Robust Fuzzy Controllers Using FPGAs
NASA Technical Reports Server (NTRS)
Monroe, Author Gene S., Jr.
2007-01-01
Electro-mechanical device controllers typically come in one of three forms, proportional (P), Proportional Derivative (PD), and Proportional Integral Derivative (PID). Two methods of control are discussed in this paper; they are (1) the classical technique that requires an in-depth mathematical use of poles and zeros, and (2) the fuzzy logic (FL) technique that is similar to the way humans think and make decisions. FL controllers are used in multiple industries; examples include control engineering, computer vision, pattern recognition, statistics, and data analysis. Presented is a study on the development of a PD motor controller written in very high speed hardware description language (VHDL), and implemented in FL. Four distinct abstractions compose the FL controller, they are the fuzzifier, the rule-base, the fuzzy inference system (FIS), and the defuzzifier. FL is similar to, but different from, Boolean logic; where the output value may be equal to 0 or 1, but it could also be equal to any decimal value between them. This controller is unique because of its VHDL implementation, which uses integer mathematics. To compensate for VHDL's inability to synthesis floating point numbers, a scale factor equal to 10(sup (N/4) is utilized; where N is equal to data word size. The scaling factor shifts the decimal digits to the left of the decimal point for increased precision. PD controllers are ideal for use with servo motors, where position control is effective. This paper discusses control methods for motion-base platforms where a constant velocity equivalent to a spectral resolution of 0.25 cm(exp -1) is required; however, the control capability of this controller extends to various other platforms.
Robust fuzzy logic control of mechanical systems
NASA Astrophysics Data System (ADS)
Kohn-Rich, Sylvia
An approach for the design of robust fuzzy control laws for a large class of mechanical systems was developed. The approach applies Lyapunov's Stability Theory to ensure closed loop stability in the presence of plant perturbations and bounded disturbances. It uses inherent properties of an important class of mechanical and aerospace systems, such as robotic manipulators and large spacecraft, to derive closed-loop stability conditions. Based on these conditions, a methodology for the design of robust fuzzy control systems with guaranteed closed-loop stability was developed. Two classes of control laws for mechanical systems were considered. First, a methodology for point-to-point control was formulated. It combines an energy-type approach with Lyapunov's Stability Theory and its extensions, to obtain robust stability conditions for the closed-loop system. A procedure for control system development based on the above conditions is presented. Finally, a procedure for the implementation of the fuzzy control system with guaranteed performance and closed-loop stability characteristics is formulated. In the second part of the dissertation, the problem of robust tracking for mechanical systems was considered. Based on Lyapunov's Stability Theory and its extensions due to Leitmann and Corless, conditions were developed to prove robust stability and performance in the presence of plant uncertainties, bounded disturbances and control saturation. These conditions involve a large number of parameters and functional dependencies that can be chosen by the designer, therefore are well suited for Fuzzy Logic Control implementation. Three different fuzzy implementation methods for the proposed controls system were analyzed and their relative advantages were discussed. An extensive simulation study of the proposed approach was conducted. It demonstrated the excellent performance of the proposed control systems. The proposed method showed superior performance compared to other robust
Robust H∞ fuzzy control of a class of fuzzy bilinear systems with time-delay
NASA Astrophysics Data System (ADS)
Tsai, S.-H.; Li, T.-H. S.
2008-02-01
This paper presents robust H∞ fuzzy controllers for a class of T-S fuzzy bilinear systems (FBSs) with time-delay. First, the parallel distributed compensation (PDC) method is adopted to design a fuzzy controller which ensures the robust asymptotic stability of the FBS with time-delay and guarantees an H∞ norm bound constraint on disturbance attenuation. Based on the Schur complement and some variable transformation, the stability conditions of the overall fuzzy control system are formulated by linear matrix inequalities (LMIs). Finally, the validity and effectiveness of the proposed schemes are demonstrated by the simulation.
A robust fuzzy logic controller for robot manipulators with uncertainties.
Yi, S Y; Chung, M J
1997-01-01
Owing to load variation and unmodeled dynamics, a robot manipulator can be classified as a nonlinear dynamic system with structured and unstructured uncertainties. In this paper, the stability and robustness of a class of the fuzzy logic control (FLC) is investigated and a robust FLC is proposed for a robot manipulator with uncertainties. In order to show the performance of the proposed control algorithm, computer simulations are carried out on a simple two-link robot manipulator. PMID:18255910
Robust observer-based adaptive fuzzy sliding mode controller
NASA Astrophysics Data System (ADS)
Oveisi, Atta; Nestorović, Tamara
2016-08-01
In this paper, a new observer-based adaptive fuzzy integral sliding mode controller is proposed based on the Lyapunov stability theorem. The plant is subjected to a square-integrable disturbance and is assumed to have mismatch uncertainties both in state- and input-matrices. Based on the classical sliding mode controller, the equivalent control effort is obtained to satisfy the sufficient requirement of sliding mode controller and then the control law is modified to guarantee the reachability of the system trajectory to the sliding manifold. In order to relax the norm-bounded constrains on the control law and solve the chattering problem of sliding mode controller, a fuzzy logic inference mechanism is combined with the controller. An adaptive law is then introduced to tune the parameters of the fuzzy system on-line. Finally, for evaluating the controller and the robust performance of the closed-loop system, the proposed regulator is implemented on a real-time mechanical vibrating system.
Robust and fast learning for fuzzy cerebellar model articulation controllers.
Su, Shun-Feng; Lee, Zne-Jung; Wang, Yan-Ping
2006-02-01
In this paper, the online learning capability and the robust property for the learning algorithms of cerebellar model articulation controllers (CMAC) are discussed. Both the traditional CMAC and fuzzy CMAC are considered. In the study, we find a way of embeding the idea of M-estimators into the CMAC learning algorithms to provide the robust property against outliers existing in training data. An annealing schedule is also adopted for the learning constant to fulfill robust learning. In the study, we also extend our previous work of adopting the credit assignment idea into CMAC learning to provide fast learning for fuzzy CMAC. From demonstrated examples, it is clearly evident that the proposed algorithm indeed has faster and more robust learning. In our study, we then employ the proposed CMAC for an online learning control scheme used in the literature. In the implementation, we also propose to use a tuning parameter instead of a fixed constant to achieve both online learning and fine-tuning effects. The simulation results indeed show the effectiveness of the proposed approaches. PMID:16468579
Hamdy, M; Hamdan, I
2015-07-01
In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. PMID:25765955
Adaptive Robust Online Constructive Fuzzy Control of a Complex Surface Vehicle System.
Wang, Ning; Er, Meng Joo; Sun, Jing-Chao; Liu, Yan-Cheng
2016-07-01
In this paper, a novel adaptive robust online constructive fuzzy control (AR-OCFC) scheme, employing an online constructive fuzzy approximator (OCFA), to deal with tracking surface vehicles with uncertainties and unknown disturbances is proposed. Significant contributions of this paper are as follows: 1) unlike previous self-organizing fuzzy neural networks, the OCFA employs decoupled distance measure to dynamically allocate discriminable and sparse fuzzy sets in each dimension and is able to parsimoniously self-construct high interpretable T-S fuzzy rules; 2) an OCFA-based dominant adaptive controller (DAC) is designed by employing the improved projection-based adaptive laws derived from the Lyapunov synthesis which can guarantee reasonable fuzzy partitions; 3) closed-loop system stability and robustness are ensured by stable cancelation and decoupled adaptive compensation, respectively, thereby contributing to an auxiliary robust controller (ARC); and 4) global asymptotic closed-loop system can be guaranteed by AR-OCFC consisting of DAC and ARC and all signals are bounded. Simulation studies and comprehensive comparisons with state-of-the-arts fixed- and dynamic-structure adaptive control schemes demonstrate superior performance of the AR-OCFC in terms of tracking and approximation accuracy. PMID:26219099
Robust fuzzy neural network sliding mode control scheme for IPMSM drives
NASA Astrophysics Data System (ADS)
Leu, V. Q.; Mwasilu, F.; Choi, H. H.; Lee, J.; Jung, J. W.
2014-07-01
This article proposes a robust fuzzy neural network sliding mode control (FNNSMC) law for interior permanent magnet synchronous motor (IPMSM) drives. The proposed control strategy not only guarantees accurate and fast command speed tracking but also it ensures the robustness to system uncertainties and sudden speed and load changes. The proposed speed controller encompasses three control terms: a decoupling control term which compensates for nonlinear coupling factors using nominal parameters, a fuzzy neural network (FNN) control term which approximates the ideal control components and a sliding mode control (SMC) term which is proposed to compensate for the errors of that approximation. Next, an online FNN training methodology, which is developed using the Lyapunov stability theorem and the gradient descent method, is proposed to enhance the learning capability of the FNN. Moreover, the maximum torque per ampere (MTPA) control is incorporated to maximise the torque generation in the constant torque region and increase the efficiency of the IPMSM drives. To verify the effectiveness of the proposed robust FNNSMC, simulations and experiments are performed by using MATLAB/Simulink platform and a TI TMS320F28335 DSP on a prototype IPMSM drive setup, respectively. Finally, the simulated and experimental results indicate that the proposed design scheme can achieve much better control performances (e.g. more rapid transient response and smaller steady-state error) when compared to the conventional SMC method, especially in the case that there exist system uncertainties.
Chang, Wen-Jer; Huang, Bo-Jyun
2014-11-01
The multi-constrained robust fuzzy control problem is investigated in this paper for perturbed continuous-time nonlinear stochastic systems. The nonlinear system considered in this paper is represented by a Takagi-Sugeno fuzzy model with perturbations and state multiplicative noises. The multiple performance constraints considered in this paper include stability, passivity and individual state variance constraints. The Lyapunov stability theory is employed to derive sufficient conditions to achieve the above performance constraints. By solving these sufficient conditions, the contribution of this paper is to develop a parallel distributed compensation based robust fuzzy control approach to satisfy multiple performance constraints for perturbed nonlinear systems with multiplicative noises. At last, a numerical example for the control of perturbed inverted pendulum system is provided to illustrate the applicability and effectiveness of the proposed multi-constrained robust fuzzy control method. PMID:25281584
Robust H ∞ reliable control of time delay nonlinear systems via Takagi-Sugeno fuzzy models
NASA Astrophysics Data System (ADS)
Gassara, H.; El Hajjaji, A.; Kchaou, M.; Chaabane, M.
2014-03-01
This article is focused on reliable fuzzy H ∞ controller design for a class of Takagi-Sugeno (T-S) fuzzy systems with state delay, actuator failures, disturbance input and norm bounded uncertainties. In the design, the H ∞ performance of the closed-loop system is optimised during normal operation (without failures) while the system satisfies a prescribed H ∞ performance level in the case of actuator failures. Two methods are presented in this study. In the first method, delay-dependent conditions are derived based on a single Lyapunov-Krasovskii function. This method improves delay-independent results existing in the literature. Next, to further reduce the conservatism, we use a parameter-dependent Lyapunov-Krasovskii function. The new sufficient conditions for the existence of the suboptimal robust reliable controller are shown in terms of linear matrix inequalities (LMIs), which can be solved by using LMI optimisation techniques. A simulation example shows the effectiveness of the proposed methods.
Fuzzy Sarsa with Focussed Replacing Eligibility Traces for Robust and Accurate Control
NASA Astrophysics Data System (ADS)
Kamdem, Sylvain; Ohki, Hidehiro; Sueda, Naomichi
Several methods of reinforcement learning in continuous state and action spaces that utilize fuzzy logic have been proposed in recent years. This paper introduces Fuzzy Sarsa(λ), an on-policy algorithm for fuzzy learning that relies on a novel way of computing replacing eligibility traces to accelerate the policy evaluation. It is tested against several temporal difference learning algorithms: Sarsa(λ), Fuzzy Q(λ), an earlier fuzzy version of Sarsa and an actor-critic algorithm. We perform detailed evaluations on two benchmark problems : a maze domain and the cart pole. Results of various tests highlight the strengths and weaknesses of these algorithms and show that Fuzzy Sarsa(λ) outperforms all other algorithms tested for a larger granularity of design and under noisy conditions. It is a highly competitive method of learning in realistic noisy domains where a denser fuzzy design over the state space is needed for a more precise control.
SOS based robust H(∞) fuzzy dynamic output feedback control of nonlinear networked control systems.
Chae, Seunghwan; Nguang, Sing Kiong
2014-07-01
In this paper, a methodology for designing a fuzzy dynamic output feedback controller for discrete-time nonlinear networked control systems is presented where the nonlinear plant is modelled by a Takagi-Sugeno fuzzy model and the network-induced delays by a finite state Markov process. The transition probability matrix for the Markov process is allowed to be partially known, providing a more practical consideration of the real world. Furthermore, the fuzzy controller's membership functions and premise variables are not assumed to be the same as the plant's membership functions and premise variables, that is, the proposed approach can handle the case, when the premise of the plant are not measurable or delayed. The membership functions of the plant and the controller are approximated as polynomial functions, then incorporated into the controller design. Sufficient conditions for the existence of the controller are derived in terms of sum of square inequalities, which are then solved by YALMIP. Finally, a numerical example is used to demonstrate the validity of the proposed methodology. PMID:24108002
NASA Astrophysics Data System (ADS)
Cheng, Meng-Bi; Su, Wu-Chung; Tsai, Ching-Chih
2012-03-01
This article presents a robust tracking controller for an uncertain mobile manipulator system. A rigid robotic arm is mounted on a wheeled mobile platform whose motion is subject to nonholonomic constraints. The sliding mode control (SMC) method is associated with the fuzzy neural network (FNN) to constitute a robust control scheme to cope with three types of system uncertainties; namely, external disturbances, modelling errors, and strong couplings in between the mobile platform and the onboard arm subsystems. All parameter adjustment rules for the proposed controller are derived from the Lyapunov theory such that the tracking error dynamics and the FNN weighting updates are ensured to be stable with uniform ultimate boundedness (UUB).
Control of HIV/AIDS infection system with drug dosages design via robust H(∞) fuzzy controller.
Assawinchaichote, Wudhichai
2015-01-01
The designing of H∞ fuzzy controller for HIV/AIDS infected dynamic system has been considered in this paper. With TS fuzzy model and LMIs approach, the proposed controller is obtained for such a system. A set of sufficient conditions of the H∞ controller is given to ensure the closed-loop system asymptotic stability and the prescribed H∞ performance level. Finally, the effectiveness of the fuzzy controller design approach is finally presented through the simulation results. PMID:26405968
Robust nonlinear PID-like fuzzy logic control of a planar parallel (2PRP-PPR) manipulator.
Londhe, P S; Singh, Yogesh; Santhakumar, M; Patre, B M; Waghmare, L M
2016-07-01
In this paper, a robust nonlinear proportional-integral-derivative (PID)-like fuzzy control scheme is presented and applied to complex trajectory tracking control of a 2PRP-PPR (P-prismatic, R-revolute) planar parallel manipulator (motion platform) with three degrees-of-freedom (DOF) in the presence of parameter uncertainties and external disturbances. The proposed control law consists of mainly two parts: first part uses a feed forward term to enhance the control activity and estimated perturbed term to compensate for the unknown effects namely external disturbances and unmodeled dynamics, and the second part uses a PID-like fuzzy logic control as a feedback portion to enhance the overall closed-loop stability of the system. Experimental results are presented to show the effectiveness of the proposed control scheme. PMID:27012441
Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method
NASA Astrophysics Data System (ADS)
Chen, Bei; Jia, Tinggang; Niu, Yugang
2016-07-01
This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.
NASA Astrophysics Data System (ADS)
Kchaou, Mourad; Souissi, Mansour; Toumi, Ahmed
2011-07-01
In this paper, we investigate the delay-dependent robust reliable guaranteed cost (RRGC) fuzzy control problem for discrete-time nonlinear systems with time-varying delays. The delays may simultaneously appear in the state and in the control input. Also, both parametric uncertainties and control component failure may exist. Through Takagi-Sugeno fuzzy modelling of nonlinear delayed-systems and based on an appropriate piecewise Lyapunov-Krasovskii functional, a piecewise fuzzy controller is designed. Sufficient conditions for the existence of a RRGC controller are derived in terms of linear matrix inequalities (LMIs). Furthermore, a suboptimal RRGC fuzzy controller is given by means of a convex optimization procedure with LMI constraints which can not only guarantee the stability of the closed-loop fuzzy system, but also provides an optimized upper bound of the given cost performance despite possible actuator faults. Two numerical examples are presented in this paper to illustrate the feasibility of the theoretical developments.
Kobravi, Hamid-Reza; Erfanian, Abbas
2012-01-01
In this paper, we present a novel decentralized robust methodology for control of quiet upright posture during arm-free paraplegic standing using functional electrical stimulation (FES). Each muscle-joint complex is considered as a subsystem and individual controllers are designed for each one. Each controller operates solely on its associated subsystem, with no exchange of information between them, and the interaction between the subsystems are taken as external disturbances. In order to achieve robustness with respect to external disturbances, unmodeled dynamics, model uncertainty and time-varying properties of muscle-joint dynamics, a robust control framework is proposed. The method is based on the synergistic combination of an adaptive nonlinear compensator with sliding mode control (SMC). Fuzzy logic system is used to represent unknown system dynamics for implementing SMC and an adaptive updating law is designed for online estimating the system parameters such that the global stability and asymptotic convergence to zero of tracking errors is guaranteed. The proposed controller requires no prior knowledge about the dynamics of system to be controlled and no offline learning phase. The results of experiments on three paraplegic subjects show that the proposed control strategy is able to maintain the vertical standing posture using only FES control of ankle dorsiflexion and plantarflexion without using upper limbs for support and to compensate the effect of external disturbances and muscle fatigue. PMID:21764350
Predictive fuzzy controller for robotic motion control
Huang, S.J.; Hu, C.F.
1995-12-31
A system output prediction strategy incorporated with a fuzzy controller is proposed to manipulate the robotic motion control. Usually, the current position and velocity errors are used to operate the fuzzy logic controller for picking out a corresponding rule. When the system has fast planning speed or time varying behavior, the required tracking accuracy is difficult to achieve by adjusting the fuzzy rules. In order to improve the position control accuracy and system robustness for the industrial application, the current position error in the fuzzy rules look-up table is substituted by the predictive position error of the next step by using the grey predictive algorithm. This idea is implemented on a five degrees of freedom robot. The experimental results show that this fuzzy controller has effectively improve the system performance and achieved the facilitation of fuzzy controller implementation.
Universal Approximation of Mamdani Fuzzy Controllers and Fuzzy Logical Controllers
NASA Technical Reports Server (NTRS)
Yuan, Bo; Klir, George J.
1997-01-01
In this paper, we first distinguish two types of fuzzy controllers, Mamdani fuzzy controllers and fuzzy logical controllers. Mamdani fuzzy controllers are based on the idea of interpolation while fuzzy logical controllers are based on fuzzy logic in its narrow sense, i.e., fuzzy propositional logic. The two types of fuzzy controllers treat IF-THEN rules differently. In Mamdani fuzzy controllers, rules are treated disjunctively. In fuzzy logic controllers, rules are treated conjunctively. Finally, we provide a unified proof of the property of universal approximation for both types of fuzzy controllers.
Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir
2013-01-01
Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.
Fuzzy logic controller optimization
Sepe, Jr., Raymond B; Miller, John Michael
2004-03-23
A method is provided for optimizing a rotating induction machine system fuzzy logic controller. The fuzzy logic controller has at least one input and at least one output. Each input accepts a machine system operating parameter. Each output produces at least one machine system control parameter. The fuzzy logic controller generates each output based on at least one input and on fuzzy logic decision parameters. Optimization begins by obtaining a set of data relating each control parameter to at least one operating parameter for each machine operating region. A model is constructed for each machine operating region based on the machine operating region data obtained. The fuzzy logic controller is simulated with at least one created model in a feedback loop from a fuzzy logic output to a fuzzy logic input. Fuzzy logic decision parameters are optimized based on the simulation.
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1992-01-01
Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning.
Robust Fault Detection Using Robust Z1 Estimation and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Curry, Tramone; Collins, Emmanuel G., Jr.; Selekwa, Majura; Guo, Ten-Huei (Technical Monitor)
2001-01-01
This research considers the application of robust Z(sub 1), estimation in conjunction with fuzzy logic to robust fault detection for an aircraft fight control system. It begins with the development of robust Z(sub 1) estimators based on multiplier theory and then develops a fixed threshold approach to fault detection (FD). It then considers the use of fuzzy logic for robust residual evaluation and FD. Due to modeling errors and unmeasurable disturbances, it is difficult to distinguish between the effects of an actual fault and those caused by uncertainty and disturbance. Hence, it is the aim of a robust FD system to be sensitive to faults while remaining insensitive to uncertainty and disturbances. While fixed thresholds only allow a decision on whether a fault has or has not occurred, it is more valuable to have the residual evaluation lead to a conclusion related to the degree of, or probability of, a fault. Fuzzy logic is a viable means of determining the degree of a fault and allows the introduction of human observations that may not be incorporated in the rigorous threshold theory. Hence, fuzzy logic can provide a more reliable and informative fault detection process. Using an aircraft flight control system, the results of FD using robust Z(sub 1) estimation with a fixed threshold are demonstrated. FD that combines robust Z(sub 1) estimation and fuzzy logic is also demonstrated. It is seen that combining the robust estimator with fuzzy logic proves to be advantageous in increasing the sensitivity to smaller faults while remaining insensitive to uncertainty and disturbances.
Simplify fuzzy control implementation
Stoll, K.E.; Ralston, P.A.S.; Ramaganesan, S. )
1993-07-01
A controller that uses fuzzy rules provides better response than a conventional linear controller in some applications. The rules are best implemented as a breakpoint function. A level control example illustrates the technique and advantages over proportional-integral (PI) control. In numerous papers on fuzzy controller development, emphasis has been primarily on formal inferencing, membership functions, and steps in building a fuzzy relation, as described by Zadeh. The rationale used in formulating the required set of rules is usually neglected, and the interpretation of the final controller as an input-output algorithm is overlooked. Also, the details of fuzzy mathematics are unfamiliar to many engineers and the implementation appears cumbersome to most. Process description and control instrumentation. This article compares a fuzzy controller designed by specifying a breakpoint function with a traditional PI controller for a level control system on a laboratory scale. In this discussion, only setpoint changes are considered.
Fuzzy neural order robust of the non-linear systems
Madour, F.; Benmahammed, K.
2008-06-12
This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one, the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.
Fuzzy neural order robust of the non-linear systems
NASA Astrophysics Data System (ADS)
Madour, F.; Benmahammed, K.
2008-06-01
This article introduces a controller at structure of a network multi-layer neurons specified by the fuzzy reasoning of Takagi-Sugeno (TS) order one [1], the weights of the network represent the standard deviations of the membership function. This controller is applied to the ordering of a reversed pendulum. Changes in the entries and the exit, as of the environment changes of operation are introduced in order to test the robustness of the designed controller.
NASA Astrophysics Data System (ADS)
Boudana, Djamel; Nezli, Lazhari; Tlemçani, Abdelhalim; Mahmoudi, Mohand Oulhadj; Tadjine, Mohamed
2012-05-01
The double star synchronous machine (DSSM) is widely used for high power traction drives. It possesses several advantages over the conventional three phase machine. To reduce the torque ripple the DSSM are supplied with source voltage inverter (VSI). The model of the system DSSM-VSI is high order, multivariable and nonlinear. Further, big harmonic currents are generated. The aim of this paper is to develop a new direct torque adaptive fuzzy logic control in order to control DSSM and minimize the harmonics currents. Simulations results are given to show the effectiveness of our approach.
Fuzzy control of magnetic bearings
NASA Technical Reports Server (NTRS)
Feeley, J. J.; Niederauer, G. M.; Ahlstrom, D. J.
1991-01-01
The use of an adaptive fuzzy control algorithm implemented on a VLSI chip for the control of a magnetic bearing was considered. The architecture of the adaptive fuzzy controller is similar to that of a neural network. The performance of the fuzzy controller is compared to that of a conventional controller by computer simulation.
NASA Astrophysics Data System (ADS)
Mao, Yanbing; Zhang, Hongbin
2014-05-01
This paper deals with stability and robust H∞ control of discrete-time switched non-linear systems with time-varying delays. The T-S fuzzy models are utilised to represent each sub-non-linear system. Thus, with two level functions, namely, crisp switching functions and local fuzzy weighting functions, we introduce a discrete-time switched fuzzy systems, which inherently contain the features of the switched hybrid systems and T-S fuzzy systems. Piecewise fuzzy weighting-dependent Lyapunov-Krasovskii functionals (PFLKFs) and average dwell-time approach are utilised in this paper for the exponentially stability analysis and controller design, and with free fuzzy weighting matrix scheme, switching control laws are obtained such that H∞ performance is satisfied. The conditions of stability and the control laws are given in the form of linear matrix inequalities (LMIs) that are numerically feasible. The state decay estimate is explicitly given. A numerical example and the control of delayed single link robot arm with uncertain part are given to demonstrate the efficiency of the proposed method.
The Fuzzy-PI mix control for the briquette production
Lan Xizhu; Yang Hongjun
1998-12-31
The paper applies the Fuzzy-PI mix control to the briquette production, a new kind of Fuzzy-PI controller is developed combining the Fuzzy control principle with classic control theory, and the pressure control system for the briquette production is also developed. The simulation research on the above system has been done, which was compared with the traditional PID control system. The simulation result shows: the Fuzzy-PI control system gives satisfactory effect in the field of the response speed, control accuracy and control performance, and moreover, the system has better robustness.
NASA Astrophysics Data System (ADS)
Bagheri Tolabi, Hajar; Hosseini, Rahil; Shakarami, Mahmoud Reza
2016-06-01
This article presents a novel hybrid optimization approach for a nonlinear controller of a distribution static compensator (DSTATCOM). The DSTATCOM is connected to a distribution system with the distributed generation units. The nonlinear control is based on partial feedback linearization. Two proportional-integral-derivative (PID) controllers regulate the voltage and track the output in this control system. In the conventional scheme, the trial-and-error method is used to determine the PID controller coefficients. This article uses a combination of a fuzzy system, simulated annealing (SA) and intelligent water drops (IWD) algorithms to optimize the parameters of the controllers. The obtained results reveal that the response of the optimized controlled system is effectively improved by finding a high-quality solution. The results confirm that using the tuning method based on the fuzzy-SA-IWD can significantly decrease the settling and rising times, the maximum overshoot and the steady-state error of the voltage step response of the DSTATCOM. The proposed hybrid tuning method for the partial feedback linearizing (PFL) controller achieved better regulation of the direct current voltage for the capacitor within the DSTATCOM. Furthermore, in the event of a fault the proposed controller tuned by the fuzzy-SA-IWD method showed better performance than the conventional controller or the PFL controller without optimization by the fuzzy-SA-IWD method with regard to both fault duration and clearing times.
Fuzzy logic in control systems: Fuzzy logic controller. I, II
NASA Technical Reports Server (NTRS)
Lee, Chuen Chien
1990-01-01
Recent advances in the theory and applications of fuzzy-logic controllers (FLCs) are examined in an analytical review. The fundamental principles of fuzzy sets and fuzzy logic are recalled; the basic FLC components (fuzzification and defuzzification interfaces, knowledge base, and decision-making logic) are described; and the advantages of FLCs for incorporating expert knowledge into a control system are indicated. Particular attention is given to fuzzy implication functions, the interpretation of sentence connectives (and, also), compositional operators, and inference mechanisms. Applications discussed include the FLC-guided automobile developed by Sugeno and Nishida (1985), FLC hardware systems, FLCs for subway trains and ship-loading cranes, fuzzy-logic chips, and fuzzy computers.
Decentralized fuzzy control of multiple nonholonomic vehicles
Driessen, B.J.; Feddema, J.T.; Kwok, K.S.
1997-09-01
This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.
Tao, C W; Taur, Jinshiuh; Chuang, Chen-Chia; Chang, Chia-Wen; Chang, Yeong-Hwa
2011-06-01
In this paper, the interval type-2 fuzzy controllers (FC(IT2)s) are approximated using the fuzzy ratio switching type-1 FCs to avoid the complex type-reduction process required for the interval type-2 FCs. The fuzzy ratio switching type-1 FCs (FC(FRST1)s) are designed to be a fuzzy combination of the possible-leftmost and possible-rightmost type-1 FCs. The fuzzy ratio switching type-1 fuzzy control technique is applied with the sliding control technique to realize the hybrid fuzzy ratio switching type-1 fuzzy sliding controllers (HFSC(FRST1)s) for the double-pendulum-and-cart system. The simulation results and comparisons with other approaches are provided to demonstrate the effectiveness of the proposed HFSC(FRST1)s. PMID:21189244
Current projects in Fuzzy Control
NASA Technical Reports Server (NTRS)
Sugeno, Michio
1990-01-01
Viewgraphs on current projects in fuzzy control are presented. Three projects on helicopter flight control are discussed. The projects are (1) radio control by oral instructions; (2) automatic autorotation entry in engine failure; and (3) unmanned helicopter for sea rescue.
Gain-phase margin analysis of dynamic fuzzy control systems.
Perng, Jau-Woei; Wu, Bing-Fei; Chin, Hung-I; Lee, Tsu-Tian
2004-10-01
In this paper, we apply some effective methods, including the gain-phase margin tester, describing function and parameter plane, to predict the limit cycles of dynamic fuzzy control systems with adjustable parameters. Both continuous-time and sampled-data fuzzy control systems are considered. In general, fuzzy control systems are nonlinear. By use of the classical method of describing functions, the dynamic fuzzy controller may be linearized first. According to the stability equations and parameter plane methods, the stability of the equivalent linearized system with adjustable parameters is then analyzed. In addition, a simple approach is also proposed to determine the gain margin and phase margin which limit cycles can occur for robustness. Two examples of continuous-time fuzzy control systems with and without nonlinearity are presented to demonstrate the design procedure. Finally, this approach is also extended to a sampled-data fuzzy control system. PMID:15503509
Nonlinear Fuzzy Hybrid Control of Spacecraft
NASA Technical Reports Server (NTRS)
Mason, Paul A. C.; Crassidis, John L.; Markley, F. Landis
1999-01-01
This paper describes a new approach for intelligent control of a spacecraft with large angle maneuvers. This new approach, based on fuzzy logic, determines the required torque to achieve a robust, high performance attitude response. This scheme extends the robustness, performance and portability of the existing linear or nonlinear attitude controllers. Formulations are presented for attitude-control but can be extended to other applications. A simulation study, which uses the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft in the presence of disturbances and saturations, demonstrates the merits of the proposed scheme.
NASA Technical Reports Server (NTRS)
Narendra, K. S.; Annaswamy, A. M.
1985-01-01
Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.
A neural fuzzy controller learning by fuzzy error propagation
NASA Technical Reports Server (NTRS)
Nauck, Detlef; Kruse, Rudolf
1992-01-01
In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.
Genetic algorithms in adaptive fuzzy control
NASA Technical Reports Server (NTRS)
Karr, C. Lucas; Harper, Tony R.
1992-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust fuzzy membership functions in response to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific computer-simulated chemical system is used to demonstrate the ideas presented.
Robust control of accelerators
Johnson, W.J.D. ); Abdallah, C.T. )
1990-01-01
The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modeling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control methods leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this paper, we report on our research progress. In section one, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section two, the results of our proof-of-principle experiments are presented. In section three, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf without demodulating, compensating, and then remodulating.
Robust control of accelerators
NASA Astrophysics Data System (ADS)
Joel, W.; Johnson, D.; Chaouki, Abdallah T.
1991-07-01
The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.
Self-learning fuzzy controllers based on temporal back propagation
NASA Technical Reports Server (NTRS)
Jang, Jyh-Shing R.
1992-01-01
This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.
Fuzzy coordinator in control problems
NASA Technical Reports Server (NTRS)
Rueda, A.; Pedrycz, W.
1992-01-01
In this paper a hierarchical control structure using a fuzzy system for coordination of the control actions is studied. The architecture involves two levels of control: a coordination level and an execution level. Numerical experiments will be utilized to illustrate the behavior of the controller when it is applied to a nonlinear plant.
Fuzzy control of power factor preregulators
Mattavelli, P.; Buso, S.; Spiazzi, G.; Tenti, P.
1995-12-31
In this paper, a fuzzy-logic-based controller for Power Factor Preregulators (PFP`s) is investigated. Through this approach it is possible to get low-distorted and in-phase line current without need for sophisticated mathematical analysis or complex models to design the controller. Moreover, the intrinsic non-linearity of this control technique allows improved dynamic response and increased robustness as compared to linear approaches. In this paper, controller design and operation are discussed, and implementation by a microcontroller is described. Actual converter operation is analyzed by simulation in the case of a boost PFP, demonstrating the feasibility of the approach.
Fuzzy-entropy based robust optimization criteria for tuned mass dampers
NASA Astrophysics Data System (ADS)
Marano, Giuseppe Carlo; Quaranta, Giuseppe; Sgobba, Sara
2010-06-01
Tuned mass dampers (TMD) are well known as one of the most widely adopted devices in vibration control passive strategies. In the past few decades, many methods have been developed to find the optimal parameters of a TMD installed on a structure and subjected to a random base excitation process, but most of them are usually based on an implicit assumption that all of the structural parameters are deterministic. However, in many real cases this simplification is unacceptable, so robust optimal design criteria becomes a viable alternative to better support engineers in the design process. In Robust Design Optimization (RDO) approaches, indeed the solution must be able to not only minimize the performance but also to limit its variation induced by uncertainty. Most of the currently available RDO methods are based on a probabilistic description of the model uncertainty, even if in many cases they are not able to explicitly include the influence of all the possible sources of uncertainties. Therefore, in this study, a fuzzy version of the robust TMD design optimization problem is proposed. The consistency of the fuzzy approach is studied with respect to the available non-probabilistic formulations reported in the literature and an application to an example of a robust design of a linear TMD subjected to base random vibrations in the presence of fuzzy uncertainties. The results show that the proposed fuzzy-based approach is able to give a set of optimal solutions both in terms of structural efficiency and sensitivity to mechanical and environmental uncertainties.
Learning fuzzy logic control system
NASA Technical Reports Server (NTRS)
Lung, Leung Kam
1994-01-01
The performance of the Learning Fuzzy Logic Control System (LFLCS), developed in this thesis, has been evaluated. The Learning Fuzzy Logic Controller (LFLC) learns to control the motor by learning the set of teaching values that are generated by a classical PI controller. It is assumed that the classical PI controller is tuned to minimize the error of a position control system of the D.C. motor. The Learning Fuzzy Logic Controller developed in this thesis is a multi-input single-output network. Training of the Learning Fuzzy Logic Controller is implemented off-line. Upon completion of the training process (using Supervised Learning, and Unsupervised Learning), the LFLC replaces the classical PI controller. In this thesis, a closed loop position control system of a D.C. motor using the LFLC is implemented. The primary focus is on the learning capabilities of the Learning Fuzzy Logic Controller. The learning includes symbolic representation of the Input Linguistic Nodes set and Output Linguistic Notes set. In addition, we investigate the knowledge-based representation for the network. As part of the design process, we implement a digital computer simulation of the LFLCS. The computer simulation program is written in 'C' computer language, and it is implemented in DOS platform. The LFLCS, designed in this thesis, has been developed on a IBM compatible 486-DX2 66 computer. First, the performance of the Learning Fuzzy Logic Controller is evaluated by comparing the angular shaft position of the D.C. motor controlled by a conventional PI controller and that controlled by the LFLC. Second, the symbolic representation of the LFLC and the knowledge-based representation for the network are investigated by observing the parameters of the Fuzzy Logic membership functions and the links at each layer of the LFLC. While there are some limitations of application with this approach, the result of the simulation shows that the LFLC is able to control the angular shaft position of the
Fuzzy control system for a mobile robot
Hai Quan Dai; Dalton, G.R.; Tulenko, J. )
1992-01-01
Since the first fuzzy logic control system was proposed by Mamdani, many studies have been carried out on industrial process and real-time controls. The key problem for the application of fuzzy logic control is to find a suitable set of fuzzy control rules. Three common modes of deriving fuzzy control rules are often distinguished and mentioned: (1) expert experience and knowledge; (2) modeling operator control actions; and (3) modeling a process. In cases where an operator's skill is important, it is very useful to derive fuzzy control rules by modeling an operator's control actions. It is possible to model an operator's control behaviors in terms of fuzzy implications using the input-output data concerned with his/her control actions. The authors use the model obtained in this way as the basis for a fuzzy controller. The authors use a finite number of fuzzy or approximate control rules. To control a robot in a cluttered reactor environment, it is desirable to combine all the methods. In this paper, the authors describe a general algorithm for a mobile robot control system with fuzzy logic reasoning. They discuss the way that knowledge of fuzziness will be represented in this control system. They also describe a simulation program interface to the K2A Cybermation mobile robot to be used to demonstrate the control system.
Fuzzy attitude control for a nanosatellite in leo orbit
NASA Astrophysics Data System (ADS)
Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir
Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small
Fuzzy logic based robotic controller
NASA Technical Reports Server (NTRS)
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
NASA Astrophysics Data System (ADS)
Lin, Kyaw Kyaw; Soe, Aung Kyaw; Thu, Theint Theint
2008-10-01
This research work investigates a Self-Tuning Proportional Derivative (PD) type Fuzzy Logic Controller (STPDFLC) for a two link robot system. The proposed scheme adjusts on-line the output Scaling Factor (SF) by fuzzy rules according to the current trend of the robot. The rule base for tuning the output scaling factor is defined on the error (e) and change in error (de). The scheme is also based on the fact that the controller always tries to manipulate the process input. The rules are in the familiar if-then format. All membership functions for controller inputs (e and de) and controller output (UN) are defined on the common interval [-1,1]; whereas the membership functions for the gain updating factor (α) is defined on [0,1]. There are various methods to calculate the crisp output of the system. Center of Gravity (COG) method is used in this application due to better results it gives. Performances of the proposed STPDFLC are compared with those of their corresponding PD-type conventional Fuzzy Logic Controller (PDFLC). The proposed scheme shows a remarkably improved performance over its conventional counterpart especially under parameters variation (payload). The two-link results of analysis are simulated. These simulation results are illustrated by using MATLAB® programming.
Robustness of fuzzy logic power system stabilizers applied to multimachine power system
Hiyama, Takashi . Dept. of Electrical Engineering and Computer Science)
1994-09-01
This paper investigates the robustness of fuzzy logic stabilizers using the information of speed and acceleration states of a study unit. The input signals are the real power output and/or the speed of the study unit. Non-linear simulations show the robustness of the fuzzy logic power system stabilizers. Experiments are also performed by using a micro-machine system. The results show the feasibility of proposed fuzzy logic stabilizer.
Fuzzy logic control and optimization system
Lou, Xinsheng
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Fuzzy control of small servo motors
NASA Technical Reports Server (NTRS)
Maor, Ron; Jani, Yashvant
1993-01-01
To explore the benefits of fuzzy logic and understand the differences between the classical control methods and fuzzy control methods, the Togai InfraLogic applications engineering staff developed and implemented a motor control system for small servo motors. The motor assembly for testing the fuzzy and conventional controllers consist of servo motor RA13M and an encoder with a range of 4096 counts. An interface card was designed and fabricated to interface the motor assembly and encoder to an IBM PC. The fuzzy logic based motor controller was developed using the TILShell and Fuzzy C Development System on an IBM PC. A Proportional-Derivative (PD) type conventional controller was also developed and implemented in the IBM PC to compare the performance with the fuzzy controller. Test cases were defined to include step inputs of 90 and 180 degrees rotation, sine and square wave profiles in 5 to 20 hertz frequency range, as well as ramp inputs. In this paper we describe our approach to develop a fuzzy as well as PH controller, provide details of hardware set-up and test cases, and discuss the performance results. In comparison, the fuzzy logic based controller handles the non-linearities of the motor assembly very well and provides excellent control over a broad range of parameters. Fuzzy technology, as indicated by our results, possesses inherent adaptive features.
NASA Technical Reports Server (NTRS)
Abihana, Osama A.; Gonzalez, Oscar R.
1993-01-01
The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.
Fuzzy fractional order sliding mode controller for nonlinear systems
NASA Astrophysics Data System (ADS)
Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.
2010-04-01
In this paper, an intelligent robust fractional surface sliding mode control for a nonlinear system is studied. At first a sliding PD surface is designed and then, a fractional form of these networks PDα, is proposed. Fast reaching velocity into the switching hyperplane in the hitting phase and little chattering phenomena in the sliding phase is desired. To reduce the chattering phenomenon in sliding mode control (SMC), a fuzzy logic controller is used to replace the discontinuity in the signum function at the reaching phase in the sliding mode control. For the problem of determining and optimizing the parameters of fuzzy sliding mode controller (FSMC), genetic algorithm (GA) is used. Finally, the performance and the significance of the controlled system two case studies (robot manipulator and coupled tanks) are investigated under variation in system parameters and also in presence of an external disturbance. The simulation results signify performance of genetic-based fuzzy fractional sliding mode controller.
Analysis of inventory difference using fuzzy controllers
Zardecki, A.
1994-08-01
The principal objectives of an accounting system for safeguarding nuclear materials are as follows: (a) to provide assurance that all material quantities are present in the correct amount; (b) to provide timely detection of material loss; and (c) to estimate the amount of any loss and its location. In fuzzy control, expert knowledge is encoded in the form of fuzzy rules, which describe recommended actions for different classes of situations represented by fuzzy sets. The concept of a fuzzy controller is applied to the forecasting problem in a time series, specifically, to forecasting and detecting anomalies in inventory differences. This paper reviews the basic notion underlying the fuzzy control systems and provides examples of application. The well-known material-unaccounted-for diffusion plant data of Jaech are analyzed using both feedforward neural networks and fuzzy controllers. By forming a deference between the forecasted and observed signals, an efficient method to detect small signals in background noise is implemented.
Fuzzy logic control for camera tracking system
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Fritz, R. H.; Giarratano, J.; Jani, Yashvant
1992-01-01
A concept utilizing fuzzy theory has been developed for a camera tracking system to provide support for proximity operations and traffic management around the Space Station Freedom. Fuzzy sets and fuzzy logic based reasoning are used in a control system which utilizes images from a camera and generates required pan and tilt commands to track and maintain a moving target in the camera's field of view. This control system can be implemented on a fuzzy chip to provide an intelligent sensor for autonomous operations. Capabilities of the control system can be expanded to include approach, handover to other sensors, caution and warning messages.
Robust control for uncertain structures
NASA Technical Reports Server (NTRS)
Douglas, Joel; Athans, Michael
1991-01-01
Viewgraphs on robust control for uncertain structures are presented. Topics covered include: robust linear quadratic regulator (RLQR) formulas; mismatched LQR design; RLQR design; interpretations of RLQR design; disturbance rejection; and performance comparisons: RLQR vs. mismatched LQR.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Refining fuzzy logic controllers with machine learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1994-01-01
In this paper, we describe the GARIC (Generalized Approximate Reasoning-Based Intelligent Control) architecture, which learns from its past performance and modifies the labels in the fuzzy rules to improve performance. It uses fuzzy reinforcement learning which is a hybrid method of fuzzy logic and reinforcement learning. This technology can simplify and automate the application of fuzzy logic control to a variety of systems. GARIC has been applied in simulation studies of the Space Shuttle rendezvous and docking experiments. It has the potential of being applied in other aerospace systems as well as in consumer products such as appliances, cameras, and cars.
Design and performance comparison of fuzzy logic based tracking controllers
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1992-01-01
Several camera tracking controllers based on fuzzy logic principles have been designed and tested in software simulation in the software technology branch at the Johnson Space Center. The fuzzy logic based controllers utilize range measurement and pixel positions from the image as input parameters and provide pan and tilt gimble rate commands as output. Two designs of the rulebase and tuning process applied to the membership functions are discussed in light of optimizing performance. Seven test cases have been designed to test the performance of the controllers for proximity operations where approaches like v-bar, fly-around and station keeping are performed. The controllers are compared in terms of responsiveness, and ability to maintain the object in the field-of-view of the camera. Advantages of the fuzzy logic approach with respect to the conventional approach have been discussed in terms of simplicity and robustness.
A fuzzy control design case: The fuzzy PLL
NASA Technical Reports Server (NTRS)
Teodorescu, H. N.; Bogdan, I.
1992-01-01
The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.
Fuzzy control of battery chargers
Aldridge, J.
1996-03-01
The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version. {copyright} {ital 1996 American Institute of Physics.}
Applications of fuzzy logic to control and decision making
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
Long range space missions will require high operational efficiency as well as autonomy to enhance the effectivity of performance. Fuzzy logic technology has been shown to be powerful and robust in interpreting imprecise measurements and generating appropriate control decisions for many space operations. Several applications are underway, studying the fuzzy logic approach to solving control and decision making problems. Fuzzy logic algorithms for relative motion and attitude control have been developed and demonstrated for proximity operations. Based on this experience, motion control algorithms that include obstacle avoidance were developed for a Mars Rover prototype for maneuvering during the sample collection process. A concept of an intelligent sensor system that can identify objects and track them continuously and learn from its environment is under development to support traffic management and proximity operations around the Space Station Freedom. For safe and reliable operation of Lunar/Mars based crew quarters, high speed controllers with ability to combine imprecise measurements from several sensors is required. A fuzzy logic approach that uses high speed fuzzy hardware chips is being studied.
Control of a flexible beam using fuzzy logic
NASA Technical Reports Server (NTRS)
Mccullough, Claire L.
1991-01-01
The goal of this project, funded under the NASA Summer Faculty Fellowship program, was to evaluate control methods utilizing fuzzy logic for applicability to control of flexible structures. This was done by applying these methods to control of the Control Structures Interaction Suitcase Demonstrator developed at Marshall Space Flight Center. The CSI Suitcase Demonstrator is a flexible beam, mounted at one end with springs and bearing, and with a single actuator capable of rotating the beam about a pin at the fixed end. The control objective is to return the tip of the free end to a zero error position (from a nonzero initial condition). It is neither completely controllable nor completely observable. Fuzzy logic control was demonstrated to successfully control the system and to exhibit desirable robustness properties compared to conventional control.
Optimization of Fuzzy Controller of Permanent Magnet Synchronous Motor
NASA Astrophysics Data System (ADS)
Yu, Kuang-Cheng; Hsu, Shou-Ping; Hung, Yung-Hsiang
Present study aims at discussing how to optimize the fuzzy controller of Permanent Magnet Synchronous Motor (PMSM). By reducing the influence of parameter changes of plant using Technique for Order Performance by Similarity to Ideal Solution (TOPSIS) of Taguchi Method and Multi-Criteria Decision Making (MCDM), it shall be possible to improve robust characteristics of control system, thus promoting the output quality and performance of PMSM plant. Meanwhile, an analytical model for the parameters and output quality of fuzzy controllers was set up and optimal parameters were designed using Genetic Algorithm (GA). Generally speaking, PMSM controller has a long-lasting infrastructure without complex computation, of which the Small-The-Better (STB) output features of PMSM include: Overshoot, rise time and settling time. In previous design of controllers, only individual quality characteristics were considered without overall output design of multiple quality characteristics. By using a controller based on fuzzy logic method in cooperation with parameterization method of TOPSIS, this study intended to discuss how to ensure optimum output quality and performance (overshoot, rise time and settling time) under different noise factors (speeds and loads, etc.). With a PC-based infrastructure that combines PC-based motor controller system and Matlab/Simulink software for simulation process, it seeks to obtain optimum parameters of controllers and implement a PMSM fuzzy control system with vector control function. The computer simulation results have proved the validity and feasibility of entire infrastructure with possible desirable effects.
Fuzzy logic controllers: From development to deployment
Bonissone, P.P.; Chiang, K.H.
1994-12-31
We view fuzzy logic control technology as a high level language in which we can efficiently define and synthesize non-linear controllers for a given process. We contrast fuzzy Proportional Integral (PI) controllers with conventional PI and two dimensional sliding mode controllers. Then we compare the development of Fuzzy Logic Controllers (FLC) with that of Knowledge Based System (KBS) applications. We decompose the comparison into reasoning tasks (representation, inference, and control) and application tasks (acquisition, development, validation, compilation, and deployment). After reviewing the reasoning tasks, we focus on the compilation of fuzzy rule bases into fast access lookup tables. These tables can be used by a simplified run-time engine to determine the TLC`s crisp output for a given input.
Synthesis of nonlinear control strategies from fuzzy logic control algorithms
NASA Technical Reports Server (NTRS)
Langari, Reza
1993-01-01
Fuzzy control has been recognized as an alternative to conventional control techniques in situations where the plant model is not sufficiently well known to warrant the application of conventional control techniques. Precisely what fuzzy control does and how it does what it does is not quite clear, however. This important issue is discussed and in particular it is shown how a given fuzzy control scheme can resolve into a nonlinear control law and that in those situations the success of fuzzy control hinges on its ability to compensate for nonlinearities in plant dynamics.
Fuzzy logic based intelligent control of a variable speed cage machine wind generation system
Simoes, M.G.; Bose, B.K.; Spiegel, R.J.
1997-01-01
The paper describes a variable speed wind generation system where fuzzy logic principles are used for efficiency optimization and performance enhancement control. A squirrel cage induction generator feeds the power to a double-sided pulse width modulated converter system which pumps power to a utility grid or can supply to an autonomous system. The generation system has fuzzy logic control with vector control in the inner loops. A fuzzy controller tracks the generator speed with the wind velocity to extract the maximum power. A second fuzzy controller programs the machine flux for light load efficiency improvement, and a third fuzzy controller gives robust speed control against wind gust and turbine oscillatory torque. The complete control system has been developed, analyzed, and validated by simulation study. Performances have then been evaluated in detail.
Microturbine control based on fuzzy neural network
NASA Astrophysics Data System (ADS)
Yan, Shijie; Bian, Chunyuan; Wang, Zhiqiang
2006-11-01
As microturbine generator (MTG) is a clean, efficient, low cost and reliable energy supply system. From outside characteristics of MTG, it is multi-variable, time-varying and coupling system, so it is difficult to be identified on-line and conventional control law adopted before cannot achieve desirable result. A novel fuzzy-neural networks (FNN) control algorithm was proposed in combining with the conventional PID control. In the paper, IF-THEN rules for tuning were applied by a first-order Sugeno fuzzy model with seven fuzzy rules and the membership function was given as the continuous GAUSSIAN function. Some sample data were utilized to train FNN. Through adjusting shape of membership function and weight continually, objective of auto-tuning fuzzy-rules can be achieved. The FNN algorithm had been applied to "100kW Microturbine control and power converter system". The results of simulation and experiment are shown that the algorithm can work very well.
Fuzzy controllers in nuclear material accounting
Zardecki, A.
1994-10-01
Fuzzy controllers are applied to predicting and modeling a time series, with particular emphasis on anomaly detection in nuclear material inventory differences. As compared to neural networks, the fuzzy controllers can operate in real time; their learning process does not require many iterations to converge. For this reason fuzzy controllers are potentially useful in time series forecasting, where the authors want to detect and identify trends in real time. They describe an object-oriented implementation of the algorithm advanced by Wang and Mendel. Numerical results are presented both for inventory data and time series corresponding to chaotic situations, such as encountered in the context of strange attractors. In the latter case, the effects of noise on the predictive power of the fuzzy controller are explored.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
NASA Astrophysics Data System (ADS)
Nie, S. L.; Ji, H.; Huang, Y. Q.; Li, Y. P.; Huang, G. H.
2014-01-01
An interval-parameter fuzzy robust programming (IFRP) method is developed for the assessment of filter allocation and replacement strategies in a fluid power system (FPS) under uncertainty. The developed IFRP can effectively handle the uncertainties expressed as fuzzy sets, interval values, and their combinations, which exist in contaminant ingression/generation of the system and contaminant-holding capacity of filter without making assumptions on their probabilistic distributions. The fuzzy decision space can be delimited into a more robust one with the uncertainties being specified through dimensional enlargement of the original fuzzy constraints, leading to enhanced robustness for the optimization process. Results indicate that the developed IFRP can not only help decision-maker to identify optimal filter allocation and replacement strategies to control the contamination level of FPS with a minimized system-cost and system-failure risk under multiple uncertainties, but also mitigate uncertainties through abating interval widths of the replacement periods and service life under different contamination ingression/generation rates.
Fuzzy controller design by parallel genetic algorithms
NASA Astrophysics Data System (ADS)
Mondelli, G.; Castellano, G.; Attolico, Giovanni; Distante, Arcangelo
1998-03-01
Designing a fuzzy system involves defining membership functions and constructing rules. Carrying out these two steps manually often results in a poorly performing system. Genetic Algorithms (GAs) has proved to be a useful tool for designing optimal fuzzy controller. In order to increase the efficiency and effectiveness of their application, parallel GAs (PAGs), evolving synchronously several populations with different balances between exploration and exploitation, have been implemented using a SIMD machine (APE100/Quadrics). The parameters to be identified are coded in such a way that the algorithm implicitly provides a compact fuzzy controller, by finding only necessary rules and removing useless inputs from them. Early results, working on a fuzzy controller implementing the wall-following task for a real vehicle as a test case, provided better fitness values in less generations with respect to previous experiments made using a sequential implementation of GAs.
Convergent method of and apparatus for distributed control of robotic systems using fuzzy logic
Feddema, John T.; Driessen, Brian J.; Kwok, Kwan S.
2002-01-01
A decentralized fuzzy logic control system for one vehicle or for multiple robotic vehicles provides a way to control each vehicle to converge on a goal without collisions between vehicles or collisions with other obstacles, in the presence of noisy input measurements and a limited amount of compute-power and memory on board each robotic vehicle. The fuzzy controller demonstrates improved robustness to noise relative to an exact controller.
Universal fuzzy models and universal fuzzy controllers for discrete-time nonlinear systems.
Gao, Qing; Feng, Gang; Dong, Daoyi; Liu, Lu
2015-05-01
This paper investigates the problems of universal fuzzy model and universal fuzzy controller for discrete-time nonaffine nonlinear systems (NNSs). It is shown that a kind of generalized T-S fuzzy model is the universal fuzzy model for discrete-time NNSs satisfying a sufficient condition. The results on universal fuzzy controllers are presented for two classes of discrete-time stabilizable NNSs. Constructive procedures are provided to construct the model reference fuzzy controllers. The simulation example of an inverted pendulum is presented to illustrate the effectiveness and advantages of the proposed method. These results significantly extend the approach for potential applications in solving complex engineering problems. PMID:25137736
Neural and Fuzzy Adaptive Control of Induction Motor Drives
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-12
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
Neural and Fuzzy Adaptive Control of Induction Motor Drives
NASA Astrophysics Data System (ADS)
Bensalem, Y.; Sbita, L.; Abdelkrim, M. N.
2008-06-01
This paper proposes an adaptive neural network speed control scheme for an induction motor (IM) drive. The proposed scheme consists of an adaptive neural network identifier (ANNI) and an adaptive neural network controller (ANNC). For learning the quoted neural networks, a back propagation algorithm was used to automatically adjust the weights of the ANNI and ANNC in order to minimize the performance functions. Here, the ANNI can quickly estimate the plant parameters and the ANNC is used to provide on-line identification of the command and to produce a control force, such that the motor speed can accurately track the reference command. By combining artificial neural network techniques with fuzzy logic concept, a neural and fuzzy adaptive control scheme is developed. Fuzzy logic was used for the adaptation of the neural controller to improve the robustness of the generated command. The developed method is robust to load torque disturbance and the speed target variations when it ensures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the IM designed controller.
An application of fuzzy logic to power generation control
Tarabishy, M.N.; Grudzinski, J.J.
1996-10-01
The high demand for more energy at lower prices, coupled with tighter safety and environmental regulations made it necessary for utility companies to provide reliable power more efficiently, and for that purpose new control methods are being utilized to meet those challenges. Fuzzy Logic Control (FLC) technology produces controllers that are more robust at lower development cost and time. These qualities give FLC advantage over conventional control technologies particularly in dealing with increasingly complex nonlinear systems. In this paper the authors examine some of the main applications of FLC in power systems and demonstrate it`s usefulness in the control of a gas turbine.
Study on Fuzzy Adaptive Fractional Order PIλDμ Control for Maglev Guiding System
NASA Astrophysics Data System (ADS)
Hu, Qing; Hu, Yuwei
The mathematical model of the linear elevator maglev guiding system is analyzed in this paper. For the linear elevator needs strong stability and robustness to run, the integer order PID was expanded to the fractional order, in order to improve the steady state precision, rapidity and robustness of the system, enhance the accuracy of the parameter in fractional order PIλDμ controller, the fuzzy control is combined with the fractional order PIλDμ control, using the fuzzy logic achieves the parameters online adjustment. The simulations reveal that the system has faster response speed, higher tracking precision, and has stronger robustness to the disturbance.
Variable-order fuzzy fractional PID controller.
Liu, Lu; Pan, Feng; Xue, Dingyu
2015-03-01
In this paper, a new tuning method of variable-order fractional fuzzy PID controller (VOFFLC) is proposed for a class of fractional-order and integer-order control plants. Fuzzy logic control (FLC) could easily deal with parameter variations of control system, but the fractional-order parameters are unable to change through this way and it has confined the effectiveness of FLC. Therefore, an attempt is made in this paper to allow all the five parameters of fractional-order PID controller vary along with the transformation of system structure as the outputs of FLC, and the influence of fractional orders λ and μ on control systems has been investigated to make the fuzzy rules for VOFFLC. Four simulation results of different plants are shown to verify the availability of the proposed control strategy. PMID:25440947
Terminology and concepts of control and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Aldridge, Jack; Lea, Robert; Jani, Yashvant; Weiss, Jonathan
1990-01-01
Viewgraphs on terminology and concepts of control and fuzzy logic are presented. Topics covered include: control systems; issues in the design of a control system; state space control for inverted pendulum; proportional-integral-derivative (PID) controller; fuzzy controller; and fuzzy rule processing.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
Robust controls with structured perturbations
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1993-01-01
This final report summarizes the recent results obtained by the principal investigator and his coworkers on the robust stability and control of systems containing parametric uncertainty. The starting point is a generalization of Kharitonov's theorem obtained in 1989, and its generalization to the multilinear case, the singling out of extremal stability subsets, and other ramifications now constitutes an extensive and coherent theory of robust parametric stability that is summarized in the results contained here.
Fuzzy control of flexible structure using piezoelements
NASA Astrophysics Data System (ADS)
Doosthoseini, Alireza; Yousefi koma, Aghil; Shasti, Behrouz; Rohani, Omid
2008-03-01
In this paper the vibration suppression of a flexible structure using fuzzy controller with bonded piezoelements is investigated. A flexible beam with PZT piezoceramics as sensor and actuators is fabricated at the Advanced Dynamic and Control Systems lab (ADCSL). A dynamic model of the smart structure is derived from an experimental system ID. On the other hand using finite element method (FEM), a theoretical model of the structure is obtained which is in good agreement with the experimental model. A fuzzy control system is then designed and implemented for vibration suppression of the smart beam subjected to the impulse excitation and resonance disturbances. Results show the effectiveness of the fuzzy controller and its advantage over conventional controllers.
Zeghlache, Samir; Kara, Kamel; Saigaa, Djamel
2015-11-01
In this paper, a robust controller for a Six Degrees of Freedom (6 DOF) coaxial trirotor helicopter control is proposed in presence of defects in the system. A control strategy based on the coupling of the interval type-2 fuzzy logic control and sliding mode control technique are used to design a controller. The main purpose of this work is to eliminate the chattering phenomenon and guaranteeing the stability and the robustness of the system. In order to achieve this goal, interval type-2 fuzzy logic control has been used to generate the discontinuous control signal. The simulation results have shown that the proposed control strategy can greatly alleviate the chattering effect, and perform good reference tracking in presence of defects in the system. PMID:26428878
Comparison between the performance of two classes of fuzzy controllers
NASA Technical Reports Server (NTRS)
Janabi, T. H.; Sultan, L. H.
1992-01-01
This paper presents an application comparison between two classes of fuzzy controllers: the Clearness Transformation Fuzzy Controller (CTFC) and the CRI-based Fuzzy Controller. The comparison is performed by studying the application of the controllers to simulation examples of nonlinear systems. The CTFC is a new approach for the organization of fuzzy controllers based on a cognitive model of parameter driven control, the notion of fuzzy patterns to represent fuzzy knowledge and the Clearness Transformation Rule of Inference (CTRI) for approximate reasoning. The approach facilitates the implementation of the basic modules of the controller: the fuzzifier, defuzzifier, and the control protocol in a rule-based architecture. The CTRI scheme for approximate reasoning does not require the formation of fuzzy relation matrices yielding improved performance in comparison with the traditional organization of fuzzy controllers.
Induction machine Direct Torque Control system based on fuzzy adaptive control
NASA Astrophysics Data System (ADS)
Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng
2009-07-01
Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.
Fuzzy control of a boiler steam drum
Mayer, K.; Crockett, W.K.
1995-10-01
The authors controlled the inlet water flow to a dynamic model of a steam drum using fuzzy logic. The drum level varied little with step inputs in steam flow. The fuzzy logic controller performed at least as well as a well-tuned traditional PI (which is notoriously difficult to tune). Using plant data in the model provided further evidence that fuzzy logic control gave excellent results. The drum level is a function of inlet water, steam production, and blowdown. To compensate for upsets caused by steam production, independent variables used in the fuzzy controller were drum level and change in drum level. The dependent variable was the change required in the inlet flow. By modeling a 175,000 lb/hr Riley-Stoker boiler, they determined the universe of discourse for each of the three variables. Three triangular and two trapezoidal membership functions characterize each of these universes. The knowledge of experts provided the fuzzy associative memory (FAM) for the variables. The authors modeled the complete dynamic system using Tutsim (Tutsim Products, 200 California Ave., Palo Alto, CA 94306).
Neural and fuzzy robotic hand control.
Tascillo, A; Bourbakis, N
1999-01-01
An efficient first grasp for a wheelchair robotic arm-hand with pressure sensing is determined and presented. The grasp is learned by combining the advantages of neural networks and fuzzy logic into a hybrid control algorithm which learns from its tip and slip control experiences. Neurofuzzy modifications are outlined, and basic steps are demonstrated in preparation for physical implementation. Choice of object approach vector based on fuzzy tip and slip data and an expert supervisor, as well as training of a diagnostic neural tip and slip controller, are the focus of this work. PMID:18252342
Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management
Yongping Li; Guo H. Huang; Amornvadee Veawab; Xianghui Nie; Lei Liu
2006-08-15
In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management at two coal-fired power plants considered as major sulfur dioxide emission sources. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions. 61 refs., 7 figs., 6 tabs.
Two-stage fuzzy-stochastic robust programming: a hybrid model for regional air quality management.
Li, Yongping; Huang, Guo H; Veawab, Amornvadee; Nie, Xianghui; Liu, Lei
2006-08-01
In this study, a hybrid two-stage fuzzy-stochastic robust programming (TFSRP) model is developed and applied to the planning of an air-quality management system. As an extension of existing fuzzy-robust programming and two-stage stochastic programming methods, the TFSRP can explicitly address complexities and uncertainties of the study system without unrealistic simplifications. Uncertain parameters can be expressed as probability density and/or fuzzy membership functions, such that robustness of the optimization efforts can be enhanced. Moreover, economic penalties as corrective measures against any infeasibilities arising from the uncertainties are taken into account. This method can, thus, provide a linkage to predefined policies determined by authorities that have to be respected when a modeling effort is undertaken. In its solution algorithm, the fuzzy decision space can be delimited through specification of the uncertainties using dimensional enlargement of the original fuzzy constraints. The developed model is applied to a case study of regional air quality management. The results indicate that reasonable solutions have been obtained. The solutions can be used for further generating pollution-mitigation alternatives with minimized system costs and for providing a more solid support for sound environmental decisions. PMID:16933639
Fuzzy logic control of telerobot manipulators
NASA Technical Reports Server (NTRS)
Franke, Ernest A.; Nedungadi, Ashok
1992-01-01
Telerobot systems for advanced applications will require manipulators with redundant 'degrees of freedom' (DOF) that are capable of adapting manipulator configurations to avoid obstacles while achieving the user specified goal. Conventional methods for control of manipulators (based on solution of the inverse kinematics) cannot be easily extended to these situations. Fuzzy logic control offers a possible solution to these needs. A current research program at SRI developed a fuzzy logic controller for a redundant, 4 DOF, planar manipulator. The manipulator end point trajectory can be specified by either a computer program (robot mode) or by manual input (teleoperator). The approach used expresses end-point error and the location of manipulator joints as fuzzy variables. Joint motions are determined by a fuzzy rule set without requiring solution of the inverse kinematics. Additional rules for sensor data, obstacle avoidance and preferred manipulator configuration, e.g., 'righty' or 'lefty', are easily accommodated. The procedure used to generate the fuzzy rules can be extended to higher DOF systems.
Wai, Rong-Jong; Yang, Zhi-Wei
2008-10-01
This paper focuses on the development of adaptive fuzzy neural network control (AFNNC), including indirect and direct frameworks for an n-link robot manipulator, to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances, and parameter variations. In order to cope with this problem, an indirect AFNNC (IAFNNC) scheme and a direct AFNNC (DAFNNC) strategy are investigated without the requirement of prior system information. In these model-free control topologies, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with online learning ability is constructed to represent the system dynamics of an n-link robot manipulator. In the IAFNNC, an FNN estimator is designed to tune the nonlinear dynamic function vector in fuzzy local models, and then, the estimative vector is used to indirectly develop a stable IAFNNC law. In the DAFNNC, an FNN controller is directly designed to imitate a predetermined model-based stabilizing control law, and then, the stable control performance can be achieved by only using joint position information. All the IAFNNC and DAFNNC laws and the corresponding adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the stable control performance. Numerical simulations and experimental results of a two-link robot manipulator actuated by dc servomotors are given to verify the effectiveness and robustness of the proposed methodologies. In addition, the superiority of the proposed control schemes is indicated in comparison with proportional-differential control, fuzzy-model-based control, T-S-type FNN control, and robust neural fuzzy network control systems. PMID:18784015
Robust flight control of rotorcraft
NASA Astrophysics Data System (ADS)
Pechner, Adam Daniel
With recent design improvement in fixed wing aircraft, there has been a considerable interest in the design of robust flight control systems to compensate for the inherent instability necessary to achieve desired performance. Such systems are designed for maximum available retention of stability and performance in the presence of significant vehicle damage or system failure. The rotorcraft industry has shown similar interest in adopting these reconfigurable flight control schemes specifically because of their ability to reject disturbance inputs and provide a significant amount of robustness for all but the most catastrophic of situations. The research summarized herein focuses on the extension of the pseudo-sliding mode control design procedure interpreted in the frequency domain. Application of the technique is employed and simulated on two well known helicopters, a simplified model of a hovering Sikorsky S-61 and the military's Black Hawk UH-60A also produced by Sikorsky. The Sikorsky helicopter model details are readily available and was chosen because it can be limited to pitch and roll motion reducing the number of degrees of freedom and yet contains two degrees of freedom, which is the minimum requirement in proving the validity of the pseudo-sliding control technique. The full order model of a hovering Black Hawk system was included both as a comparison to the S-61 helicopter design system and as a means to demonstrate the scaleability and effectiveness of the control technique on sophisticated systems where design robustness is of critical concern.
Research on AHP speed adjusting based on fuzzy-PID double-mode complex control
NASA Astrophysics Data System (ADS)
Sang, Yong; Liu, Yang; Lin, Hongbin; Wang, Zhanlin
2008-10-01
In the ground test station of AC motor driven airborne hydraulic pump (referred to as AHP, hereinafter), speed adjusting is usually worsened by the high order, nonlinearity and time-varying features of AC motor, as well as the nonlinearity of the hydraulic system. In order to solve these problems a new complex control method based on Fuzzy-PID control theory is brought forward. The control method adopts fuzzy controller to enhance the system's tracing features under big error conditions and adopts parameter self-modifying Fuzzy-PID control to eliminate static errors under small error conditions. Simulation results show that the complex controller has faster response, higher accuracy, stronger robust, compared with the general PID controller. The AHP speed and robust requirements can be satisfied.
A Laboratory Testbed for Embedded Fuzzy Control
ERIC Educational Resources Information Center
Srivastava, S.; Sukumar, V.; Bhasin, P. S.; Arun Kumar, D.
2011-01-01
This paper presents a novel scheme called "Laboratory Testbed for Embedded Fuzzy Control of a Real Time Nonlinear System." The idea is based upon the fact that project-based learning motivates students to learn actively and to use their engineering skills acquired in their previous years of study. It also fosters initiative and focuses students'…
Fuzzy Control/Space Station automation
NASA Technical Reports Server (NTRS)
Gersh, Mark
1990-01-01
Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.
FUZZY LOGIC CONTROL OF AC INDUCTION MOTORS
The paper discusses the fuzzy logic control (FLC) of electric motors, being investigated under the sponsorship of the U.S. EPA to reduce energy consumption when motors are operated at less than rated speeds and loads. lectric motors use 60% of the electrical energy generated in t...
Fuzzy multinomial control chart and its application
NASA Astrophysics Data System (ADS)
Wibawati, Mashuri, Muhammad; Purhadi, Irhamah
2016-03-01
Control chart is a technique that has been used widely in industry and services. P chart is the simplest control chart. In this chart, item is classified into two categories as either conforming and non conforming. This chart based on binomial distribution. In practice, each item can classify in more than two categories such as very bad, bad, good and very good. Then to monitor the process we used multinomial p control chart. However, if the classification is an element of vagueness, the fuzzy multinomial control chart (FM) is more appropriately used. Control limit of FM chart obtained multinomial distribution and the degree of membership using fuzzy trianguler are 0, 0.25. 0.5 and 1. This chart will be applied to the data glass and will compare with multinomial p control chart.
NASA Astrophysics Data System (ADS)
Zhang, Zhiyuan; Li, Weili; Li, Taifu
2005-12-01
An AC motor belongs to the category of a controlled object that is multi-variable, nonlinear and strong correlation, complex to mathematical model, and whose control performance is affected by a time-changing parameter. Therefore, it is very difficult to obtain the desired static and dynamic characteristic through a general fixed regulator. In this paper, the authors present a compound intelligent control strategy, combined with a neural network and fuzzy control. Considering that a neural network is good at self-learning, and a single fuzzy control algorithm is rapid in its response characteristics, the compound control strategy can compensate for a disadvantage of fuzzy control, which is associated with poor stability and precision and also requires solving a puzzle in the time-changing parameters in the controlled object. On the basis of a dynamic model of the permanent magnetic synchronous motor and its working principle, the authors designed the block diagram of a control system, combined a neural PID control and fuzzy control, and studied the corresponding control algorithm in detail. The simulation results show that the compound intelligent control system is good in dynamic performance and robustness.
Realization of fuzzy controller based on complex control
NASA Astrophysics Data System (ADS)
Wang, Bing; Luo, Yuwei; Chen, Yan; Zhao, Mingfu; Dong, Yu
2006-11-01
At present years, fuzzy control technique has been applied and extended on engineering control. The paper adopts 89C52 single chip (SCM) as the hardware platform and applies fuzzy control strategy and algorithm to realize the design of the fuzzy controller. The controller composed to be a closed-loop real-time control system by computer, A/D, D/A, sensor, executed motor and controlled object. The structure is a double closed-loop control structure. The system is a double closed-loop control system. Inner loop adopts an analog current controller and outer loop adopts a digital controller. The system applied fuzzy control strategy and algorithm. The controller takes Volts D.C. signal, pulse signal, analog feedback current signal as its input and on-off magnetism team motor as its control structure. That is to say, the controller is divided into basic fuzzy control and warp integral control, increases proportional integral, decreases the fluctuation near the zero in order to improve the precision of controller.
Fuzzy logic feedback control for fed-batch enzymatic hydrolysis of lignocellulosic biomass.
Tai, Chao; Voltan, Diego S; Keshwani, Deepak R; Meyer, George E; Kuhar, Pankaj S
2016-06-01
A fuzzy logic feedback control system was developed for process monitoring and feeding control in fed-batch enzymatic hydrolysis of a lignocellulosic biomass, dilute acid-pretreated corn stover. Digested glucose from hydrolysis reaction was assigned as input while doser feeding time and speed of pretreated biomass were responses from fuzzy logic control system. Membership functions for these three variables and rule-base were created based on batch hydrolysis data. The system response was first tested in LabVIEW environment then the performance was evaluated through real-time hydrolysis reaction. The feeding operations were determined timely by fuzzy logic control system and efficient responses were shown to plateau phases during hydrolysis. Feeding of proper amount of cellulose and maintaining solids content was well balanced. Fuzzy logic proved to be a robust and effective online feeding control tool for fed-batch enzymatic hydrolysis. PMID:26915095
NASA Technical Reports Server (NTRS)
Sultan, Labib; Janabi, Talib
1992-01-01
This paper analyses the internal operation of fuzzy logic controllers as referenced to the human cognitive tasks of control and decision making. Two goals are targeted. The first goal focuses on the cognitive interpretation of the mechanisms employed in the current design of fuzzy logic controllers. This analysis helps to create a ground to explore the potential of enhancing the functional intelligence of fuzzy controllers. The second goal is to outline the features of a new class of fuzzy controllers, the Clearness Transformation Fuzzy Logic Controller (CT-FLC), whereby some new concepts are advanced to qualify fuzzy controllers as 'cognitive devices' rather than 'expert system devices'. The operation of the CT-FLC, as a fuzzy pattern processing controller, is explored, simulated, and evaluated.
Generalizations of fuzzy linguistic control points in geometric design
NASA Astrophysics Data System (ADS)
Sallehuddin, M. H.; Wahab, A. F.; Gobithaasan, R. U.
2014-07-01
Control points are geometric primitives that play an important role in designing the geometry curve and surface. When these control points are blended with some basis functions, there are several geometric models such as Bezier, B-spline and NURBS(Non-Uniform Rational B-Spline) will be produced. If the control points are defined by the theory of fuzzy sets, then fuzzy geometric models are produced. But the fuzzy geometric models can only solve the problem of uncertainty complex. This paper proposes a new definition of fuzzy control points with linguistic terms. When the fuzzy control points with linguistic terms are blended with basis functions, then a fuzzy linguistic geometric model is produced. This paper ends with some numerical examples illustrating linguistic control attributes of fuzzy geometric models.
NASA Astrophysics Data System (ADS)
Kelkar, Nikhal; Samu, Tayib; Hall, Ernest L.
1997-09-01
Automated guided vehicles (AGVs) have many potential applications in manufacturing, medicine, space and defense. The purpose of this paper is to describe exploratory research on the design of a modular autonomous mobile robot controller. The controller incorporates a fuzzy logic approach for steering and speed control, a neuro-fuzzy approach for ultrasound sensing (not discussed in this paper) and an overall expert system. The advantages of a modular system are related to portability and transportability, i.e. any vehicle can become autonomous with minimal modifications. A mobile robot test-bed has been constructed using a golf cart base. This cart has full speed control with guidance provided by a vision system and obstacle avoidance using ultrasonic sensors. The speed and steering fuzzy logic controller is supervised by a 486 computer through a multi-axis motion controller. The obstacle avoidance system is based on a micro-controller interfaced with six ultrasonic transducers. This micro- controller independently handles all timing and distance calculations and sends a steering angle correction back to the computer via the serial line. This design yields a portable independent system in which high speed computer communication is not necessary. Vision guidance is accomplished with a CCD camera with a zoom lens. The data is collected by a vision tracking device that transmits the X, Y coordinates of the lane marker to the control computer. Simulation and testing of these systems yielded promising results. This design, in its modularity, creates a portable autonomous fuzzy logic controller applicable to any mobile vehicle with only minor adaptations.
Takagi-Sugeno Fuzzy Model-Based Control of Spacecraft with Flexible Appendage
NASA Astrophysics Data System (ADS)
Ayoubi, Mohammad A.; Sendi, Chokri
2015-06-01
This paper presents a Takagi-Sugeno (T-S) fuzzy model-based approach to model and control a rigid spacecraft with flexible antenna. First, the equations of motion of the flexible spacecraft, which are based on Lagrange equations and given in terms of quasi-coordinates and the Rayleigh-Ritz method, are briefly reviewed. Then, the T-S fuzzy modeling and the parallel distributed compensation control technique are introduced. We utilize full state-feedback and optimal H∞ robustness performance via a T-S fuzzy model to achieve position and attitude stabilization, vibration suppression, and disturbance rejection objectives. Finally, this technique is applied to the flexible spacecraft equations of motion resulting in a nonlinear controller. The controller produces an asymptotically stable closed-loop system which is robust to external disturbances and has a simple structure for straightforward implementation. Numerical simulation is provided for performance evaluation of the proposed controller design.
NASA Astrophysics Data System (ADS)
Wu, Zhenhui; Dong, Chaoyang
2006-11-01
Because of nonlinearity and strong coupling of reaction-jet and aerodynamics compound control missile, a missile autopilot design method based on adaptive fuzzy sliding mode control (AFSMC) is proposed in this paper. The universal approximation ability of adaptive fuzzy system is used to approximate the nonlinear function in missile dynamics equation during the flight of high angle of attack. And because the sliding mode control is robustness to external disturbance strongly, the sliding mode surface of the error system is constructed to overcome the influence of approximation error and external disturbance so that the actual overload can track the maneuvering command with high precision. Simulation results show that the missile autopilot designed in this paper not only can track large overload command with higher precision than traditional method, but also is robust to model uncertainty and external disturbance strongly.
Robust control with structured perturbations
NASA Technical Reports Server (NTRS)
Keel, Leehyun
1988-01-01
Two important problems in the area of control systems design and analysis are discussed. The first is the robust stability using characteristic polynomial, which is treated first in characteristic polynomial coefficient space with respect to perturbations in the coefficients of the characteristic polynomial, and then for a control system containing perturbed parameters in the transfer function description of the plant. In coefficient space, a simple expression is first given for the l(sup 2) stability margin for both monic and non-monic cases. Following this, a method is extended to reveal much larger stability region. This result has been extended to the parameter space so that one can determine the stability margin, in terms of ranges of parameter variations, of the closed loop system when the nominal stabilizing controller is given. The stability margin can be enlarged by a choice of better stabilizing controller. The second problem describes the lower order stabilization problem, the motivation of the problem is as follows. Even though the wide range of stabilizing controller design methodologies is available in both the state space and transfer function domains, all of these methods produce unnecessarily high order controllers. In practice, the stabilization is only one of many requirements to be satisfied. Therefore, if the order of a stabilizing controller is excessively high, one can normally expect to have a even higher order controller on the completion of design such as inclusion of dynamic response requirements, etc. Therefore, it is reasonable to have a lowest possible order stabilizing controller first and then adjust the controller to meet additional requirements. The algorithm for designing a lower order stabilizing controller is given. The algorithm does not necessarily produce the minimum order controller; however, the algorithm is theoretically logical and some simulation results show that the algorithm works in general.
Adaptive process control using fuzzy logic and genetic algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Adaptive Process Control with Fuzzy Logic and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Karr, C. L.
1993-01-01
Researchers at the U.S. Bureau of Mines have developed adaptive process control systems in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by modeling the search procedures of natural genetics. FLC's are rule based systems that efficiently manipulate a problem environment by modeling the 'rule-of-thumb' strategy used in human decision-making. Together, GA's and FLC's possess the capabilities necessary to produce powerful, efficient, and robust adaptive control systems. To perform efficiently, such control systems require a control element to manipulate the problem environment, an analysis element to recognize changes in the problem environment, and a learning element to adjust to the changes in the problem environment. Details of an overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to demonstrate the ideas presented.
Maximum entropy approach to fuzzy control
NASA Technical Reports Server (NTRS)
Ramer, Arthur; Kreinovich, Vladik YA.
1992-01-01
For the same expert knowledge, if one uses different &- and V-operations in a fuzzy control methodology, one ends up with different control strategies. Each choice of these operations restricts the set of possible control strategies. Since a wrong choice can lead to a low quality control, it is reasonable to try to loose as few possibilities as possible. This idea is formalized and it is shown that it leads to the choice of min(a + b,1) for V and min(a,b) for &. This choice was tried on NASA Shuttle simulator; it leads to a maximally stable control.
Traction Slip Ratio Control Based on Fuzzy DSMC for Independent AWD EV
NASA Astrophysics Data System (ADS)
Zou, Guangcai; Luo, Yugong; Li, Keqiang
A traction slip ratio control method using fuzzy dynamical sliding mode strategy (Fuzzy DSMC) is proposed to reduce the slip ratio oscillations in the independent AWD EV traction control. The slip ratios are also accurately estimated in a new way to support this control process. Firstly in this control method, the fuzzy logic method is applied respectively to regulate the switching surface and the reaching law of DSMC with the estimated slip ratios, which are used to weaken the chattering and improve the convergence rate to some extent. Furthermore the control structure of DSMC is designed to obtain the smooth torque outputs from all independent traction motors, which are implemented in the anti-skid control for EV in the end. The mathematics analysis for the controller parameters choosing and simulation experiments show that the method can greatly avoid the drawback of control chattering occurred in the classical sliding mode control. Moreover, the robustness of systems for parameter uncertainties is also guaranteed.
Djukanovic, M.B.; Calovic, M.S.; Vesovic, B.V.; Sobajic, D.J.
1997-12-01
This paper presents an attempt of nonlinear, multivariable control of low-head hydropower plants, by using adaptive-network based fuzzy inference system (ANFIS). The new design technique enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near optimal manner. The controller has flexibility for accepting more sensory information, with the main goal to improve the generator unit transients, by adjusting the exciter input, the wicket gate and runner blade positions. The developed ANFIS controller whose control signals are adjusted by using incomplete on-line measurements, can offer better damping effects to generator oscillations over a wide range of operating conditions, than conventional controllers. Digital simulations of hydropower plant equipped with low-head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-feedback optimal control and ANFIS based output feedback control are presented. To demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired neuro-fuzzy controller, the controller has been implemented on a complex high-order non-linear hydrogenerator model.
Fuzzy Current-Mode Control and Stability Analysis
NASA Technical Reports Server (NTRS)
Kopasakis, George
2000-01-01
In this paper a current-mode control (CMC) methodology is developed for a buck converter by using a fuzzy logic controller. Conventional CMC methodologies are based on lead-lag compensation with voltage and inductor current feedback. In this paper the converter lead-lag compensation will be substituted with a fuzzy controller. A small-signal model of the fuzzy controller will also be developed in order to examine the stability properties of this buck converter control system. The paper develops an analytical approach, introducing fuzzy control into the area of CMC.
Fuzzy controllers and fuzzy expert systems: industrial applications of fuzzy technology
NASA Astrophysics Data System (ADS)
Bonissone, Piero P.
1995-06-01
We will provide a brief description of the field of approximate reasoning systems, with a particular emphasis on the development of fuzzy logic control (FLC). FLC technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. In a recently published paper we have illustrated some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, stream turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variable in a rolling mill stand. These applications will be illustrated in the oral presentation. In this paper, we will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLCs in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit the tradeoff criteria used to manage multiple control strategies. Finally, we will describe some of our FLC technology research efforts in automatic rule base tuning and generation, leading to a suite of programs for reinforcement learning, supervised learning, genetic algorithms, steepest descent algorithms, and rule clustering.
NASA Astrophysics Data System (ADS)
Zhang, Jianling; An, Jinwen; Wang, Mina
2005-11-01
This paper describes the application and simulation of an adaptive fuzzy controller for a missile model. The fuzzy control system is tested using different values of fuzzy controller correctional factor on a nonlinear missile model. It is shown that the self-tuning fuzzy controller is well suited for controlling the pitch loop of the missile control system with air turbulence and parameter variety. The research shows that the Popov stability criterion could successfully guarantee the stability of the fuzzy system. It provides a good method for the design of missile control system. Simulation results suggest significant benefits from fuzzy logic in control task for missile pitch loop control.
Afghoul, Hamza; Krim, Fateh; Chikouche, Djamel; Beddar, Antar
2015-09-01
This paper proposes a novel fuzzy switched controller (FSC) integrated in direct current control (DCC) algorithm for single phase active power filter (SPAPF). The controller under study consists of conventional PI controller, fractional order PI controller (FO-PI) and fuzzy decision maker (FDM) that switches between them using reduced fuzzy logic control. The proposed controller offers short response time with low damping and deals efficiently with the external disturbances while preserving the robustness properties. To fulfill the requirements of power quality, unity power factor and harmonics limitations in active power filtering an experimental test bench has been built using dSPACE 1104 to demonstrate the feasibility and effectiveness of the proposed controller. The obtained results present high performance in steady and transient states. PMID:26233491
Fuzzy-neural control of an aircraft tracking camera platform
NASA Technical Reports Server (NTRS)
Mcgrath, Dennis
1994-01-01
A fuzzy-neural control system simulation was developed for the control of a camera platform used to observe aircraft on final approach to an aircraft carrier. The fuzzy-neural approach to control combines the structure of a fuzzy knowledge base with a supervised neural network's ability to adapt and improve. The performance characteristics of this hybrid system were compared to those of a fuzzy system and a neural network system developed independently to determine if the fusion of these two technologies offers any advantage over the use of one or the other. The results of this study indicate that the fuzzy-neural approach to control offers some advantages over either fuzzy or neural control alone.
Wastewater neutralization control based on fuzzy logic: Experimental results
Adroer, M.; Alsina, A.; Aumatell, J.; Poch, M.
1999-07-01
Many industrial wastes contain acidic or alkaline materials that require neutralization of previous discharge into receiving waters or to chemical and biological treatment plants. The control of the wastewater neutralization process is subjected to several difficulties, such as the highly nonlinear titration curve (with special sensitivity around neutrality), the unknown water composition, the variable buffering capacity of the system, and the changes in input loading. To deal with these problems, this study proposes a fixed fuzzy logic controller (FLC) structure coupled with a tuning factor. The versatility and robustness of this controller has been proved when faced with solutions of variable buffering capacity, with acids that cover a wide pK range and with switches between acids throughout the course of a test. Laboratory experiments and simulation runs using the proposed controller were successful in a wide operational range.
Robust Fixed-Structure Controller Synthesis
NASA Technical Reports Server (NTRS)
Corrado, Joseph R.; Haddad, Wassim M.; Gupta, Kajal (Technical Monitor)
2000-01-01
The ability to develop an integrated control system design methodology for robust high performance controllers satisfying multiple design criteria and real world hardware constraints constitutes a challenging task. The increasingly stringent performance specifications required for controlling such systems necessitates a trade-off between controller complexity and robustness. The principle challenge of the minimal complexity robust control design is to arrive at a tractable control design formulation in spite of the extreme complexity of such systems. Hence, design of minimal complexitY robust controllers for systems in the face of modeling errors has been a major preoccupation of system and control theorists and practitioners for the past several decades.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. PMID:25816968
Intelligent fuzzy controller for event-driven real time systems
NASA Technical Reports Server (NTRS)
Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.
1992-01-01
Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.
Active structural control by fuzzy logic rules: An introduction
Tang, Yu; Wu, Kung C.
1996-12-31
A zeroth level introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single- degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.
Active structural control by fuzzy logic rules: An introduction
Tang, Y.
1995-07-01
An introduction to fuzzy logic control applied to the active structural control to reduce the dynamic response of structures subjected to earthquake excitations is presented. It is hoped that this presentation will increase the attractiveness of the methodology to structural engineers in research as well as in practice. The basic concept of the fuzzy logic control are explained by examples and by diagrams with a minimum of mathematics. The effectiveness and simplicity of the fuzzy logic control is demonstrated by a numerical example in which the response of a single-degree-of-freedom system subjected to earthquake excitations is controlled by making use of the fuzzy logic controller. In the example, the fuzzy rules are first learned from the results obtained from linear control theory; then they are fine tuned to improve their performance. It is shown that the performance of fuzzy logic control surpasses that of the linear control theory. The paper shows that linear control theory provides experience for fuzzy logic control, and fuzzy logic control can provide better performance; therefore, two controllers complement each other.
Extending Fuzzy System Concepts for Control of a Vitrification Melter
Whitehouse, J.C.; Sorgel, W.; Garrison, A.; Schalkoff, R.J.
1995-08-16
Fuzzy systems provide a mathematical framework to capture uncertainty. The complete description of real, complex systems or situations often requires far more detail and information than could ever be obtained (or understood). Fuzzy approaches are an alternative technology for both system control and information processing and management. In this paper, we present the design of a fuzzy control system for a melter used in the vitrification of hazardous waste. Design issues, especially those related to melter shutdown and obtaining smooth control surfaces, are addressed. Several extensions to commonly-applied fuzzy techniques, notably adaptive defuzzification and modified rule structures are developed.
Modal control of a plate using a fuzzy logic controller
NASA Astrophysics Data System (ADS)
Sharma, Manu; Singh, S. P.; Sachdeva, B. L.
2007-08-01
This paper presents fuzzy logic based independent modal space control (IMSC) and fuzzy logic based modified independent modal space control (MIMSC) of vibration. The rule base of the controller consists of nine rules, which have been derived based upon simple human reasoning. Input to the controller consists of the first two modal displacements and velocities of the structure and the output of the controller is the modal force to be applied by the actuator. Fuzzy logic is used in such a way that the actuator is never called to apply effort which is beyond safe limits and also the operator is saved from calculating control gains. The proposed fuzzy controller is experimentally tested for active vibration control of a cantilevered plate. A piezoelectric patch is used as a sensor to sense vibrations of the plate and another piezoelectric patch is used as an actuator to control vibrations of the plate. For analytical formulation, a finite element method based upon Hamilton's principle is used to model the plate. For experimentation, the first two modes of the plate are observed using a Kalman observer. Real-time experiments are performed to control the first mode, the second mode and both modes simultaneously. Experiments are also performed to control the first mode by IMSC, the second mode by IMSC and both modes simultaneously by MIMSC. It is found that for the same decibel reduction in the first mode, the voltage applied by the fuzzy logic based controller is less than that applied by IMSC. While controlling the second mode by IMSC, a considerable amount of spillover is observed in the first mode and region just after the second mode, whereas while controlling the second mode by fuzzy logic, spillover effects are much smaller. While controlling two modes simultaneously, with a single sensor/actuator pair, appreciable resonance control is observed both with fuzzy logic based MIMSC as well as with direct MIMSC, but there is a considerable amount of spillover in the off
Control of a fluidized bed combustor using fuzzy logic
Koffman, S.J.; Brown, R.C.; Fullmer, R.R.
1996-01-01
Fuzzy logic--an artificial intelligence technique--can be employed to exploit the wealth of information human experts have learned about complex systems while attempting to control them. This information is usually of a qualitative nature that is unusable by rigid conventional control techniques. Fuzzy logic, uses as a control method, manipulates linguistically expressed, heuristic knowledge from a human expert to derive control actions for a described system. As an alternative approach to classical controls, fuzzy logic is examined for start-up control and normal regulation of a bubbling fluidized bed combustor. To validate the fuzzy logic approach, the fuzzy controller is compared to a classical proportional and integral (PI) controller, commonly used in industrial applications, designed by Ziegler-Nichols tuning.
NASA Technical Reports Server (NTRS)
Kreinovich, Vladik YA.; Quintana, Chris; Lea, Robert
1991-01-01
Fuzzy control has been successfully applied in industrial systems. However, there is some caution in using it. The reason is that it is based on quite reasonable ideas, but each of these ideas can be implemented in several different ways, and depending on which of the implementations chosen different results are achieved. Some implementations lead to a high quality control, some of them not. And since there are no theoretical methods for choosing the implementation, the basic way to choose it now is experimental. But if one chooses a method that is good for several examples, there is no guarantee that it will work fine in all of them. Hence the caution. A theoretical basis for choosing the fuzzy control procedures is provided. In order to choose a procedure that transforms a fuzzy knowledge into a control, one needs, first, to choose a membership function for each of the fuzzy terms that the experts use, second, to choose operations of uncertainty values that corresponds to 'and' and 'or', and third, when a membership function for control is obtained, one must defuzzy it, that is, somehow generate a value of the control u that will be actually used. A general approach that will help to make all these choices is described: namely, it is proved that under reasonable assumptions membership functions should be linear or fractionally linear, defuzzification must be described by a centroid rule and describe all possible 'and' and 'or' operations. Thus, a theoretical explanation of the existing semi-heuristic choices is given and the basis for the further research on optimal fuzzy control is formulated.
Fuzzy Logic Controller for Low Temperature Application
NASA Technical Reports Server (NTRS)
Hahn, Inseob; Gonzalez, A.; Barmatz, M.
1996-01-01
The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.
Expert system driven fuzzy control application to power reactors
Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.
1990-12-31
For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a ``supervisory`` routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.
Expert system driven fuzzy control application to power reactors
Tsoukalas, L.H.; Berkan, R.C.; Upadhyaya, B.R.; Uhrig, R.E.
1990-01-01
For the purpose of nonlinear control and uncertainty/imprecision handling, fuzzy controllers have recently reached acclaim and increasing commercial application. The fuzzy control algorithms often require a supervisory'' routine that provides necessary heuristics for interface, adaptation, mode selection and other implementation issues. Performance characteristics of an on-line fuzzy controller depend strictly on the ability of such supervisory routines to manipulate the fuzzy control algorithm and enhance its control capabilities. This paper describes an expert system driven fuzzy control design application to nuclear reactor control, for the automated start-up control of the Experimental Breeder Reactor-II. The methodology is verified through computer simulations using a valid nonlinear model. The necessary heuristic decisions are identified that are vitally important for the implemention of fuzzy control in the actual plant. An expert system structure incorporating the necessary supervisory routines is discussed. The discussion also includes the possibility of synthesizing the fuzzy, exact and combined reasoning to include both inexact concepts, uncertainty and fuzziness, within the same environment.
Coordinated signal control for arterial intersections using fuzzy logic
NASA Astrophysics Data System (ADS)
Kermanian, Davood; Zare, Assef; Balochian, Saeed
2013-09-01
Every day growth of the vehicles has become one of the biggest problems of urbanism especially in major cities. This can waste people's time, increase the fuel consumption, air pollution, and increase the density of cars and vehicles. Fuzzy controllers have been widely used in many consumer products and industrial applications with success over the past two decades. This article proposes a comprehensive model of urban traffic network using state space equations and then using Fuzzy Logic Tool Box and SIMULINK Program MATLAB a fuzzy controller in order to optimize and coordinate signal control at two intersections at an arterial road. The fuzzy controller decides to extend, early cut or terminate a signal phase and phase sequence to ensure smooth flow of traffic with minimal waiting time and length of queue. Results show that the performance of the proposed traffic controller at novel fuzzy model is better that of conventional controllers under normal and abnormal traffic conditions.
Predictive neuro-fuzzy controller for multilink robot manipulator
NASA Astrophysics Data System (ADS)
Kaymaz, Emre; Mitra, Sunanda
1995-10-01
A generalized controller based on fuzzy clustering and fuzzy generalized predictive control has been developed for nonlinear systems including multilink robot manipulators. The proposed controller is particularly useful when the dynamics of the nonlinear system to be controlled are difficult to yield exact solutions and the system specification can be obtained in terms of crisp input-output pairs. It inherits the advantages of both fuzzy logic and predictive control. The identification of the nonlinear mapping of the system to be controlled is realized by a three- layer feed-forward neural network model employing the input-output data obtained from the system. The speed of convergence of the neural network is improved by the introduction of a fuzzy logic controlled backpropagation learning algorithm. The neural network model is then used as a simulation tool to generate the input-output data for developing the predictive fuzzy logic controller for the chosen nonlinear system. The use of fuzzy clustering facilitates automatic generation of membership relations of the input-output data. Unlike the linguistic fuzzy logic controller which requires approximate knowledge of the shape and the numbers of the membership functions in the input and output universes of the discourse, this integrated neuro-fuzzy approach allows one to find the fuzzy relations and the membership functions more accurately. Furthermore, it is not necessary to tune the controller. For a two-link robot manipulator, the performance of this predictive fuzzy controller is shown to be superior to that of a conventional controller employing an ARMA model of the system in terms of accuracy and consumption of energy.
Fuzzy crane control with sensorless payload deflection feedback for vibration reduction
NASA Astrophysics Data System (ADS)
Smoczek, Jaroslaw
2014-05-01
Different types of cranes are widely used for shifting cargoes in building sites, shipping yards, container terminals and many manufacturing segments where the problem of fast and precise transferring a payload suspended on the ropes with oscillations reduction is frequently important to enhance the productivity, efficiency and safety. The paper presents the fuzzy logic-based robust feedback anti-sway control system which can be applicable either with or without a sensor of sway angle of a payload. The discrete-time control approach is based on the fuzzy interpolation of the controllers and crane dynamic model's parameters with respect to the varying rope length and mass of a payload. The iterative procedure combining a pole placement method and interval analysis of closed-loop characteristic polynomial coefficients is proposed to design the robust control scheme. The sensorless anti-sway control application developed with using PAC system with RX3i controller was verified on the laboratory scaled overhead crane.
An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller
ERIC Educational Resources Information Center
Mamdani, E. H.; Assilian, S.
1975-01-01
This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)
Robustness analysis applied to substructure controller synthesis
NASA Technical Reports Server (NTRS)
Gonzalez-Oberdoerffer, Marcelo F.; Craig, Roy R., Jr.
1993-01-01
The stability and robustness of the controlled system obtained via the substructure control synthesis (SCS) method of Su et al. (1990) were examined using a six-bay truss model, and employing an LQG control design method to obtain controllers for two separate structures. It is found that the assembled controller provides a stability in this instance. A qualitative assessment of the stability robustness of the system with controller designed with the SCS method is provided by obtaining a controller using the complete truss model and comparing the robustness of the corresponding closed-loop systems.
Control Law for Automatic Landing Using Fuzzy-Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of a fuzzy-logic control law for automatically landing an aircraft that handles both the control to lead an aircraft from horizontal flight at an altitude of 500 meters to flight along the glide-path course near the runway, as well as the control to direct the aircraft to land smoothly on a runway, was investigated. The control law for the automatic landing was designed to match the design goals of directing an aircraft from horizontal flight to flight along a glide-path course quickly and smoothly, and for landing smoothly on a runway. The design of the control law and evaluation of the control performance were performed considering the ground effect at landing. As a result, it was confirmed that the design goals were achieved. Even if the characteristics of the aircraft change greatly, the proposed control law is able to maintain the control performance. Moreover, it was confirmed to be able to land an aircraft safely during air turbulence. The present paper indicates that fuzzy-logic control is an effective and flexible method when applied to the control law for automatic landing, and the design method of the control law using fuzzy-logic control was obtained.
Control Law for Automatic Landing Using Fuzzy Logic Control
NASA Astrophysics Data System (ADS)
Kato, Akio; Inagaki, Yoshiki
The effectiveness of fuzzy logic control law for automatic landing of aircraft, which cover both of control to lead aircraft from level flight at an altitude of 500m to the flight on the glide-path course near the runway and control for the aircraft to land smoothly on a runway, was studied. The control law of the automatic landing was designed to match the design goals of leading from the horizontal flight to the flight on the glide-path course quickly and smoothly and of landing smoothly on a runway. Because there is the ground effect at landing, design of control law and evaluation of control performance were done in consideration of the ground effect. As a result, it was confirmed that the design objective was achieved. Even if the characteristics of the plant changes greatly, this control law was able to maintain the control performance. Moreover, it was confirmed to be able to land safely when there was air turbulence. This paper shows that fuzzy logic control is an effective and flexible method when applied to control law for automatic landing and the design method of control law using fuzzy logic control was obtained.
Hierarchical fuzzy control of low-energy building systems
Yu, Zhen; Dexter, Arthur
2010-04-15
A hierarchical fuzzy supervisory controller is described that is capable of optimizing the operation of a low-energy building, which uses solar energy to heat and cool its interior spaces. The highest level fuzzy rules choose the most appropriate set of lower level rules according to the weather and occupancy information; the second level fuzzy rules determine an optimal energy profile and the overall modes of operation of the heating, ventilating and air-conditioning system (HVAC); the third level fuzzy rules select the mode of operation of specific equipment, and assign schedules to the local controllers so that the optimal energy profile can be achieved in the most efficient way. Computer simulation is used to compare the hierarchical fuzzy control scheme with a supervisory control scheme based on expert rules. The performance is evaluated by comparing the energy consumption and thermal comfort. (author)
NASA Astrophysics Data System (ADS)
Wang, Paul P.; Tyan, Ching-Yu
1993-12-01
This paper presents the classification of fuzzy dynamic systems and fuzzy linguistic controllers (FLC) into standard types (TYPE 1 through TYPE 7). The need, utility value, and the logic behind this classification are given. The proposed classification is the result of studying many known examples of FLC applications. The impact of this classification to new designs and to the improved performance of classical and modern control systems is an important consideration.
Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control.
Mahfouf, M; Abbod, M F; Linkens, D A
2003-01-01
Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control architecture is proposed whereby the on-line generated fuzzy rules relating to the self-organizing fuzzy logic controller (SOFLC) are obtained via integration with the popular generalized predictive control (GPC) algorithm using a Takagi-Sugeno-Kang (TSK)-based controlled autoregressive integrated moving average (CARIMA) model structure. In this approach, GPC replaces the performance index (PI) table which, as an incremental model, is traditionally used to discover, amend, and delete the rules. Because the GPC sequence is computed using predicted future outputs, the new hybrid approach rewards the time-delay very well. The new generic approach, named generalized predictive self-organizing fuzzy logic control (GPSOFLC), is simulated on a well-known nonlinear chemical process, the distillation column, and is shown to produce an effective fuzzy rule-base in both qualitative (minimum number of generated rules) and quantitative (good rules) terms. PMID:18238192
Fire control system for mobile vehicles using fuzzy controllers
NASA Astrophysics Data System (ADS)
Krishna Moorty, J. A. R.; Marathe, Rajeev; Srivastava, Hari Babu
2005-12-01
Inertial stabilization of electro-optical sighting systems and weapon slaving control loops are essential constituents of modern fire control systems for mobile combat vehicles. These systems are used for surveillance, target tracking and engaging the targets under dynamic conditions. Firing accuracy of such systems largely depends on stabilization and weapon slaving accuracies. Accuracy requirements become stringent as the operating range increases. Several other issues such as bore sighting offsets, ballistic offsets and mounting error compensation etc. are also to be considered. Fuzzy knowledge based controller (FKBC) offers an alternative method to the conventional control synthesis methodologies using root locus, Bode plots or pole placement. Fuzzy control loops are particularly useful when the plant consists of substantial non-linearity due to actuator saturation, stiction, Coulomb friction, digitization etc. Since, the control surface obtained through this method is non-linear, generally it provides greater flexibility to designer to achieve better damping, lesser control energy even in presence of various constraints. This work presents the design of weapon slaving loop using a fuzzy controller. The weapon is slaved to a gimbaled electro-optical sight, which has a stabilized line of sight along two axes. The system under consideration is designed for naval platforms. A two-input (error and rate of change of error) and single output (incremental control) fuzzy controller has been designed to position the weapon at desired position. Implementation of controller has been done using digitized inputs. Simulations have been carried out to evaluate the performance of the integrated fire control system under the presence of various non-linearities, sensor inaccuracies and other exogenous inputs like host platform generated disturbances and measurement noise. Stringent requirements of disturbance attenuation, tracking and command following have been met.
NASA Astrophysics Data System (ADS)
Hu, Hongtao; Jing, Zhongliang; Hu, Shiqiang
2006-12-01
A novel adaptive algorithm for tracking maneuvering targets is proposed. The algorithm is implemented with fuzzy-controlled current statistic model adaptive filtering and unscented transformation. A fuzzy system allows the filter to tune the magnitude of maximum accelerations to adapt to different target maneuvers, and unscented transformation can effectively handle nonlinear system. A bearing-only tracking scenario simulation results show the proposed algorithm has a robust advantage over a wide range of maneuvers and overcomes the shortcoming of the traditional current statistic model and adaptive filtering algorithm.
Coordination of Distributed Fuzzy Behaviors in Mobile Robot Control
NASA Technical Reports Server (NTRS)
Tunstel, E.
1995-01-01
This presentation describes an approach to behavior coordination and conflict resolution within the context of a hierarchical architecture of fuzzy behaviors. Coordination is achieved using weighted decision-making based on behavioral degrees of applicability. This strategy is appropriate for fuzzy control of systems that can be represented by hierarchical or decentralized structures.
Fuzzy reinforcement learning control for compliance tasks of robotic manipulators.
Tzafestas, S G; Rigatos, G G
2002-01-01
A fuzzy reinforcement learning (FRL) scheme which is based on the principles of sliding-mode control and fuzzy logic is proposed. The FRL uses only immediate reward. Sufficient conditions for the convergence of the FRL to the optimal task performance are studied. The validity of the method is tested through simulation examples of a robot which deburrs a metal surface. PMID:18238109
Distributed traffic signal control using fuzzy logic
NASA Technical Reports Server (NTRS)
Chiu, Stephen
1992-01-01
We present a distributed approach to traffic signal control, where the signal timing parameters at a given intersection are adjusted as functions of the local traffic condition and of the signal timing parameters at adjacent intersections. Thus, the signal timing parameters evolve dynamically using only local information to improve traffic flow. This distributed approach provides for a fault-tolerant, highly responsive traffic management system. The signal timing at an intersection is defined by three parameters: cycle time, phase split, and offset. We use fuzzy decision rules to adjust these three parameters based only on local information. The amount of change in the timing parameters during each cycle is limited to a small fraction of the current parameters to ensure smooth transition. We show the effectiveness of this method through simulation of the traffic flow in a network of controlled intersections.
Robust Decentralized Controller Design: Subsystem Approach
NASA Astrophysics Data System (ADS)
Rosinová, Danica; Thuan, Nguyen Quang; Veselý, Vojtech; Marko, L'ubomír
2012-01-01
The paper addresses the problem of the robust output feedback PI controller design for complex large-scale stable systems with a state decentralized control structure. A decentralized control design procedure is proposed for static output feedback control which is based on solving robust control design problems of subsystems' size. The presented approach is based
A Stochastic Framework for Robust Fuzzy Filtering and Analysis of Signals-Part I.
Kumar, Mohit; Stoll, Norbert; Stoll, Regina; Thurow, Kerstin
2016-05-01
There are numerous applications across all the spectrum of scientific areas that demand the mathematical study of signals/data. The two typical study areas of theoretical research on signal/data processing are of modeling (i.e., understanding of signal's behavior) and of analysis (i.e., evaluation of given signal for finding its association to existing signal models). The objective of this paper is to provide a stochastic framework to design both fuzzy filtering and analysis algorithms in a unified manner. The signals are modeled via linear-in-parameters models (e.g., a type of Takagi-Sugeno fuzzy model) based on variational Bayes (VB) methodology. This gives rise to the "negative free energy maximizing" filtering algorithm. The issue of intractability was handled first by carefully choosing the priors as conjugate to the likelihood and then by using Stirling approximation for the Gamma function. This paper highlighted that it was analytically possible to maximize the information theoretic quantity, "mutual information," exactly in the same manner as maximizing "negative free energy" in VB methodology. This gives rise to the "variational information maximizing" analysis algorithm. The robustness of the methodology against data outliers is achieved by modeling the noises with Student- t distributions. The framework takes into account the inputs noises as well apart from the usually considered output noise. The robustness of the adaptive filtering algorithm against noise is shown by a deterministic analysis where an upper bound on the magnitude of estimation errors is derived. PMID:25955860
NASA Astrophysics Data System (ADS)
Rakkiyappan, R.; Chandrasekar, A.; Lakshmanan, S.
2016-07-01
This paper is concerned with the stochastic sampled data robust stabilisation of T-S fuzzy neutral systems with randomly occurring uncertainties and time-varying delays. The sampling period is assumed to be m in number, whose occurrence probabilities are given constants and satisfy Bernoulli distribution. By introducing an improved Lyapunov-Krasovskii functional with new triple integral terms and by combining both the convex combination technique and reciprocal convex technique, delay-dependent robust stability criteria are obtained in terms of linear matrix inequalities. These linear matrix inequalities can be easily solved by using standard convex optimisation algorithms. The designed stochastic sampled data fuzzy controller gain can be obtained. Finally, three numerical examples are given to illustrate the effectiveness of the proposed methods.
An adaptive fuzzy controller for permanent-magnet AC servo drives
Le-Huy, H.
1995-12-31
This paper presents a theoretical study on a model-reference adaptive fuzzy logic controller for vector-controlled permanent-magnet ac servo drives. In the proposed system, fuzzy logic is used to implement the direct controller as well as the adaptation mechanism. The operation of the direct fuzzy controller and the fuzzy logic based adaptation mechanism is studied. The control performance of the adaptive fuzzy controller is evaluated by simulation for various operating conditions. The results are compared with that provided by a non-adaptive fuzzy controller. The implementation of proposed adaptive fuzzy controller is discussed.
Robust Multiobjective Controllability of Complex Neuronal Networks.
Tang, Yang; Gao, Huijun; Du, Wei; Lu, Jianquan; Vasilakos, Athanasios V; Kurths, Jurgen
2016-01-01
This paper addresses robust multiobjective identification of driver nodes in the neuronal network of a cat's brain, in which uncertainties in determination of driver nodes and control gains are considered. A framework for robust multiobjective controllability is proposed by introducing interval uncertainties and optimization algorithms. By appropriate definitions of robust multiobjective controllability, a robust nondominated sorting adaptive differential evolution (NSJaDE) is presented by means of the nondominated sorting mechanism and the adaptive differential evolution (JaDE). The simulation experimental results illustrate the satisfactory performance of NSJaDE for robust multiobjective controllability, in comparison with six statistical methods and two multiobjective evolutionary algorithms (MOEAs): nondominated sorting genetic algorithms II (NSGA-II) and nondominated sorting composite differential evolution. It is revealed that the existence of uncertainties in choosing driver nodes and designing control gains heavily affects the controllability of neuronal networks. We also unveil that driver nodes play a more drastic role than control gains in robust controllability. The developed NSJaDE and obtained results will shed light on the understanding of robustness in controlling realistic complex networks such as transportation networks, power grid networks, biological networks, etc. PMID:26441452
NASA Astrophysics Data System (ADS)
Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun
2014-08-01
By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.
Robust nonlinear control of vectored thrust aircraft
NASA Technical Reports Server (NTRS)
Doyle, John C.; Murray, Richard; Morris, John
1993-01-01
An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations.
Design of an iterative auto-tuning algorithm for a fuzzy PID controller
NASA Astrophysics Data System (ADS)
Saeed, Bakhtiar I.; Mehrdadi, B.
2012-05-01
Since the first application of fuzzy logic in the field of control engineering, it has been extensively employed in controlling a wide range of applications. The human knowledge on controlling complex and non-linear processes can be incorporated into a controller in the form of linguistic terms. However, with the lack of analytical design study it is becoming more difficult to auto-tune controller parameters. Fuzzy logic controller has several parameters that can be adjusted, such as: membership functions, rule-base and scaling gains. Furthermore, it is not always easy to find the relation between the type of membership functions or rule-base and the controller performance. This study proposes a new systematic auto-tuning algorithm to fine tune fuzzy logic controller gains. A fuzzy PID controller is proposed and applied to several second order systems. The relationship between the closed-loop response and the controller parameters is analysed to devise an auto-tuning method. The results show that the proposed method is highly effective and produces zero overshoot with enhanced transient response. In addition, the robustness of the controller is investigated in the case of parameter changes and the results show a satisfactory performance.
Fuzzy logic controllers: A knowledge-based system perspective
NASA Technical Reports Server (NTRS)
Bonissone, Piero P.
1993-01-01
Over the last few years we have seen an increasing number of applications of Fuzzy Logic Controllers. These applications range from the development of auto-focus cameras, to the control of subway trains, cranes, automobile subsystems (automatic transmissions), domestic appliances, and various consumer electronic products. In summary, we consider a Fuzzy Logic Controller to be a high level language with its local semantics, interpreter, and compiler, which enables us to quickly synthesize non-linear controllers for dynamic systems.
Tang, Jingtian; Cao, Yang; Xiao, Jiaying; Guo, Qulian
2014-06-01
Due to individual differences of the depth of anaesthesia (DOA) controlled objects, the drawbacks of monitoring index, the traditional PID controller of anesthesia depth could not meet the demands of nonlinear control. However, the adjustments of the rules of DOA fuzzy control often rely on personal experience and, therefore, it could not achieve the satisfactory control effects. The present research established a fuzzy closed-loop control system which takes the cerebral state index (CSI) value as a feedback controlled variable, and it also adopts the particle swarm optimization (PSO) to optimize the fuzzy control rule and membership functions between the change of CSI and propofol infusion rate. The system sets the CSI targets at 40 and 30 through the system simulation, and it also adds some Gaussian noise to imitate clinical disturbance. Experimental results indicated that this system could reach the set CSI point accurately, rapidly and stably, with no obvious perturbation in the presence of noise. The fuzzy controller based on CSI which has been optimized by PSO has better stability and robustness in the DOA closed loop control system. PMID:25219229
Approach to Synchronization Control of Magnetic Bearings Using Fuzzy Logic
NASA Technical Reports Server (NTRS)
Yang, Li-Farn
1996-01-01
This paper presents a fuzzy-logic approach to the synthesis of synchronization control for magnetically suspended rotor system. The synchronization control enables a whirling rotor to undergo synchronous motion along the magnetic bearing axes; thereby avoiding the gyroscopic effect that degrade the stability of rotor systems when spinning at high speed. The control system features a fuzzy controller acting on the magnetic bearing device, in which the fuzzy inference system trained through fuzzy rules to minimize the differential errors between four bearing axes so that an error along one bearing axis can affect the overall control loop for the motion synchronization. Numerical simulations of synchronization control for the magnetically suspended rotor system are presented to show the effectiveness of the present approach.
Fuzzy logic applications to expert systems and control
NASA Technical Reports Server (NTRS)
Lea, Robert N.; Jani, Yashvant
1991-01-01
A considerable amount of work on the development of fuzzy logic algorithms and application to space related control problems has been done at the Johnson Space Center (JSC) over the past few years. Particularly, guidance control systems for space vehicles during proximity operations, learning systems utilizing neural networks, control of data processing during rendezvous navigation, collision avoidance algorithms, camera tracking controllers, and tether controllers have been developed utilizing fuzzy logic technology. Several other areas in which fuzzy sets and related concepts are being considered at JSC are diagnostic systems, control of robot arms, pattern recognition, and image processing. It has become evident, based on the commercial applications of fuzzy technology in Japan and China during the last few years, that this technology should be exploited by the government as well as private industry for energy savings.
Research in robust control for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.
1993-01-01
The research during the second reporting period has focused on robust control design for hypersonic vehicles. An already existing design for the Hypersonic Winged-Cone Configuration has been enhanced. Uncertainty models for the effects of propulsion system perturbations due to angle of attack variations, structural vibrations, and uncertainty in control effectiveness were developed. Using H(sub infinity) and mu-synthesis techniques, various control designs were performed in order to investigate the impact of these effects on achievable robust performance.
Experimental Robust Control of Structural Acoustic Radiation
NASA Technical Reports Server (NTRS)
Cox, David E.; Gibbs, Gary P.; Clark, Robert L.; Vipperman, Jeffrey S.
1998-01-01
This work addresses the design and application of robust controllers for structural acoustic control. Both simulation and experimental results are presented. H(infinity) and mu-synthesis design methods were used to design feedback controllers which minimize power radiated from a panel while avoiding instability due to unmodeled dynamics. Specifically, high order structural modes which couple strongly to the actuator-sensor path were poorly modeled. This model error was analytically bounded with an uncertainty model, which allowed controllers to be designed without artificial limits on control effort. It is found that robust control methods provide the control designer with physically meaningful parameters with which to tune control designs and can be very useful in determining limits of performance. Experimental results also showed, however, poor robustness properties for control designs with ad-hoc uncertainty models. The importance of quantifying and bounding model errors is discussed.
Fuzzy logic control synthesis without any rule base.
Novakovic, B M
1999-01-01
A new analytic fuzzy logic control (FLC) system synthesis without any rule base is proposed. For this purpose the following objectives are preferred and reached: 1) an introduction of a new adaptive shape of fuzzy sets and a new adaptive distribution of input fuzzy sets, 2) a determination of an analytic activation function for activation of output fuzzy sets, instead of using of min-max operators, and 3) a definition of a new analytic function that determines the positions of centers of output fuzzy sets in each mapping process, instead of definition of the rule base. A real capability of the proposed FLC synthesis procedures is presented by synthesis of FLC of robot of RRTR-structure. PMID:18252321
Shahnazi, Reza
2015-01-01
An adaptive fuzzy output feedback controller is proposed for a class of uncertain MIMO nonlinear systems with unknown input nonlinearities. The input nonlinearities can be backlash-like hysteresis or dead-zone. Besides, the gains of unknown input nonlinearities are unknown nonlinear functions. Based on universal approximation theorem, the unknown nonlinear functions are approximated by fuzzy systems. The proposed method does not need the availability of the states and an observer based on strictly positive real (SPR) theory is designed to estimate the states. An adaptive robust structure is used to cope with fuzzy approximation error and external disturbances. The semi-global asymptotic stability of the closed-loop system is guaranteed via Lyapunov approach. The applicability of the proposed method is also shown via simulations. PMID:25104646
Applications of robust control theory - Educational implications
NASA Technical Reports Server (NTRS)
Dorato, P.; Yedavalli, R. K.
1992-01-01
A survey is made of applications of robust control theory to problems of flight control, control of flexible space structures, and engine control which have appeared in recent conferences and journals. An analysis is made of which theoretical techniques are most commonly used and what implications this has for graduate and undergraduate education in aerospace engineering.
A robust line search for learning control
Driessen, B.J.; Kwok, K.S.; Sadegh, N.
1998-11-01
In this paper a new line search for a Newton Rhapson learning control algorithm is presented. Theorems and rigorous proofs of its increased robustness over existing line searches are provided, and numerical examples are used to further validate the theorems. Also, the previously posed open question of whether robust optimal trajectory learning is possible is also addressed. It is shown that the answer is generally no, at least for gradient-based learning control algorithms.
NASA Astrophysics Data System (ADS)
Xu, Yinyin; Tong, Shaocheng; Li, Yongming
2015-09-01
This paper discusses the adaptive fuzzy decentralised fault-tolerant control (FTC) problem for a class of nonlinear large-scale systems in strict-feedback form. The systems under study contain the unknown nonlinearities, unmodelled dynamics, actuator faults and without the direct measurements of state variables. With the help of fuzzy logic systems identifying the unknown functions and a fuzzy adaptive observer is designed to estimate the unmeasured states. By using the backstepping design technique and the dynamic surface control approach and combining with the changing supply function technique, a fuzzy adaptive FTC scheme is developed. The main features of the proposed control approach are that it can guarantee the closed-loop system to be input-to-state practically stable, and also has the robustness to the unmodelled dynamics. Moreover, it can overcome the so-called problem of 'explosion of complexity' existing in the previous literature. Finally, simulation studies are provided to illustrate the effectiveness of the proposed approach.
A Fuzzy Robust Optimization Model for Waste Allocation Planning Under Uncertainty
Xu, Ye; Huang, Guohe; Xu, Ling
2014-01-01
Abstract In this study, a fuzzy robust optimization (FRO) model was developed for supporting municipal solid waste management under uncertainty. The Development Zone of the City of Dalian, China, was used as a study case for demonstration. Comparing with traditional fuzzy models, the FRO model made improvement by considering the minimization of the weighted summation among the expected objective values, the differences between two extreme possible objective values, and the penalty of the constraints violation as the objective function, instead of relying purely on the minimization of expected value. Such an improvement leads to enhanced system reliability and the model becomes especially useful when multiple types of uncertainties and complexities are involved in the management system. Through a case study, the applicability of the FRO model was successfully demonstrated. Solutions under three future planning scenarios were provided by the FRO model, including (1) priority on economic development, (2) priority on environmental protection, and (3) balanced consideration for both. The balanced scenario solution was recommended for decision makers, since it respected both system economy and reliability. The model proved valuable in providing a comprehensive profile about the studied system and helping decision makers gain an in-depth insight into system complexity and select cost-effective management strategies. PMID:25317037
Nonlinear rescaling of control values simplifies fuzzy control
NASA Technical Reports Server (NTRS)
Vanlangingham, H.; Tsoukkas, A.; Kreinovich, V.; Quintana, C.
1993-01-01
Traditional control theory is well-developed mainly for linear control situations. In non-linear cases there is no general method of generating a good control, so we have to rely on the ability of the experts (operators) to control them. If we want to automate their control, we must acquire their knowledge and translate it into a precise control strategy. The experts' knowledge is usually represented in non-numeric terms, namely, in terms of uncertain statements of the type 'if the obstacle is straight ahead, the distance to it is small, and the velocity of the car is medium, press the brakes hard'. Fuzzy control is a methodology that translates such statements into precise formulas for control. The necessary first step of this strategy consists of assigning membership functions to all the terms that the expert uses in his rules (in our sample phrase these words are 'small', 'medium', and 'hard'). The appropriate choice of a membership function can drastically improve the quality of a fuzzy control. In the simplest cases, we can take the functions whose domains have equally spaced endpoints. Because of that, many software packages for fuzzy control are based on this choice of membership functions. This choice is not very efficient in more complicated cases. Therefore, methods have been developed that use neural networks or generic algorithms to 'tune' membership functions. But this tuning takes lots of time (for example, several thousands iterations are typical for neural networks). In some cases there are evident physical reasons why equally space domains do not work: e.g., if the control variable u is always positive (i.e., if we control temperature in a reactor), then negative values (that are generated by equal spacing) simply make no sense. In this case it sounds reasonable to choose another scale u' = f(u) to represent u, so that equal spacing will work fine for u'. In the present paper we formulate the problem of finding the best rescaling function, solve
Fuzzy-information-based robustness of interconnected networks against attacks and failures
NASA Astrophysics Data System (ADS)
Zhu, Qian; Zhu, Zhiliang; Wang, Yifan; Yu, Hai
2016-09-01
Cascading failure is fatal in applications and its investigation is essential and therefore became a focal topic in the field of complex networks in the last decade. In this paper, a cascading failure model is established for interconnected networks and the associated data-packet transport problem is discussed. A distinguished feature of the new model is its utilization of fuzzy information in resisting uncertain failures and malicious attacks. We numerically find that the giant component of the network after failures increases with tolerance parameter for any coupling preference and attacking ambiguity. Moreover, considering the effect of the coupling probability on the robustness of the networks, we find that the robustness of the assortative coupling and random coupling of the network model increases with the coupling probability. However, for disassortative coupling, there exists a critical phenomenon for coupling probability. In addition, a critical value that attacking information accuracy affects the network robustness is observed. Finally, as a practical example, the interconnected AS-level Internet in South Korea and Japan is analyzed. The actual data validates the theoretical model and analytic results. This paper thus provides some guidelines for preventing cascading failures in the design of architecture and optimization of real-world interconnected networks.
NASA Astrophysics Data System (ADS)
Yang, Yueneng; Wu, Jie; Zheng, Wei
2013-04-01
This paper presents a novel approach for station-keeping control of a stratospheric airship platform in the presence of parametric uncertainty and external disturbance. First, conceptual design of the stratospheric airship platform is introduced, including the target mission, configuration, energy sources, propeller and payload. Second, the dynamics model of the airship platform is presented, and the mathematical model of its horizontal motion is derived. Third, a fuzzy adaptive backstepping control approach is proposed to develop the station-keeping control system for the simplified horizontal motion. The backstepping controller is designed assuming that the airship model is accurately known, and a fuzzy adaptive algorithm is used to approximate the uncertainty of the airship model. The stability of the closed-loop control system is proven via the Lyapunov theorem. Finally, simulation results illustrate the effectiveness and robustness of the proposed control approach.
Neuro-fuzzy controller to navigate an unmanned vehicle.
Selma, Boumediene; Chouraqui, Samira
2013-12-01
A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN). PMID:23705105
Robust Control Design for Large Space Structures
NASA Technical Reports Server (NTRS)
Eastman, W. L.; Bossi, J. A.
1985-01-01
The control design problem for the class of future spacecraft referred to as large space structures (LSS) is by now well known. The issue is the reduced order control of a very high order, lightly damped system with uncertain system parameters, particularly in the high frequency modes. A design methodology which incorporates robustness considerations as part of the design process is presented. Combining pertinent results from multivariable systems theory and optimal control and estimation, LQG eigenstructure assignment and LQG frequency shaping, were used to improve singular value robustness measures in the presence of control and observation spillover.
Adaptive Fuzzy Control of a Direct Drive Motor
NASA Technical Reports Server (NTRS)
Medina, E.; Kim, Y. T.; Akbaradeh-T., M. -R.
1997-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is verified by simulation results.
Adaptive Fuzzy Control of a Direct Drive Motor: Experimental Aspects
NASA Technical Reports Server (NTRS)
Medina, E.; Akbarzadeh-T, M.-R.; Kim, Y. T.
1998-01-01
This paper presents a state feedback adaptive control method for position and velocity control of a direct drive motor. The proposed control scheme allows for integrating heuristic knowledge with mathematical knowledge of a system. It performs well even when mathematical model of the system is poorly understood. The controller consists of an adaptive fuzzy controller and a supervisory controller. The supervisory controller requires only knowledge of the upper bound and lower bound of the system parameters. The fuzzy controller is based on fuzzy basis functions and states of the system. The adaptation law is derived based on the Lyapunov function which ensures that the state of the system asymptotically approaches zero. The proposed controller is applied to a direct drive motor with payload and parameter uncertainty, and the effectiveness is experimentally verified. The real-time performance is compared with simulation results.
Adaptive control of redundant multilink robot using fuzzy logic
NASA Astrophysics Data System (ADS)
Su, X.; Mitra, Sunanda
1993-12-01
A new approach to fuzzy distance and restriction measures is used to obtain the appropriate orientations of the links for avoiding obstacles in the robot trajectories. This approach eliminates the classical task of solving highly coupled, nonlinear equations describing the ill- posed inverse problems of multilink robot motion at a much less demanding computational time. Such clear advantage of fuzzy logic based adaptive controller are illustrated by simulation results of guidance of a multilink robot in target positioning and trajectories tracking. The simulation results involve a three-link robot arm with capability of moving from one position to any desired position and tracking a defined trajectories accurately. A modified fuzzy rule based distance measure allows the robot to follow trajectories within hitting the obstacles in the path. The simulation results indicate the advantage of fuzzy logic based adaptive controllers in multiple criteria decision-making tasks.
Using fuzzy numbers for construction projects monitoring and control
NASA Astrophysics Data System (ADS)
Skorupka, Dariusz; Kuchta, Dorota
2016-06-01
Fuzzy numbers will be used to estimate project activities duration times possible increases, both in the planning phase and - for non-completed activities - in consecutive control points during project realisation. The fuzzy estimates will allow to estimate and continuously update the predicted project completion time and the risk of not keeping to the deadline. The fuzzy estimates of non-completed activities will be updated in each control point, on the basis of the information on the actual adequacy of the fuzzy estimates of already completed activities with similar risk factors. A new method for this updating process will be proposed. The method will focus on construction projects and will be applied to a real world construction project.
Turbine speed control system based on a fuzzy-PID
NASA Astrophysics Data System (ADS)
Sun, Jian-Hua; Wang, Wei; Yu, Hai-Yan
2008-12-01
The flexibility demand of marine nuclear power plant is very high, the multiple parameters of the marine nuclear power plant with the once-through steam generator are strongly coupled, and the normal PID control of the turbine speed can’t meet the control demand. This paper introduces a turbine speed Fuzzy-PID controller to coordinately control the steam pressure and thus realize the demand for quick tracking and steady state control over the turbine speed by using the Fuzzy control’s quick dynamic response and PID control’s steady state performance. The simulation shows the improvement of the response time and steady state performance of the control system.
Chang, Wen-Jer; Ku, Cheung-Chieh; Huang, Pei-Hwa; Chang, Wei
2009-07-01
In order to design a fuzzy controller for complex nonlinear systems, the work of this paper deals with developing the relaxed stability conditions for continuous-time affine Takagi-Sugeno (T-S) fuzzy models. By applying the passivity theory and Lyapunov theory, the relaxed stability conditions are derived to guarantee the stability and passivity property of closed-loop systems. Based on these relaxed stability conditions, the synthesis of fuzzy controller design problem for passive continuous-time affine T-S fuzzy models can be easily solved via the Optimal Convex Programming Algorithm (OCPA) and Linear Matrix Inequality (LMI) technique. At last, a simulation example for the fuzzy control of a nonlinear synchronous generator system is presented to manifest the applications and effectiveness of proposed fuzzy controller design approach. PMID:19389667
NASA Technical Reports Server (NTRS)
Choi, Benjamin B.; Lawrence, Charles; Lin, Yueh-Jaw
1994-01-01
This paper presents the development of a general-purpose fuzzy logic (FL) control methodology for isolating the external vibratory disturbances of space-based devices. According to the desired performance specifications, a full investigation regarding the development of an FL controller was done using different scenarios, such as variances of passive reaction-compensating components and external disturbance load. It was shown that the proposed FL controller is robust in that the FL-controlled system closely follows the prespecified ideal reference model. The comparative study also reveals that the FL-controlled system achieves significant improvement in reducing vibrations over passive systems.
NASA Astrophysics Data System (ADS)
Aminifar, S.; Yosefi, Gh.
2007-09-01
In this paper, we present away of using Anfis architecture to implement a new fuzzy logic controller chip. Anfis which tunes the fuzzy inference system with a backpropagation algorithm based on collection of input-output data makes fuzzy system to learn. This training is given from a standard response of the system and membership functions are suitably modified. For adaptive Anfis based fuzzy controller and its circuit design, we propose new circuits for implementing each controller block, and illustrate the test results and control surface of Anfis controller along with CMOS fuzzy logic controller using Matlab and Hspice software respectively. For implementing controller according to the Anfis training, we proposed new and improved integrated circuits which consist of Fuzzifier, Min operator and Multiplier/Divider. The control surfaces of controller are obtained by using Anfis training and simulation results of integrated circuits in less than 0.075 mm2 area in 0.35 μm CMOS standard technology.
Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties
Kim, Byung Woo; Park, Bong Seok
2016-01-01
The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme. PMID:27367696
Robust Control for the Segway with Unknown Control Coefficient and Model Uncertainties.
Kim, Byung Woo; Park, Bong Seok
2016-01-01
The Segway, which is a popular vehicle nowadays, is an uncertain nonlinear system and has an unknown time-varying control coefficient. Thus, we should consider the unknown time-varying control coefficient and model uncertainties to design the controller. Motivated by this observation, we propose a robust control for the Segway with unknown control coefficient and model uncertainties. To deal with the time-varying unknown control coefficient, we employ the Nussbaum gain technique. We introduce an auxiliary variable to solve the underactuated problem. Due to the prescribed performance control technique, the proposed controller does not require the adaptive technique, neural network, and fuzzy logic to compensate the uncertainties. Therefore, it can be simple. From the Lyapunov stability theory, we prove that all signals in the closed-loop system are bounded. Finally, we provide the simulation results to demonstrate the effectiveness of the proposed control scheme. PMID:27367696
Fuzzy logic control of the building structure with CLEMR dampers
NASA Astrophysics Data System (ADS)
Zhang, Xiang-Cheng; Xu, Zhao-Dong; Huang, Xing-Huai; Zhu, Jun-Tao
2013-04-01
The semi-active control technology has been paid more attention in the field of structural vibration control due to its high controllability, excellent control effect and low power requirement. When semi-active control device are used for vibration control, some challenges must be taken into account, such as the reliability and the control strategy of the device. This study presents a new large tonnage compound lead extrusion magnetorheological (CLEMR) damper, whose mathematical model is introduced to describe the variation of damping force with current and velocity. Then a current controller based on the fuzzy logic control strategy is designed to determine control currents of the CLEMR dampers rapidly. A ten-floor frame structure with CLEMR dampers using the fuzzy logic control strategy is built and calculated by using MATLAB. Calculation results show that CLEMR dampers can reduce the seismic responses of structures effectively. Calculation results of the fuzzy logic control strategy are compared with those of the semi-active limit Hrovat control structure, the passive-off control structure, and the uncontrolled structure. Comparison results show that the fuzzy logic control strategy can determine control currents of CLEMR dampers quickly and can reduce seismic responses of the structures more effectively than the passive-off control strategy and the uncontrolled structure.
Elazab, Ahmed; AbdulAzeem, Yousry M; Wu, Shiqian; Hu, Qingmao
2016-03-17
Brain tissue segmentation from magnetic resonance (MR) images is an importance task for clinical use. The segmentation process becomes more challenging in the presence of noise, grayscale inhomogeneity, and other image artifacts. In this paper, we propose a robust kernelized local information fuzzy C-means clustering algorithm (RKLIFCM). It incorporates local information into the segmentation process (both grayscale and spatial) for more homogeneous segmentation. In addition, the Gaussian radial basis kernel function is adopted as a distance metric to replace the standard Euclidean distance. The main advantages of the new algorithm are: efficient utilization of local grayscale and spatial information, robustness to noise, ability to preserve image details, free from any parameter initialization, and with high speed as it runs on image histogram. We compared the proposed algorithm with 7 soft clustering algorithms that run on both image histogram and image pixels to segment brain MR images. Experimental results demonstrate that the proposed RKLIFCM algorithm is able to overcome the influence of noise and achieve higher segmentation accuracy with low computational complexity. PMID:27257884
Robust Fault Detection for Aircraft Using Mixed Structured Singular Value Theory and Fuzzy Logic
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G.
2000-01-01
The purpose of fault detection is to identify when a fault or failure has occurred in a system such as an aircraft or expendable launch vehicle. The faults may occur in sensors, actuators, structural components, etc. One of the primary approaches to model-based fault detection relies on analytical redundancy. That is the output of a computer-based model (actually a state estimator) is compared with the sensor measurements of the actual system to determine when a fault has occurred. Unfortunately, the state estimator is based on an idealized mathematical description of the underlying plant that is never totally accurate. As a result of these modeling errors, false alarms can occur. This research uses mixed structured singular value theory, a relatively recent and powerful robustness analysis tool, to develop robust estimators and demonstrates the use of these estimators in fault detection. To allow qualitative human experience to be effectively incorporated into the detection process fuzzy logic is used to predict the seriousness of the fault that has occurred.
Synthesis Methods for Robust Passification and Control
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)
2000-01-01
The research effort under this cooperative agreement has been essentially the continuation of the work from previous grants. The ongoing work has primarily focused on developing passivity-based control techniques for Linear Time-Invariant (LTI) systems. During this period, there has been a significant progress made in the area of passivity-based control of LTI systems and some preliminary results have also been obtained for nonlinear systems, as well. The prior work has addressed optimal control design for inherently passive as well as non- passive linear systems. For exploiting the robustness characteristics of passivity-based controllers the passification methodology was developed for LTI systems that are not inherently passive. Various methods of passification were first proposed in and further developed. The robustness of passification was addressed for multi-input multi-output (MIMO) systems for certain classes of uncertainties using frequency-domain methods. For MIMO systems, a state-space approach using Linear Matrix Inequality (LMI)-based formulation was presented, for passification of non-passive LTI systems. An LMI-based robust passification technique was presented for systems with redundant actuators and sensors. The redundancy in actuators and sensors was used effectively for robust passification using the LMI formulation. The passification was designed to be robust to an interval-type uncertainties in system parameters. The passification techniques were used to design a robust controller for Benchmark Active Control Technology wing under parametric uncertainties. The results on passive nonlinear systems, however, are very limited to date. Our recent work in this area was presented, wherein some stability results were obtained for passive nonlinear systems that are affine in control.
Adaptive Fuzzy Hysteresis Band Current Controller for Four-Wire Shunt Active Filter
NASA Astrophysics Data System (ADS)
Hamoudi, F.; Chaghi, A.; Amimeur, H.; Merabet, E.
2008-06-01
This paper presents an adaptive fuzzy hysteresis band current controller for four-wire shunt active power filters to eliminate harmonics and to compensate reactive power in distribution systems in order to keep currents at the point of common coupling sinusoidal and in phase with the corresponding voltage and the cancel neutral current. The conventional hysteresis band known for its robustness and its advantage in current controlled applications is adapted with a fuzzy logic controller to change the bandwidth according to the operating point in order to keep the frequency modulation at tolerable limits. The algorithm used to identify the reference currents is based on the synchronous reference frame theory (dqγ). Finally, simulation results using Matlab/Simulink are given to validate the proposed control.
Luo, Shaohua
2014-09-01
This paper is concerned with the problem of adaptive fuzzy dynamic surface control (DSC) for the permanent magnet synchronous motor (PMSM) system with chaotic behavior, disturbance and unknown control gain and parameters. Nussbaum gain is adopted to cope with the situation that the control gain is unknown. And the unknown items can be estimated by fuzzy logic system. The proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output eventually converges to a small neighborhood of the desired reference signal. Finally, the numerical simulations indicate that the proposed scheme can suppress the chaos of PMSM and show the effectiveness and robustness of the proposed method.
Fuzzy Logic Decoupled Lateral Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1997-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control different airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control aileron or roll spoiler position. This controller was used to control bank angle for both a piston powered single engine aileron equipped airplane simulation and a business jet simulation which used spoilers for primary roll control. Overspeed, stall and overbank protection were incorporated in the form of expert systems supervisors and weighted fuzzy rules. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic lateral controller could be successfully used on two general aviation aircraft types that have very different characteristics. These controllers worked for both airplanes over their entire flight envelopes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle ]ever travel, etc.). This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
Neuro-Fuzzy Control of a Robotic Manipulator
NASA Astrophysics Data System (ADS)
Gierlak, P.; Muszyńska, M.; Żylski, W.
2014-08-01
In this paper, to solve the problem of control of a robotic manipulator's movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator's dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator
Structurally robust control of complex networks
NASA Astrophysics Data System (ADS)
Nacher, Jose C.; Akutsu, Tatsuya
2015-01-01
Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role.
Structurally robust control of complex networks.
Nacher, Jose C; Akutsu, Tatsuya
2015-01-01
Robust control theory has been successfully applied to numerous real-world problems using a small set of devices called controllers. However, the real systems represented by networks contain unreliable components and modern robust control engineering has not addressed the problem of structural changes on complex networks including scale-free topologies. Here, we introduce the concept of structurally robust control of complex networks and provide a concrete example using an algorithmic framework that is widely applied in engineering. The developed analytical tools, computer simulations, and real network analyses lead herein to the discovery that robust control can be achieved in scale-free networks with exactly the same order of controllers required in a standard nonrobust configuration by adjusting only the minimum degree. The presented methodology also addresses the probabilistic failure of links in real systems, such as neural synaptic unreliability in Caenorhabditis elegans, and suggests a new direction to pursue in studies of complex networks in which control theory has a role. PMID:25679675
Average-cost based robust structural control
NASA Technical Reports Server (NTRS)
Hagood, Nesbitt W.
1993-01-01
A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed.
A Fuzzy Permutation Method for False Discovery Rate Control
Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung
2016-01-01
Biomedical researchers often encounter the large-p-small-n situations—a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings. PMID:27328860
A Fuzzy Permutation Method for False Discovery Rate Control.
Yang, Ya-Hui; Lin, Wan-Yu; Lee, Wen-Chung
2016-01-01
Biomedical researchers often encounter the large-p-small-n situations-a great number of variables are measured/recorded for only a few subjects. The authors propose a fuzzy permutation method to address the multiple testing problem for small sample size studies. The method introduces fuzziness into standard permutation analysis to produce randomized p-values, which are then converted into q-values for false discovery rate controls. Simple algebra shows that the fuzzy permutation method is at least as powerful as the standard permutation method under any alternative. Monte-Carlo simulations show that the proposed method has desirable statistical properties whether the study variables are normally or non-normally distributed. A real dataset is analyzed to illustrate its use. The proposed fuzzy permutation method is recommended for use in the large-p-small-n settings. PMID:27328860
The Middeck Active Control Experiment (MACE): Identification for robust control
NASA Astrophysics Data System (ADS)
Karlov, Valery I.
Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.
The Middeck Active Control Experiment (MACE): Identification for robust control
NASA Technical Reports Server (NTRS)
Karlov, Valery I.
1992-01-01
Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.
A comparison of fuzzy logic-PID control strategies for PWR pressurizer control
Kavaklioglu, K.; Ikonomopoulos, A. )
1993-01-01
This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.
Genetic optimization of fuzzy fractional PD+I controllers.
Jesus, Isabel S; Barbosa, Ramiro S
2015-07-01
Fractional order calculus is a powerful emerging mathematical tool in science and engineering. There is currently an increasing interest in generalizing classical control theories and developing novel control strategies. The genetic algorithms (GA) are a stochastic search and optimization methods based on the reproduction processes found in biological systems, used for solving engineering problems. In the context of process control, the fuzzy logic usually means variables that are described by imprecise terms, and represented by quantities that are qualitative and vague. In this article we consider the development of an optimal fuzzy fractional PD+I controller in which the parameters are tuned by a GA. The performance of the proposed fuzzy fractional control is illustrated through some application examples. PMID:25661162
Fuzzy sampled-data control for uncertain vehicle suspension systems.
Li, Hongyi; Jing, Xingjian; Lam, Hak-Keung; Shi, Peng
2014-07-01
This paper investigates the problem of sampled-data H∞ control of uncertain active suspension systems via fuzzy control approach. Our work focuses on designing state-feedback and output-feedback sampled-data controllers to guarantee the resulting closed-loop dynamical systems to be asymptotically stable and satisfy H∞ disturbance attenuation level and suspension performance constraints. Using Takagi-Sugeno (T-S) fuzzy model control method, T-S fuzzy models are established for uncertain vehicle active suspension systems considering the desired suspension performances. Based on Lyapunov stability theory, the existence conditions of state-feedback and output-feedback sampled-data controllers are obtained by solving an optimization problem. Simulation results for active vehicle suspension systems with uncertainty are provided to demonstrate the effectiveness of the proposed method. PMID:24043419
Autonomous vehicle motion control, approximate maps, and fuzzy logic
NASA Technical Reports Server (NTRS)
Ruspini, Enrique H.
1993-01-01
Progress on research on the control of actions of autonomous mobile agents using fuzzy logic is presented. The innovations described encompass theoretical and applied developments. At the theoretical level, results of research leading to the combined utilization of conventional artificial planning techniques with fuzzy logic approaches for the control of local motion and perception actions are presented. Also formulations of dynamic programming approaches to optimal control in the context of the analysis of approximate models of the real world are examined. Also a new approach to goal conflict resolution that does not require specification of numerical values representing relative goal importance is reviewed. Applied developments include the introduction of the notion of approximate map. A fuzzy relational database structure for the representation of vague and imprecise information about the robot's environment is proposed. Also the central notions of control point and control structure are discussed.
An architecture for designing fuzzy logic controllers using neural networks
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1991-01-01
Described here is an architecture for designing fuzzy controllers through a hierarchical process of control rule acquisition and by using special classes of neural network learning techniques. A new method for learning to refine a fuzzy logic controller is introduced. A reinforcement learning technique is used in conjunction with a multi-layer neural network model of a fuzzy controller. The model learns by updating its prediction of the plant's behavior and is related to the Sutton's Temporal Difference (TD) method. The method proposed here has the advantage of using the control knowledge of an experienced operator and fine-tuning it through the process of learning. The approach is applied to a cart-pole balancing system.
Application of genetic algorithms to tuning fuzzy control systems
NASA Technical Reports Server (NTRS)
Espy, Todd; Vombrack, Endre; Aldridge, Jack
1993-01-01
Real number genetic algorithms (GA) were applied for tuning fuzzy membership functions of three controller applications. The first application is our 'Fuzzy Pong' demonstration, a controller that controls a very responsive system. The performance of the automatically tuned membership functions exceeded that of manually tuned membership functions both when the algorithm started with randomly generated functions and with the best manually-tuned functions. The second GA tunes input membership functions to achieve a specified control surface. The third application is a practical one, a motor controller for a printed circuit manufacturing system. The GA alters the positions and overlaps of the membership functions to accomplish the tuning. The applications, the real number GA approach, the fitness function and population parameters, and the performance improvements achieved are discussed. Directions for further research in tuning input and output membership functions and in tuning fuzzy rules are described.
Fuzzy Control of Flexible-Link Manipulators: A Review
NASA Technical Reports Server (NTRS)
Akbarzadeh-T, M.-R.; Quintana, S.; Jamshidi, M.
1998-01-01
Several recent research efforts are reviewed here which have applied fuzzy logic in control of flexible-link manipulators. A flexible robot is a distributed parameter system represented by complex nonlinear dynamics, its actuator and the control parameters are non-colocated, and lastly, unstructured/unknown parameters play a significant role in model dynamics of a flexible robot operating in the real world. As a result, control of flexible robots is considered a promising area for application of intelligent control methodologies such as fuzzy logic, genetic algorithms, and neural networks.
Fuzzy Regulator Design for Wind Turbine Yaw Control
Koulouras, Grigorios
2014-01-01
This paper proposes the development of an advanced fuzzy logic controller which aims to perform intelligent automatic control of the yaw movement of wind turbines. The specific fuzzy controller takes into account both the wind velocity and the acceptable yaw error correlation in order to achieve maximum performance efficacy. In this way, the proposed yaw control system is remarkably adaptive to the existing conditions. In this way, the wind turbine is enabled to retain its power output close to its nominal value and at the same time preserve its yaw system from pointless movement. Thorough simulation tests evaluate the proposed system effectiveness. PMID:24693237
Matlab as a robust control design tool
NASA Technical Reports Server (NTRS)
Gregory, Irene M.
1994-01-01
This presentation introduces Matlab as a tool used in flight control research. The example used to illustrate some of the capabilities of this software is a robust controller designed for a single stage to orbit air breathing vehicles's ascent to orbit. The global requirements of the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric disturbances and strong dynamic coupling between airframe and propulsion.
Robust multivariable controller design for flexible spacecraft
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Armstrong, Ernest S.
1986-01-01
Large, flexible spacecraft are typically characterized by a large number of significant elastic modes with very small inherent damping, low, closely spaced natural frequencies, and the lack of accurate knowledge of the structural parameters. Summarized here is some recent research on the design of robust controllers for such spacecraft, which will maintain stability, and possible performance, despite these problems. Two types of controllers are considered, the first being the linear-quadratic-Gaussian-(LQG)-type. The second type utilizes output feedback using collocated sensors and actuators. The problem of designing robust LQG-type controllers using the frequency domain loop transfer recovery (LTR) method is considered, and the method is applied to a large antenna model. Analytical results regarding the regions of stability for LQG-type controllers in the presence of actuator nonlinearities are also presented. The results obtained for the large antenna indicate that the LQG/LTR method is a promising approach for control system design for flexible spacecraft. For the second type of controllers (collocated controllers), it is proved that the stability is maintained in the presence of certain commonly encountered nonlinearities and first-order actuator dynamics. These results indicate that collocated controllers are good candidates for robust control in situations where model errors are large.
A new fuzzy self-tuning PD load frequency controller for micro-hydropower system
NASA Astrophysics Data System (ADS)
Reyasudin Basir Khan, M.; Jidin, Razali; Pasupuleti, Jagadeesh
2016-03-01
This paper presents a new approach for controlling the secondary load bank of a micro-hydropower system using a fuzzy self-tuning proportional-derivative (PD) controller. This technology is designed in order to optimize the micro-hydropower system in a resort island located in the South China Sea. Thus, this technology will be able to mitigate the diesel fuel consumption and cost of electricity supply on the island. The optimal hydropower generation for this system depends on the available stream flow at the potential sites. At low stream flow, both the micro-hydropower system and the currently installed diesel generators are required to feed the load. However, when the hydropower generation exceeds the load demand, the diesel generator is shut down. Meanwhile, the system frequency is controlled by a secondary load bank that absorbs the hydropower which exceeds the consumer demand. The fuzzy rules were designed to automatically tune the PD gains under dynamic frequency variations. Performances of the fuzzy self-tuning PD controller were compared with the conventional PD controller. The result of the controller implementation shows the viability of the proposed new controller in achieving a higher performance and more robust load frequency control than the conventional PD controller.
Flight test results of the fuzzy logic adaptive controller-helicopter (FLAC-H)
NASA Astrophysics Data System (ADS)
Wade, Robert L.; Walker, Gregory W.
1996-05-01
The fuzzy logic adaptive controller for helicopters (FLAC-H) demonstration is a cooperative effort between the US Army Simulation, Training, and Instrumentation Command (STRICOM), the US Army Aviation and Troop Command, and the US Army Missile Command to demonstrate a low-cost drone control system for both full-scale and sub-scale helicopters. FLAC-H was demonstrated on one of STRICOM's fleet of full-scale rotary-winged target drones. FLAC-H exploits fuzzy logic in its flight control system to provide a robust solution to the control of the helicopter's dynamic, nonlinear system. Straight forward, common sense fuzzy rules governing helicopter flight are processed instead of complex mathematical models. This has resulted in a simplified solution to the complexities of helicopter flight. Incorporation of fuzzy logic reduced the cost of development and should also reduce the cost of maintenance of the system. An adaptive algorithm allows the FLAC-H to 'learn' how to fly the helicopter, enabling the control system to adjust to varying helicopter configurations. The adaptive algorithm, based on genetic algorithms, alters the fuzzy rules and their related sets to improve the performance characteristics of the system. This learning allows FLAC-H to automatically be integrated into a new airframe, reducing the development costs associated with altering a control system for a new or heavily modified aircraft. Successful flight tests of the FLAC-H on a UH-1H target drone were completed in September 1994 at the White Sands Missile Range in New Mexico. This paper discuses the objective of the system, its design, and performance.
Ju, Ming-Shaung; Lin, Chou-Ching K; Lin, Dong-Huang; Hwang, Ing-Shiou; Chen, Shu-Min
2005-09-01
The goal of this study was to design a robot system for assisting in the rehabilitation of patients with neuromuscular disorders by performing various facilitation movements. The robot should be able to guide patient's wrist to move along planned linear or circular trajectories. A hybrid position/force controller incorporating fuzzy logic was developed to constrain the movement in the desired direction and to maintain a constant force along the moving direction. The controller was stable in the application range of movements and forces. Offline analyses of data were used to quantitatively assess the progress of rehabilitation. The results show that the robot could guide the upper limbs of subjects in linear and circular movements under predefined external force levels and apply a desired force along the tangential direction of the movements. PMID:16200758
Sinusoidal rotatory chair system by an auto-tuning fuzzy PID controller
Park, H.A.; Cha, I.S.; Baek, H.L.
1995-12-31
This paper presents DC servo motor speed control characteristics by fuzzy logic controller and considers position following control response with controller. A sinusoidal rotatory chair system using an auto tuning fuzzy PID control was designed to evaluate the vestibular function. Then the system is investigated for the effects of change by the fuzziness of fuzzy variable. If this system is supported by a channel, it is considered for application in industry of multi joint robot and precision parallel driving.
Full design of fuzzy controllers using genetic algorithms
NASA Technical Reports Server (NTRS)
Homaifar, Abdollah; Mccormick, ED
1992-01-01
This paper examines the applicability of genetic algorithms (GA) in the complete design of fuzzy logic controllers. While GA has been used before in the development of rule sets or high performance membership functions, the interdependence between these two components dictates that they should be designed together simultaneously. GA is fully capable of creating complete fuzzy controllers given the equations of motion of the system, eliminating the need for human input in the design loop. We show the application of this new method to the development of a cart controller.
Research in robust control for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Calise, A. J.
1994-01-01
The research during the third reporting period focused on fixed order robust control design for hypersonic vehicles. A new technique was developed to synthesize fixed order H(sub infinity) controllers. A controller canonical form is imposed on the compensator structure and a homotopy algorithm is employed to perform the controller design. Various reduced order controllers are designed for a simplified version of the hypersonic vehicle model used in our previous studies to demonstrate the capabilities of the code. However, further work is needed to investigate the issue of numerical ill-conditioning for large order systems and to make the numerical approach more reliable.
Optimized Reactive Power Compensation Using Fuzzy Logic Controller
NASA Astrophysics Data System (ADS)
George, S.; Mini, K. N.; Supriya, K.
2015-03-01
Reactive power flow in a long transmission line plays a vital role in power transfer capability and voltage stability in power system. Traditionally, shunt connected compensators are used to control reactive power in long transmission line. Thyristor controlled reactor is used to control reactive power under lightly loaded condition. By controlling firing angle of thyristor, it is possible to control reactive power in the transmission lines. However, thyristor controlled reactor will inject harmonic current into the system. An attempt to reduce reactive power injection will increase harmonic distortion in the line current and vice versa. Thus, there is a trade-off between reactive power injection and harmonics in current. By optimally controlling the reactive power injection, harmonics in current can be brought within the specified limit. In this paper, a Fuzzy Logic Controller is implemented to obtain optimal control of reactive power of the compensator to maintain voltage and harmonic in current within the limits. An algorithm which optimizes the firing angle in each fuzzy subset by calculating the rank of feasible firing angles is proposed for the construction of rules in Fuzzy Logic Controller. The novelty of the algorithm is that it uses a simple error formula for the calculation of the rank of the feasible firing angles in each fuzzy subset.
Robust Stabilization Control for an Electric Bicycle
NASA Astrophysics Data System (ADS)
Kawamura, Takuro; Murakami, Toshiyuki
Recently, bicycles have gained immense popularity because they have high mobility and are an environment-friendly means of transport. However, many people tend to avoid riding a bicycle because it is unstable. In order to solve this problem, stabilization control for a bicycle has been researched. The aim of this study is improvement of the robustness in stabilization control. To achieve this goal, control systems that use a camber angle disturbance observer (CADO) are proposed. Two kinds of CADOs are proposed in this paper, and the performances of these two observers are compared. The proposed control systems provide higher robustness than does the conventional method. The validity of the proposed methods is confirmed by the experimental results.
NASA Astrophysics Data System (ADS)
Sun, Y.; Li, Y. P.; Huang, G. H.
2012-06-01
In this study, a queuing-theory-based interval-fuzzy robust two-stage programming (QB-IRTP) model is developed through introducing queuing theory into an interval-fuzzy robust two-stage (IRTP) optimization framework. The developed QB-IRTP model can not only address highly uncertain information for the lower and upper bounds of interval parameters but also be used for analysing a variety of policy scenarios that are associated with different levels of economic penalties when the promised targets are violated. Moreover, it can reflect uncertainties in queuing theory problems. The developed method has been applied to a case of long-term municipal solid waste (MSW) management planning. Interval solutions associated with different waste-generation rates, different waiting costs and different arriving rates have been obtained. They can be used for generating decision alternatives and thus help managers to identify desired MSW management policies under various economic objectives and system reliability constraints.
Robust adaptive control of HVDC systems
Reeve, J.; Sultan, M. )
1994-07-01
The transient performance of an HVDC power system is highly dependent on the parameters of the current/voltage regulators of the converter controls. In order to better accommodate changes in system structure or dc operating conditions, this paper introduces a new adaptive control strategy. The advantages of automatic tuning for continuous fine tuning are combined with predetermined gain scheduling in order to achieve robustness for large disturbances. Examples are provided for a digitally simulated back-to-back dc system.
FEM Optimization of Spin Forming Using a Fuzzy Control Algorithm
NASA Astrophysics Data System (ADS)
Yoshihara, S.; Ray, P.; MacDonald, B. J.; Koyama, H.; Kawahara, M.
2004-06-01
Finite element (FE) simulation of the manufacturing of a conical nosing such as a pressure vessel from circular tubes, using the spin forming method, was performed on the commercially available software package, ANSYS/LS-DYNA3D. The finite element method (FEM) provides a powerful tool for evaluating the potential to form the pressure vessel with proposed modifications to the process. The use of fuzzy logic inference as a control system to achieve the designed shape of the pressure vessel was investigated using the FEM. The path of the roller as a process parameter was decided by the fuzzy inference control algorithm from information of the result of deformation of each element respectively. The fuzzy control algorithm investigated was validated from the results of the production process time and the deformed shape using FE simulation.
Interval Analysis Approach to Prototype the Robust Control of the Laboratory Overhead Crane
NASA Astrophysics Data System (ADS)
Smoczek, J.; Szpytko, J.; Hyla, P.
2014-07-01
The paper describes the software-hardware equipment and control-measurement solutions elaborated to prototype the laboratory scaled overhead crane control system. The novelty approach to crane dynamic system modelling and fuzzy robust control scheme design is presented. The iterative procedure for designing a fuzzy scheduling control scheme is developed based on the interval analysis of discrete-time closed-loop system characteristic polynomial coefficients in the presence of rope length and mass of a payload variation to select the minimum set of operating points corresponding to the midpoints of membership functions at which the linear controllers are determined through desired poles assignment. The experimental results obtained on the laboratory stand are presented.
Reliable Sampled-Data Control of Fuzzy Markovian Systems with Partly Known Transition Probabilities
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Kaviarasan, B.; Kwon, O. M.; Rathika, M.
2016-08-01
This article presents a fuzzy dynamic reliable sampled-data control design for nonlinear Markovian jump systems, where the nonlinear plant is represented by a Takagi-Sugeno fuzzy model and the transition probability matrix for Markov process is permitted to be partially known. In addition, a generalised as well as more practical consideration of the real-world actuator fault model which consists of both linear and nonlinear fault terms is proposed to the above-addressed system. Then, based on the construction of an appropriate Lyapunov-Krasovskii functional and the employment of convex combination technique together with free-weighting matrices method, some sufficient conditions that promising the robust stochastic stability of system under consideration and the existence of the proposed controller are derived in terms of linear matrix inequalities, which can be easily solved by any of the available standard numerical softwares. Finally, a numerical example is provided to illustrate the validity of the proposed methodology.
Low bandwidth robust controllers for flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
Low Bandwidth Robust Controllers for Flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
Fuzzy Adaptive Control for Intelligent Autonomous Space Exploration Problems
NASA Technical Reports Server (NTRS)
Esogbue, Augustine O.
1998-01-01
The principal objective of the research reported here is the re-design, analysis and optimization of our newly developed neural network fuzzy adaptive controller model for complex processes capable of learning fuzzy control rules using process data and improving its control through on-line adaption. The learned improvement is according to a performance objective function that provides evaluative feedback; this performance objective is broadly defined to meet long-range goals over time. Although fuzzy control had proven effective for complex, nonlinear, imprecisely-defined processes for which standard models and controls are either inefficient, impractical or cannot be derived, the state of the art prior to our work showed that procedures for deriving fuzzy control, however, were mostly ad hoc heuristics. The learning ability of neural networks was exploited to systematically derive fuzzy control and permit on-line adaption and in the process optimize control. The operation of neural networks integrates very naturally with fuzzy logic. The neural networks which were designed and tested using simulation software and simulated data, followed by realistic industrial data were reconfigured for application on several platforms as well as for the employment of improved algorithms. The statistical procedures of the learning process were investigated and evaluated with standard statistical procedures (such as ANOVA, graphical analysis of residuals, etc.). The computational advantage of dynamic programming-like methods of optimal control was used to permit on-line fuzzy adaptive control. Tests for the consistency, completeness and interaction of the control rules were applied. Comparisons to other methods and controllers were made so as to identify the major advantages of the resulting controller model. Several specific modifications and extensions were made to the original controller. Additional modifications and explorations have been proposed for further study. Some of
Robust and efficient in situ quantum control
NASA Astrophysics Data System (ADS)
Ferrie, Christopher; Moussa, Osama
2015-05-01
Precision control of quantum systems is the driving force for both quantum technology and the probing of physics at the quantum and nanoscale levels. We propose an implementation-independent method for in situ quantum control that leverages recent advances in the direct estimation of quantum gate fidelity. Our algorithm takes account of the stochasticity of the problem, is suitable for closed-loop control, and requires only a constant number of fidelity-estimating experiments per iteration independent of the dimension of the control space. It is efficient and robust to both statistical and technical noise.
Robust control technique for nuclear power plants
Murphy, G.V.; Bailey, J.M.
1989-03-01
This report summarizes the linear quadratic Guassian (LQG) design technique with loop transfer recovery (LQG/LTR) for design of control systems. The concepts of return ratio, return difference, inverse return difference, and singular values are summarized. The LQG/LTR design technique allows the synthesis of a robust control system. To illustrate the LQG/LTR technique, a linearized model of a simple process has been chosen. The process has three state variables, one input, and one output. Three control system design methods are compared: LQG, LQG/LTR, and a proportional plus integral controller (PI). 7 refs., 20 figs., 6 tabs.
Tuning a fuzzy controller using quadratic response surfaces
NASA Technical Reports Server (NTRS)
Schott, Brian; Whalen, Thomas
1992-01-01
Response surface methodology, an alternative method to traditional tuning of a fuzzy controller, is described. An example based on a simulated inverted pendulum 'plant' shows that with (only) 15 trial runs, the controller can be calibrated using a quadratic form to approximate the response surface.
Fuzzy self-learning control for magnetic servo system
NASA Technical Reports Server (NTRS)
Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.
1994-01-01
It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.
Fuzzy Logic Decoupled Longitudinal Control for General Aviation Airplanes
NASA Technical Reports Server (NTRS)
Duerksen, Noel
1996-01-01
It has been hypothesized that a human pilot uses the same set of generic skills to control a wide variety of aircraft. If this is true, then it should be possible to construct an electronic controller which embodies this generic skill set such that it can successfully control difference airplanes without being matched to a specific airplane. In an attempt to create such a system, a fuzzy logic controller was devised to control throttle position and another to control elevator position. These two controllers were used to control flight path angle and airspeed for both a piston powered single engine airplane simulation and a business jet simulation. Overspeed protection and stall protection were incorporated in the form of expert systems supervisors. It was found that by using the artificial intelligence techniques of fuzzy logic and expert systems, a generic longitudinal controller could be successfully used on two general aviation aircraft types that have very difference characteristics. These controllers worked for both airplanes over their entire flight envelopes including configuration changes. The controllers for both airplanes were identical except for airplane specific limits (maximum allowable airspeed, throttle lever travel, etc.). The controllers also handled configuration changes without mode switching or knowledge of the current configuration. This research validated the fact that the same fuzzy logic based controller can control two very different general aviation airplanes. It also developed the basic controller architecture and specific control parameters required for such a general controller.
A fuzzy-based optimal reactive power control
Abdul-Rahman, K.H.; Shahidehpour, S.M. . Dept. of Electrical and Computer Engineering)
1993-05-01
This paper presents a mathematical formulation for the optimal reactive power control problem using the fuzzy set theory. The objectives are to minimize real power losses and improve the voltage profile of a given system. Transmission loses are expressed in terms of voltage increments by relating the control variables, i.e., tap positions of transformers and reactive power injections of VAR sources, to the voltage increments in a modified Jacobian matrix. This specific formulation of the problem does not require the Jacobian matrix inversion, and hence it will save computation time and memory space. The objective function and the constraints are modeled by fuzzy sets. Linear membership functions of the fuzzy sets are defined and the fuzzy linear optimization problem is formulated. The solution space in this case is defined as the intersection of the fuzzy sets describing the constraints and the objective functions. Each solution is characterized by a parameter that determines the degree of satisfaction with the solution. The optimal solution is the one with the maximum value for the satisfaction parameter. Results for the application of this approach on test systems reveal its numerous advantages.
Fuzzy virtual reference model sensorless tracking control for linear induction motors.
Hung, Cheng-Yao; Liu, Peter; Lian, Kuang-Yow
2013-06-01
This paper introduces a fuzzy virtual reference model (FVRM) synthesis method for linear induction motor (LIM) speed sensorless tracking control. First, we represent the LIM as a Takagi-Sugeno fuzzy model. Second, we estimate the immeasurable mover speed and secondary flux by a fuzzy observer. Third, to convert the speed tracking control into a stabilization problem, we define the internal desired states for state tracking via an FVRM. Finally, by solving a set of linear matrix inequalities (LMIs), we obtain the observer gains and the control gains where exponential convergence is guaranteed. The contributions of the approach in this paper are threefold: 1) simplified approach--speed tracking problem converted into stabilization problem; 2) omit need of actual reference model--FVRM generates internal desired states; and 3) unification of controller and observer design--control objectives are formulated into an LMI problem where powerful numerical toolboxes solve controller and observer gains. Finally, experiments are carried out to verify the theoretical results and show satisfactory performance both in transient response and robustness. PMID:23076069
Chen, Bor-Sen; Chang, Yu-Te; Wang, Yu-Chao
2008-02-01
Molecular noises in gene networks come from intrinsic fluctuations, transmitted noise from upstream genes, and the global noise affecting all genes. Knowledge of molecular noise filtering in gene networks is crucial to understand the signal processing in gene networks and to design noise-tolerant gene circuits for synthetic biology. A nonlinear stochastic dynamic model is proposed in describing a gene network under intrinsic molecular fluctuations and extrinsic molecular noises. The stochastic molecular-noise-processing scheme of gene regulatory networks for attenuating these molecular noises is investigated from the nonlinear robust stabilization and filtering perspective. In order to improve the robust stability and noise filtering, a robust gene circuit design for gene networks is proposed based on the nonlinear robust H infinity stochastic stabilization and filtering scheme, which needs to solve a nonlinear Hamilton-Jacobi inequality. However, in order to avoid solving these complicated nonlinear stabilization and filtering problems, a fuzzy approximation method is employed to interpolate several linear stochastic gene networks at different operation points via fuzzy bases to approximate the nonlinear stochastic gene network. In this situation, the method of linear matrix inequality technique could be employed to simplify the gene circuit design problems to improve robust stability and molecular-noise-filtering ability of gene networks to overcome intrinsic molecular fluctuations and extrinsic molecular noises. PMID:18270080
A fuzzy behaviorist approach to sensor-based robot control
Pin, F.G.
1996-05-01
Sensor-based operation of autonomous robots in unstructured and/or outdoor environments has revealed to be an extremely challenging problem, mainly because of the difficulties encountered when attempting to represent the many uncertainties which are always present in the real world. These uncertainties are primarily due to sensor imprecisions and unpredictability of the environment, i.e., lack of full knowledge of the environment characteristics and dynamics. An approach. which we have named the {open_quotes}Fuzzy Behaviorist Approach{close_quotes} (FBA) is proposed in an attempt to remedy some of these difficulties. This approach is based on the representation of the system`s uncertainties using Fuzzy Set Theory-based approximations and on the representation of the reasoning and control schemes as sets of elemental behaviors. Using the FBA, a formalism for rule base development and an automated generator of fuzzy rules have been developed. This automated system can automatically construct the set of membership functions corresponding to fuzzy behaviors. Once these have been expressed in qualitative terms by the user. The system also checks for completeness of the rule base and for non-redundancy of the rules (which has traditionally been a major hurdle in rule base development). Two major conceptual features, the suppression and inhibition mechanisms which allow to express a dominance between behaviors are discussed in detail. Some experimental results obtained with the automated fuzzy, rule generator applied to the domain of sensor-based navigation in aprion unknown environments. using one of our autonomous test-bed robots as well as a real car in outdoor environments, are then reviewed and discussed to illustrate the feasibility of large-scale automatic fuzzy rule generation using the {open_quotes}Fuzzy Behaviorist{close_quotes} concepts.
Fuzzy logic controller to improve powerline communication
NASA Astrophysics Data System (ADS)
Tirrito, Salvatore
2015-12-01
The Power Line Communications (PLC) technology allows the use of the power grid in order to ensure the exchange of data information among devices. This work proposes an approach, based on Fuzzy Logic, that dynamically manages the amplitude of the signal, with which each node transmits, by processing the master-slave link quality measured and the master-slave distance. The main objective of this is to reduce both the impact of communication interferences induced and power consumption.
Optimal and robust control of transition
NASA Technical Reports Server (NTRS)
Bewley, T. R.; Agarwal, R.
1996-01-01
Optimal and robust control theories are used to determine feedback control rules that effectively stabilize a linearly unstable flow in a plane channel. Wall transpiration (unsteady blowing/suction) with zero net mass flux is used as the control. Control algorithms are considered that depend both on full flowfield information and on estimates of that flowfield based on wall skin-friction measurements only. The development of these control algorithms accounts for modeling errors and measurement noise in a rigorous fashion; these disturbances are considered in both a structured (Gaussian) and unstructured ('worst case') sense. The performance of these algorithms is analyzed in terms of the eigenmodes of the resulting controlled systems, and the sensitivity of individual eigenmodes to both control and observation is quantified.
NASA Technical Reports Server (NTRS)
Ryan, R.
1993-01-01
Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.
NASA Technical Reports Server (NTRS)
Kreinovich, V.; Lea, R.; Fuentes, O.; Lokshin, A.
1992-01-01
Fuzzy control techniques are analyzed to explain why the fuzzy control that is based on the expert's knowledge is often smoother and more stable than the control performed manually by the same experts. A precise mathematical explanation of this phenomenon is presented. Results obtained make it possible to predict the quality of the fuzzy control.
NASA Astrophysics Data System (ADS)
Phu, Do Xuan; Shin, Do Kyun; Choi, Seung-Bok
2015-08-01
This paper presents a new adaptive fuzzy controller featuring a combination of two different control methodologies: H infinity control technique and sliding mode control. It is known that both controllers are powerful in terms of high performance and robust stability. However, both control methods require an accurate dynamic model to design a state variable based controller in order to maintain their advantages. Thus, in this work a fuzzy control method which does not require an accurate dynamic model is adopted and two control methodologies are integrated to maintain the advantages even in an uncertain environment of the dynamic system. After a brief explanation of the interval type 2 fuzzy logic, a new adaptive fuzzy controller associated with the H infinity control and sliding mode control is formulated on the basis of Lyapunov stability theory. Subsequently, the formulated controller is applied to vibration control of a vehicle seat equipped with magnetorheological fluid damper (MR damper in short). An experimental setup for realization of the proposed controller is established and vibration control performances such as acceleration at the driver’s seat are evaluated. In addition, in order to demonstrate the effectiveness of the proposed controller, a comparative work with two existing controllers is undertaken. It is shown through simulation and experiment that the proposed controller can provide much better vibration control performance than the two existing controllers.
Fuzzy control of hydraulic servo system based on DSP
NASA Astrophysics Data System (ADS)
He, Juan; Yuan, Song-Yue
2011-10-01
On the basis of high-speed switching valve of hydraulic servo system, the complex mathematical model of nonlinear hydraulic servo system was analyzed and constructed. A intelligent Fuzzy control method using TMS320LF2407A DSP chip as primary processor was put forward. The simulation results show that the control strategy has a better effect than the conventional PID control has. And the non-differential control of the system has been basically achieved.
Emergent behaviors of a fuzzy sensory-motor controller evolved by genetic algorithm.
Lee, S I; Cho, S B
2001-01-01
Recently, there has been extensive work on the construction of fuzzy controllers for mobile robots by a genetic algorithm (GA); therefore, we can realize evolutionary optimization as a promising method for developing fuzzy controllers. However, much investigation on the evolutionary fuzzy controller remains because most of the previous works have not seriously attempted to analyze the fuzzy controller obtained by evolution. This paper develops a fuzzy logic controller for a mobile robot with a GA in simulation environments and analyzes the behaviors of the controller with a state transition diagram of the internal model. Experimental results show that appropriate control mechanisms of the fuzzy controller are obtained by evolution. The controller has evolved wen enough to smoothly drive the robot in different environments. The robot produces emergent behaviors by the interaction of several fuzzy rules obtained. PMID:18244857
FUZZY LOGIC MOTOR CONTROL FOR POLLUTION PREVENTION AND IMPROVED ENERGY EFFICIENCY
The paper discusses an EPA program investigating fuzzy logic motor control for improved pollution prevention and energy efficiency. nitial computer simulation and laboratory results have demonstrated that fuzzy logic energy optimizers can consistently improve motor operational ef...
Fuzzy control of the production environment process parameters
NASA Astrophysics Data System (ADS)
Izvekov, V. N.
2015-04-01
The fuzzy control process for support of given microclimatic production environment process parameters with loss of one from values, regulating regime of process was shown. The structural schematic decisions with algorithm of functioning and oriented to existing apparatus (means of realization) was presented.
Workshop on Fuzzy Control Systems and Space Station Applications
NASA Technical Reports Server (NTRS)
Aisawa, E. K. (Compiler); Faltisco, R. M. (Compiler)
1990-01-01
The Workshop on Fuzzy Control Systems and Space Station Applications was held on 14-15 Nov. 1990. The workshop was co-sponsored by McDonnell Douglas Space Systems Company and NASA Ames Research Center. Proceedings of the workshop are presented.
TECHNICAL NOTE: Fuzzy control of vibration of a smart CFRP laminated beam
NASA Astrophysics Data System (ADS)
Takawa, Takeshi; Fukuda, Takehito; Nakashima, Koichiro
2000-04-01
In the present study, the fuzzy control of vibration is investigated for a hybrid smart composite beam actuated by piezoceramics and electro-rheological fluids (ERFs) actuators. A carbon fiber reinforced plastics cantilevered beam containing ERF with bonded piezoceramics is vibrated under forced sinusoidal external excitation. A fuzzy model of the controlled element containing two actuators is formed because the application of a linear control theory to the vibration control is difficult due to intense nonlinearity in the ERF actuator. The parameters of the fuzzy model are identified by using a hybrid neuro-fuzzy system. The fuzzy controller for vibration suppression of the composite beam designed is based on the fuzzy model by using modern control theory. The effect of the vibration control system with a fuzzy controller is verified by simulation and experiment.
Hybrid Takagi-Sugeno Fuzzy FED PID Control of Nonlinear Systems
NASA Astrophysics Data System (ADS)
Hamed, Basil; El Khateb, Ahmad
2008-06-01
The new method of proportional-integral-derivative (PID) controller is proposed in this paper for a hybrid fuzzy PID controller for nonlinear system. The important feature of the proposed approach is that it combines the fuzzy gain scheduling method and a fuzzy fed PID controller to solve the nonlinear control problem. The resultant fuzzy rule base of the proposed controller contains one part. This single part of the rules uses the Takagi-Sugeno method for solving the nonlinear problem. The simulation results of a nonlinear system show that the performance of a fed PID Hybrid Takagi-Sugeno fuzzy controller is better than that of the conventional fuzzy PID controller or Hybrid Mamdani fuzzy FED PID controller.
An Adaptive Fuzzy-Logic Traffic Control System in Conditions of Saturated Transport Stream.
Yusupbekov, N R; Marakhimov, A R; Igamberdiev, H Z; Umarov, Sh X
2016-01-01
This paper considers the problem of building adaptive fuzzy-logic traffic control systems (AFLTCS) to deal with information fuzziness and uncertainty in case of heavy traffic streams. Methods of formal description of traffic control on the crossroads based on fuzzy sets and fuzzy logic are proposed. This paper also provides efficient algorithms for implementing AFLTCS and develops the appropriate simulation models to test the efficiency of suggested approach. PMID:27517081