modeling methods, the proposed modeling method can thoroughly disclose the process of error transmission and enhance the efficacy of accuracy design and calibration.

  6. Robot path planning for space-truss assembly

    NASA Technical Reports Server (NTRS)

    Muenger, Rolf; Sanderson, Arthur C.

    1992-01-01

    Construction, repair, and maintenance of space-based structures will require extensive planning of operations in order to effectively carry out these tasks. The path planning algorithm described here is a general approach to generating paths that guarantee collision avoidance for a single chain nonredundant or redundant robot. The algorithm uses a graph search of feasible points in position space, followed by a local potential field method that guarantees collision avoidance among objects, structures, and the robot arm as well as conformance to joint limit constraints. This algorithm is novel in its computation of goal attractive potential fields in Cartesian space, and computation of obstacle repulsive fields in robot joint space. These effects are combined to generate robot motion. Computation is efficiently implemented through the computation of the robot arm Jacobian and not the full inverse arm kinematics. These planning algorithms have been implemented and evaluated using existing space-truss designs, and are being integrated into the RPI-CIRSSE Testbed environment.

  7. Robot Guidance Using Machine Vision Techniques in Industrial Environments: A Comparative Review

    PubMed Central

    Pérez, Luis; Rodríguez, Íñigo; Rodríguez, Nuria; Usamentiaga, Rubén; García, Daniel F.

    2016-01-01

    In the factory of the future, most of the operations will be done by autonomous robots that need visual feedback to move around the working space avoiding obstacles, to work collaboratively with humans, to identify and locate the working parts, to complete the information provided by other sensors to improve their positioning accuracy, etc. Different vision techniques, such as photogrammetry, stereo vision, structured light, time of flight and laser triangulation, among others, are widely used for inspection and quality control processes in the industry and now for robot guidance. Choosing which type of vision system to use is highly dependent on the parts that need to be located or measured. Thus, in this paper a comparative review of different machine vision techniques for robot guidance is presented. This work analyzes accuracy, range and weight of the sensors, safety, processing time and environmental influences. Researchers and developers can take it as a background information for their future works. PMID:26959030

  8. Robot Guidance Using Machine Vision Techniques in Industrial Environments: A Comparative Review.

    PubMed

    Pérez, Luis; Rodríguez, Íñigo; Rodríguez, Nuria; Usamentiaga, Rubén; García, Daniel F

    2016-01-01

    In the factory of the future, most of the operations will be done by autonomous robots that need visual feedback to move around the working space avoiding obstacles, to work collaboratively with humans, to identify and locate the working parts, to complete the information provided by other sensors to improve their positioning accuracy, etc. Different vision techniques, such as photogrammetry, stereo vision, structured light, time of flight and laser triangulation, among others, are widely used for inspection and quality control processes in the industry and now for robot guidance. Choosing which type of vision system to use is highly dependent on the parts that need to be located or measured. Thus, in this paper a comparative review of different machine vision techniques for robot guidance is presented. This work analyzes accuracy, range and weight of the sensors, safety, processing time and environmental influences. Researchers and developers can take it as a background information for their future works. PMID:26959030

  9. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  10. Modular neuronal assemblies embodied in a closed-loop environment: toward future integration of brains and machines.

    PubMed

    Tessadori, Jacopo; Bisio, Marta; Martinoia, Sergio; Chiappalone, Michela

    2012-01-01

    Behaviors, from simple to most complex, require a two-way interaction with the environment and the contribution of different brain areas depending on the orchestrated activation of neuronal assemblies. In this work we present a new hybrid neuro-robotic architecture based on a neural controller bi-directionally connected to a virtual robot implementing a Braitenberg vehicle aimed at avoiding obstacles. The robot is characterized by proximity sensors and wheels, allowing it to navigate into a circular arena with obstacles of different sizes. As neural controller, we used hippocampal cultures dissociated from embryonic rats and kept alive over Micro Electrode Arrays (MEAs) for 3-8 weeks. The developed software architecture guarantees a bi-directional exchange of information between the natural and the artificial part by means of simple linear coding/decoding schemes. We used two different kinds of experimental preparation: "random" and "modular" populations. In the second case, the confinement was assured by a polydimethylsiloxane (PDMS) mask placed over the surface of the MEA device, thus defining two populations interconnected via specific microchannels. The main results of our study are: (i) neuronal cultures can be successfully interfaced to an artificial agent; (ii) modular networks show a different dynamics with respect to random culture, both in terms of spontaneous and evoked electrophysiological patterns; (iii) the robot performs better if a reinforcement learning paradigm (i.e., a tetanic stimulation delivered to the network following each collision) is activated, regardless of the modularity of the culture; (iv) the robot controlled by the modular network further enhances its capabilities in avoiding obstacles during the short-term plasticity trial. The developed paradigm offers a new framework for studying, in simplified model systems, neuro-artificial bi-directional interfaces for the development of new strategies for brain-machine interaction. PMID

  11. Modular Neuronal Assemblies Embodied in a Closed-Loop Environment: Toward Future Integration of Brains and Machines

    PubMed Central

    Tessadori, Jacopo; Bisio, Marta; Martinoia, Sergio; Chiappalone, Michela

    2012-01-01

    Behaviors, from simple to most complex, require a two-way interaction with the environment and the contribution of different brain areas depending on the orchestrated activation of neuronal assemblies. In this work we present a new hybrid neuro-robotic architecture based on a neural controller bi-directionally connected to a virtual robot implementing a Braitenberg vehicle aimed at avoiding obstacles. The robot is characterized by proximity sensors and wheels, allowing it to navigate into a circular arena with obstacles of different sizes. As neural controller, we used hippocampal cultures dissociated from embryonic rats and kept alive over Micro Electrode Arrays (MEAs) for 3–8 weeks. The developed software architecture guarantees a bi-directional exchange of information between the natural and the artificial part by means of simple linear coding/decoding schemes. We used two different kinds of experimental preparation: “random” and “modular” populations. In the second case, the confinement was assured by a polydimethylsiloxane (PDMS) mask placed over the surface of the MEA device, thus defining two populations interconnected via specific microchannels. The main results of our study are: (i) neuronal cultures can be successfully interfaced to an artificial agent; (ii) modular networks show a different dynamics with respect to random culture, both in terms of spontaneous and evoked electrophysiological patterns; (iii) the robot performs better if a reinforcement learning paradigm (i.e., a tetanic stimulation delivered to the network following each collision) is activated, regardless of the modularity of the culture; (iv) the robot controlled by the modular network further enhances its capabilities in avoiding obstacles during the short-term plasticity trial. The developed paradigm offers a new framework for studying, in simplified model systems, neuro-artificial bi-directional interfaces for the development of new strategies for brain-machine interaction

  12. Control of a 2 DoF robot using a brain-machine interface.

    PubMed

    Hortal, Enrique; Ubeda, Andrés; Iáñez, Eduardo; Azorín, José M

    2014-09-01

    In this paper, a non-invasive spontaneous Brain-Machine Interface (BMI) is used to control the movement of a planar robot. To that end, two mental tasks are used to manage the visual interface that controls the robot. The robot used is a PupArm, a force-controlled planar robot designed by the nBio research group at the Miguel Hernández University of Elche (Spain). Two control strategies are compared: hierarchical and directional control. The experimental test (performed by four users) consists of reaching four targets. The errors and time used during the performance of the tests are compared in both control strategies (hierarchical and directional control). The advantages and disadvantages of each method are shown after the analysis of the results. The hierarchical control allows an accurate approaching to the goals but it is slower than using the directional control which, on the contrary, is less precise. The results show both strategies are useful to control this planar robot. In the future, by adding an extra device like a gripper, this BMI could be used in assistive applications such as grasping daily objects in a realistic environment. In order to compare the behavior of the system taking into account the opinion of the users, a NASA Tasks Load Index (TLX) questionnaire is filled out after two sessions are completed. PMID:24694722

  13. Assistive Robotic Manipulation through Shared Autonomy and a Body-Machine Interface

    PubMed Central

    Jain, Siddarth; Farshchiansadegh, Ali; Broad, Alexander; Abdollahi, Farnaz; Mussa-Ivaldi, Ferdinando; Argall, Brenna

    2016-01-01

    Assistive robotic manipulators have the potential to improve the lives of people with motor impairments. They can enable individuals to perform activities such as pick-and-place tasks, opening doors, pushing buttons, and can even provide assistance in personal hygiene and feeding. However, robotic arms often have more degrees of freedom (DoF) than the dimensionality of their control interface, making them challenging to use—especially for those with impaired motor abilities. Our research focuses on enabling the control of high-DoF manipulators to motor-impaired individuals for performing daily tasks. We make use of an individual’s residual motion capabilities, captured through a Body-Machine Interface (BMI), to generate control signals for the robotic arm. These low-dimensional controls are then utilized in a shared-control framework that shares control between the human user and robot autonomy. We evaluated the system by conducting a user study in which 6 participants performed 144 trials of a manipulation task using the BMI interface and the proposed shared-control framework. The 100% success rate on task performance demonstrates the effectiveness of the proposed system for individuals with motor impairments to control assistive robotic manipulators. PMID:26855690

  14. Wireless brain-machine interface using EEG and EOG: brain wave classification and robot control

    NASA Astrophysics Data System (ADS)

    Oh, Sechang; Kumar, Prashanth S.; Kwon, Hyeokjun; Varadan, Vijay K.

    2012-04-01

    A brain-machine interface (BMI) links a user's brain activity directly to an external device. It enables a person to control devices using only thought. Hence, it has gained significant interest in the design of assistive devices and systems for people with disabilities. In addition, BMI has also been proposed to replace humans with robots in the performance of dangerous tasks like explosives handling/diffusing, hazardous materials handling, fire fighting etc. There are mainly two types of BMI based on the measurement method of brain activity; invasive and non-invasive. Invasive BMI can provide pristine signals but it is expensive and surgery may lead to undesirable side effects. Recent advances in non-invasive BMI have opened the possibility of generating robust control signals from noisy brain activity signals like EEG and EOG. A practical implementation of a non-invasive BMI such as robot control requires: acquisition of brain signals with a robust wearable unit, noise filtering and signal processing, identification and extraction of relevant brain wave features and finally, an algorithm to determine control signals based on the wave features. In this work, we developed a wireless brain-machine interface with a small platform and established a BMI that can be used to control the movement of a robot by using the extracted features of the EEG and EOG signals. The system records and classifies EEG as alpha, beta, delta, and theta waves. The classified brain waves are then used to define the level of attention. The acceleration and deceleration or stopping of the robot is controlled based on the attention level of the wearer. In addition, the left and right movements of eye ball control the direction of the robot.

  15. The precision measurement and assembly for miniature parts based on double machine vision systems

    NASA Astrophysics Data System (ADS)

    Wang, X. D.; Zhang, L. F.; Xin, M. Z.; Qu, Y. Q.; Luo, Y.; Ma, T. M.; Chen, L.

    2015-02-01

    In the process of miniature parts' assembly, the structural features on the bottom or side of the parts often need to be aligned and positioned. The general assembly equipment integrated with one vertical downward machine vision system cannot satisfy the requirement. A precision automatic assembly equipment was developed with double machine vision systems integrated. In the system, a horizontal vision system is employed to measure the position of the feature structure at the parts' side view, which cannot be seen with the vertical one. The position measured by horizontal camera is converted to the vertical vision system with the calibration information. By careful calibration, the parts' alignment and positioning in the assembly process can be guaranteed. The developed assembly equipment has the characteristics of easy implementation, modularization and high cost performance. The handling of the miniature parts and assembly procedure were briefly introduced. The calibration procedure was given and the assembly error was analyzed for compensation.

  16. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  17. Crimping machine for the assembly of MC3347 and MC3352 isolators

    SciTech Connect

    Gress, A.V. Jr.

    1980-01-10

    A special lathe-type machine was designed and built to crimp the brass grounding cap to the steel spacer during the assembly of MC3347 and MC3352 isolators. The machine uses three rollers controlled by pneumatic and electronic circuitry to provide a semiautomatic cycle. All of the pressures and times associated with the operating parameters are adjustable and controllable.

  18. Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI

    PubMed Central

    Krach, Sören; Hegel, Frank; Wrede, Britta; Sagerer, Gerhard; Binkofski, Ferdinand; Kircher, Tilo

    2008-01-01

    Background When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. Methodology/Principal Findings By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computerrobotrobot

  19. Development of a truss joint for robotic assembly of space structures

    NASA Technical Reports Server (NTRS)

    Parma, George F.

    1992-01-01

    This report presents the results of a detailed study of mechanical fasteners which were designed to facilitate robotic assembly of structures. Design requirements for robotic structural assembly were developed, taking into account structural properties and overall system design, and four candidate fasteners were designed to meet them. These fasteners were built and evaluated in the laboratory, and the Hammer-Head joint was chosen as superior overall. It had a high reliability of fastening under misalignments of 2.54 mm (0.1 in) and 3 deg, the highest end fixity (2.18), the simplest end effector, an integral capture guide, good visual verification, and the lightest weight (782 g, 1.72 lb). The study found that a good design should incorporate chamfers sliding on chamfers, cylinders sliding on chamfers, and hard surface finishes on sliding surfaces. The study also comments on robot flexibility, sag, hysteresis, thermal expansion, and friction which were observed during the testing.

  20. An Effective Division of Labor Between Human and Robotic Agents Performing a Cooperative Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Bluethmann, William; Rochlis, Jennifer; Huber, Eric; Ambrose, Robert

    2003-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by human astronauts. These so-called extra-vehicular activities (EVAs) are risky, expensive and complex. Work is underway to develop a robotic astronaut's assistant that can help reduce human EVA time and workload by delivering human-like dexterous manipulation capabilities to any EVA worksite. An experiment is conducted to evaluate human-robot teaming strategies in the context of a simplified EVA assembly task in which Robonaut, a collaborative effort with the Defense Advanced Research Projects Agency (DARPA), an anthropomorphic robot works side-by-side with a human subject. Team performance is studied in an effort to identify the strengths and weaknesses of each teaming configuration and to recommend an appropriate division of labor. A shared control approach is developed to take advantage of the complementary strengths of the human teleoperator and robot, even in the presence of significant time delay.

  1. Theoretical method for calculating relative joint geometry of assembled robot arms

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1983-01-01

    Equations are developed to extract the relative joint parameters of an assembled robot arm. Specifically, the Denavit-Hartenberg parameters, which completely characterize the relative joint geometry, are calculated. These parameters are needed to control the hand of the robot arm by resolved rate. As an example, the parameter extraction equations are used with perfect simulated data (no measurement noise) obtained from a mathematical model of a six-degree-of-freedom robot arm. For an actual application, measurement data needed to estimate the relative joint parameters can be generated by moving a robot arm to different positions, measuring the location of the hand (or other extension) in base coordinates, and recording the corresponding joint angles.

  2. Modular robotic intelligence system based on fuzzy reasoning and state machine sequencing

    NASA Astrophysics Data System (ADS)

    Sights, B.; Ahuja, G.; Kogut, G.; Pacis, E. B.; Everett, H. R.; Fellars, D.; Hardjadinata, S.

    2007-04-01

    The fusion of multiple behavior commands and sensor data into intelligent and cohesive robotic movement has been the focus of robot research for many years. Sequencing low level behaviors to create high level intelligence has also been researched extensively. Cohesive robotic movement is also dependent on other factors, such as environment, user intent, and perception of the environment. In this paper, a method for managing the complexity derived from the increase in sensors and perceptions is described. Our system uses fuzzy logic and a state machine to fuse multiple behaviors into an optimal response based on the robot's current task. The resulting fused behavior is filtered through fuzzy logic based obstacle avoidance to create safe movement. The system also provides easy integration with any communications protocol, plug-and-play devices, perceptions, and behaviors. Most behaviors and the obstacle avoidance parameters are easily changed through configuration files. Combined with previous work in the area of navigation and localization a very robust autonomy suite is created.

  3. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.

    PubMed

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline; Sanchez, Justin C

    2012-01-01

    Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals. PMID:23366831

  4. Finite State Machine with Adaptive Electromyogram (EMG) Feature Extraction to Drive Meal Assistance Robot

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi

    Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.

  5. Performance characterization of precision micro robot using a machine vision system over the Internet for guaranteed positioning accuracy

    NASA Astrophysics Data System (ADS)

    Kwon, Yongjin; Chiou, Richard; Rauniar, Shreepud; Sosa, Horacio

    2005-11-01

    There is a missing link between a virtual development environment (e.g., a CAD/CAM driven offline robotic programming) and production requirements of the actual robotic workcell. Simulated robot path planning and generation of pick-and-place coordinate points will not exactly coincide with the robot performance due to lack of consideration in variations in individual robot repeatability and thermal expansion of robot linkages. This is especially important when robots are controlled and programmed remotely (e.g., through Internet or Ethernet) since remote users have no physical contact with robotic systems. Using the current technology in Internet-based manufacturing that is limited to a web camera for live image transfer has been a significant challenge for the robot task performance. Consequently, the calibration and accuracy quantification of robot critical to precision assembly have to be performed on-site and the verification of robot positioning accuracy cannot be ascertained remotely. In worst case, the remote users have to assume the robot performance envelope provided by the manufacturers, which may causes a potentially serious hazard for system crash and damage to the parts and robot arms. Currently, there is no reliable methodology for remotely calibrating the robot performance. The objective of this research is, therefore, to advance the current state-of-the-art in Internet-based control and monitoring technology, with a specific aim in the accuracy calibration of micro precision robotic system for the development of a novel methodology utilizing Ethernet-based smart image sensors and other advanced precision sensory control network.

  6. Characterization of robotics parallel algorithms and mapping onto a reconfigurable SIMD machine

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Lin, C. T.

    1989-01-01

    The kinematics, dynamics, Jacobian, and their corresponding inverse computations are six essential problems in the control of robot manipulators. Efficient parallel algorithms for these computations are discussed and analyzed. Their characteristics are identified and a scheme on the mapping of these algorithms to a reconfigurable parallel architecture is presented. Based on the characteristics including type of parallelism, degree of parallelism, uniformity of the operations, fundamental operations, data dependencies, and communication requirement, it is shown that most of the algorithms for robotic computations possess highly regular properties and some common structures, especially the linear recursive structure. Moreover, they are well-suited to be implemented on a single-instruction-stream multiple-data-stream (SIMD) computer with reconfigurable interconnection network. The model of a reconfigurable dual network SIMD machine with internal direct feedback is introduced. A systematic procedure internal direct feedback is introduced. A systematic procedure to map these computations to the proposed machine is presented. A new scheduling problem for SIMD machines is investigated and a heuristic algorithm, called neighborhood scheduling, that reorders the processing sequence of subtasks to reduce the communication time is described. Mapping results of a benchmark algorithm are illustrated and discussed.

  7. Control of robot manipulators for handling and assembly in space

    NASA Technical Reports Server (NTRS)

    Heer, E.; Bejczy, A. K.

    1983-01-01

    Long-range NASA planning includes construction and erection of large systems in space requiring automatic handling equipment, teleoperators, or robots under supervisory control. This paper investigates and explores some of the requirements for the control of teleoperated and autonomous space manipulators. The critical technology development areas are identified and discussed in the context of the developments at the Jet Propulsion Laboratory (JPL), and other places.

  8. Definition of large components assembled on-orbit and robot compatible mechanical joints

    NASA Technical Reports Server (NTRS)

    Williamsen, J.; Thomas, F.; Finckenor, J.; Spiegel, B.

    1990-01-01

    One of four major areas of project Pathfinder is in-space assembly and construction. The task of in-space assembly and construction is to develop the requirements and the technology needed to build elements in space. A 120-ft diameter tetrahedral aerobrake truss is identified as the focus element. A heavily loaded mechanical joint is designed to robotically assemble the defined aerobrake element. Also, typical large components such as habitation modules, storage tanks, etc., are defined, and attachment concepts of these components to the tetrahedral truss are developed.

  9. Analysis of large space structures assembly: Man/machine assembly analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.

  10. Shared robotic system: automated pipette calibration and pipette tip filter assembly

    SciTech Connect

    Addison, J.H. Jr.; Dyches, G.M.

    1985-01-01

    At the Savannah River Laboratory a Zymate Laboratory Automation System has been developed to perform two completely independent tasks within one work cell. One operation is the precise calibration of pipettes; the other is the assembly of a filter in a pipette tip. Since neither task requires full robot time, the shared system is an economical means of robotizing both processes. These are tedious, repetitive, time consuming tasks; and human operators fail to yield constant results. Automation insures a repeatable process which increases product quality.

  11. Optimal use of human and machine resources for Space Station assembly operations

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1988-01-01

    This paper investigates the issues involved in determining the best mix of human and machine resources for assembly of the Space Station. It presents the current Station assembly sequence, along with descriptions of the available assembly resources. A number of methodologies for optimizing the human/machine tradeoff problem have been developed, but the Space Station assembly offers some unique issues that have not yet been addressed. These include a strong constraint on available EVA time for early flights and a phased deployment of assembly resources over time. A methodology for incorporating the previously developed decision methods to the special case of the Space Station is presented. This methodology emphasizes an application of multiple qualitative and quantitative techniques, including simulation and decision analysis, for producing an objective, robust solution to the tradeoff problem.

  12. Knowledge-based process planning and line design in robotized assembly

    NASA Astrophysics Data System (ADS)

    Delchambre, Alain

    1991-03-01

    This paper describes the research accomplished by the Industrial Automation Department of CRIF/WTCM in the area of assembly system design. The goal of this project is the integration of the assembly process since the design of the product until the programmation of the assembly cell. The paper presents the structure of the resulting off- line programming system and details two of the most important automatic processes: (1) the assembly planner, and (2) the line design or station allocation. The specific knowledge and the common sense expertise are specified for each module. Several results are presented and discussed on the basis of a concrete case study: a subassembly of a working machine.

  13. Development and verification testing of automation and robotics for assembly of space structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1993-01-01

    A program was initiated within the past several years to develop operational procedures for automated assembly of truss structures suitable for large-aperture antennas. The assembly operations require the use of a robotic manipulator and are based on the principle of supervised autonomy to minimize crew resources. A hardware testbed was established to support development and evaluation testing. A brute-force automation approach was used to develop the baseline assembly hardware and software techniques. As the system matured and an operation was proven, upgrades were incorprated and assessed against the baseline test results. This paper summarizes the developmental phases of the program, the results of several assembly tests, the current status, and a series of proposed developments for additional hardware and software control capability. No problems that would preclude automated in-space assembly of truss structures have been encountered. The current system was developed at a breadboard level and continued development at an enhanced level is warranted.

  14. Interset: A natural language interface for teleoperated robotic assembly of the EASE space structure

    NASA Technical Reports Server (NTRS)

    Boorsma, Daniel K.

    1989-01-01

    A teleoperated robot was used to assemble the Experimental Assembly of Structures in Extra-vehicular activity (EASE) space structure under neutral buoyancy conditions, simulating a telerobot performing structural assembly in the zero gravity of space. This previous work used a manually controlled teleoperator as a test bed for system performance evaluations. From these results several Artificial Intelligence options were proposed. One of these was further developed into a real time assembly planner. The interface for this system is effective in assembling EASE structures using windowed graphics and a set of networked menus. As the problem space becomes more complex and hence the set of control options increases, a natural language interface may prove to be beneficial to supplement the menu based control strategy. This strategy can be beneficial in situations such as: describing the local environment, maintaining a data base of task event histories, modifying a plan or a heuristic dynamically, summarizing a task in English, or operating in a novel situation.

  15. Development of the Triple Theta assembly station with machine vision feedback

    SciTech Connect

    Schmidt, Derek William

    2008-01-01

    Increased requirements for tighter tolerances on assembled target components in complex three-dimensional geometries with only days to assemble complete campaigns require the implementation of a computer-controlled high-precision assembly station. Over the last year, an 11-axis computer-controlled assembly station has been designed and built with custom software to handle the multiple coordinate systems and automatically calculate all relational positions. Preliminary development efforts have also been done to explore the benefit of a machine vision feedback module with a dual-camera viewing system to automate certain basic features like crosshair calibration, component leveling, and component centering.

  16. Robotic Manufacturing of 5.5 Meter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's (NASA's) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA), the common bulkhead manufacturing development articles (CBMDA) and the thermal protection system demonstration dome (TPS Dome). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminumlithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. An overview of the manufacturing processes will be discussed. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) and the TPS Dome will also be highlighted. Each CBMDA and the TPS Dome consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. The TPS Dome has an additional aluminum alloy 2195 barrel section welded to the y-ring. Manufacturing solutions will be discussed including "fixtureless" welding with self reacting friction stir welding.

  17. MATERIAL PROCESSING FOR SELF-ASSEMBLING MACHINE SYSTEMS

    SciTech Connect

    K. LACKNER; D. BUTT; C. WENDT

    1999-06-01

    We are developing an important aspect of a new technology based on self-reproducing machine systems. Such systems could overcome resource limitations and control the deleterious side effects of human activities on the environment. Machine systems capable of building themselves promise an increase in industrial productivity as dramatic as that of the industrial revolution. To operate successfully, such systems must procure necessary raw materials from their surroundings. Therefore, next to automation, most critical for this new technology is the ability to extract important chemicals from readily available soils. In contrast to conventional metallurgical practice, these extraction processes cannot make substantial use of rare elements. We have designed a thermodynamically viable process and experimentally demonstrated most steps that differ from common practice. To this end we had to develop a small, disposable vacuum furnace system. Our work points to a viable extraction process.

  18. On the Applicability of Brain Reading for Predictive Human-Machine Interfaces in Robotics

    PubMed Central

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors. PMID:24358125

  19. On the applicability of brain reading for predictive human-machine interfaces in robotics.

    PubMed

    Kirchner, Elsa Andrea; Kim, Su Kyoung; Straube, Sirko; Seeland, Anett; Wöhrle, Hendrik; Krell, Mario Michael; Tabie, Marc; Fahle, Manfred

    2013-01-01

    The ability of today's robots to autonomously support humans in their daily activities is still limited. To improve this, predictive human-machine interfaces (HMIs) can be applied to better support future interaction between human and machine. To infer upcoming context-based behavior relevant brain states of the human have to be detected. This is achieved by brain reading (BR), a passive approach for single trial EEG analysis that makes use of supervised machine learning (ML) methods. In this work we propose that BR is able to detect concrete states of the interacting human. To support this, we show that BR detects patterns in the electroencephalogram (EEG) that can be related to event-related activity in the EEG like the P300, which are indicators of concrete states or brain processes like target recognition processes. Further, we improve the robustness and applicability of BR in application-oriented scenarios by identifying and combining most relevant training data for single trial classification and by applying classifier transfer. We show that training and testing, i.e., application of the classifier, can be carried out on different classes, if the samples of both classes miss a relevant pattern. Classifier transfer is important for the usage of BR in application scenarios, where only small amounts of training examples are available. Finally, we demonstrate a dual BR application in an experimental setup that requires similar behavior as performed during the teleoperation of a robotic arm. Here, target recognition processes and movement preparation processes are detected simultaneously. In summary, our findings contribute to the development of robust and stable predictive HMIs that enable the simultaneous support of different interaction behaviors. PMID:24358125

  20. Robotic Assembly of Truss Structures for Space Systems and Future Research Plans

    NASA Technical Reports Server (NTRS)

    Doggett, William

    2002-01-01

    Many initiatives under study by both the space science and earth science communities require large space systems, i.e. with apertures greater than 15 m or dimensions greater than 20 m. This paper reviews the effort in NASA Langley Research Center's Automated Structural Assembly Laboratory which laid the foundations for robotic construction of these systems. In the Automated Structural Assembly Laboratory reliable autonomous assembly and disassembly of an 8 meter planar structure composed of 102 truss elements covered by 12 panels was demonstrated. The paper reviews the hardware and software design philosophy which led to reliable operation during weeks of near continuous testing. Special attention is given to highlight the features enhancing assembly reliability.

  1. The art and science of self-assembling molecular machines

    NASA Astrophysics Data System (ADS)

    Gómez-López, Marcos; Preece, Jon A.; Fraser Stoddart, J.

    1996-09-01

    In this review, we show how noncovalent bonding interactions between 0957-4484/7/3/004/img1-electron rich aromatic ring systems (e.g. hydroquinone) and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) can be used to self-assemble novel molecular architectures which are not only interesting to us, because of their fascinating topologies, but also because they have the potential to be developed into molecular structures with switchable properties on the nanometre scale. The high efficiency observed in the self-assembly of a [2]catenane, and its dynamic properties in solution, represent the first step in the design and self-assembly of other molecular assemblies better suited for the study of molecular switching processes. Therefore, a series of [2]rotaxanes, mechanically-interlocked molecular compounds, consisting of a linear 0957-4484/7/3/004/img1-electron rich dumbbell-shaped component and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane as the cyclic component, have been self-assembled and evaluated. All of the so-called molecular shuttles show translational isomerism and one of them, comprising benzidine and biphenol recognition sites as the non-degenerate 0957-4484/7/3/004/img1-electron rich sites, shows molecular switching properties when it is perturbed by external stimuli, such as electrons and protons. The versatility of our approach to nanoscale molecular switches is proven by the description of a series of molecular assemblies and supramolecular arrays, consisting of 0957-4484/7/3/004/img1-electron rich and 0957-4484/7/3/004/img1-electron deficient components, which display molecular switching properties when they are influenced by external stimuli that are photochemical, electrochemical and/or chemical in nature. However, the molecular switching phenomena take place in the solution state. Therefore, finally we describe how simple molecular structures can be ordered on to a solid

  2. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    PubMed

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-01

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  3. Guidelines and rules for automated assembly by robots in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sadanand

    1992-01-01

    The development of an expert system for a 'Mechanical Design System' is discussed. Two different implementation approaches are described. One is coded in C, and the other is realized by a software package - 'Exsys.' The first method has the advantage of greater flexibility and quicker responses, while the latter one is easier to develop. This report discusses the feasible ways to establish a real mechanical intelligent design system applying artificial intelligence techniques so that the products designed by this system could best meet the requirements for space assembly.

  4. Remotely controlling of mobile robots using gesture captured by the Kinect and recognized by machine learning method

    NASA Astrophysics Data System (ADS)

    Hsu, Roy CHaoming; Jian, Jhih-Wei; Lin, Chih-Chuan; Lai, Chien-Hung; Liu, Cheng-Ting

    2013-01-01

    The main purpose of this paper is to use machine learning method and Kinect and its body sensation technology to design a simple, convenient, yet effective robot remote control system. In this study, a Kinect sensor is used to capture the human body skeleton with depth information, and a gesture training and identification method is designed using the back propagation neural network to remotely command a mobile robot for certain actions via the Bluetooth. The experimental results show that the designed mobile robots remote control system can achieve, on an average, more than 96% of accurate identification of 7 types of gestures and can effectively control a real e-puck robot for the designed commands.

  5. Human machine interface based on muscular and brain signals applied to a robotic wheelchair

    NASA Astrophysics Data System (ADS)

    Ferreira, A.; Silva, R. L.; Celeste, W. C.; Bastos Filho, T. F.; Sarcinelli Filho, M.

    2007-11-01

    This paper presents a Human-Machine Interface (HMI) based on the signals generated by eye blinks or brain activity. The system structure and the signal acquisition and processing are shown. The signals used in this work are either the signal associated to the muscular movement corresponding to an eye blink or the brain signal corresponding to visual information processing. The variance is the feature extracted from such signals in order to detect the intention of the user. The classification is performed by a variance threshold which is experimentally determined for each user during the training stage. The command options, which are going to be sent to the commanded device, are presented to the user in the screen of a PDA (Personal Digital Assistant). In the experiments here reported, a robotic wheelchair is used as the device being commanded.

  6. A Method for Estimating Costs and Benefits of Space Assembly and Servicing By Astronauts and Robots

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.; Benfield, Mark (Technical Monitor)

    2002-01-01

    One aspect of designing future space missions is to determine whether Space Assembly and Servicing (SAS) is useful and, if so, what combination of robots and astronauts provides the most effective means of accomplishing it. Certain aspects of these choices, such as the societal value of developing the means for humans to live in space, do not lend themselves to quantification. However, other SAS costs and benefits can be quantified in a manner that can help select the most cost-effective SAS approach. Any space facility, whether it is assembled and serviced or not, entails an eventual replacement cost due to wear and obsolescence. Servicing can reduce this cost by limiting replacement to only failed or obsolete components. However, servicing systems, such as space robots, have their own logistics cost, and astronauts can have even greater logistics requirements. On the other hand, humans can be more capable than robots at performing dexterous and unstructured tasks, which can reduce logistics costs by allowing a reduction in mass of replacement components. Overall, the cost-effectiveness of astronaut SAS depends on its efficiency; and, if astronauts have to be wholly justified by their servicing usefulness, then the serviced space facility has to be large enough to fully occupy them.

  7. Applications of artificial intelligence 1993: Machine vision and robotics; Proceedings of the Meeting, Orlando, FL, Apr. 14-16, 1993

    SciTech Connect

    Boyer, K.L.; Stark, L.

    1993-01-01

    Various levels of machine vision and robotics are addressed, including object recognition, image feature extraction, active vision, stereo and matching, range image acquisition and analysis, sensor models, motion and path planning, and software environments. Papers are presented on integration of geometric and nongeometric attributes for fast object recognition, a four-degree-of-freedom robot head for active computer vision, shape reconstruction from shading with perspective projection, fast extraction of planar surfaces from range images, and real-time reconstruction and rendering of three-dimensional occupancy maps.

  8. Machine platform and software environment for rapid optics assembly process development

    NASA Astrophysics Data System (ADS)

    Sauer, Sebastian; Müller, Tobias; Haag, Sebastian; Zontar, Daniel

    2016-03-01

    The assembly of optical components for laser systems is proprietary knowledge and typically done by well-trained personnel in clean room environment as it has major impact on the overall laser performance. Rising numbers of laser systems drives laser production to industrial-level automation solutions allowing for high volumes by simultaneously ensuring stable quality, lots of variants and low cost. Therefore, an easy programmable, expandable and reconfigurable machine with intuitive and flexible software environment for process configuration is required. With Fraunhofer IPT's expertise on optical assembly processes, the next step towards industrializing the production of optical systems is made.

  9. Integrating robotic action with biologic perception: A brain-machine symbiosis theory

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Babak

    In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and

  10. Efficient assembly of threaded molecular machines for sequence-specific synthesis.

    PubMed

    De Bo, Guillaume; Kuschel, Sonja; Leigh, David A; Lewandowski, Bartosz; Papmeyer, Marcus; Ward, John W

    2014-04-16

    We report on an improved strategy for the preparation of artificial molecular machines that can pick up and assemble reactive groups in sequence by traveling along a track. In the new approach a preformed rotaxane synthon is attached to the end of an otherwise fully formed strand of building blocks. This "rotaxane-capping" protocol is significantly more efficient than the "final-step-threading" method employed previously and enables the synthesis of threaded molecular machines that operate on extended oligomer, and potentially polymer, tracks. The methodology is exemplified through the preparation of a machine that adds four amino acid building blocks from a strand in sequence, featuring up to 20-membered ring native chemical ligation transition states. PMID:24678971

  11. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  12. Parallel robot for micro assembly with integrated innovative optical 3D-sensor

    NASA Astrophysics Data System (ADS)

    Hesselbach, Juergen; Ispas, Diana; Pokar, Gero; Soetebier, Sven; Tutsch, Rainer

    2002-10-01

    Recent advances in the fields of MEMS and MOEMS often require precise assembly of very small parts with an accuracy of a few microns. In order to meet this demand, a new approach using a robot based on parallel mechanisms in combination with a novel 3D-vision system has been chosen. The planar parallel robot structure with 2 DOF provides a high resolution in the XY-plane. It carries two additional serial axes for linear and rotational movement in/about z direction. In order to achieve high precision as well as good dynamic capabilities, the drive concept for the parallel (main) axes incorporates air bearings in combination with a linear electric servo motors. High accuracy position feedback is provided by optical encoders with a resolution of 0.1 μm. To allow for visualization and visual control of assembly processes, a camera module fits into the hollow tool head. It consists of a miniature CCD camera and a light source. In addition a modular gripper support is integrated into the tool head. To increase the accuracy a control loop based on an optoelectronic sensor will be implemented. As a result of an in-depth analysis of different approaches a photogrammetric system using one single camera and special beam-splitting optics was chosen. A pattern of elliptical marks is applied to the surfaces of workpiece and gripper. Using a model-based recognition algorithm the image processing software identifies the gripper and the workpiece and determines their relative position. A deviation vector is calculated and fed into the robot control to guide the gripper.

  13. Epilogue to Special Issue on Developmental Robotics: Can Experiments with Machines Inform Theory in Infant Development?

    ERIC Educational Resources Information Center

    Prince, Christopher G.

    2008-01-01

    Developmental robotics has forwarded a range of models of development and behaviours. With the variety of systems that have been created, and with some of these approximating prominent human behaviours (e.g. joint attention, word learning, imitation), one may argue that developmental robotics has started to go past robotic models of earwigs…

  14. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  15. An Improved Kernel Based Extreme Learning Machine for Robot Execution Failures

    PubMed Central

    Li, Bin; Rong, Xuewen; Li, Yibin

    2014-01-01

    Robot execution failures prediction (classification) in the robot tasks is a difficult learning problem due to partially corrupted or incomplete measurements of data and unsuitable prediction techniques for this prediction problem with little learning samples. Therefore, how to predict the robot execution failures problem with little (incomplete) or erroneous data deserves more attention in the robot field. For improving the prediction accuracy of robot execution failures, this paper proposes a novel KELM learning algorithm using the particle swarm optimization approach to optimize the parameters of kernel functions of neural networks, which is called the AKELM learning algorithm. The simulation results with the robot execution failures datasets show that, by optimizing the kernel parameters, the proposed algorithm has good generalization performance and outperforms KELM and the other approaches in terms of classification accuracy. Other benchmark problems simulation results also show the efficiency and effectiveness of the proposed algorithm. PMID:24977234

  16. An improved kernel based extreme learning machine for robot execution failures.

    PubMed

    Li, Bin; Rong, Xuewen; Li, Yibin

    2014-01-01

    Robot execution failures prediction (classification) in the robot tasks is a difficult learning problem due to partially corrupted or incomplete measurements of data and unsuitable prediction techniques for this prediction problem with little learning samples. Therefore, how to predict the robot execution failures problem with little (incomplete) or erroneous data deserves more attention in the robot field. For improving the prediction accuracy of robot execution failures, this paper proposes a novel KELM learning algorithm using the particle swarm optimization approach to optimize the parameters of kernel functions of neural networks, which is called the AKELM learning algorithm. The simulation results with the robot execution failures datasets show that, by optimizing the kernel parameters, the proposed algorithm has good generalization performance and outperforms KELM and the other approaches in terms of classification accuracy. Other benchmark problems simulation results also show the efficiency and effectiveness of the proposed algorithm. PMID:24977234

  17. A three-fingered, touch-sensitive, metrological micro-robotic assembly tool

    NASA Astrophysics Data System (ADS)

    Torralba, Marta; Hastings, D. J.; Thousand, Jeffery D.; Nowakowski, Bartosz K.; Smith, Stuart T.

    2015-12-01

    This article describes a metrological, robotic hand to manipulate and measure micrometer size objects. The presented work demonstrates not only assembly operations, but also positioning control and metrology capability. Sample motion is achieved by a commercial positioning stage, which provides XYZ-displacements for assembly of components. A designed and manufactured gripper tool that incorporates 21 degrees-of-freedom for independent alignment of actuators, sensors, and the three fingers of this hand is presented. These fingers can be opened and closed by piezoelectric actuators through levered flexures providing an 80 μm displacement range measured with calibrated opto-interrupter based, knife-edge sensors. The operational ends of the fingers comprise of a quartz tuning fork with a 7 μm diameter 3.2 mm long carbon fiber extending from the end of one tuning fork tine. Finger-tip force-sensing is achieved by the monitoring of individual finger resonances typically at around 32 kHz. Experimental results included are focused on probe performance analysis. Pick and place operation using the three fingers is demonstrated with all fingers being continuously oscillated, a capability not possible with the previous single or two finger tweezer type designs. By monitoring electrical feedback during pick and place operations, changes in the response of the three probes demonstrate the ability to identify both grab and release operations. Component metrology has been assessed by contacting different micro-spheres of diameters 50(±7.5) μm, 135(±20) μm, and 140(±20) μm. These were measured by the micro robot to have diameters of 67, 133, and 126 μm respectively with corresponding deviations of 4.2, 4.9, and 4.3 μm. This deviation in the measured results was primarily due to the manual, joystick-based, contacting of the fingers, difficulties associated with centering the components to the axis of the hand, and lower contact sensitivity for the smallest sphere

  18. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, Melvin; Cottingham, James G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped.

  19. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction

    PubMed Central

    2010-01-01

    Background With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps. Results We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies. Conclusions Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly. PMID:20078885

  20. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, William K.

    1992-12-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  1. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, William K.

    1992-01-01

    In the future, some spacecraft will be so large that they must be assembled on-orbit. These spacecraft will be used for such tasks as manned missions to Mars or used as orbiting platforms for monitoring the Earth or observing the universe. Some large spacecraft will probably consist of planar truss structures to which will be attached special purpose, self-contained modules. The modules will most likely be taken to orbit fully outfitted and ready for use in heavy-lift launch vehicles. The truss members will also similarly be taken to orbit, but most unassembled. The truss structures will need to be assembled robotically because of the high costs and risks of extra-vehicular activities. Some missions will involve very large loads. To date, very few structures of any kind have been constructed in space. Two relatively simple trusses were assembled in the Space Shuttle bay in late 1985. Here the development of a design of a welded joint for on-orbit, robotic truss assembly is described. Mechanical joints for this application have been considered previously. Welded joints have the advantage of allowing the truss members to carry fluids for active cooling or other purposes. In addition, welded joints can be made more efficient structurally than mechanical joints. Also, welded joints require little maintenance (will not shake loose), and have no slop which would cause the structure to shudder under load reversal. The disadvantages of welded joints are that a more sophisticated assembly robot is required, weld flaws may be difficult to detect on-orbit, the welding process is hazardous, and welding introduces contamination to the environment. In addition, welded joints provide less structural damping than do mechanical joints. Welding on-orbit was first investigated aboard a Soyuz-6 mission in 1969 and then during a Skylab electron beam welding experiment in 1973. A hand held electron beam welding apparatus is currently being prepared for use on the MIR space station

  2. Robots: Fantasy and Reality

    SciTech Connect

    Calder, Neil

    2007-04-27

    A irreverent non-technical review of the history of surprisingly animate machines, from ancient Egypt to current times. Areas include teleoperators for hazardous environments, assembly systems, medical applications, entertainment, and science fiction. The talk has over 100 slides, covering such varied topics as Memnon son of Dawn, Droz's automata, Vaucanson's duck, cathedral clocks, Von Kempelen's chess player, household robots, Asimov's laws, Disneyland, dinosaurs, and movie droids and cyborgs.

  3. Characterization of a stalled complex on the β-barrel assembly machine.

    PubMed

    Lee, James; Xue, Mingyu; Wzorek, Joseph S; Wu, Tao; Grabowicz, Marcin; Gronenberg, Luisa S; Sutterlin, Holly A; Davis, Rebecca M; Ruiz, Natividad; Silhavy, Thomas J; Kahne, Daniel E

    2016-08-01

    The assembly of β-barrel proteins into membranes is mediated by an evolutionarily conserved machine. This process is poorly understood because no stable partially folded barrel substrates have been characterized. Here, we slowed the folding of the Escherichia coli β-barrel protein, LptD, with its lipoprotein plug, LptE. We identified a late-stage intermediate in which LptD is folded around LptE, and both components interact with the two essential β-barrel assembly machine (Bam) components, BamA and BamD. We propose a model in which BamA and BamD act in concert to catalyze folding, with the final step in the process involving closure of the ends of the barrel with release from the Bam components. Because BamD and LptE are both soluble proteins, the simplest model consistent with these findings is that barrel folding by the Bam complex begins in the periplasm at the membrane interface. PMID:27439868

  4. Classification of large-scale stellar spectra based on the non-linearly assembling learning machine

    NASA Astrophysics Data System (ADS)

    Liu, Zhongbao; Song, Lipeng; Zhao, Wenjuan

    2016-02-01

    An important problem to be solved of traditional classification methods is they cannot deal with large-scale classification because of very high time complexity. In order to solve above problem, inspired by the thinking of collaborative management, the non-linearly assembling learning machine (NALM) is proposed and used in the large-scale stellar spectral classification. In NALM, the large-scale dataset is firstly divided into several subsets, and then the traditional classifiers such as support vector machine (SVM) runs on the subset, finally, the classification results on each subset are assembled and the overall classification decision is obtained. In comparative experiments, we investigate the performance of NALM in the stellar spectral subclasses classification compared with SVM. We apply SVM and NALM respectively to classify the four subclasses of K-type spectra, three subclasses of F-type spectra and three subclasses of G-type spectra from Sloan Digital Sky Survey (SDSS). The comparative experiment results show that the performance of NALM is much better than SVM in view of the classification accuracy and the computation time.

  5. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  6. End-effector for robotic assembly of welded truss structures in space

    NASA Technical Reports Server (NTRS)

    Brewer, William V.

    1991-01-01

    In June 1987, work was initiated at LaRC on end-effectors and preloaded joints for robotic truss assembly. This is part of an on-going research effort centered on a test facility that assembles 1 inch x 2 m identical struts into an 8 m diameter x 1.5 m deep platform truss. A detailed description of the test facility was published. The end-effector being used for the LaRC assembly demonstration is quite suitable for the Precision Segmented Reflector or other precision applications. These require high stiffness provided by mechanical joint preloads. Stiffness obtained in this manner is only required and provided over a load range far less than the ultimate strength of the strut tubes. Beyond this useful range, truss behavior is somewhat unpredictable. Mechanically preloaded joints of this type are less suitable for applications such as the Aero Brake where predictable strength and stiffness are required over a greater fraction of the load bearing capacity of component parts. Preliminary studies of the Aerobrake support truss indicate that struts of at least 3 different diameters and various lengths would improve performance. The double-ended end-effector currently in service is designed for only one diameter and length. Anticipated single-ended versions can accommodate varying lengths but not multiple diameters. Tradeoff considerations for welded joints relative to their mechanically preloaded counterparts are presented. Conclusions from this research are as follows: (1) repair by cut and re-weld on the original weld site should be research; (2) welded joints, though repairable, should not be used where high repair frequencies are anticipated; and (3) welded joints should be considered for an Aero Brake truss.

  7. A Study on Improvement of Machining Precision in a Medical Milling Robot

    NASA Astrophysics Data System (ADS)

    Sugita, Naohiko; Osa, Takayuki; Nakajima, Yoshikazu; Mori, Masahiko; Saraie, Hidenori; Mitsuishi, Mamoru

    Minimal invasiveness and increasing of precision have recently become important issues in orthopedic surgery. The femur and tibia must be cut precisely for successful knee arthroplasty. The recent trend towards Minimally Invasive Surgery (MIS) has increased surgical difficulty since the incision length and open access area are small. In this paper, the result of deformation analysis of the robot and an active compensation method of robot deformation, which is based on an error map, are proposed and evaluated.

  8. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  9. Graph certificates, lookahead in dynamic graph problems, and assembly planning in robotics

    SciTech Connect

    Khanna, S.; Motwani, R.; Wilson, R.H.

    1994-12-31

    Despite intensive efforts in the area of dynamic graph algorithms, no efficient algorithms are known for the dynamic versions of some basic graph problems such as strong connectivity and transitive closure. We provide some explanation for this lack of success by presenting quadratic lower bounds on the strong certificate complexity of such problems, thereby establishing the inapplicability of the only known general technique for designing dynamic graph algorithms, viz., sparsification. These results also provide evidence of the inherent intractability of such dynamic graph problems. Some of our results are based on a general technique for obtaining lower bounds on the strong certificate complexity for a class of graph properties by establishing a relationship with the witness complexity. In many real applications of dynamic graph problems, a certain amount of lookahead is available. Specifically, we consider the problems of assembly planning in robotics and the maintenance of relations in databases which, respectively, give rise to dynamic strong connectivity and transitive closure. We exploit the (naturally available) lookahead in these two applications to circumvent the inherent complexity of the dynamic graph problems. We propose a variant of sparsification, viz., lookahead based sparsification, and apply it to obtain the first efficient fully dynamic algorithms for strong connectivity and transitive closure.

  10. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    DOEpatents

    Lindner, M.; Cottingham, J.G.

    1996-03-12

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines is disclosed having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. The retainer spring is generally triangular shaped to fit within the interpole space, and the wedge is generally T-shaped. 6 figs.

  11. Design of a Versatile, Teleoperable, Towable Lifting Machine with Robotic Capabilities for Use in Nasa's Lunar Base Operations

    NASA Technical Reports Server (NTRS)

    Harris, Elizabeth; Ogle, James; Schoppe, Dean

    1989-01-01

    The lifting machine will assist in lifting cargo off of landers sent to the Moon and in the construction of a lunar base. Three possible designs were considered for the overall configuration of the lifting machine: the variable angle crane, the tower crane, and the gantry crane. Alternate designs were developed for the major components of the lifting machine. A teleoperable, variable angle crane was chosen as its final design. The design consists of a telescoping boom mounted to a chassis that is supported by two conical wheels for towing and four outriggers for stability. Attached to the end of the boom is a seven degree of freedom robot arm for light, dexterous, lifting operations. A cable and hook suspends from the end of the boom for heavy, gross, lifting operations. Approximate structural sizes were determined for the lifter and its components. However, further analysis is needed to determine the optimum design dimensions. The design team also constructed a model of the design which demonstrates its features and operating principals.

  12. From Sci-Fi to Reality--Mobile Robots Get the Job Done

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2006-01-01

    Robots are simply computers that can interact with their environment. Some are fixed in place in industrial assembly plants for cars, appliances, micro electronic circuitry, and pharmaceuticals. Another important category of robots is the mobiles, machines that can be driven to the workplace, often designed for hazardous duty operation or…

  13. Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines

    SciTech Connect

    Lindner, M.; Cottingham, J.G.

    1994-12-31

    A wedge and spring assembly for use in electromagnets or dynamoelectric machines having a housing with an axis therethrough and a plurality of coils supported on salient poles that extend radially inward from the housing toward the housing axis to define a plurality of interpole spaces, respectively between the housing and adjacent coils, the interpole spaces each extending in a direction generally parallel to the housing axis. The wedge and spring assembly includes a nonmagnetic retainer spring and a nonmagnetic wedge. The retainer spring is formed to fit into one of the interpole spaces, and has juxtaposed ends defining between them a slit extending in a direction generally parallel to the housing axis. The wedge for insertion into the slit provides an outwardly directed force on respective portions of the juxtaposed ends defining the slit to expand the slit so that respective portions of the retainer spring engage areas of the coils adjacent thereto, thereby resiliently holding the coils against their respective salient poles. Preferably, the spring retainer and wedge are self-locking wherein wedge is fabricated from a material softer than a material the retainer spring is fabricated from, so that the wedge is securely retained in the slit. The retainer spring is generally triangular shaped to fit within the interpole space and fabricated from berryllium-copper alloy, and the wedge is generally T-shaped and fabricated from aluminum. Alternatively, a wedge and spring assembly includes a wedge having divergent sloped surfaces in which each surface and the respective juxtaposed ends of the retainer spring are angled relative to one another so that the wedge is securely retained in the slit by friction existing between its sloped surfaces and the juxtaposed ends of the retaining spring.

  14. Characterization and mapping of very fine particles in an engine machining and assembly facility.

    PubMed

    Heitbrink, William A; Evans, Douglas E; Peters, Thomas M; Slavin, Thomas J

    2007-05-01

    Very fine particle number and mass concentrations were mapped in an engine machining and assembly facility in the winter and summer. A condensation particle counter (CPC) was used to measure particle number concentrations in the 0.01 microm to 1 microm range, and an optical particle counter (OPC) was used to measure particle number concentrations in 15 channels between 0.3 microm and 20 microm. The OPC measurements were used to estimate the respirable mass concentration. Very fine particle number concentrations were estimated by subtracting the OPC particle number concentrations from 0.3 microm to 1 microm from the CPC number concentrations. At specific locations during the summer visit, an electrical low pressure impactor was used to measure particle size distribution from 0.07 microm to 10 microm in 12 channels. The geometric mean ratio of respirable mass concentration estimated from the OPC to the gravimetrically measured mass concentration was 0.66 with a geometric standard deviation of 1.5. Very fine particle number concentrations in winter were substantially greater where direct-fire natural gas heaters were operated (7.5 x 10(5) particles/cm(3)) than where steam was used for heat (3 x 10(5) particles/cm(3)). During summer when heaters were off, the very fine particle number concentrations were below 10(5) particles/cm(3), regardless of location. Elevated very fine particle number concentrations were associated with machining operations with poor enclosures. Whereas respirable mass concentrations did not vary noticeably with season, they were greater in areas with poorly fitting enclosures (0.12 mg/m(3)) than in areas where state-of-the-art enclosures were used (0.03 mg/m(3)). These differences were attributed to metalworking fluid mist that escaped from poorly fitting enclosures. Particles generated from direct-fire natural gas heater operation were very small, with a number size distribution modal diameter of less than 0.023 microm. Aerosols generated by

  15. Extending the Evolutionary Robotics approach to flying machines: an application to MAV teams.

    PubMed

    Ruini, Fabio; Cangelosi, Angelo

    2009-01-01

    The work presented in this article focuses on the use of embodied neural networks--developed through Evolutionary Robotics and Multi-Agent Systems methodologies--as autonomous distributed controllers for Micro-unmanned Aerial Vehicle (MAV) teams. The main aim of the research is to extend the range of domains that could be successfully tackled by the Evolutionary Robotics approach. The flying robots realm is an area that has not been yet thoroughly investigated by this discipline. This is due to the lack of an affordable and reliable robotic platform to use for carrying out experiments, and to the difficulty and the high computational load involved in experiments based upon a realistic software simulator for aircraft. We believe that the most recent improvements to the state of the art now permit the investigation of this domain. For demonstrating this point, two different evolutionary computer simulation models are presented in this article. The first model, which uses a simplified 2D test environment, has resulted in controllers evolved with the following capabilities: (1) navigation through unknown environments, (2) obstacle-avoidance, (3) tracking of a movable target, and (4) execution of cooperative and coordinated behaviors based on implicit communication strategies. In order to improve the robustness of these results and their potential use in real MAV teams, a more sophisticated 3D model is presented herein. The results obtained so far using the two models demonstrate the feasibility of the chosen approach for further research on the design of autonomous controllers for MAVs. PMID:19595566

  16. Ghost-in-the-Machine reveals human social signals for human–robot interaction

    PubMed Central

    Loth, Sebastian; Jettka, Katharina; Giuliani, Manuel; de Ruiter, Jan P.

    2015-01-01

    We used a new method called “Ghost-in-the-Machine” (GiM) to investigate social interactions with a robotic bartender taking orders for drinks and serving them. Using the GiM paradigm allowed us to identify how human participants recognize the intentions of customers on the basis of the output of the robotic recognizers. Specifically, we measured which recognizer modalities (e.g., speech, the distance to the bar) were relevant at different stages of the interaction. This provided insights into human social behavior necessary for the development of socially competent robots. When initiating the drink-order interaction, the most important recognizers were those based on computer vision. When drink orders were being placed, however, the most important information source was the speech recognition. Interestingly, the participants used only a subset of the available information, focussing only on a few relevant recognizers while ignoring others. This reduced the risk of acting on erroneous sensor data and enabled them to complete service interactions more swiftly than a robot using all available sensor data. We also investigated socially appropriate response strategies. In their responses, the participants preferred to use the same modality as the customer’s requests, e.g., they tended to respond verbally to verbal requests. Also, they added redundancy to their responses, for instance by using echo questions. We argue that incorporating the social strategies discovered with the GiM paradigm in multimodal grammars of human–robot interactions improves the robustness and the ease-of-use of these interactions, and therefore provides a smoother user experience. PMID:26582998

  17. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Application of ARAMIS capabilities to space project functional elements

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities and their related ground support functions are studied, so that informed decisions can be made on which aspects of ARAMIS to develop. The specific tasks which will be required by future space project tasks are identified and the relative merits of these options are evaluated. The ARAMIS options defined and researched span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  18. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control.

    PubMed

    Ma, Jiaxin; Zhang, Yu; Cichocki, Andrzej; Matsuno, Fumitoshi

    2015-03-01

    This study presents a novel human-machine interface (HMI) based on both electrooculography (EOG) and electroencephalography (EEG). This hybrid interface works in two modes: an EOG mode recognizes eye movements such as blinks, and an EEG mode detects event related potentials (ERPs) like P300. While both eye movements and ERPs have been separately used for implementing assistive interfaces, which help patients with motor disabilities in performing daily tasks, the proposed hybrid interface integrates them together. In this way, both the eye movements and ERPs complement each other. Therefore, it can provide a better efficiency and a wider scope of application. In this study, we design a threshold algorithm that can recognize four kinds of eye movements including blink, wink, gaze, and frown. In addition, an oddball paradigm with stimuli of inverted faces is used to evoke multiple ERP components including P300, N170, and VPP. To verify the effectiveness of the proposed system, two different online experiments are carried out. One is to control a multifunctional humanoid robot, and the other is to control four mobile robots. In both experiments, the subjects can complete tasks effectively by using the proposed interface, whereas the best completion time is relatively short and very close to the one operated by hand. PMID:25398172

  19. Robust human machine interface based on head movements applied to assistive robotics.

    PubMed

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877

  20. Robust Human Machine Interface Based on Head Movements Applied to Assistive Robotics

    PubMed Central

    Perez, Elisa; López, Natalia; Orosco, Eugenio; Soria, Carlos; Mut, Vicente; Freire-Bastos, Teodiano

    2013-01-01

    This paper presents an interface that uses two different sensing techniques and combines both results through a fusion process to obtain the minimum-variance estimator of the orientation of the user's head. Sensing techniques of the interface are based on an inertial sensor and artificial vision. The orientation of the user's head is used to steer the navigation of a robotic wheelchair. Also, a control algorithm for assistive technology system is presented. The system is evaluated by four individuals with severe motors disability and a quantitative index was developed, in order to objectively evaluate the performance. The results obtained are promising since most users could perform the proposed tasks with the robotic wheelchair. PMID:24453877

  1. Tubulin-specific Chaperones: Components of a Molecular Machine that Assembles the α/β Heterodimer

    PubMed Central

    Tian, Guoling; Cowan, Nicholas J.

    2016-01-01

    The tubulin heterodimer consists of one α- and one β-tubulin polypeptide. Neither protein can partition to the native state or assemble into polymerization competent heterodimers without the concerted action of a series of chaperone proteins including five tubulin-specific chaperones termed TBCA-TBCE. TBCA and TBCB bind to and stabilize newly synthesized quasi-native β- and α-tubulin polypeptides following their generation via multiple rounds of ATP-dependent interaction with the cytosolic chaperonin, CCT. There is free exchange β-tubulin between TBCA and TBCD, and of α-tubulin between TBCB and TBCE, resulting in the formation of TBCD/β and TBCE/α, respectively. The latter two complexes interact, forming a supercomplex (TBCD/α/TBCD/β). Discharge of the native α/β heterodimer occurs via interaction of the supercomplex with TBCC, which results in the triggering of TBC-bound β-tubulin-bound (E-site) GTP hydrolysis. This reaction acts as a switch for disassembly of the supercomplex and the release of GDP-bound heterodimer, which becomes polymerization competent following spontaneous E-site exchange with GTP. The tubulin-specific chaperones thus function together as a tubulin assembly machine, marrying the α- and β-tubulin subunits into a tightly associated heterodimer. The existence of this evolutionarily conserved pathway explains why it has never proved possible to isolate α- or β-tubulin as stable independent entities in the absence of their cognate partners, and implies that each exists and is maintained in the heterodimer in a non-minimal energy state. Here we describe methods for the purification of recombinant TBC’s as biologically active proteins following their expression in a variety of host/vector systems. PMID:23973072

  2. Robotic Manufacturing of 18-ft (5.5m) Diameter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket was the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's Constellation program. A series of full-scale Ares I development articles were constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7- axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This paper will focus on the friction stir welding of 18-ft (5.5m) diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome and two common bulkhead manufacturing development articles.

  3. ISS-based Development of Elements and Operations for Robotic Assembly of A Space Solar Power Collector

    NASA Technical Reports Server (NTRS)

    Valinia, Azita; Moe, Rud; Seery, Bernard D.; Mankins, John C.

    2013-01-01

    We present a concept for an ISS-based optical system assembly demonstration designed to advance technologies related to future large in-space optical facilities deployment, including space solar power collectors and large-aperture astronomy telescopes. The large solar power collector problem is not unlike the large astronomical telescope problem, but at least conceptually it should be easier in principle, given the tolerances involved. We strive in this application to leverage heavily the work done on the NASA Optical Testbed Integration on ISS Experiment (OpTIIX) effort to erect a 1.5 m imaging telescope on the International Space Station (ISS). Specifically, we examine a robotic assembly sequence for constructing a large (meter diameter) slightly aspheric or spherical primary reflector, comprised of hexagonal mirror segments affixed to a lightweight rigidizing backplane structure. This approach, together with a structured robot assembler, will be shown to be scalable to the area and areal densities required for large-scale solar concentrator arrays.

  4. Human Assisted Assembly Processes

    SciTech Connect

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  5. Factors influencing design and selection of GTAW robotic welding machines for the Space Shuttle main engine

    NASA Technical Reports Server (NTRS)

    Flanigan, L.

    1986-01-01

    Proposed hardware and software for microprocessor-controlled power supplies and welding machines are described. The application of the automatic seven-axis welding machine, which is to be preprogrammed to allow minimum intervention by the welding operator during the actual process, to the welding of the Space Shuttle main engine is discussed. The production requirements for the gas tungsten arc welds for the Space Shuttle main engine are examined. Consideration is given to positioner design, welding variables, inert shielding gas management, filler metal wire control, the up loading and down loading of data from off-line computers, process improvements, tooling, the welding variable library, and adaptive sensor control.

  6. Manned Mars Mission on-orbit operations metric development. [astronaut and robot performance in spacecraft orbital assembly

    NASA Technical Reports Server (NTRS)

    Gorin, Barney F.

    1990-01-01

    This report describes the effort made to develop a scoring system, or metric, for comparing astronaut Extra Vehicular Activity with various robotic options for the on-orbit assembly of a very large spacecraft, such as would be needed for a Manned Mars Mission. All trade studies comparing competing approaches to a specific task involve the use of some consistent and unbiased method for assigning a score, or rating factor, to each concept under consideration. The relative scores generated by the selected rating system provide the tool for deciding which of the approaches is the most desirable.

  7. End-effector: Joint conjugates for robotic assembly of large truss structures in space: Extended concepts

    NASA Technical Reports Server (NTRS)

    Brewer, W. V.; Rasis, E. P.; Shih, H. R.

    1993-01-01

    Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.

  8. End-effector: Joint conjugates for robotic assembly of large truss structures in space: Extended concepts

    NASA Astrophysics Data System (ADS)

    Brewer, W. V.; Rasis, E. P.; Shih, H. R.

    1993-06-01

    Results from NASA/HBCU Grant No. NAG-1-1125 are summarized. Designs developed for model fabrication, exploratory concepts drafted, interface of computer with robot and end-effector, and capability enhancement are discussed.

  9. End-effector - joint conjugates for robotic assembly of large truss structures in space: A second generation

    NASA Technical Reports Server (NTRS)

    Brewer, W. V.

    1988-01-01

    Current designs, a first generation intended for robotic assembly, have given priority to the ease and certainty of the assembly process under less than ideal conditions with a minimum of sensory feedback. As a consequence they are either heavy or expensive and all exhibit a relatively low packaging density. Low packaging density is caused by extensive scars applied to the node, increasing its envelope diameter by as much as 150 percent. Strut envelopes are violated to a lessor extent with diameters increased by 25 percent or more. This smaller percentage is still a significant problem owing to a much higher fraction of the packaged volume represented by struts. As structures in space become larger, packaging density becomes an important consideration. The objective is to develop end-effector-joint conjugates that do not violate the envelopes of a 2.5 inch diameter node or a 1.0 inch diameter strut.

  10. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    DOEpatents

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  11. Flip-chip electronic system assembly process and issues for the NanoWalker: a small wireless autonomous instrumented robot

    NASA Astrophysics Data System (ADS)

    Martel, Sylvain M.; Riley, George A.; Merchant, Monisha; Hunter, Ian W.; Lafontaine, Serge

    1999-08-01

    The integration of complex electronic systems onto small- scale robots requires advanced assembly methods. The NanoWalker is an example of such a robot where a large amount of electronics must be embedded in the smallest possible space. To make a space-efficient implementation, electronic chips are mounted using flip chip technology on a pre-bumped flexible printed circuit (FPC). A 3D structure is obtained by mounting the FPC vertically in a triangular fashion above a tripod built with three small piezo-actuated legs used for the walking and rotational motions. Advanced computer aided design systems are used for the design and to generate manufacturing files. Unlike other commercial products such as cellular phones, watches, pagers, cameras, and disk drives that use flip chip technology to achieve the smallest form factor, the assembly process of the NanoWalker is directly dependent on other characteristics of the system. Minimization of coupling noises through proper FPC layout and die placement within temperature constraints due to the proximity of sensitive instrument was a critical factor. The effect of vibration caused by the piezo- actuators and the weight of each die were also other important issues to consider to determine the final placement in order to maintain proper sub-atomic motion behavior.

  12. Robotics

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.

    2012-01-01

    Earth's upper atmosphere is an extreme environment: dry, cold, and irradiated. It is unknown whether our aerobiosphere is limited to the transport of life, or there exist organisms that grow and reproduce while airborne (aerophiles); the microenvironments of suspended particles may harbor life at otherwise uninhabited altitudes[2]. The existence of aerophiles would significantly expand the range of planets considered candidates for life by, for example, including the cooler clouds of a hot Venus-like planet. The X project is an effort to engineer a robotic exploration and biosampling payload for a comprehensive survey of Earth's aerobiology. While many one-shot samples have been retrieved from above 15 km, their results are primarily qualitative; variations in method confound comparisons, leaving such major gaps in our knowledge of aerobiology as quantification of populations at different strata and relative species counts[1]. These challenges and X's preliminary solutions are explicated below. X's primary balloon payload is undergoing a series of calibrations before beginning flights in Spring 2012. A suborbital launch is currently planned for Summer 2012. A series of ground samples taken in Winter 2011 is being used to establish baseline counts and identify likely background contaminants.

  13. [Development of a new position-recognition system for robotic radiosurgery systems using machine vision].

    PubMed

    Mohri, Issai; Umezu, Yoshiyuki; Fukunaga, Junnichi; Tane, Hiroyuki; Nagata, Hironori; Hirashima, Hideaki; Nakamura, Katsumasa; Hirata, Hideki

    2014-08-01

    CyberKnife(®) provides continuous guidance through radiography, allowing instantaneous X-ray images to be obtained; it is also equipped with 6D adjustment for patient setup. Its disadvantage is that registration is carried out just before irradiation, making it impossible to perform stereo-radiography during irradiation. In addition, patient movement cannot be detected during irradiation. In this study, we describe a new registration system that we term "Machine Vision," which subjects the patient to no additional radiation exposure for registration purposes, can be set up promptly, and allows real-time registration during irradiation. Our technique offers distinct advantages over CyberKnife by enabling a safer and more precise mode of treatment. "Machine Vision," which we have designed and fabricated, is an automatic registration system that employs three charge coupled device cameras oriented in different directions that allow us to obtain a characteristic depiction of the shape of both sides of the fetal fissure and external ears in a human head phantom. We examined the degree of precision of this registration system and concluded it to be suitable as an alternative method of registration without radiation exposure when displacement is less than 1.0 mm in radiotherapy. It has potential for application to CyberKnife in clinical treatment. PMID:25142385

  14. Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Patterson, M. R.

    1982-01-01

    Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.

  15. Human-Robot Teaming in a Multi-Agent Space Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of humans with the survivability and physical capabilities of robots is proposed and illustrated by example. Such teams are useful for large-scale, complex missions requiring dispersed manipulation, locomotion and sensing capabilities. To study collaboration modalities within a multi-agent EVA team, a 1-g test is conducted with humans and robots working together in various supporting roles.

  16. Assembly, Tuning, and Transfer of Action Systems in Infants and Robots

    ERIC Educational Resources Information Center

    Berthouze, Luc; Goldfield, Eugene C.

    2008-01-01

    This paper seeks to foster a discussion on whether experiments with robots can inform theory in infant motor development and specifically (1) how the interactions among the parts of a system, including the nervous and musculoskeletal systems and the forces acting on the body, induce organizational changes in the whole, and (2) how exploratory…

  17. Formation control of multi-robots for on-orbit assembly of large solar sails

    NASA Astrophysics Data System (ADS)

    Hu, Quan; Zhang, Yao; Zhang, Jingrui; Hu, Haiyan

    2016-06-01

    This study focuses on the formation control of four robots used for the on-orbit construction of a large solar sail. The solar sail under consideration is non-spinning and has a 1 km2 area. It includes a hub as the central body and four large booms supporting the lightweight films. Four formation operating space robots capable of walking on the boom structure are utilized to deploy the sail films. Because of the large size and mass of the sail, the robots should remain in formation during the sail deployment to avoid dramatic changes in the system properties. In this paper, the formation control issue of the four robots is solved by an adaptive sliding mode controller. A disturbance observer with finite-time convergence is embedded to improve the control performance. The proposed controller is capable of resisting the strong uncertainties in the operation and do not require the accurate parameters of the system. The stability is proven, and numerical simulations are provided to validate the effectiveness of the control strategy.

  18. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  19. Space applications of Automation, Robotics And Machine Intelligence Systems (ARAMIS). Volume 3, phase 2: Executive summary

    NASA Technical Reports Server (NTRS)

    Akin, D. L.; Minsky, M. L.; Thiel, E. D.; Kurtzman, C. R.

    1983-01-01

    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program leading to an operational telepresence servicer is presented.

  20. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1986-01-01

    This book presents the papers given at a conference on artificial intelligence and robot vision. Topics considered at the conference included pattern recognition, image processing for intelligent robotics, three-dimensional vision (depth and motion), vision modeling and shape estimation, spatial reasoning, the symbolic processing visual information, robotic sensors and applications, intelligent control architectures for robot systems, robot languages and programming, human-machine interfaces, robotics applications, and architectures of robotics.

  1. Modified differential evolution algorithm for simple assembly line balancing with a limit on the number of machine types

    NASA Astrophysics Data System (ADS)

    Pitakaso, Rapeepan; Sethanan, Kanchana

    2016-02-01

    This article proposes the differential evolution algorithm (DE) and the modified differential evolution algorithm (DE-C) to solve a simple assembly line balancing problem type 1 (SALBP-1) and SALBP-1 when the maximum number of machine types in a workstation is considered (SALBP-1M). The proposed algorithms are tested and compared with existing effective heuristics using various sets of test instances found in the literature. The computational results show that the proposed heuristics is one of the best methods, compared with the other approaches.

  2. NeuroRex: A Clinical Neural Interface Roadmap for EEG-based Brain Machine Interfaces to a Lower Body Robotic Exoskeleton*

    PubMed Central

    Contreras-Vidal, Jose L.; Grossman, Robert G.

    2013-01-01

    In this communication, a translational clinical brain-machine interface (BMI) roadmap for an EEG-based BMI to a robotic exoskeleton (NeuroRex) is presented. This multi-faceted project addresses important engineering and clinical challenges: It addresses the validation of an intelligent, self-balancing, robotic lower-body and trunk exoskeleton (Rex) augmented with EEG-based BMI capabilities to interpret user intent to assist a mobility-impaired person to walk independently. The goal is to improve the quality of life and health status of wheelchair-bounded persons by enabling standing and sitting, walking and backing, turning, ascending and descending stairs/curbs, and navigating sloping surfaces in a variety of conditions without the need for additional support or crutches. PMID:24110003

  3. Brain state-dependent robotic reaching movement with a multi-joint arm exoskeleton: combining brain-machine interfacing and robotic rehabilitation

    PubMed Central

    Brauchle, Daniel; Vukelić, Mathias; Bauer, Robert; Gharabaghi, Alireza

    2015-01-01

    While robot-assisted arm and hand training after stroke allows for intensive task-oriented practice, it has provided only limited additional benefit over dose-matched physiotherapy up to now. These rehabilitation devices are possibly too supportive during the exercises. Neurophysiological signals might be one way of avoiding slacking and providing robotic support only when the brain is particularly responsive to peripheral input. We tested the feasibility of three-dimensional robotic assistance for reaching movements with a multi-joint exoskeleton during motor imagery (MI)-related desynchronization of sensorimotor oscillations in the β-band. We also registered task-related network changes of cortical functional connectivity by electroencephalography via the imaginary part of the coherence function. Healthy subjects and stroke survivors showed similar patterns—but different aptitudes—of controlling the robotic movement. All participants in this pilot study with nine healthy subjects and two stroke patients achieved their maximum performance during the early stages of the task. Robotic control was significantly higher and less variable when proprioceptive feedback was provided in addition to visual feedback, i.e., when the orthosis was actually attached to the subject’s arm during the task. A distributed cortical network of task-related coherent activity in the θ-band showed significant differences between healthy subjects and stroke patients as well as between early and late periods of the task. Brain-robot interfaces (BRIs) may successfully link three-dimensional robotic training to the participants’ efforts and allow for task-oriented practice of activities of daily living with a physiologically controlled multi-joint exoskeleton. Changes of cortical physiology during the task might also help to make subject-specific adjustments of task difficulty and guide adjunct interventions to facilitate motor learning for functional restoration, a proposal that

  4. Application of artificial intelligence to robotic vision

    SciTech Connect

    Chao, P.S.; Frick, P.A.

    1983-01-01

    A brief introduction to artificial intelligence (AI) and the general vision process is provided. Two samples of AI researchers' work toward general computer vision are given. The first is a model-based vision system while the second is based on results of studies on human vision. The current state of machine vision in industrial robotics is demonstrated using a well known vision algorithm developed at SRI International. A part of a prototype robotic assembly project with vision is sketched to show the application of some AI tools to practical work. 8 references.

  5. Rapid assembly and use of robotic systems: Saving time and money in new applications

    SciTech Connect

    Bennett, P.C.

    1995-10-01

    High costs and low productivity of manual operations in radiation, chemical, explosive and other hazardous environments have mandated the use of remote means to accomplish many tasks. However, traditional remote operations have proven to have very low productivity when compared with unencumbered humans. To improve the performance of these systems, computer models augmented by sensors, and modular computing environments are being utilized to automate many unstructured hazardous tasks. Establishment of a common structure for developments of modules such as the Generic Intelligent System Controller (GISC), have allowed many independent groups to develop specialized components that can be rapidly integrated into purpose-built robotic systems. The drawback in using this systems is that the equipment investments for such robotic systems can be substantial. In a resource-competitive environment, the ability to readily and reliably reconfigure and reuse assets operated by other industries, universities, research labs, government entities, etc., is proving to be a crucial advantage. Timely and efficient collaboration between entities has become increasingly important as monetary resources of government programs and entire industries expand or contract in response to rapid changes in production demand, dissolution of political barriers, and adoption of stringent environmental and commercial legislation. Sandia National Laboratories (SNL) has developed the System Composer, Virtual Collaborative Environment (VCE) and A{sup primed} technologies described in this paper that demonstrate an environment for flexible and efficient integration, interaction, and information exchange between disparate entities.

  6. DNA-based machines.

    PubMed

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications. PMID:24647836

  7. Kinematic Design and Ideal Dimensioning of New Highly Dynamic Drive Assemblies for Knitting and Braiding Machines

    NASA Astrophysics Data System (ADS)

    Denninger, D.; Berger, M.; Heine, A.

    The paper deals with the kinematic design and the ideal dimensioning of highly dynamic drive assemblies using MCAD strategies. The procedure is explained step by step by the example of a round braider construction. The analysis of the general mechanical principle and the definition of boundary conditions and objective criteria is our top priority. Innovative potential to increase performance and improve meshwork quality lies in the highly dynamic drive assembly to lay the threads. For a newly developed, non-linear mechanical drive concept, feasibility studies up to dimensional synthesis and draft analysis are demonstrated.

  8. A Robotic Pinch-Off System for the Sealing of Neutron Tube Assemblies

    SciTech Connect

    Ney, R.J.; Schmale, D.T.

    1999-01-01

    The process of manufacturing the MC4277 Neutron Tube requires the evacuation of the device through a 4.76 mm (.1875 in.) OD copper tube. Eight tubes are simultaneously evacuated and then baked out. When the process is completed, the tubes must be separated from the system without compromising the ultra-high vacuum in the tube and the system. Previously, a manual pinch-off tool was used. This procedure required up to 3 operators with a high probability of creating defective seals or destroyed tubes. Two new identical robotic systems were built to allow a single operator to consistently produce good tubes with perfect seals. These systems have the added capability of partially pinching off tubes at jaw displacements repeatable to *0.05 mm (kO.002 in.). Both systems have operated flawlessly since their installation in January and March, 1998. A detailed description of these systems is given in this report.

  9. Robotics technology discipline

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    Viewgraphs on robotics technology discipline for Space Station Freedom are presented. Topics covered include: mechanisms; sensors; systems engineering processes for integrated robotics; man/machine cooperative control; 3D-real-time machine perception; multiple arm redundancy control; manipulator control from a movable base; multi-agent reasoning; and surfacing evolution technologies.

  10. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Technical Reports Server (NTRS)

    Rule, W. K.; Thomas, F. P.

    1992-01-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  11. Design of a welded joint for robotic, on-orbit assembly of space trusses

    NASA Astrophysics Data System (ADS)

    Rule, W. K.; Thomas, F. P.

    1992-10-01

    A preliminary design for a weldable truss joint for on-orbit assembly of large space structures is described. The joint was designed for ease of assembly, for structural efficiency, and to allow passage of fluid (for active cooling or other purposes) along the member through the joint. The truss members were assumed to consist of graphite/epoxy tubes to which were bonded 2219-T87 aluminum alloy end fittings for welding on-orbit to truss nodes of the same alloy. A modified form of gas tungsten arc welding was assumed to be the welding process. The joint was designed to withstand the thermal and structural loading associated with a 120-ft diameter tetrahedral truss intended as an aerobrake for a mission to Mars.

  12. Applied machine vision

    SciTech Connect

    Not Available

    1984-01-01

    This book presents the papers given at a conference on robot vision. Topics considered at the conference included the link between fixed and flexible automation, general applications of machine vision, the development of a specification for a machine vision system, machine vision technology, machine vision non-contact gaging, and vision in electronics manufacturing.

  13. Artificial intelligence approach to planning the robotic assembly of large tetrahedral truss structures

    NASA Technical Reports Server (NTRS)

    Homemdemello, Luiz S.

    1992-01-01

    An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.

  14. The walking robot project

    NASA Technical Reports Server (NTRS)

    Williams, P.; Sagraniching, E.; Bennett, M.; Singh, R.

    1991-01-01

    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight.

  15. Downhole cleaner assembly for cleansing lubricant of downhole turbo-machines within wells

    SciTech Connect

    Erickson, J.W.; Petrie, H.L.

    1981-04-28

    While in a well, a downhole turbo-machine of a series of turbine stages and pump stages is driven by power fluid circulated into the turbine stages from the surface. A branch stream from the power fluid passes through a centrifugal cleaner and is cleansed of solid material. The turbine stages drive the centrifugal cleaner. The cleansed stream becomes lubricant for the turbomachine bearings. On the turbine side, the lubricant stream passes at substantially cleaner discharge pressure into longitudinal passages between turbine shrouds and an alignment tube to journal bearings and journals located between turbine stage stators and a drive shaft driven by the turbines. Annular channels between separate shrouds effect communication between the longitudinal passages between the shrouds and the alignment tube. On the pump side, the lubricant stream is first directed so that it can act on a thrust bearing runner and apply a force in opposition to an otherwise unbalanced axial force. A low pressure discharge from the thrust bearing runner supplies galleries that feed journal and journal bearings of the pump stage stators. Gallery pressure is maintained positive with respect to the pump stage bearings by a feed to the gallery in excess of bleed-out of the bearings. A check valve relieves any excess gallery pressure to that of the next to the last turbine stage fluid passage. Lubricant bleeds from the journals and journal bearings into the fluid stream passing through the turbine pumps.

  16. Future uses of machine intelligence and robotics for the Space Station and implications for the U.S. economy

    NASA Technical Reports Server (NTRS)

    Cohen, A.; Erickson, J. D.

    1985-01-01

    The exciting possibilities for advancing the technologies of artificial intelligence, robotics, and automation on the Space Station is summarized. How these possibilities will be realized and how their realization can benefit the U.S. economy are described. Plans, research programs and preliminary designs that will lead to the realization of many of these possibilities are being formulated.

  17. The 1991-1992 walking robot design

    NASA Technical Reports Server (NTRS)

    Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon

    1992-01-01

    The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.

  18. The 1991-1992 walking robot design

    NASA Astrophysics Data System (ADS)

    Azarm, Shapour; Dayawansa, Wijesurija; Tsai, Lung-Wen; Peritt, Jon

    The University of Maryland Walking Machine team designed and constructed a robot. This robot was completed in two phases with supervision and suggestions from three professors and one graduate teaching assistant. Bob was designed during the Fall Semester 1991, then machined, assembled, and debugged in the Spring Semester 1992. The project required a total of 4,300 student hours and cost under $8,000. Mechanically, Bob was an exercise in optimization. The robot was designed to test several diverse aspects of robotic potential, including speed, agility, and stability, with simplicity and reliability holding equal importance. For speed and smooth walking motion, the footpath contained a long horizontal component; a vertical aspect was included to allow clearance of obstacles. These challenges were met with a leg design that utilized a unique multi-link mechanism which traveled a modified tear-drop footpath. The electrical requirements included motor, encoder, and voice control circuitry selection, manual controller manufacture, and creation of sensors for guidance. Further, there was also a need for selection of the computer, completion of a preliminary program, and testing of the robot.

  19. Folding and assembly of the large molecular machine Hsp90 studied in single-molecule experiments

    PubMed Central

    Jahn, Markus; Buchner, Johannes; Hugel, Thorsten; Rief, Matthias

    2016-01-01

    Folding of small proteins often occurs in a two-state manner and is well understood both experimentally and theoretically. However, many proteins are much larger and often populate misfolded states, complicating their folding process significantly. Here we study the complete folding and assembly process of the 1,418 amino acid, dimeric chaperone Hsp90 using single-molecule optical tweezers. Although the isolated C-terminal domain shows two-state folding, we find that the isolated N-terminal as well as the middle domain populate ensembles of fast-forming, misfolded states. These intradomain misfolds slow down folding by an order of magnitude. Modeling folding as a competition between productive and misfolding pathways allows us to fully describe the folding kinetics. Beyond intradomain misfolding, folding of the full-length protein is further slowed by the formation of interdomain misfolds, suggesting that with growing chain lengths, such misfolds will dominate folding kinetics. Interestingly, we find that small stretching forces applied to the chain can accelerate folding by preventing the formation of cross-domain misfolding intermediates by leading the protein along productive pathways to the native state. The same effect is achieved by cotranslational folding at the ribosome in vivo. PMID:26787848

  20. BB0324 and BB0028 are constituents of the Borrelia burgdorferi β-barrel assembly machine (BAM) complex

    PubMed Central

    2012-01-01

    Background Similar to Gram-negative bacteria, the outer membrane (OM) of the pathogenic spirochete, Borrelia burgdorferi, contains integral OM-spanning proteins (OMPs), as well as membrane-anchored lipoproteins. Although the mechanism of OMP biogenesis is still not well-understood, recent studies have indicated that a heterooligomeric OM protein complex, known as BAM (β-barrel assembly machine) is required for proper assembly of OMPs into the bacterial OM. We previously identified and characterized the essential β-barrel OMP component of this complex in B. burgdorferi, which we determined to be a functional BamA ortholog. Results In the current study, we report on the identification of two additional protein components of the B. burgdorferi BAM complex, which were identified as putative lipoproteins encoded by ORFs BB0324 and BB0028. Biochemical assays with a BamA-depleted B. burgdorferi strain indicate that BB0324 and BB0028 do not readily interact with the BAM complex without the presence of BamA, suggesting that the individual B. burgdorferi BAM components may associate only when forming a functional BAM complex. Cellular localization assays indicate that BB0324 and BB0028 are OM-associated subsurface lipoproteins, and in silico analyses indicate that BB0324 is a putative BamD ortholog. Conclusions The combined data suggest that the BAM complex of B. burgdorferi contains unique protein constituents which differ from those found in other proteobacterial BAM complexes. The novel findings now allow for the B. burgdorferi BAM complex to be further studied as a model system to better our understanding of spirochetal OM biogenesis in general. PMID:22519960

  1. Demonstration of a Semi-Autonomous Hybrid Brain-Machine Interface using Human Intracranial EEG, Eye Tracking, and Computer Vision to Control a Robotic Upper Limb Prosthetic

    PubMed Central

    McMullen, David P.; Hotson, Guy; Katyal, Kapil D.; Wester, Brock A.; Fifer, Matthew S.; McGee, Timothy G.; Harris, Andrew; Johannes, Matthew S.; Vogelstein, R. Jacob; Ravitz, Alan D.; Anderson, William S.; Thakor, Nitish V.; Crone, Nathan E.

    2014-01-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 seconds for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914

  2. Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial EEG, eye tracking, and computer vision to control a robotic upper limb prosthetic.

    PubMed

    McMullen, David P; Hotson, Guy; Katyal, Kapil D; Wester, Brock A; Fifer, Matthew S; McGee, Timothy G; Harris, Andrew; Johannes, Matthew S; Vogelstein, R Jacob; Ravitz, Alan D; Anderson, William S; Thakor, Nitish V; Crone, Nathan E

    2014-07-01

    To increase the ability of brain-machine interfaces (BMIs) to control advanced prostheses such as the modular prosthetic limb (MPL), we are developing a novel system: the Hybrid Augmented Reality Multimodal Operation Neural Integration Environment (HARMONIE). This system utilizes hybrid input, supervisory control, and intelligent robotics to allow users to identify an object (via eye tracking and computer vision) and initiate (via brain-control) a semi-autonomous reach-grasp-and-drop of the object by the MPL. Sequential iterations of HARMONIE were tested in two pilot subjects implanted with electrocorticographic (ECoG) and depth electrodes within motor areas. The subjects performed the complex task in 71.4% (20/28) and 67.7% (21/31) of trials after minimal training. Balanced accuracy for detecting movements was 91.1% and 92.9%, significantly greater than chance accuracies (p < 0.05). After BMI-based initiation, the MPL completed the entire task 100% (one object) and 70% (three objects) of the time. The MPL took approximately 12.2 s for task completion after system improvements implemented for the second subject. Our hybrid-BMI design prevented all but one baseline false positive from initiating the system. The novel approach demonstrated in this proof-of-principle study, using hybrid input, supervisory control, and intelligent robotics, addresses limitations of current BMIs. PMID:24760914

  3. An Intelligent Man-Machine Interface—Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300

    PubMed Central

    Kirchner, Elsa A.; Kim, Su K.; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank

    2016-01-01

    Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental

  4. An Intelligent Man-Machine Interface-Multi-Robot Control Adapted for Task Engagement Based on Single-Trial Detectability of P300.

    PubMed

    Kirchner, Elsa A; Kim, Su K; Tabie, Marc; Wöhrle, Hendrik; Maurus, Michael; Kirchner, Frank

    2016-01-01

    Advanced man-machine interfaces (MMIs) are being developed for teleoperating robots at remote and hardly accessible places. Such MMIs make use of a virtual environment and can therefore make the operator immerse him-/herself into the environment of the robot. In this paper, we present our developed MMI for multi-robot control. Our MMI can adapt to changes in task load and task engagement online. Applying our approach of embedded Brain Reading we improve user support and efficiency of interaction. The level of task engagement was inferred from the single-trial detectability of P300-related brain activity that was naturally evoked during interaction. With our approach no secondary task is needed to measure task load. It is based on research results on the single-stimulus paradigm, distribution of brain resources and its effect on the P300 event-related component. It further considers effects of the modulation caused by a delayed reaction time on the P300 component evoked by complex responses to task-relevant messages. We prove our concept using single-trial based machine learning analysis, analysis of averaged event-related potentials and behavioral analysis. As main results we show (1) a significant improvement of runtime needed to perform the interaction tasks compared to a setting in which all subjects could easily perform the tasks. We show that (2) the single-trial detectability of the event-related potential P300 can be used to measure the changes in task load and task engagement during complex interaction while also being sensitive to the level of experience of the operator and (3) can be used to adapt the MMI individually to the different needs of users without increasing total workload. Our online adaptation of the proposed MMI is based on a continuous supervision of the operator's cognitive resources by means of embedded Brain Reading. Operators with different qualifications or capabilities receive only as many tasks as they can perform to avoid mental

  5. Robot Forearm and Dexterous Hand

    NASA Technical Reports Server (NTRS)

    Lovchik, Christopher S.

    2005-01-01

    An electromechanical hand-and-forearm assembly has been developed for incorporation into an anthropomorphic robot that would be used in outer space. The assembly is designed to offer manual dexterity comparable to that of a hand inside an astronaut s suit; thus, the assembly may also be useful as a prosthesis or as an end effector on an industrial robot.

  6. Hairpin assembly-triggered cyclic activation of a DNA machine for label-free and ultrasensitive chemiluminescence detection of DNA.

    PubMed

    Chen, Jia; Qiu, Hongdeng; Zhang, Mingliang; Gu, Tongnian; Shao, Shijun; Huang, Yong; Zhao, Shulin

    2015-06-15

    DNA plays important regulatory roles in many life activities. Here, we have developed a novel label-free, ultrasensitive and specific chemiluminescence (CL) assay protocol for DNA detection based on hairpin assembly-triggered cyclic activation of a DNA machine. The system involves two hairpin structures, H1 and H2. Firstly, a target DNA binds with and opens the hairpin structure of H1. Then, H2 hybridizes with H1 and displaces the target DNA, which is used to trigger another new hybridization cycle between H1 and H2, leading to the generation of numerous H1-H2 complexes. The generated H1-H2 complexes are further activated with the help of polymerase and nicking enzyme, continuously yielding a large amount of G-riched DNA fragments. The G-riched DNA fragment products interact with hemin to form the activated HRP-mimicking DNAzymes that can catalyze the oxidation of luminol by H2O2 to produce strong CL signal resulting in an amplified sensing process. Our newly proposed homogeneous assay enables the quantitative measurement of p53 DNA (as a model) with a detection limit of 0.85 fM, which is at least 5 orders of magnitude lower than that of traditional unamplified homogeneous optical approaches. Moreover, this assay exhibits high discrimination ability even against a single base mismatch. In addition, this strategy is also capable of detecting p53 DNA in complex biological samples. The proposed sensing approach might hold a great promise for further applications in biomedical research and early clinical diagnosis. PMID:25638797

  7. Transient State Machine Enabled from the Colliding and Coalescence of a Swarm of Autonomously Running Liquid Metal Motors.

    PubMed

    Sheng, Lei; He, Zhizhu; Yao, Youyou; Liu, Jing

    2015-10-21

    Internally triggered motion of an object owns important potential in diverse application areas ranging from micromachines, actuator or sensor, to self-assembly of superstructures. A new conceptual liquid metal machine style has been presented here: the transient state machine that can work as either a large size robot, partial running elements, or just divide spontaneously running swarm of tiny motors. According to need, the discrete droplet machines as quickly generated through injecting the stream of a large liquid metal machine can combine back again to the original one. Over the process, each tiny machine just keeps its running, colliding, bouncing, or adhesion states until finally assembling into a single machine. Unlike the commonly encountered rigid machines, such transient state system can be reversible in working shapes. Depending on their surface tension, the autonomously traveling droplet motors can experience bouncing and colliding before undergoing total coalescence, arrested coalescence, or total bounce. This finding would help mold unconventional robot in the sense of transient state machine that could automatically transform among different geometries such as a single or swarm, small or large size, assembling and interaction, etc. It refreshes people's basic understandings on machines, liquid metal materials, fluid mechanics, and micromotors. PMID:26280352

  8. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  9. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  10. Fuel bundle assembly machine

    SciTech Connect

    Tunnell, G.W.; Schoenig, F.C. Jr.; Mc Lemore, D.R.; Patterson, R.G.

    1987-03-17

    An apparatus is described for placing elongate objects of substantially identical size and shape in a coordinate array in a support structure. The objects are parallel and mutually spaced from each other and each object occupies a designated coordinate position as determined by an identifying code carried by each object; the apparatus comprising: a queuing station for holding the plurality of objects; means for selectively removing the objects from the queuing station one at a time; means for reading the code on the removed objects; means responsive to each code read for positioning the corresponding object in horizontal and vertical alignment with the coordinate position; transport means for longitudinally moving each of the aligned objects into the two-dimensional coordinate position; and control means responsive to the presence of each object in a plurality of critical positions during its transfer between the queuing station and the coordinate position for timing and confirming the proper operation of the apparatus.

  11. BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRITISH MOLDING MACHINE, PBQ AUTOMATIC COPE AND DRAG MOLDING MACHINE MAKES BOTH MOLD HALVES INDIVIDUALLY WHICH ARE LATER ROTATED, ASSEMBLED, AND LOWERED TO POURING CONVEYORS BY ASSISTING MACHINES. - Southern Ductile Casting Company, Casting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  12. Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    NASA Technical Reports Server (NTRS)

    Raibert, M. H.

    1979-01-01

    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed.

  13. Medical robotics.

    PubMed

    Ferrigno, Giancarlo; Baroni, Guido; Casolo, Federico; De Momi, Elena; Gini, Giuseppina; Matteucci, Matteo; Pedrocchi, Alessandra

    2011-01-01

    Information and communication technology (ICT) and mechatronics play a basic role in medical robotics and computer-aided therapy. In the last three decades, in fact, ICT technology has strongly entered the health-care field, bringing in new techniques to support therapy and rehabilitation. In this frame, medical robotics is an expansion of the service and professional robotics as well as other technologies, as surgical navigation has been introduced especially in minimally invasive surgery. Localization systems also provide treatments in radiotherapy and radiosurgery with high precision. Virtual or augmented reality plays a role for both surgical training and planning and for safe rehabilitation in the first stage of the recovery from neurological diseases. Also, in the chronic phase of motor diseases, robotics helps with special assistive devices and prostheses. Although, in the past, the actual need and advantage of navigation, localization, and robotics in surgery and therapy has been in doubt, today, the availability of better hardware (e.g., microrobots) and more sophisticated algorithms(e.g., machine learning and other cognitive approaches)has largely increased the field of applications of these technologies,making it more likely that, in the near future, their presence will be dramatically increased, taking advantage of the generational change of the end users and the increasing request of quality in health-care delivery and management. PMID:21642033

  14. Walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The design and construction of the University of Maryland walking machine was completed during the 1989 to 1990 academic year. It was required that the machine be capable of completing a number of tasks including walking a straight line, turning to change direction, and manuevering over an obstacle such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear box and crank arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating this machine about this support. The machine can be controlled by using either a user-operated remote tether or the onboard computer for the execution of control commands. Absolute encoders are attached to all motors to provide the control computer with information regarding the status of the motors. Long and short range infrared sensors provide the computer with feedback information regarding the machine's position relative to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars.

  15. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  16. Development Of A Vision Guided Robot System

    NASA Astrophysics Data System (ADS)

    Torfeh-Isfahani, Mohammad; Yeung, Kim F.

    1987-10-01

    This paper presents the development of an intelligent vision guided system through the integration of a vision system into a robot. Systems like the one described in this paper are able to work alone. They can be used in many automated assembly operations. Such systems can do repetitive tasks more efficiently and accurately than human operators because of the immunity of machines to human factors such as boredom, fatigue, and stress. In order to better understand the capabilities of such systems, this paper will highlight what can be accomplished by such systems by detailing the development of such a system. This system is already built and functional.

  17. The 50-Minute Robot.

    ERIC Educational Resources Information Center

    Buckland, Miram R.

    1985-01-01

    Sixth graders built working "robots" (or grasping bars) for remote control use during a unit on simple mechanics. Steps for making a robot are presented, including: cutting the wood, drilling and nailing, assembling the jaws, and making them work. The "jaws," used to pick up objects, illustrate principles of levers. (DH)

  18. The robotics review 1

    SciTech Connect

    Khatib, O.; Craig, J.J.; Lozano-Perez, T.

    1989-01-01

    Theoretical and implementation issues in robotics are discussed in reviews of recent investigations. Sections are devoted to programming, planning, and learning; sensing and perception; kinematics, dynamics, and design; and motion and force control. Particular attention is given to a robust layered control system for a mobile robot, camera calibration for three-dimensional machine vision, walking vehicles, design and control of direct-drive vehicles, an efficient parallel algorithm for robot inverse dynamics, stability problems in contact tasks, and kinematics and reaction-moment compensation for satellite-mounted robot manipulators.

  19. Mobile robotics research at Sandia National Laboratories

    SciTech Connect

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  20. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS), phase 2. Volume 1: Telepresence technology base development

    NASA Technical Reports Server (NTRS)

    Akin, D. L.; Minsky, M. L.; Thiel, E. D.; Kurtzman, C. R.

    1983-01-01

    The field of telepresence is defined, and overviews of those capabilities that are now available, and those that will be required to support a NASA telepresence effort are provided. Investigation of NASA's plans and goals with regard to telepresence, extensive literature search for materials relating to relevant technologies, a description of these technologies and their state of the art, and projections for advances in these technologies over the next decade are included. Several space projects are examined in detail to determine what capabilities are required of a telepresence system in order to accomplish various tasks, such as servicing and assembly. The key operational and technological areas are identified, conclusions and recommendations are made for further research, and an example developmental program is presented, leading to an operational telepresence servicer.

  1. Exploratorium: Robots.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    2002-01-01

    This issue of Exploratorium Magazine focuses on the topic robotics. It explains how to make a vibrating robotic bug and features articles on robots. Contents include: (1) "Where Robot Mice and Robot Men Run Round in Robot Towns" (Ray Bradbury); (2) "Robots at Work" (Jake Widman); (3) "Make a Vibrating Robotic Bug" (Modesto Tamez); (4) "The Robot…

  2. Robotic System For Greenhouse Or Nursery

    NASA Technical Reports Server (NTRS)

    Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim

    1993-01-01

    Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.

  3. [Robots and intellectual property].

    PubMed

    Larrieu, Jacques

    2013-12-01

    This topic is part of the global issue concerning the necessity to adapt intellectual property law to constant changes in technology. The relationship between robots and IP is dual. On one hand, the robots may be regarded as objects of intellectual property. A robot, like any new machine, could qualify for a protection by a patent. A copyright may protect its appearance if it is original. Its memory, like a database, could be covered by a sui generis right. On the other hand, the question of the protection of the outputs of the robot must be raised. The robots, as the physical embodiment of artificial intelligence, are becoming more and more autonomous. Robot-generated works include less and less human inputs. Are these objects created or invented by a robot copyrightable or patentable? To whom the ownership of these IP rights will be allocated? To the person who manufactured the machine ? To the user of the robot? To the robot itself? All these questions are worth discussing. PMID:24558740

  4. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... computer station and directs the movements of a robot. Small surgical tools are attached to the robot's ...

  5. Robot Independent Programming Environment and Language

    Energy Science and Technology Software Center (ESTSC)

    1995-04-05

    RIPE is an object-oriented approach to robot system architectures; it is a software environment which facilitates rapid design and implementation of complex robot systems for diverse applications. The robot work cell is modeled using software objects and supports model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, robust communications and graphical interfaces for robot system control. The objects include robots, sensors, end effectors, workpieces, NC machines and various other devices. Amore » set of generic classes is defined to represent these objects, and the interfaces to them become RIPL.« less

  6. Robot Independent Programming Environment and Language

    SciTech Connect

    Lennox, Charleene

    1995-04-05

    RIPE is an object-oriented approach to robot system architectures; it is a software environment which facilitates rapid design and implementation of complex robot systems for diverse applications. The robot work cell is modeled using software objects and supports model-based automated programming of robotic and machining devices, real-time sensor-based control, error handling, robust communications and graphical interfaces for robot system control. The objects include robots, sensors, end effectors, workpieces, NC machines and various other devices. A set of generic classes is defined to represent these objects, and the interfaces to them become RIPL.

  7. Large robotized turning centers described

    NASA Astrophysics Data System (ADS)

    Kirsanov, V. V.; Tsarenko, V. I.

    1985-09-01

    The introduction of numerical control (NC) machine tools has made it possible to automate machining in series and small series production. The organization of automated production sections merged NC machine tools with automated transport systems. However, both the one and the other require the presence of an operative at the machine for low skilled operations. Industrial robots perform a number of auxiliary operations, such as equipment loading-unloading and control, changing cutting and auxiliary tools, controlling workpieces and parts, and cleaning of location surfaces. When used with a group of equipment they perform transfer operations between the machine tools. Industrial robots eliminate the need for workers to form auxiliary operations. This underscores the importance of developing robotized manufacturing centers providing for minimal human participation in production and creating conditions for two and three shift operation of equipment. Work carried out at several robotized manufacturing centers for series and small series production is described.

  8. 1999 IEEE international conference on robotics and automation

    SciTech Connect

    1999-07-01

    Topics covered in this conference include: biped robots; underwater vehicles; robot planning and programming for assembly; discrete event control of mobile robot maneuvering; navigation in unknown environment; biped robots; underwater vehicles; robot planning and programming for assembly; discrete event control of manufacturing systems; motion planning; robot control; actuator; teleoperation; force and position control; contact and grasping control; visual servo control; tactile sensing; mobile robots and applications; sensor-based navigation; underwater robotics; sensing, navigation and control; flexible manipulators; task scheduling; actuators and joint actuation; teleoperation; sensor-based teleoperation; contact geometry; sonar-based sensing; mobile robot-environment interaction; mobile robot motion planning; biology-inspired methods; service and underwater robots; manufacturing planning and scheduling; constraint and nonholonomic system; fault-tolerant robots; parallel manipulators; dexterous manipulation; computer vision in manufacturing; contact sensing; mobile robot field applications; flexible robots; fuzzy control; and more.

  9. Autonomous parts assembly: comparison of ART and neocognitron

    NASA Astrophysics Data System (ADS)

    Rosandich, Ryan G.; Ozbayoglu, Murat A.; Roddiger, Eric W.; Dagli, Cihan H.

    1993-09-01

    In this paper, we present the performance analysis of three different neural network paradigms, ART-1, ARTMAP inspired ART-1 and Neocognitron, for part recognition in an autonomous assembly system. This intelligent manufacturing system integrates machine vision, neural networks and robotics in order to identify, locate and assemble randomly places components on printed circuit boards requiring precision assembly. The system uses an IBM 7547 robot controlled by an IBM PS/2 computer, a CCD camera and an image capture card. The electronic components are identified and located by using artificial neural networks. The system's component location and identification accuracy are tested on all test components. The results show that the neocognitron-based system performed better than the other two systems.

  10. Development of a Robotic Assembly for Analyzing the Instantaneous Axis of Rotation of the Foot Ankle Complex

    PubMed Central

    Salb, Kelly N.; Wido, Daniel M.; Stewart, Thomas E.; DiAngelo, Denis J.

    2016-01-01

    Ankle instantaneous axis of rotation (IAR) measurements represent a more complete parameter for characterizing joint motion. However, few studies have implemented this measurement to study normal, injured, or pathological foot ankle biomechanics. A novel testing protocol was developed to simulate aspects of in vivo foot ankle mechanics during mid-stance gait in a human cadaveric specimen. A lower leg was mounted in a robotic testing platform with the tibia upright and foot flat on the baseplate. Axial tibia loads (ATLs) were controlled as a function of a vertical ground reaction force (vGRF) set at half body weight (356 N) and a 50% vGRF (178 N) Achilles tendon load. Two specimens were repetitively loaded over 10 degrees of dorsiflexion and 20 degrees of plantar flexion. Platform axes were controlled within 2 microns and 0.008 degrees resulting in ATL measurements within ±2 N of target conditions. Mean ATLs and IAR values were not significantly different between cycles of motion, but IAR values were significantly different between dorsiflexion and plantar flexion. A linear regression analysis showed no significant differences between slopes of plantar flexion paths. The customized robotic platform and advanced testing protocol produced repeatable and accurate measurements of the IAR, useful for assessing foot ankle biomechanics under different loading scenarios and foot conditions. PMID:27099456

  11. Smart robots: a handbook of intelligent robotic systems

    SciTech Connect

    Hunt, V.D.

    1985-01-01

    Smart robots, designed to improve the quality and increase both the productivity and profitability of manufactured goods, are discussed in detail. Attention is focused on: (1) artificial intelligence for smart robots, (2) smart robot systems, (3) sensor-controlled robots, (4) machine vision systems, (5) robot manipulators, (6) locomotion, (7) natural languagae processing, (8) expert systems, and (9) computer integrated manufacturing. Photographs, charts and diagrams illustrate the systems covered. Areas of successful application to date include the automobile industry, textiles, forging, die casting and electronics. 110 references.

  12. On the development of a reactive sensor-based robotic system

    NASA Technical Reports Server (NTRS)

    Hexmoor, Henry H.; Underwood, William E., Jr.

    1989-01-01

    Flexible robotic systems for space applications need to use local information to guide their action in uncertain environments where the state of the environment and even the goals may change. They have to be tolerant of unexpected events and robust enough to carry their task to completion. Tactical goals should be modified while maintaining strategic goals. Furthermore, reactive robotic systems need to have a broader view of their environments than sensory-based systems. An architecture and a theory of representation extending the basic cycles of action and perception are described. This scheme allows for dynamic description of the environment and determining purposive and timely action. Applications of this scheme for assembly and repair tasks using a Universal Machine Intelligence RTX robot are being explored, but the ideas are extendable to other domains. The nature of reactivity for sensor-based robotic systems and implementation issues encountered in developing a prototype are discussed.

  13. Prototyping a robotic dental testing simulator.

    PubMed

    Alemzadeh, K; Hyde, R A; Gao, J

    2007-05-01

    A parallel robot based on the Stewart platform is being developed to simulate jaw motion and investigate its effect on jaw function to test the wearing away of dental components such as individual teeth, crowns, bridges, full set of dentures, and implant-supported overdentures by controlling chewing motion. The current paper only describes the comparison between an alternative configuration proposed by Xu and the Stewart platform configuration. The Stewart platform was chosen as an ideal structure for simulating human mastication as it is easily assembled, has high rigidity, high load-carrying capacity, and accurate positioning capability. The kinematics and singularities of the Stewart platform have been analysed and software developed to (a) test the control algorithms/strategy of muscle movement for the six degree of freedom of mastication cycle and (b) simulate and observe various design options to be able to make the best judgement in product development. The human replica skull has been analysed and reverse engineered with further simplification before integration with the Stewart platform computer-aided design (CAD) to develop the robotic dental testing simulator. Assembly modelling of the reproduced skull was critically analysed for good occlusion in CAD environment. A pulse-width modulation (PWM) circuit plus interface was built to control position and speed of the chosen actuators. A computer numerical control (CNC) machine and wire-electro-discharge machining (wire EDM) were used to manufacture the critical parts such as lower mandible, upper maxilla, and universal joints. PMID:17605396

  14. University of Maryland walking robot: A design project for undergraduate students

    NASA Technical Reports Server (NTRS)

    Olsen, Bob; Bielec, Jim; Hartsig, Dave; Oliva, Mani; Grotheer, Phil; Hekmat, Morad; Russell, David; Tavakoli, Hossein; Young, Gary; Nave, Tom

    1990-01-01

    The design and construction required that the walking robot machine be capable of completing a number of tasks including walking in a straight line, turning to change direction, and maneuvering over an obstable such as a set of stairs. The machine consists of two sets of four telescoping legs that alternately support the entire structure. A gear-box and crank-arm assembly is connected to the leg sets to provide the power required for the translational motion of the machine. By retracting all eight legs, the robot comes to rest on a central Bigfoot support. Turning is accomplished by rotating the machine about this support. The machine can be controlled by using either a user operated remote tether or the on-board computer for the execution of control commands. Absolute encoders are attached to all motors (leg, main drive, and Bigfoot) to provide the control computer with information regarding the status of the motors (up-down motion, forward or reverse rotation). Long and short range infrared sensors provide the computer with feedback information regarding the machine's relative position to a series of stripes and reflectors. These infrared sensors simulate how the robot might sense and gain information about the environment of Mars.

  15. Machine learning in motion control

    NASA Technical Reports Server (NTRS)

    Su, Renjeng; Kermiche, Noureddine

    1989-01-01

    The existing methodologies for robot programming originate primarily from robotic applications to manufacturing, where uncertainties of the robots and their task environment may be minimized by repeated off-line modeling and identification. In space application of robots, however, a higher degree of automation is required for robot programming because of the desire of minimizing the human intervention. We discuss a new paradigm of robotic programming which is based on the concept of machine learning. The goal is to let robots practice tasks by themselves and the operational data are used to automatically improve their motion performance. The underlying mathematical problem is to solve the problem of dynamical inverse by iterative methods. One of the key questions is how to ensure the convergence of the iterative process. There have been a few small steps taken into this important approach to robot programming. We give a representative result on the convergence problem.

  16. Industrial robots and robotics

    SciTech Connect

    Kafrissen, S.; Stephens, M.

    1984-01-01

    This book discusses the study of robotics. It provides information of hardware, software, applications and economics. Eleven chapters examine the following: Minicomputers, Microcomputers, and Microprocessors; The Servo-Control System; The Activators; Robot Vision Systems; and Robot Workcell Environments. Twelve appendices supplement the data.

  17. Modularity in robotic systems

    NASA Technical Reports Server (NTRS)

    Tesar, Delbert; Butler, Michael S.

    1989-01-01

    Most robotic systems today are designed one at a time, at a high cost of time and money. This wasteful approach has been necessary because the industry has not established a foundation for the continued evolution of intelligent machines. The next generation of robots will have to be generic, versatile machines capable of absorbing new technology rapidly and economically. This approach is demonstrated in the success of the personal computer, which can be upgraded or expanded with new software and hardware at virtually every level. Modularity is perceived as a major opportunity to reduce the 6 to 7 year design cycle time now required for new robotic manipulators, greatly increasing the breadth and speed of diffusion of robotic systems in manufacturing. Modularity and its crucial role in the next generation of intelligent machines are the focus of interest. The main advantages that modularity provides are examined; types of modules needed to create a generic robot are discussed. Structural modules designed by the robotics group at the University of Texas at Austin are examined to demonstrate the advantages of modular design.

  18. Robotic surgery

    MedlinePlus

    Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance ... Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. ...

  19. Humanlike Robots - The Upcoming Revolution in Robotics

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2009-01-01

    Humans have always sought to imitate the human appearance, functions and intelligence. Human-like robots, which for many years have been a science fiction, are increasingly becoming an engineering reality resulting from the many advances in biologically inspired technologies. These biomimetic technologies include artificial intelligence, artificial vision and hearing as well as artificial muscles, also known as electroactive polymers (EAP). Robots, such as the vacuum cleaner Rumba and the robotic lawnmower, that don't have human shape, are already finding growing use in homes worldwide. As opposed to other human-made machines and devices, this technology raises also various questions and concerns and they need to be addressed as the technology advances. These include the need to prevent accidents, deliberate harm, or their use in crime. In this paper the state-of-the-art of the ultimate goal of biomimetics, the development of humanlike robots, the potentials and the challenges are reviewed.

  20. Dictionary of robotics

    SciTech Connect

    Waldman, H.

    1985-01-01

    The idea of using robots to perform repetitious tasks quickly, cheaply and efficiently has intrigued humans since the Industrial Revolution. Growth has occurred geometrically from the introduction of the first industrial robot in 1955, and continues, unabated, as industry sales are expected to increase 20-fold with applications in both high technology and industry. The Dictionary defines not only those terms standard to robotics but also those used in areas that are just beginning to be involved. The book offers concise, readable descriptions of robot systems, actions, hardware (including applications), communications, computer control, dynamics, cost justification, feedback, kinematics, man-machine interface, sensors and software. There are references to all major robots and manufacturers in the US, Europe and Japan.

  1. Mothers of Invention: Hubble Engineers Push Robotic 'Evolution' to Save Telescope, Enable New Exploration

    NASA Technical Reports Server (NTRS)

    Morring, Frank, Jr.

    2004-01-01

    Robotic technology being developed out of necessity to keep the Hubble Space Telescope operating could also lead to new levels of man-machine team-work in deep-space exploration down the road-if it survives the near-term scramble for funding. Engineers here who have devoted their NASA careers to the concept of humans servicing the telescope in orbit are planning modifications to International Space Station (ISS) robots that would leave the humans on the ground. The work. forced by post-Columbia flight rules that killed a planned shuttle-servicing mission to Hubble, marks another step in the evolution of robot-partners for human space explorers. "Hubble has always been a pathfider for this agency," says Mike Weiss. Hubble deputy program manager technical. "When the space station was flown and assembled, Hubble was the pathfinder. not just for modularity, but for operations, for assembly techniques. Exploration is the next step. Things we're going to do on Hubble are going to be applied to exploration. It's not just putting a robot in space. It's operating a robot in space. It's adapting that robot to what needs to be done the next time you're up there."

  2. A Practical Solution Using A New Approach To Robot Vision

    NASA Astrophysics Data System (ADS)

    Hudson, David L.

    1984-01-01

    all of his own software to test, analyze and process the vision application. The second and most common approach was to contract with the vision equipment vendor for the development and installation of a turnkey inspection or manufacturing system. The robot user and his company paid a premium for their vision system in an effort to assure the success of the system. Since 1981, emphasis on robotics has skyrocketed. New groups have been formed in many manufacturing companies with the charter to learn about, test and initially apply new robot and automation technologies. Machine vision is one of new technologies being tested and applied. This focused interest has created a need for a robot vision system that makes it easy for manufacturing engineers to learn about, test, and implement a robot vision application. A newly developed vision system addresses those needs. Vision Development System (VDS) is a complete hardware and software product for the development and testing of robot vision applications. A complimentary, low cost Target Application System (TASK) runs the application program developed with the VDS. An actual robot vision application that demonstrates inspection and pre-assembly for keyboard manufacturing is used to illustrate the VDS/TASK approach.

  3. Fundamental principles of robot vision

    NASA Astrophysics Data System (ADS)

    Hall, Ernest L.

    1993-08-01

    Robot vision is a specialty of intelligent machines which describes the interaction between robotic manipulators and machine vision. Early robot vision systems were built to demonstrate that a robot with vision could adapt to changes in its environment. More recently attention is being directed toward machines with expanded adaptation and learning capabilities. The use of robot vision for automatic inspection and recognition of objects for manipulation by an industrial robot or for guidance of a mobile robot are two primary applications. Adaptation and learning characteristics are often lacking in industrial automation and if they can be added successfully, result in a more robust system. Due to a real time requirement, the robot vision methods that have proven most successful have been ones which could be reduced to a simple, fast computation. The purpose of this paper is to discuss some of the fundamental concepts in sufficient detail to provide a starting point for the interested engineer or scientist. A detailed example of a camera system viewing an object and for a simple, two dimensional robot vision system is presented. Finally, conclusions and recommendations for further study are presented.

  4. Biosleeve Human-Machine Interface

    NASA Technical Reports Server (NTRS)

    Assad, Christopher (Inventor)

    2016-01-01

    Systems and methods for sensing human muscle action and gestures in order to control machines or robotic devices are disclosed. One exemplary system employs a tight fitting sleeve worn on a user arm and including a plurality of electromyography (EMG) sensors and at least one inertial measurement unit (IMU). Power, signal processing, and communications electronics may be built into the sleeve and control data may be transmitted wirelessly to the controlled machine or robotic device.

  5. BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRASS FOUNDRY MACHINE ROOM USED TO MACHINE CAST BRONZE PIECES FOR VALVES AND PREPARE BRONZE VALVE BODIES FOR ASSEMBLY. - Stockham Pipe & Fittings Company, Brass Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  6. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  7. Flexible control for welding robots

    SciTech Connect

    Mangold, V.L. Jr.

    1994-12-31

    The single limiting characteristic of robot welding applications that typically impairs the success and functionality of a robot welding work cell is workpiece or process-specific variances. Nearly as problematic for most robot arc welding applications in the near term, and potentially a larger problem in the future, is the compatibility of control systems utilized with industrial robots. The robot industry has developed over time in a manner that is significantly different than a related capital equipment genre, metal cutting machine tools. The robot industry, impacted by the overwhelming dominance of Japanese and European producers, have tended toward proprietary control systems that utilized application software that is nonstandard in nature and nontransportable from one robot product to another. This presentation discusses the use of standard platform controls with transportable welding software written in C or C++ code that can greatly increase the flexibility of robot welding operations. The presentation discusses the use of an Adept 1, Allen Bradley and Giddings and Lewis control system interchangeably with the same 6-axis arm robot for arc welding purposes. The flexibility of pin compatible control systems and software that is transportable from one robot line to another will greatly improve robot system performance. The long term maintenance cost and ultimately the financial viability of job shop, small parts robotic arc welding applications will also be enhanced.

  8. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    SciTech Connect

    Yan, S; Touch, M; Bowsher, J; Yin, F; Cheng, L

    2014-06-15

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1.

  9. Robot and robot system

    NASA Technical Reports Server (NTRS)

    Behar, Alberto E. (Inventor); Marzwell, Neville I. (Inventor); Wall, Jonathan N. (Inventor); Poole, Michael D. (Inventor)

    2011-01-01

    A robot and robot system that are capable of functioning in a zero-gravity environment are provided. The robot can include a body having a longitudinal axis and having a control unit and a power source. The robot can include a first leg pair including a first leg and a second leg. Each leg of the first leg pair can be pivotally attached to the body and constrained to pivot in a first leg pair plane that is substantially perpendicular to the longitudinal axis of the body.

  10. SPHERE-IRDIS assembly, integration and testing: from bits and metal to a planet-hunting machine

    NASA Astrophysics Data System (ADS)

    Madec, Fabrice; Dohlen, Kjetil; Blanchard, Patrick; Carle, Michael; Origné, Alain; Jaquet, Marc; Le Mignant, David; Barette, Rudy; Moreaux, Gabriel; Arthaud, Gilles; Ferrand, Didier; Blanc, Jean-Claude; Vors, Patrick; Ducret, Franck; Gluck, Laurence; Saisse, Michel; Fabron, Christophe; Laurent, Philippe; Benedetti, Jean-Antoine; Bon, William; Llored, Marc; Moutou, Claire; Gry, Cécile; Meunier, Jean-Charles; Vigan, Arthur; Hill, Lucien; Langlois, Maud P.; Lizon, Jean-Louis; Naranjo, Vianak; Brast, Roland; Feldt, Markus; Popovic, Dan

    2012-09-01

    SPHERE, a second-generation instrument for the VLT, is currently under performance validation before shipping to Chile. The IRDIS sub-system, an Infra-Red Dual-Imager and Spectrograph, was integrated on the SPHERE bench last December, and this paper tells the story of the 12 months preceding this milestone: the Assembly, integration and Tests (AIT) performed at Laboratoire d'Astrophysique de Marseille (LAM). Key points of the AIT strategy are then presented, and the successes and failures---human, technical, and managerial---of this adventure are discussed. We also report on the excellent optical quality achieved, paramount to guarantee ultimate performance of the SPHERE instrument, thanks to high-quality optical manufacture and a successfully applied alignment strategy.