Science.gov

Sample records for robust pore size

  1. Control of pore size in epoxy systems.

    SciTech Connect

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow; Lee, Elizabeth; Kallam, Alekhya; Majumdar, Partha; Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J.; Celina, Mathias Christopher; Bahr, James; Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  2. Pore-size ion-size correlations for carbon supercapacitors

    NASA Astrophysics Data System (ADS)

    Chmiola, John

    2009-08-01

    Carbon supercapacitors, which are energy storage devices that use ion adsorption on the surface of highly porous materials to store charge, have numerous advantages over other power-source technologies, but could realize further gains if their electrodes were properly optimized. This could lead to fleet-wide improvements in economy, performance, lifetime and environmental impact of Hybrid Electric Vehicles (HEVs), as well as enable or advance many other applications. To determine correlations between ion-size and pore-size in carbon supercapacitors, we generated a well-characterized set of porous carbide-derived carbons (CDC) with average pore sizes from 0.6 to 2.25 nm and used them to probe the limits of understanding. Performing the first systematic study of the effect of pore size on capacitance showed that, in general, decreasing the pore size below the size of the solvated ion, or to precisely the size of the ionic liquid ion, allowed higher accumulation of charge. Using CDC with properly tuned porosity showed excellent performance in H2SO 4, ˜200 F/g, and performance superior to all prior reported results in organic (CH3CH2)4NBF4 (TEABF 4) electrolytes as well as l-ethyl-3-methyl immidazolium bis-(trifluoromethanesulfonyl)imide (EMI-TFSI) ionic liquid, ˜150 F/g. This work conclusively showed that precisely matching the pore size with the ion size is the key factor for maximizing capacitance. Understanding that pores significantly larger than the effective ion size do not have large contributions to energy storage, work on dense porous CDC films on conductive substrates showed ˜100% larger volumetric capacitance than any previously reported. Depositing patterned films of carbide and electrical contacts could lead to microfabricated energy storage devices directly on a chip, or built up in layers for performances yet unrealized.

  3. Pore size distribution and accessible pore size distribution in bituminous coals

    SciTech Connect

    Sakurovs, Richard; He, Lilin; Melnichenko, Yuri B; Radlinski, Andrzej Pawell; Blach, Tomasz P

    2012-01-01

    The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the rest from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total

  4. A robust model for pore-water chemistry of clayrock

    NASA Astrophysics Data System (ADS)

    Gaucher, E. C.; Tournassat, C.; Pearson, F. J.; Blanc, P.; Crouzet, C.; Lerouge, C.; Altmann, S.

    2009-11-01

    The chemistry of pore water is an important property of clayrocks being considered as host rocks for long-term storage of radioactive waste. It may be difficult, if not impossible, to obtain water samples for chemical analysis from such rocks because of their low hydraulic conductivity. This paper presents an approach for calculating the pore-water compositions of clayrocks from laboratory-measured properties of core samples, including their leachable Cl and SO 4 concentrations and analysed exchangeable cations, and from mineral and cation exchange equilibria based on the formation mineralogy. New core sampling and analysis procedures are presented that reduce or quantify side reactions such as sample oxidation (e.g. pyrite) and soluble mineral dissolution (celestite, SrSO 4) that affect measured SO 4 concentrations and exchangeable cation distributions. The model considers phase equilibria only with minerals that are observed in the formation including the principal clay phases. The model has been used to calculate the composition of mobile pore water in the Callovo-Oxfordian clayrock and validated against measurements of water chemistry made in an underground research laboratory in that formation. The model reproduces the measured, in situ pore-water composition without any estimated parameters. All required parameters can be obtained from core sample analysis. We highlight the need to consider only those mineral phases which can be shown to be in equilibrium with contacting pore water. The consequence of this is that some conceptual models available in the literature appear not to be appropriate for modelling clayrocks, particularly those considering high temperature and/or high pressure detrital phases as chemical buffers of pore water. The robustness of our model with respect to uncertainties in the log K values of clay phases is also demonstrated. Large uncertainties in log K values for clay minerals have relatively small effects on modelled pore

  5. Nanofiltration membranes with narrowed pore size distribution via pore wall modification.

    PubMed

    Du, Yong; Lv, Yan; Qiu, Wen-Ze; Wu, Jian; Xu, Zhi-Kang

    2016-06-30

    We propose a novel strategy for narrowing down the pore size distribution of ready-made nanofiltration membranes (NFMs) via pore wall modification. NFMs were subjected to the filtration of a highly reactive molecule solution, during which large pores were selectively reduced in size. The as-treated NFMs have high monovalent ion/divalent ion selectivity. PMID:27321407

  6. Preparation of mesoporous cadmium sulfide nanoparticles with moderate pore size

    SciTech Connect

    Han Zhaohui Zhu, Huaiyong; Shi, Jeffrey; Parkinson, Gordon; Lu, G.Q.

    2007-03-15

    The preparation of cadmium sulfide nanoparticles that have a moderate pore size is reported. This preparation method involves a hydrothermal process that produces a precursor mixture and a following acid treatment of the precursor to get the porous material. The majority of the particles have a pore size close to 20nm, which complements and fills in the gap between the existing cadmium sulfide materials, which usually have a pore size either less than 10nm or are well above 100nm.

  7. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    SciTech Connect

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

  8. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE PAGESBeta

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  9. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  10. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  11. Influence of Pore Size on Fracture Strength of Porous Ceramics

    NASA Astrophysics Data System (ADS)

    Yoshida, Keigo; Tsukidate, Hironori; Murakami, Akira; Miyata, Hiroshi

    Porous ceramics possess the excellent penetration and adiabatic characteristics, etc., and are used as heatproof filter materials for environmental equipments, etc. Moreover, porous ceramics controlled with porosity and pore size in the wide range have been actively developed. However, how the strength characteristics of porous ceramics are influenced by porosity and pore size of the material are not understood still enough. In this research, the evaluation tests on fracture strength, fracture energy and fracture toughness of porous alumina ceramics which porosity are almost equal, while pore sizes are different mutually were performed, and the relation between the pore size and the fracture strength was studied. The tests results show that the dispersion of fracture strength data is few though fracture strength of porous ceramics is lower than that of high-density ceramics. The relation based on linear fracture mechanics between the defect size and the fracture strength is valid when the one that a pore accompanies with the peculiar defect of the material was regarded as a defect size. In addition, fracture energy increases with the increase of pore size, and this seems based on a crooked propagation path of a crack. Finally, the process zone fracture model with considering the effect of the pore and grain size of the material is proposed. According to this model, for all pore size and crack length, it was shown that the fracture strengths of cracked specimens are evaluated.

  12. Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars

    SciTech Connect

    Guerrero, A.; Goni, S.; Macias, A.; Luxan, M.P.

    1999-11-01

    The mechanical properties, pore size distribution, and extracted pore solution of fly ash-belite cement (FABC) mortars were studied for a period of 200 days. The influence of the calcination temperature, which ranged from 700 to 900 C, of the fly ash-belite cement was discussed. The evolution with hydration time of the pore size distribution was followed by mercury intrusion porosimetry, and the results correlated with those of flexural and compressive strength. The pore solution was expressed and analyzed at different times of hydration.

  13. Pore size engineering applied to starved electrochemical cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Thaller, L. H.

    1982-01-01

    To maximize performance in starved, multiplate cells, the cell design should rely on techniques which widen the volume tolerance characteristics. These involve engineering capillary pressure differences between the components of an electrochemical cell and using these forces to promote redistribution of electrolyte to the desired optimum values. This can be implemented in practice by prescribing pore size distributions for porous back-up plates, reservoirs, and electrodes. In addition, electrolyte volume management can be controlled by incorporating different pore size distributions into the separator. In a nickel/hydrogen cell, the separator must contain pores similar in size to the small pores of both the nickel and hydrogen electrodes in order to maintain an optimum conductive path for the electrolyte. The pore size distributions of all components should overlap in such a way as to prevent drying of the separator and/or flooding of the hydrogen electrode.

  14. Size of diffusion pore of Alcaligenes faecalis.

    PubMed

    Ishii, J; Nakae, T

    1988-03-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. PMID:2835003

  15. Size of diffusion pore of Alcaligenes faecalis.

    PubMed Central

    Ishii, J; Nakae, T

    1988-01-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. Images PMID:2835003

  16. Porosity, pore size distribution and in situ strength of concrete

    SciTech Connect

    Kumar, Rakesh; Bhattacharjee, B

    2003-01-01

    In this study, in situ strength of concrete was determined through compression test of cores drilled out from laboratory cast beams. The apparent porosity and pore size distribution of the same concrete were determined through mercury intrusion porosimetry, performed on small-drilled cores. The normal-strength concrete mixes used in the experimental investigation were designed to exhibit a wide variation in their strengths. To ensure further variation in porosity, pore size distribution and strength, two modes of compaction, two varieties of coarse aggregates, different levels of age, curing period and exposure condition of concrete were also introduced in experimental scheme. With the data so generated, an appraisal of the most frequently referred relationships involving strength, porosity and pore size of cement-based materials was carried out. Finally, a new empirical model relating the in situ strength of concrete with porosity, pore size characteristics, cement content, aggregate type, exposure conditions, etc., is presented.

  17. A fast and robust new pore-network extraction method based on hybrid median axis and maximal inscribed ball techniques

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Karsanina, Marina; Byuk, Irina; Gerke, Kirill

    2016-04-01

    To characterize pore structure relevant to single and multi-phase flow modelling it is of special interest to extract topology of the pore space. This is usually achieved using so-called pore-network models. Such models are useful not only to characterize pore space and pore size distributions, but also provide means to simulate flow and transport with very limited computational resources compared to other pore-scale modelling techniques. The main drawback of the pore-network approach is that they have first to simplify the pore space geometry. This crucial step is both time consuming and prone to numerous errors. Two most popular methods based on median axis or inscribed maximal balls have their own strong sides and disadvantages. To address aforementioned problems related to pore-network extraction here we propose a novel method utilizing the advantages of both popular approaches. Combining two algorithms resulted in much faster and robust extraction methodology. Moreover, we have found that accurate topology representation requires extension of the conventional pore-body and pore-throat classification. We test our new methodology using pore structures with "analytical solutions" such as different sphere packs. In addition, we rigorously compare it against inscribed maximal balls methodology's results using numerous 3D images of sandstone and carbonate rocks, soils and some other porous materials. Another verification includes permeability calculations which are also compared both against lab data and voxel based pore-scale modelling simulations. This work was partially supported by RFBR grant 15-34-20989 (X-ray tomography and image fusion) and RSF grant 14-17-00658 (image segmentation and pore-scale modelling).

  18. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  19. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  20. Porous Boron Nitride with Tunable Pore Size.

    PubMed

    Dai, Jun; Wu, Xiaojun; Yang, Jinlong; Zeng, Xiao Cheng

    2014-01-16

    On the basis of a global structural search and first-principles calculations, we predict two types of porous boron-nitride (BN) networks that can be built up with zigzag BN nanoribbons (BNNRs). The BNNRs are either directly connected with puckered B (N) atoms at the edge (type I) or connected with sp(3)-bonded BN chains (type II). Besides mechanical stability, these materials are predicted to be thermally stable at 1000 K. The porous BN materials entail large surface areas, ranging from 2800 to 4800 m(2)/g. In particular, type-II BN material with relatively large pores is highly favorable for hydrogen storage because the computed hydrogen adsorption energy (-0.18 eV) is very close to the optimal adsorption energy (-0.15 eV) suggested for reversible hydrogen storage at room temperature. Moreover, the type-II materials are semiconductors with width-dependent direct bandgaps, rendering the type-II BN materials promising not only for hydrogen storage but also for optoelectronic and photonic applications. PMID:26270717

  1. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    PubMed

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. PMID:23548563

  2. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  3. EFFECT OF PORE SIZE ON TRAPPING ZINC VAPORS

    SciTech Connect

    Korinko, P.

    2010-12-17

    A series of experiments were conducted to determine the effect of pore size on pumping efficiency and zinc vapor trapping efficiency. A simple pumping efficiency test was conducted for all five pore diameters where it was observed that evacuation times were adversely affected by reducing the pore size below 5 {micro}m. Common test conditions for the zinc trapping efficiency experiments were used. These conditions resulted in some variability, to ascribe different efficiencies to the filter media. However, the data suggest that there is no significant difference in trapping efficiency for filter media with pores from 0.2 to 20 {micro}m with a thickness of 0.065-inch. Consequently, the 20 {micro}m pore filter media that is currently used at SRS is a suitable filter material for to utilize for future extractions. There is evidence that smaller pore filter will adversely affect the pumping times for the TEF and little evidence to suggest that a smaller pore diameters have significant impact on the trapping efficiency.

  4. Pore size and the lab-field reaction rate riddle

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Ague, J. J.; Walderhaug, O.

    2009-12-01

    Pore size is usually thought to influence the rate of crystal growth during diagenesis and metamorphism by controlling the ratio of surface area to fluid volume. However, theory suggests that in micron-scale to nanometer-scale pores, interfacial energy effects can also become important. We used mercury porosimetry to investigate the pore-size distributions in naturally cemented sandstone adjacent to stylolites and found that quartz precipitation was inhibited in pores smaller than 10 microns in diameter. We demonstrate that standard kinetic models cannot reproduce the observed pore-size patterns in mineralized samples; by contrast, excellent fits with the data are obtained when interfacial energy effects are taken into account. Moreover, as such micron-scale pores comprise the overwhelming majority of surface area in the sandstone, average reaction rates for the rock are significantly reduced. Reaction rates in geological media determined in field studies can be orders of magnitude lower than those measured in laboratory experiments, and we propose that reduced reaction rates in rocks with micron-scale porosity could account for the apparent paradox.

  5. Neutrons measure phase behavior in pores at Angstrom size

    SciTech Connect

    Bardoel, Agatha A; Melnichenko, Yuri B

    2012-01-01

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storage for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS

  6. Pore-size distributions of N-isopropylacrylamide (NIPA) hydrogels

    SciTech Connect

    Walther, D.H.; Blanch, H.W.; Prausnitz, J.M. |

    1993-11-01

    Pore-size distributions have been measured for N-isopropylacrylamide (NIPA) hydrogels at 25 and 32{degrees}C with swelling capacities 11.3 and 6.0 g swollen gel per g dry gel. The mixed-solute-exclusion method (introduced by Kuga) was used to obtain the experimental solute-exclusion curve which represents the amount of imbibed liquid inside the gel inaccessible for a solute of radius r. The pore-size distributions were obtained by using Casassa`s Brownian-motion model and numerically solving the Fredholm integral equation. The pore-size distributions of temperature-sensitive NIPA hydrogels are strongly dependent on temperature which determines swelling capacity. With increasing swelling capacity (from 6.0 to 11.3), the pore-size distribution shifts to higher mode values (27.3 to 50.6 {angstrom}) and to higher variance (1.07{center_dot}10{sup 3} to 3.58{center_dot}10{sup 3} {angstrom}{sup 2}).

  7. Nanoporous carbide-derived carbons with tunable pore size

    NASA Astrophysics Data System (ADS)

    Fischer, John; Zhou, Wei; Gogotsi, Yury; Nikitin, Alexei; Ye, Haihui; Barsoum, Michel; Yi, Bo; Foley, Henry

    2004-03-01

    Major efforts in porous materials have been directed toward control of pore size, shape and uniformity. Here we demonstrate that porosity of carbide-derived carbons (CDCs) can be tuned with sub-Å accuracy in a wide range by controlling the chlorination temperature. CDCs have narrow pore size distributions, comparable to zeolites and much narrower than single-wall carbon nanotubes or activated carbons. Furthermore, mean pore diameters in the range 0.5 - 0.8 nm are obtained by dechlorination of Ti3SiC2 at temperatures from 300-1200 °C [1], suggesting possible application as a novel H2 storage material. Pore size distributions measured by Ar adsorption, Ch3Cl adsorption and small-angle x-ray scattering are in good agreement [1]. We introduce neutron prompt gamma activation analysis as a hydrogen-specific probe of storage capacity which can also be applied to in situ measurements of adsorption and desorption energies and kinetics. [1]. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Ye, H. Foley and M. Barsoum, Nature Materials 2, 591(2003).

  8. Simple thermal treatment for the size control of pore arrays in a polystyrene colloidal crystal films

    NASA Astrophysics Data System (ADS)

    Jamiolkowski, Ryan M.; Fiorenza, Shane A.; Chen, Kevin; Tate, Alyssa M.; Pfeil, Shawn H.; Goldman, Yale E.

    Nanosphere Lithography (NSL) offers an attractive route to fabricating periodic structures with nanoscale features, without e-beam or deep UV lithography. In particular, it is uniquely suited to the low cost fabrication of large repeated arrays pores or pillars created by taking advantage of the interstitial spaces in close-packed monolayers of nano to micro-scale beads. However pore size, shape, and spacing cannot be controlled independently. We present both a robust method for producing large, approximately 1 cm2, hexagonally close packed monolayer films of 1 micron diameter polystyrene beads on glass substrates, and thermal treatment of these films near the glass temperature, Tg, of polystyrene to modify the pore size. This builds on earlier work showing that pore size can be modified for colloidal crystals formed at a liquid gas interface [2]. These processes promise a simple, reproducible, and low cost route to periodic pore arrays for nano-photonic applications such as zero mode waveguides (ZMWs) Funding: F30 AI114187 (RMJ), R01-GM080376 (YEG).

  9. Robust depth filter sizing for centrate clarification.

    PubMed

    Lutz, Herb; Chefer, Kate; Felo, Michael; Cacace, Benjamin; Hove, Sarah; Wang, Bin; Blanchard, Mark; Oulundsen, George; Piper, Rob; Zhao, Xiaoyang

    2015-01-01

    Cellulosic depth filters embedded with diatomaceous earth are widely used to remove colloidal cell debris from centrate as a secondary clarification step during the harvest of mammalian cell culture fluid. The high cost associated with process failure in a GMP (Good Manufacturing Practice) environment highlights the need for a robust process scale depth filter sizing that allows for (1) stochastic batch-to-batch variations from filter media, bioreactor feed and operation, and (2) systematic scaling differences in average performance between filter sizes and formats. Matched-lot depth filter media tested at the same conditions with consecutive batches of the same molecule were used to assess the sources and magnitudes of process variability. Depth filter sizing safety factors of 1.2-1.6 allow a filtration process to compensate for random batch-to-batch process variations. Matched-lot depth filter media in four different devices tested simultaneously at the same conditions was used with a common feed to assess scaling effects. All filter devices showed <11% capacity difference and the Pod format devices showed no statistically different capacity differences. PMID:26518411

  10. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells.

    PubMed

    Huri, Pinar Yilgor; Ozilgen, B Arda; Hutton, Daphne L; Grayson, Warren L

    2014-08-01

    Trabecular bone has an interconnected porous structure, which influences cellular responses, biochemical transport and mechanical strength. Appropriately mimicking this structural organization in biomaterial scaffolds can facilitate more robust bone tissue regeneration and integration by providing a native microenvironment to the cells. This study examined the effect of pore size on human adipose-derived stem/stromal cell (ASC) osteogenesis within poly(ε-caprolactone) (PCL) scaffolds. Scaffold pore size was controlled by porogen leaching of custom-made paraffin particles with three different size ranges: P200 (< 500 µm), P500 (500-1000 µm), and P1000 (1000-1500 µm). Scaffolds produced by leaching these particles exhibited highly interconnected pores and rough surface structures that were favorable for cell attachment and ingrowth. The osteogenic response of ASCs was evaluated following 3 weeks of in vitro culture using biochemical (ALP, Ca(2+)/DNA content), mechanical (compression test) and histological (H&E and von Kossa staining) analyses. It was observed that while the total number of cells was similar for all scaffolds, the cell distributions and osteogenic properties were affected by the scaffold pore size. ASCs were able to bridge smaller pores and grow uniformly within these scaffolds (P200) while they grew as a layer along the periphery of the largest pores (P1000). The cell-biomaterial interactions specific to the latter case led to enhanced osteogenic responses. The ALP activity and Ca(2+) deposition were doubled in P1000 scaffolds as compared to P200 scaffolds. A significant difference was observed between the compressive strength of unseeded and seeded P1000 scaffolds. Therefore, we demonstrated that the use of scaffolds with pores that are in the range of 1 mm enhances in vitro ASC osteogenesis, which may improve their performance in engineered bone substitutes. PMID:24945873

  11. Bovine Serum Albumin Adsorption in Mesoporous Titanium Dioxide: Pore Size and Pore Chemistry Effect.

    PubMed

    Liu, Chang; Guo, Yanhua; Hong, Qiliang; Rao, Chao; Zhang, Haijuan; Dong, Yihui; Huang, Liangliang; Lu, Xiaohua; Bao, Ningzhong

    2016-04-26

    Understanding the mechanism of protein adsorption and designing materials with high sensitivity, high specificity and fast response are critical to develop the next-generation biosensing and diagnostic platforms. Mesoporous materials with high surface area, tunable pores, and good thermal/hydrostatic stabilities are promising candidates in this field. Because of the excellent biocompatibility, titanium dioxide has received an increasing interest in the past decade for biomedical applications. In this work, we synthesized mesoporous titanium dioxide with controlled pore sizes (7.2-28.0 nm) and explored their application for bovine serum albumin (BSA) adsorption. Scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption experiments were performed to characterize the mesoporous TiO2 samples before and after BSA adsorption. Isothermal microcalorimetry was applied to measure both the adsorption heat and conformation rearrangement heat of BSA in those mesopores. We also carried out thermogravimetry measurements to qualitatively estimate the concentration of hydroxyl groups, which plays an important role in stabilizing BSA in-pore adsorption. The adsorption stability was also examined by leaching experiments. The results showed that TiO2 mesopores can host BSA adsorption when their diameters are larger than the hydrodynamic size of BSA (∼9.5 nm). In larger mesopores studied, two BSA molecules were adsorbed in the same pores. In contrast to the general understanding that large mesopores demonstrate poor stabilities for protein adsorptions, the synthesized mesoporous TiO2 samples demonstrated good leaching stabilities for BSA adsorption. This is probably due to the combination of the mesoporous confinement and the in-pore hydroxyl groups. PMID:27048991

  12. Optical transmission spectra of porous aluminamembranes with different pore size

    NASA Astrophysics Data System (ADS)

    Matyushkin, L. B.; Muratova, E. N.; Spivak, J. M.; Shimanova, V. V.; Korlyakova, S. A.; Moshnikov, V. A.

    2014-12-01

    Membranes of nanoporous aluminum oxide (alumina) have been obtained using the electrochemical etching technique by varying technological regimes. The surface morphology and cleavages of obtained experimental samples are studied using scanning electron microscopy (SEM). The optical transmission measurements were performed on a spectrophotometer in the wavelength range of 190-1000 nm. It is possible to determine the average size and the dispersion of the pore diameter by UV- visible transmittance spectrum measuring.

  13. Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes

    PubMed Central

    Wang, Limin; Lu, Steven; Lam, Johnny; Kasper, F. Kurtis

    2015-01-01

    In this work, we investigated a cytocompatible particulate leaching method for the fabrication of cell-laden macroporous hydrogels. We used dehydrated and uncrosslinked gelatin microspheres as leachable porogens to create macroporous oligo(poly(ethylene glycol) fumarate) hydrogels. Varying gelatin content and size resulted in a wide range of porosities and pore sizes, respectively. Encapsulated mesenchymal stem cells (MSCs) exhibited high viability immediately following the fabrication process, and culture of cell-laden hydrogels revealed improved cell viability with increasing porosity. Additionally, the osteogenic potential of the encapsulated MSCs was evaluated over 16 days. Overall, this study presents a robust method for the preparation of cell-laden macroporous hydrogels with desired porosity and pore size for tissue engineering applications. PMID:25156274

  14. Pore size analysis of activated carbons from argon and nitrogen porosimetry using density functional theory

    SciTech Connect

    Dombrowski, R.J.; Hyduke, D.R.; Lastoskie, C.M.

    2000-05-30

    The authors present isotherms calculated from density functional theory for the adsorption of argon in model slit-shaped carbon pores at 77 K. The model isotherms are used to interpret experimental argon uptake measurements and to obtain the pore size distributions of several porous carbons. A similar set of density measurements and to obtain the pore size distributions of several porous carbons. A similar set of density functional theory isotherms, previously reported for nitrogen adsorption on carbon slit pores at 77 K, are used to determine pore size distributions for the same set of carbons. The pore size distribution maxima, mean pore widths, and specific pore volumes measured using the two different probe gases are all found to agree to within approximately 8% on average. Some of the differences in the pore size distributions obtained from argon and nitrogen porosimetry may be attributable to quadrupolar interactions of the nitrogen molecules with functional groups on the carbon surface.

  15. Evolution of pore size distribution during sintering of oxide nuclear fuel

    NASA Astrophysics Data System (ADS)

    Baranov, V. G.; Devyatko, Y. N.; Tenishev, A. V.; Mikhalchik, V. V.; Khomyakov, O. V.

    2016-04-01

    Uranium dioxide pellets were sintered at various temperature routes and atmospheres with different oxygen content. Statistically calculated pore size distribution of the sintered pellets and distribution function was obtained. It is shown that the average pore size is almost unchanged at intermediate stage of sintering while the total number of pores reduced.

  16. Robustness of size measurement in soft corals

    NASA Astrophysics Data System (ADS)

    Hellström, M.; Benzie, J. A. H.

    2011-09-01

    Accurate colony size measurement in soft-bodied sessile aquatic invertebrates is more difficult than in hard corals because of the variable state of the hydroskeleton in the former. The present study examined variation in colony height, oral disc diameter and basal circumference in three species of soft coral of different morphological types ( Sarcophyton elegans, Sinularia flexibilis and Dendronephthya sp.) over a 24-h period. Individual colonies changed considerably in size over this period. Coefficients of variation for height measurements and oral disc were 0.09-0.36 and 0.08-0.28, respectively, but were only 0.02-0.09 for basal circumference, in all three species. Measurements of basal circumference in the field showed the highest correlation with colony biomass (volume after water displacement in formalin) confirming basal circumference to be a sound measure of colony size in repeated measurement studies.

  17. Meristem size contributes to the robustness of phyllotaxis in Arabidopsis

    PubMed Central

    Landrein, Benoit; Refahi, Yassin; Besnard, Fabrice; Hervieux, Nathan; Mirabet, Vincent; Boudaoud, Arezki; Vernoux, Teva; Hamant, Olivier

    2015-01-01

    Using the plant model Arabidopsis, the relationship between day length, the size of the shoot apical meristem, and the robustness of phyllotactic patterns were analysed. First, it was found that reducing day length leads to an increased meristem size and an increased number of alterations in the final positions of organs along the stem. Most of the phyllotactic defects could be related to an altered tempo of organ emergence, while not affecting the spatial positions of organ initiations at the meristem. A correlation was also found between meristem size and the robustness of phyllotaxis in two accessions (Col-0 and WS-4) and a mutant (clasp-1), independent of growth conditions. A reduced meristem size in clasp-1 was even associated with an increased robustness of the phyllotactic pattern, beyond what is observed in the wild type. Interestingly it was also possible to modulate the robustness of phyllotaxis in these different genotypes by changing day length. To conclude, it is shown first that robustness of the phyllotactic pattern is not maximal in the wild type, suggesting that, beyond its apparent stereotypical order, the robustness of phyllotaxis is regulated. Secondly, a role for day length in the robustness of the phyllotaxis was also identified, thus providing a new example of a link between patterning and environment in plants. Thirdly, the experimental results validate previous model predictions suggesting a contribution of meristem size in the robustness of phyllotaxis via the coupling between the temporal sequence and spatial pattern of organ initiations. PMID:25504644

  18. Pore size and pore throat types in a heterogeneous dolostone reservoir, Devonian Grosmont formation, western Canada sedimentary basin

    SciTech Connect

    Luo, P.; Machel, H. G.

    1995-11-01

    The Devonian Grosmont Formation in northeastern Alberta, Canada, is a giant heavy-oil reservoir. The main reservoir rocks are dolomitized and karstified platform and ramp carbonates, and the best reservoir facies occur in the upper Grosmont (UGM) units 3 and 2. In these units, reservoir properties are highly heterogeneous. Hand specimen, thin section, UV, and SEM petrography, as well as grading scales, mercury capillary pressure curve analysis, and statistics, have been used to characterize reservoir heterogeneity. Our investigation led to a new pore size classification for carbonate reservoirs; this new classification has four pore sizes: microporosity (pore diameters <1 {mu}m), mesoporosity (pore diameters 1-1000 {mu}m), macroporosity (pore diameters 1-256 mm), and megaporosity (pore diameters >256 mm). A combination of microscopic observations and capillary pressure curve characteristics led to the recognition of four pore throat texture types on the microporosity scale, and to five types on the mesoporosity scale. Microporosity pore types include (1) intracrystal dissolution porosity, (2) pervasive intercrystal and intracrystal dissolution porosity, (3) intergranular and/or intercrystal porosity in grainstones, and (4) primary or solution microporosity in mud matrix (only in limestones). Mesoporosity pore types include (1) intercrystal porosity, (2) solution-enhanced intercrystal porosity, (3) oversized porosity, (4) intragranular solution porosity, and (5) intergranular solution porosity. Some of these types are homogeneous (e.g., non-fabric selective dissolution porosity and intercrystal primary porosity), whereas others are heterogeneous. Generally, hydrocarbon recovery efficiency is good in the homogeneous pore throat types, but poor in the heterogeneous types.

  19. Idealized Shale Sorption Isotherm Measurements to Determine Pore Volume, Pore Size Distribution, and Surface Area

    NASA Astrophysics Data System (ADS)

    Holmes, R.; Wang, B.; Aljama, H.; Rupp, E.; Wilcox, J.

    2014-12-01

    One method for mitigating the impacts of anthropogenic CO2-related climate change is the sequestration of CO2 in depleted gas and oil reservoirs, including shale. The accurate characterization of the heterogeneous material properties of shale, including pore volume, surface area, pore size distributions (PSDs) and composition is needed to understand the interaction of CO2 with shale. Idealized powdered shale sorption isotherms were created by varying incremental amounts of four essential components by weight. The first two components, organic carbon and clay, have been shown to be the most important components for CO2 uptake in shales. Organic carbon was represented by kerogen isolated from a Silurian shale, and clay groups were represented by illite from the Green River shale formation. The rest of the idealized shale was composed of equal parts by weight of SiO2 to represent quartz and CaCO3 to represent carbonate components. Baltic, Eagle Ford, and Barnett shale sorption measurements were used to validate the idealized samples. The idealized and validation shale sorption isotherms were measured volumetrically using low pressure N2 (77K) and CO2 (273K) adsorbates on a Quantachrome Autosorb IQ2. Gravimetric isotherms were also produced for a subset of these samples using CO2 and CH4adsorbates under subsurface temperature and pressure conditions using a Rubotherm magnetic suspension balance. Preliminary analyses were inconclusive in validating the idealized samples. This could be a result of conflicting reports of total organic carbon (TOC) content in each sample, a problem stemming from the heterogeneity of the samples and different techniques used for measuring TOC content. The TOC content of the validation samples (Eagle Ford and Barnett) was measured by Rock-Eval pyrolysis at Weatherford Laboratories, while the TOC content in the Baltic validation samples was determined by LECO TOC. Development of a uniform process for measuring TOC in the validation samples is

  20. Unified method for the total pore volume and pore size distribution of hierarchical zeolites from argon adsorption and mercury intrusion.

    PubMed

    Kenvin, Jeffrey; Jagiello, Jacek; Mitchell, Sharon; Pérez-Ramírez, Javier

    2015-02-01

    A generalized approach to determine the complete distribution of macropores, mesopores, and micropores from argon adsorption and mercury porosimetry is developed and validated for advanced zeolite catalysts with hierarchically structured pore systems in powder and shaped forms. Rather than using a fragmented approach of simple overlays from individual techniques, a unified approach that utilizes a kernel constructed from model isotherms and model intrusion curves is used to calculate the complete pore size distribution and the total pore volume of the material. An added benefit of a single full-range pore size distribution is that the cumulative pore area and the area distribution are also obtained without the need for additional modeling. The resulting complete pore size distribution and the kernel accurately model both the adsorption isotherm and the mercury porosimetry. By bridging the data analysis of two primary characterization tools, this methodology fills an existing gap in the library of familiar methods for porosity assessment in the design of materials with multilevel porosity for novel technological applications. PMID:25603366

  1. Prediction of Hydraulic Conductivity as Related to Pore Size Distribution in Unsaturated Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil pore volume as well as pore size, shape, type (i.e. biopore versus crack), continuity, and distribution in soil affect soil water and gas exchange. Vertical and lateral drainage of water by gravitational forces occurs through large, non-capillary soil pores, but redistribution and upward moveme...

  2. Pore size distribution of shaley rock by small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Hall, P. L.; Mildner, D. F. R.; Borst, R. L.

    1983-08-01

    Information concerning pore microstructure of shaly rocks is of considerable relevance to petroleum exploration and production. Pore sizes and distributions within shaly samples have been determined by small angle neutron scattering. The data are indicative of a considerable spread of pore dimension, showing inhomogeneities with a range from 20 Å and greater. The cumulative pore volumes are compared with those derived from mercury intrusion porosimetry and nitrogen adsorption and desorption isotherms.

  3. Pore size distribution of shaly rock by small angle neutron scattering

    SciTech Connect

    Hall, P.L.; Mildner, D.F.R.; Borst, R.L.

    1983-08-01

    Information concerning pore microstructure of shaly rocks is of considerable relevance to petroleum exploration and production. Pore sizes and distributions within shaly samples have been determined by small angle neutron scattering. The data are indicative of a considerable spread of pore dimension, showing inhomogeneities with a range from 20 A and greater. The cumulative pore volumes are compared with those derived from mercury intrusion porosimetry and nitrogen adsorption and desorption isotherms.

  4. Modelling mass transport through a porous partition: Effect of pore size distribution

    NASA Astrophysics Data System (ADS)

    Khayet, Mohamed; Velázquez, Armando; Mengual, Juan I.

    2004-09-01

    Direct contact membrane distillation process has been studied using microporous polytetrafluoroethylene and polyvinylidene fluoride membranes. The membranes were characterized in terms of their non-wettability, pore size distribution and porosity. The mean pore sizes and pore size distributions were obtained by means of wet/dry flow method. The mean pore size and the effective porosity of the membranes were also determined from the gas permeation test. A theoretical model that considers the pore size distribution together with the gas transport mechanisms through the membrane pores was developed for this process. The contribution of each mass transport mechanism was analyzed. It was found that both membranes have pore size distributions in the Knudsen region and in the transition between Knudsen and ordinary diffusion region. The transition region was the major contribution to mass transport. The predicted water vapor permeability of the membranes were compared with the experimental ones. The effect of considering pore size distribution instead of mean pore size to predict the water vapor permeability of the membranes was investigated.

  5. Two micron pore size MCP-based image intensifiers

    NASA Astrophysics Data System (ADS)

    Glesener, John; Estrera, Joseph

    2010-02-01

    Image intensifiers (I2) have many advantages as detectors. They offer single photon sensitivity in an imaging format, they're light in weight and analog I2 systems can operate for hours on a single AA battery. Their light output is such as to exploit the peak in color sensitivity of the human eye. Until recent developments in CMOS sensors, they also were one of the highest resolution sensors available. The closest all solid state solution, the Texas Instruments Impactron chip, comes in a 1 megapixel format. Depending on the level of integration, an Impactron based system can consume 20 to 40 watts in a system configuration. In further investing in I2 technology, L-3 EOS determined that increasing I2 resolution merited a high priority. Increased I2 resolution offers the system user two desirable options: 1) increased detection and identification ranges while maintaining field-of-view (FOV) or 2) increasing FOV while maintaining the original system resolution. One of the areas where an investment in resolution is being made is in the microchannel plate (MCP). Incorporation of a 2 micron MCP into an image tube has the potential of increasing the system resolution of currently fielded systems. Both inverting and non-inverting configurations are being evaluated. Inverting tubes are being characterized in night vision goggle (NVG) and sights. The non-inverting 2 micron tube is being characterized for high resolution I2CMOS camera applications. Preliminary measurements show an increase in the MTF over a standard 5 micron pore size, 6 micron pitch plate. Current results will be presented.

  6. Nano-pore size and porosity study by means of Nuclear Magnetic Resonance and Positronium Annihilation Lifetime

    NASA Astrophysics Data System (ADS)

    Chesta, M. A.; Ramia, M. E.; Jeandrevin, S.; Martín, C. A.

    2009-11-01

    The present work involves a comprehensive experimental determination of porosity and pore size distribution in rocks from oil fields formations by deuterium (2H) Nuclear Magnetic Resonance (NMR) and Positronium Annihilation Lifetime Spectroscopy (PALS). Both techniques yield complementary results; PALS measures the average pore size providing bulk information from which the most abundant pore size can be obtained, and NMR allows for the determination of the relative pore size distribution accurately. Both techniques give complementary information to obtain an absolute pore size distribution.

  7. A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes

    NASA Technical Reports Server (NTRS)

    Sarbolouki, M. N.

    1982-01-01

    A slit sieve model has been used to develop a general correlation between the average pore size of the upstream surface of a membrane and the molecular weight of the solute which it retains by better than 80%. The pore size is determined by means of the correlation using the high retention data from an ultrafiltration (UF) or a reverse osmosis (RO) experiment. The pore population density can also be calculated from the flux data via appropriate equations.

  8. A framework for quantifying size dependent deformation of nano-scale pores in mudrocks

    NASA Astrophysics Data System (ADS)

    Emmanuel, Simon; Day-Stirrat, Ruarri J.

    2012-11-01

    The evolution of pore size distributions during sediment consolidation controls critical parameters such as porosity and permeability. Two phenomenological models are developed that describe the evolution of pore size distributions during stress induced consolidation. The first model predicts the evolution of pores subjected to an applied stress for systems in which all pores deform equally irrespective of size; in the second model, the rate of pore deformation decreases with size (i.e., smaller pores deform less readily than larger ones). To determine which model best describes the behavior of clay-rich rocks during consolidation, cumulative void volume curves from consolidation experiments carried out on Boston Blue Clay are compared with results from numerical simulations. While the uniform deformation model is able produce a good fit during the initial stage of the consolidation (0.1-1 MPa), it is unable to capture system behavior at elevated stresses (1-10 MPa). By contrast, the size dependent deformation model produces excellent fits with the data at both initial and later stages of consolidation. Furthermore, the model shows that size dependent behavior is restricted to pores with radii of < 100 nm; significantly, small pores may be up to 47% less compressible than large pores. Crucially, by comparing sediments from different burial depths but possessing similar mineralogical compositions, the framework can be used to assess the behavior of natural sediments under geological conditions.

  9. The Effect of Mineralization on Pore-size Distribution Patterns in Sandstone

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Ague, J. J.

    2008-12-01

    In geological media, pore-size distributions can strongly influence important physical parameters such as permeability and specific surface area. Mineralization in rock and soil often reduces the overall porosity and can also induce changes in the distribution of pore sizes. However, the way in which mineralization affects pore size is poorly understood, with relatively little data available from field-based studies. Here, we present a high-resolution profile of pore-size distributions from a variably mineralized sandstone section. The samples were obtained from a Barents Sea core in which quartz cement had preferentially precipitated around stylolite (pressure solution) interfaces; pore-size distributions were measured in 15 samples using mercury injection porosimetry. The results demonstrate that mineralization led to a reduction in porosity of around 40% in samples closest to the stylolite. However, this reduction was not uniform over the range of pore-sizes: the greatest level of porosity reduction occurred in the 10-5-10-4 m size range, while there was no discernible change in the porosity associated with smaller pores. A reactive transport model - simulating the dissolution of quartz at the stylolite interface and subsequent reprecipitation in the rock matrix - was used to predict the evolution of the porosity associated with multiple pore-sizes; the model was successfully able to reproduce the observed porosity patterns, indicating that such an approach could be integrated into efforts to model the evolution of porosity in geological formations, including during CO2 sequestration.

  10. Anomalous cyclic voltammetric response from pores smaller than ion size by voltage-induced force.

    PubMed

    Yang, Cheol-Min; Jung, Hwan Jung; Kim, Yong Jung

    2015-05-15

    Nanoporous carbons, with different micropore size distributions, were prepared based on waste coffee grounds by a chemical activation process in order to elucidate the correlation between desolvated ions and pores smaller than the sizes of ions using an organic electrolyte. The pore structure of the coffee-based nanoporous carbon was strongly dependent on the heat-treatment temperature prior to the activation process. Cyclic voltammograms of the nanoporous carbons mainly dominated by the smaller pore relative to that of the bare ion size clearly showed deviation from an ideal feature of the current response. It was clearly envisaged that even a bare ion of a size larger than the pore size can penetrate into the pore by voltage-induced force. PMID:25668782

  11. Microporous polyphenylenes with tunable pore size for hydrogen storage.

    SciTech Connect

    Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. J.; Univ. of Chicago

    2010-01-01

    A series of highly porous polymers with similar BET surface areas of higher than 1000 m2 g-1 but tunable pore ranging from 0.7 nm to 0.9 nm were synthesized through facile ethynyl trimerization reaction to demonstrate the surface property-hydrogen adsorption relationship.

  12. Structure-Assisted Functional Anchor Implantation in Robust Metal-Organic Frameworks with Ultra large Pores

    SciTech Connect

    Park, J; Feng, DW; Zhou, HC

    2015-02-04

    A facile functionalization assisted by the structural attributes of PCN-333 has been studied while maintaining the integrity of the parent MOF including ultralarge pores, chemical robustness, and crystallinity. Herein we thoroughly analyzed ligand exchange phenomena in PCN-333 and demonstrate that the extent of exchange can be tailored by varying the exchange conditions as potential applications may require. Through this method a variety of functional groups are incorporated into PCN-333. To further show the capabilities of this system introduction of a BODIPY fluorophore as a secondary functionality was performed to the functionalized framework via a click reaction. We anticipate the PCN-333 with functional anchor can serve as a stable platform for further chemistry to be explored in future applications

  13. Structure-Assisted Functional Anchor Implantation in Robust Metal–Organic Frameworks with Ultralarge Pores

    SciTech Connect

    Park, Jihye; Feng, Dawei; Zhou, Hong-Cai

    2015-02-04

    A facile functionalization assisted by the structural attributes of PCN-333 has been studied while maintaining the integrity of the parent MOF including ultralarge pores, chemical robustness, and crystallinity. Herein we thoroughly analyzed ligand exchange phenomena in PCN-333 and demonstrate that the extent of exchange can be tailored by varying the exchange conditions as potential applications may require. Through this method a variety of functional groups are incorporated into PCN-333. To further show the capabilities of this system introduction of a BODIPY fluorophore as a secondary functionality was performed to the functionalized framework via a click reaction. We anticipate the PCN-333 with functional anchor can serve as a stable platform for further chemistry to be explored in future applications.

  14. Adjustable virtual pore-size filter for automated sample preparation using acoustic radiation force

    SciTech Connect

    Jung, B; Fisher, K; Ness, K; Rose, K; Mariella, R

    2008-05-22

    We present a rapid and robust size-based separation method for high throughput microfluidic devices using acoustic radiation force. We developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. Here we compare the results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. We demonstrated the separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing. The acoustic radiation force did not affect the MS2 viruses, and their concentration profile remained unchanged. With optimized design of our microfluidic flow system we were able to achieve yields of > 90% for the MS2 with > 80% of the S. cerevisiae being removed in this continuous-flow sample preparation device.

  15. Pore size distribution, strength, and microstructure of portland cement paste containing metal hydroxide waste

    SciTech Connect

    Majid, Z.A.; Mahmud, H.; Shaaban, M.G.

    1996-12-31

    Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} for a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.

  16. Effect on the Pore-Size Dependence of an Organic Electrolyte Supercapacitor

    SciTech Connect

    Jiang, Deen; Jin, Zhehui; Henderson, Douglous; Wu, Jianzhong

    2012-01-01

    Organic electrolytes such as tetraethylammonium tetrafluoroborate dissolved in acetonitrile (TEA-BF{sub 4}/ACN) are widely used in commercial supercapacitors and academic research, but conflicting experimental results have been reported regarding the dependence of surface-area-normalized capacitance on the pore size. Here we show from a classical density functional theory the dependence of capacitance on the pore size from 0.5 to 3.0 nm for a model TEA-BF{sub 4}/ACN electrolyte. We find that the capacitance-pore size curve becomes roughly flat after the first peak around the ion diameter, and the peak capacitance is not significantly higher than the large-pore average. We attribute the invariance of capacitance with the pore size to the formation of an electric double-layer structure that consists of counterions and highly organized solvent molecules. This work highlights the role of the solvent molecules in modulating the capacitance and reconciles apparently conflicting experimental reports.

  17. Evaluation of methods for determining the pore size distribution and pore-network connectivity of porous carbons.

    PubMed

    Cai, Q; Buts, A; Biggs, M J; Seaton, N A

    2007-07-31

    The pore size distribution (PSD) and the pore-network connectivity of a porous material determine its properties in applications such as gas storage, adsorptive separations, and catalysis. Methods for the characterization of the pore structure of porous carbons are widely used, but the relationship between the structural parameters measured and the real structure of the material is not yet clear. We have evaluated two widely used and powerful characterization methods based on adsorption measurements by applying the methods to a model carbon which captures the essential characteristics of real carbons but (unlike a real material) has a structure that is completely known. We used three species (CH4, CF4, and SF6) as adsorptives and analyzed the results using an intersecting capillaries model (ICM) which was modeled using a combination of Monte Carlo simulation and percolation theory to obtain the PSD and the pore-network connectivity. There was broad agreement between the PSDs measured using the ICM and the geometric PSD of the model carbon, as well as some systematic differences which are interpreted in terms of the pore structure of the carbon. The measured PSD and connectivity are shown to be able to predict adsorption in the model carbon, supporting the use of the ICM to characterize real porous carbons. PMID:17602506

  18. Construction of Nuclear Envelope Shape by a High-Genus Vesicle with Pore-Size Constraint.

    PubMed

    Noguchi, Hiroshi

    2016-08-23

    Nuclear pores have an approximately uniform distribution in the nuclear envelope of most living cells. Hence, the morphology of the nuclear envelope is a spherical stomatocyte with a high genus. We have investigated the morphology of high-genus vesicles under pore-size constraint using dynamically triangulated membrane simulations. Bending-energy minimization without volume or other constraints produces a circular-cage stomatocyte, where the pores are aligned in a circular line on an oblate bud. As the pore radius is reduced, the circular-pore alignment is more stabilized than a random pore distribution on a spherical bud. However, we have clarified the conditions for the formation of a spherical stomatocyte: a small perinuclear volume, osmotic pressure within nucleoplasm, and repulsion between the pores. When area-difference elasticity is taken into account, the formation of cylindrical or budded tubules from the stomatocyte and discoidal stomatocyte is found. PMID:27558725

  19. Micron-pore-sized metallic filter tube membranes for filtration of particulates and water purification

    SciTech Connect

    Phelps, Tommy Joe; Palumbo, Anthony Vito; Fagan, Lisa Anne; Bischoff, Brian L; Miller, Curtis Jack; Drake, Meghan M; Judkins, Roddie Reagan

    2008-01-01

    Robust filtering techniques capable of efficiently removing particulates and biological agents from water or air suffer from plugging, poor rejuvenation, low permeance, and high backpressure. Operational characteristics of pressure-driven separations are in part controlled by the membrane pore size, charge of particulates, transmembrane pressure and the requirement for sufficient water flux to overcome fouling. With long term use filters decline in permeance due to filter-cake plugging of pores, fouling, or filter deterioration. Though metallic filter tube development at ORNL has focused almost exclusively on gas separations, a small study examined the applicability of these membranes for tangential filtering of aqueous suspensions of bacterial-sized particles. A mixture of fluorescent polystyrene microspheres ranging in size from 0.5 to 6 {micro}m in diameter simulated microorganisms in filtration studies. Compared to a commercial filter, the ORNL 0.6 {micro}m filter averaged approximately 10-fold greater filtration efficiency of the small particles, several-fold greater permeance after considerable use and it returned to approximately 85% of the initial flow upon backflushing versus 30% for the commercial filter. After filtering several liters of the particle-containing suspension, the ORNL composite filter still exhibited greater than 50% of its initial permeance while the commercial filter had decreased to less than 20%. When considering a greater filtration efficiency, greater permeance per unit mass, greater percentage of rejuvenation upon backflushing (up to 3-fold), and likely greater performance with extended use, the ORNL 0.6 {micro}m filters can potentially outperform the commercial filter by factors of 100-1000 fold.

  20. Determination of the pore size distribution and hydraulic properties from Nuclear Magnetic Resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura R.; Weihermüller, Lutz; Haber-Pohlmeier, Sabina; Stapf, Siegfried; Vereecken, Harry; Pohlmeier, Andreas

    2010-05-01

    Known pore size distributions can be directly linked to the water retention characteristic which is essential for the prognosis of water and solute movement through the material. In our study, we evaluated the feasibility to use Nuclear Magnetic Resonance (NMR) relaxometry measurements for the characterization of pore size distribution in four porous samples with different texture and composition. Therefore, NMR T2 and T1 relaxation measurements at 6.47 MHz were carried out for three model samples (medium sand; fine sand; and a homogenous sand / kaolin clay mixture) and a natural soil. To quantify the goodness of the approach, the NMR measurements were compared in terms of cumulated pore size distribution functions and mean pore diameter with the two classical techniques based on water retention and mercury porosimetry measurements. The results showed that T1 and T2 derived mean pore size diameters are in good agreement with each other but deviate from retention curve derived ones. This is especially the case for well sorted sands with n values > 2.7. For finer materials differences are less pronounced. A short study was performed to evaluate the influence of the variations observed in the pore diameter distributions on the hydraulic properties of the samples: θS, α, and n. In conclusion, NMR T1 and T2 relaxation measurements can be used to estimate pore size distribution, mean pore diameter, as well as the retention function and corresponding hydraulic properties.

  1. Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size

    SciTech Connect

    Culp, J.T.; Natesakhawat, Sittichai; Smith, M.R.; Bittner, E.; Matranga, C.S.; Bockrath, B.

    2008-05-01

    The effects of pore size on the hydrogen storage properties of a series of pillared layered solids based on the M(L)[M'(CN)4] structural motif, where M ) Co or Ni, L ) pyrazine (pyz), 4,4'-bipyridine (bpy), or 4,4'-dipyridylacetylene (dpac), and M' ) Ni, Pd, or Pt, has been investigated. The compounds all possess slitlike pores with constant in-plane dimensions and similar organic functionality. The pore heights vary as a function of L and provide a means for a systematic investigation of the effects of pore dimension on hydrogen storage properties in porous materials. Hydrogen isotherms were measured at 77 and 87 K up to a pressure of 1 atm. The pyz pillared materials with the smallest pore dimensions store hydrogen at a pore density similar to that of liquid hydrogen. The adsorbed hydrogen density drops by a factor of 2 as the relative pore size is tripled in the dpac material. The decreased storage efficiency diminishes the expected gravimetric gain in capacity for the larger pore materials. The heats of adsorption were found to range from 6 to 8 kJ/mol in the series and weakly correlate with pore size.

  2. Optimal flexible sample size design with robust power.

    PubMed

    Zhang, Lanju; Cui, Lu; Yang, Bo

    2016-08-30

    It is well recognized that sample size determination is challenging because of the uncertainty on the treatment effect size. Several remedies are available in the literature. Group sequential designs start with a sample size based on a conservative (smaller) effect size and allow early stop at interim looks. Sample size re-estimation designs start with a sample size based on an optimistic (larger) effect size and allow sample size increase if the observed effect size is smaller than planned. Different opinions favoring one type over the other exist. We propose an optimal approach using an appropriate optimality criterion to select the best design among all the candidate designs. Our results show that (1) for the same type of designs, for example, group sequential designs, there is room for significant improvement through our optimization approach; (2) optimal promising zone designs appear to have no advantages over optimal group sequential designs; and (3) optimal designs with sample size re-estimation deliver the best adaptive performance. We conclude that to deal with the challenge of sample size determination due to effect size uncertainty, an optimal approach can help to select the best design that provides most robust power across the effect size range of interest. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26999385

  3. Controlling internal pore sizes in bicontinuous polymeric nanospheres.

    PubMed

    McKenzie, Beulah E; Friedrich, Heiner; Wirix, Maarten J M; de Visser, Joël F; Monaghan, Olivia R; Bomans, Paul H H; Nudelman, Fabio; Holder, Simon J; Sommerdijk, Nico A J M

    2015-02-16

    Complex polymeric nanospheres were formed in water from comb-like amphiphilic block copolymers. Their internal morphology was determined by three-dimensional cryo-electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic-hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm. PMID:25640026

  4. Controlling Internal Pore Sizes in Bicontinuous Polymeric Nanospheres**

    PubMed Central

    McKenzie, Beulah E; Friedrich, Heiner; Wirix, Maarten J M; de Visser, Joël F; Monaghan, Olivia R; Bomans, Paul H H; Nudelman, Fabio; Holder, Simon J; Sommerdijk, Nico A J M

    2015-01-01

    Complex polymeric nanospheres were formed in water from comb-like amphiphilic block copolymers. Their internal morphology was determined by three-dimensional cryo-electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic–hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm. PMID:25640026

  5. Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking

    NASA Astrophysics Data System (ADS)

    Lindgren, Erik

    2014-12-01

    This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.

  6. Laser damage dependence on the size and concentration of precursor defects in KDP crystals: view through differently sized filter pores.

    PubMed

    Wang, Yueliang; Zhao, Yuanan; Xie, Xiaoyi; Hu, Guohang; Yang, Liujiang; Xu, Ziyuan; Shao, Jianda

    2016-04-01

    We investigate the laser-induced damage performance at 1064 nm of potassium dihydrogen phosphate (KDP) crystals grown using filters of different pore sizes. The aim is to explore a novel method for understanding laser-matter interactions with regard to physical parameters affecting the ability of damage precursors to initiate damage. By reducing the pore size of filters in continuous filtration growth, we can improve laser damage resistance. Furthermore, we develop a model based on a Gaussian distribution of precursor thresholds and heat transfer to obtain a size distribution of the precursor defects. Smaller size and/or lower concentration of precursor defects could lead to better damage resistance. PMID:27192280

  7. Method of making metal oxide ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  8. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  9. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials.

    PubMed

    Félix, V; Jannot, Y; Degiovanni, A

    2012-05-01

    Standard pore size determination methods such as mercury porosimetry, nitrogen sorption, microscopy, or x-ray tomography are not always applicable to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization is proposed. Indeed, the thermal conductivity of a highly porous and insulating medium is significantly dependent on the thermal conductivity of the interstitial gas that depends on both gas pressure and size of the considered pore (Knudsen effect). It is also possible to link the pore size with the thermal conductivity of the medium. Thermal conductivity measurements are realized on specimens placed in an enclosure where the air pressure is successively set to different values varying from 10(-1) to 10(5) Pa. Knowing the global porosity ratio, an effective thermal conductivity model for a two-phase air-solid material based on a combined serial-parallel model is established. Pore size distribution can be identified by minimizing the sum of the quadratic differences between measured values and modeled ones. The results of the estimation process are the volume fractions of the chosen ranges of pore size. In order to validate the method, measurements done on insulating materials are presented. The results are discussed and show that pore size distribution estimated by the proposed method is coherent. PMID:22667640

  10. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials

    NASA Astrophysics Data System (ADS)

    Félix, V.; Jannot, Y.; Degiovanni, A.

    2012-05-01

    Standard pore size determination methods such as mercury porosimetry, nitrogen sorption, microscopy, or x-ray tomography are not always applicable to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization is proposed. Indeed, the thermal conductivity of a highly porous and insulating medium is significantly dependent on the thermal conductivity of the interstitial gas that depends on both gas pressure and size of the considered pore (Knudsen effect). It is also possible to link the pore size with the thermal conductivity of the medium. Thermal conductivity measurements are realized on specimens placed in an enclosure where the air pressure is successively set to different values varying from 10-1 to 105 Pa. Knowing the global porosity ratio, an effective thermal conductivity model for a two-phase air-solid material based on a combined serial-parallel model is established. Pore size distribution can be identified by minimizing the sum of the quadratic differences between measured values and modeled ones. The results of the estimation process are the volume fractions of the chosen ranges of pore size. In order to validate the method, measurements done on insulating materials are presented. The results are discussed and show that pore size distribution estimated by the proposed method is coherent.

  11. A thermal porosimetry method to estimate pore size distribution in highly porous insulating materials

    SciTech Connect

    Felix, V.; Jannot, Y.; Degiovanni, A.

    2012-05-15

    Standard pore size determination methods such as mercury porosimetry, nitrogen sorption, microscopy, or x-ray tomography are not always applicable to highly porous, low density, and thus very fragile materials. For this kind of materials, a method based on thermal characterization is proposed. Indeed, the thermal conductivity of a highly porous and insulating medium is significantly dependent on the thermal conductivity of the interstitial gas that depends on both gas pressure and size of the considered pore (Knudsen effect). It is also possible to link the pore size with the thermal conductivity of the medium. Thermal conductivity measurements are realized on specimens placed in an enclosure where the air pressure is successively set to different values varying from 10{sup -1} to 10{sup 5} Pa. Knowing the global porosity ratio, an effective thermal conductivity model for a two-phase air-solid material based on a combined serial-parallel model is established. Pore size distribution can be identified by minimizing the sum of the quadratic differences between measured values and modeled ones. The results of the estimation process are the volume fractions of the chosen ranges of pore size. In order to validate the method, measurements done on insulating materials are presented. The results are discussed and show that pore size distribution estimated by the proposed method is coherent.

  12. Direct measurement of the critical pore size in a polymer membrane

    NASA Astrophysics Data System (ADS)

    Ilton, Mark; Dimaria, Christian; Dalnoki-Veress, Kari

    The formation of pores is an important process in cellular membranes. Here we use freestanding polymer films as model membranes to study the stability of nucleated pores. Polymer membranes with pores of varying size are patterned using a lithographic technique. The membranes are heated above their glass transition temperature to allow viscous flow to occur. Pores with a radius larger than a critical value grow, while pores smaller than the critical radius are observed to shrink and eventually close. Remarkably, holes that are close enough to the critical radius neither grow nor shrink, even though the film is in the melt state. A simple model which takes into account the energy cost of having additional surface area at the edge of a pore describes the experiments with no free parameters. Biological membranes have an additional energetic cost of forming a pore, which we mimic using a lamellar-forming diblock copolymer. Indeed, we find that the critical pore radius is increased when pore formation is frustrated by molecular architecture.

  13. Relation between pore size and the compressibility of a confined fluid

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Siderius, Daniel W.; Rasmussen, Christopher J.; Krekelberg, William P.; Shen, Vincent K.; Bernstein, Noam

    2015-11-01

    When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here, we report a simple relation between the pore size and isothermal compressibility of argon confined in such pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.

  14. Relation between pore size and the compressibility of a confined fluid

    SciTech Connect

    Gor, Gennady Y.; Siderius, Daniel W.; Krekelberg, William P.; Shen, Vincent K.; Rasmussen, Christopher J.; Bernstein, Noam

    2015-11-21

    When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here, we report a simple relation between the pore size and isothermal compressibility of argon confined in such pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments.

  15. Pores Formed by Baxα5 Relax to a Smaller Size and Keep at Equilibrium

    PubMed Central

    Fuertes, Gustavo; García-Sáez, Ana J.; Esteban-Martín, Santi; Giménez, Diana; Sánchez-Muñoz, Orlando L.; Schwille, Petra; Salgado, Jesús

    2010-01-01

    Pores made by amphipathic cationic peptides (e.g., antimicrobials and fragments of pore-forming proteins) are typically studied by examining the kinetics of vesicle leakage after peptide addition or obtaining structural measurements in reconstituted peptide-lipid systems. In the first case, the pores have been considered transient phenomena that allow the relaxation of the peptide-membrane system. In the second, they correspond to equilibrium structures at minimum free energy. Here we reconcile both approaches by investigating the pore activity of the α5 fragment from the proapoptotic protein Bax (Baxα5) before and after equilibrium of peptide/vesicle complexes. Quenching assays on suspensions of large unilamellar vesicles suggest that in the presence of Baxα5, the vesicles maintain a leaky state for hours under equilibrium conditions. We proved and analyzed stable pores on single giant unilamellar vesicles (GUVs) in detail by monitoring the entrance of dyes added at different times after incubation with the peptide. When the GUVs came in contact with Baxα5, leakage started stochastically, was delayed for various periods of time, and in the majority of cases proceeded rapidly to completion. After hours in the presence of the peptide, the same individual GUVs that refilled completely at first instance maintained a porated state, which could be observed in subsequent leak-in events for serially added dyes. However, these long-term pores were smaller in size than the initial equilibration pores. Stable pores were also detected in GUVs made in the presence of Baxα5. The latter pores can be considered equilibrium states and may correspond to structures measured previously in bilayer stacks. Although pore formation may occur as a kinetic process, equilibrium pores may also be functionally relevant structures, especially in highly regulated systems such as the apoptotic mitochondrial pores induced by Bax. PMID:21044589

  16. Effect of large pore size of multifunctional mesoporous microsphere on removal of heavy metal ions.

    PubMed

    Yuan, Qing; Li, Nan; Chi, Yue; Geng, Wangchang; Yan, Wenfu; Zhao, Ying; Li, Xiaotian; Dong, Bin

    2013-06-15

    Pore size of mesoporous materials is crucial for their surface grafting. This article develops a novel multifunctional microsphere with a large pore size mesoporous silica shell (ca. 10.3 nm) and a magnetic core (Fe₃O₄), which is fabricated using cetyltrimethylammonium bromide (CTAB) as pore-forming agents, tetraethyl orthosilicate (TEOS) as silicon source through a sol-gel process. Compared with small pore size mesoporous silica magnetic microspheres (ca. 2-4 nm), the large pore size one can graft 447 mg/g amino groups in order to adsorb more heavy metal ions (Pb(2+): 880.6 mg/g, Cu(2+): 628.3mg/g, Cd(2+): 492.4 mg/g). The metal-loaded multifunctional microspheres could be easily removed from aqueous solution by magnetic separation and regenerated easily by acid treatment. The results suggest that the large pore size multifunctional microspheres are potentially useful materials for high effectively adsorbing and removing different heavy metal ions in aqueous solution. PMID:23618656

  17. Direct correlation of internal gradients and pore size distributions with low field NMR.

    PubMed

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging. PMID:27111138

  18. Direct correlation of internal gradients and pore size distributions with low field NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Blümich, Bernhard

    2016-06-01

    Internal magnetic field gradients Gint, which arise from the magnetic susceptibility difference Δχ between solid matrix and fluid in porous media relate to the pore geometry. However, this relationship is complex and not well understood. Here we correlate internal-gradient distributions to pore-size distributions directly to examine internal gradients in detail at low field NMR. The pore-size distributions were obtained by the method of Decay due to Diffusion in the Internal Field (DDIF), and the internal-gradient distributions were measured with the Carr-Purcell-Meiboom-Gill (CPMG) method. The internal-gradient-pore-size distributions correlation maps were obtained for water in packs of glass beads with different diameter and in a sandstone sample. The relationship between internal gradients and pore structure is analyzed in detail by considering the restricted diffusion of fluids in porous samples. For each case diffusion regimes are assigned by plotting normalized CPMG data and comparing the diffusion lengths, the dephasing lengths and pore diameters. In the free-diffusion limit, the correlation maps reveal the true relationship between pore structure and internal gradients so that Δχ can be approximated from the correlation maps. This limit is met most easily at low field. It provides information about porous media, which is expected to benefit the oil industry, in particular NMR well logging.

  19. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  20. Pore size distribution in porous glass: fractal dimension obtained by calorimetry

    NASA Astrophysics Data System (ADS)

    Neffati, R.; Rault, J.

    2001-05-01

    By differential Scanning Calorimetry (DSC), at low heating rate and using a technique of fractionation, we have measured the equilibrium DSC signal (heat flow) J q 0 of two families of porous glass saturated with water. The shape of the DSC peak obtained by these techniques is dependent on the sizes distribution of the pores. For porous glass with large pore size distribution, obtained by sol-gel technology, we show that in the domain of ice melting, the heat flow Jq is related to the melting temperature depression of the solvent, Δ T m , by the scaling law: J q 0˜Δ T m - (1 + D). We suggest that the exponent D is of the order of the fractal dimension of the backbone of the pore network and we discuss the influence of the variation of the melting enthalpy with the temperature on the value of this exponent. Similar D values were obtained from small angle neutron scattering and electronic energy transfer measurements on similar porous glass. The proposed scaling law is explained if one assumes that the pore size distribution is self similar. In porous glass obtained from mesomorphic copolymers, the pore size distribution is very sharp and therefore this law is not observed. One concludes that DSC, at low heating rate ( q? 2°C/min) is the most rapid and less expensive method for determining the pore distribution and the fractal exponent of a porous material.

  1. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yu, Meihua; Li, Yang; Li, Jiansheng; Wang, Jing; Yu, Chengzhong; Wang, Lianjun

    2015-07-01

    Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery.Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and

  2. Passive permeability and effective pore size of HeLa cell nuclear membranes.

    PubMed

    Samudram, Arunkarthick; Mangalassery, Bijeesh M; Kowshik, Meenal; Patincharath, Nandakumar; Varier, Geetha K

    2016-09-01

    Nuclear pore complexes in the nuclear membrane act as the sole gateway of transport of molecules from the cytoplasm to the nucleus and vice versa. Studies on biomolecular transport through nuclear membranes provide vital data on the nuclear pore complexes. In this work, we use fluorescein isothiocyanate-labeled dextran molecules as a model system and study the passive nuclear import of biomolecules through nuclear pore complexes in digitonin-permeabilized HeLa cells. Experiments are carried out under transient conditions in the time lapse imaging scheme using an in-house constructed confocal laser scanning microscope. Transport rates of dextran molecules having molecular weights of 4-70 kDa corresponding to Stokes radius of 1.4-6 nm are determined. Analyzing the permeability of the nuclear membrane for different sizes the effective pore radius of HeLa cell nuclear membrane is determined to be 5.3 nm, much larger than the value reported earlier using proteins as probe molecules. The range of values reported for the nuclear pore radius suggest that they may not be rigid structures and it is quite probable that the effective pore size of nuclear pore complexes is critically dependent on the probe molecules and on the environmental factors. PMID:27338984

  3. Effects of pore size in 3-D fibrous matrix on human trophoblast tissue development.

    PubMed

    Ma, T; Li, Y; Yang, S T; Kniss, D A

    2000-12-20

    The effects of pore size in a 3-D polyethylene terephthalate (PET) nonwoven fibrous matrix on long-term tissue development of human trophoblast ED27 cells were studied. Thermal compression was used to modify the porosity and pore size of the PET matrix. The pore size distributions in PET matrices were quantified using a liquid extrusion method. Cell metabolic activities, estradiol production, and cell proliferation and differentiation were studied for ED27 cells cultured in the thermally compressed PET matrices with known pore structure characteristics. In general, metabolic activities and proliferation rate were higher initially for cultures grown in the low-porosity (LP) PET matrix (porosity of 0.849, average pore size of 30 microm in diameter) than those in the high-porosity (HP) matrix (porosity of 0.896, average pore size of 39 microm in diameter). However, 17beta-estradiol production and cell differentiation activity in the HP matrix surpassed those in the LP matrix after 12 days. The expression levels of cyclin B1 and p27kip1 in cells revealed progressively decreasing proliferation and increasing differentiation activities for cells grown in PET matrices. Also, difference in pore size controlled the cell spatial organization in the PET matrices and contributed to the tissue development in varying degrees of proliferation and differentiation. It was also found that cells grown on the 2-D surface behaved differently in cell cycle progression and did not show increased differentiation activities after growth had stopped and proliferation activities had lowered to a minimal level. The results from this study suggest that the 3-D cell organization guided by the tissue scaffold is important to tissue formation in vitro. PMID:11064329

  4. Influence of pore size distribution on the adsorption of phenol on PET-based activated carbons.

    PubMed

    Lorenc-Grabowska, Ewa; Diez, María A; Gryglewicz, Grazyna

    2016-05-01

    The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions. The adsorption of phenol was carried out in static conditions at ambient temperature. The pseudo-second order kinetic model and Langmuir model were found to fit the experimental data very well. The different adsorption capacities of the ACs towards phenol were attributed to differences in their micropore size distributions. Adsorption capacity was favoured by the volume of pores with a size smaller than 1.4 nm; but restricted by pores smaller than 0.8 nm. PMID:26890386

  5. Microfluidic production of porous carbon spheres with tunable size and pores.

    PubMed

    Ge, Han; Xu, Hongbao; Lu, Tianyi; Li, Jiang; Chen, Haosheng; Wan, Jiandi

    2016-01-01

    Porous carbon particles have been widely used in many areas including energy storage. Production of carbon microspheres in an efficient, controlled, and low-cost manner, however, is challenging. Here, we demonstrate a microfluidic approach to generate porous carbon particles using inexpensive precursors and show that the size of the particle and pores can be tuned by adjusting the deionized (DI) water content in droplets and preheating temperature. The developed strategy offers an effective approach to control the production of porous carbon spheres with a well-defined diameter, narrow size distribution and pore size. PMID:26397924

  6. Oxidation of activated carbon fibers: Effect on pore size, surface chemistry, and adsorption properties

    SciTech Connect

    Mangun, C.L.; Benak, K.R.; Daley, M.A.; Economy, J.

    1999-12-01

    Activated carbon fibers (ACFs) were oxidized using both aqueous and nonaqueous treatments. As much as 29 wt% oxygen can be incorporated onto the pore surface in the form of phenolic hydroxyl, quinine, and carboxylic acid groups. The effect of oxidation on the pore size, pore volume, and the pore surface chemistry was thoroughly examined. The average micropore size is typically affected very little by aqueous oxidation while the micropore volume and surface area decreases with such a treatment. In contrast, the micropore size and micropore volume both increase with oxidation in air. Oxidation of the fibers produces surface chemistries in the pore that provide for enhanced adsorption of basic (ammonia) and polar (acetone) molecules at ambient and nonambient temperatures. The adsorption capacity of the oxidized fibers for acetone is modestly better than the untreated ACFs while the adsorption capacity for ammonia can increase up to 30 times compared to untreated ACFs. The pore surface chemical makeup was analyzed using elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and X-ray photoelectron spectroscopy (XPS).

  7. Pore size assessment during corneal endothelial cells permeabilization by femtosecond laser activated carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Jumelle, C.; Mauclair, C.; Houzet, J.; Bernard, A.; He, Z.; Piselli, S.; Perrache, C.; Egaud, G.; Baubeau, E.; Gain, P.; Thuret, G.

    2015-07-01

    Corneal therapeutic molecules delivery represents a promising solution to maintain human corneal endothelial cells (HCECs) viability, but the difficulty is transport across cell membrane. A new delivery method published recently consists in ephemerally permeabilizing cell membranes using a photo-acoustic reaction produced by carbon nanoparticles (CNPs) and femtosecond laser (FsL). The aim of this work is to investigate the size of pores formed at cell membrane by this technique. To induce cell permeabilization, HCECs were put in contact with CNPs and irradiated with a 500 μm diameter Ti:Sa FsL focalized spot. Four sizes of marker molecules were delivered into HCECs to investigate pore sizes: calcein (1.2 nm), FITC-Dextran 4kDa (2.8 nm) and FITC-Dextran 70kDa (12 nm) and FITC-Dextran 2MDa (50 nm). Delivery of each molecule was assessed by flow cytometry, a technique able to measure their presence into cells. We showed that the delivery rate was dependent of their size. Calcein was delivered in 56.1±8.2% of HCECs, FITC-Dextran 4kDa in 42.2±3.5%, FITC-Dextran 70 kDa in 21.5±2.7% and finally FITC-Dextran 2MDa in 12.9±2.0%. It means that a large number of pores in the size ranging from 1.2 to 2.8 nm were formed. However, 12 nm and larger pores were almost half more infrequent. Pore sizes formed at cell membrane by the technique of cell permeabilization by FsL activated CNPs was investigated. The results indicated that the pore sizes are large enough for the efficient delivery of small, medium and big therapeutics molecules on HCECs by this technique.

  8. Direct correlation of diffusion and pore size distributions with low field NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Song, Yi-Qiao

    2016-08-01

    The time-dependent diffusion coefficient (D) is a powerful tool to probe microstructure in porous media, and can be obtained by the NMR method. In a real porous sample, molecular diffusion is very complex. Here we present a new method which directly measures the relationship between effective diffusion coefficients and pore size distributions without knowing surface relaxivity. This method is used to extract structural information and explore the relationship between D and a in porous media having broad pore size distributions. The diffusion information is encoded by the Pulsed Field Gradient (PFG) method and the pore size distributions are acquired by the Decay due to Diffusion in the Internal Field (DDIF) method. Two model samples were measured to verify this method. Restricted diffusion was analyzed, and shows that most fluid molecules experience pore wall. The D(a) curves obtained from correlation maps were fitted to the Padé approximant equation and a good agreement was found between the fitting lines and the measured data. Then a sandstone sample with unknown structure was measured. The state of confined fluids was analyzed and structural information, such as pore size distributions, were extracted. The D - T1 correlation maps were also obtained using the same method, which yielded surface relaxivities for different samples. All the experiments were conducted on 2 MHz NMR equipment to obtain accurate diffusion information, where internal gradients can be neglected. This method is expected to have useful applications in the oil industry, particularly for NMR logging in the future.

  9. Tricontinuous Cubic Nanostructure and Pore Size Patterning in Mesostructured Silica Films Templated with Glycerol Monooleate

    PubMed Central

    Dunphy, Darren R.; Garcia, Fred L.; Kaehr, Bryan; Khripin, Constantine Y.; Collord, Andrew D.; Baca, Helen K.; Tate, Michael P.; Hillhouse, Hugh W.; Strzalka, Joseph W.; Jiang, Zhang; Wang, Jin; Brinker, C. Jeffrey

    2011-01-01

    The fabrication of nanostructured films possessing tricontinuous minimal surface mesophases with well-defined framework and pore connectivity remains a difficult task. As a new route to these structures, we introduce glycerol monooleate (GMO) as a template for evaporation-induced self-assembly. As deposited, a nanostructured double gyroid phase is formed, as indicated by analysis of grazing-incidence small-angle x-ray scattering data. Removal of GMO by UV/O3 treatment or acid extraction induces a phase change to a nanoporous body-centered structure which we tentatively identify as based on the IW-P surface. To improve film quality, we add a co-surfactant to the GMO in a mass ratio of 1:10; when this co-surfactant is cetyltrimethylammonium bromide, we find an unusually large pore size (8-12 nm) in acid extracted films, while UV/O3 treated films yield pores of only ca. 4 nm. Using this pore size dependence on film processing procedure, we create a simple method for patterning pore size in nanoporous films, demonstrating spatially-defined size-selective molecular adsorption. PMID:21572556

  10. Direct correlation of diffusion and pore size distributions with low field NMR.

    PubMed

    Zhang, Yan; Xiao, Lizhi; Liao, Guangzhi; Song, Yi-Qiao

    2016-08-01

    The time-dependent diffusion coefficient (D) is a powerful tool to probe microstructure in porous media, and can be obtained by the NMR method. In a real porous sample, molecular diffusion is very complex. Here we present a new method which directly measures the relationship between effective diffusion coefficients and pore size distributions without knowing surface relaxivity. This method is used to extract structural information and explore the relationship between D and a in porous media having broad pore size distributions. The diffusion information is encoded by the Pulsed Field Gradient (PFG) method and the pore size distributions are acquired by the Decay due to Diffusion in the Internal Field (DDIF) method. Two model samples were measured to verify this method. Restricted diffusion was analyzed, and shows that most fluid molecules experience pore wall. The D(a) curves obtained from correlation maps were fitted to the Padé approximant equation and a good agreement was found between the fitting lines and the measured data. Then a sandstone sample with unknown structure was measured. The state of confined fluids was analyzed and structural information, such as pore size distributions, were extracted. The D - T1 correlation maps were also obtained using the same method, which yielded surface relaxivities for different samples. All the experiments were conducted on 2MHz NMR equipment to obtain accurate diffusion information, where internal gradients can be neglected. This method is expected to have useful applications in the oil industry, particularly for NMR logging in the future. PMID:27371788

  11. Hemoglobin precipitation by polyethylene glycols leads to underestimation of membrane pore sizes.

    PubMed

    Quijano, Jairo C; Lemeshko, Victor V

    2008-12-01

    The size of pores formed in the plasma membrane by various substances is frequently determined using polyethylene glycols as osmotic protectants. In this work, we have found that the size of pores formed by saponin in the red blood cell membrane determined by hemolysis versus molecular weight of polyethylene glycol was different to that estimated by light dispersion of cell suspensions. After complete swelling of cells induced by saponin in semiisotonic salt media containing 150 mOsm PEG-4000 or PEG-3000, a significant increase in the light absorbance at 640 nm was developed resulting from the formation of hemoglobin precipitates. Easily sedimenting aggregates were also formed when the supernatant of lysed cells was added to the equiosmotic solutions of polyethylene glycols with molecular weight higher than 1000. We suggest that the real size of large pores could be underestimated due to the phenomenon of hemoglobin precipitation by polyethylene glycols. PMID:18692020

  12. Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers.

    PubMed

    Gustafsson, Simon; Mihranyan, Albert

    2016-06-01

    The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration. PMID:27144657

  13. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers

    NASA Astrophysics Data System (ADS)

    Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.

    2009-05-01

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.

  14. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.

    PubMed

    Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B

    2009-05-20

    Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference. PMID:19420660

  15. Characterizing pore sizes and water structure in stimuli-responsive hydrogels

    SciTech Connect

    Hoffman, A.S.; Antonsen, K.P.; Ashida, T.; Bohnert, J.L.; Dong, L.C.; Nabeshima, Y.; Nagamatsu, S.; Park, T.G.; Sheu, M.S.; Wu, X.S.; Yan, Q.

    1993-12-31

    Hydrogels have been extensively investigated as potential matrices for drug delivery. In particular, hydrogels responsive to pH and temperature changes have been of greatest interest most recently. Proteins and peptide drugs are especially relevant for delivery from such hydrogel matrices due to the relatively {open_quotes}passive{close_quotes} and biocompatible microenvironment which should exist within the hydrogel aqueous pores. The large molecular size of many proteins requires an interconnected large pore structure. Furthermore, the gel pore {open_quotes}walls{close_quotes} should not provide hydrophobic sites for strong interactions with proteins. In the special case of ion exchange release the protein would be attracted by opposite charges on the polymer backbones. Therefore, it is important both to control and to characterize the pore structure and the water character within a hydrogel to be used or protein or peptide drug delivery. This talk will critically review techniques for estimating these two key parameters in hydrogels.

  16. Pore Size Control of Ultra-thin Silicon Membranes by Rapid Thermal Carbonization

    PubMed Central

    Fang, David Z.; Striemer, Christopher C.; Gaborski, Thomas R.; McGrath, James L.; Fauchet, Philippe M.

    2010-01-01

    Rapid thermal carbonization in a dilute acetylene (C2H2) atmosphere has been used to chemically modify and precisely tune the pore size of ultrathin porous nanocrystalline silicon (pnc-Si). The magnitude of size reduction was controlled by varying the process temperature and time. Under certain conditions, the carbon coating displayed atomic ordering indicative of graphene layer formation conformal to the pore walls. Initial experiments show that carbonized membranes follow theoretical predictions for hydraulic permeability and retain the precise separation capabilities of untreated membranes. PMID:20839831

  17. Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques

    NASA Astrophysics Data System (ADS)

    Hassan, Jamal

    2012-09-01

    The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.

  18. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    SciTech Connect

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation time [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  19. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    DOE PAGESBeta

    Diallo, S. O.

    2015-07-16

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less

  20. Pore-size dependence and characteristics of water diffusion in slitlike micropores

    NASA Astrophysics Data System (ADS)

    Diallo, S. O.

    2015-07-01

    The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (˜12 and 18 Å, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. This suppression is accompanied by a systematic dependence of the average translational diffusion coefficient Dr and relaxation time <τ0> of the restricted water on pore size and temperature. The observed Dr values are tested against a proposed scaling law, in which the translational diffusion coefficient Dr of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient Dc associated with the water bound to the pore walls and the ratio θ of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.

  1. Self-supporting nanopore membranes with controlled pore size and shape.

    PubMed

    Lu, Zhe-Xue; Namboodiri, Arya; Collinson, Maryanne M

    2008-05-01

    Self-supporting membranes containing either isolated or organized arrays of nanosized pores have been prepared using a nonlithographic approach by coupling sol-gel processing, thin film preparation, and templating. Specifically, polystyrene latex spheres were doped into a hybrid sol prepared from tetraethoxysilane and dimethyldiethoxysilane and the resultant sol spin cast on a sacrificial support. Upon removal of the template and the sacrificial support, the self-supporting nanopore membranes were transferred to glass for characterization by atomic force microscopy and scanning electron microscopy. Through variations in the thickness of the membranes and the size of the polystyrene latex spheres, the geometry (cylinder-like to asymmetric-like) and the dimensions of the nanopores were altered. Pores with diameters that range from 35 to 2100 nm, aspect ratios (defined as the top pore diameter divided by the bottom pore diameter) from 1-4, and depths (effective film thickness) from 50 to 1500 nms have been prepared using templates that range in diameter from 100 to 3100 nm. The method described employs "wet-chemistry", is highly versatile, and is easily amenable to modification by utilizing templates of different sizes and geometries to create stable membranes with different pore geometries and sizes that can be used as platforms for nanofiltration and/or chemical sensors. PMID:19206497

  2. Nondestructive technique for the characterization of the pore size distribution of soft porous constructs for tissue engineering.

    PubMed

    Safinia, Laleh; Mantalaris, Athanasios; Bismarck, Alexander

    2006-03-28

    Polymer scaffolds tailored for tissue engineering applications possessing the desired pore structure require reproducible fabrication techniques. Nondestructive, quantitative methods for pore characterization are required to determine the pore size and its distribution. In this study, a promising alternative to traditional pore size characterization techniques is presented. We introduce a quantitative, nondestructive and inexpensive method to determine the pore size distribution of large soft porous solids based on the on the displacement of a liquid, that spreads without limits though a porous medium, by nitrogen. The capillary pressure is measured and related to the pore sizes as well as the pore size distribution of the narrowest bottlenecks of the largest interconnected pores in a porous medium. The measured pore diameters correspond to the narrowest bottleneck of the largest pores connecting the bottom with the top surface of a given porous solid. The applicability and reproducibility of the breakthrough technique is demonstrated on two polyurethane foams, manufactured using the thermally induced phase separation (TIPS) process, with almost identical overall porosity (60-70%) but very different pore morphology. By selecting different quenching temperatures to induce polymer phase separation, the pore structure could be regulated while maintaining the overall porosity. Depending on the quenching temperature, the foams exhibited either longitudinally oriented tubular macropores interconnected with micropores or independent macropores connected to adjacent pores via openings in the pore walls. The pore size and its distribution obtained by the breakthrough test were in excellent agreement to conventional characterization techniques, such as scanning electron microscopy combined with image analysis, BET technique, and mercury intrusion porosimetry. This technique is suitable for the characterization of the micro- and macropore structure of soft porous solids

  3. The effect of magnetic particles on pore size distribution in soft polyurethane foams

    NASA Astrophysics Data System (ADS)

    Schümann, M.; Günther, S.; Odenbach, S.

    2014-07-01

    The combination of elastomeric matrices with magnetic particles to obtain magnetically controllable hybrid materials is an actual field of intense research. An important aspect in this context is the stiffness of the matrix, which determines the effectiveness of the magnetically driven changes in the material properties. In this paper an approach has been undertaken to use soft polyurethane foams as matrix material. By means of x-ray computed microtomography and digital image processing the pore size distribution has been determined to get information on how this distribution is affected by the introduction of magnetic microparticles. To do so, 20 000 to 40 000 pores per foam sample were evaluated. As a result, it could be proven that the pore sizes of the analysed foams clearly obey the Weibull distribution. Increasing the carbonyl iron particle concentrations leads to a decrement of the shape parameter of the distribution. Based on known particle stabilization mechanisms, an approach to explain the experimental results is proposed.

  4. An intelligent, robust approach to volumetric aircraft sizing

    NASA Astrophysics Data System (ADS)

    Upton, Eric

    Advances in computational power have produced great strides in the later design and production portions of an aircraft's life cycle, and these advances have included the internal layout component of the design and manufacturing process. However, conceptual and preliminary design tools for internal layout remain primarily based on historical regressions and estimations---a situation that becomes untenable when considering revolutionary designs or component technologies. Bringing internal layout information forward in the design process can encourage the same level of benefits enjoyed by other disciplines as advances in aerodynamics, structures and other fields propagate forward in the design of complex systems. Accurate prediction of the volume required to contain all of an aircraft's internal components results in a more accurate prediction of aircraft specifications, mission effectiveness, and costs, helping determine if an aircraft is the best choice for continued development. This is not a computationally simple problem, however, and great care must be taken to ensure the efficiency of any proposed solution. Any solution must also address the uncertainty inherent in describing internal components early in the design process. Implementing a methodology that applies notions of an intelligent search for a solution, as well as deals robustly with component sizing, produces a high chance of success. Development of a robust, rapid method for assessing the volumetric characteristics of an aircraft in the context of the conceptual and preliminary design processes can offer many of the benefits of a complete internal layout without the immense assignment of resources typical in the detail phase of the design process. A simplified methodology for volumetrically sizing an aircraft is presented here as well as an assessment of the state-of-the-art techniques for volumetric considerations used in current aircraft design literature. A prototype tool using a combination of

  5. The portion size effect on food intake is robust to contextual size information.

    PubMed

    Reily, Natalie M; Vartanian, Lenny R

    2016-10-01

    Larger portion sizes have consistently been shown to lead to greater food intake. However, studies of the portion size effect typically provided participants with a single portion of food at a time without any objective information about the size of the portion, and hence failed to consider the potential significance of contextual size information. In order to investigate whether contextual size information moderates the portion size effect, participants were served small or large portions of pasta for lunch in the presence or absence of contextual size information. Study 1 found that the portion size effect on food intake was robust to contextual size information. Study 2 replicated this finding in an online paradigm, showing that contextual size information also had no influence on prospective intake, even when participants chose the portion size they preferred. Both studies also showed that participants' perceptions of how much was appropriate to eat mediated the effect of portion size on intake. A practical implication of our findings is that modifying consumption norms may be an effective way to promote healthier consumer food decisions. PMID:27311378

  6. Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances

    NASA Astrophysics Data System (ADS)

    Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu

    2015-12-01

    We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d

  7. Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization.

    PubMed

    Han, Linchen; Karthikeyan, K G; Anderson, Marc A; Gregory, Kelvin B

    2014-09-15

    Capacitive deionization (CDI) removes charged ions from aqueous solutions through entrapment in the electric double layer (EDL) when the porous electrodes are polarized. In this study, three types of activated carbon cloth (ACC) with different pore-size distributions were used to study the effect of pore characteristics on electrosorption during CDI. Removal of seven different monovalent ions was examined for each ACC in batch reactors under 5 different combinations of applied potential and ionic strength. Results show underlying sorption mechanisms in the meso- and micro-pores were different. Electrosorption in the mesopores is influenced by partially-distorted EDL caused by EDL overlapping. Sorption capacity increased with increasing applied potential or ionic strength as overlapping effects were reduced. In contrast, EDL in the microporous regions could be highly distorted resulting in enhanced sorption capacity, which cannot be adequately described using the classic EDL theories. Electrosorption density (i.e., sorption capacity normalized by pore volume) decreased as the mesoporosity-to-microporosity ratio increased. These results are in agreement with those obtained using mathematical modeling by other recent CDI studies. Charge efficiency values were between 20% and 40% and appear to be substantially influenced by Faradaic reactions and ion desorption from the electrode surfaces. These findings suggest that pore-size distribution of electrode materials, especially the meso/microporosity ratio, should be optimized for the removal of targeted ions by CDI and well characterized to conduct more precise CDI modeling. PMID:24998059

  8. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-01

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis. PMID:26796986

  9. A Model for Hydraulic Properties Based on Angular Pores with Lognormal Size Distribution

    NASA Astrophysics Data System (ADS)

    Durner, W.; Diamantopoulos, E.

    2014-12-01

    Soil water retention and unsaturated hydraulic conductivity curves are mandatory for modeling water flow in soils. It is a common approach to measure few points of the water retention curve and to calculate the hydraulic conductivity curve by assuming that the soil can be represented as a bundle of capillary tubes. Both curves are then used to predict water flow at larger spatial scales. However, the predictive power of these curves is often very limited. This can be very easily illustrated if we measure the soil hydraulic properties (SHPs) for a drainage experiment and then use these properties to predict the water flow in the case of imbibition. Further complications arise from the incomplete wetting of water at the solid matrix which results in finite values of the contact angles between the solid-water-air interfaces. To address these problems we present a physically-based model for hysteretic SHPs. This model is based on bundles of angular pores. Hysteresis for individual pores is caused by (i) different snap-off pressures during filling and emptying of single angular pores and (ii) by different advancing and receding contact angles for fluids that are not perfectly wettable. We derive a model of hydraulic conductivity as a function of contact angle by assuming flow perpendicular to pore cross sections and present closed-form expressions for both the sample scale water retention and hydraulic conductivity function by assuming a log-normal statistical distribution of pore size. We tested the new model against drainage and imbibition experiments for various sandy materials which were conducted with various liquids of differing wettability. The model described both imbibition and drainage experiments very well by assuming a unique pore size distribution of the sample and a zero contact angle for the perfectly wetting liquid. Eventually, we see the possibility to relate the particle size distribution with a model which describes the SHPs.

  10. Density-Biased Sampling: A Robust Computational Method for Studying Pore Formation in Membranes

    PubMed Central

    2015-01-01

    A new reaction coordinate to bias molecular dynamics simulation is described that allows enhanced sampling of density-driven processes, such as mixing and demixing two different molecular species. The methodology is validated by comparing the theoretical entropy of demixing two ideal gas species and then applied to induce deformation and pore formation in phospholipid membranes within an umbrella sampling framework. Comparison with previous biased simulations of membrane pore formation suggests overall quantitative agreement, but the density-based biasing potential results in a different, more realistic transition pathway than that in previous studies. PMID:25620896

  11. Investigation of pore size and energy distributions by statistical physics formalism applied to agriculture products

    NASA Astrophysics Data System (ADS)

    Aouaini, Fatma; Knani, Salah; Yahia, Manel Ben; Bahloul, Neila; Ben Lamine, Abdelmottaleb; Kechaou, Nabil

    2015-12-01

    In this paper, we present a new investigation that allows determining the pore size distribution (PSD) in a porous medium. This PSD is achieved by using the desorption isotherms of four varieties of olive leaves. This is by the means of statistical physics formalism and Kelvin's law. The results are compared with those obtained with scanning electron microscopy. The effect of temperature on the distribution function of pores has been studied. The influence of each parameter on the PSD is interpreted. A similar function of adsorption energy distribution, AED, is deduced from the PSD.

  12. A solid with a hierarchical tetramodal micro-meso-macro pore size distribution

    PubMed Central

    Ren, Yu; Ma, Zhen; Morris, Russell E.; Liu, Zheng; Jiao, Feng; Dai, Sheng; Bruce, Peter G.

    2013-01-01

    Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure. PMID:23764887

  13. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size

    PubMed Central

    Loh, Qiu Li

    2013-01-01

    Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate damaged tissues or organs. These scaffolds serve to mimic the actual in vivo microenvironment where cells interact and behave according to the mechanical cues obtained from the surrounding 3D environment. Hence, the material properties of the scaffolds are vital in determining cellular response and fate. These 3D scaffolds are generally highly porous with interconnected pore networks to facilitate nutrient and oxygen diffusion and waste removal. This review focuses on the various fabrication techniques (e.g., conventional and rapid prototyping methods) that have been employed to fabricate 3D scaffolds of different pore sizes and porosity. The different pore size and porosity measurement methods will also be discussed. Scaffolds with graded porosity have also been studied for their ability to better represent the actual in vivo situation where cells are exposed to layers of different tissues with varying properties. In addition, the ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffolds will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix. Overall, the limitations of current scaffold fabrication approaches for tissue engineering applications and some novel and promising alternatives will be highlighted. PMID:23672709

  14. Pore Size Effect on Methane Adsorption in Mesoporous Silica Materials Studied by Small-Angle Neutron Scattering.

    PubMed

    Chiang, Wei-Shan; Fratini, Emiliano; Baglioni, Piero; Chen, Jin-Hong; Liu, Yun

    2016-09-01

    Methane adsorption in model mesoporous silica materials with the size range characteristic of shale is studied by small-angle neutron scattering (SANS). Size effect on the temperature-dependent gas adsorption at methane pressure about 100 kPa is investigated by SANS using MCM-41 and SBA-15 as adsorbents. Above the gas-liquid condensation temperature, the thickness of the adsorption layer is found to be roughly constant as a function of the temperature. Moreover, the gas adsorption properties, such as the adsorbed layer thickness and the specific amount of adsorbed gas, have little dependence on the pore size being studied, i.e., pore radius of 16.5 and 34.1 Å, but are mainly affected by the roughness of the pore surfaces. Hence, the surface properties of the pore wall are more dominant than the pore size in determining the methane gas adsorption of pores at the nanometer size range. Not surprisingly, the gas-liquid condensation temperature is observed to be sensitive to pore size and shifts to higher temperature when the pore size is smaller. Below the gas-liquid condensation temperature, even though the majority of gas adsorption experiments/simulations have assumed the density of confined liquid to be the same as the bulk density, the measured methane mass density in our samples is found to be appreciably smaller than the bulk methane density regardless of the pore sizes studied here. The mass density of liquid/solid methane in pores with different sizes shows different temperature dependence below the condensation temperature. With decreasing temperature, the methane density in larger pores (SBA-15) abruptly increases at approximately 65 K and then plateaus. In contrast, the density in smaller pores (MCM-41) monotonically increases with decreasing temperature before reaching a plateau at approximately 30 K. PMID:27512895

  15. Improving prediction of hydraulic conductivity by constraining capillary bundle models to a maximum pore size

    NASA Astrophysics Data System (ADS)

    Iden, Sascha C.; Peters, Andre; Durner, Wolfgang

    2015-11-01

    The prediction of unsaturated hydraulic conductivity from the soil water retention curve by pore-bundle models is a cost-effective and widely applied technique. One problem for conductivity predictions from retention functions with continuous derivatives, i.e. continuous water capacity functions, is that the hydraulic conductivity curve exhibits a sharp drop close to water saturation if the pore-size distribution is wide. So far this artifact has been ignored or removed by introducing an explicit air-entry value into the capillary saturation function. However, this correction leads to a retention function which is not continuously differentiable. We present a new parameterization of the hydraulic properties which uses the original saturation function (e.g. of van Genuchten) and introduces a maximum pore radius only in the pore-bundle model. In contrast to models using an explicit air entry, the resulting conductivity function is smooth and increases monotonically close to saturation. The model concept can easily be applied to any combination of retention curve and pore-bundle model. We derive closed-form expressions for the unimodal and multimodal van Genuchten-Mualem models and apply the model concept to curve fitting and inverse modeling of a transient outflow experiment. Since the new model retains the smoothness and continuous differentiability of the retention model and eliminates the sharp drop in conductivity close to saturation, the resulting hydraulic functions are physically more reasonable and ideal for numerical simulations with the Richards equation or multiphase flow models.

  16. Pore Size Distribution Estimates Compared: Available software applied to soil CT and synthetic images.

    NASA Astrophysics Data System (ADS)

    Houston, Alasdair N.; Falconer, Ruth E.; Otten, Wilfred; Hapca, Simona M.

    2015-04-01

    The Pore Size Distribution (PSD) has been widely used as a means of characterising porous media and, in conjunction with knowledge of pore space connectivity, has been used to infer hydrological properties. There exist various strategies to estimate PSD from a segmented image and each strategy typically involves a sequence of algorithms that transform image information. Some of these algorithms may be explicitly parameterised, requiring decisions by a knowledgeable operator. As a result PSD estimates may be quite variable between software applications and operators. In order to better understand these differences, a constrained boolean model was used to construct synthetic images whose pore structure is without ambiguity and whose properties can be analytically determined. Applying to such images a selection of analysis procedures in the form of readily available software applications, reveals differences between PSD estimates and analytic information. In some cases it is possible to attribute these differences to artifacts visible within map images generated by the analysis procedures, permitting correction procedures to be devised. In the case of soil CT images which exhibit complex interconnected pore structure, differences in the PSD estimate between analysis procedures are very great in some cases. Inspection of map images can again help in identifying the cause of such problems, but this may result from a fundamental property of the procedure with respect to complex pore structure. Based on the evidence presented, we conclude that some readily available software will produce PSD estimates that can usefully characterise geomaterials.

  17. Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2.

    PubMed

    Chen, Kai-Jie; Madden, David G; Pham, Tony; Forrest, Katherine A; Kumar, Amrit; Yang, Qing-Yuan; Xue, Wei; Space, Brian; Perry, John J; Zhang, Jie-Peng; Chen, Xiao-Ming; Zaworotko, Michael J

    2016-08-22

    Porous materials capable of selectively capturing CO2 from flue-gases or natural gas are of interest in terms of rising atmospheric CO2 levels and methane purification. Size-exclusive sieving of CO2 over CH4 and N2 has rarely been achieved. Herein we show that a crystal engineering approach to tuning of pore-size in a coordination network, [Cu(quinoline-5-carboxyate)2 ]n (Qc-5-Cu) ena+bles ultra-high selectivity for CO2 over N2 (SCN ≈40 000) and CH4 (SCM ≈3300). Qc-5-Cu-sql-β, a narrow pore polymorph of the square lattice (sql) coordination network Qc-5-Cu-sql-α, adsorbs CO2 while excluding both CH4 and N2 . Experimental measurements and molecular modeling validate and explain the performance. Qc-5-Cu-sql-β is stable to moisture and its separation performance is unaffected by humidity. PMID:27439315

  18. Pore size distributions in microporous membranes. 1: Surface study of track-etched filters by image analysis

    SciTech Connect

    Calvo, J.I.; Hernandez, A.; Caruana, G.; Martinez, L.

    1995-10-01

    The surface morphology of several Cyclopore filters, consisting of thin track-etched sheets of polycarbonate, is analyzed here. Scanning electron microscopy and computerized image analysis have been applied. The surface porosity and the pore density or number of pores per surface unit are directly obtained for each filter, while the statistical distribution of the pore areas, pore perimeters, equivalent pore diameters, and pore shape factors are studied as well. These pore size distributions have been studied for six types of filters (C01, C02, C04, C06, C08, and C10) and the existence of a relevant portion of double and other multiple pores has been revealed. The fraction of these multiple pores are correlated with the nominal pore radii. The results on pore size have been used to predict the volume flows of the membranes studied. This can be done only by assuming that the surface characteristics remain unchanged in the internal volume of the filters, which leads to hydrodynamic radii well in accordance with the experimental ones, within the error range. Nevertheless, it seems that some of the pores should have internal widenings with inner radii close to 120% of the external ones.

  19. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects.

    PubMed

    Bružauskaitė, Ieva; Bironaitė, Daiva; Bagdonas, Edvardas; Bernotienė, Eiva

    2016-05-01

    During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs. PMID:26091616

  20. Control of both particle and pore size in nanoporous palladium alloy powders

    DOE PAGESBeta

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less

  1. Control of both particle and pore size in nanoporous palladium alloy powders

    SciTech Connect

    Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; Robinson, David B.

    2014-07-15

    Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agents for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.

  2. Nuclear magnetic resonance pore size determination for unconsolidated sediments with strong internal gradients

    NASA Astrophysics Data System (ADS)

    Duschl, M.; Pohlmeier, A. J.; Galvosas, P.; Vereecken, H.

    2014-12-01

    Water distribution and flow within porous media are mainly controlled by the pore space structure. Well established methods for the determination of pore sizes like multistep outflow and gas adsorption isotherms (BET) are often time consuming, expensive, or produce toxic waste. As an alternative fast and non-destructive technique, nuclear magnetic resonance (NMR) is used because it probes hydrogen and therefore the dynamics and interactions of water. Pore space is most easily characterized by NMR relaxometry where the total relaxation rate is controlled by the surface relaxivity ρ of the porous medium in combination with the surface-to-volume ratio (S/V) [1]. Furthermore, there are contributions of molecular diffusion through local magnetic field gradients which are created by susceptibility differences between solid and liquid phases [2] as well as by paramagnetic impurities [3]. Hence, surface to volume ratios and surface relaxivities of porous media cannot be measured individually with NMR relaxometry. Therefore, NMR diffusion measurements are applied to probe the S/V of pores without other contributions. In this study, we demonstrate that NMR diffusion measurements are feasible to determine the S/V ratio of the pore space of quartz sand coated with goethite (α-FeOOH) as paramagnetic impurity. Our findings were compared to BET measurements and we found no dependence of the S/V on the coating density with NMR diffusion and a clear dependence between coating density and S/V with krypton BET measurements. Possible explanations are the different characteristic length scales on which the pore space is probed, and the intrinsic fractal nature of porous media [4] together with the roughness of the pore surface on a nm-scale due to the coating process. After isolating the additional contribution of the paramagnetic impurities to the NMR relaxation and the calibration of the NMR relaxation signal for each coating density it was possible to use fast relaxometry

  3. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-01-01

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed. PMID:27509528

  4. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  5. Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Rebollar, Esther; Cordero, Diego; Martins, Albino; Chiussi, Stefano; Reis, Rui L.; Neves, Nuno M.; León, Betty

    2011-02-01

    Polymer meshes have recently attracted great attention due to their great variety of applications in fields such as tissue engineering and drug delivery. Poly(ɛ-caprolactone) nanofibers were prepared by electrospinning giving rise to porous meshes. However, for some applications in tissue engineering where, for instance, cell migration into the inner regions of the mesh is aimed, the pore size obtained by conventional techniques is too narrow. To improve the pore size, laser irradiation with femtosecond pulses (i.e., negligible heat diffusion into the polymer material and confined excitation energy) is performed. A detailed study of the influence of the pulse energy, pulse length, and number of pulses on the topography of electrospun fiber meshes has been carried out, and the irradiated areas have been studied by scanning electron microscopy, contact angle measurements and spectroscopic techniques. The results show that using the optimal laser parameters, micropores are formed and the nature of the fibers is preserved.

  6. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M. Allen; Yu, Conrad M.; Raley, Norman F.

    1999-01-01

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gasses in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters.

  7. Porous silicon structures with high surface area/specific pore size

    DOEpatents

    Northrup, M.A.; Yu, C.M.; Raley, N.F.

    1999-03-16

    Fabrication and use of porous silicon structures to increase surface area of heated reaction chambers, electrophoresis devices, and thermopneumatic sensor-actuators, chemical preconcentrates, and filtering or control flow devices. In particular, such high surface area or specific pore size porous silicon structures will be useful in significantly augmenting the adsorption, vaporization, desorption, condensation and flow of liquids and gases in applications that use such processes on a miniature scale. Examples that will benefit from a high surface area, porous silicon structure include sample preconcentrators that are designed to adsorb and subsequently desorb specific chemical species from a sample background; chemical reaction chambers with enhanced surface reaction rates; and sensor-actuator chamber devices with increased pressure for thermopneumatic actuation of integrated membranes. Examples that benefit from specific pore sized porous silicon are chemical/biological filters and thermally-activated flow devices with active or adjacent surfaces such as electrodes or heaters. 9 figs.

  8. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    DOE PAGESBeta

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionallymore » high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.« less

  9. In-situ method for determining pore size distribution, capillary pressure and permeability

    SciTech Connect

    Vinegar, H.J.; Waxman, M.H.

    1987-02-17

    A method is described for determining the pore sizes entered by the oil phase in an oil-bearing formation, comprising: logging the formation of interest with an induced polarization logging tool having at least one source electrode; computing from the induced polarization measurements obtained by the logging tool a normalized induced polarization response function; obtaining core material from the formation of interest; extracting the water and hydrocarbons from the core material; resaturating the core material with formation brine; measuring the normalized induced polarization response function for the core material; and determining the pore sizes containing oil in the formation by comparing the normalized induced polarization response function from the formation with the normalized induced polarization response function of the core.

  10. Water Desalination Using Nanoporous Single-Layer Graphene with Tunable Pore Size

    SciTech Connect

    Surwade, Sumedh P.; Smirnov, Sergei N.; Vlassiouk, Ivan V.; Unocic, Raymond R.; Veith, Gabriel M.; Dai, Sheng; Mahurin, Shannon Mark

    2015-03-23

    Graphene has great potential to serve as a separation membrane due to its unique properties such as chemical and mechanical stability, flexibility and most importantly its one-atom thickness. In this study, we demonstrate first experimental evidence of the use of single-layer porous graphene as a desalination membrane. Nanometer-sized pores are introduced into single layer graphene using a convenient oxygen plasma etching process that permits tuning of the pore size. The resulting porous graphene membrane exhibited high rejection of salt ions and rapid water transport, thus functioning as an efficient water desalination membrane. Salt rejection selectivity of nearly 100% and exceptionally high water fluxes exceeding 105 g m-2 s-1 at 40 C were measured using saturated water vapor as a driving force.

  11. Pore-size dependent THz absorption of nano-confined water.

    PubMed

    Sun, Chi-Kuang; You, Borwen; Huang, Yu-Ru; Liu, Kao-Hsiang; Sato, Shusaku; Irisawa, Akiyoshi; Imamura, Motoki; Mou, Chung-Yuan

    2015-06-15

    We performed a THz absorption spectroscopy study on liquid water confined in mesoporous silica materials, MCM-41-S-18 and MCM-41-S-21, of two different pore sizes at room temperatures. We found that stronger confinement with a smaller pore size causes reduced THz absorption, indicating reduced water mobility due to confinement. Combined with recent theoretical studies showing that the microscopic structure of water inside the nanopores can be separated into a core water region and an interfacial water region, our spectroscopy analysis further reveals a bulk-water-like THz absorption behavior in the core water region and a solid-like THz absorption behavior in the interfacial water region. PMID:26076248

  12. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  13. Microfluidic Directed Synthesis of Alginate Nanogels with Tunable Pore Size for Efficient Protein Delivery.

    PubMed

    Bazban-Shotorbani, Salime; Dashtimoghadam, Erfan; Karkhaneh, Akbar; Hasani-Sadrabadi, Mohammad Mahdi; Jacob, Karl I

    2016-05-17

    Alginate is a biopolymer with favorable pH-sensitive properties for oral delivery of peptides and proteins. However, conventional alginate nanogels have limitations such as low encapsulation efficiency because of drug leaching during bead preparation and burst release in high pH values. These shortcomings originate from large pore size of the nanogels. In this work, we proposed an on-chip hydrodynamic flow focusing approach for synthesis of alginate nanogels with adjustable pore size to achieve fine-tunable release profile of the encapsulated bioactive agents. It is demonstrated that the microstructure of nanogels can be controlled through adjusting flow ratio and mixing time directed on microfluidic platforms consisting of cross-junction microchannels. In this study, the average pore size of alginate nanogels (i.e., average molecular weight between cross-links, Mc) was related to synthesis parameters. Mc was calculated from equations based on equilibrium swelling theory and proposed methods to modify the theory for pH-sensitive nanogels. In the equations we derived, size and compactness of nanogels are key factors, which can be adjusted by controlling the flow ratio. It was found that increase in flow ratio increases the size of nanogels and decreases their compactness. The size of on-chip generated nanogels for flow ratio of 0.02-0.2 was measured to be in the range of 68-138 nm. Moreover, a method based on the Mie theory was implemented to estimate the aggregation number (Nagg) of polymer chains inside the nanogels as an indicator of compactness. According to the size and compactness results along with equations of modified swelling theory, Mc obtained to be in the range of 0.5-0.8 kDa. The proposed method could be considered as a promising approach for efficient polypeptides encapsulation and their sustained release. PMID:26938744

  14. Controlling drug delivery kinetics from mesoporous titania thin films by pore size and surface energy

    PubMed Central

    Karlsson, Johan; Atefyekta, Saba; Andersson, Martin

    2015-01-01

    The osseointegration capacity of bone-anchoring implants can be improved by the use of drugs that are administrated by an inbuilt drug delivery system. However, to attain superior control of drug delivery and to have the ability to administer drugs of varying size, including proteins, further material development of drug carriers is needed. Mesoporous materials have shown great potential in drug delivery applications to provide and maintain a drug concentration within the therapeutic window for the desired period of time. Moreover, drug delivery from coatings consisting of mesoporous titania has shown to be promising to improve healing of bone-anchoring implants. Here we report on how the delivery of an osteoporosis drug, alendronate, can be controlled by altering pore size and surface energy of mesoporous titania thin films. The pore size was varied from 3.4 nm to 7.2 nm by the use of different structure-directing templates and addition of a swelling agent. The surface energy was also altered by grafting dimethylsilane to the pore walls. The drug uptake and release profiles were monitored in situ using quartz crystal microbalance with dissipation (QCM-D) and it was shown that both pore size and surface energy had a profound effect on both the adsorption and release kinetics of alendronate. The QCM-D data provided evidence that the drug delivery from mesoporous titania films is controlled by a binding–diffusion mechanism. The yielded knowledge of release kinetics is crucial in order to improve the in vivo tissue response associated to therapeutic treatments. PMID:26185444

  15. Fusion Pore Size Limits 5-HT Release From Single Enterochromaffin Cell Vesicles.

    PubMed

    Raghupathi, Ravinarayan; Jessup, Claire F; Lumsden, Amanda L; Keating, Damien J

    2016-07-01

    Enterochromaffin cells are the major site of serotonin (5-HT) synthesis and secretion providing ∼95% of the body's total 5-HT. 5-HT can act as a neurotransmitter or hormone and has several important endocrine and paracrine roles. We have previously demonstrated that EC cells release small amounts of 5-HT per exocytosis event compared to other endocrine cells. We utilized a recently developed method to purify EC cells to demonstrate the mechanisms underlying 5-HT packaging and release. Using the fluorescent probe FFN511, we demonstrate that EC cells express VMAT and that VMAT plays a functional role in 5-HT loading into vesicles. Carbon fiber amperometry studies illustrate that the amount of 5-HT released per exocytosis event from EC cells is dependent on both VMAT and the H(+)-ATPase pump, as demonstrated with reserpine or bafilomycin, respectively. We also demonstrate that increasing the amount of 5-HT loaded into EC cell vesicles does not result in an increase in quantal release. As this indicates that fusion pore size may be a limiting factor involved, we compared pore diameter in EC and chromaffin cells by assessing the vesicle capture of different-sized fluorescent probes to measure the extent of fusion pore dilation. This identified that EC cells have a reduced fusion pore expansion that does not exceed 9 nm in diameter. These results demonstrate that the small amounts of 5-HT released per fusion event in EC cells can be explained by a smaller fusion pore that limits 5-HT release capacity from individual vesicles. PMID:26574734

  16. Numerical simulation of pore size dependent anhydrite precipitation in geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Mürmann, Mario; Kühn, Michael; Pape, Hansgeorg; Clauser, Christoph

    2013-04-01

    Porosity and permeability of reservoirs are key parameters for an economical use of hot water from geothermal installations and can be significantly reduced by precipitation of minerals, such as anhydrite. The borehole Allermöhe 1 near Hamburg (Germany) represents a failed attempt of geothermal heat mining due to anhydrite precipitation (Baermann et al. 2000). For a risk assessment of future boreholes it is essential to understand how and when anhydrite cementation occurred under reservoir conditions. From core samples of the Allermöhe borehole it was determined that anhydrite precipitation took place in regions of relatively high porosity while regions of low porosity remained uncemented (Wagner et al. 2005). These findings correspond to the fact that e.g. halite precipitation in porous media is found only in relatively large pores (Putnis and Mauthe 2001). This study and others underline that pore size controls crystallization and that it is therefore necessary to establish a relation between pore size and nucleation. The work presented here is based on investigations of Emmanuel and Berkowitz (2007) who present such a relation by applying a thermodynamic approach. However this approach cannot explain the heterogeneous precipitation observed in the Allermöhe core samples. We chose an advanced approach by considering electric system properties resulting in another relation between pore size and crystallization. It is well known that a high fluid supersaturation can be maintained in porous rocks (Putnis and Mauthe 2001). This clearly indicates that a supersaturation threshold exists exceeding thermodynamic equilibrium considerably. In order to quantify spatially heterogeneous anhydrite cementation a theoretical approach was chosen which considered the electric interaction between surface charges of the matrix and calcium and sulphate ions in the fluid. This approach was implemented into the numerical code SHEMAT (Clauser 2003) and used to simulate anhydrite

  17. Impact of pore size on the sorption of uranyl under seawater conditions

    DOE PAGESBeta

    Mayes, Richard T.; Gorka, Joanna; Dai, Sheng

    2016-04-05

    The extraction of uranium from seawater has received significant interest recently, because of the possibility of a near-limitless supply of uranium to fuel the nuclear power industry. While sorbent development has focused primarily on polymeric sorbents, nanomaterials represent a new area that has the potential to surpass the current polymeric sorbents, because of the high surface areas that are possible. Mesoporous carbon materials are a stable, high-surface-area material capable of extracting various chemical species from a variety of environments. Herein, we report the use of a dual templating process to understand the effect of pore size on the adsorption ofmore » uranyl ions from a uranyl brine consisting of seawater-relevant sodium, chloride, and bicarbonate ions. It was found that pore size played a more significant role in the effective use of the grafted polymer, leading to higher uranium capacities than the surface area. Furthermore, the pore size must be tailored to meet the demands of the extraction medium and analyte metal to achieve efficacy as an adsorbent.« less

  18. Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes

    PubMed Central

    Dumee, Ludovic; Velleman, Leonora; Sears, Kallista; Hill, Matthew; Schutz, Jurg; Finn, Niall; Duke, Mikel; Gray, Stephen

    2011-01-01

    Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported. PMID:24957493

  19. Determining the dynamic range of MCPs based on pore size and strip current

    NASA Astrophysics Data System (ADS)

    Hunt, C.; Adrian, M. L.; Herrero, F.; James, P.; Jones, H. H.; Rodriguez, M.; Roman, P.; Shappirio, M.

    2010-12-01

    Micro-Channel Plates (MCPs) are used as detectors for almost all detectors measuring particles (both ions, electrons and neutrals) below 30 keV. Recent advances in the manufacturing technology of the MCPs have increased the number of options one has when selecting plates for an instrument. But it is not clear how many of these options affect the performance of the MCPs. In particular the dynamic range is not a clear cut calculation to make from the strip current. There is also some evidence that pore size and coating play a role. We measured the dynamic range and pulse height distribution of MCPs detector chevron stacks with a wide variety of strip currents from the low “normal” range in the EDR range. We also looked at the effects of varying the pore size from 25 microns to 10 microns, partial plating of the MCP surface and coating one surface on each MCP with gold rather than the standard zinc chromium. We will show how the dynamic range and pulse height distributions vary vs. strip current, pore size, and surface plating configurations.

  20. Multiscale characterization of pore size distributions using mercury porosimetry and nitrogen adsorption

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Tarquis, A. M.; Miranda, J. G. V.; Vidal Vázquez, E.

    2009-04-01

    The soil pore space is a continuum extremely variable in size, including structures smaller than nanometres and as large as macropores or cracks with millimetres or even centimetres size. Pore size distributions (PSDs) affects important soil functions, such as those related with transmission and storage of water, and root growth. Direct and indirect measurements of PSDs are becoming increasingly used to characterize soil structure. Mercury injection porosimetry and nitrogen adsorption isotherms are techniques commonly employed for assessing equivalent pore size diameters in the range from about 50 nm to 100 m and 2 to 500 nm, respectively. The multifractal formalism was used to describe Hg injection curves and N2 adsorption isotherms from two series of a Mollisol cultivated under no tillage and minimum tillage. Soil samples were taken from 0-10, 10-20 and 20-30 cm depths in two experimental fields located in the north of Buenos Aires and South of Santa Fe provinces, Argentina. All the data sets analyzed from the two studied soil attributes showed remarkably good scaling trends as assessed by singularity spectrum and generalized dimension spectrum. Both, experimental Hg injection curves and N2 adsorption isotherms could be fitted reasonably well with multifractal models. A wide variety of singularity and generalized dimension spectra was found for the variables. The capacity dimensions, D0, for both Hg injection and N2 adsorption data were not significantly different from the Euclidean dimension. However, the entropy dimension, D1, and correlation dimension, D2, obtained from mercury injection and nitrogen adsorption data showed significant differences. So, D1 values were on average 0.868 and varied from 0.787 to 0.925 for Hg intrusion curves. Entropy dimension, D1, values for N2 adsorption isotherms were on average 0.582 significantly lower than those obtained when using the former technique. Twenty-three out of twenty-four N2 isotherms had D1 values in a

  1. Importance of Pore Size Distribution of Fine-grained Sediments on Gas Hydrate Equilibrium

    NASA Astrophysics Data System (ADS)

    Kwon, T. H.; Kim, H. S.; Cho, G. C.; Park, T. H.

    2015-12-01

    Gas hydrates have been considered as a new source of natural gases. For the gas hydrate production, the gas hydrate reservoir should be depressurized below the equilibrium pressure of gas hydrates. Therefore, it is important to predict the equilibrium of gas hydrates in the reservoir conditions because it can be affected by the pore size of the host sediments due to the capillary effect. In this study, gas hydrates were synthesized in fine-grained sediment samples including a pure silt sample and a natural clayey silt sample cored from a hydrate occurrence region in Ulleung Basin, East Sea, offshore Korea. Pore size distributions of the samples were obtained by the nitrogen adsorption and desorption test and the mercury intrusion porosimetry. The equilibrium curve of gas hydrates in the fine-grained sediments were found to be significantly influenced by the clay fraction and the corresponding small pores (>50 nm in diameter). For the clayey silt sample, the equilibrium pressure was higher by ~1.4 MPa than the bulk equilibrium pressure. In most cases of oceanic gas hydrate reservoirs, sandy layers are found interbedded with fine-grained sediment layers while gas hydrates are intensively accumulated in the sandy layers. Our experiment results reveal the inhibition effect of fine-grained sediments against gas hydrate formation, in which greater driving forces (e.g., higher pressure or lower temperature) are required during natural gas migration. Therefore, gas hydrate distribution in interbedded layers of sandy and fine-grained sediments can be explained by such capillary effect induced by the pore size distribution of host sediments.

  2. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex

    PubMed Central

    Popken, Petra; Ghavami, Ali; Onck, Patrick R.; Poolman, Bert; Veenhoff, Liesbeth M.

    2015-01-01

    Nuclear pore complexes (NPCs) allow selective import and export while forming a barrier for untargeted proteins. Using fluorescence microscopy, we measured in vivo the permeability of the Saccharomyces cerevisiae NPC for multidomain proteins of different sizes and found that soluble proteins of 150 kDa and membrane proteins with an extralumenal domain of 90 kDa were still partly localized in the nucleus on a time scale of hours. The NPCs thus form only a weak barrier for the majority of yeast proteins, given their monomeric size. Using FGΔ-mutant strains, we showed that specific combinations of Nups, especially with Nup100, but not the total mass of FG-nups per pore, were important for forming the barrier. Models of the disordered phase of wild-type and mutant NPCs were generated using a one bead per amino acid molecular dynamics model. The permeability measurements correlated with the density predictions from coarse-grained molecular dynamics simulations in the center of the NPC. The combined in vivo and computational approach provides a framework for elucidating the structural and functional properties of the permeability barrier of nuclear pore complexes. PMID:25631821

  3. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage

    NASA Astrophysics Data System (ADS)

    Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel; Vodak, David; Wachter, Joseph; O'Keeffe, Michael; Yaghi, Omar M.

    2002-01-01

    A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups -Br, -NH2, -OC3H7, -OC5H11, -C2H4, and -C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature.

  4. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.

    PubMed

    Eddaoudi, Mohamed; Kim, Jaheon; Rosi, Nathaniel; Vodak, David; Wachter, Joseph; O'Keeffe, Michael; Yaghi, Omar M

    2002-01-18

    A strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that allowed the design of porous structures in which pore size and functionality could be varied systematically. Metal-organic framework (MOF-5), a prototype of a new class of porous materials and one that is constructed from octahedral Zn-O-C clusters and benzene links, was used to demonstrate that its three-dimensional porous system can be functionalized with the organic groups -Br, -NH2, -OC3H7, -OC5H11, -C2H4, and -C4H4 and that its pore size can be expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. We synthesized an isoreticular series (one that has the same framework topology) of 16 highly crystalline materials whose open space represented up to 91.1% of the crystal volume, as well as homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. One member of this series exhibited a high capacity for methane storage (240 cubic centimeters at standard temperature and pressure per gram at 36 atmospheres and ambient temperature), and others the lowest densities (0.41 to 0.21 gram per cubic centimeter) for a crystalline material at room temperature. PMID:11799235

  5. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2012-10-15

    Activated multi-walled carbon nanotubes (A-MWCNTs) were prepared using a chemical activation method to obtain well-developed pore structures for use as hydrogen storage materials. The microstructure and crystallinity of the A-MWCNTs were evaluated by X-ray diffraction and Fourier transform Raman spectroscopy. The textural properties of the A-MWCNTs were investigated by nitrogen gas sorption analysis at 77 K. The hydrogen storage capacity of the A-MWCNTs was evaluated at 77 K and 1 bar. The results showed that the specific surface area of the MWCNTs increased from 327 to 495 m{sup 2}/g as the activation temperature was increased. The highest hydrogen storage capacity was observed in the A-MWCNTs sample activated at 900 Degree-Sign C (0.54 wt%). This was attributed to it having the narrowest microporosity, which is a factor closely related to the hydrogen storage capacity. This shows that the hydrogen storage behaviors depend on the pore volume. Although a high pore volume is desirable for hydrogen storage, it is also severely affected if the pore size in the A-MWCNTs for the hydrogen molecules is suitable for creating the activation process. Highlights: Black-Right-Pointing-Pointer The AT-800 and AT-900 samples were prepared by a chemical activation method at activation temperature of 800 and 900 Degree-Sign C, respectively. Black-Right-Pointing-Pointer The AT-900 sample has the narrowest peak in comparison with the AT-800 sample, resulting from the overlap of the two peaks (Peak I and Peak II). Black-Right-Pointing-Pointer This overlapping effect is due to the newly created micropores or shrinkages of pores in Peak II. So, these determining characteristics are essential for designing materials that are suitable for molecular hydrogen storage.

  6. Porosity, Pore Size, and Permeability of Sediments from Site C0002, IODP Expedition 338

    NASA Astrophysics Data System (ADS)

    Dugan, B.; Huepers, A.; Song, I.; Kitajima, H.; Esteban, L.

    2013-12-01

    Mercury injection capillary pressure (MICP) measurements were made on cuttings and core samples from Integrated Ocean Drilling Program (IODP) Site C0002 to evaluate porosity, pore throat size, and permeability of mud(stone) at the centerpiece drill site of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE). Core samples from 221-464 meters below sea floor (mbsf) in the Kumano forearc basin have MICP-determined porosities from 40-56%, median pore radii from 0.077-0.205 microns, and permeability from 3.3x10-10 - 2.0x10-9 m2. The porosity of these core samples is similar to shipboard porosity determined from moisture and density (MAD) analyses. During IODP Expedition 338 cuttings samples were recovered from ~865-2005 mbsf during riser drilling at Site C0002F. MICP analyses of cuttings samples, greater than 4 mm size fraction, from 928-1980 mbsf in the inner wedge of the accretionary prism constrain porosities from 21-44%, median pore radii from 0.021-0.032 microns, and permeability from 1.2x10-11 - 1.6x10-10 m2. The porosity of these cuttings samples is consistently lower than the MAD-determined porosity on cuttings from the >4mm size fraction, however the values are consistent with core-based, MAD-derived porosity from Hole C0002B above 1057 mbsf and with cuttings-based, MAD-derived porosity on select samples from 1700-2000 mbsf that were determined to be intact formation and not influenced by drilling disturbance. These results suggest that select formation cuttings or MICP-analyses can help define in situ porosity. Additional post-expedition research will be used to better understand the ability of MICP data to define mudstone permeability and to constrain permeability-porosity and permeability-grain size-pore throat relations for sediments at Site C0002. A detailed model of permeability and porosity behavior will inform modeling studies of pore pressure generation and fluid and heat transport.

  7. Reversible control of pore size and surface chemistry of mesoporous silica through dynamic covalent chemistry: philicity mediated catalysis

    NASA Astrophysics Data System (ADS)

    Singh, Dheeraj Kumar; Pavan Kumar, B. V. V. S.; Eswaramoorthy, M.

    2015-08-01

    Here, we report the synthesis of adaptive hybrid mesoporous silica having the ability to reconfigure its pore properties such as pore size and philicity in response to the external environment. Decyl chains were reversibly appended to the pore walls of silica through imine motifs as dynamic covalent modules to switch the pore size and philicity in response to pH. This switching of pore properties was used to gate the access of reactants to the gold nanoparticles immobilized inside the nanopores, thus enabling us to turn-on/turn-off the catalytic reaction. The use of such dynamic covalent modules to govern pore properties would enable the realization of intelligent hybrids capable of controlling many such chemical processes in response to stimuli.Here, we report the synthesis of adaptive hybrid mesoporous silica having the ability to reconfigure its pore properties such as pore size and philicity in response to the external environment. Decyl chains were reversibly appended to the pore walls of silica through imine motifs as dynamic covalent modules to switch the pore size and philicity in response to pH. This switching of pore properties was used to gate the access of reactants to the gold nanoparticles immobilized inside the nanopores, thus enabling us to turn-on/turn-off the catalytic reaction. The use of such dynamic covalent modules to govern pore properties would enable the realization of intelligent hybrids capable of controlling many such chemical processes in response to stimuli. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02959g

  8. Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes.

    PubMed

    Lu, Hui-Li; Lin, Dong-Qiang; Gao, Dong; Yao, Shan-Jing

    2013-02-22

    Hydrophobic charge-induction chromatography (HCIC) is a novel technology for antibody purification. The ligand densities and pore properties of HCIC resins have significant effects on the separation behavior of protein, however, the understandings are quite limited. In the present work, new HCIC ligand, 2-mercapto-1-methylimidazole (MMI) was coupled to three agarose matrices with different pore sizes. A series of MMI resins with different ligand density and pore size was prepared by the control of ligand coupling. The adsorption isotherms and kinetics on the series of MMI resins were investigated with bovine serum immunoglobulin as the model IgG, and the effects of salt addition were studied. The Langmuir equation and pore diffusion model were used to fit the experimental data, and the influences of ligand density, pore size and salt addition on the saturated adsorption capacity, the dissociation constant and the effective diffusivity were discussed. It was found that the adsorption capacities and the effective pore diffusion coefficient increased with the increase of ligand density and pore size. The effects of salt addition on the adsorption behaviors were dependent on the ligand density. For low ligand density the IgG adsorption was salt-promoted, while the resins with high ligand density showed a salt-independent property. The results indicated that for a given protein the ligand density and pore size of HCIC resins should be optimized for improving the protein adsorption. PMID:23336945

  9. IMPACT OF COMPOSITION AND HEAT TREATMENT ON PORE SIZE IN POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2007-12-04

    The Savannah River National Laboratory (SRNL) developed a new geometric form: hollow glass microspheres (HGMs), with unique porous walls. The new geometric form combines the existing technology of HGMs with basic glass science knowledge in the realm of glass-in-glass phase separation. Conceptually, the development of a HGM with porous walls (referred to as a PWHGM) provides a unique system in which various media or filling agents can be incorporated into the PWHGM (via transport through the porous walls) and ultimately has the capacity to serve as a functional delivery system in various industrial applications. Applications of these types of systems could range from hydrogen storage, molecular sieves, drug and bioactive delivery systems, to environmental, chemical and biological indicators, relevant to Energy, Environmental Processing and Homeland Security fields. As a specific example, previous studies at SRNL have introduced materials capable of hydrogen storage (as well as other materials) into the interior of the PWHGMs. The goal of this project was to determine if the microstructure (i.e., pore size and pore size distribution) of a PWHGM could be altered or tailored by varying composition and/or heat treatment (time and/or temperature) conditions. The ability to tailor the microstructure through composition or heat treatments could provide the opportunity to design the PWHGM system to accommodate different additives or fill agents. To meet this objective, HGMs of various alkali borosilicate compositions were fabricated using a flame forming apparatus installed at the Aiken County Technical Laboratory (ACTL). HGMs were treated under various heat treatment conditions to induce and/or enhance glass in glass phase separation. Heat treatment temperatures ranged from 580 C to 620 C, while heat treatment times were either 8 or 24 hours. Of the two primary variables assessed in this study, heat treatment temperature was determined to be most effective in changing the

  10. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Hughes, B.

    2014-06-01

    Nuclear magnetic resonance (NMR) relaxometry is a geophysical method widely used in borehole and laboratory applications to nondestructively infer transport and storage properties of rocks and soils as it is directly sensitive to the water/oil content and pore sizes. However, for inferring pore sizes, NMR relaxometry data need to be calibrated with respect to a surface interaction parameter, surface relaxivity, which depends on the type and mineral constituents of the investigated rock. This study introduces an inexpensive and quick alternative to the classical calibration methods, e.g., mercury injection, pulsed field gradient (PFG) NMR, or grain size analysis, which allows for jointly estimating NMR surface relaxivity and pore size distributions using NMR relaxometry data from partially desaturated rocks. Hereby, NMR relaxation experiments are performed on the fully saturated sample and on a sample partially drained at a known differential pressure. Based on these data, the (capillary) pore radius distribution and surface relaxivity are derived by joint optimization of the Brownstein-Tarr and the Young-Laplace equation assuming parallel capillaries. Moreover, the resulting pore size distributions can be used to predict water retention curves. This inverse modeling approach—tested and validated using NMR relaxometry data measured on synthetic porous borosilicate samples with known petrophysical properties (i.e., permeability, porosity, inner surfaces, pore size distributions)—yields consistent and reproducible estimates of surface relaxivity and pore radii distributions. Also, subsequently calculated water retention curves generally correlate well with measured water retention curves.

  11. Choice of pore size can introduce artefacts when filtering picoeukaryotes for molecular biodiversity studies.

    PubMed

    Sørensen, Nikolaj; Daugbjerg, Niels; Richardson, Katherine

    2013-05-01

    Published results of studies based on samples size fractionated by sequential filtration (e.g. 0.2-3 μm) indicate that many ciliate, dinoflagellate and rhizarian phylotypes are found among marine picoeukaryotes. This is somewhat surprising as these protists are typically known as being large organisms (often >10 μm) and no picoplanktonic species have so far been identified. Here, the abundances of ciliate and dinoflagellate phylotypes in published molecular studies of picoeukaryotes are shown to correlate negatively with the pore size chosen for the end filter in the sequential filtrations (i.e. the filter used to collect the microbial biomass). This suggests that extracellular DNA adhering to small particles may be the source of ciliate and dinoflagellate phylotypes in picoplanktonic size fractions. This hypothesis was confirmed using real-time qPCR, which revealed significantly less dinoflagellate 18S rDNA in a 0.8-3-μm size fraction compared to 0.2-3 μm. On average, the abundance of putative extracellular phylotypes decreased by 84-89 % when a 0.8- μm end filter was used rather than a 0.2-μm end filter. A 0.8-μm filter is, however, not sufficient to retain all picoeukaryotic cells. Thus, selection of filter pore size involves a trade-off between avoiding artefacts generated by extracellular DNA and sampling the entire picoeukaryotic community. In contrast to ciliate and dinoflagellate phylotypes, rhizarian phylotypes in the picoplankton size range do not display a pattern consistent with an extracellular origin. This is likely due to the documented existence of picoplanktonic swarmer cells within this group. PMID:23325466

  12. Pore size distribution and methane equilibrium conditions at Walker Ridge Block 313, northern Gulf of Mexico

    SciTech Connect

    Bihani, Abhishek; Daigle, Hugh; Cook, Ann; Glosser, Deborah; Shushtarian, Arash

    2015-12-15

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  13. Pore Size Distribution and Methane Equilibrium Conditions at Walker Ridge Block 313, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Bihani, A. D.; Daigle, H.; Cook, A.; Glosser, D.; Shushtarian, A.

    2015-12-01

    Coexistence of three methane phases (liquid (L), gas (G), hydrate (H)) in marine gas hydrate systems may occur according to in-situ pressure, temperature, salinity and pore size. In sediments with salinity close to seawater, a discrete zone of three-phase (3P) equilibrium may occur near the base of the regional hydrate stability zone (RHSZ) due to capillary effects. The existence of a 3P zone influences the location of the bottom-simulating reflection (BSR) and has implications for methane fluxes at the base of the RHSZ. We studied hydrate stability conditions in two wells, WR313-G and WR313-H, at Walker Ridge Block 313 in the northern Gulf of Mexico. We determined pore size distributions (PSD) by constructing a synthetic nuclear magnetic resonance (NMR) relaxation time distribution. Correlations were obtained by non-linear regression on NMR, gamma ray, and bulk density logs from well KC-151 at Keathley Canyon. The correlations enabled construction of relaxation time distributions for WR313-G and WR313-H, which were used to predict PSD through comparison with mercury injection capillary pressure measurements. With the computed PSD, L+H and L+G methane solubility was determined from in-situ pressure and temperature. The intersection of the L+G and L+H curves for various pore sizes allowed calculation of the depth range of the 3P equilibrium zone. As in previous studies at Blake Ridge and Hydrate Ridge, the top of the 3P zone moves upwards with increasing water depth and overlies the bulk 3P equilibrium depth. In clays at Walker Ridge, the predicted thickness of the 3P zone is approximately 35 m, but in coarse sands it is only a few meters due to the difference in absolute pore sizes and the width of the PSD. The thick 3P zone in the clays may explain in part why the BSR is only observed in the sand layers at Walker Ridge, although other factors may influence the presence or absence of a BSR.

  14. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.

    PubMed

    Murphy, Ciara M; Duffy, Garry P; Schindeler, Aaron; O'brien, Fergal J

    2016-01-01

    We have previously examined osteoblast behavior on porous collagen-glycosaminoglycan (CG) scaffolds with a range of mean pore sizes demonstrating superior cell attachment and migration in scaffolds with the largest pores (325 μm). Scaffolds provide a framework for construct development; therefore, it is crucial to identify the optimal pore size for augmented tissue formation. Utilizing the same range of scaffolds (85 μm - 325 μm), this study aimed to examine the effects of mean pore size on subsequent osteoblast differentiation and matrix mineralization, and to understand the mechanism by which pore size influences behavior of different cell types. Consequently, primary mesenchymal stem cells (MSCs) were assessed and their behavior compared to osteoblasts. Results demonstrated that scaffolds with the largest pore size (325 μm) facilitated improved osteoblast infiltration, earlier expression of mature bone markers osteopontin (OPN) and osteocalcin (OCN), and increased mineralization. MSCs responded similarly to osteoblasts whereby cell attachment and scaffold infiltration improved with increasing pore size. However, MSCs showed reduced cell motility, proliferation, and scaffold infiltration compared to osteoblasts. This was associated with differences in the profile of integrin subunits (α2) and collagen receptors (CD44), indicating that osteoblasts have a stronger affinity for CG scaffolds compared to MSCs. In summary, these results reveal how larger pores promote improved cell infiltration, essential for construct development, however the optimal scaffold pore size can be cell type specific. As such, this study highlights a necessity to tailor both scaffold micro-architecture and cell-type when designing constructs for successful bone tissue engineering applications. PMID:26386362

  15. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  16. Effective pore size and radius of capture for K(+) ions in K-channels.

    PubMed

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  17. Effective pore size and radius of capture for K+ ions in K-channels

    PubMed Central

    Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David

    2016-01-01

    Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782

  18. INITIAL SIZE AND DYNAMICS OF VIRAL FUSION PORES ARE A FUNCTION OF THE FUSION PROTEIN MEDIATING MEMBRANE FUSION

    PubMed Central

    Plonsky, I.; Kingsley, D. H.; Rashtian, A.; Blank, P.S.; Zimmerberg, J.

    2013-01-01

    To investigate the role of the fusogenic protein in the initial size and dynamics of the pore that widens to finalize membrane fusion, two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the hemaggluttinin of influenza X31 (HA). The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human red blood cells (RBC) upon acidification of the medium. High time resolution electrophysiological study of fusion pore conductance revealed fundamental differences in a) the initial pore conductance (pores created by HA were smaller than those created by GP64), b) the ability of pores to flicker (only HA-mediated pores flickered), and c) the time required for pore formation (HA-mediated pores took much longer to form following acidification). Thus 1) HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and 2) fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein. PMID:18208404

  19. Groove Sizing Using a Robust Neural Network Approach

    NASA Astrophysics Data System (ADS)

    Le Brusquet, L.; Davoust, M.-E.; Fleury, G.

    2003-03-01

    The remote field eddy current technique is used to inspect conductive pipes from the inside. The problem is to calculate an estimation of groove dimensions from observed data. A first approach was previously developed using a two-step parametric inversion. Results from this first approach are produced using a new model. A second approach using a neural network is presented. This technique is known for the lack of robustness which may occur when precautions are not sufficient. This paper presents these precautions and the results of both approaches.

  20. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  1. Pore-throat size distributions in Permo-Triassic sandstones from the United Kingdom and some implications for contaminant hydrogeology

    NASA Astrophysics Data System (ADS)

    Bloomfield, J. P.; Gooddy, D. C.; Bright, M. I.; Williams, P. J.

    2001-06-01

    Pore-throat size distributions (PSDs) from mercury injection capillary pressure (MICP) tests have been used to characterise 153 samples of Permo-Triassic sandstones from the United Kingdom. The PSDs have been parameterised using the Brooks-Corey and van Genuchten functions. Pore-throat sizes are in the range 0.01-427 µm, and dominant pore-throat sizes range from about 0.1-90 µm. Values of λ, the Brooks-Corey pore-size distribution index, range from 0.002-2.27, and values of m, the van Genuchten pore-size distribution index, range from 0.03-0.92. A number of classes of sandstone can be recognised on the basis of trends in the fitted parameters. The van Genuchten function provides the most effective method for classifying different sandstones. Additionally, a cross-plot of gas permeability against displacement pressure (derived from the van Genuchten function) shows that the data fall into two distinct sub-populations. The frequency distribution of a larger population of sandstone permeabilities can be modelled using the mean and standard deviation of the two sub-populations identified in the MICP study, assuming that the sub-populations are approximated by log-normal distributions. The distribution of sandstones with small pore-throat sizes is critical to the fate of pathogens and immiscible phase contaminants in the aquifer.

  2. Protein attachment to nanoporous anodic alumina for biotechnological applications: influence of pore size, protein size and functionalization path.

    PubMed

    Baranowska, Malgorzata; Slota, Agata J; Eravuchira, Pinkie J; Macias, Gerard; Xifré-Pérez, Elisabet; Pallares, Josep; Ferré-Borrull, Josep; Marsal, Lluís F

    2014-10-01

    Nanoporous anodic alumina (NAA) is a material with great interest in nanotechnology and with promising applications to biotechnology. Obtaining specific and regularly functionalized NAA surfaces is essential to obtain meaningful results and applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is a covalent linker commonly used for single-molecule studies. We investigate the functionalization of NAA with silane-PEG-NHS and compared with two common, but not single-molecule, grafting agents, APTMS (3-aminopropylotrimethoxysilane) as an electrostatic linker, and APTMS-GTA (3-aminopropylotrimethoxysilane-glutaraldehyde) as covalent. Another outcome of this study is to show how two proteins (collagen and bovine serum albumin, BSA) with different properties differentially arrange for different functionalizations and NAA pore sizes. FTIR is used to demonstrate the surface modification steps and fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more homogeneous protein distribution in comparison to the other linkers. Reflection interference Fourier transform spectroscopy confirms the confocal fluorescence microscopy results and permits to estimate the amounts of linker and linked proteins within the pores. These results permit to obtain uniformly chemical modified NAA supports with a great value in biosensing, drug delivery and cell biology. PMID:25086305

  3. Pore size controls on the base of the methane hydrate stability zone in the Kumano Basin, offshore Japan

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Dugan, Brandon

    2014-11-01

    The base of the methane hydrate stability zone (MHSZ) in the Kumano Basin, offshore Japan, is marked by a bottom-simulating reflection (BSR) on seismic data. At Integrated Ocean Drilling Program Site C0002, which penetrates this BSR, the in situ temperature profile combined with bulk seawater methane equilibrium conditions suggest that the base of the MHSZ is 428 m below seafloor (bsf), which is 28 m deeper than the observed BSR (400 m bsf). We found that submicron pore sizes determined by mercury injection capillary pressure are sufficiently small to cause 64% of the observed uplift of the base of the MHSZ by the Gibbs-Thomson effect. This is the most thorough characterization of pore sizes within the MHSZ performed to date and illustrates the extent to which pore size can influence MHSZ thickness. Our results demonstrate the importance of considering lithology and pore structure when assessing methane hydrate stability conditions in marine sediments.

  4. Pore size distribution of a deeply excavated Oxisol after 19 years reclamation

    NASA Astrophysics Data System (ADS)

    dos Santos Batista Bonini, Carolina; de Cássia Marchini, Débora; Alves, Marlene Cristina; García de Arruda, Otton; Paz-Ferreiro, Jorge

    2013-04-01

    Digging of the local soil and using it as a raw material for construction purposes has been identified as a non-negligible source of land degradation. Techniques aimed at soil profile reconstruction and ecological restoration of soils truncated by mechanical excavation using heavy machinery have been investigated Both, total soil porosity and pore size distribution are important properties for soil management as well as for assessing the recovery of soil function after land degradation. In this way, macropores are responsible for aeration, whereas water storage depends on soil meso- and micropores in the soil and the optimal pore-size distribution is also an indicator of soil quality. We investigated the changes in the pore size distribution of a soil that was beheaded to extract raw materials after a 19 year period of reclamation, which involved the use of green manures, gypsum and pasture for the purpose of profile recovery. The studied area is located in Mato Grosso do Sul State, Brzil. A field trial was performed following a completely randomized experimental design with seven treatments and four replications. Starting 1992, the initial treatments were: 1) control (tilled bare soil), 2)Stizolobium aterrium, 3)Cajanus cajan, 4)lime+S. aterrimum, 5) lime+C. cajan, 6) lime + gypsum + S. aterrimum, 7) lime + gypsum+C. cajan. In 1994, all treatments with C. cajan were replaced by Canavalia ensiformis and in 1999, Brachiaria decumbens was implanted in all the experimental plots. Data from vegetated treatments were compared with bare soil (control) and native vegetation (Savannah). Soil samples were collected in 2011 at the 0.00-0.10, 0.10-0.20, and 0.20-0.40 m depths. Treatment differences were assessed by analysis of variance, following the Scott-Knott test (5%) of probability to compare averages. Macroporosity of the 0.00-0.10 m top layer was above the 0.10 m3m-3 threshold considered as critical for plant growth. On the 0.10-0.20 m layer only treatments with C

  5. Evaluation of borate bioactive glass scaffolds with different pore sizes in a rat subcutaneous implantation model.

    PubMed

    Deliormanli, Aylin M; Liu, Xin; Rahaman, Mohamed N

    2014-01-01

    Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 µm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation. PMID:23241965

  6. Single molecule FRET reveals pore size and opening mechanism of a mechano-sensitive ion channel

    PubMed Central

    Wang, Yong; Liu, Yanxin; DeBerg, Hannah A; Nomura, Takeshi; Hoffman, Melinda Tonks; Rohde, Paul R; Schulten, Klaus; Martinac, Boris; Selvin, Paul R

    2014-01-01

    The mechanosensitive channel of large conductance, which serves as a model system for mechanosensitive channels, has previously been crystallized in the closed form, but not in the open form. Ensemble measurements and electrophysiological sieving experiments show that the open-diameter of the channel pore is >25 Å, but the exact size and whether the conformational change follows a helix-tilt or barrel-stave model are unclear. Here we report measurements of the distance changes on liposome-reconstituted MscL transmembrane α-helices, using a ‘virtual sorting’ single-molecule fluorescence energy transfer. We observed directly that the channel opens via the helix-tilt model and the open pore reaches 2.8 nm in diameter. In addition, based on the measurements, we developed a molecular dynamics model of the channel structure in the open state which confirms our direct observations. DOI: http://dx.doi.org/10.7554/eLife.01834.001 PMID:24550255

  7. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene.

    PubMed

    Cui, Xili; Chen, Kaijie; Xing, Huabin; Yang, Qiwei; Krishna, Rajamani; Bao, Zongbi; Wu, Hui; Zhou, Wei; Dong, Xinglong; Han, Yu; Li, Bin; Ren, Qilong; Zaworotko, Michael J; Chen, Banglin

    2016-07-01

    The trade-off between physical adsorption capacity and selectivity of porous materials is a major barrier for efficient gas separation and purification through physisorption. We report control over pore chemistry and size in metal coordination networks with hexafluorosilicate and organic linkers for the purpose of preferential binding and orderly assembly of acetylene molecules through cooperative host-guest and/or guest-guest interactions. The specific binding sites for acetylene are validated by modeling and neutron powder diffraction studies. The energies associated with these binding interactions afford high adsorption capacity (2.1 millimoles per gram at 0.025 bar) and selectivity (39.7 to 44.8) for acetylene at ambient conditions. Their efficiency for the separation of acetylene/ethylene mixtures is demonstrated by experimental breakthrough curves (0.73 millimoles per gram from a 1/99 mixture). PMID:27198674

  8. Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data

    NASA Astrophysics Data System (ADS)

    Ahmadpour, A.; Okhovat, A.; Darabi Mahboub, M. J.

    2013-06-01

    The application of Stoeckli theory to determine pore size distribution (PSD) of activated carbons using high pressure methane adsorption data is explored. Coconut shell was used as a raw material for the preparation of 16 different activated carbon samples. Four samples with higher methane adsorption were selected and nitrogen adsorption on these adsorbents was also investigated. Some differences are found between the PSD obtained from the analysis of nitrogen adsorption isotherms and their PSD resulting from the same analysis using methane adsorption data. It is suggested that these differences may arise from the specific interactions between nitrogen molecules and activated carbon surfaces; therefore caution is required in the interpretation of PSD obtained from the nitrogen isotherm data.

  9. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    PubMed

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel. PMID:19660810

  10. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules.

    PubMed

    Kuznicki, S M; Bell, V A; Nair, S; Hillhouse, H W; Jacubinas, R M; Braunbarth, C M; Toby, B H; Tsapatsis, M

    2001-08-16

    Zeolites and related crystalline microporous oxides-tetrahedrally coordinated atoms covalently linked into a porous framework-are of interest for applications ranging from catalysis to adsorption and ion-exchange. In some of these materials (such as zeolite rho) adsorbates, ion-exchange, and dehydration and cation relocation can induce strong framework deformations. Similar framework flexibility has to date not been seen in mixed octahedral/tetrahedral microporous framework materials, a newer and rapidly expanding class of molecular sieves. Here we show that the framework of the titanium silicate ETS-4, the first member of this class of materials, can be systematically contracted through dehydration at elevated temperatures to 'tune' the effective size of the pores giving access to the interior of the crystal. We show that this so-called 'molecular gate' effect can be used to tailor the adsorption properties of the materials to give size-selective adsorbents suitable for commercially important separations of gas mixtures of molecules with similar size in the 4.0 to 3.0 A range, such as that of N2/CH4, Ar/O2 and N2/O2. PMID:11507636

  11. Pore size distribution of soil near saturation as affected by soil type, land use, and soil amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Storage and flow of water in soil voids, which are related to the size and geometry of the voids and flow rate are usually controlled by the void of the smallest size. Another reason for the complexity of water flow in soils is the intricate nature and change of the soil pores due to the modificatio...

  12. A variable-step-size robust delta modulator.

    NASA Technical Reports Server (NTRS)

    Song, C. L.; Garodnick, J.; Schilling, D. L.

    1971-01-01

    Description of an analytically obtained optimum adaptive delta modulator-demodulator configuration. The device utilizes two past samples to obtain a step size which minimizes the mean square error for a Markov-Gaussian source. The optimum system is compared, using computer simulations, with a linear delta modulator and an enhanced Abate delta modulator. In addition, the performance is compared to the rate distortion bound for a Markov source. It is shown that the optimum delta modulator is neither quantization nor slope-overload limited. The highly nonlinear equations obtained for the optimum transmitter and receiver are approximated by piecewise-linear equations in order to obtain system equations which can be transformed into hardware. The derivation of the experimental system is presented.

  13. Atomic layer deposition of SIO2 on porous alumina membranes: controlling the pore size and transport properties

    NASA Astrophysics Data System (ADS)

    Velleman, Leonora; Traini, Gerry; Evans, Peter J.; Atanacio, Armand; Shapter, Joe G.; Losic, Dusan

    2008-12-01

    Atomic layer deposition (ALD) of SiO2 onto nanoporous alumina (PA) membranes was investigated with the aim of adjusting the pore size and transport properties. PA membranes from commercial sources with a range of pore diameters (20 nm, 100 nm and 200 nm) were used and modified by atomic layer deposition using tris(tert-butoxy)silanol and water as the precursor couple. By adjusting the number of deposition cycles, the thickness of the conformal silica coating was controlled, reducing the effective pore diameter, and subsequently changing the transport properties of the PA membrane. Silica coated PA membranes with desired pore diameters from <5 nm to 100 nm were fabricated. In addition to the pore size, the transport properties and selectivity of fabricated silica coated PA membranes were controlled by chemical functionalisation using a silane with hydrophobic properties. Structural and chemical properties of modified membranes were studied by dynamic secondary ion mass spectrometry (DSIMS) and scanning electron microscopy (SEM). Spectrophotometric methods were used to evaluate the transport properties and selectivity of silica coated membranes by permeation studies of hydrophobic and hydrophilic organic molecules. The resultant silica/PA membranes with specific surface chemistry and controlled pore size are applicable for molecular separation, cell culture, bioreactors, biosensing and drug delivery.

  14. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal

    USGS Publications Warehouse

    Radlinski, A.P.; Mastalerz, Maria; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P.

    2004-01-01

    This paper discusses the applicability of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques for determining the porosity, pore size distribution and internal specific surface area in coals. The method is noninvasive, fast, inexpensive and does not require complex sample preparation. It uses coal grains of about 0.8 mm size mounted in standard pellets as used for petrographic studies. Assuming spherical pore geometry, the scattering data are converted into the pore size distribution in the size range 1 nm (10 A??) to 20 ??m (200,000 A??) in diameter, accounting for both open and closed pores. FTIR as well as SAXS and SANS data for seven samples of oriented whole coals and corresponding pellets with vitrinite reflectance (Ro) values in the range 0.55% to 5.15% are presented and analyzed. Our results demonstrate that pellets adequately represent the average microstructure of coal samples. The scattering data have been used to calculate the maximum surface area available for methane adsorption. Total porosity as percentage of sample volume is calculated and compared with worldwide trends. By demonstrating the applicability of SAXS and SANS techniques to determine the porosity, pore size distribution and surface area in coals, we provide a new and efficient tool, which can be used for any type of coal sample, from a thin slice to a representative sample of a thick seam. ?? 2004 Elsevier B.V. All rights reserved.

  15. Effect of mica content on pore-size distribution and porosity of sandy sediment using proton nuclear magnetic resonance measurement

    NASA Astrophysics Data System (ADS)

    Kimura, S.

    2015-12-01

    As a part of a Japanese National hydrate research program (MH21, funded by METI), we performed a study on effect of mica content on pore size distribution and porosity of sandy sediment. This study used proton nuclear magnetic resonance (NMR) to measure the pore-size distribution and porosity of specimen to investigate mica content effect in sandy sediment. A mixture of silica sand No. 7 and mica (mica of 0 wt. %, 5 wt. % and 20 wt. %) was used in this study. The median D50 by laser diffraction method was obtained as 215.7 μm of silica sand No. 7 and 278.9 μm of mica. Pore-size distributions of specimens by the distribution of transverse magnetic relaxation time (T2) measurement by NMR were performed for the water-saturated sample under effective confining pressure of 1.0 MPa. The peaks of pore-size distribution curves decreased and showed finer shifts with increasing of mica content. The porosity of silica sand No. 7 specimen was 46.3%, and that of mica 5% and 20 % were 45.9% and 42.2%m, respectively. A change in pore-size distribution and porosity were observed with an increasing ratio of mica.

  16. Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Self-Assembly of Diblock Copolymer Micelles in Solution.

    PubMed

    Tian, Hao; Lin, Zhixing; Xu, Fugui; Zheng, Jingxu; Zhuang, Xiaodong; Mai, Yiyong; Feng, Xinliang

    2016-06-01

    This paper reports facile synthesis of nitrogen-doped mesoporous carbon nanospheres (MCNSs) with average diameters of around 300 nm and well-controlled pore sizes ranging from 8 to 38 nm, by employing polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblocks with different PS block lengths as the soft templates and dopamine as the carbon-rich precursor. For the first time, a linear equation is achieved for the quantitative control of the average pore size of MCNSs by simply adjusting a block length of diblock copolymer. The resultant MCNSs possess high surface areas of up to 450 m(2) g(-1) and nitrogen doping contents of up to ≈3 wt%. As electrode materials of supercapacitors, the MCNSs exhibit excellent electrochemical performance with high specific capacitances of up to 350 F g(-1) at 0.1 A g(-1) , superior rate capability, and cycling stability. Interestingly, the specific capacitance of the MCNSs reduces linearly with increasing pore size, whereas the normalized capacitance by specific surface area remains invariable. This represents a new spectrum of the relationship between electrochemical capacitance and pore size (>5 nm) for porous carbons, which makes a complement to the existing spectra focusing on pore diameters of <5 nm. PMID:27120340

  17. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    NASA Astrophysics Data System (ADS)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  18. A macromolecular crowding study of RNA folding and activity: polymer pore size matters! (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Börner, Richard; Fiorini, Erica; Paudel, Bishnu; Rueda, David; Sigel, Roland K. O.

    2016-03-01

    Catalytic RNAs, like the group IIB intron ribozyme of S. cerevesiae, require a high magnesium(II) concentration to show folding and function in vitro [1]. In contrast, in vivo conditions are characterized by a highly crowded cellular environment and much lower ion concentration. Molecular crowding agents are a widespread tool to mimic cellular crowding [2]. However, particular physical/chemical properties explaining the crowders influence are mostly not understood. In this study, we gain new insights on how polymer properties like viscosity, pore size etc. influence the activity and folding of a large RNA. We combined bulk activity assays and single-molecule Förster Resonance Energy Transfer experiments, screening the PEG volume fraction (%) and molecular weight (MW). Our results revealed that upon the influence of crowding agents, a compaction of the underlying structure depends on the PEG % and the presence of different PEG MW and % unveiled an optimal pore size in terms of catalytic activity. In summary, an increasing density of the crowding environment shifts the RNA towards the most compact state, but the ribozyme is only active if the crowders network matches its size [4]. We interpret the most compact state as necessary, but not sufficient, to keep the ribozyme active. Financial support from the European Research Council (MIRNA N° 259092, to RKOS), the Swiss National Fund (SNF), and the Forschungskredit Grant of the University of Zürich (FK-14-096 and 15-092 to RB) are gratefully acknowledged. [1] Swisher J.F., Su L.J., Brenowitz M., Anderson V.E., Pyle A.M., J. Mol. Bio., 315, 297-310 (2002). [2] Kilburn D., Roh J.H., Guo L., Briber R.M., Woodson S.A., JACS, 132, 8690-6 (2010). [3] Steiner M., Karunatilaka K.S., Sigel R.K.O., Rueda D., Proc. Natl. Acad. Sci. U.S.A.,105, 13853-8 (2008). [4] aBörner R, Fiorini E, Sigel R.K.O., Chimia, 69, 207-212 (2015).; bFiorini E., Paudel B., Börner R., Rueda D., Sigel R.K.O., submitted. [5] König S.L.B., Hadzic M

  19. Simulations of Pore Formation in Lipid Membranes: Reaction Coordinates, Convergence, Hysteresis, and Finite-Size Effects.

    PubMed

    Awasthi, Neha; Hub, Jochen S

    2016-07-12

    Transmembrane pores play an important role in various biophysical processes such as membrane permeation, membrane fusion, and antimicrobial peptide activity. In principal, all-atom molecular dynamics (MD) simulations provide an accurate model of pore formation in lipid membranes. However, the free energy landscape of transmembrane pore formation remains poorly understood, partly because potential of mean force (PMF) calculations of pore formation strongly depend on the choice of the reaction coordinate. In this study, we used umbrella sampling to compute PMFs for pore formation using three different reaction coordinates, namely, (i) a coordinate that steers the lipids in the lateral direction away from the pore center, (ii) the distance of a single lipid phosphate group from the membrane center, and (iii) the average water density inside a membrane-spanning cylinder. Our results show that while the three reaction coordinates efficiently form pores in membranes, they suffer from strong hysteresis between pore-opening and pore-closing simulations, suggesting that they do not restrain the systems close to the transition state for pore formation. The two reaction coordinates that act via restraining the lipids lead to more pronounced hysteresis compared with the coordinate acting on the water molecules. By comparing PMFs computed from membranes with different numbers of lipids, we observed significant artifacts from the periodic boundary conditions in small simulation systems. Further analysis suggests that the formation and disruption of a continuous hydrogen-bonding network across the membrane corresponds to the transition state for pore formation. Our study provides molecular insights into the critical steps of transmembrane pore formation, and it may guide the development of efficient reaction coordinates for pore formation. PMID:27254744

  20. Robustness

    NASA Technical Reports Server (NTRS)

    Ryan, R.

    1993-01-01

    Robustness is a buzz word common to all newly proposed space systems design as well as many new commercial products. The image that one conjures up when the word appears is a 'Paul Bunyon' (lumberjack design), strong and hearty; healthy with margins in all aspects of the design. In actuality, robustness is much broader in scope than margins, including such factors as simplicity, redundancy, desensitization to parameter variations, control of parameter variations (environments flucation), and operational approaches. These must be traded with concepts, materials, and fabrication approaches against the criteria of performance, cost, and reliability. This includes manufacturing, assembly, processing, checkout, and operations. The design engineer or project chief is faced with finding ways and means to inculcate robustness into an operational design. First, however, be sure he understands the definition and goals of robustness. This paper will deal with these issues as well as the need for the requirement for robustness.

  1. Determination of pore size distributions in capillary-channeled polymer fiber stationary phases by inverse size-exclusion chromatography and implications for fast protein separations.

    PubMed

    Wang, Zhengxin; Marcus, R Kenneth

    2014-07-18

    Capillary-channeled polymer (C-CP) fibers have been utilized as liquid chromatography stationary phases, primarily for biomacromolecule separations on the analytical and preparative scales. The collinear packing of the eight-channeled C-CP fibers provides for very efficient flow, allowing operation at high linear velocity (u>100mm s(-1)) and low backpressure (<2000psi) in analytical-scale separations. To take advantage of these fluid transport properties, there must not be mass transfer limitations as would be imposed by having an appreciably porous phase, wherein solute diffusion limits the overall mass transport rates. To better understand the physical nano-/micro- structure of C-CP fibers, inverse size exclusion chromatography (iSEC) has been employed to determine the pore size distribution (PSD) within C-CP fibers. A diversity of test species (from metal ions to large proteins) was used as probes under non-retaining conditions to obtain a response curve reflecting the apparent partition coefficient (Kd) versus hydrodynamic radii (rm). A mean pore radius (rp) of 4.2nm with standard deviation (sp) of ±1.1nm was calculated by fitting the Kd versus rm data to model equations with a Gaussian pore size distribution, and a pore radius of 4.0±0.1nm was calculated based on a log-normal distribution. The derived mean pore radius is much smaller than traditional support materials, with the standard deviation showing a relatively uniform pore distribution. van Deemter plots were analyzed to provide practical confirmation of the structural implications. Large molecules (e.g., proteins) that are fully excluded from pores have no significant C-terms in the van Deemter plots whereas small molecules that can access the pore volumes display appreciable C-terms, as expected. Fitting of retention data to the Knox equation suggests that the columns operate with a characteristic particle diameter (dp) of ∼53μm. PMID:24877979

  2. Furthering Chemical and Geophysical Computations: Analysis of SACROC SEM and CT images to obtain pore percentage, size, and connectivity data

    NASA Astrophysics Data System (ADS)

    Mur, A. J.; Purcell, C. C.; Harbert, W. P.; Soong, Y.; Kutchko, B. G.; Kennedy, S.; McIntryre, D.

    2009-12-01

    methods to calculate porosity giving us a large range (13% - 45%). The high average can be attributed to a percentage of small lighter colored calcite crystals and polygons that share sides yet are connected pores. This increases the average pore perimeter. The lower estimate was formulated by using the maximum pore perimeter as the average pore size. By using the 13% porosity model and assuming spherical pores, we calculated that a 1cm3 sample of SACROC limestone would have a surface area of 6.7838 cm2. Along with the permeability measurements found through CT imagery, this new method of SEM analysis with ArcMap will be helpful in formulating a rate of reaction estimate for a planned experiment that will emulate underground time exposure of CO2 to limestone. As more images are analyzed and compared to lab measurements of porosity, this method could potentially be used as a faster, cheaper way to obtain pore information from SEM images.

  3. Pore-size dependent effects on structure and vibrations of 1-ethyl-3-methylimidazolium tetrafluoroborate in nanoporous carbon

    NASA Astrophysics Data System (ADS)

    Thürmer, Stephan; Kobayashi, Yoshikazu; Ohba, Tomonori; Kanoh, Hirofumi

    2015-09-01

    We report XRD and IR measurements of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4) adsorbed in activated carbons, molecular sieving carbon, and single wall carbon nanohorn, where we specifically chose a wide range of pore sizes from 0.5 nm to 2.5 nm. Electron radial distribution function analysis reveals denser packing upon adsorption in two steps, for pore widths larger and comparable to the ion size. Average ion-distance was decreased by 0.05 nm in the latter case. With support of DFT calculations we identify a suppression of specific vibrational modes, which are interpreted as constrainment by the pore walls. Possible consequences for supercapacitor application are discussed.

  4. Facile synthesis of diverse graphene nanomeshes based on simultaneous regulation of pore size and surface structure

    PubMed Central

    Zhang, Jia; Song, Huaibing; Zeng, Dawen; Wang, Hao; Qin, Ziyu; Xu, Keng; Pang, Aimin; Xie, Changsheng

    2016-01-01

    Recently, graphene nanomesh (GNM) has attracted great attentions due to its unique porous structure, abundant active sites, finite band gap and possesses potential applications in the fields of electronics, gas sensor/storage, catalysis, etc. Therefore, diverse GNMs with different physical and chemical properties are required urgently to meet different applications. Herein we demonstrate a facile synthetic method based on the famous Fenton reaction to prepare GNM, by using economically fabricated graphene oxide (GO) as a starting material. By precisely controlling the reaction time, simultaneous regulation of pore size from 2.9 to 11.1 nm and surface structure can be realized. Ultimately, diverse GNMs with tunable band gap and work function can be obtained. Specially, the band gap decreases from 4.5–2.3 eV for GO, which is an insulator, to 3.9–1.24 eV for GNM-5 h, which approaches to a semiconductor. The dual nature of electrophilic addition and oxidizability of HO• is responsible for this controllable synthesis. This efficient, low-cost, inherently scalable synthetic method is suitable for provide diverse and optional GNMs, and may be generalized to a universal technique. PMID:27561350

  5. Statistical physics studies of multilayer adsorption isotherm in food materials and pore size distribution

    NASA Astrophysics Data System (ADS)

    Aouaini, F.; Knani, S.; Ben Yahia, M.; Ben Lamine, A.

    2015-08-01

    Water sorption isotherms of foodstuffs are very important in different areas of food science engineering such as for design, modeling and optimization of many processes. The equilibrium moisture content is an important parameter in models used to predict changes in the moisture content of a product during storage. A formulation of multilayer model with two energy levels was based on statistical physics and theoretical considerations. Thanks to the grand canonical ensemble in statistical physics. Some physicochemical parameters related to the adsorption process were introduced in the analytical model expression. The data tabulated in literature of water adsorption at different temperatures on: chickpea seeds, lentil seeds, potato and on green peppers were described applying the most popular models applied in food science. We also extend the study to the newest proposed model. It is concluded that among studied models the proposed model seems to be the best for description of data in the whole range of relative humidity. By using our model, we were able to determine the thermodynamic functions. The measurement of desorption isotherms, in particular a gas over a solid porous, allows access to the distribution of pore size PSD.

  6. Pore size dynamics in interpenetrated metal organic frameworks for selective sensing of aromatic compounds.

    PubMed

    Myers, Matthew; Podolska, Anna; Heath, Charles; Baker, Murray V; Pejcic, Bobby

    2014-03-28

    The two-fold interpenetrated metal-organic framework, [Zn2(bdc)2(dpNDI)]n (bdc=1,4-benzenedicarboxylate, dpNDI=N'N'-di(4-pyridyl)-1,4,5,8-naphthalenediimide) can undergo structural re-arrangement upon adsorption of chemical species changing its pore structure. For a competitive binding process with multiple analytes of different sizes and geometries, the interpenetrated framework will adopt a conformation to maximize the overall binding interactions. In this study, we show for binary mixtures that there is a high selectivity for the larger methylated aromatic compounds, toluene and p-xylene, over the small non-methylated benzene. The dpNDI moiety within [Zn2(bdc)2(dpNDI)]n forms an exciplex with these aromatic compounds. The emission wavelength is dependent on the strength of the host-guest CT interaction allowing these compounds to be distinguished. We show that the sorption selectivity characteristics can have a significant impact on the fluorescence sensor response of [Zn2(bdc)2(dpNDI)]n towards environmentally important hydrocarbons based contaminants (i.e., BTEX, PAH). PMID:24636414

  7. Facile synthesis of diverse graphene nanomeshes based on simultaneous regulation of pore size and surface structure.

    PubMed

    Zhang, Jia; Song, Huaibing; Zeng, Dawen; Wang, Hao; Qin, Ziyu; Xu, Keng; Pang, Aimin; Xie, Changsheng

    2016-01-01

    Recently, graphene nanomesh (GNM) has attracted great attentions due to its unique porous structure, abundant active sites, finite band gap and possesses potential applications in the fields of electronics, gas sensor/storage, catalysis, etc. Therefore, diverse GNMs with different physical and chemical properties are required urgently to meet different applications. Herein we demonstrate a facile synthetic method based on the famous Fenton reaction to prepare GNM, by using economically fabricated graphene oxide (GO) as a starting material. By precisely controlling the reaction time, simultaneous regulation of pore size from 2.9 to 11.1 nm and surface structure can be realized. Ultimately, diverse GNMs with tunable band gap and work function can be obtained. Specially, the band gap decreases from 4.5-2.3 eV for GO, which is an insulator, to 3.9-1.24 eV for GNM-5 h, which approaches to a semiconductor. The dual nature of electrophilic addition and oxidizability of HO(•) is responsible for this controllable synthesis. This efficient, low-cost, inherently scalable synthetic method is suitable for provide diverse and optional GNMs, and may be generalized to a universal technique. PMID:27561350

  8. Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes.

    PubMed

    Zhang, Hongwei; Noonan, Owen; Huang, Xiaodan; Yang, Yannan; Xu, Chun; Zhou, Liang; Yu, Chengzhong

    2016-04-26

    Mesoporous carbon hollow spheres (MCHS) have wide applications, including catalysis, absorption, and energy storage/conversion. Herein, we report a one-pot, surfactant-free synthesis of MCHS using three molecules: resorcinol, formaldehyde, and tetrapropyl orthosilicate. The co-condensation process between the in situ generated silica primary particles and the polymer oligomers is regulated, leading to monodispersed MCHS with adjustable pore sizes from micropores to 13.9 nm. The resultant MCHS shows excellent performance for electrochemical double-layer capacitors with high capacitance (310 F g(-1) at 1 A g(-1)), excellent rate capability (157 F g(-1) at 50 A g(-1)), and outstanding cycling stability (98.6% capacity retention after 10 000 cycles at 10 A g(-1)). Our one-pot synthesis strategy is versatile and can be extended to fabricate metal oxide@mesoporous carbon yolk-shell structures in the absence of surfactant, paving the way toward designed synthesis of nanostructured mesoporous carbon composites for various applications. PMID:27050771

  9. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    PubMed

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities. PMID:24391805

  10. Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.

    PubMed

    Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi

    2016-02-01

    Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. PMID:26652423

  11. Phase behavior and molecular mobility of n -octylcyanobiphenyl confined to molecular sieves: Dependence on the pore size

    NASA Astrophysics Data System (ADS)

    Frunza, Ligia; Frunza, Stefan; Kosslick, Hendrik; Schönhals, Andreas

    2008-11-01

    The molecular dynamics of 4- n -octyl- 4' -cyanobiphenyl (8CB) confined inside the pores of a series of AlMCM-41 samples with the same structure, constant composition (Si/Al=14.7) but different pore sizes (diameter between 2.3 and 4.6nm ) was investigated by broadband dielectric spectroscopy (10-2-109Hz) in a large temperature interval. Two relaxation processes are observed: one has a bulklike behavior and is assigned to the 8CB in the pore center. The relaxation time of the second relaxation process is essentially slower than that of the former one and this process is related to the dynamics of molecules in a surface layer with a paranematic order. Both relaxation processes are specifically influenced by the interaction of the molecules with the surface and by the confinement. Above the clearing temperature the temperature dependence of the relaxation rate of the bulklike process obeys the Vogel-Fulcher-Tammann (VFT) law. The Vogel temperature increases with decreasing pore size. This is explained by increasing influence of paranematic potential of the surface layer with decreasing pore size. The temperature dependence of the relaxation rate of the surface layer follows also the VFT formula and the Vogel temperature decreases with decreasing pore size. This temperature dependence is controlled by both the interaction of the 8CB molecules with the surface via hydrogen bonding and by spatial confinement effects. To discriminate between both effects the data for the surface layer of 8CB confined to the molecular sieves are compared with results concerning 8CB adsorbed as a quasimonolayer on the surface of silica spheres of aerosil. On this basis a confinement parameter is defined and discussed.

  12. Phase behavior and molecular mobility of n-octylcyanobiphenyl confined to molecular sieves: dependence on the pore size.

    PubMed

    Frunza, Ligia; Frunza, Stefan; Kosslick, Hendrik; Schönhals, Andreas

    2008-11-01

    The molecular dynamics of 4-n-octyl-4'-cyanobiphenyl (8CB) confined inside the pores of a series of AlMCM-41 samples with the same structure, constant composition (SiAl=14.7) but different pore sizes (diameter between 2.3 and 4.6 nm) was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) in a large temperature interval. Two relaxation processes are observed: one has a bulklike behavior and is assigned to the 8CB in the pore center. The relaxation time of the second relaxation process is essentially slower than that of the former one and this process is related to the dynamics of molecules in a surface layer with a paranematic order. Both relaxation processes are specifically influenced by the interaction of the molecules with the surface and by the confinement. Above the clearing temperature the temperature dependence of the relaxation rate of the bulklike process obeys the Vogel-Fulcher-Tammann (VFT) law. The Vogel temperature increases with decreasing pore size. This is explained by increasing influence of paranematic potential of the surface layer with decreasing pore size. The temperature dependence of the relaxation rate of the surface layer follows also the VFT formula and the Vogel temperature decreases with decreasing pore size. This temperature dependence is controlled by both the interaction of the 8CB molecules with the surface via hydrogen bonding and by spatial confinement effects. To discriminate between both effects the data for the surface layer of 8CB confined to the molecular sieves are compared with results concerning 8CB adsorbed as a quasimonolayer on the surface of silica spheres of aerosil. On this basis a confinement parameter is defined and discussed. PMID:19113137

  13. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    PubMed Central

    Wolf, Alexandra B.; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities. PMID:24391805

  14. Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs.

    PubMed

    Saito, Masakazu; Toyao, Takashi; Ueda, Kozo; Kamegawa, Takashi; Horiuchi, Yu; Matsuoka, Masaya

    2013-07-14

    Arenetricarbonyl metal complexes ([-phM(CO)3-] and [-biphM(CO)3-]; ph = phenylene, biph = biphenylene, M = Mo, Cr) constructed within Zr-based MOFs act as highly active and selective catalysts for epoxidation of cyclooctene. Catalytic activities of these complexes are enhanced with increasing the pore sizes of Zr-based MOFs. PMID:23694976

  15. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confi ning Sulfur in Lithium–Sulfur Batteries

    SciTech Connect

    Zhou, Weidong; Wang, Chong M.; Zhang, Quiglin; Abruna, Hector D.; He, Yang; Wang, Jiangwei; Mao, Scott X.; Xiao, Xingcheng

    2015-08-19

    Three types of nitrogen-doped hollow carbon spheres with different pore sized porous shells are prepared to investigate the performance of sulfur confinement. The reason that why no sulfur is observed in previous research is determined and it is successfully demonstrated that the sulfur/polysulfide will overflow the porous carbon during the lithiation process.

  16. Measuring location, size, distribution, and loading of NiO crystallites in individual SBA-15 pores by electron tomography.

    PubMed

    Friedrich, Heiner; Sietsma, Jelle R A; de Jongh, Petra E; Verkleij, Arie J; de Jong, Krijn P

    2007-08-22

    By the combination of electron tomography with image segmentation, the properties of 299 NiO crystallites contained in 6 SBA-15 pores were studied. A statistical analysis of the particle size showed that crystallites between 2 and 6 nm were present with a distribution maximum at 3 and 4 nm, for the number-weighted and volume-weighted curves, respectively. Interparticle distances between nearest neighbors were 1-3 nm with very few isolated crystallites. In the examined pores, a local loading twice the applied average of 24 wt % NiO was found. This suggests that a very high local loading combined with a high dispersion is achievable. PMID:17655305

  17. Effect of TiO2 microbead pore size on the performance of DSSCs with a cobalt based electrolyte

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Huang, Fuzhi; Xiang, Wanchun; Chen, Dehong; Cao, Lu; Spiccia, Leone; Caruso, Rachel A.; Cheng, Yi-Bing

    2014-10-01

    Mesoporous TiO2 microbeads with well-defined intra-bead pore sizes (14 nm, 23 nm or 33 nm) were employed to investigate the effect of pore size on the performance of dye-sensitized solar cells constructed with an organic dye (MK2) and a [Co(bpy)3]2+/3+ (bpy = 2,2'-bipyridine)-based electrolyte. The TiCl4 post treatment and film thickness were optimized for the TiO2 electrodes made from beads with 33 nm intra-bead pores, and an overall energy conversion efficiency of 8.5% was achieved for a device with a 6.5 μm thick TiO2 film treated with a 20 mM TiCl4 solution. Although beads with larger pores had a smaller specific surface area, devices derived from these beads produced better photovoltaic performance. This is attributed to the improved diffusion of cobalt species inside the working electrode, as evidenced by a higher electron lifetime and dye regeneration rate recorded on these solar cells.Mesoporous TiO2 microbeads with well-defined intra-bead pore sizes (14 nm, 23 nm or 33 nm) were employed to investigate the effect of pore size on the performance of dye-sensitized solar cells constructed with an organic dye (MK2) and a [Co(bpy)3]2+/3+ (bpy = 2,2'-bipyridine)-based electrolyte. The TiCl4 post treatment and film thickness were optimized for the TiO2 electrodes made from beads with 33 nm intra-bead pores, and an overall energy conversion efficiency of 8.5% was achieved for a device with a 6.5 μm thick TiO2 film treated with a 20 mM TiCl4 solution. Although beads with larger pores had a smaller specific surface area, devices derived from these beads produced better photovoltaic performance. This is attributed to the improved diffusion of cobalt species inside the working electrode, as evidenced by a higher electron lifetime and dye regeneration rate recorded on these solar cells. Electronic supplementary information (ESI) available: Photocurrent transient plots of the devices treated with different concentrations of TiCl4 and UV-vis spectra of dye desorption

  18. Transport and Aggregation of Nanoparticles in Packed Beds: Effects of Pore Velocity and Initially-Fed Particle Size on Transient Particle Size Distributions

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2015-11-01

    Aggregation of colloidal particles in flow through porous media has received careful consideration, as it reduces particle breakthrough due to pore clogging and sedimentation. Additionally, in unstable colloidal systems, deposition of colloidal aggregates on the pore surfaces can create sub-surfaces for further colloidal attachment. This phenomenon is known as ripening effect. In this study, transient particle size distributions of nano-particle systems, propagating in a bed packed with spheres are numerically investigated. In our simulation, only pair interactions are considered, and the aggregation rate is varied with the relative position of two particles in a pair. The packed bed consists of spheres of known size, randomly packed in a simulation box. To generate the velocity field of water inside the porous medium, the lattice Boltzmann method (LBM) is used. In conjunction with that, the trajectories of thousands of massless particles moving with the flow under convection and diffusion are recorded employing a Lagrangian framework. While pore clogging is neglected, we draw attention to the change of the distribution of particle size under different pore velocities and different initially-fed particle sizes.

  19. Interconnected Porous Polymers with Tunable Pore Throat Size Prepared via Pickering High Internal Phase Emulsions.

    PubMed

    Xu, Hongyun; Zheng, Xianhua; Huang, Yifei; Wang, Haitao; Du, Qiangguo

    2016-01-12

    Interconnected macroporous polymers were prepared by copolymerizing methyl acrylate (MA) via Pickering high internal phase emulsion (HIPE) templates with modified silica particles. The pore structure of the obtained polymer foams was observed by field-emission scanning electron microscopy (FE-SEM). Gas permeability was characterized to evaluate the interconnectivity of macroporous polymers. The polymerization shrinkage of continuous phase tends to form open pores while the solid particles surrounding the droplets act as barriers to produce closed pores. These two conflicting factors are crucial in determining the interconnectivity of macroporous polymers. Thus, poly-Pickering HIPEs with high permeability and well-defined pore structure can be achieved by tuning the MA content, the internal phase fraction, and the content of modified silica particles. PMID:26673546

  20. The Nature of Tensile Ductility as Controlled by Extreme-Sized Pores in Powder Metallurgy Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Ravi Chandran, K. S.; Cao, F.; Koopman, M.; Fang, Z. Zak

    2016-05-01

    Tensile properties of Ti-6Al-4V titanium alloy, sintered by a new process (sintering, phase transformation, and dehydrogenation of titanium hydride compacts, termed HSPT process), were investigated to determine how the sintering pores influence the tensile strength and ductility. It was found that the ductility in the sintered alloy is severely affected by the size of the largest pore, referred here as extreme-sized pore, even when the average volume fraction of porosity is nearly constant between a large number of samples. It is shown that the rapid decrease in ductility, with an increase in the extreme pore size, is caused by strain localization around the extreme-sized pore and early crack initiation. This crack initiation leads to fracture of the plane containing the pore thereby limiting the extent of uniform plastic strain that can be attained before fracture. Interestingly, the strength properties are, however, found to be independent of the size of the extreme-sized pore. The results are explained on the basis of stress concentration and strain localization around the extreme-sized pores. The work also reveals that if the extreme-sized pores are eliminated, PM Ti-6Al-4V alloy with high strength (~1100 MPa) and good ductility (~12 pct), which is easily comparable to a wrought Ti-6Al-4V alloy, can be achieved even at oxygen levels up to 0.4 wt pct.

  1. Vesicular release of neurotransmitters: converting amperometric measurements into size, dynamics and energetics of initial fusion pores.

    PubMed

    Oleinick, Alexander; Lemaître, Frédéric; Collignon, Manon Guille; Svir, Irina; Amatore, Christian

    2013-01-01

    Amperometric currents displaying a pre-spike feature (PSF) may be treated so as to lead to precise information about initial fusion pores, viz., about the crucial event initiating neurotransmitter vesicular release in neurons and medullary glands. However, amperometric data alone are not self-sufficient, so their full exploitation requires external calibration to solve the inverse problem. For this purpose we resorted to patch-clamp measurements published in the literature on chromaffin cells. Reported pore radii were thus used to evaluate the diffusion rate of neurotransmitter cations in the partially altered matrix located near the fusion pore entrance. This allowed an independent determination of each initial fusion pore radius giving rise to a single PSF event. The statistical distribution of the radii thus obtained provided for the first time an experimental access to the potential energy well governing the thermodynamics of such systems. The shape of the corresponding potential energy well strongly suggested that, after their creation, initial fusion pores are essentially controlled by the usual physicochemical laws describing pores formed in bilayer lipidic biological membranes, i.e., they have an essentially lipidic nature. PMID:24466657

  2. Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint.

    PubMed

    Chen, Jing; Liu, Jian

    2016-09-01

    Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution. PMID:27602734

  3. Pore size distributions in uranium dioxide and uranium dioxide-gadolinium oxide fuel kernel produced by sol-gel technique

    NASA Astrophysics Data System (ADS)

    Gündüz, Güngör; Önal, Işik; Durmazuçar, Hasan H.

    1991-02-01

    Small kernels of UO 2-Gd 2O 3 were produced from their nitrate solutions by the application of sol-gel process in place of the more conventional process of mixing powders. The sol-gel method consisted of the following steps: sol preparation, sol drop dispersion, gellation, washing of gelled microspheres, aging, drying, calcination, reduction, and sintering. The effect of reduction temperature (873, 1073 and 1773 K) under a reducing gas mixture of 50% H2 + 50% N2 on pore volume and pore size distribution, was studied both for UO 2 and UO 2-Gd 2O 3 containing microspheres. The results indicated decreasing pore volume with increasing temperature as expected. However, the incorporation of Gd 2O 3 into UO 2 in the sol had a retardation effect in sintering which resulted in higher pore volume than that of UO 2-only microspheres. Mean pore diameter also remained small (about 950 nm) for UO 2-Gd 2O 3 samples after reduction (sintering at 1773 K) when compared to 1400 nm for UO 2-only samples. X-ray diffraction studies showed uniform distribution of Gd 2O 3 with no phase separation as well as a decrease in lattice parameter of UO 2 indicating incorporation of Gd 2O 3 into UO 2 lattice structure.

  4. Control of pore size in L-lactide/epsilon-caprolactone copolymer foams for tissue regeneration by the freeze-drying method.

    PubMed

    Nakao, Hiroyuki; Hyon, Suong-Hyu; Tsutsumi, Sadami; Matsumoto, Takuya; Takahashi, Junzo

    2003-09-01

    In the regeneration and repair of missing tissues, synthetic polymer scaffolds need many pores to involve cells and to supply cells with nutrients. The control of the pore size of biodegradable L-lactide/epsilon-caprolactone copolymer foams was studied by changing the polymer concentration and the cooling temperature in the freeze-drying method. The mixtures of polymer and 1, 4-dioxane solution were poured into an 18-8 stainless steel Petri dish and frozen. The pore size of a polymer foam tends to increase from the bottom towards the top of a Petri dish. The pore size decreased to one-half with increasing polymer concentration (1 to 10 wt%). The mean pore size in foams of 8% polymer concentration decreased from 100 microm to 20 microm as cooling temperature was lowered. This suggests that the higher cooling rate due to lower cooling temperature can produce smaller ice-crystals and result in smaller pores. PMID:14620993

  5. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  6. Effect of TiO₂ microbead pore size on the performance of DSSCs with a cobalt based electrolyte.

    PubMed

    Chen, Yang; Huang, Fuzhi; Xiang, Wanchun; Chen, Dehong; Cao, Lu; Spiccia, Leone; Caruso, Rachel A; Cheng, Yi-Bing

    2014-11-21

    Mesoporous TiO2 microbeads with well-defined intra-bead pore sizes (14 nm, 23 nm or 33 nm) were employed to investigate the effect of pore size on the performance of dye-sensitized solar cells constructed with an organic dye (MK2) and a [Co(bpy)3](2+/3+) (bpy = 2,2'-bipyridine)-based electrolyte. The TiCl4 post treatment and film thickness were optimized for the TiO2 electrodes made from beads with 33 nm intra-bead pores, and an overall energy conversion efficiency of 8.5% was achieved for a device with a 6.5 μm thick TiO2 film treated with a 20 mM TiCl4 solution. Although beads with larger pores had a smaller specific surface area, devices derived from these beads produced better photovoltaic performance. This is attributed to the improved diffusion of cobalt species inside the working electrode, as evidenced by a higher electron lifetime and dye regeneration rate recorded on these solar cells. PMID:25287230

  7. Extending Zelterman's approach for robust estimation of population size to zero-truncated clustered Data.

    PubMed

    Navaratna, W C W; Del Rio Vilas, Victor J; Böhning, Dankmar

    2008-08-01

    Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. PMID:18663764

  8. How robust are the size measurements of high-redshift compact galaxies?

    SciTech Connect

    Davari, Roozbeh; Ho, Luis C.; Peng, Chien Y.; Huang, Song

    2014-05-20

    Massive quiescent galaxies at z ≈ 2 are apparently much more compact than galaxies of comparable mass today. How robust are these size measurements? We perform comprehensive simulations to determine possible biases and uncertainties in fitting single-component light distributions to real galaxies. In particular, we examine the robustness of the measurements of the luminosity, size, and other structural parameters. We devise simulations with increasing realism to systematically disentangle effects due to the technique (specifically using GALFIT) and the intrinsic structures of the galaxies. By accurately capturing the detailed substructures of nearby elliptical galaxies and then rescaling their sizes and signal-to-noise to mimic galaxies at different redshifts, we confirm that the massive quiescent galaxies at z ≈ 2 are significantly more compact intrinsically than their local counterparts. Their observed compactness is not a result of missing faint outer light due to systematic errors in modeling. In fact, we find that fitting multi-component galaxies with a single Sérsic profile, the procedure most commonly adopted in the literature, biases the inferred sizes higher by up to 10%-20%, which accentuates the amount of size evolution required. If the sky estimation has been done robustly and the model for the point-spread function is fairly accurate, GALFIT can retrieve the properties of single-component galaxies over a wide range of signal-to-noise ratios without introducing any systematic errors.

  9. Influence of pore size on the Knight shift in liquid tin and mercury in a confined geometry

    NASA Astrophysics Data System (ADS)

    Tien, Cheng; Charnaya, E. V.; Lee, M. K.; Kumzerov, Yu A.

    2007-03-01

    119Sn and 199Hg NMR studies were carried out for metallic tin and mercury embedded in synthetic opals and porous glasses. The Knight shift for confined liquid tin and mercury was found to decrease monotonically with decreasing pore size, evidence for the reduction of electron susceptibility. Size-induced alterations in the Knight shift were more pronounced for confined mercury than for tin. The influence of pore filling on the NMR line shape and Knight shift was observed for tin within opal. The reasons for the decreasing Knight shift for liquid metals in a confined geometry are discussed. Correlations between the alteration in the Knight shift and atomic number are shown, the changes in fractional values of the Knight shift remaining almost identical.

  10. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.

    PubMed

    Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya

    2015-01-01

    Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture. PMID:26335156

  11. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides

    PubMed Central

    Fanourakis, Dimitrios; Giday, Habtamu; Milla, Rubén; Pieruschka, Roland; Kjaer, Katrine H.; Bolger, Marie; Vasilevski, Aleksandar; Nunes-Nesi, Adriano; Fiorani, Fabio; Ottosen, Carl-Otto

    2015-01-01

    Background and Aims Leaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width. Methods Stomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S. lycopersicum ‘M82’. A quantitative trait locus (QTL) analysis for stomatal traits was also performed. Key Results A wide genetic variation in stomatal responsiveness to desiccation was observed, a large part of which was explained by stomatal length. Operating gs ranged over a factor of five between ILs. The pore area per stomatal area varied 8-fold among ILs (2–16 %), and was the main determinant of differences in operating gs between ILs. Operating gs was primarily positioned on the abaxial surface (60–83 %), due to higher abaxial stomatal density and, secondarily, to larger abaxial pore area. An analysis revealed 64 QTLs for stomatal traits in the ILs, most of which were in the direction of S. pennellii. Conclusions The data indicate that operating and maximum gs of non-stressed leaves maintained under stable conditions deviate considerably (by 45–91 %), because stomatal size inadequately reflects operating pore area (R2 = 0·46). Furthermore, it was found that variation between ILs in both stomatal sensitivity to desiccation and operating gs is associated with features of individual stoma. In contrast, genotypic variation in gs partitioning depends on the distribution of stomata between the leaf adaxial and abaxial epidermis. PMID:25538116

  12. Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.

    PubMed

    Vlakh, E G; Stepanova, M A; Korneeva, Yu M; Tennikova, T B

    2016-09-01

    The series of macroporous monolithic molecularly imprinted monoliths differed by pore size, column length (volume) and amount of template used for imprinting was synthesized using methacrylic acid and glycerol dimethacrylate as co-monomers and antibiotic ciprofloxacin as a template. The prepared monoliths were characterized regarding to their permeability, pore size, porosity, and resistance to the flow of a mobile phase. The surface morphology was also analyzed. The slight dependence of imprinting factor on flow rate, as well as its independence on pore size of macroporous molecularly imprinted monolithic media was observed. The column obtained at different conditions exhibited different affinity of ciprofloxacin to the imprinted sites that was characterized with Kdiss values in the range of 10(-5)-10(-4)M. The solid-phase extraction of ciprofloxacin from such biological liquids as human blood serum, human urine and cow milk serum was performed using the developed monolithic columns. In all cases, the extraction was found to be 95.0-98.6%. Additionally, the comparison of extraction of three fluoroqinolone analogues, e.g. ciprofloxacin, levofloxacin and moxifloxacin, from human blood plasma was carried out. Contrary to ciprofloxacin extracted with more than 95%, this parameter did not exceed 40% for its analogues. PMID:27433985

  13. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys

    PubMed Central

    Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke

    2015-01-01

    Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young’s modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material. PMID:26047515

  14. The role of beaded activated carbon's pore size distribution on heel formation during cyclic adsorption/desorption of organic vapors.

    PubMed

    Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2016-09-01

    The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. PMID:27173087

  15. Size Dependence in Hexagonal Mesoporous Germanium: Pore Wall Thickness versus Energy Gap and Photoluminescence

    SciTech Connect

    Armatas, G. S.; Kanatzidis, Mercouri G.

    2010-08-10

    A series of hexagonal mesoporous germanium semiconductors with tunable wall thickness is reported. These nanostructures possess uniform pores of 3.1-3.2 nm, wall thicknesses from 1.3 to 2.2 nm, and large internal BET surface area in the range of 404-451 m2/g. The porous Ge framework of these materials is assembled from the templated oxidative self-polymerization of (Ge9)4- Zintl clusters. Total X-ray scattering analysis supports a model of interconnected deltahedral (Ge9)-cluster forming the framework and X-ray photoelectron spectroscopy indicates nearly zero-valence Ge atoms. We show the controllable tuning of the pore wall thickness and its impact on the energy band gap which increases systematically with diminishing wall thickness. Furthermore, there is room temperature photoluminescence emission which shifts correspondingly from 672 to 640 nm. The emission signal can be quenched via energy transfer with organic molecules such as pyridine diffusing into the pores.

  16. Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark

    2014-05-01

    Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without

  17. Strain-based in-situ study of anion and cation insertion into porous carbon electrodes with different pore sizes

    SciTech Connect

    Black, Jennifer M; Feng, Guang; Fulvio, Pasquale F; Hillesheim, Patrick C; Dai, Sheng; Gogotsi, Yury G.; Cummings, Peter T; Kalinin, Sergei V; Balke, Nina

    2013-01-01

    The expansion of porous carbon electrodes in a room temperature ionic liquid (RTIL) is studied using in-situ atomic force microscopy (AFM). The effect of carbon surface area and pore size/pore size distribution on the observed strain profile and ion kinetics is examined. Also, the influence of potential scan rate on the strain response is investigated. By analyzing the strain data at various potential scan rates information on ion kinetics in the different carbon materials is obtained. Molecular dynamics (MD) simulations are performed to compare with and provide molecular insights into experimental results, which is the first MD work investigating the pressure exerted on porous electrodes under applied potential in a RTIL electrolyte. Using MD, the pressure exerted on the pore wall is calculated as a function of potential/charge for both a micropore (1.2 nm) and a mesopore (7.0 nm). The shape of the calculated pressure profile matches closely with the strain profiles observed experimentally.

  18. Influence of poly-L-lactic acid scaffold's pore size on the proliferation and differentiation of dental pulp stem cells.

    PubMed

    Conde, Cristian Muniz; Demarco, Flávio Fernando; Casagrande, Luciano; Alcazar, José Carlos; Nör, Jacques Eduardo; Tarquinio, Sandra Beatriz Chaves

    2015-01-01

    The aim of this study was to evaluate the influence of the poly-L-lactic acid (PLLA)-based scaffold's pore size on the proliferation and differentiation of dental pulp stem cells (DPSCs). The scaffolds were prepared in pulp chambers of 1-mm-thick tooth slices from third molars using salt crystals (150-250 µm or 251-450 µm) as porogen. DPSC (1x105 cells) were seeded in the scaffolds with different pore sizes, and cultured in 24-well plates. The cell proliferation was evaluated using the WST-1 assay after 3-21 days. Furthermore, RT-PCR was used to assess the differentiation of the DPSCs into odontoblasts, using markers of odontoblastic differentiation (DSPP, DSP-1 and MEPE). RNA from human odontoblasts was used as control. Cell proliferation rate was similar in both scaffolds except at the 14th day period, in which the cells seeded in the scaffolds with larger pores showed higher proliferation (p<0.05). After 21 days DPSCs seeded in both evaluated scaffolds were able of expressing odontoblastic markers DMP-1, DSPP and MEPE. In summary, both scaffolds tested in this study allowed the proliferation and differentiation of DPSCs into odontoblast-like cells. PMID:25831096

  19. Effective porosity and pore-throat sizes of Conasauga Group mudrock: Application, test and evaluation of petrophysical techniques

    SciTech Connect

    Dorsch, J.; Katsube, T.J.; Sanford, W.E. |; Dugan, B.E.; Tourkow, L.M.

    1996-04-01

    Effective porosity (specifically referring to the interconnected pore space) was recently recognized as being essential in determining the effectiveness and extent of matrix diffusion as a transport mechanism within fractured low-permeability rock formations. The research presented in this report was performed to test the applicability of several petrophysical techniques for the determination of effective porosity of fine-grained siliciclastic rocks. In addition, the aim was to gather quantitative data on the effective porosity of Conasauga Group mudrock from the Oak Ridge Reservation (ORR). The quantitative data reported here include not only effective porosities based on diverse measurement techniques, but also data on the sizes of pore throats and their distribution, and specimen bulk and grain densities. The petrophysical techniques employed include the immersion-saturation method, mercury and helium porosimetry, and the radial diffusion-cell method.

  20. A novel synthesis and characterization of ordered meso/macroporous alumina with hierarchical and adjustable pore size.

    PubMed

    Meng, Xiuhong; Duan, Linhai; Qin, Huibo; Xie, Xiaohua; Umar, Ahmad; Wang, Haiyan; Wang, Qiang

    2014-09-01

    The sub-micron polystyrene (PS) microspheres with adjustable size were firstly synthesized using emulsion polymerization method by adding only a small amount of emulsifier. Then, three dimensionally ordered macroporous alumina with mesoporous walls and adjustable macropore size was facilely prepared by the colloidal template method. The alumina and PS spheres were characterized by nanoparticle size analyzer, SEM, XRD and N2 adsorption. The results show that the polystyrene microsphere has adjustable single-sized pore with diameter in the range of 100-350 nm and the yield is higher than that prepared by soap free emulsion polymerization. The alumina materials as prepared using the PS colloidal crystals as the template, had ordered meso-macroporous structures and adjustable apertures. The mesopores (about 3.6 nm) in γ-alumina were formed by controlling the heat treatment of alumina precursor. BET surface area and pore volume of the hierarchical alumina as obtained can reach to 241.3 m2/g and 0.33 cm3/g, respectively. PMID:25924412

  1. Solute Diffusivity of Repacked Volcanic Ash Soil: Effect of Changes in Pore Size Distribution due to Soil Compaction

    NASA Astrophysics Data System (ADS)

    Perera, M. S.; Resurreccion, A. C.; Kawamoto, K.; Komatsu, T.; Moldrup, P.

    2007-12-01

    Diffusion is the dominant spreading mechanism of contaminants dissolved in soil-water in the absence of soil- water flow. Solute diffusion coefficient, Ds, is a key parameter in investigating the fate and transport of contaminants from a polluted soil site. However, only a few studies on quantifying Ds as a function of soil- water content were done, especially for aggregated soils with a dual pore system such as volcanic ash soils (Andisols). In this study, we investigated the effect of bulk density on pore size distribution, and, consequently, on solute diffusivity (Ds/Do, where Do is the solute diffusion coefficient in pure water) in repacked volcanic ash soil taken at 5-10 cm depth at a pasture site in Nishi-Tokyo, Japan. Measurements of Ds were done on sieved and repacked soil at three bulk densities (0.62 g cm-3 , 0.7 g cm-3, and 0.8 g cm-3 ) and at three soil moisture conditions at pF (= log (-ψ; soil-water matric potential in cm H2O)) 1.8, 2, and 3 for each bulk density. Half-cell method was used to measure Ds where the source and sink half cells (each cell of 10-cm length and 4.9 cm in diameter) were joined together and the concentration profile was analyzed after a substantial time to determine Ds. Results showed that at a particular bulk density, Ds decreased with decreasing degree of saturation. This is expected since as the soil becomes drier, water films become disconnected resulting in a decrease in Ds. On the other hand, at a particular degree of saturation, the magnitude of Ds considerably decreases with increasing dry bulk density. As soil is compacted (and thus the increase in bulk density), the observed pore size distribution obtained from soil-water retention curve changes where the mainly inter-aggregate large pores become smaller and soil particles become closer to each other. This reduction in inter-aggregate pore size likely increases the liquid-phase tortuosity resulting in the decrease in Ds/Do at soil-water content at pF < 3. The soil

  2. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release

    PubMed Central

    Atefyekta, Saba; Ercan, Batur; Karlsson, Johan; Taylor, Erik; Chung, Stanley; Webster, Thomas J; Andersson, Martin

    2016-01-01

    Implant-associated infections are undesirable complications that might arise after implant surgery. If the infection is not prevented, it can lead to tremendous cost, trauma, and even life threatening conditions for the patient. Development of an implant coating loaded with antimicrobial substances would be an effective way to improve the success rate of implants. In this study, the in vitro efficacy of mesoporous titania thin films used as a novel antimicrobial release coating was evaluated. Mesoporous titania thin films with pore diameters of 4, 6, and 7 nm were synthesized using the evaporation-induced self-assembly method. The films were characterized and loaded with antimicrobial agents, including vancomycin, gentamicin, and daptomycin. Staphylococcus aureus and Pseudomonas aeruginosa were used to evaluate their effectiveness toward inhibiting bacterial colonization. Drug loading and delivery were studied using a quartz crystal microbalance with dissipation monitoring, which showed successful loading and release of the antibiotics from the surfaces. Results from counting bacterial colony-forming units showed reduced bacterial adhesion on the drug-loaded films. Interestingly, the presence of the pores alone had a desired effect on bacterial colonization, which can be attributed to the documented nanotopographical effect. In summary, this study provides significant promise for the use of mesoporous titania thin films for reducing implant infections. PMID:27022263

  3. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy.

    PubMed

    Zuo, Chao; Sun, Jiasong; Chen, Qian

    2016-09-01

    The incremental gradient approaches, such as PIE and ePIE, are widely used in the field of ptychographic imaging due to their great flexibility and computational efficiency. Nevertheless, their stability and reconstruction quality may be significantly degraded when non-negligible noise is present in the image. Though this problem is often attributed to the non-convex nature of phase retrieval, we found the reason for this is more closely related to the choice of the step-size, which needs to be gradually diminishing for convergence even in the convex case. To this end, we introduce an adaptive step-size strategy that decreases the step-size whenever sufficient progress is not made. The synthetic and real experiments on Fourier ptychographic microscopy show that the adaptive step-size strategy significantly improves the stability and robustness of the reconstruction towards noise yet retains the fast initial convergence speed of PIE and ePIE. More importantly, the proposed approach is simple, nonparametric, and does not require any preknowledge about the noise statistics. The great performance and limited computational complexity make it a very attractive and promising technique for robust Fourier ptychographic microscopy under noisy conditions. PMID:27607676

  4. Thermal Investigations of Periodically Nanoporous Si Films -- The Impact of Structure Sizes and Pore-Edge Amorphization

    NASA Astrophysics Data System (ADS)

    Xu, Dongchao; Zhao, Hongbo; Hao, Qing

    In recent years, nanoporous Si films have been intensively studied as promising thermoelectric materials, which mainly benefits from their dramatically reduced lattice thermal conductivity kL and bulk-like electrical properties.1,2 Despite many encouraging results, challenges still exist in the theoretical explanation of the observed low kL.3 Existing studies mainly attribute the low kL to 1) phonon bandstructure modification by coherent phonon processes in a periodic structure (phononic effects), and/or 2) pore-edge defects. In this work, temperature-dependent kL is measured for nanoporous Si films with different pore sizes and spacing to compare with model predictions. For systematic studies, two fabrication techniques are used to drill the nanopores: 1) reactive ion etching, and 2) a focus ion beam to introduce more pore-edge defects. The results from this work will provide guidance for phonon engineering in general materials with periodic interfaces or boundaries. References: 1. Tang et al., Nano Letters 10, 4279-4283 (2010). 2. Yu et al., Nature Nanotechnology 5, 718-721 (2010). 3. Cahill et al., Applied Physics Reviews 1, 011305/1-45 (2014) Nanoscale thermal transport. II. 2003-2012.

  5. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds

    PubMed Central

    Di Luca, Andrea; Ostrowska, Barbara; Lorenzo-Moldero, Ivan; Lepedda, Antonio; Swieszkowski, Wojcech; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-01-01

    Small fractures in bone tissue can heal by themselves, but in case of larger defects current therapies are not completely successful due to several drawbacks. A possible strategy relies on the combination of additive manufactured polymeric scaffolds and human mesenchymal stromal cells (hMSCs). The architecture of bone tissue is characterized by a structural gradient. Long bones display a structural gradient in the radial direction, while flat bones in the axial direction. Such gradient presents a variation in bone density from the cancellous bone to the cortical bone. Therefore, scaffolds presenting a gradient in porosity could be ideal candidates to improve bone tissue regeneration. In this study, we present a construct with a discrete gradient in pore size and characterize its ability to further support the osteogenic differentiation of hMSCs. Furthermore, we studied the behaviour of hMSCs within the different compartments of the gradient scaffolds, showing a correlation between osteogenic differentiation and ECM mineralization, and pore dimensions. Alkaline phosphatase activity and calcium content increased with increasing pore dimensions. Our results indicate that designing structural porosity gradients may be an appealing strategy to support gradual osteogenic differentiation of adult stem cells. PMID:26961859

  6. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds

    NASA Astrophysics Data System (ADS)

    di Luca, Andrea; Ostrowska, Barbara; Lorenzo-Moldero, Ivan; Lepedda, Antonio; Swieszkowski, Wojcech; van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-03-01

    Small fractures in bone tissue can heal by themselves, but in case of larger defects current therapies are not completely successful due to several drawbacks. A possible strategy relies on the combination of additive manufactured polymeric scaffolds and human mesenchymal stromal cells (hMSCs). The architecture of bone tissue is characterized by a structural gradient. Long bones display a structural gradient in the radial direction, while flat bones in the axial direction. Such gradient presents a variation in bone density from the cancellous bone to the cortical bone. Therefore, scaffolds presenting a gradient in porosity could be ideal candidates to improve bone tissue regeneration. In this study, we present a construct with a discrete gradient in pore size and characterize its ability to further support the osteogenic differentiation of hMSCs. Furthermore, we studied the behaviour of hMSCs within the different compartments of the gradient scaffolds, showing a correlation between osteogenic differentiation and ECM mineralization, and pore dimensions. Alkaline phosphatase activity and calcium content increased with increasing pore dimensions. Our results indicate that designing structural porosity gradients may be an appealing strategy to support gradual osteogenic differentiation of adult stem cells.

  7. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds.

    PubMed

    Di Luca, Andrea; Ostrowska, Barbara; Lorenzo-Moldero, Ivan; Lepedda, Antonio; Swieszkowski, Wojcech; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-01-01

    Small fractures in bone tissue can heal by themselves, but in case of larger defects current therapies are not completely successful due to several drawbacks. A possible strategy relies on the combination of additive manufactured polymeric scaffolds and human mesenchymal stromal cells (hMSCs). The architecture of bone tissue is characterized by a structural gradient. Long bones display a structural gradient in the radial direction, while flat bones in the axial direction. Such gradient presents a variation in bone density from the cancellous bone to the cortical bone. Therefore, scaffolds presenting a gradient in porosity could be ideal candidates to improve bone tissue regeneration. In this study, we present a construct with a discrete gradient in pore size and characterize its ability to further support the osteogenic differentiation of hMSCs. Furthermore, we studied the behaviour of hMSCs within the different compartments of the gradient scaffolds, showing a correlation between osteogenic differentiation and ECM mineralization, and pore dimensions. Alkaline phosphatase activity and calcium content increased with increasing pore dimensions. Our results indicate that designing structural porosity gradients may be an appealing strategy to support gradual osteogenic differentiation of adult stem cells. PMID:26961859

  8. Robust grain size end-members inferred from Quaternary lacustrine sediments across the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Dietze, Elisabeth; Diekmann, Bernhard; Henkel, Karoline; Herb, Christian; Kasper, Thomas; Opitz, Stephan; Zhang, Weilin; Haberzettl, Torsten

    2013-04-01

    The detrital grain size composition of sediments can be explained by different transport processes, each of them sorting sediments in a characteristic way. Transport processes are typically linked to distinct environmental, mainly hydrological variations. However, also tectonic and anthropogenic influence can significantly alter them. Lake basins act as final sediment sinks, where sediments that were sorted by different processes get mixed. This results in multi-modal grain-size distributions of lake sediments. To interpret these distributions descriptive grain size analysis (e.g., the method of moments) may lead to misinterpretations. End-member modelling analysis (EMMA) allows a mathematical unmixing of grain size compositions to geoscientifically-interpretable end-members and quantifying these end-members in space and time. Lakes of different sizes and catchment configurations from the northern, north-eastern, and southern Tibetan Plateau are studied here, including Late Quaternary sediments from Lakes Donggi Cona, Nam Co, Tangra Yum Co and up to 2.7 Ma old lake sediments from the Qaidam basin. Grain size distributions from lake sediments are analysed using EMMA. The most robust grain-size end-members are determined by a variety of similarly-likely model runs. Their relation provides valuable and quantitative information on the most prominent past sediment transport processes and, hence, on past hydrological variations for different times throughout the Quaternary independent of time scale and resolution of the respective lake sediment archive.

  9. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.

    PubMed

    Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B

    2016-08-01

    The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. PMID:27265169

  10. Nanometer scale pores similar in size to the entrance of the ribosomal exit cavity are a common feature of large RNAs

    PubMed Central

    Rivas, Mario; Tran, Quyen; Fox, George E.

    2013-01-01

    The highly conserved peptidyl transferase center (PTC) of the ribosome contains an RNA pore that serves as the entrance to the exit tunnel. Analysis of available ribosome crystal structures has revealed the presence of multiple additional well-defined pores of comparable size in the ribosomal (rRNA) RNAs. These typically have dimensions of 1–2 nm, with a total area of ∼100 Å2 or more, and most are associated with one or more ribosomal proteins. The PTC example and the other rRNA pores result from the packing of helices. However, in the non-PTC cases the nitrogenous bases do not protrude into the pore, thereby limiting the potential for hydrogen bonding within the pore. Instead, it is the RNA backbone that largely defines the pore likely resulting in a negatively charged environment. In many but not all cases, ribosomal proteins are associated with the pores to a greater or lesser extent. With the exception of the PTC case, the large subunit pores are not found in what are thought to be the evolutionarily oldest regions of the 23S rRNA. The unusual nature of the PTC pore may reflect a history of being created by hybridization between two or more RNAs early in evolution rather than simple folding of a single RNA. An initial survey of nonribosomal RNA crystal structures revealed additional pores, thereby showing that they are likely a general feature of RNA tertiary structure. PMID:23940386

  11. An Interface Coassembly in Biliquid Phase: Toward Core-Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size.

    PubMed

    Yue, Qin; Li, Jialuo; Luo, Wei; Zhang, Yu; Elzatahry, Ahmed A; Wang, Xiqing; Wang, Chun; Li, Wei; Cheng, Xiaowei; Alghamdi, Abdulaziz; Abdullah, Aboubakr M; Deng, Yonghui; Zhao, Dongyuan

    2015-10-21

    Core-shell magnetic mesoporous silica microspheres (Magn-MSMs) with tunable large mesopores in the shell are highly desired in biocatalysis, magnetic bioseparation, and enrichment. In this study, a shearing assisted interface coassembly in n-hexane/water biliquid systems is developed to synthesize uniform Magn-MSMs with magnetic core and mesoporous silica shell for an efficient size-selective biocatalysis. The synthesis features the rational control over the electrostatic interaction among cationic surfactant molecules, silicate oligomers, and Fe3O4@RF microspheres (RF: resorcinol formaldehyde) in the presence of shearing-regulated solubilization of n-hexane in surfactant micelles. Through this multicomponent interface coassembly, surfactant-silica mesostructured composite has been uniformly deposited on the Fe3O4@RF microspheres, and core-shell Magn-MSMs are obtained after removing the surfactant and n-hexane. The obtained Magn-MSMs possess excellent water dispersibility, uniform diameter (600 nm), large and tunable perpendicular mesopores (5.0-9.0 nm), high surface area (498-623 m(2)/g), large pore volume (0.91-0.98 cm(3)/g), and high magnetization (34.5-37.1 emu/g). By utilization of their large and open mesopores, Magn-MSMs with a pore size of about 9.0 nm have been demonstrated to be able to immobilize a large bioenzyme (trypsin with size of 4.0 nm) with a high loading capacity of ∼97 μg/mg via chemically binding. Magn-MSMs with immobilized trypsin exhibit an excellent convenient and size selective enzymolysis of low molecular proteins in the mixture of proteins of different sizes and a good recycling performance by using the magnetic separability of the microspheres. PMID:26186087

  12. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.

    PubMed

    Mathews, Asha; Colombus, Soumya; Krishnan, V Kalliyana; Krishnan, Lissy K

    2012-06-01

    In vitro tissue engineering for fabrication of small diameter vascular grafts probably undergoes a sequence of events similar to the in vivo angiogenesis process. In both cases endothelial cells (ECs) play the crucial role in generating a non-thrombogenic vessel lumen and stabilization of ECs in the lumen of new vessels requires the deposition of collagen IV and elastin. Shear stress is an important in vivo signal for inducing synthesis of extracellular matrix (ECM) components, collagen IV and elastin, which form the basement membrane in the case of new blood vessels. Stimulation of ECs may therefore produce collagen and elastin in the lumen of a polymeric scaffold during the vascular tissue-engineering process if appropriate biochemical and mechanical signals are presented. However, the morphology and physicochemical characteristics of polymer scaffolds may also be crucial for EC monolayer formation and ECM deposition. In this study, tubular scaffolds made of biodegradable poly(ε-caprolactone) (PCL) with biomimetic fibrin-based coating were evaluated to compare the effects of pore sizes on surface coverage of ECs and synthesis of ECM under dynamic culture conditions. Actin was stained for identification of cells, while specific antibodies were used for locating collagen IV and elastin deposition on the scaffolds. It was found that dynamic seeding of ECs in the lumen stabilized the cells and aligned them along the direction of flow, with better deposition of insoluble elastin and collagen IV when ∼75% of pores were < 24 µm in diameter. In addition, monolayer on the ε-PCL scaffolds with lower pore sizes was found to produce nitric oxide (NO), indicating a non-thrombogenic EC layer in the lumen. PMID:21800434

  13. Topical application of a cleanser containing extracts of Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis reduces skin oil content and pore size in human skin

    PubMed Central

    LEE, BO MI; AN, SUNGKWAN; KIM, SOO-YEON; HAN, HYUN JOO; JEONG, YU-JIN; LEE, KYOUNG-ROK; ROH, NAM KYUNG; AHN, KYU JOONG; AN, IN-SOOK; CHA, HWA JUN

    2015-01-01

    The effects of skin pores on skin topographic features can be reduced by decreasing excessive production and accumulation of sebum and elimination of comedones. Therefore, a cosmetic cleanser that regulates sebum homeostasis is required. In the present study, the effects of a cosmetic cleanser that contained Diospyros kaki folium, Polygonum cuspidatum and Castanea crenata var. dulcis (DPC) was examined on the removal of sebum and on skin pore size. Healthy volunteers (n=23) aged 20–50 years were asked to apply the test materials to the face. Skin oil content, pore size, pore number and extracted sebum surface area were measured using various measurement methods. All the measurements were performed at pre- and post-application of the test materials. When the cosmetic cleanser containing DPC was applied to the skin, the oil content decreased by 77.3%, from 6.19 to 1.40. The number of skin pores decreased by 24.83%, from 125.39 to 94.23. Skin pore size decreased from 0.07 to 0.02 µm3 (71.43% decrease). The amount of extracted sebum increased by 335% when the DPC cleanser was used. Compared to the control cleanser, skin oil content was significantly decreased when the cleanser that contained DPC was used. The cleanser containing DPC also decreased pore size and number. Finally, the DPC cleanser easily removed solidified sebum from the skin. PMID:26137233

  14. Multi-scale analysis in carbonates by X-ray microtomography: Characterization of the porosity and pore size distribution

    NASA Astrophysics Data System (ADS)

    Fernandes, Jaquiel S.; Nagata, Rodrigo; Moreira, Anderson C.; Fernandes, Celso P.; Appoloni, Carlos R.

    2013-05-01

    The porous systems of reservoir rocks present a complex geometry, involving aspects of shape of pores (morphology) and connectivity between the pores (topology). The macroscopic physical properties of these materials are strongly dependent of their microstructures. Based on these aspects, the present study has as main objective the characterization of the porous system geometry and computational determination of petrophysics properties of carbonate reservoir rocks through the X-ray microtomography methodology. Samples were microtomographed with the microtomographs Skyscan model 1172, installed at the PETROBRAS Research and Development Center (CENPES), Rio de Janeiro-RJ, Brazil and model 1173, installed at Sedimentary Geology Laboratory (LAGESD) in the Federal University of Rio de Janeiro (UFRJ). Two samples of carbonates were measured, Travertine and Dolomite, with spatial resolutions of 7 μm and 9.8 μm and 1.3 μm, 7 μm and 17 μm, respectively for the travertine and dolomite. With the data collected in the acquisitions, 900 transversal sections were reconstructed for each one of the referred resolutions. For the sample of dolomite, the average porosity found was 21.64%, 20.92% and 15.97% for resolutions of 1.3 μm, 7 μm and 17 μm, respectively. For the sample of travertine, the average porosity was 7.80 % and 7.52 % for resolutions of 7 μm and 9.8 μm, respectively. For the sample of dolomite, the pore size distribution showed that 50 % of the porous phase has pores with radius up to 37.6 μm, 84.6 μm and 84.4 μm, for the spatial resolutions of 1.3 μm, 7 μm and 17 μm, respectively. For the sample of travertine, 50 % of the pores have radius up to 148.1 μm and 158.1 μm, for the spatial resolutions of 7 μm and 9.8 μm.

  15. Finite-size effects in the microscopic structure of a hard-sphere fluid in a narrow cylindrical pore

    NASA Astrophysics Data System (ADS)

    Román, F. L.; White, J. A.; González, A.; Velasco, S.

    2006-04-01

    We examine the microscopic structure of a hard-sphere fluid confined to a small cylindrical pore by means of Monte Carlo simulation. In order to analyze finite-size effects, the simulations are carried out in the framework of different statistical mechanics ensembles. We find that the size effects are specially relevant in the canonical ensemble where noticeable differences are found with the results in the grand canonical ensemble (GCE) and the isothermal isobaric ensemble (IIE) which, in most situations, remain very close to the infinite system results. A customary series expansion in terms of fluctuations of either the number of particles (GCE) or the inverse volume (IIE) allows us to connect with the results of the canonical ensemble.

  16. The effect of pore throat size and injection flowrate on the determination and sensitivity of different capillary number values at high-capillary-number flow in porous media

    NASA Astrophysics Data System (ADS)

    Yadali Jamaloei, Benyamin; Ahmadloo, Farid; Kharrat, Riyaz

    2010-10-01

    This study examines the effect of pore throat size and injection flowrate on the values of the pore-scale capillary number, the Newtonian-fluid capillary number and the apparent capillary number (Nc1, Nc2 and Nc3, respectively) and their sensitivity to change in high-capillary-number flow through porous media, which occurs in polymer-assisted dilute surfactant flooding (PADSF). Additionally, the influence of pore throat size and injection flowrate on oil recovery at breakthrough and at the end of displacement (ultimate) and the relationship between the effective shear rate γeff and the porous medium-dependent shift factor α are discussed. The results indicated that Nc2 was the smallest and Nc3 was the largest value. The difference between Nc2 and Nc3 is due to the increase in apparent viscosity of the polymer-contained surfactant solution during the flow through porous media and the change in Nc3 should be utilized to characterize the macroscopic behavior of the PADSF. Generally, the decrease in pore throat size and the increase in injection flowrate caused an increase in the ultimate oil recovery and Nc3. Moreover, the oil recovery at breakthrough decreased with an increase in pore throat size and injection flowrate. Finally, the rate of change of γeff, with change in α, increased almost uniformly with a decrease in pore throat size and an increase in injection flowrate.

  17. Slip-weakening zone sizes at nucleation of catastrophic subaerial and submarine landslides by gradually increasing pore pressure

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Rice, J. R.

    2011-12-01

    We address the nucleation of dynamic landslide rupture in response to gradual pore pressure increases. Nucleation marks the onset of acceleration of the overlying slope mass due to the suddenly rapid enlargement of a sub-surface zone of shear failure, previously deforming quasi-statically. We model that zone as a planar surface undergoing initially linear slip-weakening frictional failure within a bordering linear-elastic medium. The results are also relevant to earthquake nucleation. The sub-surface rupture zone considered runs parallel to the free surface of a uniform slope, under a 2D plane-strain deformation state. We show results for ruptures with friction coefficients following linear slip weakening (i.e., the residual friction is not yet reached). For spatially broad increases in pore pressure, the nucleation length depends on a ratio of depth to a cohesive zone length scale. In the very broad-increase limit, a direct numerical solution for nucleation lengths compares well with solutions to a corresponding eigenvalue problem (similar to Uenishi and Rice [JGR '03]), in which spatial variations in normal stress are neglected. We estimate nucleation lengths for subaerial and submarine conditions using data [e.g., Bishop et al., Géotech. '71; Stark et al., JGGE '05] from ring-shear tests on sediments (peak friction fp = 0.5, frictional slip-weakening rate within the range w = -df/d(slip) = 0.1/cm-1/cm). We assume that only pre-stresses, and not material properties, vary with depth. With such fp and w, we find for a range of subsurface depths and shear moduli μ that nucleation lengths are typically several hundred meters long for shallow undersea slopes, and up to an order of magnitude less for steeper slopes on the Earth's surface. In the submarine case, this puts nucleation lengths in a size range comparable to observed pore-pressure-generated seafloor disturbances as pockmarks [e.g., Gay et al., MG '06].

  18. A general model for nonwetting phase relative permeability of disturbed porous media with lognormal pore size distribution

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Mohanty, B.

    2013-12-01

    Describing convective nonwetting phase flow in unsaturated porous media requires knowledge of relative nonwetting pahse permeability. This study was mainly conducted to formulate a general nonwetting pahse relative permeability model for porous media with lognormal pore size distribution based on Kosugi (1999) work for unsaturated relative hydraulic conductivity. The model-data comparison showed that the existing commonly used Burdine and Mualem permeability model could overestimate experimental relative nonwetting phase permeability data. The sensitivity analysis of the permeability model emphasized the importance of different pore tortuosity-connectivity value for gas and water phase. Subsequently, the suggested modified Burdine and Mualem permeability model for (alpha,beta,eta) in the general nonwetting phase permeability model should be (2.5, 2, 1) and (2, 1, 2) respectively. These two suggested models have the lowest mean root mean square error (RMSE) among the investigated permeability models. This finding could present more accurate permeability model parameterization in the multiphase subsurface flow modeling under isothermal and non-isothermal conditions.

  19. Characterization and structural investigation of fractal porous-silica over an extremely wide scale range of pore size.

    PubMed

    Ono, Yusuke; Mayama, Hiroyuki; Furó, István; Sagidullin, Alexander I; Matsushima, Keiichiro; Ura, Haruo; Uchiyama, Tomoyuki; Tsujii, Kaoru

    2009-08-01

    We have succeeded in creating Menger sponge-like fractal body, i.e., porous-silica samples with Menger sponge-like fractal geometries, by a novel template method utilizing template particles of alkylketene dimer (AKD) and a sol-gel synthesis of tetramethyl orthosilicate (TMOS). We report here the first experimental results on characterization and structural investigations of the fractal porous-silica samples prepared with various conditions such as calcination temperature and packing condition of the template particles. In order to characterize the fractal porous-silica samples, pore volume distribution, porosity and specific surface area were measured over an extremely wide scale from 1 nm to 100 microm by means of mercury porosimetry, (1)H NMR cryoporometry, nitrogen gas adsorption experiments together with direct evaluations of cross-sectional fractal dimension D(cs), and size limits of D(cs). We have found that the pore volume distribution and specific surface area of the fractal porous-silica samples can be discussed in terms of different fractal porous structures at different scale regions. PMID:19406424

  20. Modulation of pore sizes of titanium dioxide photocatalysts by a facile template free hydrothermal synthesis method: implications for photocatalytic degradation of rhodamine B.

    PubMed

    Rasalingam, Shivatharsiny; Wu, Chia-Ming; Koodali, Ranjit T

    2015-02-25

    Mesoporous TiO2 photocatalysts were prepared in ethanol media by using relatively green, template free sol-gel technique. A mild hydrothermal treatment procedure was employed to tune the pore sizes of the materials. Comprehensive techniques that include powder X-ray diffraction, diffuse reflectance spectroscopy, specific surface area analysis, electron microscopy, FT-IR, TGA, and ζ-potential measurements were used to characterize the titania materials. Porosity (pore size and pore volume) of the materials were found to be key factors for the variation in the rate of photocatalytic degradation of rhodamine B; in addition to specific surface area, and surface hydroxyl groups. An increase in porosity permits effective transport of the dye molecules resulting in an increase in the rate of the degradation in materials having larger pores. A detailed electrospray ionization-mass spectrometric (ESI-MS) study was carried out for selected materials to identify photodegraded intermediates and products formed during the degradation of rhodamine B. In addition, experiments were also carried out to understand the role of reactive oxygen species (ROS). In summary, this work provides a simple way to tune pore sizes without the use of any template and an insight into the influence of pore size for the photocatalytic degradation of rhodamine B. PMID:25633643

  1. Synthesis of microtubes with a surface of "house of cards" structure via needlelike particles and control of their pore size.

    PubMed

    Mitsuhashi, Kohei; Tagami, Naoki; Tanabe, Katsuyuki; Ohkubo, Takahiro; Sakai, Hideki; Koishi, Masumi; Abe, Masahiko

    2005-04-12

    The conditions for synthesizing microtubes with a surface of "house of cards" structure via needlelike particles were examined in detail. Magnesium carbonate trihydrate was formed as a metastable phase in the reaction process using magnesium hydroxide and carbon dioxide as starting materials. Subsequently, in the formation of basic magnesium carbonate from magnesium carbonate trihydrate, microtubes with a surface of house of cards structure were obtained via needlelike particles of magnesium carbonate trihydrate under certain conditions where the temperature and added amount of sodium hydroxide were properly controlled. The pore size of the microtubes could be controlled within a range of 0.5-6 microm by adjusting the condition of needlelike particle formation. In addition, the sustainability of naphthalene release from the microtube was found to be about 6 times higher than that from naphthalene crystal. PMID:15807617

  2. Fabrication of porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation approach

    NASA Astrophysics Data System (ADS)

    Liu, Shanqin; Cai, Mingle; Deng, Renhua; Wang, Jianying; Liang, Ruijing; Zhu, Jintao

    2014-02-01

    A facile and versatile route to prepare porous polymer microparticles with tunable pore size and density through the combination of phase separation and emulsion-solvent evaporation method is demonstrated. When volatile organic solvent ( e.g., chloroform) diffuses through the aqueous phase containing poly(vinyl alcohol) (PVA) and evaporates, n-hexadecane (HD) and polystyrene (PS) in oil-in-water emulsion droplets occur to phase separate due to the incompatibility between PS and HD, ultimately yielding microparticles with porous structures. Interestingly, density of the pores (pore number) on the shell of microparticles can be tailored from one to hundreds by simply varying the HD concentration and/ or the rate of solvent evaporation. Moreover, this versatile approach for preparing porous microparticles with tunable pore size and density can be applied to other types of hydrophobic polymers, organic solvents, and alkanes, which will find potential applications in the fields of pharmaceutical, catalyst carrier, separation, and diagnostics.

  3. Development of optimized filter for TARC and developer with the goal of having small pore size and minimizing microbubble reduction

    NASA Astrophysics Data System (ADS)

    Umeda, Toru; Tsuzuki, Shuichi; Boucher, Mikal; Dinh, Hung; Ma, L. C.; Boten, Russell

    2006-03-01

    Microbubble in filtering Tetra Methyl Ammonium Hydroxide (TMAH) were counted to find the filter which generates the lowest microbubble in resist development process. Hydrophilic Highly Asymmetric Poly Aryl Sulfone (HAPAS) filter was developed and tested. The result showed that generation of microbubbles was as low as that of the Nylon 6,6 filter which had the best performance to date. Microbubbles in TARC are counted using the same method as the developer testing described above except for mainstream flow rate and the counter model. The results show that counts in the small channel could be reduced by smaller pore size filter such as conventional 0.02um rated filter. However, counts in the larger channel could be reduced by larger pore size filter such as 0.1um rated filter. Based on the above results, 0.02um rated asymmetric nylon 6,6 filter was developed. As a result, 0.02um rated asymmetric Nylon 6,6 filter achieved relatively lower count at any channel as compared to the standard 0.04um rated Nylon 6,6 filter. Nylon 6,6 filters were installed in resist as an improvement for preventive maintenance (PM) at Wafertech, L.L.C. instead of the currently used filter which has more hydrophobic membrane material. Using the Nylon 6,6 membrane, the number of defects immediately after filter change greatly decreased from 493 pcs of the more hydrophobic filter to 6 pcs/wafer, then after purging with about 250ml, the number of defects reduced within the process specification while the more hydrophobic filter had required 2L purging and 12-36 hours of PM time.

  4. Non-linear behaviour of electrical parameters in porous, water-saturated rocks: a model to predict pore size distribution

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya; Santarato, Giovanni; Abu Zeid, Nasser

    2015-08-01

    In this paper, two separate but related goals are tackled. The first one is to demonstrate that in some saturated rock textures the non-linear behaviour of induced polarization (IP) and the violation of Ohm's law not only are real phenomena, but they can also be satisfactorily predicted by a suitable physical-mathematical model, which is our second goal. This model is based on Fick's second law. As the model links the specific dependence of resistivity and chargeability of a laboratory sample to the injected current and this in turn to its pore size distribution, it is able to predict pore size distribution from laboratory measurements, in good agreement with mercury injection capillary pressure test results. This fact opens up the possibility for hydrogeophysical applications on a macro scale. Mathematical modelling shows that the chargeability acquired in the field under normal conditions, that is at low current, will always be very small and approximately proportional to the applied current. A suitable field test site for demonstrating the possible reliance of both resistivity and chargeability on current was selected and a specific measuring strategy was established. Two data sets were acquired using different injected current strengths, while keeping the charging time constant. Observed variations of resistivity and chargeability are in agreement with those predicted by the mathematical model. These field test data should however be considered preliminary. If confirmed by further evidence, these facts may lead to changing the procedure of acquiring field measurements in future, and perhaps may encourage the design and building of a new specific geo-resistivity meter. This paper also shows that the well-known Marshall and Madden's equations based on Fick's law cannot be solved without specific boundary conditions.

  5. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    NASA Astrophysics Data System (ADS)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  6. A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology

    NASA Astrophysics Data System (ADS)

    Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki

    2015-11-01

    Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size

  7. Two-dimensional lattice-Boltzmann simulation of size exclusion effects during colloidal transport in pore-scale flow channels

    SciTech Connect

    H. Basagaoglu; Meakin, P.; S. Succi; Redden, George D; T.R. Ginn

    2008-05-01

    Experimental investigations indicate that colloidal particles are transported more rapidly than soluble tracers through porous and fractured media. The prevailing in- terpretation is that colloids are confined to larger pores, larger channels or regions within channels where flow is more rapid. A lattice-Boltzmann modeling approach was used to analyze how size-dependent exclusion from low velocity fields in chan- nels can lead to accelerated transport of an inert non-Brownian colloidal particle in low-Reynolds number flows in two-dimensional smooth-walled and rough-walled channels. The simulations were based on pore-scale particle-fluid hydrodynamics without direct interactions between the particle surface and the channel surface. For the smooth-walled channel, the particle consistently drifted towards the center- line and traveled faster than the average fluid velocity. In rough-walled channels, differences between the velocity of the particle and the average velocity of the fluid displayed stronger variations than in the smooth-walled channel. Surface roughness increased the residence time of the particle in the flow channel and modified its trajectories differently in each flow regime. The final position (at the channel exit) and the average velocity of the particle in the rough-walled flow channel were sen- sitive to the release location of the particle, the flow strength, and the magnitude of the surface roughness in the channel. Under all flow conditions investigated, a large particle had a longer residence time in rough-walled flow channels, but drifted Preprint submitted to Elsevier Science 19 September 2006 toward the centerline more strongly than a smaller particle as it approached the channel walls.

  8. Magnetic relaxation -- coal swelling, extraction, pore size. Quarterly technical progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Doetschman, D.C.

    1993-12-31

    During this quarter, the CW (continuous wave) and pulsed EPR (electron paramagnetic resonance) have been examined of the swelled Argonne Premium whole coals and the swelled residues of these coals. The CW EPR spectra will not be of high quality due to the unexpectedly microwave-lossy character of the pyridine used for swelling. Being relatively unaffected by this characteristic, the pulsed EPR measurements of the spin relaxation times of the broad (non-inertinite) and narrow (inertinite) macerals have been completed. Although detailed analyses of these results have not yet been done, marked differences have been found between the relaxation times of the swelled and unswelled coals and residues. The most startling are the less than 200 nsec times T{sub 1} of the spin-lattice relaxation of the inertinite radicals in the swelled samples. The T{sub 1} of this maceral in the unswelled coal were approaching 1 millisecond. The T{sub 1} contrast was much less pronounced between the swelled and non-swelled non-inertinite macerals. The prospects of significant progress in coal pore size measurements with xenon and NMR (nuclear magnetic resonance) have dimmed since the beginning of this project. This assessment is based on the dearth of these types of studies, a paper at a contractors` meeting on this subject that did not materialize, and discussions with colleagues with experience with the technique in coals. Instead, the authors have been developing a pulsed EPR technique for the spin probing of molecular motion to be applied to pores in carbonaceous materials. This report contains a copy of a nearly final draft of a paper being prepared on the development of this technique, entitled {open_quotes}Physical Characterization of the State of Motion of the Phenalenyl Spin Probe in Cation-Exchanged Faujasite Zeolite Supercages with Pulsed EPR.{close_quotes}

  9. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-11-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  10. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    PubMed

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  11. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    PubMed Central

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  12. Mesoporous calcium–silicon xerogels with mesopore size and pore volume influence hMSC behaviors by load and sustained release of rhBMP-2

    PubMed Central

    Song, Wenhua; Li, Xiangde; Qian, Jun; Lv, Guoyu; Yan, Yonggang; Su, Jiacan; Wei, Jie

    2015-01-01

    Mesoporous calcium–silicon xerogels with a pore size of 15 nm (MCS-15) and pore volume of 1.43 cm3/g were synthesized by using 1,3,5-mesitylene (TMB) as the pore-expanding agent. The MCS-15 exhibited good degradability with the weight loss of 50 wt% after soaking in Tris-HCl solution for 56 days, which was higher than the 30 wt% loss shown by mesoporous calcium–silicon xerogels with a pore size of 4 nm (MCS-4). The pore size and pore volume of MCS-15 had significant influences on load and release of recombinant human bone morphogenetic protein-2 (rhBMP-2). The MCS-15 had a higher capacity to encapsulate a large amount of rhBMP-2; it could adsorb 45 mg/g of rhBMP-2 in phosphate-buffered saline after 24 hours, which was more than twice that with MCS-4 (20 mg/g). Moreover, the MCS-15 system exhibited sustained release of rhBMP-2 as compared with MCS-4 system (showing a burst release). The MCS-15/rhBMP-2 system could promote the proliferation and differentiation of human mesenchymal stem cells, showing good cytocompatibility and bioactivity. The results indicated that MCS-15, with larger mesopore size and higher pore volume, might be a promising carrier for loading and sustained release of rhBMP-2, which could be used as bone repair material with built-in osteoinduction function in bone reconstruction. PMID:25784801

  13. On dependence of mechanical properties of brittle material on partial concentrations of different sized pores in its structure in a wide range of porosity

    NASA Astrophysics Data System (ADS)

    Konovalenko, Igor S.; Smolin, Alexey Yu.; Psakhie, Sergey G.

    2015-10-01

    2D and 3D models of mechanical behavior of brittle porous material under uniaxial compression loading were developed in the framework of the movable cellular automaton method. The considered material was characterized by pore size distribution function having two maxima. On the basis of simulation results the dependence of the strength properties of brittle porous material on its total porosity and partial porosities corresponding to pores with different size was revealed. The change in internal structure of material in a wide range of mentioned parameters was analyzed. The main structural factors influencing compression strength of the material at various combinations of values of porosity parameters were identified.

  14. Robust SMES controller design for stabilization of inter-area oscillation considering coil size and system uncertainties

    NASA Astrophysics Data System (ADS)

    Ngamroo, Issarachai

    2010-12-01

    It is well known that the superconducting magnetic energy storage (SMES) is able to quickly exchange active and reactive power with the power system. The SMES is expected to be the smart storage device for power system stabilization. Although the stabilizing effect of SMES is significant, the SMES is quite costly. Particularly, the superconducting magnetic coil size which is the essence of the SMES, must be carefully selected. On the other hand, various generation and load changes, unpredictable network structure, etc., cause system uncertainties. The power controller of SMES which is designed without considering such uncertainties, may not tolerate and loses stabilizing effect. To overcome these problems, this paper proposes the new design of robust SMES controller taking coil size and system uncertainties into account. The structure of the active and reactive power controllers is the 1st-order lead-lag compensator. No need for the exact mathematical representation, system uncertainties are modeled by the inverse input multiplicative perturbation. Without the difficulty of the trade-off of damping performance and robustness, the optimization problem of control parameters is formulated. The particle swarm optimization is used for solving the optimal parameters at each coil size automatically. Based on the normalized integral square error index and the consideration of coil current constraint, the robust SMES with the smallest coil size which still provides the satisfactory stabilizing effect, can be achieved. Simulation studies in the two-area four-machine interconnected power system show the superior robustness of the proposed robust SMES with the smallest coil size under various operating conditions over the non-robust SMES with large coil size.

  15. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II

    SciTech Connect

    Fleischer, A.; O'Neill, M.A.; Ehwald, R.

    1999-11-01

    The walls of suspension-cultured Chenopodium album L. cells grown continually for more than 1 year on B-deficient medium contained monomeric rhamnogalacturonan (mRG-II) but not the borate ester cross-linked RG II dimer (dRG-II-B). The walls of these cells had an increased size limit for dextran permeation, which is a measure of wall pore size. Adding boric acid to growing B-deficient cells resulted in B binding to the wall, the formation of dRG-II-B from mRG-II, and a reduction in wall pore size within 10 min. The wall pore size of denatured B-grown cells was increased by treatment at pH {le} 2.0 or by treatment with Ca{sup 2+}-chelating agents. The acid-mediated increase in wall pore size was prevented by boric acid alone at pH 2.0 and by boric acid together with Ca{sup 2+}, but not by Na{sup +} or Mg{sup 2+} ions at pH 1.5. The Ca{sup 2+}-chelator-mediated increase in pore size was partially reduced by boric acid. Their results suggest that B-mediated cross-linking of RG-II in the walls of living plant cells generates a pectin network with a decreased size exclusion limit for polymers. The formation, stability, and possible functions of a borate ester cross-linked pectic network in the primary walls of nongraminaceous plant cells are discussed.

  16. The Pore Size of Non-Graminaceous Plant Cell Walls Is Rapidly Decreased by Borate Ester Cross-Linking of the Pectic Polysaccharide Rhamnogalacturonan II1

    PubMed Central

    Fleischer, Axel; O'Neill, Malcolm A.; Ehwald, Rudolf

    1999-01-01

    The walls of suspension-cultured Chenopodium album L. cells grown continually for more than 1 year on B-deficient medium contained monomeric rhamnogalacturonan II (mRG-II) but not the borate ester cross-linked RG II dimer (dRG-II-B). The walls of these cells had an increased size limit for dextran permeation, which is a measure of wall pore size. Adding boric acid to growing B-deficient cells resulted in B binding to the wall, the formation of dRG-II-B from mRG-II, and a reduction in wall pore size within 10 min. The wall pore size of denatured B-grown cells was increased by treatment at pH ≤ 2.0 or by treatment with Ca2+-chelating agents. The acid-mediated increase in wall pore size was prevented by boric acid alone at pH 2.0 and by boric acid together with Ca2+, but not by Na+ or Mg2+ ions at pH 1.5. The Ca2+-chelator-mediated increase in pore size was partially reduced by boric acid. Our results suggest that B-mediated cross-linking of RG-II in the walls of living plant cells generates a pectin network with a decreased size exclusion limit for polymers. The formation, stability, and possible functions of a borate ester cross-linked pectic network in the primary walls of nongraminaceous plant cells are discussed. PMID:10557231

  17. Effect of rock composition and texture on pore size distributions in shales: Applications in low field nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Saidian, Milad

    There are various methods to assess the pore size distribution (PSD) of porous materials; amongst all, NMR is the only technique that can be utilized for subsurface applications. The key parameter to transform NMR time domain response to PSD size domain data is surface relaxivity. The common practice is to consider a constant surface relaxivity throughout a well, formation or rock type regardless of the variations in rock compositions; this results in inaccurate PSD estimation using NMR log data. In this thesis I established a methodology to calculate the surface relaxivity in shales considering the rock composition and texture. I present the steps to achieve this goal in three steps: (a) Understanding the challenges of NMR acquisition, analysis and interpretation in shales, (b) Measuring the porosity, PSD and surface area and providing a practice to check the reliability of these measurements in shales, (c) Developing a methodology to calculate the surface relaxivity honoring the variations paramagnetic mineral content, susceptibility, distribution and texture. Application of NMR in unconventional rocks requires adjustment of NMR data acquisition and analysis to the unique properties of these rocks such as high level of heterogeneity, complex pore structure, fine grains, and presence of nano-scale pores. Identifying these challenges improves our understanding of NMR response in shales and increases the quality of the acquired and analyzed data. Calculation of surface relaxivity, as a measure of how fluids and rock surfaces react, requires reliable measurement of different petrophysical properties of the rock such as porosity, total specific surface area, and PSD using other techniques. I studied the reliability of different techniques to measure these petrophysical properties for shales by performing a thorough comparative study of porosity and PSD for different shale formations. The result of my study showed that clay type and content, total organic carbon (TOC

  18. Nonlinear Effect of Moisture Content on Effective Thermal Conductivity of Building Materials with Different Pore Size Distributions

    NASA Astrophysics Data System (ADS)

    Liu, Yanfeng; Ma, Chao; Wang, Dengjia; Wang, Yingying; Liu, Jiaping

    2016-06-01

    Understanding the quantitative relationship between the effective thermal conductivity and the moisture content of a material is required to accurately calculate the envelope heat and mass transfer and, subsequently, the building energy consumption. We experimentally analyzed the pore size distributions and porosities of common building materials and the influence of the moisture content on the effective thermal conductivity of building materials. We determined the quantitative relationship between the effective thermal conductivity and moisture content of building materials. The results showed that a larger porosity led to a more significant effect of the moisture content on the effective thermal conductivity. When the volumetric moisture content reached 10 %, the thermal conductivities of foam concrete and aerated concrete increased by approximately 200 % and 100 %, respectively. The effective thermal conductivity increased rapidly in the low moisture content range and increased slowly in the high moisture content range. The effective thermal conductivity is related to the moisture content of the materials through an approximate power function. As the moisture content in the walls of a new building stabilizes, the effective thermal conductivity of normal concrete varies only slightly, whereas that of aerated concrete varies more significantly. The effective thermal conductivity of the material is proportional to the relative humidity of the environment. This trend is most noticeable when the wall material is aerated concrete.

  19. Effects of pore size, implantation time, and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants.

    PubMed

    Farrell, Brad J; Prilutsky, Boris I; Ritter, Jana M; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2014-05-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40-100 μm and Large, 100-160 μm), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to seven groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all three types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4-6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p < 0.05). Only one case of infection was observed (infection rate 2.9%). Small and Nano groups showed the same implant extrusion rate which was lower than the Large group rate (0.06 ± 0.01 vs. 0.16 ± 0.02 cm/week; p < 0.05). Ingrowth area was comparable in the Small, Large, and Nano implants. However, qualitatively, the Nano implants showed greatest cellular inhabitation within first 3 weeks. We concluded that percutaneous porous titanium implants allow for skin integration with the potential for a safe seal. PMID:23703928

  20. Effects of pore size, implantation time and nano-surface properties on rat skin ingrowth into percutaneous porous titanium implants

    PubMed Central

    Farrell, Brad J.; Prilutsky, Boris I.; Ritter, Jana M.; Kelley, Sean; Popat, Ketul; Pitkin, Mark

    2013-01-01

    The main problem of percutaneous osseointegrated implants is poor skin-implant integration, which may cause infection. This study investigated the effects of pore size (Small, 40–100 microns and Large, 100–160 microns), nanotubular surface treatment (Nano), and duration of implantation (3 and 6 weeks) on skin ingrowth into porous titanium. Each implant type was percutaneously inserted in the back of 35 rats randomly assigned to 7 groups. Implant extrusion rate was measured weekly and skin ingrowth into implants was determined histologically after harvesting implants. It was found that all 3 types of implants demonstrated skin tissue ingrowth of over 30% (at week 3) and 50% (at weeks 4–6) of total implant porous area under the skin; longer implantation resulted in greater skin ingrowth (p<0.05). Only one case of infection was observed (infection rate 2.9%). Small and Nano groups showed the same implant extrusion rate which was lower than the Large group rate (0.06±0.01 vs. 0.16 ± 0.02 cm/week; p<0.05). Ingrowth area was comparable in the Small, Large and Nano implants. However, qualitatively, the Nano implants showed greatest cellular inhabitation within first three weeks. We concluded that percutaneous porous titanium implants allow for skin integration with the potential for a safe seal. PMID:23703928

  1. Effects of pretreatment on the surface chemistry and pore size properties of nitrogen functionalized and alkylated granular activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Jiajun; Zhai, Yunbo; Chen, Hongmei; Li, Caiting; Zeng, Guangming; Pang, Daoxiong; Lu, Pei

    2012-12-01

    In this paper, granular activated carbon (GAC) from coconut shell was pretreated by HNO3, H2O2 and urea-formaldehyde resin, respectively. Then the obtained materials were functionalized in the same way for nitrogen group, and then alkylated. Effects of pretreatment on the surface chemistry and pore size of modified GACs were studied. Surface area and micropore volume of modified GAC which pretreated by HNO3 were 723.88 m2/g and 0.229 cm3/g, respectively, while virgin GAC were 742.34 m2/g and 0.276 cm3/g. Surface area and micropore volume decrease of the modified GACs which pretreated by the others two methods were more drastically. The types of groups presented were analyzed by electrophoresis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Nsbnd CH3 group and Cdbnd N group were detected on the surfaces of these three kinds of modified GACs. Results of XPS showed that the nitrogen functions of modified GAC which pretreated by H2O2 was 4.07%, it was more than that of the others two pretreatment methods. However, the modified GAC which pretreated by urea-formaldehyde resin was fixed more pyridine structure, which structure percentage was 45.88%, in addition, there were more basic groups or charge on the surface than the others.

  2. Visible-light absorption in 2D covalent triazine framework: enhanced by interlayer coupling and pore size increasing

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Zhao, Jijun; Dalian University of Technology Collaboration

    2014-03-01

    Compared with traditional bulk materials, two-dimensional (2D) crystals have some intrinsic advantages as photocatalysis owing to the limited thickness and large surface area. So far, many monolayer materials have been shown to be potential photocatalysis for water splitting from both theoretical calculations and experiments; while most of them are inorganic materials. In contrast, g-carbon nitride, as a starting successful case, motivates us to explore 2D organic semiconductors, which have not yet well investigated. Using first principles calculations, we predicted a family of 2D covalent triazine framework (CTF) as a promising visible-light-driven photocatalyst by studying their electronic structures, work function, CBM/VBM position, and optical absorption spectra. Moreover, we found that multilayer CTF have much better visible-light adsorption than a single layer induced by the interlayer coupling. In addition, controlled construction of such CTF from suitable organic subunit pave the way for connection between the optical energy gap of CTF and pore size. The insights from our study not only enrich the family of organic semiconductor photocatalyst, but also are very helpful in designing and assembling CTF subunits for optimal performance.

  3. PARTICLE SIZE SEGREGATION DURING HAND PACKING OF COARSE GRANULAR MATERIALS AND IMPACTS ON LOCAL PORE-SCALE STRUCTURE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils and sediments consist of granular particles with an intricate network of pores in between. The structure and orientation of these pores will determine how the material transports fluids and contaminants. A common practice in soil science to simplify experiments and to achieve a homogeneous med...

  4. Deriving NMR surface relaxivities, pore size distributions and water retention curves by NMR relaxation experiments on partially de-saturated rocks

    NASA Astrophysics Data System (ADS)

    Mohnke, O.; Nordlund, C. L.; Klitzsch, N.

    2013-12-01

    Nuclear magnetic resonance (NMR) is a method used over a wide field of geophysical applications to non-destructively determine transport and storage properties of rocks and soils. In NMR relaxometry signal amplitudes correspond directly to the rock's fluid (water, oil) content. On the other hand the NMR relaxation behavior, i.e. the longitudinal (T1) and transverse (T2) NMR relaxation times, can be used to derive pore sizes and permeability as it is linearly linked to the pore's surface-to-volume-ratio and physiochemical properties of the rock-fluid interface by the surface relaxivity ρ_s This parameter, however, is dependent on the type and mineral constituents of the investigated rock sample and thus has to be determined and calibrated prior to estimating pore sizes from NMR relaxometry measurements. Frequently used methods to derive surface relaxivity to calibrate NMR pore sizes comprise mercury injection, pulsed field gradients (PFG-NMR) or grain size analysis. This study introduces an alternative approach to jointly estimate NMR surface relaxivity and pore radii distributions using NMR relaxation data obtained from partially de-saturated rocks. In this, inverse modeling is carried on a linked Young Laplace equation for capillary bundles and the Brownstein and Tarr equations. Subsequently, this approach is used to predict water retention curves of the investigated rocks. The method was tested and validated on simulated and laboratory transverse NMR data. Calculated inverse models are generally in a good agreement with results obtained from mercury injection and drainage measurements. Left: Measured and predicted water retention (pF) curves. Center: NMR relaxometry data, fit and error. Right: Mercury injection data (HgPor, dashed line) and jointly derived pore radii distributions and surface relaxivity by joint inverse modelling

  5. ROBUST PIEZOELECTRIC-EXCITED MILLIMETER-SIZED CANTILEVER SENSORS FOR DETECTING PATHOGENS IN DRINKING WATER AT 1 CELL/LITER

    EPA Science Inventory

    The goal of proposed research is to develop antibody-immobilized piezoelectric-excited millimeter-sized mechanically robust cantilever (PEMC) sensors for detecting pathogenic agents (PA) such as Cryptosporidium and Giardia and others in drinking water sys...

  6. Extreme accumulation of nucleotides in simulated hydrothermal pore systems

    PubMed Central

    Baaske, Philipp; Weinert, Franz M.; Duhr, Stefan; Lemke, Kono H.; Russell, Michael J.; Braun, Dieter

    2007-01-01

    We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 108-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life. PMID:17494767

  7. Size of seismic events during borehole injections: the effects of source mechanisms, stress and pore pressure distribution

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Ondovcin, T.; Zhao, P.

    2012-12-01

    The fluid injection in boreholes is usually carried out during industrial operations targeted to permeability enhacement of hydrocarbon reservoirs and geothermal heat exchangers. Pressures in the order of 10 MPa are used in order to decrease the effective normal stress that results in shearing of preexisting fractures and/or creating new tensile fractures. A part of the deformation is brittle, which is expressed in the form of small seismic events. In most cases only microearthquakes with manitudes below 2 are generated, which is namely the case of treatments in hydrocarbon reservoirs. However, treatments of geothermal fields are often associated with small magnitude earthquakes (ML from 2 to 4), which represents a concern for the seismic risk of these operations. This happened in the Soultz (France), Basel (Switzerland) and also Berlin (Salvador) geothermal projects. Interestingly, the largest events occurred after shut-in of the well, or during the latest phase of injection. However, increased seismicity usually continues even long after bleeding-off the well. The largest events occur not only late during the injections, but also far from the injection well, at the edge of the seismically activated rock volume. Recent results of the frequency-magnitude analysis of the Basel seismicity show anticorrelation of b-value with the distance from the well, which proves the tendency of larger events to occurr far from the well. Other studies show the increase of stress drops with the distance to the injection, which might indicate a common intrinsic mechanism reposnsible for these two observations. The existing data point to two apparent discrepancies: (i) the largest events occur at larger distances where the stress field is less perturbed by the fluid injection and (ii) the largest events occur after injection when the fluid pressure in the rock volume is decreasing. We use the available results of fluid injection seismicity and apply our own analyses of frequency size

  8. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    SciTech Connect

    Han, Yosep; Choi, Junhyun; Tong, Meiping; Kim, Hyunjung

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despite the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.

  9. Cell Wall-Degrading Enzymes Enlarge the Pore Size of Intervessel Pit Membranes in Healthy and Xylella fastidiosa-Infected Grapevines1[C][W][OA

    PubMed Central

    Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.

    2010-01-01

    The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028

  10. Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells.

    PubMed

    Li, Zhao-Qian; Ding, Yong; Mo, Li-E; Hu, Lin-Hua; Wu, Ji-Huai; Dai, Song-Yuan

    2015-10-14

    In general, the properties and performance of mesoporous TiO2 are greatly dependent on its crystal size, crystallinity, porosity, surface area, and morphology; in this regard, design and fine-tuning the crystal and pore sizes of the TiO2 submicrospheres and investigating the effect of these factors on the properties and photoelectric performance of dye-sensitized solar cells (DSSCs) is essential. In this work, uniform TiO2 submicrospheres were synthesized by a two-step procedure containing hydrolysis and solvothermal process. The crystal and pore sizes of the TiO2 submicrospheres were fine-tuned and controlled in a narrow range by adjusting the quantity of NH4OH during the solvothermal process. The effect of crystal and pore size of TiO2 submicrosphere on the performance of the DSSCs and their properties including dye-loading capacity, light scattering effect, power conversion efficiency (PCE), incident photon-to-electron conversion efficiencies (IPCEs), and electron recombination were compared and analyzed. The results show that increasing pore size plays a more significant role in improving the dye-loading capacity and PCE than increasing surface area, and an overall PCE value of 8.62% was obtained for the device with a 7.0 μm film thickness based on the TiO2 submicrospheres treated with 0.6 mL of NH4OH. Finally, the best TiO2 submicrosphere based photoanode film was optimized by TiCl4 treatment, and increasing film thickness and a remarkable PCE up to 11.11% were achieved. PMID:26393366

  11. Improving stability of virus-like particles by ion-exchange chromatographic supports with large pore size: advantages of gigaporous media beyond enhanced binding capacity.

    PubMed

    Yu, Mengran; Li, Yan; Zhang, Songping; Li, Xiunan; Yang, Yanli; Chen, Yi; Ma, Guanghui; Su, Zhiguo

    2014-02-28

    Limited binding capacity and low recovery of large size multi-subunits virus-like particles (VLPs) in conventional agarose-gel based chromatographic supports with small pores have long been a bottleneck limiting the large scale purification and application of VLPs. In this study, four anion exchange media including DEAE-Sepharose FF (DEAE-FF), DEAE-Capto, gigaporous DEAE-AP-120nm and DEAE-AP-280nm with average pore diameters of 32nm, 20nm, 120nm and 280nm, respectively, were applied for purification of hepatitis B virus surface antigen (HBsAg) VLPs. Pore size effects of media on the VLPs adsorption equilibrium, adsorption kinetics, dynamic binding capacity (DBC), and recovery were investigated in detail. According to the confocal laser scanning microscopy observation, adsorption of the VLPs in DEAE-FF and DEAE-Capto was mostly confined to a thin shell on the outer surface of the beads, leaving the underlying pore space and the binding sites inaccessibly, while the large pores in gigaporous media enabled the VLPs to access to the interior pore spaces by diffusion transport efficiently. Compared to the most widely used DEAE-FF, gigaporous media DEAE-AP-280nm gained about 12.9 times increase in static adsorption capacity, 8.0 times increase in DBC, and 11.4 times increase in effective pore diffusivity. Beyond increasing the binding capacity and enhancing the mass transfer, the gigaporous structure also significantly improved the stability of the VLPs during intensive adsorption-desorption process by lowing the multi-point interaction between the VLPs and binding sites in the pores. At 2.0mg/mL-media loading quantity, about 85.5% VLPs were correctly self-assembled after the chromatography with DEAE-AP-280nm media; oppositely about 85.2% VLPs lost their normal assembly with DEAE-FF due to irreversible disassembly. Comparative investigation was made to study the purifying performance of these four chromatographic media for actual VLPs purification from recombinant

  12. Tuning of the temperature window for unit-cell and pore-size enlargement in face-centered-cubic large-mesopore silicas templated by swollen block copolymer micelles.

    PubMed

    Li, Yingyu; Yi, Jinhui; Kruk, Michal

    2015-09-01

    The unit-cell size and pore diameter as functions of temperature are investigated in the syntheses of FDU-12 silicas with face-centered cubic structure templated by Pluronic (PEO-PPO-PEO) block copolymer micelles swollen by toluene. The temperature range in which the unit-cell size and pore size strongly increase as temperature decreases is correlated with the critical micelle temperature (CMT) of the surfactant. While Pluronic F127 affords a wide range of unit-cell parameters (28-51 nm) and pore diameters (16-32 nm), it renders moderately enlarged pore sizes at 25 °C. The use of Pluronic F108 with higher CMT affords FDU-12 with very large unit-cell size (∼49 nm) and large pore diameter (27 nm) at 23 °C. Large unit-cell size (40-41 nm) and pore size (22 nm) were obtained even at 25 °C. The application of Pluronics F87 and F88 with much smaller molecular weights and higher CMTs also allows one to synthesize FDU-12 with quite large unit-cell parameters and pore sizes at room temperature. The present work demonstrates that one can judiciously select Pluronic surfactants with appropriate CMT to shift the temperature range in which the pore diameter is readily tunable. PMID:26178137

  13. Modelling multiphase dynamics during infiltration using a pore network model

    NASA Astrophysics Data System (ADS)

    Tzavaras, Jannis; Arns, Ji-Youns; Max, Koehne; Hans-Joerg, Vogel

    2013-04-01

    We present an implementation of water infiltration into a pore network model where the local water pressures is continuously updated during the transient process. The network geometry is designed to represent structured soil which is different from simple granular porous media in some respect: Pores are more elongated and less isometric and the pore size distribution is much wider and structured hierarchically. To reproduce these properties, the classical concept of pore-bodies and throats is replaced by direct measurements of pore topology and the pores below the minimal pore size of the network model are represented by a continuous network of water saturated micro pores. The latter ensures that the water phase is always continuous which affects the propagation of the water potential during infiltration. The network model is based on cylindrical pores and considers capillary and gravitational forces. The propagation of interfaces is calculated for each time step by repeatedly solving the complete set of linear equation arising from Kirchhoff's law based on mass balance at each node of the network. This is done using the public domain package ITPack. The successive overrelaxation (SOR) and the Jacobi conjugate gradient (JCG) method proved to be more robust and faster than other solvers tested for the complex topology. The model accounts for entrapped air which is assumed to be incompressible. We present first results demonstrating the impact of external forcing (i.e infiltration rate) and pore topology on the dynamics of water-gas interfaces, the volume of entrapped air and hysteresis.

  14. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: microstructure and mechanical response

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Fu, Qiang

    2010-01-01

    Scaffolds of 13-93 bioactive glass (composition 6Na2O, 8K2O, 8MgO, 22CaO, 2P2O5, 54SiO2; mol %), containing oriented pores with controllable diameter, were prepared by unidirectional freezing of camphene-based suspensions (10 vol% particles) on a cold substrate (−196°C or 3°C). By varying the annealing time (0–72 h) to coarsen the camphene phase, constructs with the same porosity (86 ± 1%) but with controllable pore diameters (15–160 μm) were obtained after sublimation of the camphene. The pore diameters had a self-similar distribution that could be fitted by a diffusion-controlled coalescence model. Sintering (1 h at 690°C) was accompanied by a decrease in the porosity and pore diameter, the magnitude of which depended on the pore size of the green constructs, giving scaffolds with a porosity of 20–60% and average pore diameter of 6–120 μm. The compressive stress vs. deformation response of the sintered scaffolds in the orientation direction was linear, followed by failure. The compressive strength and elastic modulus in the orientation direction varied from 180 MPa and 25 GPa, respectively, (porosity = 20%) to 16 MPa and 4 GPa, respectively, (porosity = 60%), which were 2–3 times larger than the values in the direction perpendicular to the orientation. The potential use of these 13-93 bioactive glass scaffolds for the repair of large defects in load-bearing bones, such as segmental defects in long bones, is discussed. PMID:20807594

  15. Fabrication of Controllable Pore and Particle Size of Mesoporous Silica Nanoparticles via a Liquid-phase Synthesis Method and Its Absorption Characteristics

    NASA Astrophysics Data System (ADS)

    Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo

    2011-12-01

    Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.

  16. A Generally Robust Approach for Testing Hypotheses and Setting Confidence Intervals for Effect Sizes

    ERIC Educational Resources Information Center

    Keselman, H. J.; Algina, James; Lix, Lisa M.; Wilcox, Rand R.; Deering, Kathleen N.

    2008-01-01

    Standard least squares analysis of variance methods suffer from poor power under arbitrarily small departures from normality and fail to control the probability of a Type I error when standard assumptions are violated. This article describes a framework for robust estimation and testing that uses trimmed means with an approximate degrees of…

  17. Influence of porosity, pore size, and cortical thickness on the propagation of ultrasonic waves guided through the femoral neck cortex: a simulation study.

    PubMed

    Rohde, Kerstin; Rohrbach, Daniel; Glüer, Claus-C; Laugier, Pascal; Grimal, Quentin; Raum, Kay; Barkmann, Reinhard

    2014-02-01

    The femoral neck is a common fracture site in elderly people. The cortical shell is thought to be the major contributor to the mechanical competence of the femoral neck, but its microstructural parameters are not sufficiently accessible under in vivo conditions with current X-ray-based methods. To systematically investigate the influences of pore size, porosity, and thickness of the femoral neck cortex on the propagation of ultrasound, we developed 96 different bone models (combining 6 different pore sizes with 4 different porosities and 4 different thicknesses) and simulated the ultrasound propagation using a finite-difference time-domain algorithm. The simulated single-element emitter and receiver array consisting of 16 elements (8 inferior and 8 superior) were placed at anterior and posterior sides of the bone, respectively (transverse transmission). From each simulation, we analyzed the waveform collected by each of the inferior receiver elements for the one with the shortest time of flight. The first arriving signal of this waveform, which is associated with the wave traveling through the cortical shell, was then evaluated for its three different waveform characteristics (TOF: time point of the first point of inflection of the received signal, Δt: difference between the time point at which the signal first crosses the zero baseline and TOF, and A: amplitude of the first extreme of the first arriving signal). From the analyses of these waveform characteristics, we were able to develop multivariate models to predict pore size, porosity, and cortical thickness, corresponding to the 96 different bone models, with remaining errors in the range of 50 μm for pore size, 1.5% for porosity, and 0.17 mm for cortical thickness. PMID:24474136

  18. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    DOEpatents

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2005-08-16

    An isoreticular metal-organic framework (IRMOF) and method for systematically forming the same. The method comprises the steps of dissolving at least one source of metal cations and at least one organic linking compound in a solvent to form a solution; and crystallizing the solution under predetermined conditions to form a predetermined IRMOF. At least one of functionality, dimension, pore size and free volume of the IRMOF is substantially determined by the organic linking compound.

  19. A feasible way for the fabrication of single walled carbon nanotube/polypyrrole composite film with controlled pore size for neural interface.

    PubMed

    Xiao, Hengyang; Zhang, Min; Xiao, Yinghong; Che, Jianfei

    2015-02-01

    Single walled carbon nanotube (SWNT)/polypyrrole (PPy) composite films with controlled pore size and strong adhesive force was prepared as electrode material for improving the performance of neural electrodes. SWNT film with controlled pore size was first fabricated through electrophoresis with a merit that the pore size can be well tuned by changing the concentration of metal ions in the electrolyte. An ultrathin conformal PPy layer around SWNT bundles in a uniform manner within the entire films was subsequently obtained by pulsed electropolymerization. The adhesion of the SWNT coated electrodes was tested by repeatedly inserting the coated electrode into agar gel to demonstrate the better adhesive force of the coating. Electrochemical results showed that the SWNT/PPy coated metal electrodes have much lower impedance and higher charge storage capacity than the bare metal substrates. Further in vitro culture of rat pheochromocytoma (PC12) cells revealed that the porous SWNT/PPy composite film was non-toxic and well supported the growth of neurons. We demonstrate that the prepared composite film has potential applications in chronic implantable neural electrodes for neural stimulation and recording. PMID:25546836

  20. ON THE ROBUSTNESS OF z = 0-1 GALAXY SIZE MEASUREMENTS THROUGH MODEL AND NON-PARAMETRIC FITS

    SciTech Connect

    Mosleh, Moein; Franx, Marijn; Williams, Rik J.

    2013-11-10

    We present the size-stellar mass relations of nearby (z = 0.01-0.02) Sloan Digital Sky Survey galaxies, for samples selected by color, morphology, Sérsic index n, and specific star formation rate. Several commonly employed size measurement techniques are used, including single Sérsic fits, two-component Sérsic models, and a non-parametric method. Through simple simulations, we show that the non-parametric and two-component Sérsic methods provide the most robust effective radius measurements, while those based on single Sérsic profiles are often overestimates, especially for massive red/early-type galaxies. Using our robust sizes, we show for all sub-samples that the mass-size relations are shallow at low stellar masses and steepen above ∼3-4 × 10{sup 10} M{sub ☉}. The mass-size relations for galaxies classified as late-type, low-n, and star-forming are consistent with each other, while blue galaxies follow a somewhat steeper relation. The mass-size relations of early-type, high-n, red, and quiescent galaxies all agree with each other but are somewhat steeper at the high-mass end than previous results. To test potential systematics at high redshift, we artificially redshifted our sample (including surface brightness dimming and degraded resolution) to z = 1 and re-fit the galaxies using single Sérsic profiles. The sizes of these galaxies before and after redshifting are consistent and we conclude that systematic effects in sizes and the size-mass relation at z ∼ 1 are negligible. Interestingly, since the poorer physical resolution at high redshift washes out bright galaxy substructures, single Sérsic fitting appears to provide more reliable and unbiased effective radius measurements at high z than for nearby, well-resolved galaxies.

  1. A size-based emphysema severity index: robust to the breath-hold-level variations and correlated with clinical parameters

    PubMed Central

    Hwang, Jeongeun; Lee, Minho; Lee, Sang Min; Oh, Sang Young; Oh, Yeon-Mok; Kim, Namkug; Seo, Joon Beom

    2016-01-01

    Objective To determine the power-law exponents (D) of emphysema hole-size distributions as a competent emphysema index. Robustness to extreme breath-hold-level variations and correlations with clinical parameters for chronic obstructive pulmonary disease (COPD) were investigated and compared to a conventional emphysema index (EI%). Patients and methods A total of 100 patients with COPD (97 males and three females of mean age 67±7.9 years) underwent multidetector row computed tomography scanning at full inspiration and full expiration. The diameters of the emphysematous holes were estimated and quantified with a fully automated algorithm. Power-law exponents (D) of emphysematous hole-size distribution were evaluated. Results The diameters followed a power-law distribution in all cases, suggesting the scale-free nature of emphysema. D of inspiratory and expiratory computed tomography of patients showed intraclass correlation coefficients >0.8, indicating statistically absolute agreement of different breath-hold levels. By contrast, the EI% failed to agree. Bland–Altman analysis also revealed the superior robustness of D to EI%. D also significantly correlated with clinical parameters such as airflow limitation, diffusion capacity, exercise capacity, and quality of life. Conclusion The D of emphysematous hole-size distribution is robust to breath-hold-level variations and sensitive to the severity of emphysema. This measurement may help rule out the confounding effects of variations in breath-hold levels. PMID:27536095

  2. Development of a new, robust and accurate, spectroscopic metric for scatterer size estimation in optical coherence tomography (OCT) images

    NASA Astrophysics Data System (ADS)

    Kassinopoulos, Michalis; Pitris, Costas

    2016-03-01

    The modulations appearing on the backscattering spectrum originating from a scatterer are related to its diameter as described by Mie theory for spherical particles. Many metrics for Spectroscopic Optical Coherence Tomography (SOCT) take advantage of this observation in order to enhance the contrast of Optical Coherence Tomography (OCT) images. However, none of these metrics has achieved high accuracy when calculating the scatterer size. In this work, Mie theory was used to further investigate the relationship between the degree of modulation in the spectrum and the scatterer size. From this study, a new spectroscopic metric, the bandwidth of the Correlation of the Derivative (COD) was developed which is more robust and accurate, compared to previously reported techniques, in the estimation of scatterer size. The self-normalizing nature of the derivative and the robustness of the first minimum of the correlation as a measure of its width, offer significant advantages over other spectral analysis approaches especially for scatterer sizes above 3 μm. The feasibility of this technique was demonstrated using phantom samples containing 6, 10 and 16 μm diameter microspheres as well as images of normal and cancerous human colon. The results are very promising, suggesting that the proposed metric could be implemented in OCT spectral analysis for measuring nuclear size distribution in biological tissues. A technique providing such information would be of great clinical significance since it would allow the detection of nuclear enlargement at the earliest stages of precancerous development.

  3. Effect of the pore size distribution on the activities of alumina supported Co-Mo catalysts in the hydrotreatment of boscan crude

    SciTech Connect

    Plumail, J.C.; Jacquin, Y.; Martino, G.; Toulhoat, H.

    1983-03-01

    The effects of pore size and distribution on the activity of Co-Mo/Al/sub 2/O/sub 3/ catalysts in the hydrotreatment of asphaltenes have been studied using testing methodology designed to provide initial activities for the catalysis of the critical reactions in the process, hydrodesulfurization (HDS), hydrodemineralization (HDM) (V,NI) and asphaltene conversion to resins and oils (HDA) suitable for subsequent use as refining feedstocks. Nine monomodal (micropores) and seven bimodal (micro- and macropores) were tested. Maximum HDS occurs with mono- and bimodal catalysts having an average pore diameter of 100 A/sup 0/. Maximum HDA and HDM activity appears at a pore diameter between 150 and 200 A/sup 0/ and increases with increasing macroporosity, macropores allowing more efficient access of the large asphaltene molecular units to active sites. Overall catalytic efficiency is dependent upon but HDS and asphaltene hydrogenation rates. Variation of pore structures allowed reaction selectivities to be varied and provided control a asphaltene product (resins, oils) composition.

  4. The role of fine material and grain size distribution on excess pore pressure dissipation and particle support mechanisms in granular deposits based in large-scale physical experiments

    NASA Astrophysics Data System (ADS)

    Palucis, M. C.; Kaitna, R.; Tewoldebrhan, B.; Hill, K. M.; Dietrich, W. E.

    2011-12-01

    The dominant mechanisms behind sustained mobilization in granular debris flows are poorly understood, and experiments are needed to determine the conditions under which the fluid can fully support the coarse fraction. However, field-scale studies are difficult to instrument and constrain and laboratory studies suffer from scaling issues. A 4-m rotating drum located at UC Berkeley's Richmond Field Station allowed us to perform reproducible experiments with materials similar to those in the field to explore mechanisms relevant to slow pore fluid pressure dissipation. Specifically, we performed a series of experiments to assess the role of fines and grain size distribution on the rate of pore fluid pressure dissipation upon deposition of a granular mass. For each experiment we kept the total mass of the gravel particles constant and varied the amount of fines (from no fines to amounts found in an actual debris flow deposit) and the gravel particle size distribution (from a single grain size to a range found in natural flows). We first rotated each mixture in the drum, during which we monitored fluid pressures at the base of the flows (near the wall of the drum and at the center). Then we stopped the drum and continued to monitor the fluid pressures. Immediately upon stopping, the pore fluid pressure was nearly hydrostatic for the gravel-water flows, and any elevated pore pressure quickly dissipated. On the other hand, the mixtures with fines contents close to those found in actual debris flows had elevated pore pressures indicating they were almost fully liquefied. Furthermore, the rate of pore pressure dissipation was an order of magnitude slower than when no fines were present; the grain size distribution of the coarse fraction did not strongly influence the dissipation rates in either case. We also placed a cobble upon a fines-rich mixture after cessation of motion above the center pressure sensor, and observed that the pore fluid pressure rose instantly, bearing

  5. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.

    PubMed

    Li, Jin Lan; Cai, Yan Li; Guo, Yi Lin; Fuh, Jerry Ying Hsi; Sun, Jie; Hong, Geok Soon; Lam, Ruey Na; Wong, Yoke San; Wang, Wilson; Tay, Bee Yen; Thian, Eng San

    2014-05-01

    Biodegradable polymeric scaffolds have been widely used in tissue engineering as a platform for cell proliferation and subsequent tissue regeneration. Conventional microextrusion methods for three-dimensional (3D) scaffold fabrication were limited by their low resolution. Electrospinning, a form of electrohydrodynamic (EHD) printing, is an attractive method due to its capability of fabricating high-resolution scaffolds at the nanometer/micrometer scale level. However, the scaffold was composed of randomly orientated filaments which could not guide the cells in a specific direction. Furthermore, the pores of the electrospun scaffold were small, thus preventing cell infiltration. In this study, an alternative EHD jet printing (E-jetting) technique has been developed and employed to fabricate 3D polycaprolactone (PCL) scaffolds with desired filament orientation and pore size. The effect of PCL solution concentration was evaluated. Results showed that solidified filaments were achieved at concentration >70% (w/v). Uniform filaments of diameter 20 μm were produced via the E-jetting technique, and X-ray diffraction and attenuated total reflectance Fourier transform infrared spectroscopic analyses revealed that there was no physicochemical changes toward PCL. Scaffold with a pore size of 450 μm and porosity level of 92%, was achieved. A preliminary in vitro study illustrated that live chondrocytes were attaching on the outer and inner surfaces of collagen-coated E-jetted PCL scaffolds. E-jetted scaffolds increased chondrocytes extracellular matrix secretion, and newly formed matrices from chondrocytes contributed significantly to the mechanical strength of the scaffolds. All these results suggested that E-jetting is an alternative scaffold fabrication technique, which has the capability to construct 3D scaffolds with aligned filaments and large pore sizes for tissue engineering applications. PMID:24155124

  6. Alkali metal ion storage properties of sulphur and phosphorous molecules encapsulated in nanometer size carbon cylindrical pores

    NASA Astrophysics Data System (ADS)

    Ishii, Yosuke; Sakamoto, Yuki; Song, Hayong; Tashiro, Kosuke; Nishiwaki, Yoshiki; Al-zubaidi, Ayar; Kawasaki, Shinji

    2016-03-01

    We investigated the physical and chemical stabilities of sulfur and phosphorus molecules encapsulated in a mesoporous carbon (MPC) and two kinds of single-walled carbon nanotubes (SWCNTs) having different cylindrical pore diameters. The sublimation temperatures of sulfur molecules encapsulated in MPC and the two kinds of SWCNTs were measured by thermo-gravimetric measurements. It was found that the sublimation temperature of sulfur molecules encapsulated in SWCNTs having mean tube diameter of 1.5 nm is much higher than any other molecules encapsulated in larger pores. It was also found that the capacity fading of lithium-sulfur battery can be diminished by encapsulation of sulfur molecules in SWCNTs. We also investigated the electrochemical properties of phosphorus molecules encapsulated in SWCNTs (P@SWCNTs). It was shown that P@SWCNT can adsorb and desorb both Li and Na ions reversibly.

  7. High School Size, Achievement Equity, and Cost: Robust Interaction Effects and Tentative Results.

    ERIC Educational Resources Information Center

    Bickel, Robert; Howley, Craig; Williams, Tony; Glascock, Catherine

    Research has revealed interactive effects of school size and socioeconomic status--as school size increases, the mean measured achievement of schools with disadvantaged students declines. The larger the number of less advantaged students attending a school, the greater the decline. The same school-level interactions have been found in California,…

  8. SYNCHROTRON RADIATION, FREE ELECTRON LASER, APPLICATION OF NUCLEAR TECHNOLOGY, ETC.: Identification of pore size in porous SiO2 thin film by positron annihilation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Qin, Xiu-Bo; Wang, Dan-Ni; Yu, Run-Sheng; Wang, Qiao-Zhan; Ma, Yan-Yun; Wang, Bao-Yi

    2009-02-01

    Positron annihilation lifetime and Doppler broadening of annihilation line techniques have been used to obtain information about the small pore structure and size of porous SiO2 thin film produced by sputtered Al-Si thin film and etched Al-Si thin film. The film is prepared by an Al/Si 75:25 at.-% (Al75Si25) target with the radiofrequency (RF) power of 66 W at room temperature. A 5 wt.-% phosphoric acid solution is used to etch the Al cylinders. All the Al cylinders dissolved in the solution after 15 h at room temperature, and the sample is subsequently rinsed in pure water. In this way, the porous SiO2 on the Si substrate is produced. From our results, the values of all lifetime components in the spectra of Al-Si thin film are less than 1 ns, but the value of one of the lifetime components in the spectra of porous SiO2 thin film is τ = 7.80 ns. With these values of lifetime, RTE (Rectangular Pore Extension) model has been used to analyze the pore size.

  9. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model

    NASA Astrophysics Data System (ADS)

    Furmaniak, Sylwester; Terzyk, Artur P.; Gauden, Piotr A.; Harris, Peter J. F.; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N2 and CO2 isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.

  10. Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N(2) and CO(2) adsorption isotherms? Simulation results for a realistic carbon model.

    PubMed

    Furmaniak, Sylwester; Terzyk, Artur P; Gauden, Piotr A; Harris, Peter J F; Kowalczyk, Piotr

    2009-08-01

    Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO(2), and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions. PMID:21828590

  11. Robust organelle size extractions from elastic scattering measurements of single cells (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cannaday, Ashley E.; Draham, Robert; Berger, Andrew J.

    2016-04-01

    The goal of this project is to estimate non-nuclear organelle size distributions in single cells by measuring angular scattering patterns and fitting them with Mie theory. Simulations have indicated that the large relative size distribution of organelles (mean:width≈2) leads to unstable Mie fits unless scattering is collected at polar angles less than 20 degrees. Our optical system has therefore been modified to collect angles down to 10 degrees. Initial validations will be performed on polystyrene bead populations whose size distributions resemble those of cell organelles. Unlike with the narrow bead distributions that are often used for calibration, we expect to see an order-of-magnitude improvement in the stability of the size estimates as the minimum angle decreases from 20 to 10 degrees. Scattering patterns will then be acquired and analyzed from single cells (EMT6 mouse cancer cells), both fixed and live, at multiple time points. Fixed cells, with no changes in organelle sizes over time, will be measured to determine the fluctuation level in estimated size distribution due to measurement imperfections alone. Subsequent measurements on live cells will determine whether there is a higher level of fluctuation that could be attributed to dynamic changes in organelle size. Studies on unperturbed cells are precursors to ones in which the effects of exogenous agents are monitored over time.

  12. Effects of coarse grain size distribution and fine particle content on pore fluid pressure and shear behavior in experimental debris flows

    NASA Astrophysics Data System (ADS)

    Kaitna, Roland; Palucis, Marisa C.; Yohannes, Bereket; Hill, Kimberly M.; Dietrich, William E.

    2016-02-01

    Debris flows are typically a saturated mixture of poorly sorted particles and interstitial fluid, whose density and flow properties depend strongly on the presence of suspended fine sediment. Recent research suggests that grain size distribution (GSD) influences excess pore pressures (i.e., pressure in excess of predicted hydrostatic pressure), which in turn plays a governing role in debris flow behaviors. We report a series of controlled laboratory experiments in a 4 m diameter vertically rotating drum where the coarse particle size distribution and the content of fine particles were varied independently. We measured basal pore fluid pressures, pore fluid pressure profiles (using novel sensor probes), velocity profiles, and longitudinal profiles of the flow height. Excess pore fluid pressure was significant for mixtures with high fines fraction. Such flows exhibited lower values for their bulk flow resistance (as measured by surface slope of the flow), had damped fluctuations of normalized fluid pressure and normal stress, and had velocity profiles where the shear was concentrated at the base of the flow. These effects were most pronounced in flows with a wide coarse GSD distribution. Sustained excess fluid pressure occurred during flow and after cessation of motion. Various mechanisms may cause dilation and contraction of the flows, and we propose that the sustained excess fluid pressures during flow and once the flow has stopped may arise from hindered particle settling and yield strength of the fluid, resulting in transfer of particle weight to the fluid. Thus, debris flow behavior may be strongly influenced by sustained excess fluid pressures controlled by particle settling rates.

  13. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    NASA Astrophysics Data System (ADS)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  14. Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction.

    PubMed

    Xue, Dong-Xu; Belmabkhout, Youssef; Shekhah, Osama; Jiang, Hao; Adil, Karim; Cairns, Amy J; Eddaoudi, Mohamed

    2015-04-22

    Reticular chemistry approach was successfully employed to deliberately construct new rare-earth (RE, i.e., Eu(3+), Tb(3+), and Y(3+)) fcu metal-organic frameworks (MOFs) with restricted window apertures. Controlled and selective access to the resultant contracted fcu-MOF pores permits the achievement of the requisite sorbate cutoff, ideal for selective adsorption kinetics based separation and/or molecular sieving of gases and vapors. Predetermined reaction conditions that permitted the formation in situ of the 12-connected RE hexanuclear molecular building block (MBB) and the establishment of the first RE-fcu-MOF platform, especially in the presence of 2-fluorobenzoic acid (2-FBA) as a modulator and a structure directing agent, were used to synthesize isostructural RE-1,4-NDC-fcu-MOFs based on a relatively bulkier 2-connected bridging ligand, namely 1,4-naphthalenedicarboxylate (1,4-NDC). The subsequent RE-1,4-NDC-fcu-MOF structural features, contracted windows/pores and high concentration of open metal sites combined with exceptional hydrothermal and chemical stabilities, yielded notable gas/solvent separation properties, driven mostly by adsorption kinetics as exemplified in this work for n-butane/methane, butanol/methanol, and butanol/water pair systems. PMID:25825923

  15. Experimental Estimates of the Impacts of Class Size on Test Scores: Robustness and Heterogeneity

    ERIC Educational Resources Information Center

    Ding, Weili; Lehrer, Steven F.

    2011-01-01

    Proponents of class size reductions (CSRs) draw heavily on the results from Project Student/Teacher Achievement Ratio to support their initiatives. Adding to the political appeal of these initiative are reports that minority and economically disadvantaged students received the largest benefits from smaller classes. We extend this research in two…

  16. A Probability-Based Measure of Effect Size: Robustness to Base Rates and Other Factors

    ERIC Educational Resources Information Center

    Ruscio, John

    2008-01-01

    Calculating and reporting appropriate measures of effect size are becoming standard practice in psychological research. One of the most common scenarios encountered involves the comparison of 2 groups, which includes research designs that are experimental (e.g., random assignment to treatment vs. placebo conditions) and nonexperimental (e.g.,…

  17. Evaluation of the effects of absorption enhancers on Caco-2 cell monolayers by using a pore permeation model involving two different sizes.

    PubMed

    Seki, Toshinobu; Hamada, Airi; Egawa, Yuya; Yamaki, Tsutomu; Uchida, Masaki; Natsume, Hideshi; Kimura, Soichiro; Ueda, Hideo

    2013-01-01

    We applied a parallel pore permeation model based on the Renkin molecular sieving function by using two different-sized pathways to analyze the permeation-enhancing effects of poly-L-arginine (PLA) or a mixed system of spermine (SPM) and sodium taurocholate (STC). Four paracellular markers were simultaneously applied to Caco-2 cell monolayers, and a set of apparent permeability coefficient (P) values was used to obtain membrane parameters. For PLA treatment, the pore occupancy/length ratio (ε/L) of the large pathways increased while the pore radius (R) did not, suggesting that the number of large pathways for the relatively large hydrophilic molecules in the monolayers could be increased by the addition of PLA. In contrast, application of the mixed system comprising SPM and STC significantly increased not only the R of the large pathways but also ε/L of the small pathways. Such changes in membrane parameters could be related to the enhancing mechanism of these compounds. The simulation curves for molecular weight (MW)-P calculated from the membrane parameters could be used to predict the P of drugs with different MWs. PMID:24189430

  18. Soft landing of cell-sized vesicles on solid surfaces for robust vehicle capture/release.

    PubMed

    Wang, Dehui; Wu, Zhengfang; Gao, Aiting; Zhang, Weihong; Kang, Chengying; Tao, Qi; Yang, Peng

    2015-04-28

    Based on a concept of a smooth and steady landing of fragile objects without destruction via a soft cushion, we have developed a model for the soft landing of deformable lipid giant unilamellar vesicles (GUVs) on solid surfaces. The foundation for a successful soft landing is a solid substrate with a two-layer coating, including a bottom layer of positively charged lysozymes and an upper lipid membrane layer. We came to a clear conclusion that anionic GUVs when sedimented on a surface, the vesicle rupture occurs upon the direct contact with the positively charged lysozyme layer due to the strong coulombic interactions. In contrast, certain separation distances was achieved by the insertion of a soft lipid membrane cushion between the charged GUVs and the lysozyme layer, which attenuated the coulombic force and created a mild buffer zone, ensuring the robust capture of GUVs on the substrate without their rupture. The non-covalent bonding facilitated a fully reversible stimuli-responsive capture/release of GUVs from the biomimetic solid surface, which has never been demonstrated before due to the extreme fragility of GUVs. Moreover, the controllable capture/release of cells has been proven to be of vital importance in biotechnology, and similarity the present approach to capture/release cells is expected to open the previously inaccessible avenues of research. PMID:25787226

  19. A ROBUST DETERMINATION OF THE SIZE OF QUASAR ACCRETION DISKS USING GRAVITATIONAL MICROLENSING

    SciTech Connect

    Jimenez-Vicente, J.; Mediavilla, E.; Kochanek, C. S.

    2012-06-01

    Using microlensing measurements for a sample of 27 image pairs of 19 lensed quasars we determine a maximum likelihood estimate for the accretion disk size of an average quasar of r{sub s} = 4.0{sup +2.4}{sub -3.1} lt-day at rest frame ({lambda}) = 1736 Angstrom-Sign for microlenses with a mean mass of (M) = 0.3 M{sub Sun }. This value, in good agreement with previous results from smaller samples, is roughly a factor of five greater than the predictions of the standard thin disk model. The individual size estimates for the 19 quasars in our sample are also in excellent agreement with the results of the joint maximum likelihood analysis.

  20. Ovariectomized rats' femur treated with fibrates and statins. Assessment of pore-size distribution by ¹H-NMR relaxometry.

    PubMed

    Şipoş, Remus Sebastian; Fechete, Radu; Chelcea, Ramona Ioana; Moldovan, Dumitriţa; Pap, Zsuzsánna; Pávai, Zoltán; Demco, Dan Eugen

    2015-01-01

    The effects of two wonder drugs, simvastatins and fenofibrates on the proximal part of the femoris of a series of ovariectomized and non-ovariectomized Wistar albino rats was estimated qualitatively and semi-quantitatively by the modern method of 1D 1H-NMR T2-distribution. The 72 rats subjected to this study were divided in six groups and were sacrificed at two, four, six and eight weeks after ovariectomy and the proximal part of femoris was harvested. The CPMG (Carr-Purcell-Meiboom-Gill) echoes train curves were measured for the bones fully saturated with water during two months after two months of natural drying. These decays were analyzed by Laplace inversion and an average of normalized T2-distributions was considered for all rat's groups. The 1D averaged T2-distributions present four peaks, which were associated with protons in four major environments, from which the free water protons are used as spy molecules to explore the boundaries of cavities. In the approximation of spherical pores, the averaged T2-distributions were transformed in distributions of pores diameters. These were found in the range from 2 μm up to 2 mm. The relative amplitudes, widths and position of deconvoluted distributions of small, medium and large cavities are used for a qualitatively analysis of the effect of our lipid-lowering drugs. For a semi-quantitatively analysis, we chose the diameter d of proximal part of femoris' trabecular cavities. We show that the positive or negative effects of treatments with simvastatins and fenofibrates are strongly dependent on the duration of treatment. Moreover, the treatment of healthy bone is generally counter-indicated. PMID:26429167

  1. Effect of seawater salinity on pore-size distribution on a poly(styrene)-based HP20 resin and its adsorption of diarrhetic shellfish toxins.

    PubMed

    Fan, Lin; Sun, Geng; Qiu, Jiangbing; Ma, Qimin; Hess, Philipp; Li, Aifeng

    2014-12-19

    In the present study, okadaic acid (OA) and dinophysistoxin-1 (DTX1) were spiked into artificial seawater at low, medium and high estuarine salinities (9‰, 13.5‰ and 27‰). Passive samplers (HP20 resin) used for solid phase adsorption toxin tracking (SPATT) technology were exposed in these seawaters for 12-h periods. Adsorption curves well fitted a pseudo-secondary kinetics model. The highest initial sorption rates of both toxins occurred in the seawater of medium salinity, followed by seawater of low and high estuarine salinity. Pore volumes of micropores (<2 nm) and small mesopores (2 nmsize) in seawaters of high and low salinity. More toxin or other matrix agglomerates were displayed on the surface of resin deployed in the seawater of medium salinity. Taking into consideration the pore-size distribution and surface images, it appears that intra-particle diffusion governs toxin adsorption in seawater at high salinity while film diffusion mainly controls the adsorption process in seawater at medium salinity. This is the first study to confirm that molecules of OA and DTX1 are able to enter into micropores (<2nm) and small mesopores (2-10nm) of HP20 resin in estuarine seawater with high salinity (∼27‰). PMID:25464996

  2. Effects of pore sizes and oxygen-containing functional groups on desulfurization activity of Fe/NAC prepared by ultrasonic-assisted impregnation

    NASA Astrophysics Data System (ADS)

    Shu, Song; Guo, Jia-Xiu; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Luo, De-Ming

    2016-01-01

    A series of Fe-loaded activated carbons treated by HNO3 (Fe/NAC) were prepared by incipient impregnation method with or without ultrasonic assistance and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy disperse spectroscope (SEM-EDS), transmission electron microscopy (TEM) and N2 adsorption/desorption. The desulfurization activities were evaluated at a fixed bed reactor under a mixed gas simulated from flue gas. The results showed that desulfurization activity from excellent to poor is as follows: Fe/NAC-60 > Fe/NAC-80 > Fe/NAC-30 > Fe/NAC-15 > Fe/NAC-0 > Fe/NAC-100 > NAC. Fe/NAC-60 exhibits the best desulfurization activity and has breakthrough sulfur capacity of 319 mg/g and breakthrough time of 540 min. The introduction of ultrasonic oscillation does not change the form of Fe oxides on activated carbon but can change the dispersion and relative contents of Fe3O4. The types of oxygen-containing functional groups have no obvious change for all samples but the texture properties show some differences when they are oscillated for different times. The fresh Fe/NAC-60 has a surface area of 1045 m2/g and total pore volume of 0.961 cm3/g with micropore volume of 0.437 cm3/g and is larger than Fe/NAC-0 (823 m2/g, 0.733 and 0.342 cm3/g). After desulfurization, surface area and pore volume of all samples decrease significantly, and those of the exhausted Fe/NAC-60 decrease to 233 m2/g and 0.481 cm3/g, indicating that some byproducts deposit on surface to cover pores. Pore size distribution influences SO2 adsorption, and fresh Fe/NAC-60 has more pore widths centralized at about 0.7 nm and 1.0-2.0 nm and corresponds to an excellent desulfurization activity, showing that micropore is conducive to the removal of SO2.

  3. Use of Hydrogenophaga pseudoflava penetration to quantitatively assess the impact of filtration parameters for 0.2-micrometer-pore-size filters.

    PubMed

    Lee, A; McVey, J; Faustino, P; Lute, S; Sweeney, N; Pawar, V; Khan, M; Brorson, K; Hussong, D

    2010-02-01

    Filters rated as having a 0.2-microm pore size (0.2-microm-rated filters) are used in laboratory and manufacturing settings for diverse applications of bacterial and particle removal from process fluids, analytical test articles, and gasses. Using Hydrogenophaga pseudoflava, a diminutive bacterium with an unusual geometry (i.e., it is very thin), we evaluated passage through 0.2-microm-rated filters and the impact of filtration process parameters and bacterial challenge density. We show that consistent H. pseudoflava passage occurs through 0.2-microm-rated filters. This is in contrast to an absence of significant passage of nutritionally challenged bacteria that are of similar size (i.e., hydrodynamic diameter) but dissimilar geometry. PMID:19966023

  4. The effects of CeO{sub 2} addition on crystallization behavior and pore size in microporous calcium titanium phosphate glass ceramics

    SciTech Connect

    Soleimani, F.; Rezvani, M.

    2012-06-15

    Highlights: ► We prepare a phosphate glass ceramic in the system of CaO–TiO{sub 2}–P{sub 2}O{sub 5} and add 2 to 6 mol% CeO{sub 2} to it. We determine the optimum percentage of CeO{sub 2} addition. ► We study phase separation, suitable time and temperature for crystallization in the microporous Calcium Titanium Phosphate Glass Ceramics utilizing DTA, SEM and XRD. ► We investigate on pore size utilizing BET and SEM techniques before and after CeO{sub 2} addition. ► CeO{sub 2} increases the pore size in the Calcium Titanium Phosphate Glass Ceramics. -- Abstract: In this research the effect of the addition of CeO{sub 2} to microporous Calcium Titanium Phosphate glass ceramics was studied. Different molar percentages of CeO{sub 2} were added to three samples of a base glass whose composition was P{sub 2}O{sub 5} 30, CaO 45, TiO{sub 2} 25 (mol%). The first sample had 2 mol% CeO{sub 2}, the second sample had 4 mol% CeO{sub 2}, and the third sample had 6 mol% CeO{sub 2}. The fourth sample did not contain any CeO{sub 2}. The glass samples were melted and crystallized to bulk glass ceramics by a conventional method. Differential Thermal Analysis (DTA) was utilized to determine the appropriate nucleation and crystallization temperatures. Among the samples, the DTA curve of the sample which had 2 mol% CeO{sub 2} had the sharpest crystallization peak. Therefore, this sample was chosen to prepare the glass ceramics. Using X-ray Diffraction (XRD) it was found that in all samples β-Ca{sub 3}(PO{sub 4}){sub 2} and CaTi{sub 4}(PO{sub 4}){sub 6} were the major phases. The β-Ca{sub 3}(PO{sub 4}){sub 2} phase was dissolved away by soaking the glass ceramics in HCl, leaving a porous skeleton of CaTi{sub 4}(PO{sub 4}){sub 6}. CeO{sub 2} addition increased the glass transition temperature and decreased the crystallization time and temperature. It was shown that CeO{sub 2} addition resulted in an increase in the mean pore diameter while the specific surface area decreased

  5. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction.

    PubMed

    Chen, Siyuan; Epps, Julien

    2014-12-01

    Monitoring pupil and blink dynamics has applications in cognitive load measurement during human-machine interaction. However, accurate, efficient, and robust pupil size and blink estimation pose significant challenges to the efficacy of real-time applications due to the variability of eye images, hence to date, require manual intervention for fine tuning of parameters. In this paper, a novel self-tuning threshold method, which is applicable to any infrared-illuminated eye images without a tuning parameter, is proposed for segmenting the pupil from the background images recorded by a low cost webcam placed near the eye. A convex hull and a dual-ellipse fitting method are also proposed to select pupil boundary points and to detect the eyelid occlusion state. Experimental results on a realistic video dataset show that the measurement accuracy using the proposed methods is higher than that of widely used manually tuned parameter methods or fixed parameter methods. Importantly, it demonstrates convenience and robustness for an accurate and fast estimate of eye activity in the presence of variations due to different users, task types, load, and environments. Cognitive load measurement in human-machine interaction can benefit from this computationally efficient implementation without requiring a threshold calibration beforehand. Thus, one can envisage a mini IR camera embedded in a lightweight glasses frame, like Google Glass, for convenient applications of real-time adaptive aiding and task management in the future. PMID:24691198

  6. Controlled Expansion of Supercritical Solution: A Robust Method to Produce Pure Drug Nanoparticles With Narrow Size-Distribution.

    PubMed

    Pessi, Jenni; Lassila, Ilkka; Meriläinen, Antti; Räikkönen, Heikki; Hæggström, Edward; Yliruusi, Jouko

    2016-08-01

    We introduce a robust, stable, and reproducible method to produce nanoparticles based on expansion of supercritical solutions using carbon dioxide as a solvent. The method, controlled expansion of supercritical solution (CESS), uses controlled mass transfer, flow, pressure reduction, and particle collection in dry ice. CESS offers control over the crystallization process as the pressure in the system is reduced according to a specific profile. Particle formation takes place before the exit nozzle, and condensation is the main mechanism for postnucleation particle growth. A 2-step gradient pressure reduction is used to prevent Mach disk formation and particle growth by coagulation. Controlled particle growth keeps the production process stable. With CESS, we produced piroxicam nanoparticles, 60 mg/h, featuring narrow size distribution (176 ± 53 nm). PMID:27368121

  7. Large Pore-Sized Hollow Mesoporous Organosilica for Redox-Responsive Gene Delivery and Synergistic Cancer Chemotherapy.

    PubMed

    Wu, Meiying; Meng, Qingshuo; Chen, Yu; Zhang, Lingxia; Li, Mengli; Cai, Xiaojun; Li, Yaping; Yu, Pengcheng; Zhang, Linlin; Shi, Jianlin

    2016-03-01

    A stability-difference-selective bond-breakage strategy for the fabrication of largepore-sized hollow mesoporous organosilica nanoparticles (HMONs) is successfully developed. Moreover, surfacefunctionalized HMONs are successfully constructed to simultaneously deliver P-gp modulator siRNA and anticancer drug doxorubicin to reverse the multidrug resistance of cancer cells. PMID:26743228

  8. Huntingtin-associated protein 1 regulates exocytosis, vesicle docking, readily releasable pool size and fusion pore stability in mouse chromaffin cells

    PubMed Central

    Mackenzie, Kimberly D; Duffield, Michael D; Peiris, Heshan; Phillips, Lucy; Zanin, Mark P; Teo, Ee Hiok; Zhou, Xin-Fu; Keating, Damien J

    2014-01-01

    Huntingtin-associated protein 1 (HAP1) was initially established as a neuronal binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking and cell signalling. In this study, we establish that HAP1 is important in several steps of exocytosis in adrenal chromaffin cells. Using carbon-fibre amperometry, we measured single vesicle exocytosis in chromaffin cells obtained from HAP1−/− and HAP1+/+ littermate mice. Numbers of Ca2+-dependent and Ca2+-independent full fusion events in HAP1−/− cells are significantly decreased compared with those in HAP1+/+ cells. We observed no change in the frequency of ‘kiss-and-run’ fusion events or in Ca2+ entry. Whereas release per full fusion event is unchanged in HAP1−/− cells, early fusion pore duration is prolonged, as indicated by the increased duration of pre-spike foot signals. Kiss-and-run events have a shorter duration, indicating opposing roles for HAP1 in the stabilization of the fusion pore during full fusion and transient fusion, respectively. We use electron microscopy to demonstrate a reduction in the number of vesicles docked at the plasma membrane of HAP1−/− cells, where membrane capacitance measurements reveal the readily releasable pool of vesicles to be reduced in size. Our study therefore illustrates that HAP1 regulates exocytosis by influencing the morphological docking of vesicles at the plasma membrane, the ability of vesicles to be released rapidly upon stimulation, and the early stages of fusion pore formation. PMID:24366265

  9. Dip TIPS as a Facile and Versatile Method for Fabrication of Polymer Foams with Controlled Shape, Size and Pore Architecture for Bioengineering Applications

    PubMed Central

    Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M.; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František

    2014-01-01

    The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields. PMID:25275373

  10. The effect of the zeolite pore size on the Lewis acid strength of extra-framework cations.

    PubMed

    Thang, Ho Viet; Frolich, Karel; Shamzhy, Mariya; Eliášová, Pavla; Rubeš, Miroslav; Čejka, Jiří; Bulánek, Roman; Nachtigall, Petr

    2016-07-21

    The catalytic activity and the adsorption properties of zeolites depend on their topology and composition. For a better understanding of the structure-activity relationship it is advantageous to focus just on one of these parameters. Zeolites synthesized recently by the ADOR protocol offer a new possibility to investigate the effect of the channel diameter on the adsorption and catalytic properties of zeolites: UTL, OKO, and PCR zeolites consist of the same dense 2D layers (IPC-1P) that are connected with different linkers (D4R, S4R, O-atom, respectively) resulting in the channel systems of different sizes (14R × 12R, 12R × 10R, 10R × 8R, respectively). Consequently, extra-framework cation sites compensating charge of framework Al located in these dense 2D layers (channel-wall sites) are the same in all three zeolites. Therefore, the effect of the zeolite channel size on the Lewis properties of the cationic sites can be investigated independent of other factors determining the quality of Lewis sites. UTL, OKO, and PCR and pillared 2D IPC-1PI materials were prepared in Li-form and their properties were studied by a combination of experimental and theoretical methods. Qualitatively different conclusions are drawn for Li(+) located at the channel-wall sites and at the intersection sites (Li(+) located at the intersection of two zeolite channels): the Lewis acid strength of Li(+) at intersection sites is larger than that at channel-wall sites. The Lewis acid strength of Li(+) at channel-wall sites increases with decreasing channel size. When intersecting channels are small (10R × 8R in PCR) the intersection Li(+) sites are no longer stable and Li(+) is preferentially located at the channel-wall sites. Last but not least, the increase in adsorption heats with the decreasing channel size (due to enlarged dispersion contribution) is clearly demonstrated. PMID:27326803

  11. Tailoring the Pore Size and Functionality of UiO-Type Metal-Organic Frameworks for Optimal Nerve Agent Destruction.

    PubMed

    Peterson, Gregory W; Moon, Su-Young; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-10-19

    Evaluation of UiO-66 and UiO-67 metal-organic framework derivatives as catalysts for the degradation of soman, a chemical warfare agent, showed the importance of both the linker size and functionality. The best catalysts yielded half-lives of less than 1 min. Further testing with a nerve agent simulant established that different rate-assessment techniques yield similar values for degradation half-lives. PMID:26431370

  12. Negatively charged subnanometer-sized silicon clusters and their reversible migration into AFI zeolite pores studied with X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo, Cheow-keong; Sakamoto, Takashi; Tanaka, Katsumi; Nakata, Ryouhei; Asakawa, Tetsuo

    1999-02-01

    Subnanometer sized silicon clusters were deposited on AFI zeolite (AlPO 4-5: one-dimensional channel diameter <0.73 nm) by pulsed laser ablation of silicon wafer. Their electronic structures were elucidated in situ by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Core level Si 2p spectra were analyzed into five components, Si(I) to Si(V). Si(I) and Si(II) species selectively increased with a constant ratio during pulsed laser silicon ablation. Their binding energies (BEs) were below 99.5 eV implying negatively charged states. Charge transfer occurred between silicon clusters and framework oxygen and phosphor ions. It was interpreted that the stability of negative charge is due to large electron affinity of silicon clusters. The intensity of XPS signals decreased as a function of time and at the same time the channels were blocked. These results were interpreted due to migration of silicon clusters into zeolite pores. The estimated activation energy (57 kJ/mol) suggests that rate-determining step of the migration is reflected by a weak adsorbed state of silicon clusters similar to physisorbed state. The silicon clusters were partially oxidized at 573 K, which was interpreted as a driving force of backward migration from zeolite pores to the external surface. The composition of silicon cluster was discussed based on homogeneous dispersion of single species.

  13. An Alternative to Cohen's Standardized Mean Difference Effect Size: A Robust Parameter and Confidence Interval in the Two Independent Groups Case

    ERIC Educational Resources Information Center

    Algina, James; Keselman, H. J.; Penfield, Randall D.

    2005-01-01

    The authors argue that a robust version of Cohen's effect size constructed by replacing population means with 20% trimmed means and the population standard deviation with the square root of a 20% Winsorized variance is a better measure of population separation than is Cohen's effect size. The authors investigated coverage probability for…

  14. Effect of variation of average pore size and specific surface area of ZnO electrode (WE) on efficiency of dye-sensitized solar cells

    PubMed Central

    2014-01-01

    Mesoporous ZnO nanoparticles have been synthesized with tremendous increase in specific surface area of up to 578 m2/g which was 5.54 m2/g in previous reports (J. Phys. Chem. C 113:14676-14680, 2009). Different mesoporous ZnO nanoparticles with average pore sizes ranging from 7.22 to 13.43 nm and specific surface area ranging from 50.41 to 578 m2/g were prepared through the sol-gel method via a simple evaporation-induced self-assembly process. The hydrolysis rate of zinc acetate was varied using different concentrations of sodium hydroxide. Morphology, crystallinity, porosity, and J-V characteristics of the materials have been studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), BET nitrogen adsorption/desorption, and Keithley instruments. PMID:25339855

  15. Influence of finite size and wetting on nematic and smectic phase behavior of liquid crystal confined to controlled-pore matrices

    NASA Astrophysics Data System (ADS)

    Kutnjak, Zdravko; Kralj, Samo; Lahajnar, Gojmir; Žumer, Slobodan

    2004-11-01

    The high-resolution calorimetric study was carried out on octylcyanobiphenyl liquid crystal (LC) confined to various controlled-pore glass (CPG) matrices with silane-treated surface. The diameter of the voids cross section ranged between 23.7 and 395nm . The results are compared to those obtained previously on CPG voids nontreated with silane. We found a striking similarity between the shifts in the isotropic to nematic and nematic to smectic- A phase transition temperatures as a function of the void radius in which order parameter variations at the LC-void interface play the dominant role. Weaker temperature shifts are observed in silane-treated samples, where surface ordering tendency is larger. In nontreated samples, a finite-size scaling law in the maximum value of the heat capacity at the nematic to smectic- A transition was observed for void diameters larger than 20nm . In silane-treated samples, this behavior is considerably changed by surface wetting interactions.

  16. Effect of the measurement size on the robustness of the assessment of the features specific for cylinder liner surfaces

    NASA Astrophysics Data System (ADS)

    Dimkovski, Z.; Ohlsson, R.; Rosén, B.-G.

    2014-01-01

    The quality of the cylinder liner surface is of great importance due to its impact on the fuel/oil consumption and emissions of the internal combustion engine. A good liner function depends on the size and distribution of the deep honing grooves and the amount of the cold work material (Blechmantel) left inside the grooves after finishing. A fast evaluation of these features requires optical three-dimensional measurements with a large area and good resolution, but many interferometers used today have limited resolution when measuring larger areas. To find out how the measurement size and resolution would affect the quantification and the variation of the parameters, two objectives, 2.5 × and 10 × , were used for measuring a cylinder liner from a truck engine. The Blechmantel was of special interest as it first comes into contact with piston/rings, detaches as particles and wears the running surfaces. The 2.5 × objective showed more robust assessment than the 10 × one, manifested by a lower coefficient of variation for the parameters describing the features: Blechmantel, groove width and height, groove balance and number of grooves. This means that fewer measurements are required if a 2.5 × objective is used in production and hence the time and cost of the liner would be decreased.

  17. Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage

    DOEpatents

    Yaghi, Omar M.; Eddaoudi, Mohamed; Li, Hailian; Kim, Jaheon; Rosi, Nathaniel

    2007-03-27

    The ability to design and construct solid-state materials with pre-determined structures is a grand challenge in chemistry. An inventive strategy based on reticulating metal ions and organic carboxylate links into extended networks has been advanced to a point that has allowed the design of porous structures in which pore size and functionality can be varied systematically. MOF-5, a prototype of a new class of porous materials and one that is constructed from octahedral Zn--O--C clusters and benzene links, was used to demonstrate that its 3-D porous system can be functionalized with the organic groups, --Br, --NH2, --OC3H7, --OC5H11, --H4C2, and --H4C4, and its pore size expanded with the long molecular struts biphenyl, tetrahydropyrene, pyrene, and terphenyl. The ability to direct the formation of the octahedral clusters in the presence of a desired carboxylate link is an essential feature of this strategy, which resulted in the design of an isoreticular (having the same framework topology) series of sixteen well-defined materials whose crystals have open space representing up to 91.1% of the crystal volume, and homogeneous periodic pores that can be incrementally varied from 3.8 to 28.8 angstroms. Unlike the unpredictable nature of zeolite and other molecular sieve syntheses, the deliberate control exercised at the molecular level in the design of these crystals is expected to have tremendous implications on materials properties and future technologies. Indeed, data indicate that members of this series represent the first monocrystalline mesoporous organic/inorganic frameworks, and exhibit the highest capacity for methane storage (155 cm3/cm3 at 36 atm) and the lowest densities (0.41 to 0.21 g/cm3) attained to date for any crystalline material at room temperature.

  18. Profiles of Water Content and Pore Size in Sphagnum and Peat, and their Relation to Peat Bog Ecology

    NASA Astrophysics Data System (ADS)

    Hayward, P. M.; Clymo, R. S.

    1982-06-01

    The bog mosses, Sphagnum, form a significant part of the total mass of plants in the world. Their rate of growth depends to a considerable extent on the supply of water to them, and different species occupy characteristic habitats which differ in their ability to supply water. We used the profiles of water content in almost undisturbed cores of two species to infer the size and distribution of spaces around the plants in an attempt to account for the observation that S. papillosum is usually found not far above the water table, while S. capilliforlium is usually found on hummocks well above the water table. Profiles of water content were recorded non-destructively from 30 cm diameter cores of Sphagnum and underlying peat, with use of the absorbance of the soft gamma radiation of 241Am. The distribution of water-fillable spaces of different size was inferred from profiles with the water table at different distances, to a maximum of 150 cm, below the surface. The larger spaces, which are the main path of water transport, are outside the plant cell walls: between leaves and between pendent branches and stems. The mean radius of such spaces around the hummock species S. capillifolium is smaller than that around S. papillosum. For a given depth of water table the water content of the apical tuft of branches, where growth occurs, is greater in the hummock species than it is in the lawn species. Of ecological importance is that, for a given water content in the apex, the water table is at a greater depth below the hummock species than it is below the lawn species. As the water table rises and falls, so the water content of both species shows hysteresis as large as the difference between them. The ecological significance of this and the need for measurements while water is flowing are discussed.

  19. Geosmin and 2-methylisoborneol removal using superfine powdered activated carbon: shell adsorption and branched-pore kinetic model analysis and optimal particle size.

    PubMed

    Matsui, Yoshihiko; Nakao, Soichi; Taniguchi, Takuma; Matsushita, Taku

    2013-05-15

    2-Methylisoborneol (MIB) and geosmin are naturally occurring compounds responsible for musty-earthy taste and odor in public drinking-water supplies, a severe problem faced by many utilities throughout the world. In this study, we investigated adsorptive removal of these compounds by superfine powdered activation carbon (SPAC, particle size <1 μm) produced by novel micro-grinding of powdered activated carbon; we also discuss the optimization of carbon particle size to efficiently enhance the adsorptive removal. After grinding, the absorptive capacity remained unchanged for a 2007 carbon sample and was increased for a 2010 carbon sample; the capacity increase was quantitatively described by the shell adsorption model, in which MIB and geosmin adsorbed more in the exterior of a carbon particle than in the center. The extremely high uptake rates of MIB and geosmin by SPAC were simulated well by a combination of the branched-pore kinetic model and the shell adsorption model, in which intraparticle diffusion through macropores was followed by diffusion from macropore to micropore. Simulations suggested that D40 was on the whole the best characteristic diameter to represent a size-disperse group of adsorbent particles; D40 is the diameter through which 40% of the particles by volume pass. Therefore, D40 can be used as an index for evaluating the improvement of adsorptive removal that resulted from pulverization. The dose required for a certain percentage removal of MIB or geosmin decreased linearly with carbon particle size (D40), but the dose reduction became less effective as the activated carbon was ground down to smaller sizes around a critical value of D40. For a 60-min contact time, critical D40 was 2-2.5 μm for MIB and 0.4-0.5 μm for geosmin. The smaller critical D40 was when the shorter the carbon-water contact time was or the slower the intraparticle mass transfer rate of an adsorbate was. PMID:23528781

  20. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

    NASA Astrophysics Data System (ADS)

    Hertel, Stefan Andreas; Wang, Xindi; Hosking, Peter; Simpson, M. Cather; Hunter, Mark; Galvosas, Petrik

    2015-07-01

    Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.

  1. Membranes with functionalized carbon nanotube pores for selective transport

    DOEpatents

    Bakajin, Olgica; Noy, Aleksandr; Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K; Kim, Sangil

    2015-01-27

    Provided herein composition and methods for nanoporous membranes comprising single walled, double walled, or multi-walled carbon nanotubes embedded in a matrix material. Average pore size of the carbon nanotube can be 6 nm or less. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  2. A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility.

    PubMed

    Nguyen, Thi-Hiep; Padalhin, Andrew R; Seo, Hyung Seok; Lee, Byong-Taek

    2013-01-01

    In this study, a novel hybrid polyurethane/polycaprolactone (PU/PCL) tubular scaffold was fabricated using the electrospinning process for blood vessel prosthesis applications. The detailed microstructure and material properties such as porosity, tensile and bust strength, contact angle, and biocompatibility were investigated and compared with those of monolithic PU and PCL scaffolds. The mechanical properties of the hybrid PU/PCL scaffold (tensile strength: 18 MPa, pressure strength: 590 mmHg) were found to be within the range needed for artificial blood vessel applications. The pore sizes of the PU/PCL scaffold ranged from 5-150 um in diameter, are sufficient enough to allow nutrient diffusion across the membrane. The reduced hydrophobic property of the PU/PCL scaffold was the result of the addition of relatively less hydrophobic PU compared with monolithic PCL scaffold. The biocompatibility of the PU/PCL scaffold was evaluated through cytotoxicity testing, and morphological observation by scanning electron microscopy and confocal microscopy using cow pulmonary artery endothelial cells and fibroblast like cells (L929). PMID:23627704

  3. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  4. Reconstruction and analysis of fuel cell gas diffusion layers using fiber spacing rather than pore size data: Questioned validity of widely-used porosity-based thermal conductivity models

    NASA Astrophysics Data System (ADS)

    Sadeghifar, Hamidreza

    2016-03-01

    Porosity and pore size data have long been used for reconstructing (two directional) fibrous materials. The present study is aimed to explain the overlooked fact that pore size parameter, bundling several other geometric parameters together, cannot be directly used for the reconstruction and geometrical modeling of gas diffusion layers (GDLs) of fuel cells. Instead, it has to be converted to fiber spacing, for which purpose it is a useful parameter. A technical approach is presented on how to reach fiber spacing from pore size (diameter) data. The reason why GDLs with the same porosity, fiber diameter and angle, but with unequal fiber spacing, may have different properties is also explained by providing physical evidence. The present study clearly demonstrates that the traditional notion that fibrous materials with lower porosity have higher thermal conductivity does not necessary hold. In addition, it is shown that GDLs with the same porosity and the same pore size may have different fiber spacing and thus, distinct properties. It is found that the thermal conductivity models based solely upon porosity can be off by several hundred percent and must be either discarded or used over the narrow range of conditions under which they have been formulated.

  5. Sulfur-infiltrated porous carbon microspheres with controllable multi-modal pore size distribution for high energy lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyu; Liu, Lianjun; Zhao, Huilei; Krall, Andy; Wen, Zhenhai; Chen, Junhong; Hurley, Patrick; Jiang, Junwei; Li, Ying

    2013-12-01

    Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide several advantages: (1) a continuous and high surface area carbon network for enhanced electrical conductivity and high sulfur loading; (2) macropores and large mesopores bridged by small mesopores to provide good electrolyte accessibility and fast Li ion transport and to accommodate volume expansion of sulfur; and (3) small mesopores and micropores to improve carbon/sulfur interaction and to help trap polysulfides. An initial discharge capacity at 1278 mA h g-1 and capacity retention at 70.7% (904 mA h g-1) after 100 cycles at a high rate (1 C) were achieved. The material fabrication process is relatively simple and easily scalable.Sulfur has received increasing attention as a cathode material for lithium-sulfur (Li-S) batteries due to its high theoretical specific capacity. However, the commercialization of Li-S batteries is limited by the challenges of poor electrical conductivity of sulfur, dissolution of the polysulfide intermediates into the electrolyte, and volume expansion of sulfur during cycling. Herein, we report the fabrication of novel-structured porous carbon microspheres with a controllable multi-modal pore size distribution, i.e., a combination of interconnected micropores, mesopores and macropores. Cathodes made of sulfur infiltrated in such a hierarchical carbon framework provide

  6. Sorption of TCE by humic-preloaded activated carbon: Incorporating size-exclusion and pore blockage phenomenon in a competitive adsorption model

    SciTech Connect

    Kilduff, J.E.; Wigton, A.

    1999-01-15

    Naturally occurring, macromolecular dissolved organic matter (NOM) is known to foul activated carbon adsorbents, reducing the ability of fixed-bed adsorbers to efficiently remove targeted synthetic organic contaminants (SOCs). An accurate description of the effects of NOM competition on SOC adsorption equilibria is required to develop dynamic models, which have application to process design and analysis. A model was developed, using an approach based on the Ideal Adsorbed Solution Theory (IAST), to predict trichloroethylene (TCE) adsorption by activated carbon preloaded with humic acid. The IAST model was formulated for a bisolute system in which TCE and humic acid single-solute uptakes were described by the Langmuir-Freundlich and Freundlich isotherms, respectively. The humic mixture was modeled as a single component based on previous studies that identified the low-molecular-weight hydrophobic fraction as the most reactive with regard to preloading effects. Isotherms for this fraction, isolated from whole humic acid using ultrafiltration, were measured, and molar concentrations were computed based on an average molecular weight determined using size-exclusion chromatography. The IAST model was modified to reflect the hypothesis that TCE molecules can access adsorption sites which humic molecules cannot and that no competition can occur on these sites. The model was calibrated with data for TCE uptake by carbon preloaded with the low-molecular-weight humic acid fraction and was verified by predicting TCE uptake by carbon preloaded with whole humic acid. Further improvement to the model was possible by accounting for pore blockage as a mechanism which can reduce the effective surface area available in TCE.

  7. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.

    PubMed

    Mehr, Nima Ghavidel; Li, Xian; Chen, Gaoping; Favis, Basil D; Hoemann, Caroline D

    2015-07-01

    Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p < 0.05 vs. PCL-only) but not the 141 µm pores. This study revealed that LbL-chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation. PMID:25504184

  8. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes.

    PubMed

    Belwalkar, A; Grasing, E; Van Geertruyden, W; Huang, Z; Misiolek, W Z

    2008-07-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 microm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity. PMID:19578471

  9. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes

    PubMed Central

    Belwalkar, A.; Grasing, E.; Huang, Z.; Misiolek, W.Z.

    2008-01-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 µm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity. PMID:19578471

  10. Investigation of pore size related parameters during long-term CO2-brine-rock interaction from batch experiments and from in situ rock cores after 4 years of geological CO2 storage at the Ketzin pilot site (Germany)

    NASA Astrophysics Data System (ADS)

    Zemke, Kornelia; Liebscher, Axel; Fischer, Sebastian

    2013-04-01

    The objective of this study is to investigate long-term effects of injected CO2 on pore size related parameters. Changes in porosity, pore geometry and distribution, effective permeability, and capillary entry conditions influence the development of static and dynamic storage capacity and injectivity. For the batch experiments core samples from the target reservoir horizon and its directly overlying cap-rock of the Triassic Stuttgart Formation at the Ketzin pilot storage site in Germany drilled in 2007 (observation well Ktzi 202) were exposed to pure CO2 and synthetic reservoir brine in corrosion-resistant, high-pressure autoclaves under in situ P-T conditions over various time periods. For the first run with reservoir sandstone, seven inner core section (Ø 50 mm x 100 mm) and additional rock fragments were stored in separate autoclaves for 40 months. After 15, 21, 24, and 40 months, respectively, all autoclaves were opened and samples were taken for mineralogical, geochemical, microbiological and petrophysical investigations. In a second run, three parallel siltstone samples were placed in autoclaves and exposed to CO2 and synthetic reservoir brine with run durations of 2, 4 and 6 months; a fourth cap-rock sample was exposed to N2 for 6 months and served as blind-run. The samples were investigated by NMR relaxation and mercury injection porosimetry (MIP). The NMR amplitude is related to fluid filled porosity. In addition, the distribution of NMR-T2 values reflects the pore sizes. The porosity of the connected pore system and the distribution of pore throats can be derived from the MIP. Based on the data, empirical models were used to estimate corresponding permeabilities as well as displacement, threshold, and critical pore pressure from the mercury data. The porosity data of the batch experiments determined by NMR and MIP are comparable and consistent with the logging data. The data of the reservoir experiments indicate only small changes of the pore size

  11. Scandium functionalized carbon aerogel: Synthesis of nanoparticles and structure of a new ScOCl and properties of NaAlH4 as a function of pore size

    NASA Astrophysics Data System (ADS)

    Javadian, Payam; Nielsen, Thomas K.; Ravnsbæk, Dorthe B.; Jepsen, Lars H.; Polanski, Marek; Plocinski, Tomasz; Kunce, Izabela; Besenbacher, Flemming; Bystrzycki, Jerzy; Jensen, Torben R.

    2015-11-01

    A new method for scandium-functionalization of carbon aerogels forming nanoparticles of a new scandiumoxochloride, ScOCl is presented. Sodium aluminiumhydride, NaAlH4, is successfully melt infiltrated into the nano porous scaffolds with pore sizes of Dmax=7, 10, 13, 21, 26 and 39 nm, containing scandium based nano particles (<2.9 wt%) confirmed by elemental analysis and scanning electron microscopy. A systematic study of hydrogen storage properties of the nano composite materials is presented. An aqueous solution of ScCl3 was initially infiltrated and formed nanoconfined [Sc(OH)(H2O)5]2Cl4(H2O)2, which transforms to nanoparticles of a new scandium oxochloride, ScOCl at 192 °C and to Sc2O3 at 420 °C. ScOCl crystallizes in an orthorhombic unit cell a=3.4409(8), b=3.9613(6) and c=8.178(2) Å, space group Pmmn, and is built from layers of [ScO4Cl2] octahedra forming neutral ScOCl layers. Temperature programmed desorption mass spectroscopy shows slightly improved kinetics for release of hydrogen with decreasing pore size. Continuous cycling of hydrogen release and uptake measured by the Sieverts' method reveal a larger preserved hydrogen storage capacity for scandium-functionalized aerogel with the larger pores (39 nm).

  12. Re-evaluation of Pleistocene and Holocene long bone robusticity trends with regards to age-at-death estimates and size standardization procedures.

    PubMed

    Friedl, Lukáš; Eisová, Stanislava; Holliday, Trenton W

    2016-08-01

    Long-term trends in robusticity of lower limb bones in the genus Homo through the Pleistocene until the present have been proposed, which have been interpreted as a consequence of decreasing levels of mobility and activity patterns, changes in lifestyle, and environmental factors. There has also long been evidence that skeletal strength increases over an individual's lifespan. This increase is caused by continuous bone remodeling that optimizes the structure of a bone to resist mechanical loadings and creates a balance between endosteal resorption and subperiosteal apposition. However, none of the previous studies of temporal trends in robusticity has considered both processes and analyzed how individual age-related robusticity might influence higher-level temporal trends. This paper therefore explores temporal trends in robusticity of lower limb long bones within the genus Homo and considers how individual ages-at-death can confound published evolutionary trends, given the fact that some aspects of relative bone strength tend to increase over individual lifespans. Cross-sectional diaphyseal properties of the midshaft and proximal femur and midshaft tibia of Pleistocene and early Holocene individuals, together with data on age-at-death are used to analyze changes in relative bone strength relative to individuals' ages and evolutionary time. The results show increasing bone strength in adulthood until the fourth decade and then a slight decrease, an observation that conforms to previously published results on recent human populations. However, no significant impact of age-at-death on the trends along an evolutionary trajectory has been detected. The evolutionary trends in femoral and tibial relative strength can be described as fluctuating, probably as a consequence of changing mobility patterns, environmentally and technologically influenced behaviors, and demographic processes. The differences between evolutionary trends published in several studies are explained

  13. High-resolution dielectric study reveals pore-size-dependent orientational order of a discotic liquid crystal confined in tubular nanopores.

    PubMed

    Całus, Sylwia; Kityk, Andriy V; Borowik, Lech; Lefort, Ronan; Morineau, Denis; Krause, Christina; Schönhals, Andreas; Busch, Mark; Huber, Patrick

    2015-07-01

    We report a high-resolution dielectric study on a pyrene-based discotic liquid crystal (DLC) in the bulk state and confined in parallel tubular nanopores of monolithic silica and alumina membranes. The positive dielectric anisotropy of the DLC molecule at low frequencies (in the quasistatic case) allows us to explore the thermotropic collective orientational order. A face-on arrangement of the molecular discs on the pore walls and a corresponding radial arrangement of the molecules is found. In contrast to the bulk, the isotropic-to-columnar transition of the confined DLC is continuous, shifts with decreasing pore diameter to lower temperatures, and exhibits a pronounced hysteresis between cooling and heating. These findings corroborate conclusions from previous neutron and x-ray-scattering experiments as well as optical birefringence measurements. Our study also indicates that the relative simple dielectric technique presented here is a quite efficient method in order to study the thermotropic orientational order of DLC-based nanocomposites. PMID:26274191

  14. Effective porosity and pore-throat sizes of mudrock saprolite from the Nolichucky Shale within Bear Creek Valley on the Oak Ridge Reservation: Implications for contaminant transport and retardation through matrix diffusion

    SciTech Connect

    Dorsch, J.; Katsube, T.J.

    1996-05-01

    Specimens of saprolite developed from mudrock of the Nolichucky Shale (Upper Cambrian, Conasauga Group) from the Whiteoak Mountain thrust sheet on the Oak Ridge Reservation (ORR) were analyzed. Petrophysical techniques include helium porosimetry and mercury porosimetry. Petrophysical data obtained from the laboratory experiments include effective porosity, pore-throat sizes and their distribution, specimen bulk-density, and specimen grain-density. It is expected that the data from this study will significantly contribute to constraining the modeling of the hydrologic behavior of saprolite developed from mudrock of the Conasauga Group in general and from the Nolichucky Shale specifically.

  15. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  16. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.

    PubMed

    Wang, Zizhen; Wang, Ruihe; Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  17. Poring over two-pore channel pore mutants

    PubMed Central

    Penny, Christopher J.; Patel, Sandip

    2016-01-01

    Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging. PMID:27226934

  18. Chemical potential and entropy in monodisperse and polydisperse hard-sphere fluids using Widom's particle insertion method and a pore size distribution-based insertion probability.

    PubMed

    Baranau, Vasili; Tallarek, Ulrich

    2016-06-01

    We estimate the excess chemical potential Δμ and excess entropy per particle Δs of computer-generated, monodisperse and polydisperse, frictionless hard-sphere fluids. For this purpose, we utilize the Widom particle insertion method, which for hard-sphere systems relates Δμ to the probability to successfully (without intersections) insert a particle into a system. This insertion probability is evaluated directly for each configuration of hard spheres by extrapolating to infinity the pore radii (nearest-surface) distribution and integrating its tail. The estimates of Δμ and Δs are compared to (and comply well with) predictions from the Boublík-Mansoori-Carnahan-Starling-Leland equation of state. For polydisperse spheres, we employ log-normal particle radii distributions with polydispersities δ = 0.1, 0.2, and 0.3. PMID:27276959

  19. Power and Sample Size Determination in the Rasch Model: Evaluation of the Robustness of a Numerical Method to Non-Normality of the Latent Trait

    PubMed Central

    Guilleux, Alice; Blanchin, Myriam; Hardouin, Jean-Benoit; Sébille, Véronique

    2014-01-01

    Patient-reported outcomes (PRO) have gained importance in clinical and epidemiological research and aim at assessing quality of life, anxiety or fatigue for instance. Item Response Theory (IRT) models are increasingly used to validate and analyse PRO. Such models relate observed variables to a latent variable (unobservable variable) which is commonly assumed to be normally distributed. A priori sample size determination is important to obtain adequately powered studies to determine clinically important changes in PRO. In previous developments, the Raschpower method has been proposed for the determination of the power of the test of group effect for the comparison of PRO in cross-sectional studies with an IRT model, the Rasch model. The objective of this work was to evaluate the robustness of this method (which assumes a normal distribution for the latent variable) to violations of distributional assumption. The statistical power of the test of group effect was estimated by the empirical rejection rate in data sets simulated using a non-normally distributed latent variable. It was compared to the power obtained with the Raschpower method. In both cases, the data were analyzed using a latent regression Rasch model including a binary covariate for group effect. For all situations, both methods gave comparable results whatever the deviations from the model assumptions. Given the results, the Raschpower method seems to be robust to the non-normality of the latent trait for determining the power of the test of group effect. PMID:24427276

  20. Power and sample size determination in the Rasch model: evaluation of the robustness of a numerical method to non-normality of the latent trait.

    PubMed

    Guilleux, Alice; Blanchin, Myriam; Hardouin, Jean-Benoit; Sébille, Véronique

    2014-01-01

    Patient-reported outcomes (PRO) have gained importance in clinical and epidemiological research and aim at assessing quality of life, anxiety or fatigue for instance. Item Response Theory (IRT) models are increasingly used to validate and analyse PRO. Such models relate observed variables to a latent variable (unobservable variable) which is commonly assumed to be normally distributed. A priori sample size determination is important to obtain adequately powered studies to determine clinically important changes in PRO. In previous developments, the Raschpower method has been proposed for the determination of the power of the test of group effect for the comparison of PRO in cross-sectional studies with an IRT model, the Rasch model. The objective of this work was to evaluate the robustness of this method (which assumes a normal distribution for the latent variable) to violations of distributional assumption. The statistical power of the test of group effect was estimated by the empirical rejection rate in data sets simulated using a non-normally distributed latent variable. It was compared to the power obtained with the Raschpower method. In both cases, the data were analyzed using a latent regression Rasch model including a binary covariate for group effect. For all situations, both methods gave comparable results whatever the deviations from the model assumptions. Given the results, the Raschpower method seems to be robust to the non-normality of the latent trait for determining the power of the test of group effect. PMID:24427276

  1. On the edge energy of lipid membranes and the thermodynamic stability of pores

    SciTech Connect

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2015-01-21

    To perform its barrier function, the lipid bilayer membrane requires a robust resistance against pore formation. Using a self-consistent field (SCF) theory and a molecularly detailed model for membranes composed of charged or zwitterionic lipids, it is possible to predict structural, mechanical, and thermodynamical parameters for relevant lipid bilayer membranes. We argue that the edge energy in membranes is a function of the spontaneous lipid monolayer curvature, the mean bending modulus, and the membrane thickness. An analytical Helfrich-like model suggests that most bilayers should have a positive edge energy. This means that there is a natural resistance against pore formation. Edge energies evaluated explicitly in a two-gradient SCF model are consistent with this. Remarkably, the edge energy can become negative for phosphatidylglycerol (e.g., dioleoylphosphoglycerol) bilayers at a sufficiently low ionic strength. Such bilayers become unstable against the formation of pores or the formation of lipid disks. In the weakly curved limit, we study the curvature dependence of the edge energy and evaluate the preferred edge curvature and the edge bending modulus. The latter is always positive, and the former increases with increasing ionic strength. These results point to a small window of ionic strengths for which stable pores can form as too low ionic strengths give rise to lipid disks. Higher order curvature terms are necessary to accurately predict relevant pore sizes in bilayers. The electric double layer overlap across a small pore widens the window of ionic strengths for which pores are stable.

  2. Effect of content of chiral selector and pore size of core-shell type silica support on the performance of amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases in nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Rocchi, Silvia; Fanali, Salvatore; Farkas, Tivadar; Chankvetadze, Bezhan

    2014-10-10

    In this study the separation performance of various chiral stationary phases (CSPs) made of polysaccharide-based chiral selectors coated onto superficially porous (core-shell or fused-core) silica supports were evaluated. The CSPs obtained by coating of various amounts of chiral selector (1-5%) onto supports of various pore size (100 and 300 Å) were studied. Their evaluation was pursued in both chiral nano-liquid chromatography (nano-LC) and chiral capillary electrochromatography (CEC). Among the goals of this study was to re-examine our previous unexpected finding of better performance of superficially porous CSP under CEC conditions compared to nano-LC conditions for a new set of chiral compounds, as well as to study the effect of varying the chiral selector content and nominal pore size of supporting silica on the performance of core-shell silica-based polysaccharide-type CSPs. Based on the results of this study it can be seen that CSPs based on superficially porous silica can successfully be used for the separation of enantiomers in both nano-LC and CEC mode. Only a slight advantage of CEC over nano-LC mode was observed in this study from the viewpoint of plate numbers, especially at higher mobile phase flow rates. It must also be noted that the optimal theoretical plate height is still too high and further optimization of superficially porous CSPs is necessary for both nano-LC and CEC applications. PMID:24908153

  3. Immobilization of nanobeads on a surface to control the size, shape and distribution of pores in electrochemically generated sol-gel films

    PubMed Central

    Ciabocco, Michela; Berrettoni, Mario; Zamponi, Silvia

    2015-01-01

    Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH3)3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm-3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3)3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN)64- at scan rates above 5 mVs-1 yielded currents controlled primarily by linear diffusion. Below 5 mVs-1, convection rather than the expected factor, radial diffusion, apparently limited the current. PMID:26167128

  4. Pore Velocity Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  5. Pore-size reduction protocol for SiN membrane nanopore using the thermal reflow in nanoimprinting for nanobio-based sensing.

    PubMed

    Lee, Dae-Sik; Song, Hyun-Woo; Choi, Choon-Gi; Jung, Mun Youn

    2014-05-01

    Micro- and nano-fabrication methods facilitate the use of nanostructures for the separation of collections of particles and nanobio-based optical and electrochemical sensing. We have presented an easy and simple nanopore size reduction method of a low-stressed silicon nitride (SiN) membrane nanosieve (100×100  μm2) using a nanoimprinting method based on a natural thermal reflow of the contact imprinting polymer, possibly maintaining compatibility with complementary metal-oxide semiconductor integrated circuit processes. The nanopore pattern size of this nanosieve membrane was precisely patterned by a nanoimprinting process using an electron beam patterned silicon master, to about 30-nm diameter. By employing mainly an electron beam resist reflow phenomena after a nanoimprinting process and anisotropic reactive ion etch, the etch holes' size was fabricated to be the same with nanopatterns on the polymer. The contact imprinting master can be used continually for the generation of nanopore patterns simply and easily. It can endure harsh conditions like high temperature up to 800°C, and it is inert to many aggressive and strong chemicals. Also, this would be a low-cost, simple, and easy fabrication method for the precise and reliable size-reduction control of nanopores for mass production of nanobio sensors or chips. PMID:24503699

  6. Pore-size reduction protocol for SiN membrane nanopore using the thermal reflow in nanoimprinting for nanobio-based sensing

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Sik; Song, Hyun-Woo; Choi, Choon-Gi; Jung, Mun Youn

    2014-05-01

    Micro- and nano-fabrication methods facilitate the use of nanostructures for the separation of collections of particles and nanobio-based optical and electrochemical sensing. We have presented an easy and simple nanopore size reduction method of a low-stressed silicon nitride (SiN) membrane nanosieve (100×100 μ) using a nanoimprinting method based on a natural thermal reflow of the contact imprinting polymer, possibly maintaining compatibility with complementary metal-oxide semiconductor integrated circuit processes. The nanopore pattern size of this nanosieve membrane was precisely patterned by a nanoimprinting process using an electron beam patterned silicon master, to about 30-nm diameter. By employing mainly an electron beam resist reflow phenomena after a nanoimprinting process and anisotropic reactive ion etch, the etch holes' size was fabricated to be the same with nanopatterns on the polymer. The contact imprinting master can be used continually for the generation of nanopore patterns simply and easily. It can endure harsh conditions like high temperature up to 800°C, and it is inert to many aggressive and strong chemicals. Also, this would be a low-cost, simple, and easy fabrication method for the precise and reliable size-reduction control of nanopores for mass production of nanobio sensors or chips.

  7. Measuring kinetic drivers of pneumolysin pore structure.

    PubMed

    Gilbert, Robert J C; Sonnen, Andreas F-P

    2016-05-01

    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology. PMID:26906727

  8. Nanofluidic Size-Exclusion Chromatograph

    NASA Technical Reports Server (NTRS)

    Feldman, Sabrina; Svehla, Danielle; Grunthaner, Frank; Feldman, Jason; Shakkottai, P.

    2004-01-01

    Efforts are under way to develop a nanofluidic size-exclusion chromatograph (SEC), which would be a compact, robust, lightweight instrument for separating molecules of interest according to their sizes and measuring their relative abundances in small samples. About as large as a deck of playing cards, the nanofluidic SEC would serve, in effect, as a laboratory on a chip that would perform the functions of a much larger, conventional, bench-top SEC and ancillary equipment, while consuming much less power and much smaller quantities of reagent and sample materials. Its compactness and low power demand would render it attractive for field applications in which, typically, it would be used to identify and quantitate a broad range of polar and nonpolar organic compounds in soil, ice, and water samples. Size-exclusion chromatography is a special case of high-performance liquid chromatography. In a conventional SEC, a sample plug is driven by pressure along a column packed with silica or polymer beads that contain uniform nanopores. The interstices between, and the pores in, the beads collectively constitute a size-exclusion network. Molecules follow different paths through the size-exclusion network, such that characteristic elution times can be related to sizes of molecules: basically, smaller molecules reach the downstream end of the column after the larger ones do because the smaller ones enter minor pores and stay there for a while, whereas the larger ones do not enter the pores. The volume accessible to molecules gradually diminishes as their size increases. All molecules bigger than a pore size elute together. For most substances, the elution times and sizes of molecules can be correlated directly with molecular weights. Hence, by measuring the flux of molecules arriving at the downstream end as a function of time, one can obtain a liquid mass spectrum for the molecules present in a sample over a broad range of molecular weights.

  9. Modeling the interaction of ultrasound with pores

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1991-01-01

    Factors that affect ultrasonic velocity sensing of density during consolidation of metal powders are examined. A comparison is made between experimental results obtained during the final stage of densification and the predictions of models that assume either a spherical or a spheroidal pore shape. It is found that for measurements made at low frequencies during the final stage of densification, relative density (pore fraction) and pore shape are the two most important factors determining the ultrasonic velocity, the effect of pore size is negligible.

  10. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    the connectivity of the pore system. Examples are given for T1-T2 correlation of some soil samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a Natural soil: Comparison of Relaxometric Imaging, T1 - T2 Correlation and Fast-Field Cycling NMR." The Open Magnetic Resonance Journal: in print. Pohlmeier, A., S. Haber-Pohlmeier, et al. (2009). "A Fast Field Cycling NMR Relaxometry Study of Natural Soils." Vadose Zone J. 8: 735-742. Stingaciu, L. R., A. Pohlmeier, et al. (2009). "Characterization of unsaturated porous media by high-field and low-field NMR relaxometry." Water Resources Research 45: W08412

  11. Experimental implementation of a robust damped-oscillation control algorithm on a full-sized, two-degree-of-freedom, AC induction motor-driven crane

    NASA Astrophysics Data System (ADS)

    Kress, R. L.; Jansen, J. F.; Noakes, M. W.

    When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered and/or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller.

  12. Experimental implementation of a robust damped-oscillation control algorithm on a full-sized, two-degree-of-freedom, AC induction motor-driven crane

    SciTech Connect

    Kress, R.L.; Jansen, J.F.; Noakes, M.W.

    1994-05-01

    When suspended payloads are moved with an overhead crane, pendulum like oscillations are naturally introduced. This presents a problem any time a crane is used, especially when expensive and/or delicate objects are moved, when moving in a cluttered an or hazardous environment, and when objects are to be placed in tight locations. Damped-oscillation control algorithms have been demonstrated over the past several years for laboratory-scale robotic systems on dc motor-driven overhead cranes. Most overhead cranes presently in use in industry are driven by ac induction motors; consequently, Oak Ridge National Laboratory has implemented damped-oscillation crane control on one of its existing facility ac induction motor-driven overhead cranes. The purpose of this test was to determine feasibility, to work out control and interfacing specifications, and to establish the capability of newly available ac motor control hardware with respect to use in damped-oscillation-controlled systems. Flux vector inverter drives are used to investigate their acceptability for damped-oscillation crane control. The purpose of this paper is to describe the experimental implementation of a control algorithm on a full-sized, two-degree-of-freedom, industrial crane; describe the experimental evaluation of the controller including robustness to payload length changes; explain the results of experiments designed to determine the hardware required for implementation of the control algorithms; and to provide a theoretical description of the controller.

  13. Pore formation and translocation of melittin.

    PubMed Central

    Matsuzaki, K; Yoneyama, S; Miyajima, K

    1997-01-01

    Melittin, a bee venom, is a basic amphiphilic peptide, which mainly acts on the lipid matrix of membranes, lysing various cells. To elucidate the molecular mechanism, we investigated its interactions with phospholipid vesicles. The peptide formed a pore with a short lifetime in the membrane, as revealed by the release of an anionic fluorescent dye, calcein, from the liposomes. Our new double-labeling method clarified that the pore size increased with the peptide-to-lipid ratio. Upon the disintegration of the pore, a fraction of the peptides translocated across the bilayer. The pore formation was coupled with the translocation, which was proved by three fluorescence experiments recently developed by our laboratory. A novel model for the melittin pore formation was discussed in comparison with other pore-forming peptides. PMID:9251799

  14. Effect of Pore Size and Film Thickness on Gold-Coated Nanoporous Anodic Aluminum Oxide Substrates for Surface-Enhanced Raman Scattering Sensor

    PubMed Central

    Kassu, Aschalew; Farley, Carlton; Sharma, Anup; Kim, Wonkyu; Guo, Junpeng

    2015-01-01

    A sensitive surface enhanced Raman scattering chemical sensor is demonstrated by using inexpensive gold-coated nanoporous anodic aluminum oxide substrates. To optimize the performance of the substrates for sensing by the Surface-enhanced Raman scattering (SERS) technique, the size of the nanopores is varied from 18 nm to 150 nm and the gold film thickness is varied from 30 nm to 120 nm. The sensitivity of gold-coated nanoporous surface enhanced Raman scattering sensor is characterized by detecting low concentrations of Rhodamine 6G laser dye molecules. The morphology of the SERS substrates is characterized by atomic force microscopy. Optical properties of the nanoporous SERS substrates including transmittance, reflectance, and absorbance are also investigated. Relative signal enhancement is plotted for a range of substrate parameters and a detection limit of 10−6 M is established. PMID:26633402

  15. Incomplete pneumolysin oligomers form membrane pores.

    PubMed

    Sonnen, Andreas F-P; Plitzko, Jürgen M; Gilbert, Robert J C

    2014-01-01

    Pneumolysin is a member of the cholesterol-dependent cytolysin (CDC) family of pore-forming proteins that are produced as water-soluble monomers or dimers, bind to target membranes and oligomerize into large ring-shaped assemblies comprising approximately 40 subunits and approximately 30 nm across. This pre-pore assembly then refolds to punch a large hole in the lipid bilayer. However, in addition to forming large pores, pneumolysin and other CDCs form smaller lesions characterized by low electrical conductance. Owing to the observation of arc-like (rather than full-ring) oligomers by electron microscopy, it has been hypothesized that smaller oligomers explain smaller functional pores. To investigate whether this is the case, we performed cryo-electron tomography of pneumolysin oligomers on model lipid membranes. We then used sub-tomogram classification and averaging to determine representative membrane-bound low-resolution structures and identified pre-pores versus pores by the presence of membrane within the oligomeric curve. We found pre-pore and pore forms of both complete (ring) and incomplete (arc) oligomers and conclude that arc-shaped oligomeric assemblies of pneumolysin can form pores. As the CDCs are evolutionarily related to the membrane attack complex/perforin family of proteins, which also form variably sized pores, our findings are of relevance to that class of proteins as well. PMID:24759615

  16. Precipitation in pores: A geochemical frontier

    SciTech Connect

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities

  17. Precipitation in pores: A geochemical frontier

    DOE PAGESBeta

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below.more » The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid

  18. Formation of an ink-bottle-like pore structure in SBA-15 by MOCVD.

    PubMed

    Zhang, Ying; Lam, Frank Leung-Yuk; Hu, Xijun; Yan, Zifeng

    2008-11-01

    Metallorganic chemical vapor deposition is used as a simple pore-modifying method to fine tune the pore-opening size of SBA-15 materials without significant loss in pore volume and surface area. PMID:18956045

  19. Evaporative modeling for idealized lithographic pores

    NASA Astrophysics Data System (ADS)

    Oinuma, Ryoji; Best, Frederick

    2002-01-01

    As a demand for the high performance and small size electronics devices increased, the heat removal from those electronic devices for space use is getting critical factor more than devices on the earth due to the limitation of the size. The purpose of this paper is to show a study of optimized size of coherent pores or slits in the evaporative wick of a heat pipe to cool down the high heat flux density heat source. Our system considered in this paper consists of a plate heat source, the evaporative wick with coherent pores and conducting walls connecting between the heat source and the evaporator. The evaporation rate of working fluid along the meniscus interface in a micro-order pore or slit was calculated based on the kinetic theory and the statistical rate theory to find a proper diameter of pores to cool down the heat source effectively. The results show the smaller diameter of pores is preferred to achieve the smallest total size of the evaporator although it will involve the cost issue. As a demand for the high performance and small size electronics devices increased, the heat removal from those electronic devices for space use is getting critical factor more than devices on the earth due to the limitation of the size. The purpose of this paper is to show a study of optimized size of coherent pores or slits in the evaporative wick of a heat pipe to cool down the high heat flux density heat source. Our system considered in this paper consists of a plate heat source, the evaporative wick with coherent pores and conducting walls connecting between the heat source and the evaporator. The evaporation rate of working fluid along the meniscus interface in a micro-order pore or slit was calculated based on the kinetic theory and the statistical rate theory to find a proper diameter of pores to cool down the heat source effectively. The results show that the smaller diameter of pores uses the pore for evaporation effectively and is preferred to achieve the smallest

  20. Pore space morphology analysis using maximal inscribed spheres

    NASA Astrophysics Data System (ADS)

    Silin, Dmitriy; Patzek, Tad

    2006-11-01

    A new robust algorithm analyzing the geometry and connectivity of the pore space of sedimentary rock is based on fundamental concepts of mathematical morphology. The algorithm distinguishes between the “pore bodies” and “pore throats,” and establishes their respective volumes and connectivity. The proposed algorithm also produces a stick-and-ball diagram of the rock pore space. The tests on a pack of equal spheres, for which the results are verifiable, confirm its stability. The impact of image resolution on the algorithm output is investigated on the images of computer-generated pore space. One of distinctive features of our approach is that no image thinning is applied. Instead, the information about the skeleton is stored through the maximal inscribed balls or spheres (MIS) associated with each voxel. These maximal balls retain information about the entire pore space. Comparison with the results obtained by a thinning procedure preserving some topological properties of the pore space shows that our method produces more realistic estimates of the number and shapes of pore bodies and pore throats, and the pore coordination numbers. The distribution of maximal inscribed spheres makes possible simulation of mercury injection and computation of the corresponding dimensionless capillary pressure curve. It turns out that the calculated capillary pressure curve is a robust descriptor of the pore space geometry and, in particular, can be used to determine the quality of computer-based rock reconstruction.

  1. Evaluation of lexicon size variations on a verification and rejection system based on SVM, for accurate and robust recognition of handwritten words

    NASA Astrophysics Data System (ADS)

    Ricquebourg, Yann; Coüasnon, Bertrand; Guichard, Laurent

    2013-01-01

    The transcription of handwritten words remains a still challenging and difficult task. When processing full pages, approaches are limited by the trade-off between automatic recognition errors and the tedious aspect of human user verification. In this article, we present our investigations to improve the capabilities of an automatic recognizer, so as to be able to reject unknown words (not to take wrong decisions) while correctly rejecting (i.e. to recognize as much as possible from the lexicon of known words). This is the active research topic of developing a verification system that optimize the trade-off between performance and reliability. To minimize the recognition errors, a verification system is usually used to accept or reject the hypotheses produced by an existing recognition system. Thus, we re-use our novel verification architecture1 here: the recognition hypotheses are re-scored by a set of support vector machines, and validated by a verification mechanism based on multiple rejection thresholds. In order to tune these (class-dependent) rejection thresholds, an algorithm based on dynamic programming has been proposed which focus on maximizing the recognition rate for a given error rate. Experiments have been carried out on the RIMES database in three steps. The first two showed that this approach results in a performance superior or equal to other state-of-the-art rejection methods. We focus here on the third one showing that this verification system also greatly improves results of keywords extraction in a set of handwritten words, with a strong robustness to lexicon size variations (21 lexicons have been tested from 167 entries up to 5,600 entries) which is particularly relevant to our application context cooperating with humans, and only made possible thanks to the rejection ability of this proposed system. The proposed verification system, compared to a HMM with simple rejection, improves on average the recognition rate by 57% (resp. 33% and 21%) for

  2. PORE STRUCTURE MODEL OF CEMENT HYDRATES CONSIDERING PORE WATER CONTENT AND REACTION PROCESS UNDER ARBITRARY HUMIDITY

    NASA Astrophysics Data System (ADS)

    Fujikura, Yusuke; Oshita, Hideki

    A simulation model to estimate the pore structure of cement hydrates by curing in arbitrary relative humidity is presented. This paper describes procedures for predicting phase compositions based on the classical hydration model of Portland cement, calculating the particle size distribution of constituent phases and evaluating the pore size distribution by stereological and statistical considerations. And to estimate the water content in pore structure under any relative humidity, we proposed the simulation model of adsorption isotherm model based on the pore structure. To evaluate the effectiveness of this model, simulation results were compared with experimental results of the pore size distribution measured by mercury porosimetry. As a result, it was found that the experimental and simulated results were in close agreement, and the simulated results indicated characterization of the po re structure of cement hydrates.

  3. Robust, Flexible and Lightweight Dielectric Barrier Discharge Actuators Using Nanofoams/Aerogels

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey (Inventor); Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Wilkinson, Stephen P. (Inventor); Meador, Mary Ann B. (Inventor); Guo, Haiquan N. (Inventor)

    2015-01-01

    Robust, flexible, lightweight, low profile enhanced performance dielectric barrier discharge actuators (plasma actuators) based on aerogels/nanofoams with controlled pore size and size distribution as well as pore shape. The plasma actuators offer high body force as well as high force to weight ratios (thrust density). The flexibility and mechanical robustness of the actuators allows them to be shaped to conform to the surface to which they are applied. Carbon nanotube (CNT) based electrodes serve to further decrease the weight and profile of the actuators while maintaining flexibility while insulating nano-inclusions in the matrix enable tailoring of the mechanical properties. Such actuators are required for flow control in aeronautics and moving machinery such as wind turbines, noise abatement in landing gear and rotary wing aircraft and other applications.

  4. Morphology and Size Evolution of Interlamellar Two-Dimensional Pores in Plasma-Sprayed La2Zr2O7 Coatings During Thermal Exposure at 1300 °C

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Luo, Xiao-Tao; Chen, Xu; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2015-06-01

    La2Zr2O7 (LZO) is widely expected to be one of the promising thermal barrier coating materials for application in high-temperature conditions (1200 °C). However, high-temperature exposure causes sintering which heals interlamellar two-dimensional (2D) pores and intrasplat pores. This sintering effect increases the stiffness and thermal conductivity of thermal barrier coatings, consequently reducing their durability. In this study, to reveal the possible critical opening of 2D pores above which they are free from sintering, LZO coating and splat were deposited by atmospheric plasma spraying and were exposed to 1300 °C for different durations. Thereafter, the evolution of the parameters of residual 2D pores in the coating and the surface morphology of LZO splat were characterized. It was found that there is a critical opening width for 2D pores above which grain bridging does not occur across the gaps. Accordingly, pores with an opening larger than this critical width are free from sintering across the 2D pores despite surface roughening of splats, whereas pores with an opening less than the critical width sinter rapidly at the early stage of thermal exposure through the formation of grain bridges.

  5. Free Energy Landscape of Rim-Pore Expansion in Membrane Fusion

    PubMed Central

    Risselada, Herre Jelger; Smirnova, Yuliya; Grubmüller, Helmut

    2014-01-01

    The productive fusion pore in membrane fusion is generally thought to be toroidally shaped. Theoretical studies and recent experiments suggest that its formation, in some scenarios, may be preceded by an initial pore formed near the rim of the extended hemifusion diaphragm (HD), a rim-pore. This rim-pore is characterized by a nontoroidal shape that changes with size. To determine this shape as well as the free energy along the pathway of rim-pore expansion, we derived a simple analytical free energy model. We argue that dilation of HD material via expansion of a rim-pore is favored over a regular, circular pore. Further, the expanding rim-pore faces a free energy barrier that linearly increases with HD size. In contrast, the tension required to expand the rim-pore decreases with HD size. Pore flickering, followed by sudden opening, occurs when the tension in the HD competes with the line energy of the rim-pore, and the rim-pore reaches its equilibrium size before reaching the critical pore size. The experimental observation of flickering and closing fusion pores (kiss-and-run) is very well explained by the observed behavior of rim-pores. Finally, the free energy landscape of rim-pore expansion/HD dilation may very well explain why some cellular fusion reactions, in their attempt to minimize energetic costs, progress via alternative formation and dilation of microscopic hemifusion intermediates. PMID:25418297

  6. Facial skin pores: a multiethnic study.

    PubMed

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm(2)) and determination of their respective sizes in mm(2). Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having "enlarged pores" like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore's morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed. PMID:25733918

  7. Purification of the Vertebrate Nuclear Pore Complex by Biochemical Criteria

    PubMed Central

    Miller, Brian R.; Forbes, Douglass J.

    2015-01-01

    The nuclear pore is a large and complex biological machine, mediating all signal-directed transport between the nucleus and the cytoplasm. The vertebrate pore has a mass of ~120 million daltons or 30 times the size of a ribosome. The large size of the pore, coupled to its tight integration in the nuclear lamina, has hampered the isolation of pore complexes from vertebrate sources. We have now developed a strategy for the purification of nuclear pores from in vitro assembled annulate lamellae (AL), a cytoplasmic mimic of the nuclear envelope that lacks a lamina, nuclear matrix, and chromatin-associated proteins. We find that purified pore complexes from annulate lamellae contain every nuclear pore protein tested. In addition, immunoblotting reveals the presence of soluble transport receptors and factors known to play important roles in the transport of macromolecules through the pore. While transport factors such as Ran and NTF2 show only transient interaction with the pores, a number of soluble transport receptors, including importin β, show a tight association with the purified pores. In summary, we report that we have purified the vertebrate pore by biochemical criteria; silver staining reveals ~40–50 distinct protein bands. PMID:11208084

  8. A model for determining inaccessible pore volume in polymer flooding

    SciTech Connect

    Jensen, T.B. ); Satchwell, R.M. )

    1992-01-01

    Until now, only imprecise approximation of inaccessible pore volume have been employed in mathematical models of polymer flooding, causing these reservoir models to yield inaccurate results. This paper reports a new model to precisely describe inaccessible pore volume in polymer flow through porous media. The model can also be applied as a screening tool for determining candidate reservoirs for polymer flooding given a typical polymer, or it can be used to screen different polymer types once a candidate reservoir has been chosen. This new model is based on theoretical and actual pore throat entry and polymer molecule size distributions. Both pore throat and polymer size distributions are thoroughly reviewed. Inaccessible pore volume, in this model, is defined as the probability of randomly selected polymer molecules being larger than randomly selected pore throats, and is determined by statistically describing the polymer and pore throats as continuous distributions. Examples of the inaccessible pore volume model employing Uniform, Triangular, and Gamma distributions are included. Results obtained show an adequate match between experimental data and theoretical results. A nomograph for determining inaccessible pore volume in polymer flow through porous media based on pore throat and polymer molecule sizes is presented.

  9. Emergence of a large pore subpopulation during electroporating pulses.

    PubMed

    Smith, Kyle C; Son, Reuben S; Gowrishankar, T R; Weaver, James C

    2014-12-01

    Electroporation increases ionic and molecular transport through cell membranes by creating transient aqueous pores. These pores cannot be directly observed experimentally, but cell system modeling with dynamic electroporation predicts pore populations that produce cellular responses consistent with experiments. We show a cell system model's response that illustrates the life cycle of a pore population in response to a widely used 1 kV/cm, 100 μs trapezoidal pulse. Rapid pore creation occurs early in the pulse, followed by the gradual emergence of a subpopulation of large pores reaching ~30 nm radius. After the pulse, pores rapidly contract to form a single thermally broadened distribution of small pores (~1 nm radius) that slowly decays. We also show the response of the same model to pulses of 100 ns to 1 ms duration, each with an applied field strength adjusted such that a total of 10,000±100 pores are created. As pulse duration is increased, the pore size distributions vary dramatically and a distinct subpopulation of large pores emerges for pulses of microsecond and longer duration. This subpopulation of transient large pores is relevant to understanding rapid transport of macromolecules into and out of cells during a pulse. PMID:24290730

  10. Performance of Small Pore Microchannel Plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  11. Soil pore structure and substrate C mineralization

    NASA Astrophysics Data System (ADS)

    Sleutel, Steven; Maenhout, Peter; Vanhoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    Our aim was to investigate the complex interactions between soil pore structure, soil biota and decomposition of added OM substrates. We report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. Such combined use of X-ray CT with soil incubation studies was obstructed, until now, by many practical constraints such as CT-volume quality, limited resolution, scanning time and complex soil pore network quantification, which have largely been overcome in this study. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving, ashing the >53µm fraction and recombining with the <53µm fraction), the added OM can be localized by means of X-ray CT. Through on-going image analysis the surrounding porosity of the added grass or sawdust particles is being quantified to further study the interaction between the soil pore structure and substrate decomposition.

  12. Pore structure analysis of American coals

    SciTech Connect

    Gallegos, D.P.; Smith, D.M.; Stermer, D.L.

    1987-01-01

    The pore structure of 19 American coals, representing a wide range of rank and geographic origin, has been studied via gas adsorption, mercury porosimetry, helium displacement and NMR spin-lattice relaxation measurements. Nitrogen adsorption at 77 K was used to determine surface area in the pore range of r/sub p/ > approx. = 1nm and carbon dioxide adsorption at 273 K was used to obtain the total surface area. Porosimetry results were complicated by inter-particle void filling, surface roughness/porosity and sample compression. By employing a range of particle sizes, information concerning the relative magnitude of these mechanisms was ascertained as a function of pressure. Spin-lattice relaxation measurements of water contained in saturated coal were used to find pore size distributions over a broad range of T/sub 1/, the spin-lattice relaxation time. Good qualitative agreement was obtained between these measurements and gas adsorption/condensation results. 13 refs., 3 figs., 1 tab.

  13. A comparative study of modern and robust computational methods applied to π-complexes of moderate size: The case of the ethene/benzenium ion complex

    NASA Astrophysics Data System (ADS)

    Sancho-García, J. C.

    2009-01-01

    Quantum-chemical calculations of energy difference between ethene/benzenium ion complex and its fragments are reported. We pursue the greatest accuracy by tackling first a focal-point analysis to robustly estimate the fleetingness of the molecule. Previous calculations showed how MP2 failed to locate the complex on the energy surface due to basis sets superposition error, and thus predicting ethylbenzenium ion as the energetically favoured system. However, MP2-based balanced treatment of intra- and inter-pair correlation effects (SCS-MP2) greatly improves the results. DFT studies with dispersion corrections, including double-hybrid functionals, are presented and further assessed. Finally, IR signatures of involved species are also compared.

  14. Using X-ray computed tomography in pore structure characterization for a Berea sandstone: Resolution effect

    NASA Astrophysics Data System (ADS)

    Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming

    2012-11-01

    SummaryX-ray computed tomography (XCT) is a powerful tool for detecting the micro-scale pore structure and has been applied to many natural and synthetic porous media. However, due to the resolution limitations, either non-representative view of the sample or inaccurate results can be produced from the XCT image processing. In this paper, two XCT (micro-CT and CT with synchrotron radiation) with different resolutions of 12.7 μm and 0.35 μm, as well as mercury intrusion porosimetry (MIP) with a minimum detection limit of 3 nm, were used for Berea sandstone to investigate the effect of detecting resolution on the pore structure. Several key pore structure parameters, including porosity, pore size distribution, pore connectivity, surface area, hydraulic radius, and aspect ratio were analyzed in a manner of quantitative comparison between different resolutions of XCT and MIP. The low resolution XCT can capture the large-pore porosity, while overestimates the pore size and pore connectivity. The high resolution XCT is more accurate in describing the pore shape, porosity, pore size; however, it is not representative since narrower detecting pore size range and small volume represented. A representative element volume related to large-pore porosity and probably large-pore connectivity with diameter and height of 2.8 mm is obtained through scale effect analysis. Therefore, selecting an appropriate resolution should be a compromise between the pore size and the representative element volume for the specific property or process of interest.

  15. Robust Regression.

    PubMed

    Huang, Dong; Cabral, Ricardo; De la Torre, Fernando

    2016-02-01

    Discriminative methods (e.g., kernel regression, SVM) have been extensively used to solve problems such as object recognition, image alignment and pose estimation from images. These methods typically map image features ( X) to continuous (e.g., pose) or discrete (e.g., object category) values. A major drawback of existing discriminative methods is that samples are directly projected onto a subspace and hence fail to account for outliers common in realistic training sets due to occlusion, specular reflections or noise. It is important to notice that existing discriminative approaches assume the input variables X to be noise free. Thus, discriminative methods experience significant performance degradation when gross outliers are present. Despite its obvious importance, the problem of robust discriminative learning has been relatively unexplored in computer vision. This paper develops the theory of robust regression (RR) and presents an effective convex approach that uses recent advances on rank minimization. The framework applies to a variety of problems in computer vision including robust linear discriminant analysis, regression with missing data, and multi-label classification. Several synthetic and real examples with applications to head pose estimation from images, image and video classification and facial attribute classification with missing data are used to illustrate the benefits of RR. PMID:26761740

  16. Extending membrane pore lifetime with AC fields: A modeling study

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Bogdan Neculaes, V.

    2012-07-01

    AC (sinusoidal) fields with frequencies from kilohertz to gigahertz have been used for gene delivery. To understand the impact of AC fields on electroporation dynamics, we couple a nondimensionalized Smoluchowski equation to an exact representation of the cell membrane voltage obtained solving the Laplace equation. The slope of the pore energy function, dφ/dr, with respect to pore radius is critical in predicting pore dynamics in AC fields because it can vary from positive, inducing pore shrinkage, to negative, driving pore growth. Specifically, the net sign of the integral of dφ/dr over time determines whether the average pore size grows (negative), shrinks (positive), or oscillates (zero) indefinitely about a steady-state radius, rss. A simple analytic relationship predicting the amplitude of the membrane voltage necessary for this behavior agrees well with simulation for frequencies from 500 kHz to 5 MHz for rss < 10 nm. For larger pore size (rss > 10 nm), dφ/dr oscillates about a negative value, suggesting that a net creation of pores may be necessary to maintain a constant pore size. In both scenarios, the magnitude of rss depends only upon the amplitude of the membrane voltage and not directly upon the applied field frequency other than the relationship between the amplitudes of the applied field and membrane voltage.

  17. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  18. Pore networks in continental and marine mudstones: Characteristics and controls on sealing behavior

    USGS Publications Warehouse

    Heath, J.E.; Dewers, T.A.; McPherson, B.J.O.L.; Petrusak, R.; Chidsey, T.C.; Rinehart, A.J.; Mozley, P.S.

    2011-01-01

    Mudstone pore networks are strong modifiers of sedimentary basin fluid dynamics and have a critical role in the distribution of hydrocarbons and containment of injected fluids. Using core samples from continental and marine mudstones, we investigate properties of pore types and networks from a variety of geologic environments, together with estimates of capillary beam- scanning electron microscopy, suggest seven dominant mudstone pore types distinguished by geometry and connectivity. A dominant planar pore type occurs in all investigated mudstones and generally has high coordination numbers (i.e., number of neighboring connected pores). Connected networks of pores of this type contribute to high mercury capillary pressures due to small pore throats at the junctions of connected pores and likely control most matrix transport in these mudstones. Other pore types are related to authigenic (e.g., replacement or pore-lining precipitation) clay minerals and pyrite nodules; pores in clay packets adjacent to larger, more competent clastic grains; pores in organic phases; and stylolitic and microfracture-related pores. Pores within regions of authigenic clay minerals often form small isolated networks (<3 ??m). Pores in stringers of organic phases occur as tubular pores or slit- and/or sheet-like pores. These form short, connected lengths in 3D reconstructions, but appear to form networks no larger than a few microns in size. Sealing efficiency of the studied mudstones increases with greater distal depositional environments and greater maximum depth of burial. ?? 2011 Geological Society of America.

  19. Ultrafast laser fabrication of submicrometer pores in borosilicate glass.

    PubMed

    An, Ran; Uram, Jeffrey D; Yusko, Erik C; Ke, Kevin; Mayer, Michael; Hunt, Alan J

    2008-05-15

    We demonstrate rapid fabrication of submicrometer-diameter pores in borosilicate glass using femtosecond laser machining and subsequent wet-etch techniques. This approach allows direct and repeatable fabrication of high-quality pores with diameters of 400-800 nm. Such small pores coupled with the desirable electrical and chemical properties of glass enable sensitive resistive-pulse analysis to determine the size and concentration of macromolecules and nanoparticles. Plasma-enhanced chemical vapor deposition allows further reduction of pore diameters to below 300 nm. PMID:18483543

  20. X-ray microtomography application in pore space reservoir rock.

    PubMed

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies. PMID:22264795

  1. Dependence of hydrogen permeabilities of isotropic graphites on the pore structure

    NASA Astrophysics Data System (ADS)

    Yamawaki, M.; Yamaguchi, K.; Suzuki, Y.; Tanaka, S.

    1991-03-01

    The permeation behavior of molecular hydrogen through isotropic graphites is investigated. The observed dependences of the permeation rate on pressure, specimen thickness, temperature and molecular weight suggest that hydrogen permeates by molecular flow, probably through open pores. A simple pore structure model is developed and is compared with the experimental results. It is revealed that hydrogen permeation through isotropic graphites depends not only on the pore size or the porosity, but also on the pore size distribution and tortuosity.

  2. Optical detection of pores in adipocyte membrane

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  3. Facial skin pores: a multiethnic study

    PubMed Central

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2) and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore’s morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed. PMID:25733918

  4. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  5. The pore space scramble

    NASA Astrophysics Data System (ADS)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  6. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-07-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  7. Robust quantum spatial search

    NASA Astrophysics Data System (ADS)

    Tulsi, Avatar

    2016-04-01

    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1{/}√{N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(ln N{/}√{N}) . Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms.

  8. Partitioning of habitable pore space in earthworm burrows.

    PubMed

    Gorres, Josef H; Amador, Jose A

    2010-03-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839

  9. Pore dynamics in lipid membranes

    NASA Astrophysics Data System (ADS)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  10. Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers

    PubMed Central

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert J.

    2004-01-01

    Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of ∼38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be ∼3 × 10−11 N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores. PMID:15041656

  11. Pore water testing and analysis: the good, the bad, and the ugly.

    PubMed

    Chapman, Peter M; Wang, Feiyue; Germano, Joseph D; Batley, Graeme

    2002-05-01

    The increasingly common practice of collecting and assessing sediment pore water as a primary measure of sediment quality is reviewed. Good features of this practice include: pore water is a key exposure route for some organisms associated with sediments; pore water testing eliminates particle size effects; pore water analyses and tests can provide useful information regarding contamination and pollution. Bad features include: pore water is not the only exposure route; pore water tests lack chemical or biological realism: their "sensitivity" relative to other tests may be meaningless due to manipulation and laboratory artifacts; many sediment and surface dwelling organisms are not directly influenced by pore water. Bad features can become ugly if: other exposure pathways are not considered (for toxicity or bioaccumulation); manipulation techniques are not appropriate; pore water tests are inappropriately linked to population-level effects. Pore water testing and analyses can be effective tools provided their limitations are well understood by researchers and managers. PMID:12146818

  12. Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk

    SciTech Connect

    Tomutsa, Liviu; Silin, Dmitriy

    2004-08-19

    For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.

  13. Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect

    SciTech Connect

    Peng, Sheng; Hu, Qinhong; Dultz, Stefan; Zhang, Ming

    2012-11-23

    X-raycomputedtomography (XCT) is a powerful tool for detecting the micro-scale porestructure and has been applied to many natural and synthetic porous media. However, due to the resolution limitations, either non-representative view of the sample or inaccurate results can be produced from the XCT image processing. In this paper, two XCT (micro-CT and CT with synchrotron radiation) with different resolutions of 12.7 μm and 0.35 μm, as well as mercury intrusion porosimetry (MIP) with a minimum detection limit of 3 nm, were used for Berea sandstone to investigate the effect of detecting resolution on the porestructure. Several key porestructure parameters, including porosity, pore size distribution, pore connectivity, surface area, hydraulic radius, and aspect ratio were analyzed in a manner of quantitative comparison between different resolutions of XCT and MIP. The low resolution XCT can capture the large-pore porosity, while overestimates the pore size and pore connectivity. The high resolution XCT is more accurate in describing the pore shape, porosity, pore size; however, it is not representative since narrower detecting pore size range and small volume represented. A representative element volume related to large-pore porosity and probably large-pore connectivity with diameter and height of 2.8 mm is obtained through scale effect analysis. Therefore, selecting an appropriate resolution should be a compromise between the pore size and the representative element volume for the specific property or process of interest.

  14. Pore-scale imaging and modelling

    NASA Astrophysics Data System (ADS)

    Blunt, Martin J.; Bijeljic, Branko; Dong, Hu; Gharbi, Oussama; Iglauer, Stefan; Mostaghimi, Peyman; Paluszny, Adriana; Pentland, Christopher

    2013-01-01

    Pore-scale imaging and modelling - digital core analysis - is becoming a routine service in the oil and gas industry, and has potential applications in contaminant transport and carbon dioxide storage. This paper briefly describes the underlying technology, namely imaging of the pore space of rocks from the nanometre scale upwards, coupled with a suite of different numerical techniques for simulating single and multiphase flow and transport through these images. Three example applications are then described, illustrating the range of scientific problems that can be tackled: dispersion in different rock samples that predicts the anomalous transport behaviour characteristic of highly heterogeneous carbonates; imaging of super-critical carbon dioxide in sandstone to demonstrate the possibility of capillary trapping in geological carbon storage; and the computation of relative permeability for mixed-wet carbonates and implications for oilfield waterflood recovery. The paper concludes by discussing limitations and challenges, including finding representative samples, imaging and simulating flow and transport in pore spaces over many orders of magnitude in size, the determination of wettability, and upscaling to the field scale. We conclude that pore-scale modelling is likely to become more widely applied in the oil industry including assessment of unconventional oil and gas resources. It has the potential to transform our understanding of multiphase flow processes, facilitating more efficient oil and gas recovery, effective contaminant removal and safe carbon dioxide storage.

  15. Finite Element and Experimental Analysis of Closure and Contact Bonding of Pores During Hot Rolling of Steel

    NASA Astrophysics Data System (ADS)

    Joo, Soo-Hyun; Jung, Jaimyun; Chun, Myung Sik; Moon, Chang Ho; Lee, Sunghak; Kim, Hyoung Seop

    2014-08-01

    The closure and contact bonding behavior of internal pores in steel slabs during hot rolling was studied using experiments and the finite element method (FEM). Effects of pore size and shape were investigated, and three different cases of pore closure results were observed: no closure, partial closure, and full closure. The FEM results well reproduced various closure events. Bonding strengths of unsuccessfully closed pores, measured by tensile tests, showed critical effects. Also, there was a difference in bonding strengths of several fully closed pores. Fracture surfaces showed that welded regions could be divided into three (not, partially, and perfectly) welded regions. The pressure-time curves obtained from the FEM results indicate that pore surface contact time and deformed surface length are important parameters in pore welding. Pore size, pore shape, time of pressure contact, and deformed surface length should be considered to completely eliminate pores in final products.

  16. Surface and pore properties of ANL and PETC coals

    SciTech Connect

    Bartholomew, C.H.; White, W.E.; Thornock, D.; Wells, W.F.; Hecker, W.C.; Smoot, L.D.; Smith, D.M.; Williams, F.L.

    1988-01-01

    Surface areas, pore volumes, pore size distribution, and solid densities were measured for three ANL coals (Pittsburgh No. 8, Wyodak, and Beulah Zap Lignite), two PETC coals (Lower Wilcox, and Dietz) and a Utah Scofield coal and for chars derived from these coals. Surface areas were measured using nitrogen and carbon dioxide adsorptions; pore volumes were determined using nitrogen adsorption, mercury porosimetry, and NMR spin-lattice relaxation measurements of samples saturated with water. Solid densities were obtained using helium displacement. The results indicate that chars have larger surface areas and pores relative to coals; large fractions of the internal surfaces of coals are not penetrated by nitrogen molecules but are penetrated by carbon dioxide suggesting that the pores are mostly smaller than 1 nm.

  17. Cilia and Nuclear Pore Proteins: Pore No More?

    PubMed

    Obado, Samson O; Rout, Michael P

    2016-09-12

    Nuclear pore proteins at the base of cilia were thought to regulate transport into cilia. In this issue of Developmental Cell, Del Viso et al. (2016) challenge this view, showing instead that pore proteins localize to ciliary basal bodies and that their perturbation leads to congenital heart disease. PMID:27623377

  18. Silicon Pore Optics Technology

    NASA Astrophysics Data System (ADS)

    Beijersbergen, Marco; Collon, M. J.; Günther, R.; Partapsing, R.; Ackermann, M.; Olde Riekerink, M.; Cooper-Jensen, C.; Christensen, F.; Freyberg, M.; Krumrey, M.; Erhard, M.; van Baren, C.; Wallace, K.; Bavdaz, M.

    2009-01-01

    Silicon pore optics have been developed over the last years to enable future astrophysical X-ray telescopes and have now become a candidate mirror technology for the IXO mission. Scientific requirements demand an angular resolution better than 5” and a large effective area of several square meters at photon energies of 1 keV. This paper discusses the performance of the latest generation of these novel light, stiff and modular X-ray optics, based on ribbed plates made from commercial high grade 12” silicon wafers. Stacks with several tens of silicon plates have been assembled in the course of an ESA technology development program, by bending the plates into an accurate shape and directly bonding them on top of each other. Several mirror modules, using two stacks each, have been aligned and integrated to form the conical approximation of a Wolter-I design. This paper presents the status of the technology, addresses and discusses a number of activities in the ongoing ESA technology development and shows the latest results of full area measurements at the long-beamline MPE X-ray test facility (PANTER) and the PTB beam line at the BESSY electron storage ring in Berlin.

  19. Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts

    SciTech Connect

    Hwang, K.S.; Hsieh, Y.M.

    1996-02-01

    The solvent debinding process has been widely accepted in the powder injection molding (PIM) industry due to its short debinding cycle. In the current study, specimens were immersed in a heptane bath for different lengths of time, and the pore structure evolvement in the compact was analyzed. Mercury porosimetry analyses and scanning electron micrographs showed that the binder extraction started from the surface and progressed toward the center of the compacts. As the debinding continued, the pores grew and were widely distributed in size. This pore structure evolvement was different from that of straight thermal debinding in which the pore size distribution was quite narrow and the mean pore diameter shifted toward smaller sizes as debinding time increased. After the soluble binders were extracted, parts were subjected to a subsequent thermal debinding during which these pores served as conduits for decomposed gas to escape. Concurrently, the remaining binder became fluidlike and was redistributed within the compact due to capillarity. This pore structure, as observed from the mercury intrusion curves, showed a sharp increase in the pore volume at the 0.8-{micro}m size, followed by a series of fine pores, which is different from the pore structure of straight thermal debinding. The difference in the pore structure evolvement between solvent and thermal debinding and its effect on the debinding rate are discussed.

  20. Comparative study of pore structure evolution during solvent and thermal debinding of powder injection molded parts

    NASA Astrophysics Data System (ADS)

    Hwang, K. S.; Hsieh, Y. M.

    1996-02-01

    The solvent debinding process has been widely accepted in the powder injection molding (PIM) industry due to its short debinding cycle. In the current study, specimens were immersed in a heptane bath for different lengths of time, and the pore structure evolvement in the compact was analyzed. Mercury porosimetry analyses and scanning electron micrographs showed that the binder extraction started from the surface and progressed toward the center of the compacts. As the debinding contin-ued, the pores grew and were widely distributed in size. This pore structure evolvement was different from that of straight thermal debinding in which the pore size distribution was quite narrow and the mean pore diameter shifted toward smaller sizes as debinding time increased. After the soluble binders were extracted, parts were subjected to a subsequent thermal debinding during which these pores served as conduits for decomposed gas to escape. Concurrently, the remaining binder became fluidlike and was redistributed within the compact due to capillarity. This pore structure, as observed from the mercury intrusion curves, showed a sharp increase in the pore volume at the 0.8-µm size, followed by a series of fine pores, which is different from the pore structure of straight thermal debinding. The difference in the pore structure evolvement between solvent and thermal debinding and its effect on the debinding rate are discussed.

  1. Pore morphology study of silica aerogels

    SciTech Connect

    Hua, D.W.; Anderson, J.; Haereid, S.; Smith, D.M.

    1994-12-31

    Silica aerogels have numerous properties which suggest applications such as ultra high efficiency thermal insulation. These properties relate directly to the aerogel`s pore size distribution. The micro and meso pore size ranges can be investigated by normal small angle x-ray scattering and possibly, nitrogen adsorption. However, the measurement of larger pores (> 250 {angstrom}) is more difficult. Due to their limited mechanical strength, mercury porosimetry and nitrogen condensation can disrupt the gel structure and electron microscopy provides only limited large scale structure information. The use of small angle light scattering techniques seems to have promise, the only hurdle is that aerogels exhibit significant multiple scattering. This can be avoided if one observes the gels in the wet stage since the structure of the aerogel should be very similar to the wet gel (as the result of supercritical drying). Thus, if one can match the refractive index, the morphology can be probed. The combination of certain alcoholic solvents fit this index matching criteria. Preliminary results for the gel network (micron range) and primary particle structure (manometer) are reported by using small angle light scattering and ultra-small angle x-ray scattering. The effects on structure over the length scale range of <1 nm to >5 {mu}m under different conditions (precursors, pH, etc.) are presented. The change in structure of an aerogel during isostatic compaction to 228 MPa (to simulate drying from wetting solvents) are also discussed.

  2. Predicting the Influence of Pore Characteristics on Ductility of Thin-Walled High Pressure Die Casting Magnesium

    SciTech Connect

    Sun, Xin; Choi, Kyoo Sil; Li, Dongsheng

    2013-06-10

    In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die casting Mg materials on their ductility. For this purpose, the cross-sections of AM50 and AM60 casting samples are first examined using optical microscope to obtain the overall information on the pore characteristics. The experimentally quantified pore characteristics are then used to generate a series of synthetic microstructures with different pore sizes, pore volume fractions and pore size distributions. Pores are explicitly represented in the synthetic microstructures and meshed out for the subsequent finite element analysis. In the finite element analysis, an intrinsic critical strain value is used for the Mg matrix material, beyond which work-hardening is no longer permissible. With no artificial failure criterion prescribed, ductility levels are predicted for the various microstructures in the form of strain localization. Mesh size effect study is also conducted, from which a mesh size dependent critical strain curve is determined. A concept of scalability of pore size effects is then presented and examined with the use of the mesh size dependent critical strain curve. The results in this study show that, for the regions with lower pore size and lower volume fraction, the ductility generally decreases as the pore size and pore volume fraction increase whereas, for the regions with larger pore size and larger pore volume fraction, other factors such as the mean distance between the pores begin to have some substantial influence on the ductility. The results also indicate that the pore size effects may be scalable for the models with good-representative pore shape and distribution with the use of the mesh size dependent critical strain curve.

  3. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  4. Highly Efficient Electronic Sensitization of Non-oxidized Graphene Flakes on Controlled Pore-loaded WO3 Nanofibers for Selective Detection of H2S Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Seon–Jin; Choi, Chanyong; Kim, Sang-Joon; Cho, Hee-Jin; Hakim, Meggie; Jeon, Seokwoo; Kim, Il–Doo

    2015-01-01

    Tailoring of semiconducting metal oxide nanostructures, which possess controlled pore size and concentration, is of great value to accurately detect various volatile organic compounds in exhaled breath, which act as potential biomarkers for many health conditions. In this work, we have developed a very simple and robust route for controlling both the size and distribution of spherical pores in electrospun WO3 nanofibers (NFs) via a sacrificial templating route using polystyrene colloids with different diameters (200 nm and 500 nm). A tentacle-like structure with randomly distributed pores on the surface of electrospun WO3 NFs were achieved, which exhibited improved surface area as well as porosity. Porous WO3 NFs with enhanced surface area exhibited high gas response (Rair/Rgas = 43.1 at 5 ppm) towards small and light H2S molecules. In contrast, porous WO3 NFs with maximized pore diameter showed a high response (Rair/Rgas = 2.8 at 5 ppm) towards large and heavy acetone molecules. Further enhanced sensing performance (Rair/Rgas = 65.6 at 5 ppm H2S) was achieved by functionalizing porous WO3 NFs with 0.1 wt% non-oxidized graphene (NOGR) flakes by forming a Schottky barrier (ΔΦ = 0.11) at the junction between the WO3 NFs (Φ = 4.56 eV) and NOGR flakes (Φ = 4.67 eV), which showed high potential for the diagnosis of halitosis.

  5. Pore scale definition and computation from tomography data

    NASA Astrophysics Data System (ADS)

    Dupuy, P. M.; Austin, P.; Delaney, G. W.; Schwarz, M. P.

    2011-10-01

    During recent years characterisation capabilities of porous media have been transformed by advances in computation and visualisation technologies. It is now possible to obtain detailed topological and hydrodynamic information of porous media by combining tomographic and computational fluid dynamic studies. Despite the existence of these new capabilities, the characterisation process itself is based on the same antiquated experimental macroscopic concepts. We are interested in an up-scaling process where we can keep key information for every pore size present in the media in order to feed multi-scale transport models. Hydrometallurgical, environmental, food, pharmaceutical and chemical engineering are industries with process outcomes based on homogeneous and heterogeneous reactions and therefore sensitive to the reaction and transport processes happening at different pore scales. The present work addresses a key step in the information up-scaling process, i.e. a pore identification algorithm similar to alternating sequential filters. In a preliminary study, topological and hydrodynamic variables are correlated with the pore size. Micrometre and millimetre resolution tomographies are used to characterise the pore size distribution of a packed column and different rocks. Finally, we compute the inter-pore-scale redistribution function which is a measure of the heterogeneity of the media and magnitude needed in multi-scale modelling.

  6. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.

    PubMed

    Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R; Krishnakumar, Shyam S; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  7. Reactive transport in porous media: pore-network model approach compared to pore-scale model.

    PubMed

    Varloteaux, Clément; Vu, Minh Tan; Békri, Samir; Adler, Pierre M

    2013-02-01

    Accurate determination of three macroscopic parameters governing reactive transport in porous media, namely, the apparent solute velocity, the dispersion, and the apparent reaction rate, is of key importance for predicting solute migration through reservoir aquifers. Two methods are proposed to calculate these parameters as functions of the Péclet and the Péclet-Dahmköhler numbers. In the first method called the pore-scale model (PSM), the porous medium is discretized by the level set method; the Stokes and convection-diffusion equations with reaction at the wall are solved by a finite-difference scheme. In the second method, called the pore-network model (PNM), the void space of the porous medium is represented by an idealized geometry of pore bodies joined by pore throats; the flow field is computed by solving Kirchhoff's laws and transport calculations are performed in the asymptotic regime where the solute concentration undergoes an exponential evolution with time. Two synthetic geometries of porous media are addressed by using both numerical codes. The first geometry is constructed in order to validate the hypotheses implemented in PNM. PSM is also used for a better understanding of the various reaction patterns observed in the asymptotic regime. Despite the PNM approximations, a very good agreement between the models is obtained, which shows that PNM is an accurate description of reactive transport. PNM, which can address much larger pore volumes than PSM, is used to evaluate the influence of the concentration distribution on macroscopic properties of a large irregular network reconstructed from microtomography images. The role of the dimensionless numbers and of the location and size of the largest pore bodies is highlighted. PMID:23496613

  8. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  9. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-08-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  10. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  11. Triggered pore-forming agents

    DOEpatents

    Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha

    1998-01-01

    An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.

  12. Phase Transitions of 2-Decanol in Nano Pores

    NASA Astrophysics Data System (ADS)

    Amanuel, Samuel; Turner, Jason; Novins, Caleb; Clain, Alexander

    We studied the melting of 2-decanol confined in nano pores, 10-100 nm, using a power-compensated Differential Scanning Calorimeter (DSC). The melting temperature of the nano confined 2-decanol decreases as pore size decreases and a linear relationship is observed between the melting temperature and the inverse of the pore size. This is in agreement with the Gibbs-Thomson prediction. In addition, the apparent heat of fusion of the 2-decanol confined in the nano pores appears to decrease as the size of the pores decreases. However, the apparent heat of fusion of the nano confined 2-decanol may not necessarily be its true heat of fusion. Annealing, for instance, increases the apparent heat of fusion by as much as 26%. A correction or alternate procedure should be employed to extract the true heat of fusion from DSC measurements, especially when the physical size of the sample is in nano scale or the sample possesses a large surface area to volume ratio. This work was partially supported by NSF-DMR: 1229142.

  13. Pore destruction resulting from mechanical thermal expression

    SciTech Connect

    Clayton, S.A.; Wheeler, R.A.; Hoadley, A.F.A.

    2007-07-01

    Mechanical thermal expression (MTE) is a dewatering technology ideally suited for the dewatering of internally porous biomaterials. For such materials, the combined application of temperature and compressive force in the MTE process enhances the collapse of the porous structure, resulting in effective water removal. In this article, a comparison of the dewatering of titanium dioxide, which is an ideal incompressible, non-porous material, and lignite, which is a porous plant-based biomaterial, is presented. The comparison is based on the parameters critical to dewatering, namely the material compressibility and the permeability. With the aid of mercury porosimetry results, a detailed discussion of the pore destruction of lignite resulting from MTE processing is presented. It is illustrated that there is a well-defined relationship between the pore size distribution after MTE dewatering and the MTE temperature and pressure. The discussion is extended to an investigation of the effects of MTE processing conditions on the effective and noneffective porosity. The effective porosity is defined as the interconnected porosity, which contributes to flow through the compressed matrix, while the non-effective porosity is the remaining porosity, which does not contribute to flow. It is illustrated that there is a linear relationship in both the effective and non-effective porosity with the total porosity. The linear relationship is independent of the processing conditions. It is also shown that MTE processing collapses the effective and non-effective pores at roughly the same rate.

  14. Biomimetic collagen scaffolds with anisotropic pore architecture.

    PubMed

    Davidenko, N; Gibb, T; Schuster, C; Best, S M; Campbell, J J; Watson, C J; Cameron, R E

    2012-02-01

    Sponge-like matrices with a specific three-dimensional structural design resembling the actual extracellular matrix of a particular tissue show significant potential for the regeneration and repair of a broad range of damaged anisotropic tissues. The manipulation of the structure of collagen scaffolds using a freeze-drying technique was explored in this work as an intrinsically biocompatible way of tailoring the inner architecture of the scaffold. The research focused on the influence of temperature gradients, imposed during the phase of crystallisation of collagen suspensions, upon the degree of anisotropy in the microstructures of the scaffolds produced. Moulding technology was employed to achieve differences in heat transfer rates during the freezing processes. For this purpose various moulds with different configurations were developed with a view to producing uniaxial and multi-directional temperature gradients across the sample during this process. Scanning electron microscopy analysis of different cross-sections (longitudinal and horizontal) of scaffolds revealed that highly aligned matrices with axially directed pore architectures were obtained where single unidirectional temperature gradients were induced. Altering the freezing conditions by the introduction of multiple temperature gradients allowed collagen scaffolds to be produced with complex pore orientations, and anisotropy in pore size and alignment. PMID:22005330

  15. Morphological Characterization of the Polyflux 210H Hemodialysis Filter Pores

    PubMed Central

    Hedayat, A.; Szpunar, J.; Kumar, N. A. P. Kiran; Peace, R.; Elmoselhi, H.; Shoker, A.

    2012-01-01

    Background. Morphological characterization of hemodialysis membranes is necessary to improve pore design. Aim. To delineate membrane pore structure of a high flux filter, Polyflux 210H. Methods. We used a Joel JSM-6010LV scanning electron microscope (SEM) and a SU6600 Hitachi field emission scanning electron microscope (FESEM) to characterize the pore and fiber morphology. The maximal diameters of selected uremic toxins were calculated using the macromolecular modeling Crystallographic Object-Oriented Toolkit (COOT) software. Results. The mean pore densities on the outermost and innermost surfaces of the membrane were 36.81% and 5.45%, respectively. The membrane exhibited a tortuous structure with poor connection between the inner and outer pores. The aperture's width in the inner surface ranged between 34 and 45 nm, which is 8.76–11.60 times larger than the estimated maximum diameter of β2-microglobulin (3.88 nm). Conclusion. The results suggest that the diameter size of inner pore apertures is not a limiting factor to middle molecules clearance, the extremely diminished density is. Increasing inner pore density and improving channel structure are strategies to improve clearance of middle molecules. PMID:23209902

  16. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  17. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  18. Gaseous Diffusion and Pore Structure in Nuclear Graphites.

    NASA Astrophysics Data System (ADS)

    Mays, Timothy John

    Available from UMI in association with The British Library. With the incentive of providing more information for oxidation and safety studies of graphite components in thermal nuclear reactors, a new method has been developed to determine the gas transport pore structure in nuclear graphites. It involves an analysis of the dependence on pressure of the isobaric, isothermal (room temperature) diffusivity ratios of components in a binary gas mixture flowing through annular graphite samples. A Wicke-Kallenbach apparatus was specially built to measure He-Ar diffusivity ratios at pressures below 100 Torr. The new apparatus incorporates capacitance manometers and servovalves for pressure measurement and control, hot wire meters for flow rate measurements, and a mass spectrometer for gas analysis. As pressure decreased, the diffusivity ratios were observed to decrease non-linearly, indicating that the mechanism of flow in the materials was in the transition region between molecular and Knudsen diffusion. A mathematical model was derived to relate the pressure dependence of the transition diffusivity ratio to gas transport pore structure, and a statistical analysis based on Tikhonov regularisation was developed which gave a good fit of the model to the data, and optimal estimates of the number of model capillary pores, and the distribution of pore sizes. In comparison, the established methods of molecular diffusion and permeation (flow of pure gases) only give mean data on the pore size distribution. Pore structure data from the new method accurately predicted CO_2-Ar molecular diffusivity ratios, but overestimated N_2 permeability coefficients, due, it was assumed, to differences between diffusion and permeation pore structure. The cumulative volume distributions for transport pores from the transition diffusion data were similar in shape to those for open pores from mercury porosimetry, but shifted towards higher pore radii, indicating that diffusion is not so influenced

  19. Smooth DNA transport through a narrowed pore geometry.

    PubMed

    Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Wanunu, Meni

    2014-11-18

    Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35-20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics. PMID:25418307

  20. Melting transition of Lennard-Jones fluid in cylindrical pores

    SciTech Connect

    Das, Chandan K.; Singh, Jayant K.

    2014-05-28

    Three-stage pseudo-supercritical transformation path and multiple-histogram reweighting technique are employed for the determination of solid-liquid coexistence of the Lennard-Jones (12-6) fluid, in a structureless cylindrical pore of radius, R, ranging from 4 to 20 molecular diameters. The Gibbs free energy difference is evaluated using thermodynamic integration method by connecting solid and liquid phases under confinement via one or more intermediate states without any first order phase transition among them. The thermodynamic melting temperature, T{sub m}, is found to oscillate for pore size, R < 8, which is in agreement with the behavior observed for the melting temperature in slit pores. However, T{sub m} for almost all pore sizes is less than the bulk case, which is contrary to the behavior seen for the slit pore. The oscillation in T{sub m} decays at around pore radius R = 8, and beyond that shift in the melting temperature with respect to the bulk case is in line with the prediction of the Gibbs-Thomson equation.

  1. Smooth DNA Transport through a Narrowed Pore Geometry

    PubMed Central

    Carson, Spencer; Wilson, James; Aksimentiev, Aleksei; Wanunu, Meni

    2014-01-01

    Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35–20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics. PMID:25418307

  2. Pore growth in U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Sohn, D.-S.; Jamison, L. M.

    2016-09-01

    U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  3. Impact of pore fluid composition changes on soil filter clogging

    SciTech Connect

    Reddi, L.N.; Bonala, M.V.S.

    1997-12-31

    Current design criteria for soil filters in geotechnical engineering are based on mechanical principles of straining alone without any physico-chemical considerations. Transport and deposition of colloid-size particles in the subsurface are influenced by pore fluid composition. It is essential to design filters in contaminated environment, such as those for leachate collection systems, with due considerations of the pore fluid composition. In this paper, the impact of changes in pore fluid composition on sod filter clogging is assessed with the help of a mathematical model. The role of pore fluid composition in soil filter clogging is studied by evaluating its effect on the erodibility of base soils, size of the migrating particles, and on the likelihood of particle deposition. The results suggest that pore fluid composition influences the deposition to the extent it can cause significant changes in pore clogging. In the cases where particles are generated from base soils, filter clogging increased at low salt concentrations but was limited by reduced erodibilities at high salt concentrations.

  4. Robust efficient video fingerprinting

    NASA Astrophysics Data System (ADS)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  5. Pores with longitudinal irregularities distinguish objects by shape.

    PubMed

    Qiu, Yinghua; Hinkle, Preston; Yang, Crystal; Bakker, Henriette E; Schiel, Matthew; Wang, Hong; Melnikov, Dmitriy; Gracheva, Maria; Toimil-Molares, Maria Eugenia; Imhof, Arnout; Siwy, Zuzanna S

    2015-04-28

    The resistive-pulse technique has been used to detect and size objects which pass through a single pore. The amplitude of the ion current change observed when a particle is in the pore is correlated with the particle volume. Up to date, however, the resistive-pulse approach has not been able to distinguish between objects of similar volume but different shapes. In this manuscript, we propose using pores with longitudinal irregularities as a sensitive tool capable of distinguishing spherical and rod-shaped particles with different lengths. The ion current modulations within resulting resistive pulses carry information on the length of passing objects. The performed experiments also indicate the rods rotate while translocating, and displace an effective volume that is larger than their geometrical volume, and which also depends on the pore diameter. PMID:25787224

  6. Exocytotic fusion pores are composed of both lipids and proteins

    PubMed Central

    Bao, Huan; Goldschen-Ohm, Marcel; Jeggle, Pia; Chanda, Baron; Edwardson, J Michael; Chapman, Edwin R

    2016-01-01

    During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca2+-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ~6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins. PMID:26656855

  7. Scale parameter-estimating method for adaptive fingerprint pore extraction model

    NASA Astrophysics Data System (ADS)

    Yi, Yao; Cao, Liangcai; Guo, Wei; Luo, Yaping; He, Qingsheng; Jin, Guofan

    2011-11-01

    Sweat pores and other level 3 features have been proven to provide more discriminatory information about fingerprint characteristics, which is useful for personal identification especially in law enforcement applications. With the advent of high resolution (>=1000 ppi) fingerprint scanning equipment, sweat pores are attracting increasing attention in automatic fingerprint identification system (AFIS), where the extraction of pores is a critical step. This paper presents a scale parameter-estimating method in filtering-based pore extraction procedure. Pores are manually extracted from a 1000 ppi grey-level fingerprint image. The size and orientation of each detected pore are extracted together with local ridge width and orientation. The quantitative relation between the pore parameters (size and orientation) and local image parameters (ridge width and orientation) is statistically obtained. The pores are extracted by filtering fingerprint image with the new pore model, whose parameters are determined by local image parameters and the statistically established relation. Experiments conducted on high resolution fingerprints indicate that the new pore model gives good performance in pore extraction.

  8. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    PubMed Central

    Wu, Zhenyong; Auclair, Sarah M.; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R.; Krishnakumar, Shyam S.; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle –the fusion pore– can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, “flipped” t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  9. Ion exclusion by sub-2-nm carbon nanotube pores

    PubMed Central

    Fornasiero, Francesco; Park, Hyung Gyu; Holt, Jason K.; Stadermann, Michael; Grigoropoulos, Costas P.; Noy, Aleksandr; Bakajin, Olgica

    2008-01-01

    Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a simplified model of membrane channels by reproducing these critical features in a simpler and more robust platform. Previous studies demonstrated that carbon nanotube pores can support a water flux comparable to natural aquaporin channels. Here, we investigate ion transport through these pores using a sub-2-nm, aligned carbon nanotube membrane nanofluidic platform. To mimic the charged groups at the selectivity region, we introduce negatively charged groups at the opening of the carbon nanotubes by plasma treatment. Pressure-driven filtration experiments, coupled with capillary electrophoresis analysis of the permeate and feed, are used to quantify ion exclusion in these membranes as a function of solution ionic strength, pH, and ion valence. We show that carbon nanotube membranes exhibit significant ion exclusion that can be as high as 98% under certain conditions. Our results strongly support a Donnan-type rejection mechanism, dominated by electrostatic interactions between fixed membrane charges and mobile ions, whereas steric and hydrodynamic effects appear to be less important. PMID:18539773

  10. Pore distributions in nanocrystalline metals from small-angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A.

    1998-07-24

    Recent upgrades in inert-gas condensation processing equipment have produced nanocrystalline metal samples with high densities and low-impurity levels. Typical Cu and Pd samples have densities {ge}98% of theoretical and oxygen and hydrogen impurity concentrations {le}0.5 at. %. Lower porosity and impurity levels may make it difficult to produce and maintain samples with the smallest nanocrystalline grain sizes. These improved samples were studied by small-angle neutron scattering (SANS) to determine the volume fraction and size distribution of pores. Excellent correlation was obtained between the total volume fraction of pores and the Archimedes density for Pd, signifying that most of the pores were relatively small and in the detectability range of SANS ({approx}1--100 nm). Nanocrystalline Cu is shown to exhibit a wider pore size distribution. For Pd, the average pore sizes were slightly smaller than the average grain size, while for Cu the pore size and grain size were about the same. Both materials exhibited a trend of increasing pore size with increasing grain size. In terms of processing prerequisites, the principal condition for the production of high-density nanocrystalline Cu is an exceptionally clean synthesis environment, while nanocrystalline Pd requires compaction at elevated temperatures. These differences are the result of Cu having both a lower melting point and a greater susceptibility to contamination by gaseous impurities such as oxygen.

  11. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  12. Quantification and Taxonomy of Pores in Thermal Spray Coatings by Image Analysis and Stereology Approach

    NASA Astrophysics Data System (ADS)

    Gan, Jo Ann; Berndt, Christopher C.

    2013-10-01

    Porosity is one of the most important microstructural features in thermal spray coatings and has been actively studied and measured by many methods. Image analysis techniques have become popular techniques in determining porosity in coatings because of simplicity, accessibility, and an ability to measure both open and closed porosities as well as pore characteristics such as size, shape, orientation, and spatial distribution. In the current study, an image analysis technique has been complemented by several stereology procedures to determine the porosity level and characteristics of pores within coatings. Stereology protocols such as Delesse, DeHoff, and Cruz-Orive analyses were used to derive the porosity level, pore size, and shape distributions, and the effectiveness of each stereology protocol was compared. Standoff distance (SOD) and annealing process did not alter the distribution trend of number of pores but influenced the distribution of pore volume fractions significantly. The bivariate size-shape distribution of the pores was used to predict the dominant pore type and fractions of pores that arose from different formation mechanisms. It was found that nearly spherical pores that originated from gas bubbles and entrapped gas pockets dominate at shorter SOD, while the different types of pores become more evenly distributed when the SOD was increased.

  13. Colocalization of Outflow Segmentation and Pores Along the Inner Wall of Schlemm’s Canal

    PubMed Central

    Braakman, Sietse T.; Read, A. Thomas; Chan, Darren W.-H.; Ethier, C. Ross; Overby, Darryl R.

    2014-01-01

    All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm’s canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular “I” and paracellular “B” pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD2 and nD3) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and

  14. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  15. Can ash clog soil pores?

    NASA Astrophysics Data System (ADS)

    Stoof, Cathelijne; Stoof, Cathelijne; Gevaert, Anouk; Gevaert, Anouk; Baver, Christine; Baver, Christine; Hassanpour, Bahareh; Hassanpour, Bahareh; Morales, Veronica; Morales, Veronica; Zhang, Wei; Zhang, Wei; Martin, Deborah; Martin, Deborah; Steenhuis, Tammo; Steenhuis, Tammo

    2015-04-01

    Wildfire can greatly increase a landscape's vulnerability to flooding and erosion events, and ash is thought to play a large role in controlling runoff and erosion processes after wildfire. Although ash can store rainfall and thereby reduce runoff and erosion for a limited period after wildfires, it has also been hypothesized to clog soil pores and reduce infiltration. Several researchers have attributed the commonly observed increase in runoff and erosion after fire to the potential pore-clogging effect of ash. Evidence is however incomplete, as to date, research has solely focused on identifying the presence of ash in the soil, with the actual flow processes associated with the infiltration and pore-clogging of ash remaining a major unknown. In several laboratory experiments, we tested the hypothesis that ash causes pore clogging to the point that infiltration is hampered and ponding occurs. We first visualized and quantified pore-scale infiltration of water and ash in sand of a range of textures and at various infiltration rates, using a digital bright field microscope capturing both photo and video. While these visualization experiments confirm field and lab observation of ash washing into soil pores, we did not observe any clogging of pores, and have not been able to create conditions for which this does occur. Additional electrochemical analysis and measurement of saturated hydraulic conductivity indicate that pore clogging by ash is not plausible. Electrochemical analysis showed that ash and sand are both negatively charged, showing that attachment of ash to sand and any resulting clogging is unlikely. Ash also had quite high saturated conductivity, and systems where ash was mixed in or lying on top of sand had similarly high hydraulic conductivity. Based on these various experiments, we cannot confirm the hypothesis that pore clogging by ash contributes to the frequently observed increase in post-fire runoff, at least for the medium to coarse sands

  16. Mineral dissolution kinetics at the pore scale

    SciTech Connect

    Li, L.; Steefel, C.I.; Yang, L.

    2007-05-24

    Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular

  17. Geostatistical Modeling of Pore Velocity

    SciTech Connect

    Devary, J.L.; Doctor, P.G.

    1981-06-01

    A significant part of evaluating a geologic formation as a nuclear waste repository involves the modeling of contaminant transport in the surrounding media in the event the repository is breached. The commonly used contaminant transport models are deterministic. However, the spatial variability of hydrologic field parameters introduces uncertainties into contaminant transport predictions. This paper discusses the application of geostatistical techniques to the modeling of spatially varying hydrologic field parameters required as input to contaminant transport analyses. Kriging estimation techniques were applied to Hanford Reservation field data to calculate hydraulic conductivity and the ground-water potential gradients. These quantities were statistically combined to estimate the groundwater pore velocity and to characterize the pore velocity estimation error. Combining geostatistical modeling techniques with product error propagation techniques results in an effective stochastic characterization of groundwater pore velocity, a hydrologic parameter required for contaminant transport analyses.

  18. The effect of pore water pressure on debris flow dynamics

    NASA Astrophysics Data System (ADS)

    Okura, Y.; Parker, G.; Marr, J. G.; Yu, B.; Ochiai, H.

    2003-12-01

    Pore-water likely plays an important role to reduce shear force in debris flow. In experiments, we observed pore-water pressure during flow to clarify the relationship between the flow speed and pore water pressure which would be affected by flow depth and particle size distribution. Soil materials were prepared with mixing materials of sand, silt and clay. Pore-water pressure on the flume bed, flow depth, velocity and run out distance was observed, and the following results were quantitatively obtained in this series of experiments. 1. A positive relation was observed between strain rate and pore-water pressure ratio in the flow. The strain rate and pressure ratio were dimensionless parameters of the ratios of surface velocity to flow depth and pore-water pressure head to flow depth, respectively. This relationship indicated that shear resistance decreased as the pressure potential leading to acceleration of flow velocity increased. 2. A positive relation was also observed between flow depth and pore-water pressure ratio. This indicated that the pore pressure diffusion became increasingly obstructed as the flow depth increased. 3. The pore-water pressure ratio tended to increase with the uniformity coefficient of debris flow materials. The reason for this might have been that smaller particles suspended in the flow increased pore-water pressure, and the wider range of particle distribution effectively prevented pore-water pressure diffusion. 4. There was an apparently negative correlation between the equivalent coefficient of frictions and the pressure ratios. Equivalent friction is apparent friction during flow. The most likely reason for this is that shear resistance would decrease and run out distance increase as the pressure ratio increased. These results indicated that the effect of pore water fluctuations should be one of the most important factors affecting the shear resistance in debris flows. This work was supported by the National Science Foundation

  19. Restricted Transport in Small Pores

    PubMed Central

    Anderson, John L.; Quinn, John A.

    1974-01-01

    The basic hydrodynamic equations governing transport in submicron pores are reexamined. Conditions necessary for a simplified, one-dimensional treatment of the diffusion/convection process are established. Steric restrictions and Brownian motion are incorporated directly into the resulting model. Currently available fluid mechanical results are used to evaluate an upper limit on hindered diffusion; this limit is valid for small particle-to-pore ratios. Extensions of the analysis are shown to depend on numerical solutions of the related hydrodynamic problem, that of asymmetrical particle motion in a bounded fluid. PMID:4813157

  20. Multi-pore carbon phase plate for phase-contrast transmission electron microscopy.

    PubMed

    Sannomiya, Takumi; Junesch, Juliane; Hosokawa, Fumio; Nagayama, Kuniaki; Arai, Yoshihiro; Kayama, Yoko

    2014-11-01

    A new fabrication method of carbon based phase plates for phase-contrast transmission electron microscopy is presented. This method utilizes colloidal masks to produce pores as well as disks on thin carbon membranes for phase modulation. Since no serial process is involved, carbon phase plate membranes containing hundreds of pores can be mass-produced on a large scale, which allows "disposal" of contaminated or degraded phase modulating objects after use. Due to the spherical shape of the mask colloid particles, the produced pores are perfectly circular. The pore size and distribution can be easily tuned by the mask colloid size and deposition condition. By using the stencil method, disk type phase plates can also be fabricated on a pore type phase plate. Both pore and disk type phase plates were tested by measuring amorphous samples and confirmed to convert the sinus phase contrast transfer function to the cosine shape. PMID:25129640

  1. Mechanisms for Robust Cognition.

    PubMed

    Walsh, Matthew M; Gluck, Kevin A

    2015-08-01

    To function well in an unpredictable environment using unreliable components, a system must have a high degree of robustness. Robustness is fundamental to biological systems and is an objective in the design of engineered systems such as airplane engines and buildings. Cognitive systems, like biological and engineered systems, exist within variable environments. This raises the question, how do cognitive systems achieve similarly high degrees of robustness? The aim of this study was to identify a set of mechanisms that enhance robustness in cognitive systems. We identify three mechanisms that enhance robustness in biological and engineered systems: system control, redundancy, and adaptability. After surveying the psychological literature for evidence of these mechanisms, we provide simulations illustrating how each contributes to robust cognition in a different psychological domain: psychomotor vigilance, semantic memory, and strategy selection. These simulations highlight features of a mathematical approach for quantifying robustness, and they provide concrete examples of mechanisms for robust cognition. PMID:25352094

  2. Membrane pore formation in atomistic and coarse-grained simulations.

    PubMed

    Kirsch, Sonja A; Böckmann, Rainer A

    2016-10-01

    Biological cells and their organelles are protected by ultra thin membranes. These membranes accomplish a broad variety of important tasks like separating the cell content from the outer environment, they are the site for cell-cell interactions and many enzymatic reactions, and control the in- and efflux of metabolites. For certain physiological functions e.g. in the fusion of membranes and also in a number of biotechnological applications like gene transfection the membrane integrity needs to be compromised to allow for instance for the exchange of polar molecules across the membrane barrier. Mechanisms enabling the transport of molecules across the membrane involve membrane proteins that form specific pores or act as transporters, but also so-called lipid pores induced by external fields, stress, or peptides. Recent progress in the simulation field enabled to closely mimic pore formation as supposed to occur in vivo or in vitro. Here, we review different simulation-based approaches in the study of membrane pores with a focus on lipid pore properties such as their size and energetics, poration mechanisms based on the application of external fields, charge imbalances, or surface tension, and on pores that are induced by small molecules, peptides, and lipids. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26748016

  3. Transport pathways within percolating pore space networks of granular materials

    NASA Astrophysics Data System (ADS)

    Vo, Kevin; Walker, David M.; Tordesillas, Antoinette

    2013-06-01

    Granular media can be regarded as a mixture of two components: grains and the material filling the voids or pores between the grains. Pore properties give rise to a range of applications such as modelling ground water flow, carbon capture and sequestration. The grains within a dense granular material respond to deformation (e.g., shearing or compression) by rearranging to create local zones of compression and zones of dilatation (i.e., regions of high pore space). Descriptions of the deformation are typically focused on analysis of the solid skeleton via topology of physical contact networks of grains but an alternative perspective is to consider network representations of the evolving anisotropic pore space. We demonstrate how to construct pore space networks that express the local size of voids about a grain through network edge weights. We investigate sectors of the loading history when a percolating giant component of the pore space network exists. At these states the grains are in a configuration more prone to the efficient transport of material (e.g., fluid flow, mineral/gas deposits). These pathways can be found through examination of the weighted shortest paths percolating the boundaries of the material. In particular, network weights biased towards large void space results in efficient percolating pathways traversing the shear band in the direction of principal stress within a 2D granular assembly subject to high strains.

  4. Accumulation of formamide in hydrothermal pores to form prebiotic nucleobases.

    PubMed

    Niether, Doreen; Afanasenkau, Dzmitry; Dhont, Jan K G; Wiegand, Simone

    2016-04-19

    Formamide is one of the important compounds from which prebiotic molecules can be synthesized, provided that its concentration is sufficiently high. For nucleotides and short DNA strands, it has been shown that a high degree of accumulation in hydrothermal pores occurs, so that temperature gradients might play a role in the origin of life [Baaske P, et al. (2007)Proc Natl Acad Sci USA104(22):9346-9351]. We show that the same combination of thermophoresis and convection in hydrothermal pores leads to accumulation of formamide up to concentrations where nucleobases are formed. The thermophoretic properties of aqueous formamide solutions are studied by means of Infrared Thermal Diffusion Forced Rayleigh Scattering. These data are used in numerical finite element calculations in hydrothermal pores for various initial concentrations, ambient temperatures, and pore sizes. The high degree of formamide accumulation is due to an unusual temperature and concentration dependence of the thermophoretic behavior of formamide. The accumulation fold in part of the pores increases strongly with increasing aspect ratio of the pores, and saturates to highly concentrated aqueous formamide solutions of ∼85 wt% at large aspect ratios. Time-dependent studies show that these high concentrations are reached after 45-90 d, starting with an initial formamide weight fraction of[Formula: see text]wt % that is typical for concentrations in shallow lakes on early Earth. PMID:27044100

  5. The role of pore structure on char reactivity. Quarterly progress report, April 1995--June 1995

    SciTech Connect

    Sarofim, A.F.

    1995-07-01

    In order to examine the role of pore structure, studies will be conducted on coal chars in the electrodynamic balance. Larger particles will also be examined using a fluidized bed to examine diffusion control reactions, and soots will also be investigated to examine the role of meso-and micro-pores without macro-pore interference. These studies will allow a full range of particles sizes and temperatures to be investigated and eventually modelled.

  6. 2-Aminoethoxydiphenyl Borate Potentiates CRAC Current by Directly Dilating the Pore of Open Orai1

    PubMed Central

    Xu, Xiaolan; Ali, Sher; Li, Yufeng; Yu, Haijie; Zhang, Mingshu; Lu, Jingze; Xu, Tao

    2016-01-01

    2-Aminoethoxydiphenyl borate (2-APB) elicits potentiation current (Ip) on Ca2+ release-activated Ca2+ (CRAC) channels. An accurate investigation into this modulation mechanism would reveal how STIM1-dependent channel gating is enhanced, and benefit the future immune enhancer development. Here, we directly probed the pore diameter of CRAC channels and found that 2-APB enlarged the pore size of STIM1-activated Orai1 from 3.8 to 4.6 Å. We demonstrated that ions with small sizes, i.e., Ca2+ and Na+, mediated prominent 2-APB-induced Ip on the wildtype (WT) Orai1 channels of narrow pore sizes, while conducted decreased or no Ip on Orai1-V102C/A/G mutant channels with enlarged pore diameters. On the contrary, large Cs+ ions blocked the WT channels, while displayed large 2-APB induced Ip on pore-enlarged Orai1-V102C/A/G mutant channels, and the potentiation ratio was highest on Orai1-V102C with an intermediate pore size. Furthermore, we showed that 2-APB potentiated Cs+ current on constitutively active Orai1-V102C/A/G mutants independent of STIM1. Our data suggest that 2-APB directly dilates the pore of open Orai1 channels, both ion size and pore diameter jointly determine the amplitude of Ip on CRAC channels, and the generation of Ip requires the open state of Orai1, not STIM1 itself. PMID:27373367

  7. Experimental and theoretical pore-scale study of thermal field responses to drying of porous surfaces

    NASA Astrophysics Data System (ADS)

    Aminzadeh, M.; Or, D.

    2015-12-01

    The drying of porous surfaces involves pores invasion at a sequence reflecting their respective capillary size (large pores invaded first similar to drainage). The emptying of an evaporating pore is accompanied by changes in the thermal field forming on the surface around the invaded pore that consequently affects surface temperature and energy partitioning over the drying surface. A novel experimental system was designed to systematically evaluate the coupling between surface temperature and evaporative flux from individual and clusters of pores drilled into rough glass surfaces connected to a liquid reservoir. Details of thermal fields around individual evaporating pores were observed for sparse and dense pore spacings including measurements of evaporating flux dynamics and results were compared with PCEB model [Aminzadeh and Or, 2014] predictions. We observed drying-induced pore emptying sequences of sintered glass bead surfaces by visual and thermal imaging using high resolution infrared imager. The links between pore emptying sequence at a drying surface inferred from pore size distribution, and surface temperature dynamics offer a possibility of predicting energy partitioning over drying terrestrial surfaces.

  8. Membrane pores induced by magainin.

    PubMed

    Ludtke, S J; He, K; Heller, W T; Harroun, T A; Yang, L; Huang, H W

    1996-10-29

    Magainin, found in the skin of Xenopus laevis, belongs to a broad class of antimicrobial peptides which kill bacteria by permeabilizing the cytoplasmic membrane but do not lyse eukaryotic cells. The 23-residue peptide has been shown to form an amphiphilic helix when associated with membranes. However, its molecular mechanism of action has been controversial. Oriented circular dichroism has detected helical magainin oriented perpendicular to the plane of the membrane at high peptide concentrations, but Raman, fluorescence, differential scanning calorimetry, and NMR all indicate that the peptide is associated with the head groups of the lipid bilayer. Here we show that neutron in-plane scattering detects pores formed by magainin 2 in membranes only when a substantial fraction of the peptide is oriented perpendicular to the membrane. The pores are almost twice as large as the alamethicin pores. On the basis of the in-plane scattering data, we propose a toroidal (or wormhole) model, which differs from the barrel-stave model of alamethicin in that the lipid bends back on itself like the inside of a torus. The bending requires a lateral expansion in the head group region of the bilayer. Magainin monomers play the role of fillers in the expansion region thereby stabilizing the pore. This molecular configuration is consistent with all published magainin data. PMID:8901513

  9. Triggered pore-forming agents

    DOEpatents

    Bayley, H.; Walker, B.J.; Chang, C.Y.; Niblack, B.; Panchal, R.

    1998-07-07

    An inactive pore-forming agent is revealed which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell. 30 figs.

  10. Statistical geometry of pores and statistics of porous nanofibrous assemblies

    PubMed Central

    Eichhorn, Stephen J; Sampson, William W

    2005-01-01

    The application of theoretical models to describe the structure of the types of fibrous network produced by the electrospinning of polymers for use in tissue engineering and a number of other applications is presented. Emphasis is placed on formal analyses of the pore size distribution and porosities that one would encounter with such structures and the nature of their relationships with other structural characteristics likely to be important for the performance of nanofibrous materials. The theoretical structures considered result from interactions between randomly placed straight rods that represent fibres with nanoscale dimensions. The dominant role of fibre diameter in controlling the pore diameter of the networks is shown and we discuss the perhaps counter-intuitive finding that at a given network mass per unit area and porosity, increasing fibre diameter results in an increase in mean pore radius. Larger pores may be required for ingrowth of cells to nanofibrous networks, hence this study clarifies that simply making the diameters of the fibres smaller might not be the way to improve cell proliferation on such substrates. An extensive review of structural features of the network such as the distribution of mass, inter-fibre contacts and available surface for cell attachment, fibre contact distributions for integrity of the networks and the porosity and pore size distributions is given, with emphasis placed on nanofibre dimensions for the first time. PMID:16849188

  11. Magnetic relaxation--coal swelling, extraction, pore size

    SciTech Connect

    Doetschman, D.C.

    1991-01-01

    The grant activities during this period fall into four categories: (1) Completion of preparatory work, (2) Procedure refinement and actual preparation of whole coal, coal residue, coal extract and swelled coal samples for NMR studies, (3) Related studies of coal photolysis that employ materials from preliminary extractions and that examine the u.v.-visible and mass spectra of the extracts and (4) Continued investigations of the pulsed EPR characteristics of the whole coal samples that were prepared in the first quarter of the grant.

  12. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    PubMed Central

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  13. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.

    PubMed

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size ([Formula: see text]), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  14. Extrusion of transmitter, water and ions generates forces to close fusion pore.

    PubMed

    Tajparast, M; Glavinović, M I

    2009-05-01

    During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K(+)-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K(+)-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K(+) and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na(+) also rises, whereas that of Cl(-) diminishes, although their extra-cellular concentration does not

  15. LONG-TERM PERFORMANCE CHARACTERISTICS OF FINE PORE CERAMIC DIFFUSERS AT MONROE, WISCONSIN

    EPA Science Inventory

    A study of the fine pore aeration system at the Monroe, Wisconsin wastewater treatment plant was conducted to monitor, over a 2-year period, the oxygen transfer efficiency (OTE) and fouling tendencies of four different effective pore size ceramic discs. The plant treats a mixtur...

  16. LONG-TERM PERFORMANCE CHARACTERISTICS OF FINE PORE CERAMIC DIFFUSERS AT MONROE, WISCONSIN

    EPA Science Inventory

    A study of the fine pore aeration system at the Monroe, Wisconsin wastewater treatment plant was conducted to monitor, over a 2-year period, the oxygen transfer efficiency (OTE) and fouling tendencies of four different effective pore size ceramic discs. he plant treats a mixture ...

  17. Bimodal mesoporous silica with bottleneck pores.

    PubMed

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  18. Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone

    PubMed Central

    Thomas, C David L; Feik, Sophie A; Clement, John G

    2006-01-01

    This study investigated the relative contributions of pore size and pore density (number of pores per mm2) to porosity in the midshaft of the human femur. Cross-sections were obtained from 168 individuals from a modern Australian population (mostly Anglo-Celtic). The study group comprised 73 females and 95 males, aged from 20 to 97 years. Microradiographs were made of 100-µm sections and porosity, pore areas and pore densities determined using image processing software. The cortex was divided into three rings radially and into octants circumferentially, and the porosity, pore area and pore density of each segment were calculated. Results show that 81% of the variance in porosity can be explained by changes in mean pore area with only a further 12–16% explained by changes in pore density. These effects were found to be constant across all areas of the cortex and in both sexes. These results are significant in their consistency and ordered gradation and indicate a well-regulated and systematic process of bone removal with ageing. The results show a regular progression from less porous to more porous bone; this is a uniform process that occurs in all individuals, and factors such as sex and rate of ageing determine where on this continuum any individual is at a particular time. PMID:16879600

  19. Robust Nonlinear Neural Codes

    NASA Astrophysics Data System (ADS)

    Yang, Qianli; Pitkow, Xaq

    2015-03-01

    Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.

  20. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2.

    PubMed

    Van Itallie, Christina M; Holmes, Jennifer; Bridges, Arlene; Gookin, Jody L; Coccaro, Maria R; Proctor, William; Colegio, Oscar R; Anderson, James M

    2008-02-01

    Epithelial tight junctions contain size- and charge-selective pores that control the paracellular movement of charged and noncharged solutes. Claudins influence the charge selectivity and electrical resistance of junctions, but there is no direct evidence describing pore composition or whether pore size or density differs among cell types. To characterize paracellular pores independent of influences from charge selectivity, we profiled the ;apparent permeabilities' (P(app)) of a continuous series of noncharged polyethylene glycols (PEGs) across monolayers of five different epithelial cell lines and porcine ileum. We also characterized P(app) of high and low electrical resistance MDCK cell monolayers expressing heterologous claudins. P(app) profiling confirms that the paracellular barrier to noncharged solutes can be modeled as two distinct pathways: high-capacity small pores and a size-independent pathway allowing flux of larger solutes. All cell lines and ileum share a pore aperture of radius 4 A. Using P(app) of a PEG of radius 3.5 A to report the relative pore number provides the novel insight that pore density along the junction varies among cell types and is not necessarily related to electrical resistance. Expression of claudin-2 results in a selective increase in pore number but not size and has no effect on the permeability of PEGs that are larger than the pores; however, neither knockdown of claudin-2 nor overexpression of several other claudins altered either the number of small pores or their size. We speculate that permeability of all small solutes is proportional to pore number but that small electrolytes are subject to further selectivity by the profile of claudins expressed, explaining the dissociation between the P(app) for noncharged solutes and electrical resistance. Although claudins are likely to be components of the small pores, other factors might regulate pore number. PMID:18198187

  1. Tight dual models of pore spaces

    NASA Astrophysics Data System (ADS)

    Glantz, Roland; Hilpert, Markus

    2008-05-01

    The pore throats in a porous medium control permeability, drainage, and straining through their pore scale geometry and through the way they are connected via pore bodies on the macroscale. Likewise, imbibition is controlled through the geometry of the pore bodies (pore scale) and through the way the pore bodies are connected via pore throats on the macroscale. In an effort to account for both scales at the same time we recently introduced an image-based model for pore spaces that consists of two parts related by duality: (1) a decomposition of a polyhedral pore space into polyhedral pore bodies separated by polygonal pore throats and (2) a polygonal pore network that is homotopy equivalent to the pore space. In this paper we stick to the dual concept while amending the definition of the pore throats and, as a consequence, the other elements of the dual model. Formerly, the pore throats consisted of single two-dimensional Delaunay cells, while they now usually consist of more than one two-dimensional Delaunay cell and extend all the way into the narrowing ends of the pore channel cross sections. This is the first reason for naming the amended dual model "tight". The second reason is that the formation of the pore throats is now guided by an objective function that always attains its global optimum (tight optimization). At the end of the paper we report on simulations of drainage performed on tight dual models derived from simulated sphere packings and 3D gray-level images. The C-code for the generation of the tight dual model and the simulation of drainage is publicly available at https://jshare.johnshopkins.edu/mhilper1/public_html/tdm.html.

  2. Microporous silica prepared by organic templating: Relationship between the molecular template and pore structure

    SciTech Connect

    Lu, Y.; Brinker, C.J. |; Cao, G.; Kale, R.P.; Prabakar, S.; Lopez, G.P.

    1999-05-01

    Microporous silica materials with a controlled pore size and a narrow pore size distribution have been prepared by sol-gel processing using an organic-templating approach. Microporous networks were formed by pyrolytic removal of organic ligands (methacryloxypropyl groups) from organic/inorganic hybrid materials synthesized by copolymerization of 3-methacryloxypropylsilane (MPS) and tetraethoxysilane (TEOS). Molecular simulations and experimental measurements were conducted to examine the relationship between the microstructural characteristics of the porous silica (e.g., pore size, total pore volume, and pore connectivity) and the size and amount of organic template ligands added. Adsorption measurements suggest that the final porosity of the microporous silica is due to both primary pores (those present in the hybrid material prior to pyrolysis) and secondary pores (those created by pyrolytic removal of organic templates). Primary pores were inaccessible to N{sub 2} at 77 K but accessible to CO{sub 2} at 195 K; secondary pores were accessible to both N{sub 2} (at 77 K) and CO{sub 2} (at 195 K) in adsorption measurements. Primary porosity decreases with the amount of organic ligands added because of the enhanced densification of MPS/TEOS hybrid materials as the mole fraction of trifunctional MPS moieties increases. Pore volumes measured by nitrogen adsorption experiments at 77 K suggest that the secondary (template-derived) porosity exhibits a percolation behavior as the template concentration is increased. Gas permeation experiments indicate that the secondary pores are approximately 5 {angstrom} in diameter, consistent with predictions based on molecular simulations.

  3. Perimeter-area power-law relationship of pores in sedimentary rocks and implications for permeability

    SciTech Connect

    Schlueter, E.M.; Zimmerman, R.W.; Cook, N.G.W.; Witherspoon, P.A.

    1994-12-31

    Perimeter-area power-law relationships of pores in five sedimentary rocks are determined from scanning electron photomicrographs of thin sections. These relationships for the pores of four sandstones were found to lie between 1.43 and 1.49, while that of an Indiana limestone was found to be 1.67. The authors discuss how the perimeter-area power-law relationship of pores, along with a pore-size distribution, can be used to estimate the hydraulic permeability.

  4. Defeating the pores of Kohn.

    PubMed

    Ng, Calvin S H; Lau, Rainbow W H; Lau, Kelvin K W; Underwood, Malcolm J; Yim, Anthony P C

    2014-01-01

    In the treatment of emphysema with an endobronchial valve, entire lobar treatment is important in achieving adequate atelectasis. This case illustrates that without treatment of the entire lobe, it can fail to collapse even after several years, leading to treatment failure. Intralobar collateral ventilation through the pores of Kohn is demonstrated in this case, as endobronchial valve blockage of the remaining patent anterior segment resulted in the desired atelectasis and significant improvements in pulmonary function. PMID:24585656

  5. Computer Aided Biomanufacturing of Mechanically Robust Pure Collagen Meshes with Controlled Macroporosity

    PubMed Central

    Islam, Anowarul; Chapin, Katherine; Younesi, Mousa

    2015-01-01

    Reconciliation of high strength and high porosity in pure collagen based structures is a major barrier in collagen’s use in load-bearing applications. The current study developed a CAD/CAM based electrocompaction method to manufacture highly porous patterned scaffolds using pure collagen. Utilization of computerized scaffold design and fabrication allows the integration of mesh-scaffolds with controlled pore size, shape and spacing. Mechanical properties of fabricated collagen meshes were investigated as a function of number of patterned layers, and with different pore geometries. The tensile stiffness, tensile strength and modulus ranges from 10-50 N/cm, 1-6 MPa and 5-40 MPa respectively for all the scaffold groups. These results are within the range of practical usability of different tissue engineering application such as tendon, hernia, stress urinary incontinence or thoracic wall reconstruction. Moreover, 3-fold increase in the layer number resulted in more than 5-fold increases in failure load, toughness and stiffness which suggests that by changing the number of layers and shape of the structure, mechanical properties can be modulated for the aforementioned tissue engineering application. These patterned scaffolds offer a porosity ranging from 0.8-1.5 mm in size, a range that is commensurate with pore sizes of repair meshes in the market. The connected macroporosity of the scaffolds facilitated cell-seeding such that cells populated the entire scaffold at the time of seeding. After 3 days of culture, cell nuclei became elongated. These results indicate that the patterned electrochemical deposition method in this study was able to develop mechanically robust, highly porous collagen scaffolds with controlled porosity which not only tries to solve one of the major tissue engineering problems in a fundamental level but also has a significant potential to be used in different tissue engineering applications. PMID:26200002

  6. Computer aided biomanufacturing of mechanically robust pure collagen meshes with controlled macroporosity.

    PubMed

    Islam, Anowarul; Chapin, Katherine; Younesi, Mousa; Akkus, Ozan

    2015-09-01

    Reconciliation of high strength and high porosity in pure collagen based structures is a major barrier in collagen's use in load-bearing applications. The current study developed a CAD/CAM based electrocompaction method to manufacture highly porous patterned scaffolds using pure collagen. Utilization of computerized scaffold design and fabrication allows the integration of mesh-scaffolds with controlled pore size, shape and spacing. Mechanical properties of fabricated collagen meshes were investigated as a function of number of patterned layers, and with different pore geometries. The tensile stiffness, tensile strength and modulus ranges from 10-50 N cm(-1), 1-6 MPa and 5-40 MPa respectively for all the scaffold groups. These results are within the range of practical usability of different tissue engineering application such as tendon, hernia, stress urinary incontinence or thoracic wall reconstruction. Moreover, 3-fold increase in the layer number resulted in more than 5-fold increases in failure load, toughness and stiffness which suggests that by changing the number of layers and shape of the structure, mechanical properties can be modulated for the aforementioned tissue engineering application. These patterned scaffolds offer a porosity ranging from 0.8 to 1.5 mm in size, a range that is commensurate with pore sizes of repair meshes in the market. The connected macroporosity of the scaffolds facilitated cell-seeding such that cells populated the entire scaffold at the time of seeding. After 3 d of culture, cell nuclei became elongated. These results indicate that the patterned electrochemical deposition method in this study was able to develop mechanically robust, highly porous collagen scaffolds with controlled porosity which not only tries to solve one of the major tissue engineering problems at a fundamental level but also has a significant potential to be used in different tissue engineering applications. PMID:26200002

  7. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    SciTech Connect

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  8. Robust Adaptive Control

    NASA Technical Reports Server (NTRS)

    Narendra, K. S.; Annaswamy, A. M.

    1985-01-01

    Several concepts and results in robust adaptive control are are discussed and is organized in three parts. The first part surveys existing algorithms. Different formulations of the problem and theoretical solutions that have been suggested are reviewed here. The second part contains new results related to the role of persistent excitation in robust adaptive systems and the use of hybrid control to improve robustness. In the third part promising new areas for future research are suggested which combine different approaches currently known.

  9. Translocation of an Incompressible Vesicle through a Pore.

    PubMed

    Shojaei, Hamid R; Muthukumar, Murugappan

    2016-07-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker-Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  10. Translocation of an Incompressible Vesicle through a Pore

    PubMed Central

    Shojaei, Hamid R.; Muthukumar, Murugappan

    2016-01-01

    We have derived the free energy landscape for the translocation of a single vesicle through a narrow pore by accounting for bending and stretching of the vesicle, and the deformation of the vesicle by the pore. Emergence of a free energy barrier for translocation is a general result, and the magnitude of the barrier is calculated in terms of the various material parameters. The extent of the reduction in the barrier by the presence of an external constant force is calculated. Using the Fokker–Planck formalism, we have calculated the average translocation time corresponding to the various free energy landscapes representing different parameter sets. The dependencies of the average translocation time on the strength of the external force, vesicle size, bending and stretching moduli of the vesicle, and radius and length of the pore are derived, and the computed results are discussed. PMID:27089012

  11. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    EPA Science Inventory

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  12. Extending electromagnetic methods to map coastal pore water salinities

    USGS Publications Warehouse

    Greenwood, Wm. J.; Kruse, S.; Swarzenski, P.

    2006-01-01

    The feasibility of mapping pore water salinity based on surface electromagnetic (EM) methods over land and shallow marine water is examined in a coastal wetland on Tampa Bay, Florida. Forward models predict that useful information on seabed conductivity can be obtained through <1.5 m of saline water, using floating EM-31 and EM-34 instruments from Geonics Ltd. The EM-31 functioned as predicted when compared against resistivity soundings and pore water samples and proved valuable for profiling in otherwise inaccessible terrain due to its relatively small size. Experiments with the EM-34 in marine water, however, did not reproduce the theoretical instrument response. The most effective technique for predicting pore water conductivities based on EM data entailed (1) computing formation factors from resistivity surveys and pore water samples at representative sites and (2) combining these formation factors with onshore and offshore EM-31 readings for broader spatial coverage. This method proved successful for imaging zones of elevated pore water conductivities/ salinities associated with mangrove forests, presumably caused by salt water exclusion by mangrove roots. These zones extend 5 to 10 m seaward from mangrove trunks fringing Tampa Bay. Modeling indicates that EM-31 measurements lack the resolution necessary to image the subtle pore water conductivity variations expected in association with diffuse submarine ground water discharge of fresher water in the marine water of Tampa Bay. The technique has potential for locating high-contrast zones and other pore water salinity anomalies in areas not accessible to conventional marine- or land-based resistivity arrays and hence may be useful for studies of coastal-wetland ecosystems. Copyright ?? 2005 National Ground Water Association.

  13. Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes

    PubMed Central

    Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam

    2003-01-01

    We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from

  14. Applications of fluorescence microscopy to study of pores in tight rocks

    SciTech Connect

    Soeder, D.J. )

    1990-01-01

    Observation of pore structures in thin section by traditional impregnation with blue-dyed epoxy becomes difficult when the pores are smaller than about 1 {mu}m and/or linear in shape. These types of pores are common in many low-permeability gas reservoirs, such as coal, shale, and tight sandstone. Incident-light fluorescence microscopy can be used to observe small, narrow pore structures in tight rocks. This common medical technique can be adapted to petrography by staining the impregnation epoxy with fluorescent rhodamine B dye along with the usual blue dye, and using an incident-light microscope equipped for epifluorescence to observe the prepared thin section. Under excitation of green light at a wavelength of 5,400 {angstrom}, rhodamine fluoresces a brilliant reddish orange, clearly showing impregnated pore spaces. A dichromatic interference filter in the light path passes the reddish orange light and blocks nonfluorescing mineral grains so that only the pore structure is visible. Fluorescing epoxy behaves as an emission source, and even submicron-size pores, which may be narrower than the wavelengths of visible light, become visible if they are impregnated. The incident-light configuration of the microscope also allows the observation of impregnated pore spaces in opaque materials such as coal. Fluorescence microscopy not only has potential for studying pore structures in tight sedimentary rocks, but also can be applied to crystalline rocks and other materials with narrow, linear, or small pores. 9 figs.

  15. Diffusive Release of Uranium from Contaminated Sediments into Capillary Fringe Pore Water

    SciTech Connect

    Rod, Kenton A.; Wellman, Dawn M.; Flury, Markus; Pierce, Eric M.; Harsh, James B.

    2012-09-13

    We investigated the dynamics of U release between pore water fractions, during river stage changes from two contaminated capillary fringe sediments. Samples were from 7.0 m and 7.6 m below ground surface (bgs) in the Hanford 300 area. Sediments were packed into columns and saturated with Hanford groundwater for three to 84 days. After specified times, > 48 µm radius (calculated) sediment pores were drained, followed by draining pores to 15 µm radius. U release in the first two weeks was similar between sediments and pore sizes with a range of 4.4 to 5.6 µM U in the 14 day sample. The 7.0 m bgs sediment U declined in the larger pores to 0.22 µM at day 84, whereas the small