Science.gov

Sample records for rocket based combined

  1. The Strutjet Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Siebenhaar, A.; Bulman, M. J.; Bonnar, D. K.

    1998-01-01

    The multi stage chemical rocket has been established over many years as the propulsion System for space transportation vehicles, while, at the same time, there is increasing concern about its continued affordability and rather involved reusability. Two broad approaches to addressing this overall launch cost problem consist in one, the further development of the rocket motor, and two, the use of airbreathing propulsion to the maximum extent possible as a complement to the limited use of a conventional rocket. In both cases, a single-stage-to-orbit (SSTO) vehicle is considered a desirable goal. However, neither the "all-rocket" nor the "all-airbreathing" approach seems realizable and workable in practice without appreciable advances in materials and manufacturing. An affordable system must be reusable with minimal refurbishing on-ground, and large mean time between overhauls, and thus with high margins in design. It has been suggested that one may use different engine cycles, some rocket and others airbreathing, in a combination over a flight trajectory, but this approach does not lead to a converged solution with thrust-to-mass, specific impulse, and other performance and operational characteristics that can be obtained in the different engines. The reason is this type of engine is simply a combination of different engines with no commonality of gas flowpath or components, and therefore tends to have the deficiencies of each of the combined engines. A further development in this approach is a truly combined cycle that incorporates a series of cycles for different modes of propulsion along a flight path with multiple use of a set of components and an essentially single gas flowpath through the engine. This integrated approach is based on realizing the benefits of both a rocket engine and airbreathing engine in various combinations by a systematic functional integration of components in an engine class usually referred to as a rocket-based combined cycle (RBCC) engine

  2. Rocket Based Combined Cycle (RBCC) Propulsion Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop, was to impart technology information to the propulsion community with respect to hypersonic combined cycle propulsion capabilities. The major recommendation resulting from this technology workshop was as follows: conduct a systems-level applications study to define the desired propulsion system and vehicle technology requirements for LEO launch vehicles. All SSTO and TSTO options using the various propulsion systems (airbreathing combined cycle, rocket-based combined cycle, and all rocket) must be considered. Such a study should be accomplished as soon as possible. It must be conducted with a consistent set of ground rules and assumptions. Additionally, the study should be conducted before any major expenditures on a RBCC technology development program occur.

  3. Rocket-Based Combined Cycle Engine Concept Development

    NASA Technical Reports Server (NTRS)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  4. Parametric Study Conducted of Rocket- Based, Combined-Cycle Nozzles

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.; Smith, Timothy D.

    1998-01-01

    Having reached the end of the 20th century, our society is quite familiar with the many benefits of recycling and reusing the products of civilization. The high-technology world of aerospace vehicle design is no exception. Because of the many potential economic benefits of reusable launch vehicles, NASA is aggressively pursuing this technology on several fronts. One of the most promising technologies receiving renewed attention is Rocket-Based, Combined-Cycle (RBCC) propulsion. This propulsion method combines many of the efficiencies of high-performance jet aircraft with the power and high-altitude capability of rocket engines. The goal of the present work at the NASA Lewis Research Center is to further understand the complex fluid physics within RBCC engines that govern system performance. This work is being performed in support of NASA's Advanced Reusable Technologies program. A robust RBCC engine design optimization demands further investigation of the subsystem performance of the engine's complex propulsion cycles. The RBCC propulsion system under consideration at Lewis is defined by four modes of operation in a singlestage- to-orbit configuration. In the first mode, the engine functions as a rocket-driven ejector. When the rocket engine is switched off, subsonic combustion (mode 2) is present in the ramjet mode. As the vehicle continues to accelerate, supersonic combustion (mode 3) occurs in the ramjet mode. Finally, as the edge of the atmosphere is approached and the engine inlet is closed off, the rocket is reignited and the final accent to orbit is undertaken in an all-rocket mode (mode 4). The performance of this fourth and final mode is the subject of this present study. Performance is being monitored in terms of the amount of thrust generated from a given amount of propellant.

  5. Analysis of a Rocket Based Combined Cycle Engine during Rocket Only Operation

    NASA Technical Reports Server (NTRS)

    Smith, T. D.; Steffen, C. J., Jr.; Yungster, S.; Keller, D. J.

    1998-01-01

    The all rocket mode of operation is a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. However, outside of performing experiments or a full three dimensional analysis, there are no first order parametric models to estimate performance. As a result, an axisymmetric RBCC engine was used to analytically determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and statistical regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, percent of injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inject diameter ratio. A perfect gas computational fluid dynamics analysis was performed to obtain values of vacuum specific impulse. Statistical regression analysis was performed based on both full flow and gas generator engine cycles. Results were also found to be dependent upon the entire cycle assumptions. The statistical regression analysis determined that there were five significant linear effects, six interactions, and one second-order effect. Two parametric models were created to provide performance assessments of an RBCC engine in the all rocket mode of operation.

  6. Mixing and reaction processes in rocket based combined cycle and conventional rocket engines

    NASA Astrophysics Data System (ADS)

    Lehman, Matthew Kurt

    Raman spectroscopy was used to make species measurements in two rocket engines. An airbreathing rocket, the rocket based combined cycle (RBCC) engine, and a conventional rocket were investigated. A supersonic rocket plume mixing with subsonic coflowing air characterizes the ejector mode of the RBCC engine. The mixing length required for the air and plume to become homogenous is a critical dimension. For the conventional rocket experiments, a gaseous oxygen/gaseous hydrogen single-element shear coaxial injector was used. Three chamber Mach number conditions, 0.1, 0.2 and 0.3, were chosen to assess the effect of Mach number on mixing. The flow within the chamber was entirely subsonic. For the RBCC experiments, vertical Raman line measurements were made at multiple axial locations downstream from the rocket nozzle plane. Species profiles assessed the mixing progress between the supersonic plume and subsonic air. For the conventional rocket, Raman line measurements were made downstream from the injector face. The goal was to evaluate the effect of increased chamber Mach number on injector mixing/reaction. For both engines, quantitative and qualitative information was collected for computational fluid dynamics (CFD development. The RBCC experiments were conducted for three distinct geometries. The primary flow path was a diffuse and afterburner design with a direct-connect air supply. A sea-level static (SLS) version and a thermally choked variant were also tested. The experimental results show that mixing length increases with additional coflow air in the DAB geometry. Operation of variable rocket mixture ratios at identical air flow rates did not significantly affect the mixing length. The thermally choked variant had a longer mixing length compared to the DAB geometry, and the SLS modification had a shorter mixing length due to a reduced air flow. The conventional rocket studies focused on the effect of chamber Mach number on primary injector mixing. Chamber Mach

  7. Computational Analysis for Rocket-Based Combined-Cycle Systems During Rocket-Only Operation

    NASA Technical Reports Server (NTRS)

    Steffen, C. J., Jr.; Smith, T. D.; Yungster, S.; Keller, D. J.

    2000-01-01

    A series of Reynolds-averaged Navier-Stokes calculations were employed to study the performance of rocket-based combined-cycle systems operating in an all-rocket mode. This parametric series of calculations were executed within a statistical framework, commonly known as design of experiments. The parametric design space included four geometric and two flowfield variables set at three levels each, for a total of 729 possible combinations. A D-optimal design strategy was selected. It required that only 36 separate computational fluid dynamics (CFD) solutions be performed to develop a full response surface model, which quantified the linear, bilinear, and curvilinear effects of the six experimental variables. The axisymmetric, Reynolds-averaged Navier-Stokes simulations were executed with the NPARC v3.0 code. The response used in the statistical analysis was created from Isp efficiency data integrated from the 36 CFD simulations. The influence of turbulence modeling was analyzed by using both one- and two-equation models. Careful attention was also given to quantify the influence of mesh dependence, iterative convergence, and artificial viscosity upon the resulting statistical model. Thirteen statistically significant effects were observed to have an influence on rocket-based combined-cycle nozzle performance. It was apparent that the free-expansion process, directly downstream of the rocket nozzle, can influence the Isp efficiency. Numerical schlieren images and particle traces have been used to further understand the physical phenomena behind several of the statistically significant results.

  8. Research Technology (ASTP) Rocket Based Combined Cycle (RBCC) Engine

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured is an artist's concept of the Rocket Based Combined Cycle (RBCC) launch. The RBCC's overall objective is to provide a technology test bed to investigate critical technologies associated with opperational usage of these engines. The program will focus on near term technologies that can be leveraged to ultimately serve as the near term basis for Two Stage to Orbit (TSTO) air breathing propulsions systems and ultimately a Single Stage To Orbit (SSTO) air breathing propulsion system.

  9. An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle

    NASA Astrophysics Data System (ADS)

    Waung, Timothy S.

    Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.

  10. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  11. Rocket based combined cycle (RBCC) propulsion systems offer additional options

    NASA Astrophysics Data System (ADS)

    Czysz, Paul A.

    The propulsion cycles presented at the 1991 IAF Congress in Montreal, and at The World Hydrogen Conference 1992 in Paris were the subject of an IAF paper for the 1992 World Space Conference in Washington DC. RBCC propulsion systems from several nations were analyzed in terms of a SSTO space launcher with a 7-Mg payload. The RBCC concept emerged from the advanced injector ramjet research of the early 1960s. The performance of the current RBCC propulsion systems such that the specific thrust of a rocket is combined with the specific impulse of an airbreather. This performance offers a new perspective to the options available. In a brief review of the present RBCC the reasons for these options are developed. The spectrum of the system options is presented in three examples, a LACE VTOL SSTO, an HTOL SSTO and a HTOL TSTO. Results using the present RBCC are dramatically different from the past concept of the Conventional Combined Cycle propulsion system, i.e., combinations of separate engines. The integration of the engine cycles into a single thermodynamically integrated system significantly changes the propulsion performance.

  12. A Combined Experimental/Computational Investigation of a Rocket Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Smart, Michael K.; Trexler, Carl A.; Goldman, Allen L.

    2001-01-01

    A rocket based combined cycle inlet geometry has undergone wind tunnel testing and computational analysis with Mach 4 flow at the inlet face. Performance parameters obtained from the wind tunnel tests were the mass capture, the maximum back-pressure, and the self-starting characteristics of the inlet. The CFD analysis supplied a confirmation of the mass capture, the inlet efficiency and the details of the flowfield structure. Physical parameters varied during the test program were cowl geometry, cowl position, body-side bleed magnitude and ingested boundary layer thickness. An optimum configuration was determined for the inlet as a result of this work.

  13. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Astrophysics Data System (ADS)

    Olds, John R.; Walberg, Gerald D.

    1993-02-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  14. Multidisciplinary design of a rocket-based combined cycle SSTO launch vehicle using Taguchi methods

    NASA Technical Reports Server (NTRS)

    Olds, John R.; Walberg, Gerald D.

    1993-01-01

    Results are presented from the optimization process of a winged-cone configuration SSTO launch vehicle that employs a rocket-based ejector/ramjet/scramjet/rocket operational mode variable-cycle engine. The Taguchi multidisciplinary parametric-design method was used to evaluate the effects of simultaneously changing a total of eight design variables, rather than changing them one at a time as in conventional tradeoff studies. A combination of design variables was in this way identified which yields very attractive vehicle dry and gross weights.

  15. Regression rate behaviors of HTPB-based propellant combinations for hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Sun, Xingliang; Tian, Hui; Li, Yuelong; Yu, Nanjia; Cai, Guobiao

    2016-02-01

    The purpose of this paper is to characterize the regression rate behavior of hybrid rocket motor propellant combinations, using hydrogen peroxide (HP), gaseous oxygen (GOX), nitrous oxide (N2O) as the oxidizer and hydroxyl-terminated poly-butadiene (HTPB) as the based fuel. In order to complete this research by experiment and simulation, a hybrid rocket motor test system and a numerical simulation model are established. Series of hybrid rocket motor firing tests are conducted burning different propellant combinations, and several of those are used as references for numerical simulations. The numerical simulation model is developed by combining the Navies-Stokes equations with the turbulence model, one-step global reaction model, and solid-gas coupling model. The distribution of regression rate along the axis is determined by applying simulation mode to predict the combustion process and heat transfer inside the hybrid rocket motor. The time-space averaged regression rate has a good agreement between the numerical value and experimental data. The results indicate that the N2O/HTPB and GOX/HTPB propellant combinations have a higher regression rate, since the enhancement effect of latter is significant due to its higher flame temperature. Furthermore, the containing of aluminum (Al) and/or ammonium perchlorate(AP) in the grain does enhance the regression rate, mainly due to the more energy released inside the chamber and heat feedback to the grain surface by the aluminum combustion.

  16. Computational Fluid Dynamics Analysis Method Developed for Rocket-Based Combined Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Renewed interest in hypersonic propulsion systems has led to research programs investigating combined cycle engines that are designed to operate efficiently across the flight regime. The Rocket-Based Combined Cycle Engine is a propulsion system under development at the NASA Lewis Research Center. This engine integrates a high specific impulse, low thrust-to-weight, airbreathing engine with a low-impulse, high thrust-to-weight rocket. From takeoff to Mach 2.5, the engine operates as an air-augmented rocket. At Mach 2.5, the engine becomes a dual-mode ramjet; and beyond Mach 8, the rocket is turned back on. One Rocket-Based Combined Cycle Engine variation known as the "Strut-Jet" concept is being investigated jointly by NASA Lewis, the U.S. Air Force, Gencorp Aerojet, General Applied Science Labs (GASL), and Lockheed Martin Corporation. Work thus far has included wind tunnel experiments and computational fluid dynamics (CFD) investigations with the NPARC code. The CFD method was initiated by modeling the geometry of the Strut-Jet with the GRIDGEN structured grid generator. Grids representing a subscale inlet model and the full-scale demonstrator geometry were constructed. These grids modeled one-half of the symmetric inlet flow path, including the precompression plate, diverter, center duct, side duct, and combustor. After the grid generation, full Navier-Stokes flow simulations were conducted with the NPARC Navier-Stokes code. The Chien low-Reynolds-number k-e turbulence model was employed to simulate the high-speed turbulent flow. Finally, the CFD solutions were postprocessed with a Fortran code. This code provided wall static pressure distributions, pitot pressure distributions, mass flow rates, and internal drag. These results were compared with experimental data from a subscale inlet test for code validation; then they were used to help evaluate the demonstrator engine net thrust.

  17. Options for flight testing rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Olds, John

    1996-01-01

    While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.

  18. Ignition and Performance Tests of Rocket-Based Combined Cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    Anderson, William E.

    2005-01-01

    The ground testing of a Rocket Based Combined Cycle engine implementing the Simultaneous Mixing and Combustion scheme was performed at the direct-connect facility of Purdue University's High Pressure Laboratory. The fuel-rich exhaust of a JP-8/H2O2 thruster was mixed with compressed, metered air in a constant area, axisymmetric duct. The thruster was similar in design and function to that which will be used in the flight test series of Dryden's Ducted-Rocket Experiment. The determination of duct ignition limits was made based on the variation of secondary air flow rates and primary thruster equivalence ratios. Thrust augmentation and improvements in specific impulse were studied along with the pressure and temperature profiles of the duct to study mixing lengths and thermal choking. The occurrence of ignition was favored by lower rocket equivalence ratios. However, among ignition cases, better thrust and specific impulse performance were seen with higher equivalence ratios owing to the increased fuel available for combustion. Thrust and specific impulse improvements by factors of 1.2 to 1.7 were seen. The static pressure and temperature profiles allowed regions of mixing and heat addition to be identified. The mixing lengths were found to be shorter at lower rocket equivalence ratios. Total pressure measurements allowed plume-based calculation of thrust, which agreed with load-cell measured values to within 6.5-8.0%. The corresponding Mach Number profile indicated the flow was not thermally choked for the highest duct static pressure case.

  19. Rocket-Based Combined Cycle Flowpath Testing for Modes 1 and 4

    NASA Technical Reports Server (NTRS)

    Rice, Tharen

    2002-01-01

    Under sponsorship of the NASA Glenn Research Center (NASA GRC), the Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and built a five-inch diameter, Rocket-Based Combined Cycle (RBCC) engine to investigate mode 1 and mode 4 engine performance as well as Mach 4 inlet performance. This engine was designed so that engine area and length ratios were similar to the NASA GRC GTX engine is shown. Unlike the GTX semi-circular engine design, the APL engine is completely axisymmetric. For this design, a traditional rocket thruster was installed inside of the scramjet flowpath, along the engine centerline. A three part test series was conducted to determine Mode I and Mode 4 engine performance. In part one, testing of the rocket thruster alone was accomplished and its performance determined (average Isp efficiency = 90%). In part two, Mode 1 (air-augmented rocket) testing was conducted at a nominal chamber pressure-to-ambient pressure ratio of 100 with the engine inlet fully open. Results showed that there was neither a thrust increment nor decrement over rocket-only thrust during Mode 1 operation. In part three, Mode 4 testing was conducted with chamber pressure-to-ambient pressure ratios lower than desired (80 instead of 600) with the inlet fully closed. Results for this testing showed a performance decrease of 20% as compared to the rocket-only testing. It is felt that these results are directly related to the low pressure ratio tested and not the engine design. During this program, Mach 4 inlet testing was also conducted. For these tests, a moveable centerbody was tested to determine the maximum contraction ratio for the engine design. The experimental results agreed with CFD results conducted by NASA GRC, showing a maximum geometric contraction ratio of approximately 10.5. This report details the hardware design, test setup, experimental results and data analysis associated with the aforementioned tests.

  20. Analysis of a New Rocket-Based Combined-Cycle Engine Concept at Low Speed

    NASA Technical Reports Server (NTRS)

    Yungster, S.; Trefny, C. J.

    1999-01-01

    An analysis of the Independent Ramjet Stream (IRS) cycle is presented. The IRS cycle is a variation of the conventional ejector-Ramjet, and is used at low speed in a rocket-based combined-cycle (RBCC) propulsion system. In this new cycle, complete mixing between the rocket and ramjet streams is not required, and a single rocket chamber can be used without a long mixing duct. Furthermore, this concept allows flexibility in controlling the thermal choke process. The resulting propulsion system is intended to be simpler, more robust, and lighter than an ejector-ramjet. The performance characteristics of the IRS cycle are analyzed for a new single-stage-to-orbit (SSTO) launch vehicle concept, known as "Trailblazer." The study is based on a quasi-one-dimensional model of the rocket and air streams at speeds ranging from lift-off to Mach 3. The numerical formulation is described in detail. A performance comparison between the IRS and ejector-ramjet cycles is also presented.

  1. Comparison of Engine Cycle Codes for Rocket-Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Waltrup, Paul J.; Auslender, Aaron H.; Bradford, John E.; Carreiro, Louis R.; Gettinger, Christopher; Komar, D. R.; McDonald, J.; Snyder, Christopher A.

    2002-01-01

    This paper summarizes the results from a one day workshop on Rocket-Based Combined Cycle (RBCC) Engine Cycle Codes held in Monterey CA in November of 2000 at the 2000 JANNAF JPM with the authors as primary participants. The objectives of the workshop were to discuss and compare the merits of existing Rocket-Based Combined Cycle (RBCC) engine cycle codes being used by government and industry to predict RBCC engine performance and interpret experimental results. These merits included physical and chemical modeling, accuracy and user friendliness. The ultimate purpose of the workshop was to identify the best codes for analyzing RBCC engines and to document any potential shortcomings, not to demonstrate the merits or deficiencies of any particular engine design. Five cases representative of the operating regimes of typical RBCC engines were used as the basis of these comparisons. These included Mach 0 sea level static and Mach 1.0 and Mach 2.5 Air-Augmented-Rocket (AAR), Mach 4 subsonic combustion ramjet or dual-mode scramjet, and Mach 8 scramjet operating modes. Specification of a generic RBCC engine geometry and concomitant component operating efficiencies, bypass ratios, fuel/oxidizer/air equivalence ratios and flight dynamic pressures were provided. The engine included an air inlet, isolator duct, axial rocket motor/injector, axial wall fuel injectors, diverging combustor, and exit nozzle. Gaseous hydrogen was used as the fuel with the rocket portion of the system using a gaseous H2/O2 propellant system to avoid cryogenic issues. The results of the workshop, even after post-workshop adjudication of differences, were surprising. They showed that the codes predicted essentially the same performance at the Mach 0 and I conditions, but progressively diverged from a common value (for example, for fuel specific impulse, Isp) as the flight Mach number increased, with the largest differences at Mach 8. The example cases and results are compared and discussed in this paper.

  2. Rocket Based Combined Cycle (RBCC) Propulsion Technology Workshop. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.

    1992-01-01

    The goal of the Rocket-Based Combined Cycle (RBCC) Propulsion Technology Workshop was to assess the RBCC propulsion system's viability for Earth-to-Orbit (ETO) transportation systems. This was accomplished by creating a forum (workshop) in which past work in the field of RBCC propulsion systems was reviewed, current technology status was evaluated, and future technology programs in the field of RBCC propulsion systems were postulated, discussed, and recommended.

  3. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    SciTech Connect

    Foster, R.W.; Escher, W.J.D.; Robinson, J.W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems. 16 refs.

  4. Studies of an extensively axisymmetric rocket based combined cycle (RBCC) engine powered single-stage-to-orbit (SSTO) vehicle

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.; Escher, William J. D.; Robinson, John W.

    1989-01-01

    The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.

  5. Computational Fluid Dynamic Modeling of Rocket Based Combined Cycle Engine Flowfields

    NASA Technical Reports Server (NTRS)

    Daines, Russell L.; Merkle, Charles L.

    1994-01-01

    Computational Fluid Dynamic techniques are used to study the flowfield of a fixed geometry Rocket Based Combined Cycle engine operating in rocket ejector mode. Heat addition resulting from the combustion of injected fuel causes the subsonic engine flow to choke and go supersonic in the slightly divergent combustor-mixer section. Reacting flow computations are undertaken to predict the characteristics of solutions where the heat addition is determined by the flowfield. Here, adaptive gridding is used to improve resolution in the shear layers. Results show that the sonic speed is reached in the unheated portions of the flow first, while the heated portions become supersonic later. Comparison with results from another code show reasonable agreement. The coupled solutions show that the character of the combustion-based thermal choking phenomenon can be controlled reasonably well such that there is opportunity to optimize the length and expansion ratio of the combustor-mixer.

  6. Preliminary Sizing of Vertical Take-off Rocket-based Combined-cycle Powered Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; McCurdy, David R.

    2001-01-01

    The task of single-stage-to-orbit has been an elusive goal due to propulsion performance, materials limitations, and complex system integration. Glenn Research Center has begun to assemble a suite of relationships that tie Rocket-Based Combined-Cycle (RBCC) performance and advanced material data into a database for the purpose of preliminary sizing of RBCC-powered launch vehicles. To accomplish this, a near optimum aerodynamic and structural shape was established as a baseline. The program synthesizes a vehicle to meet the mission requirements, tabulates the results, and plots the derived shape. A discussion of the program architecture and an example application is discussed herein.

  7. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  8. Aero-Thermo-Structural Analysis of Inlet for Rocket Based Combined Cycle Engines

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Challa, Preeti; Sree, Dave; Reddy, Dhanireddy R. (Technical Monitor)

    2000-01-01

    NASA has been developing advanced space transportation concepts and technologies to make access to space less costly. One such concept is the reusable vehicles with short turn-around times. The NASA Glenn Research Center's concept vehicle is the Trailblazer powered by a rocket-based combined cycle (RBCC) engine. Inlet is one of the most important components of the RBCC engine. This paper presents fluid flow, thermal, and structural analysis of the inlet for Mach 6 free stream velocity for fully supersonic and supercritical with backpressure conditions. The results concluded that the fully supersonic condition was the most severe case and the largest stresses occur in the ceramic matrix composite layer of the inlet cowl. The maximum tensile and the compressive stresses were at least 3.8 and 3.4, respectively, times less than the associated material strength.

  9. Highlights of NASA's Special ETO Program Planning Workshop on rocket-based combined-cycle propulsion system technologies

    NASA Technical Reports Server (NTRS)

    Escher, W. J. D.

    1992-01-01

    A NASA workshop on rocket-based combined-cycle propulsion technologies is described emphasizing the development of a starting point for earth-to-orbit (ETO) rocket technologies. The tutorial is designed with attention given to the combined development of aeronautical airbreathing propulsion and space rocket propulsion. The format, agenda, and group deliberations for the tutorial are described, and group deliberations include: (1) mission and space transportation infrastructure; (2) vehicle-integrated propulsion systems; (3) development operations, facilities, and human resource needs; and (4) spaceflight fleet applications and operations. Although incomplete the workshop elevates the subject of combined-cycle hypersonic propulsion and develops a common set of priniciples regarding the development of these technologies.

  10. Rocket-Based Combined-Cycle Propulsion Technology for Access-to-Space Applications

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies under the "Access to Space" pillar. One of the main activities over the past three years has been on advancing the hydrogen fueled rocket-based combined cycle (RBCC) technologies. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet and Boeing-Rocketdyne designed, built and ground tested their RBCC engine concepts. In addition, ASTROX, Georgia Institute of Technology, McKinney Associates, Pennsylvania State University (PSU), and University of Alabama in Huntsville conducted supporting activities. The RBCC activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. Inlet testing was performed at the Lewis Research Center's 1 x 1 wind tunnel. All direct connect and free-jet engine testing were conducted at the GASL facilities on Long Island, New York. Testing spanned the Mach range from sea level static to Mach 8. Testing of the rocket-only mode, simulating the final phase of the ascent mission profile, was also performed. The originally planned work on these contracts was completed in 1999. Follow-on activities have been initiated for both hydrogen and hydrocarbon fueled RBCC concepts. Studies to better understand system level issues with the integration of RBCC propulsion with earth-to-orbit vehicles have also been conducted. This paper describes the status, progress and future plans of the RBCC activities funded by NASA/MSFC with a major focus on the benefits of utilizing air-breathing combined-cycle propulsion in access-to-space applications.

  11. Rocket-Based Combined-Cycle (RBCC) Propulsion Technology Workshop. Tutorial session

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The goal of this workshop was to illuminate the nation's space transportation and propulsion engineering community on the potential of hypersonic combined cycle (airbreathing/rocket) propulsion systems for future space transportation applications. Four general topics were examined: (1) selections from the expansive advanced propulsion archival resource; (2) related propulsion systems technical backgrounds; (3) RBCC engine multimode operations related subsystem background; and (4) focused review of propulsion aspects of current related programs.

  12. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  13. Rocket-Based Combined Cycle Engine Technology Development: Inlet CFD Validation and Application

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Yungster, S.

    1996-01-01

    A CFD methodology has been developed for inlet analyses of Rocket-Based Combined Cycle (RBCC) Engines. A full Navier-Stokes analysis code, NPARC, was used in conjunction with pre- and post-processing tools to obtain a complete description of the flow field and integrated inlet performance. This methodology was developed and validated using results from a subscale test of the inlet to a RBCC 'Strut-Jet' engine performed in the NASA Lewis 1 x 1 ft. supersonic wind tunnel. Results obtained from this study include analyses at flight Mach numbers of 5 and 6 for super-critical operating conditions. These results showed excellent agreement with experimental data. The analysis tools were also used to obtain pre-test performance and operability predictions for the RBCC demonstrator engine planned for testing in the NASA Lewis Hypersonic Test Facility. This analysis calculated the baseline fuel-off internal force of the engine which is needed to determine the net thrust with fuel on.

  14. Rocket Based Combined Cycle Exchange Inlet Performance Estimation at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Murzionak, Aliaksandr

    A method to estimate the performance of an exchange inlet for a Rocket Based Combined Cycle engine is developed. This method is to be used for exchange inlet geometry optimization and as such should be able to predict properties that can be used in the design process within a reasonable amount of time to allow multiple configurations to be evaluated. The method is based on a curve fit of the shocks developed around the major components of the inlet using solutions for shocks around sharp cones and 2D estimations of the shocks around wedges with blunt leading edges. The total pressure drop across the estimated shocks as well as the mass flow rate through the exchange inlet are calculated. The estimations for a selected range of free-stream Mach numbers between 1.1 and 7 are compared against numerical finite volume method simulations which were performed using available commercial software (Ansys-CFX). The total pressure difference between the two methods is within 10% for the tested Mach numbers of 5 and below, while for the Mach 7 test case the difference is 30%. The mass flow rate on average differs by less than 5% for all tested cases with the maximum difference not exceeding 10%. The estimation method takes less than 3 seconds on 3.0 GHz single core processor to complete the calculations for a single flight condition as oppose to over 5 days on 8 cores at 2.4 GHz system while using 3D finite volume method simulation with 1.5 million elements mesh. This makes the estimation method suitable for the use with exchange inlet geometry optimization algorithm.

  15. Three Dimensional Numerical Simulation of Rocket-based Combined-cycle Engine Response During Mode Transition Events

    NASA Technical Reports Server (NTRS)

    Edwards, Jack R.; McRae, D. Scott; Bond, Ryan B.; Steffan, Christopher (Technical Monitor)

    2003-01-01

    The GTX program at NASA Glenn Research Center is designed to develop a launch vehicle concept based on rocket-based combined-cycle (RBCC) propulsion. Experimental testing, cycle analysis, and computational fluid dynamics modeling have all demonstrated the viability of the GTX concept, yet significant technical issues and challenges still remain. Our research effort develops a unique capability for dynamic CFD simulation of complete high-speed propulsion devices and focuses this technology toward analysis of the GTX response during critical mode transition events. Our principal attention is focused on Mode 1/Mode 2 operation, in which initial rocket propulsion is transitioned into thermal-throat ramjet propulsion. A critical element of the GTX concept is the use of an Independent Ramjet Stream (IRS) cycle to provide propulsion at Mach numbers less than 3. In the IRS cycle, rocket thrust is initially used for primary power, and the hot rocket plume is used as a flame-holding mechanism for hydrogen fuel injected into the secondary air stream. A critical aspect is the establishment of a thermal throat in the secondary stream through the combination of area reduction effects and combustion-induced heat release. This is a necessity to enable the power-down of the rocket and the eventual shift to ramjet mode. Our focus in this first year of the grant has been in three areas, each progressing directly toward the key initial goal of simulating thermal throat formation during the IRS cycle: CFD algorithm development; simulation of Mode 1 experiments conducted at Glenn's Rig 1 facility; and IRS cycle simulations. The remainder of this report discusses each of these efforts in detail and presents a plan of work for the next year.

  16. Reuse fo a Cold War Surveillance Drone to Flight Test a NASA Rocket Based Combined Cycle Engine

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; Smith, Norm

    1999-01-01

    Plans for and early feasibility investigations into the modification of a Lockheed D21B drone to flight test the DRACO Rocket Based Combined Cycle (RBCC) engine are discussed. Modifications include the addition of oxidizer tanks, modern avionics systems, actuators, and a vehicle recovery system. Current study results indicate that the D21B is a suitable candidate for this application and will allow demonstrations of all DRACO engine operating modes at Mach numbers between 0.8 and 4.0. Higher Mach numbers may be achieved with more extensive modification. Possible project risks include low speed stability and control, and recovery techniques.

  17. Inlet Development for a Rocket Based Combined Cycle, Single Stage to Orbit Vehicle Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.; Steffen, C. J., Jr.

    1999-01-01

    Design and analysis of the inlet for a rocket based combined cycle engine is discussed. Computational fluid dynamics was used in both the design and subsequent analysis. Reynolds averaged Navier-Stokes simulations were performed using both perfect gas and real gas assumptions. An inlet design that operates over the required Mach number range from 0 to 12 was produced. Performance data for cycle analysis was post processed using a stream thrust averaging technique. A detailed performance database for cycle analysis is presented. The effect ot vehicle forebody compression on air capture is also examined.

  18. Rocket-based combined-cycle (RBCC) powered spaceliner class vehicle can advantageously employ vertical takeoff and landing (VTOL)

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1995-01-01

    The subject is next generation orbital space transporation, taken to be fully reusable non-staged 'aircraft like' systems targeted for routine, affordable access to space. Specifically, the takeoff and landing approach to be selected for such systems is considered, mainly from a propulsion viewpoint. Conventional wisdom has it that any transatmospheric-class vehicle which uses high-speed airbreathing propulsion modes (e.g., scramjet) intrinsically must utilize horizontal takeoff and landing, HTOHL. Although this may be true for all-airbreathing propulsion (i.e., no rocket content as in turboramjet propulsion), that emerging class of powerplant which integrally combines airbreathing and rocket propulsion, referred to as rocket-based combined-cycle (RBCC) propulsion, is considerably more flexible with respect to selecting takeoff/landing modes. In fact, it is proposed that any of the modes of interest may potentially be selected: HTOHL, VTOHL, VTOVL. To illustrate this surmise, the case of a previously documented RBCC-powered 'Spaceliner' class space transport concept, which is designed for vertical takeoff and landing, is examined. The 'RBCC' and 'Spaceliner' categories are first described for background. Departing form an often presumed HTOHL baseline, the leading design and operational advantages of moving to VTOVL are then elucidated. Technical substantiation that the RBCC approach, in fact, enables this capability (but also that of HTOHL and VTOVL) is provided, with extensive reference to case-in-point supporting studies. The paper closes with a set of conditional surmises bearing on its set of conclusions, which point up the operational cost advantages associated with selecting the vertical takeoff and landing mode combination (VTOL), uniquely offered by RBCC propulsion.

  19. Rocket-based combined-cycle (RBCC) powered spaceliner class vehicle can advantageously employ vertical takeoff and landing (VTOL)

    NASA Astrophysics Data System (ADS)

    Escher, William J. D.

    The subject is next generation orbital space transporation, taken to be fully reusable non-staged 'aircraft like' systems targeted for routine, affordable access to space. Specifically, the takeoff and landing approach to be selected for such systems is considered, mainly from a propulsion viewpoint. Conventional wisdom has it that any transatmospheric-class vehicle which uses high-speed airbreathing propulsion modes (e.g., scramjet) intrinsically must utilize horizontal takeoff and landing, HTOHL. Although this may be true for all-airbreathing propulsion (i.e., no rocket content as in turboramjet propulsion), that emerging class of powerplant which integrally combines airbreathing and rocket propulsion, referred to as rocket-based combined-cycle (RBCC) propulsion, is considerably more flexible with respect to selecting takeoff/landing modes. In fact, it is proposed that any of the modes of interest may potentially be selected: HTOHL, VTOHL, VTOVL. To illustrate this surmise, the case of a previously documented RBCC-powered 'Spaceliner' class space transport concept, which is designed for vertical takeoff and landing, is examined. The 'RBCC' and 'Spaceliner' categories are first described for background. Departing form an often presumed HTOHL baseline, the leading design and operational advantages of moving to VTOVL are then elucidated. Technical substantiation that the RBCC approach, in fact, enables this capability (but also that of HTOHL and VTOVL) is provided, with extensive reference to case-in-point supporting studies. The paper closes with a set of conditional surmises bearing on its set of conclusions, which point up the operational cost advantages associated with selecting the vertical takeoff and landing mode combination (VTOL), uniquely offered by RBCC propulsion.

  20. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  1. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  2. Thruster Injector Faceplate Testing in Support of the Aerojet Rocket-Based Combined Cycle (RBCC) Concept

    NASA Technical Reports Server (NTRS)

    Fazah, M. M.; Cramer, J. M.

    1998-01-01

    To satisfy RBCC rocket thruster requirements of high performance and a minimum amount of free hydrogen at plume boundary, a new impinging injector element using gaseous hydrogen and gaseous oxygen as the propellants has been designed. Analysis has shown that this injector design has potential to provide a high specific impulse (Isp) while minimizing the amount of free hydrogen that is available to be burned with incoming secondary flow. Past studies and test programs have shown that gas/gas-impinging elements typically result in high injector face temperatures due to combustion occurring close to the face. Since this design is new, there is no hot fire experience with this element. Objectives of this test program were to gain experience and hot fire test data on this new rocket thruster element design and injector faceplate pattern. Twenty-two hot fire tests were run with maximum mixture ratio (MR) and chamber pressure (Pc) obtained at 7.25 and 1,822 psia, respectively. Post-test scanning microscope (SEM) images show only slight faceplate erosion during testing. This injector element design performed well and can be operated at design conditions: (1) Pc of 2,000 psia and MR of 7.0 and (2) Pc of 1,000 psia and MR of 5.0.

  3. Experimental Analysis of a Rocket Based Combined Cycle (RBCC) Engine in a Direct-Connect Test Facility

    NASA Technical Reports Server (NTRS)

    Nelson, K.; Hawk, Clark W.

    1997-01-01

    The object of this study is to investigate the operation of a RBCC at ramjet and scramjet flight conditions using a direct-connect test facility. The apparatus being tested is a single strut-rocket within a dual-mode ram/scramjet combustor. The gaseous hydrogen/oxygen, linear strut-rocket was supplied by Aerojet Propulsion Company. The hardware is being tested in the Direct Connect Supersonic Combustion Test Facility at NASA Langley Research Center. The test facilities hydrogen/oxygen vitiated heater is capable of flight total enthalpies to Mach 8. A Mach 2.5 facility nozzle mates the heater to the combustor duct. The rocket ejector will ordinarily operate in a fuel-rich mode. Additional fuel injection is provided by a pair of parallel injectors located at the base of the strut body. Instrumentation on the test apparatus includes a unique, direct thrust measurement system. Performance predictions for the anticipated test conditions have been made using a one-dimensional, thermodynamic analysis code. Results from the code show the dependence of overall thrust and specific impulse on rocket chamber pressure, rocket fuel equivalence ratio, and overall fuel equivalence ratio. Once the experimental test series begins, the inferred combustion efficiency as a function of axial location and the thermal choke region (where applicable) can also be determined using this code. Upon completion of the experimental test series, measurements will be used to calculate thrust, specific impulse, etc. Measured and calculated values will be compared to those found analytically. If appropriate, the code will be tailored to better predict hardware operation. Conclusions will be drawn as to the fuel-rich rocket's overall effect on ramjet and scramjet performance. Also, comparisons will be made between the integrated thrust calculated from the static pressure taps located along the duct and the thrust measured by the direct thrust measurement system.

  4. Parametric Data from a Wind Tunnel Test on a Rocket-Based Combined-Cycle Engine Inlet

    NASA Technical Reports Server (NTRS)

    Fernandez, Rene; Trefny, Charles J.; Thomas, Scott R.; Bulman, Mel J.

    2001-01-01

    A 40-percent scale model of the inlet to a rocket-based combined-cycle (RBCC) engine was tested in the NASA Glenn Research Center 1- by 1-Foot Supersonic Wind Tunnel (SWT). The full-scale RBCC engine is scheduled for test in the Hypersonic Tunnel Facility (HTF) at NASA Glenn's Plum Brook Station at Mach 5 and 6. This engine will incorporate the configuration of this inlet model which achieved the best performance during the present experiment. The inlet test was conducted at Mach numbers of 4.0, 5.0, 5.5, and 6.0. The fixed-geometry inlet consists of an 8 deg.. forebody compression plate, boundary layer diverter, and two compressive struts located within 2 parallel sidewalls. These struts extend through the inlet, dividing the flowpath into three channels. Test parameters investigated included strut geometry, boundary layer ingestion, and Reynolds number (Re). Inlet axial pressure distributions and cross-sectional Pitot-pressure surveys at the base of the struts were measured at varying back-pressures. Inlet performance and starting data are presented. The inlet chosen for the RBCC engine self-started at all Mach numbers from 4 to 6. Pitot-pressure contours showed large flow nonuniformity on the body-side of the inlet. The inlet provided adequate pressure recovery and flow quality for the RBCC cycle even with the flow separation.

  5. Numerical Study of a Boundary Layer Bleedfor a Rocket-Based Combined-Cycle Inlet in Ejector Mode

    NASA Astrophysics Data System (ADS)

    Shi, Lei; He, Guoqiang; Qin, Fei; Wei, Xianggeng

    2014-12-01

    Fully integrated numerical simulations were performed for a ready-made central strut-based rocket-based combined-cycle (RBCC) engine operating in ejector mode, and the applicability of using a boundary layer bleed in the RBCC inlet designed for supersonic speeds was investigated in detail. The operational mechanism of the boundary layer bleed and its effects on the RBCC inlet and the engine under different off-design conditions in ejector mode were determined. The boundary layer bleed played different roles in the RBCC inlet for different flight regimes. When the RBCC engine took off, some air was entrained into the inlet through the bleed block, thereby inducing significant flow separation and a low-speed vortex, which deteriorated the inner flow and reduced the entraining air mass flow rate: thus, the total pressure loss increased and extra drag was exerted on the inlet. In the low subsonic regime, the bleed block had almost no impact on the RBCC engine and its inlet. However, as the RBCC engine accelerated into a high subsonic flight regime, the boundary layer bleed had a clearly positive effect, comprehensively improving the performance of the RBCC inlet. A boundary layer bleed operation strategy for the RBCC inlet in ejector mode was also developed in this study.

  6. Preliminary Sizing Completed for Single- Stage-To-Orbit Launch Vehicles Powered By Rocket-Based Combined Cycle Technology

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.

    2002-01-01

    Single-stage-to-orbit (SSTO) propulsion remains an elusive goal for launch vehicles. The physics of the problem is leading developers to a search for higher propulsion performance than is available with all-rocket power. Rocket-based combined cycle (RBCC) technology provides additional propulsion performance that may enable SSTO flight. Structural efficiency is also a major driving force in enabling SSTO flight. Increases in performance with RBCC propulsion are offset with the added size of the propulsion system. Geometrical considerations must be exploited to minimize the weight. Integration of the propulsion system with the vehicle must be carefully planned such that aeroperformance is not degraded and the air-breathing performance is enhanced. Consequently, the vehicle's structural architecture becomes one with the propulsion system architecture. Geometrical considerations applied to the integrated vehicle lead to low drag and high structural and volumetric efficiency. Sizing of the SSTO launch vehicle (GTX) is itself an elusive task. The weight of the vehicle depends strongly on the propellant required to meet the mission requirements. Changes in propellant requirements result in changes in the size of the vehicle, which in turn, affect the weight of the vehicle and change the propellant requirements. An iterative approach is necessary to size the vehicle to meet the flight requirements. GTX Sizer was developed to do exactly this. The governing geometry was built into a spreadsheet model along with scaling relationships. The scaling laws attempt to maintain structural integrity as the vehicle size is changed. Key aerodynamic relationships are maintained as the vehicle size is changed. The closed weight and center of gravity are displayed graphically on a plot of the synthesized vehicle. In addition, comprehensive tabular data of the subsystem weights and centers of gravity are generated. The model has been verified for accuracy with finite element analysis. The

  7. Supersonic Wind Tunnel Tests of a Half-axisymmetric 12 Deg-spike Inlet to a Rocket-based Combined-cycle Propulsion System

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Trefny, C. J.

    2001-01-01

    Results of an isolated inlet test for NASA's GTX air-breathing launch vehicle concept are presented. The GTX is a Vertical Take-off/ Horizontal Landing reusable single-stage-to-orbit system powered by a rocket-based combined-cycle propulsion system. Tests were conducted in the NASA Glenn 1- by 1-Foot Supersonic Wind Tunnel during two entries in October 1998 and February 1999. Tests were run from Mach 2.8 to 6. Integrated performance parameters and static pressure distributions are reported. The maximum contraction ratios achieved in the tests were lower than predicted by axisymmetric Reynolds-averaged Navier-Stokes computational fluid dynamics (CFD). At Mach 6, the maximum contraction ratio was roughly one-half of the CFD value of 16. The addition of either boundary-layer trip strips or vortex generators had a negligible effect on the maximum contraction ratio. A shock boundary-layer interaction was also evident on the end-walls that terminate the annular flowpath cross section. Cut-back end-walls, designed to reduce the boundary-layer growth upstream of the shock and minimize the interaction, also had negligible effect on the maximum contraction ratio. Both the excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls were identified as possible reasons for the discrepancy between the CFD predictions and the experiment. It is recommended that the centerbody spike and throat angles be reduced in order to lessen the induced pressure rise. The addition of a step on the cowl surface, and planar end-walls more closely approximating a plane of symmetry are also recommended. Provisions for end-wall boundary-layer bleed should be incorporated.

  8. US Rocket Propulsion Industrial Base Health Metrics

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv

    2013-01-01

    The number of active liquid rocket engine and solid rocket motor development programs has severely declined since the "space race" of the 1950s and 1960s center dot This downward trend has been exacerbated by the retirement of the Space Shuttle, transition from the Constellation Program to the Space launch System (SLS) and similar activity in DoD programs center dot In addition with consolidation in the industry, the rocket propulsion industrial base is under stress. To Improve the "health" of the RPIB, we need to understand - The current condition of the RPIB - How this compares to past history - The trend of RPIB health center dot This drives the need for a concise set of "metrics" - Analogous to the basic data a physician uses to determine the state of health of his patients - Easy to measure and collect - The trend is often more useful than the actual data point - Can be used to focus on problem areas and develop preventative measures The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs. center dot The RPIB encompasses US government, academic, and commercial (including industry primes and their supplier base) research, development, test, evaluation, and manufacturing capabilities and facilities. center dot The RPIB includes the skilled workforce, related intellectual property, engineering and support services, and supply chain operations and management. This definition touches the five main segments of the U.S. RPIB as categorized by the USG: defense, intelligence community, civil government, academia, and commercial sector. The nation's capability to conceive, design, develop, manufacture, test, and support missions using liquid rocket engines and solid rocket motors that are critical to its national security, economic health and growth, and future scientific needs

  9. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  10. A review of findings of a study of rocket based combined cycle engines applied to extensively axisymmetric single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Foster, Richard W.

    1992-01-01

    Extensively axisymmetric and non-axisymmetric Single Stage To Orbit (SSTO) vehicles are considered. The information is presented in viewgraph form and the following topics are presented: payload comparisons; payload as a percent of dry weight - a system hardware cost indicator; life cycle cost estimations; operations and support costs estimation; selected engine type; and rocket engine specific impulse calculation.

  11. Disturbance Rejection Based Test Rocket Control System Design and Validation

    NASA Astrophysics Data System (ADS)

    Yang, H.; Zhang, S.; Li, T.; Zhang, Y.

    2015-09-01

    This paper presents a novel design and validation for the three-channel attitude controller of a STT test rocket based on the extended state observer approach. The uniform second order integral-chain state space model is firstly established for the control variable of the angle of attack, angle of sideslip and roll angle. Combined with the pole placement, the extended state observer is applied to the disturbance rejection design of the attitude controller. Through numerical and hardware-in-the-loop simulation with uncertainties considered, the effectiveness and robustness of the controller are illustrated and verified. Finally, the performance of the controller is validated by flight-test with satisfactory results.

  12. Hybrid rockets - Combining the best of liquids and solids

    NASA Astrophysics Data System (ADS)

    Cook, Jerry R.; Goldberg, Ben E.; Estey, Paul N.; Wiley, Dan R.

    1992-07-01

    Hybrid rockets employing liquid oxidizer and solid fuel grain answers to cost, safety, reliability, and environmental impact concerns that have become as prominent as performance in recent years. The oxidizer-free grain has limited sensitivity to grain anomalies, such as bond-line separations, which can cause catastrophic failures in solid rocket motors. An account is presently given of the development effort associated with the AMROC commercial hybrid booster and component testing efforts at NASA-Marshall. These hybrid rockets can be fired, terminated, inspected, evaluated, and restarted for additional testing.

  13. Hybrid rockets - Combining the best of liquids and solids

    NASA Technical Reports Server (NTRS)

    Cook, Jerry R.; Goldberg, Ben E.; Estey, Paul N.; Wiley, Dan R.

    1992-01-01

    Hybrid rockets employing liquid oxidizer and solid fuel grain answers to cost, safety, reliability, and environmental impact concerns that have become as prominent as performance in recent years. The oxidizer-free grain has limited sensitivity to grain anomalies, such as bond-line separations, which can cause catastrophic failures in solid rocket motors. An account is presently given of the development effort associated with the AMROC commercial hybrid booster and component testing efforts at NASA-Marshall. These hybrid rockets can be fired, terminated, inspected, evaluated, and restarted for additional testing.

  14. A combined rocket-borne and ground-based study of the sodium layer and charged dust in the upper mesosphere

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Saunders, Russell W.; Hedin, Jonas; Stegman, Jacek; Khaplanov, Misha; Gumbel, Jörg; Lynch, Kristina A.; Bracikowski, Phillip J.; Gelinas, Lynette J.; Friedrich, Martin; Blindheim, Sandra; Gausa, Michael; Williams, Bifford P.

    2014-10-01

    The Hotel Payload 2 rocket was launched on January 31st 2008 at 20.14 LT from the Andøya Rocket Range in northern Norway (69.31° N, 16.01° E). Measurements in the 75-105 km region of atomic O, negatively-charged dust, positive ions and electrons with a suite of instruments on the payload were complemented by lidar measurements of atomic Na and temperature from the nearby ALOMAR observatory. The payload passed within 2.58 km of the lidar at an altitude of 90 km. A series of coupled models is used to explore the observations, leading to two significant conclusions. First, the atomic Na layer and the vertical profiles of negatively-charged dust (assumed to be meteoric smoke particles), electrons and positive ions, can be modelled using a self-consistent meteoric input flux. Second, electronic structure calculations and Rice-Ramsperger-Kassel-Markus theory are used to show that even small Fe-Mg-silicates are able to attach electrons rapidly and form stable negatively-charged particles, compared with electron attachment to O2 and O3. This explains the substantial electron depletion between 80 and 90 km, where the presence of atomic O at concentrations in excess of 1010 cm-3 prevents the formation of stable negative ions.

  15. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  16. Fuel-Cell Power Source Based on Onboard Rocket Propellants

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani; Narayan, Sri

    2010-01-01

    The use of onboard rocket propellants (dense liquids at room temperature) in place of conventional cryogenic fuel-cell reactants (hydrogen and oxygen) eliminates the mass penalties associated with cryocooling and boil-off. The high energy content and density of the rocket propellants will also require no additional chemical processing. For a 30-day mission on the Moon that requires a continuous 100 watts of power, the reactant mass and volume would be reduced by 15 and 50 percent, respectively, even without accounting for boiloff losses. The savings increase further with increasing transit times. A high-temperature, solid oxide, electrolyte-based fuel-cell configuration, that can rapidly combine rocket propellants - both monopropellant system with hydrazine and bi-propellant systems such as monomethyl hydrazine/ unsymmetrical dimethyl hydrazine (MMH/UDMH) and nitrogen tetroxide (NTO) to produce electrical energy - overcomes the severe drawbacks of earlier attempts in 1963-1967 of using fuel reforming and aqueous media. The electrical energy available from such a fuel cell operating at 60-percent efficiency is estimated to be 1,500 Wh/kg of reactants. The proposed use of zirconia-based oxide electrolyte at 800-1,000 C will permit continuous operation, very high power densities, and substantially increased efficiency of conversion over any of the earlier attempts. The solid oxide fuel cell is also tolerant to a wide range of environmental temperatures. Such a system is built for easy refueling for exploration missions and for the ability to turn on after several years of transit. Specific examples of future missions are in-situ landers on Europa and Titan that will face extreme radiation and temperature environments, flyby missions to Saturn, and landed missions on the Moon with 14 day/night cycles.

  17. Qualitative model-based diagnostics for rocket systems

    NASA Technical Reports Server (NTRS)

    Maul, William; Meyer, Claudia; Jankovsky, Amy; Fulton, Christopher

    1993-01-01

    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition.

  18. Study Of Heating Of The Base Region Of A Rocket

    NASA Technical Reports Server (NTRS)

    Ascoli, Edward P.; Heiba, Adel A.; Hsu, Yann-Fu; Lagnado, Ronald R.; Lynch, Edward D.; Ungewitter, Ronald J.

    1994-01-01

    Report describes theoretical study of heating in base region of proposed rocket called "NLS 1.5 stage reference vehicle." Study employed approach based on computational fluid dynamics (CFD). Involved numerical simulations of flow field in base region and in main exhaust plume of cluster of six engines with heat shields.

  19. Nuclear rocket engine design based on the particle bed reactor

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Mughabghab, S.; Lazareth, O. Jr.; Schmidt, E.; Maise, G. )

    1993-01-01

    A nuclear thermal rocket (NTR) engine design based on the particle-bed reactor (PBR) concept is described in this paper. This engine is designed to satisfy a mission to Mars and thus must develop a thrust of [approximately]1.75 (6) N. This requirement is satisfied if the reactor generates 2000 MW of power.

  20. Rocket plume radiation base heating by reverse Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Everson, John; Nelson, H. F.

    1993-10-01

    A reverse Monte Carlo radiative transfer code is developed to predict rocket plume base heating. It is more computationally efficient than the forward Monte Carlo method, because only the radiation that strikes the receiving point is considered. The method easily handles both gas and particle emission and particle scattering. Band models are used for the molecular emission spectra, and the Henyey-Greenstein phase function is used for the scattering. Reverse Monte Carlo predictions are presented for (1) a gas-only model of the Space Shuttle main engine plume; (2) a purescattering plume with the radiation emitted by a hot disk at the nozzle exit; (3) a nonuniform temperature, scattering, emitting and absorbing plume; and (4) a typical solid rocket motor plume. The reverse Monte Carlo method is shown to give good agreement with previous predictions. Typical solid rocket plume results show that (1) CO2 radiation is emitted from near the edge of the plume; (2) H2O gas and Al2O3 particles emit radiation mainly from the center of the plume; and (3) Al2O3 particles emit considerably more radiation than the gases over the 400-17,000 cm(exp -1) spectral interval.

  1. Spaceliner Class Operability Gains Via Combined Airbreathing/ Rocket Propulsion: Summarizing an Operational Assessment of Highly Reusable Space Transports

    NASA Technical Reports Server (NTRS)

    Nix, Michael B.; Escher, William J. d.

    1999-01-01

    In discussing a new NASA initiative in advanced space transportation systems and technologies, the Director of the NASA Marshall Space Flight Center, Arthur G. Stephenson, noted that, "It would use new propulsion technology, air-breathing engine so you don't have to carry liquid oxygen, at least while your flying through the atmosphere. We are calling it Spaceliner 100 because it would be 100 times cheaper, costing $ 100 dollars a pound to orbit." While airbreathing propulsion is directly named, rocket propulsion is also implied by, "... while you are flying through the atmosphere." In-space final acceleration to orbital speed mandates rocket capabilities. Thus, in this informed view, Spaceliner 100 will be predicated on combined airbreathing/rocket propulsion, the technical subject of this paper. Interestingly, NASA's recently concluded Highly Reusable Space Transportation (HRST) study focused on the same affordability goal as that of the Spaceliner 100 initiative and reflected the decisive contribution of combined propulsion as a way of expanding operability and increasing the design robustness of future space transports, toward "aircraft like" capabilities. The HRST study built on the Access to Space Study and the Reusable Launch Vehicle (RLV) development activities to identify and characterize space transportation concepts, infrastructure and technologies that have the greatest potential for reducing delivery cost by another order of magnitude, from $1,000 to $100-$200 per pound for 20,000 lb. - 40.000 lb. payloads to low earth orbit (LEO). The HRST study investigated a number of near-term, far-term, and very far-term launch vehicle concepts including all-rocket single-stage-to-orbit (SSTO) concepts, two-stage-to-orbit (TSTO) concepts, concepts with launch assist, rocket-based combined cycle (RBCC) concepts, advanced expendable vehicles, and more far term ground-based laser powered launchers. The HRST study consisted of preliminary concept studies, assessments

  2. NiAl-Based Approach For Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V. (Inventor); Gayda, John (Inventor); Noebe, Ronald D. (Inventor)

    2005-01-01

    A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the hot side of the component. A second structural layer is formed of material selected form Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component.

  3. NiAl-based approach for rocket combustion chambers

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V. (Inventor); Gayda, John (Inventor); Noebe, Ronald D. (Inventor)

    2005-01-01

    A multi-layered component, such as a rocket engine combustion chamber, includes NiAl or NiAl-based alloy as a structural layer on the hot side of the component. A second structural layer is formed of material selected from Ni-based superalloys, Co-based alloys, Fe-based alloys, Cu, and Cu-based alloys. The second material is more ductile than the NiAl and imparts increased toughness to the component. The second material is selected to enhance one or more predetermined physical properties of the component. Additional structural layers may be included with the additional material(s) being selected for their impact on physical properties of the component.

  4. Investigation of mid-latitude ionospheric currents by combined rocket techniques.

    NASA Technical Reports Server (NTRS)

    Rees, D.; Dorling, E. B.; Wrenn, G. L.; Aggson, T. L.; Burrows, K.; Haerendel, G.; Rieger, E.; Lloyd, K. H.; Wilson, J. W. G.

    1973-01-01

    A comprehensive range of neutral atmospheric and simultaneous ionospheric structure measurements were obtained from a Skylark rocket launched at Woomera during evening twilight on a quiet magnetic day. Above 150 km, good agreement was found between the results obtained from three different methods of electric field measurement despite the low field strength (about 1.5 mV/m). In the immediate vicinity of an intense sporadic E layer, the probe measurements indicated large excursions of the electrostatic field amounting to 6.5 mV/m at 105.3 km and 2.7 mV/m at 104.8 km. The calculated ionospheric current system in the vicinity of the rocket trajectory was of similar magnitude to that indicated by local ground-based magnetometers, but was diametrically opposed in direction.

  5. Biodegradable protein-based rockets for drug transportation and light-triggered release.

    PubMed

    Wu, Zhiguang; Lin, Xiankun; Zou, Xian; Sun, Jianmin; He, Qiang

    2015-01-14

    We describe a biodegradable, self-propelled bovine serum albumin/poly-l-lysine (PLL/BSA) multilayer rocket as a smart vehicle for efficient anticancer drug encapsulation/delivery to cancer cells and near-infrared light controlled release. The rockets were constructed by a template-assisted layer-by-layer assembly of the PLL/BSA layers, followed by incorporation of a heat-sensitive gelatin hydrogel containing gold nanoparticles, doxorubicin, and catalase. These rockets can rapidly deliver the doxorubicin to the targeted cancer cell with a speed of up to 68 μm/s, through a combination of biocatalytic bubble propulsion and magnetic guidance. The photothermal effect of the gold nanoparticles under NIR irradiation enable the phase transition of the gelatin hydrogel for rapid release of the loaded doxorubicin and efficient killing of the surrounding cancer cells. Such biodegradable and multifunctional protein-based microrockets provide a convenient and efficient platform for the rapid delivery and controlled release of therapeutic drugs. PMID:25496011

  6. Development Testing of 1-Newton ADN-Based Rocket Engines

    NASA Astrophysics Data System (ADS)

    Anflo, K.; Gronland, T.-A.; Bergman, G.; Nedar, R.; Thormählen, P.

    2004-10-01

    With the objective to reduce operational hazards and improve specific and density impulse as compared with hydrazine, the Research and Development (R&D) of a new monopropellant for space applications based on AmmoniumDiNitramide (ADN), was first proposed in 1997. This pioneering work has been described in previous papers1,2,3,4 . From the discussion above, it is clear that cost savings as well as risk reduction are the main drivers to develop a new generation of reduced hazard propellants. However, this alone is not enough to convince a spacecraft builder to choose a new technology. Cost, risk and schedule reduction are good incentives, but a spacecraft supplier will ask for evidence that this new propulsion system meets a number of requirements within the following areas: This paper describes the ongoing effort to develop a storable liquid monopropellant blend, based on AND, and its specific rocket engines. After building and testing more than 20 experimental rocket engines, the first Engineering Model (EM-1) has now accumulated more than 1 hour of firing-time. The results from test firings have validated the design. Specific impulse, combustion stability, blow-down capability and short pulse capability are amongst the requirements that have been demonstrated. The LMP-103x propellant candidate has been stored for more than 1 year and initial material compatibility screening and testing has started. 1. Performance &life 2. Impact on spacecraft design &operation 3. Flight heritage Hereafter, the essential requirements for some of these areas are outlined. These issues are discussed in detail in a previous paper1 . The use of "Commercial Of The Shelf" (COTS) propulsion system components as much as possible is essential to minimize the overall cost, risk and schedule. This leads to the conclusion that the Technology Readiness Level (TRL) 5 has been reached for the thruster and propellant. Furthermore, that the concept of ADN-based propulsion is feasible.

  7. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    SciTech Connect

    Froning, H. D. Jr; Yang, Yang; Momota, H.; Burton, E.; Miley, G. H.; Luo, Nie

    2005-02-06

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  8. Dual-mode Operation of a Rocket-Ramjet Combined Cycle Engine

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Tani, Koichiro; Masumoto, Ryo; Ueda, Shuuichi

    One-dimensional evaluation of Ramjet-mode operation was carried out on a rocket-ramjet combined cycle engine model. For simplicity, instantaneous mixing between the airflow and rocket exhaust, instantaneous heat release, and pressure recovery by a normal-shock wave were assumed. Shock wave location was so decided that the heat release at the injection (heat addition) location was to thermally-choke the combustion gas flow. By changing the injection location, it was shown that a further downstream injection resulted in a further thrust production and a further fuel flow rate requirement for choking, and a lesser specific impulse. Balancing the thrust production and the specific impulse in terms of the launch vehicle acceleration performance should be pursued. The total pressure loss within the engine model was dominated by the shock wave location, not depended on injection location and fuel flow rate, so that having shock wave penetration to further upstream location was beneficial both for thrust production in the engine and at the external nozzle.

  9. Experimental Study of Ballistic-Missile Base Heating with Operating Rocket

    NASA Technical Reports Server (NTRS)

    Nettle, J. Cary

    1958-01-01

    A rocket of the 1000-pound-thrust class using liquid oxygen and JP-4 fuel as propellant was installed in the Lewis 8- by 6-foot tunnel to permit a controlled study of some of the factors affecting the heating of a rocket-missile base. Temperatures measured in the base region are presented from findings of three motor extension lengths relative to the base. Data are also presented for two combustion efficiency levels in the rocket motor. Temperature as high as 1200 F was measured in the base region because of the ignition of burnable rocket gases. combustibles that are dumped into the base by accessories seriously aggravate the base-burning temperature rise.

  10. Rocket Engine Oscillation Diagnostics

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Turner, James E. (Technical Monitor)

    2002-01-01

    Rocket engine oscillating data can reveal many physical phenomena ranging from unsteady flow and acoustics to rotordynamics and structural dynamics. Because of this, engine diagnostics based on oscillation data should employ both signal analysis and physical modeling. This paper describes an approach to rocket engine oscillation diagnostics, types of problems encountered, and example problems solved. Determination of design guidelines and environments (or loads) from oscillating phenomena is required during initial stages of rocket engine design, while the additional tasks of health monitoring, incipient failure detection, and anomaly diagnostics occur during engine development and operation. Oscillations in rocket engines are typically related to flow driven acoustics, flow excited structures, or rotational forces. Additional sources of oscillatory energy are combustion and cavitation. Included in the example problems is a sampling of signal analysis tools employed in diagnostics. The rocket engine hardware includes combustion devices, valves, turbopumps, and ducts. Simple models of an oscillating fluid system or structure can be constructed to estimate pertinent dynamic parameters governing the unsteady behavior of engine systems or components. In the example problems it is shown that simple physical modeling when combined with signal analysis can be successfully employed to diagnose complex rocket engine oscillatory phenomena.

  11. CFD-Based Design Optimization for Single Element Rocket Injector

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajkumar; Tucker, Kevin; Papila, Nilay; Shyy, Wei

    2003-01-01

    To develop future Reusable Launch Vehicle concepts, we have conducted design optimization for a single element rocket injector, with overall goals of improving reliability and performance while reducing cost. Computational solutions based on the Navier-Stokes equations, finite rate chemistry, and the k-E turbulence closure are generated with design of experiment techniques, and the response surface method is employed as the optimization tool. The design considerations are guided by four design objectives motivated by the consideration in both performance and life, namely, the maximum temperature on the oxidizer post tip, the maximum temperature on the injector face, the adiabatic wall temperature, and the length of the combustion zone. Four design variables are selected, namely, H2 flow angle, H2 and O2 flow areas with fixed flow rates, and O2 post tip thickness. In addition to establishing optimum designs by varying emphasis on the individual objectives, better insight into the interplay between design variables and their impact on the design objectives is gained. The investigation indicates that improvement in performance or life comes at the cost of the other. Best compromise is obtained when improvements in both performance and life are given equal importance.

  12. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  13. Ablation study of tungsten-based nuclear thermal rocket fuel

    NASA Astrophysics Data System (ADS)

    Smith, Tabitha Elizabeth Rose

    The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the

  14. Experimental investigation of paraffin-based fuels for hybrid rocket propulsion

    NASA Astrophysics Data System (ADS)

    Galfetti, L.; Merotto, L.; Boiocchi, M.; Maggi, F.; DeLuca, L. T.

    2013-03-01

    Solid fuels for hybrid rockets were characterized in the framework of a research project aimed to develop a new generation of solid fuels, combining at the same time good mechanical and ballistic properties. Original techniques were implemented in order to improve paraffin-based fuels. The first strengthening technique involves the use of a polyurethane foam (PUF); a second technique is based on thermoplastic polymers mixed at molecular level with the paraffin binder. A ballistic characterization of paraffin-based hybrid rocket solid fuels was performed, considering pure wax-based fuels and fuels doped with suitable metal additives. Nano-Al powders and metal hydrides (magnesium hydride (MgH2), lithium aluminum hydride (LiAlH4 )) were used as fillers in paraffin matrices. The results of this investigation show a strong correlation between the measured viscosity of the melted paraffin layer and the regression rate: a decrease of viscosity increases the regression rate. This trend is due to the increasing development of entrainment phenomena, which strongly increase the regression rate. Addition of LiAlH4 (mass fraction 10%) can further increase the regression rate up to 378% with respect to the pure HTPB regression rate, taken as baseline reference fuel. The highest regression rates were found for the Solid Wax (SW) composition, added with 5% MgH2 mass fraction; at 350 kg/(m2s) oxygen mass flux, the measured regression rate, averaged in space and time, was 2.5 mm/s, which is approximately five times higher than that of the pure HTPB composition. Compositions added with nanosized aluminum powders were compared with those added with MgH2, using gel or solid wax.

  15. Towards Understanding the Fluid Dynamic Phenomenon of Interest to Rocket Base Heating: A Review

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Park, C.; Palmer, G.; Arnold, James O. (Technical Monitor)

    1994-01-01

    The significance of the base heating problem for rockets during ascent is due to the complex interaction between the rocket nozzle plumes and the external-flow which can change the flow characteristics in the base region dramatically. At lower altitudes the external-flow merges with the plume-flow, without the formation of a large separated flow region, and the cooler external-flow promotes convective cooling of the base wall. Under these conditions the majority of the base heating is due to radiative heating from the shock heated plume gases. At higher altitudes, however, the process of base heating is not so straightforward. The plume and the base flow expands dramatically and separated flow regions occur in the base area. Hot exhaust gases from the rocket nozzle will be entrained into the separated flow regions and produce a convective component to the base wall heating. Further, if the rocket exhaust-gas contains soot, the soot can increase the emission from the gas and dramatically increase the wall absorption coefficient for radiative heating if it is deposited on the walls . In addition, if the rocket exhaust gas is fuel rich, the fuel can bum in the separated flow regions and further increase the base heating. The base burning phenomenon, and the increased base heating caused by it at higher altitudes, have been observed for the Space Shuttle and Saturn Rocket. Under these conditions, the total heating is significantly higher than the heating without separated flow in the base region, and the increase in heating is directly attributable to the fluid dynamic complexity of the base region. Realistic simulation of the base heating requires that the calculated flow environment reproduce the fluid dynamic flow features accurately. Thus, it will be necessary to introduce into the CFD codes the capability for the flow to respond to the complex vehicle geometry, the effect of turbulence, the ability to accurately reproduce the plume shock/shear layer structures and

  16. Report on Rocket Power Plants Based on T-Substance

    NASA Technical Reports Server (NTRS)

    Walter, Hellmuth

    1947-01-01

    In the search for an energy source independent of air for the propulsion of underwater craft, attention was early concentrated on T-substance. It was possible to convince the OKM [NACA comment: Navy High Command] very quickly of the importance of this material. In 1934, the first experiments were undertaken. A difficulty was at once presented by the limited concentration that had been attained. At first only 60 percent T-substance could be supplied; this amount was later increased to as much as 85 percent. Decomposition and combustion experiments conducted on the grounds of the CPVA in Kiel-Dietrichsdorf led to the first practical information as to the technical feasibility of the use of T-substance. New perspectives soon developed because a method of concentrated energy production had been found here, which was capable of many applications. The idea of using this energy for the propulsion of missiles either in guns or as rockets suggested itself and appropriate proposals, which quickly led to the construction of the first experimental devices, were made to the official quarters concerned. In January 1937, the first flight of a DVL aircraft with T-substance auxiliary propulsion took place at Alimbsmuhle in the presence of Colonel Udet, who piloted the third flight. In June 1937, the first T-substance rockets were fired (Altenwalde). Then in rapid succession take-off auxiliary, main propulsion, and other rocket drives were brought out in experimental versions. Hydrogen peroxide is a well known chemical, which is widely used in the textile industry. Its chemical and physical properties as well as the processes of manufacture and use are familiar and have been described in voluminous books and papers, Nevertheless, much developmental work was required to open the way for T-substance as a usable oxygen carrier. In fact the utilization of hydrogen peroxide as the oxygen carrier for energy production had hitherto been the subject only of isolated suggestions, which have

  17. High-speed measurement of nozzle swing angle of rocket engine based on monocular vision

    NASA Astrophysics Data System (ADS)

    Qu, Yufu; Yang, Haijuan

    2015-02-01

    A nozzle angle measurement system based on monocular vision is proposed to achieve high-speed and non-contact angle measurement of rocket engine nozzle. The measurement system consists of two illumination sources, a lens, a target board with spots, a high-speed camera, an image acquisition card and a PC. A target board with spots was fixed on the end of rocket engine nozzle. The image of the target board moved along with the rocket engine nozzle swing was captured by a high-speed camera and transferred to the PC by an image acquisition card. Then a data processing algorithm was utilized to acquire the swing angle of the engine nozzle. Experiment shows that the accuracy of swing angle measurement was 0.2° and the measurement frequency was up to 500Hz.

  18. Focused Rocket-Ejector RBCC Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This document reports the results of additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Perm State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3rd generation Reusable Launch Vehicles (RLV). The two tasks conducted under this program build on earlier NASA MSFC funded research program on rocket ejector investigations. The first task continued a systematic investigation of the improvements provided by a gaseous hydrogen (GHz)/oxygen (GO2) twin thruster RBCC rocket ejector system over a single rocket system. In a similar vein, the second task continued investigations into the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. For the GH2/GO2 propellant rocket ejector experiments, high frequency measurements of the pressure field within the system were also made to understand the unsteady behavior of the flowfield.

  19. Baking Soda and Vinegar Rockets

    NASA Astrophysics Data System (ADS)

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-02-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors1,2 that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the experimentally measured rocket height. Baking soda and vinegar rockets present fewer safety concerns and require a smaller launch area than rapid combustion chemical rockets. Both kits were of nearly identical design, costing ˜20. The rockets required roughly 30 minutes of assembly time consisting of mostly taping the soft plastic fuselage to the Styrofoam nose cone.

  20. Combining Undergraduate Student Curriculum, Research, and Outreach: High-altitude Balloon and Rockets

    NASA Astrophysics Data System (ADS)

    Davis, E. J.; Nielsen, K.

    2015-12-01

    The Society of Physics Students chapter at Utah Valley University (UVU) recently established a high altitude balloon project to provide students with research opportunities. This highly successful program involves students not only from physics but also from other STEM fields and non-STEM subjects, and as such acts as a unique outreach program for the department of physics. Examples of experiments performed with the balloon project are: 3D-acceleration measurements, altitude/pressure/temperature measurements, ozone monitoring, bio-aerosol collection, and solar panel performance output. All these experiment are designed and build by groups of students either as part of research projects or through class participation as the projects link with the curriculum in several courses. Most recently, a group of UVU students have initiated the implementation of small rockets capable of carrying payloads to this high-altitude program. Both balloon and rocket platforms are fundamental in-situ measuring techniques for numerous geoscience subjects, and are arguably best illustrated by the NASA balloon and sounding rocket programs. In this presentation, we give an overview of the program and how it is 1) being implemented into the curriculum, 2) provide unique research opportunities for students, and 3) specific outreach activities.

  1. Experimental analysis of SiC-based refractory concrete in hybrid rocket nozzles

    NASA Astrophysics Data System (ADS)

    D'Elia, Raffaele; Bernhart, Gérard; Hijlkema, Jouke; Cutard, Thierry

    2016-09-01

    Hybrid propulsion represents a good alternative to the more widely used liquid and solid systems. This technology combines some important specifications of the latters, as the possibility of re-ignition, thrust modulation, a higher specific impulse than solid systems, a greater simplicity and a lower cost than liquid systems. Nevertheless the highly oxidizing environment represents a major problem as regards the thermo-oxidation and ablative behavior of nozzle materials. The main goal of this research is to characterize a silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidizing polyethylene/nitrous oxide hybrid environment, under temperatures up to 2900 K. Three tests were performed on concrete-based nozzles in HERA Hybrid Rocket Motor (HRM) test bench at ONERA. Pressure chamber evolution and observations before and after tests are used to investigate the ablated surface at nozzle throat. Ablation behavior and crack generation are discussed and some improvements are proposed.

  2. Plasma filamentation and shock wave enhancement in microwave rockets by combining low-frequency microwaves with external magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-08-01

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasma increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.

  3. Sounding rocket/ground-based observation campaign to study Medium-Scale Traveling Ionospheric Disturbances (MSTID)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Otsuka, Yuichi; Abe, Takumi; Yokoyama, Tatsuhiro; Bernhardt, Paul; Watanabe, Shigeto; Yamamoto, Masa-yuki; Larsen, Miguel; Saito, Akinori; Pfaff, Robert; Ishisaka, Keigo

    2012-07-01

    An observation campaign is under preparation. It is to launch sounding rockets S-520-27 and S-310-42 from Uchinoura Space Center of JAXA, while ground-based instruments measure waves in the ionosphere. The main purpose of the study is to reveal seeding mechanism of Medium-Scale Traveling Ionospheric Disturbances (MSTID). The MSTID is enhanced in the summer nighttime of the mid-latitude ionosphere. The MSTID is not only a simple reflection of atmospheric waves to the ionosphere, but includes complicated processes including the electromagnetic coupling of the F- and E-regions, and inter-hemisphere coupling of the ionosphere. We will measure ionospheric parameters such as electron density and electric fields together with neutral winds in the E- and F-regions. TMA and Lithium release experiment will be conducted with S-310-42 and S-520-27 rockets, respectively. The observation campaign is planned in summer 2012 or 2013. In the presentation we will overview characteristics of MSTID, and show plan and current status of the project. We also touch results from the sounding rocket S-520-26 that was launched on January 12, 2012. We will show results of the rocket-ground dual-band beacon experiment.

  4. Focused RBCC Experiments: Two-Rocket Configuration Experiments and Hydrocarbon/Oxygen Rocket Ejector Experiments

    NASA Technical Reports Server (NTRS)

    Santoro, Robert J.; Pal, Sibtosh

    2003-01-01

    This addendum report documents the results of two additional efforts for the Rocket Based Combined Cycle (RBCC) rocket-ejector mode research work carried out at the Penn State Propulsion Engineering Research Center in support of NASA s technology development efforts for enabling 3 d generation Reusable Launch Vehicles (RLV). The tasks reported here build on an earlier NASA MSFC funded research program on rocket ejector investigations. The first task investigated the improvements of a gaseous hydrogen/oxygen twin thruster RBCC rocket ejector system over a single rocket system. The second task investigated the performance of a hydrocarbon (liquid JP-7)/gaseous oxygen single thruster rocket-ejector system. To gain a systematic understanding of the rocket-ejector s internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static diffusion and afterburning (DAB) configurations for a range of rocket operating conditions. For all experimental conditions, overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust. Detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen, nitrogen and water vapor) for the gaseous hydrogen/oxygen rocket ejector experiments.

  5. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  6. Formulation and Testing of Paraffin-Based Solid Fuels Containing Energetic Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George

    2012-01-01

    Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility

  7. A Comparison of Auroral In-Situ Rocket Electron Measurements and Ground-Based Multi-spectral EMCCD Imaging

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A., II; Samara, M.; Michell, R.; Hampton, D.; Hecht, J. H.

    2015-12-01

    The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska on 03 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km during a luminous auroral event. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska and aimed along magnetic zenith in order to observe the brightness of different auroral emission lines (427.8, 557.7, and 844.6 nm with a 47 degree field of view) at the magnetic footpoint of the payload, near apogee. Emission line brightness data are presented at the footpoint of the rocket flight and compared with electron characteristics taken by the Acute Precipitating Electron Spectrometer (APES) on-board instrument. Ratios of different auroral emission lines are combined with previously published models in order to estimate the characteristic energy of the incident electron population, which is directly compared to the APES data for validation. Our goal is to describe the auroral emissions produced from a known precipitating electron distribution, such that we can more accurately use ground-based imaging and photometry to infer the characteristics of the precipitating electrons. These techniques can then be applied over larger scales and longer times, when only multi-spectral imaging data are available with no corresponding in situ data.

  8. Development of an IgY-based rocket-immunoelectrophoresis for identity monitoring of Pertussis vaccines.

    PubMed

    Matheis, Walter; Schade, Rüdiger

    2011-06-30

    An important step in vaccine production and quality control is the analysis of identity of different lots. For that purpose chicken was immunized with acellular Pertussis components (Pertussis toxoid, Filamenteous haemagglutinin, Pertactin, Fimbriae 2/3 antigen). The resulting antibodies (IgY) were non-invasive extracted from egg yolk and used for rocket immunoelectrophoresis (RIE). We demonstrated that the Ab reacted with characteristic peaks ("rockets") with the corresponding antigen. The shape of the peaks varied depending on the manufacturer and the nature of antigen (adsorbed or non-adsorbed). The coefficients of variation was about 20% during a year period. In summary, our data illustrate that an IgY-based RIE is not only a cost-effective method but also proficient for monitoring Pertussis vaccines. PMID:21586289

  9. Baking Soda and Vinegar Rockets

    ERIC Educational Resources Information Center

    Claycomb, James R.; Zachary, Christopher; Tran, Quoc

    2009-01-01

    Rocket experiments demonstrating conservation of momentum will never fail to generate enthusiasm in undergraduate physics laboratories. In this paper, we describe tests on rockets from two vendors that combine baking soda and vinegar for propulsion. The experiment compared two analytical approximations for the maximum rocket height to the…

  10. Ground based observations of the Cascades2 sounding rocket ionosphere - characterization and interpretation

    NASA Astrophysics Data System (ADS)

    Hampton, D. L.; Stenbaek-Nielsen, H. C.; Dahlgren, H.; Ivchenko, N. V.; Nicolls, M. J.; Lynch, K. A.; Mella, M. R.; Kintner, P. M.; Lundberg, E. T.; Lessard, M.; Jones, S.

    2009-12-01

    In support of the Cascades2 program (see Lynch et al. this session) multiple ground-based observatories were recording the auroral conditions on March 20, 2009. In addition to standard all-sky cameras at Poker Flat, Fort Yukon, Kaktovik and Toolik Lake, and meridian spectrographs at Poker Flat, Fort Yukon and Kaktovik, two sets of narrow-field cameras were deployed to Kaktovik and Toolik Lake specifically for the experiment. The Poker Flat Incoherent Scatter Radar (PFISR) was collecting ion and electron density, temperature and velocity profiles in the upleg region of the rocket trajectory. The geomagnetic conditions on March 20, 2009 showed very low activity prior to 10 UT, with a single narrowly defined arc nearly overhead at Fort Yukon (magnetic latitude ~67.3). At 10:15 the arc intensified, and split and showed increased activity with the active arcs drifting northward of Kaktovik (magnetic latitude ~70.8) as the rocket payload overflew the region at 11:10 to 11:15 UT. The increased activity produced only moderate currents with the ground magnetometers at Kaktovik and Fort Yukon recording 150 nT deflection in H. For a significant portion of the flight the rocket overflies a region where arcs are often not aligned along magnetic E-W which is consistent with alfvenic aurora associated with Poleward Boundary Intensifications. We present the characteristics of the ionosphere and auroral emissions along the trajectory of the rocket and how they correlate to the precipitation data recorded by the Cascades2 payload.

  11. Dynamic modeling and compensation of fine wire thermocouple based on rocket engine

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Liao, Guangxuan

    2001-08-01

    When transient temperature is measured by thermocouples, the result is largely influenced by thermocouple's dynamic performance. This problem is encountered in measuring flame temperature fluctuation by using of fine wire thermocouple. Because the heat transfer coefficient mostly depends upon the gas temperature and flow speed, the time constant of fine wire thermocouple is not equal in different temperature ranges. The time constant calibrated in low temperature is not valid in this kind of measurement. Typically frequency of fluctuation in flame is less than 7KHz. The fine wire thermocouple often has to be compensated to meet this working frequency band. The compensation range is determined by its time constant in high temperature. High temperature step source with sharp rise is needed in dynamic calibrating this kind of fine wire thermocouples. A dynamic calibration system based on a set of rocket engine and different propellant is introduced to study the dynamic performance of the thermocouples. This set of rocket engine is designed to have same nozzle exhaust Mach number. Different engines with different propellant provide different high temperature step sources. Experiment is conducted in rocket engine static state experiment laboratory. The position of thermocouple is determined according to numerical simulation results. Dynamic modeling and compensation methods are introduced to process the calibration results.

  12. Satellite-rocket docking ring recognition method based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang; Shang, Yang; Ma, Xuan

    2015-10-01

    Satellite-rocket docking ring recognition method based on mathematical morphology is presented in this paper, according to the geometric and grayscale characteristics of the docking ring typical structure. The docking ring used in this paper is a circle with a cross in the middle. Most of spacecrafts are transported into orbit by rocket, and they retain the connection component with the rocket. The tracing spacecraft should capture the target spacecraft first before operating the target spacecraft. The docking ring is one of the typical parts of a spacecraft, and it can be recognized automatically. Thereby we can capture the spacecraft through the information of the docking ring. Firstly a multi-step mathematical morphology processing is applied to the image of the target spacecraft with different structure element, followed by edge detection and line detection, and finally docking ring typical structure is located in the image by relative geometry analysis. The images used in this paper are taken of real satellite in lab. The docking ring can be recognized when the distance between the two spacecraft is different. The results of physical simulation experiment show that the method in this paper can recognize docking ring typical structure accurately when the tracing spacecraft is approaching the target spacecraft.

  13. Paraffin-based hybrid rocket engines applications: A review and a market perspective

    NASA Astrophysics Data System (ADS)

    Mazzetti, Alessandro; Merotto, Laura; Pinarello, Giordano

    2016-09-01

    Hybrid propulsion technology for aerospace applications has received growing attention in recent years due to its important advantages over competitive solutions. Hybrid rocket engines have a great potential for several aeronautics and aerospace applications because of their safety, reliability, low cost and high performance. As a consequence, this propulsion technology is feasible for a number of innovative missions, including space tourism. On the other hand, hybrid rocket propulsion's main drawback, i.e. the difficulty in reaching high regression rate values using standard fuels, has so far limited the maturity level of this technology. The complex physico-chemical processes involved in hybrid rocket engines combustion are of major importance for engine performance prediction and control. Therefore, further investigation is ongoing in order to achieve a more complete understanding of such phenomena. It is well known that one of the most promising solutions for overcoming hybrid rocket engines performance limits is the use of liquefying fuels. Such fuels can lead to notably increased solid fuel regression rate due to the so-called "entrainment phenomenon". Among liquefying fuels, paraffin-based formulations have great potentials as solid fuels due to their low cost, availability (as they can be derived from industrial waste), low environmental impact and high performance. Despite the vast amount of literature available on this subject, a precise focus on market potential of paraffins for hybrid propulsion aerospace applications is lacking. In this work a review of hybrid rocket engines state of the art was performed, together with a detailed analysis of the possible applications of such a technology. A market study was carried out in order to define the near-future foreseeable development needs for hybrid technology application to the aforementioned missions. Paraffin-based fuels are taken into account as the most promising segment for market development

  14. The MaCWAVE/MIDAS rocket and ground-based measurements of polar summer dynamics: Overview and mean state structure

    NASA Astrophysics Data System (ADS)

    Goldberg, R. A.; Fritts, D. C.; Williams, B. P.; Lübken, F.-J.; Rapp, M.; Singer, W.; Latteck, R.; Hoffmann, P.; Müllemann, A.; Baumgarten, G.; Schmidlin, F. J.; She, C.-Y.; Krueger, D. A.

    2004-10-01

    The MaCWAVE/MIDAS collaborative rocket and ground-based measurement programs were performed at the Andøya Rocket Range and the nearby ALOMAR observatory in northern Norway during July 2002. The summer component of the MaCWAVE (Mountain and Convective Waves Ascending Vertically) program was focused on gravity wave propagation, instability, and wave-wave and wave-mean flow interaction dynamics contributing to summer mesopause structure and variability. The MIDAS (Middle Atmosphere Dynamics and Structure) program concentrated on small-scale dynamical and microphysical processes near the summer mesopause. Our merged program yielded a comprehensive data set comprising two ~12-hour rocket salvoes, including 25 MET rockets and 5 sounding rockets, ground-based lidar, radar, and balloon data, and coordinated overpasses of the TIMED satellite. This paper describes the measurement program and rationale, the mean state observed during the rocket salvoes, and evidence that the mean state structure during 2002 differed in important respects from previous years.

  15. Simulation Based on Ion Propulsion Rocket System with Using Negative ion - Negative Ion Pair Techniques

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    2016-07-01

    Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of Thrust range is 1N with low electric power and high efficiency. A Negative ion-Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 349 kJ/mol or 3.6 ev/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The mechanisms of attachment involve the formation of intermediate states. In that reason for , the highly repulsive force created between the same negative ions. The distance between same negative ions is important for the evaluate of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of propellant is achieved by the ratio of total mass of the propellant (Kg) needed for operation to time period(s). Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense Magnetic field and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with estimated

  16. Congreve Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The British fired Congreve rockets against the United States in the War of 1812. As a result Francis Scott Key coined the phrase the 'rocket's red glare.' Congreve had used a 16-foot guide stick to help stabilize his rocket. William Hale, another British inventor, invented the stickless rocket in 1846. The U.S. Army used the Hale rocket more than 100 years ago in the war with Mexico. Rockets were also used to a limited extent by both sides in the American Civil War.

  17. Rocket Flight.

    ERIC Educational Resources Information Center

    Van Evera, Bill; Sterling, Donna R.

    2002-01-01

    Describes an activity for designing, building, and launching rockets that provides students with an intrinsically motivating and real-life application of what could have been classroom-only concepts. Includes rocket design guidelines and a sample grading rubric. (KHR)

  18. Design and Analysis of a Getter-Based Vacuum Pumping System for a Rocket-Borne Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Everett, E. A.; Syrstad, E. A.; Dyer, J. S.

    2010-12-01

    capacity under a variety of gas loads and experimental conditions. Additionally, rigorous modeling has been performed to simulate the gas load and performance of the instrument in the MLT. The Direct Simulation Monte Carlo (DSMC) method was used to simulate gas flow characteristics at various altitudes, from 70 to 110 km, for representative rocket trajectories. These simulations show the effects of high-speed rocket flight through the atmosphere, including the density and temperature enhancements due to the bow shock at the front of the instrument. Vacuum pumping analysis has also been performed using traditional gas flow equations, for comparison to DSMC results. The HT-TOF-MS uses a commercial MCP designed to operate at significantly greater pressures than typical fast charge-amplifying detectors. We present experimental data for MCP operation at high pressures for a variety of gases. Preliminary data indicates this detector will provide stable operation at the pressures provided by the tube getters. The combination of high-pressure MCP and getter-based vacuum pumping system will allow mass spectrometers and other MCP-based instruments to be deployed in the MLT region on future sounding rocket campaigns.

  19. The Solid Rocket Motor Slag Population: Results of a Radar-Based Regressive Statistical Evaluation

    NASA Technical Reports Server (NTRS)

    Horstman, Matthew F.; Xu, Yu-Lin

    2008-01-01

    Solid rocket motor (SRM) slag has been identified as a potential source of man-made orbital debris. The possibility that SRMs (in addition to generating dust particles in the sub-millimeter range) may generate particles up to centimeters in size has caused concern regarding their contribution to the debris environment. Returned surfaces from space do not have sufficient area or exposure time to provide a clear picture of the SRM millimeter and centimeter debris population. Currently, radar observation is probably the only way to collect data showing the debris contribution from SRMs. Such observation is used to sample the debris environment, but it is difficult to obtain accurate orbital elements for the detected debris objects. NASA has developed several models to describe the different orbital debris populations, based on assumed debris production mechanisms to create clouds of debris objects that can be propagated in time. The NASA model, LEGEND (LEO-to-GEO Environment Debris), functions as a time-tested debris model for most debris sources. However, the current LEGEND model does not include contributions from the SRM population. An SRM model has recently been developed by NASA, based on purely theoretical details of SRM production and known SRM launches, but verification with hard data is needed. Because the detections of individual SRM objects cannot be deterministically separated from the total debris observed by radar, the validation of the SRM model can only be done by combining it with the LEGEND breakup model and comparing it with data. By applying observational constraints, the degree of SRM slag contribution to the environment may be estimated. This serves as an observationally sound method from which to calibrate a purely theoretical model into something more realistic. For this study, we use the populations observed by the Haystack radar from 1996 to present. For the SRM debris, we use a historical database of SRM launches, propellant masses, and

  20. Development of a 12-Thrust Chamber Kerosene /Oxygen Primary Rocket Sub-System for an Early (1964) Air-Augmented Rocket Ground-Test System

    NASA Technical Reports Server (NTRS)

    Pryor, D.; Hyde, E. H.; Escher, W. J. D.

    1999-01-01

    Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.

  1. Experiment/Analytical Characterization of the RBCC Rocket-Ejector Mode

    NASA Technical Reports Server (NTRS)

    Ruf, J. H.; Lehman, M.; Pal, S.; Santoro, R. J.; West, J.; Turner, James E. (Technical Monitor)

    2000-01-01

    Experimental and complementary CFD results from the study of the rocket-ejector mode of a Rocket Based Combined Cycle (RBCC) engine are presented and discussed. The experiments involved systematic flowfield measurements in a two-dimensional, variable geometry rocket-ejector system. The rocket-ejector system utilizes a single two-dimensional, gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a thorough understanding of the rocket-ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions. Overall system performance was obtained through global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (oxygen, hydrogen, nitrogen and water vapor). The experimental results for both the direct-connect and sea-level static configurations are compared with CFD predictions of the flowfield.

  2. Focused Experimental and Analytical Studies of the RBCC Rocket-Ejector

    NASA Technical Reports Server (NTRS)

    Lehman, M.; Pal, S.; Schwes, D.; Chen, J. D.; Santoro, R. J.

    1999-01-01

    The rocket-ejector mode of a Rocket Based Combined Cycle Engine (RBCC) was studied through a joint experimental/analytical approach. A two-dimensional variable geometry rocket-ejector system with enhanced optical access was designed and fabricated for experimentation. The rocket-ejector system utilizes a single two-dimensional gaseous oxygen/gaseous hydrogen rocket as the ejector. To gain a systematic understanding of the rocket ejector's internal fluid mechanic/combustion phenomena, experiments were conducted with both direct-connect and sea-level static configurations for a range of rocket operating conditions Overall system performance was obtained through Global measurements of wall static pressure profiles, heat flux profiles and engine thrust, whereas detailed mixing and combustion information was obtained through Raman spectroscopy measurements of major species (gaseous oxygen, hydrogen. nitrogen and water vapor). These experimental efforts were complemented by Computational Fluid Dynamic (CFD) flowfield analyses.

  3. Experimental investigation of fuel regression rate in a HTPB based lab-scale hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Li, Xintian; Tian, Hui; Yu, Nanjia; Cai, Guobiao

    2014-12-01

    The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.

  4. Robust Rocket Engine Concept

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1995-01-01

    The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.

  5. Lead-Free Double-Base Propellant for the 2.75 Inch Rocket Motor

    NASA Technical Reports Server (NTRS)

    Magill, B. T.; Nauflett, G. W.; Furrow, K. W.

    2000-01-01

    The current MK 66 2.75 inch Rocket Motor double-base propellant contains the lead-based ballistic modifier LC-12-15 to achieve the desired plateau and mesa burning rate characteristics. The use of lead compounds poses a concern for the environment and for personal safety due to the metal's toxic nature when introduced into the atmosphere by propellant manufacture, rocket motor firing, and disposal. Copper beta-resorcylate (copper 2,4-di-hydroxy-benzoate) was successfully used in propellant as a simple modifier in the mid 1970's. This and other compounds have also been mixed with lead salts to obtain more beneficial ballistic results. Synthesized complexes of lead and copper compounds soon replaced the mixtures. The complexes incorporate the lead, copper lack of organic liquids, which allows for easier propellant processing. About ten years ago, the Indian Head Division, Naval Surface Warfare Center (NSWC), initiated an effort to develop a lead-free propellant for use in missile systems. Several lead-free propellant candidate formulations were developed. About five years ago, NSWC, in conjunction with Alliant Techsystems, Radford Army Ammunition Plant, continued ballistic modifier investigations. A four component ballistic modifier system without lead for double-base propellants that provide adequate plateau and mesa burn rate characteristics was developed and patented. The ballistic modifier's system contains bismuth subsalicylate, 1.5 percent; copper salicylate, 1.0 percent, copper stannate, 0.77 percent; and carbon black, 0.1 percent. Action time and impulse data obtained through multiple static firings indicate that the new lead-free double-base propellant, while not a match for NOSIH-AA-2, will be a very suitable replacement in the 2.75 inch Rocket Motor. Accelerated aging of the double-base propellant containing the lead-free ballistic modifier showed that it had a much higher rate of stabilizer depletion than the AA-2. A comprehensive study showed that an

  6. RL-10 Based Combined Cycle For A Small Reusable Single-Stage-To-Orbit Launcher

    NASA Technical Reports Server (NTRS)

    Balepin, Vladimir; Price, John; Filipenco, Victor

    1999-01-01

    This paper discusses a new application of the combined propulsion known as the KLIN(TM) cycle, consisting of a thermally integrated deeply cooled turbojet (DCTJ) and liquid rocket engine (LRE). If based on the RL10 rocket engine family, the KLIN (TM) cycle makes a small single-stage-to-orbit (SSTO) reusable launcher feasible and economically very attractive. Considered in this paper are the concept and parameters of a small SSTO reusable launch vehicle (RLV) powered by the KLIN (TM) cycle (sSSTO(TM)) launcher. Also discussed are the benefits of the small launcher, the reusability, and the combined cycle application. This paper shows the significant reduction of the gross take off weight (GTOW) and dry weight of the KLIN(TM) cycle-powered launcher compared to an all-rocket launcher.

  7. Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-Based Optimization Procedure

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Moin; Korte, John J.

    1996-01-01

    An optimization approach to rocket nozzle design, based on computational fluid dynamics (CFD) methodology, is investigated for low-Reynolds-number cases. This study is undertaken to determine the benefits of this approach over those of classical design processes such as Rao's method. A CFD-based optimization procedure, using the parabolized Navier-Stokes (PNS) equations, is used to design conical and contoured axisymmetric nozzles. The advantage of this procedure is that it accounts for viscosity during the design process; other processes make an approximated boundary-layer correction after an inviscid design is created. Results showed significant improvement in the nozzle thrust coefficient over that of the baseline case; however, the unusual nozzle design necessitates further investigation of the accuracy of the PNS equations for modeling expanding flows with thick laminar boundary layers.

  8. A US History of Airbreathing/Rocket Combined-Cycle (RBCC) Propulsion for Powering Future Aerospace Transports, with a Look Ahead to the Year 2020

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1999-01-01

    A technohistorical and forward-planning overview of U.S. developments in combined airbreathing/rocket propulsion for advanced aerospace vehicle applications is presented. Such system approaches fall into one of two categories: (1) Combination propulsion systems (separate, non-interacting engines installed), and (2) Combined-Cycle systems. The latter, and main subject, comprises a large family of closely integrated engine types, made up of both airbreathing and rocket derived subsystem hardware. A single vehicle-integrated, multimode engine results, one capable of operating efficiently over a very wide speed and altitude range, atmospherically and in space. While numerous combination propulsion systems have reached operational flight service, combined-cycle propulsion development, initiated ca. 1960, remains at the subscale ground-test engine level of development. However, going beyond combination systems, combined-cycle propulsion potentially offers a compelling set of new and unique capabilities. These capabilities are seen as enabling ones for the evolution of Spaceliner class aerospace transportation systems. The following combined-cycle hypersonic engine developments are reviewed: (1) RENE (rocket engine nozzle ejector), (2) Cryojet and LACE, (3) Ejector Ramjet and its derivatives, (4) the seminal NASA NAS7-377 study, (5) Air Force/Marquardt Hypersonic Ramjet, (6) Air Force/Lockheed-Marquardt Incremental Scramjet flight-test project, (7) NASA/Garrett Hypersonic Research Engine (HRE), (8) National Aero-Space Plane (NASP), (9) all past projects; and such current and planned efforts as (10) the NASA ASTP-ART RBCC project, (11) joint CIAM/NASA DNSCRAM flight test,(12) Hyper-X, (13) Trailblazer,( 14) W-Vehicle and (15) Spaceliner 100. Forward planning programmatic incentives, and the estimated timing for an operational Spaceliner powered by combined-cycle engines are discussed.

  9. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    NASA Astrophysics Data System (ADS)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  10. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Samuel S.

    1999-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic RBCC engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. The performance of a generic ABCC engine along a flight path (q0 =10 (exp 3) lbf per square ft) shows that the mission averaged-specific impulse is about twice larger than RBCC engine and the dry mass-ratio is about 50% larger. Results of the present ABCC engine performance are based on the assumptions that the flow passage of working fluids is identical to that of RBCC engine and that a nuclear reactor is treated as an energy black box. Preliminary heat transfer calculation shows that the rate of heat transfer to the working fluids is within the limit of turbulent convective heat transfer regimes. The flow passage of realistic ABCC engine must be known for a better prediction of ABCC engine performance. Also, critical heat transfer calculations must be performed for the ejector mode and ramjet mode operations. This is possible only when the details of a reactor configuration are available.

  11. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  12. Comparison of vibrations of a combination of solid-rocket launch vehicle and payload during a ground firing and launching

    NASA Technical Reports Server (NTRS)

    Schoenster, J. A.; Pierce, H. B.

    1975-01-01

    The results of a study into the environmental vibrations of a payload mounted on the Nike rocket launch vehicle were presented. Data were obtained during the flight acceptance test of the payload, the firing of the total vehicle in a special test stand, and the powered and unpowered flights of the vehicle. The vibrational response of the structure was measured. Data were also obtained on the fluctuating pressure on the outside surface of the vehicle and inside the forward and after ends of the rocket chamber. A comparison of the data from the three test conditions indicated that external pressure fluctuations were the major source of vibrations in the payload area, and pressure fluctuations within the rocket motor were the major source of vibrations contiguous to the payload area.

  13. Atomic-Based-Combined-Cycle Analysis

    NASA Technical Reports Server (NTRS)

    Han, Sam; Bai, Don; Schmidt, George

    2000-01-01

    Atomic-based-combined-cycle (ABCC) engine combines an air-breathing ramjet engine with an atomic reactor to increase the mission-averaged specific impulse and thereby increasing the dry-mass ratio. ABCC engine is similar to RBCC engine except that energy needed for the propulsive power is derived from nuclear reaction rather than chemical combustion used in the RBCC engine. The potential performance improvement of an ABCC engine over a RBCC engine comes from two factors. Firstly, the energy density of nuclear reaction is several order of magnitudes higher than the chemical combustion. Secondly, hydrogen can produce much higher nozzle exit velocity because of its small molecular weight. A one-dimensional, transient numerical model was used to analyze a generic scramjet engine and it is used as a baseline to evaluate an imaginary ABCC engine performance. A nuclear reactor is treated as a black box energy source that replaces the role of the primary rocket and the chemical combustion chamber in a RBCC engine. Hydrogen is heated by the reactor and accelerated to produce high-speed ejection velocity. The ejection velocity up 10,000 m/sec is theoretically possible because of high energy density from the reactor and large gas constant of the hydrogen. Oxygen contained in the entrained air reacts with hydrogen and produces propulsive power for ejector mode operation. To provide enough thrust for initial acceleration, relatively large amount of hydrogen must be pumped through the reactor. Amount of oxygen contained in the entrained air may not be sufficient to burn all hydrogen and consequently combustion could occur at the end of exit nozzle. It is assumed that this combustion process is constant-pressure combustion at 1.0 atmospheric pressure and thus not affects the nozzle exit condition.

  14. Rocket Power Plants Based on Nitric Acid and their Specific Propulsive Weights

    NASA Technical Reports Server (NTRS)

    Zborowski, Helmut

    1947-01-01

    Two fields are reserved for the application of rocket power plants. The first field is determined by the fact that the rocket power plant is the only type of power plant that can produce thrust without dependence upon environment. For this field,the rocket is therefore the only possible power plant and the limit of what may be done is determined by the status of the technical development of these power plants at the given moment. The second field is that in which the rocket power plant proves itself the most suitable as a high-power drive in free competition with other types of power plants. The exposition will be devoted to the demarcation of this field and its division among the various types of rocket power plants.

  15. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  16. Mars Rocket Propulsion System

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Harber, Dan; Nabors, Sammy

    2008-01-01

    A report discusses the methane and carbon monoxide/LOX (McLOx) rocket for ascent from Mars as well as other critical space propulsion tasks. The system offers a specific impulse over 370 s roughly 50 s higher than existing space-storable bio-propellants. Current Mars in-situ propellant production (ISPP) technologies produce impure methane and carbon monoxide in various combinations. While separation and purification of methane fuel is possible, it adds complexity to the propellant production process and discards an otherwise useful fuel product. The McLOx makes such complex and wasteful processes unnecessary by burning the methane/CO mixtures produced by the Mars ISPP systems without the need for further refinement. Despite the decrease in rocket-specific impulse caused by the CO admixture, the improvement offered by concomitant increased propellant density can provide a net improvement in stage performance. One advantage is the increase of the total amount of propellant produced, but with a decrease in mass and complexity of the required ISPP plant. Methane/CO fuel mixtures also may be produced by reprocessing the organic wastes of a Moon base or a space station, making McLOx engines key for a human Lunar initiative or the International Space Station (ISS) program. Because McLOx propellant components store at a common temperature, very lightweight and compact common bulkhead tanks can be employed, improving overall stage performance further.

  17. Performance of a RBCC Engine in Rocket-Operation

    NASA Astrophysics Data System (ADS)

    Tomioka, Sadatake; Kubo, Takahiro; Noboru Sakuranaka; Tani, Koichiro

    Combination of a scramjet (supersonic combustion ramjet) flow-pass with embedded rocket engines (the combined system termed as Rocket-based Combined Cycle engine) are expected to be the most effective propulsion system for space launch vehicles. Either SSTO (Single Stage To Orbit) system or TSTO (Two Stage To Orbit) system with separation at high altitude needs final stage acceleration in space, so that the RBCC (Rocket Based Combined Cycle) engine should be operated as rocket engines. Performance of the scramjet combustor as the extension to the rocket nozzle, was experimentally evaluated by injecting inert gas at various pressure through the embedded rocket chamber while the whole sub-scaled model was placed in a low pressure chamber connected to an air-driven ejector system. The results showed that the thrust coefficient was about 1.2, the low value being found to mainly due to the friction force on the scramjet combustor wall, while blocking the scramjet flow pass’s opening to increase nozzle extension thrust surface, was found to have little effects on the thrust performance. The combustor was shortened to reduce the friction loss, however, degree of reduction was limited as friction decreased rapidly with distance from the onset of the scramjet combustor.

  18. Outbrief - Long Life Rocket Engine Panel

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2004-01-01

    This white paper is an overview of the JANNAF Long Life Rocket Engine (LLRE) Panel results from the last several years of activity. The LLRE Panel has met over the last several years in order to develop an approach for the development of long life rocket engines. Membership for this panel was drawn from a diverse set of the groups currently working on rocket engines (Le. government labs, both large and small companies and university members). The LLRE Panel was formed in order to determine the best way to enable the design of rocket engine systems that have life capability greater than 500 cycles while meeting or exceeding current performance levels (Specific Impulse and Thrust/Weight) with a 1/1,OOO,OOO likelihood of vehicle loss due to rocket system failure. After several meetings and much independent work the panel reached a consensus opinion that the primary issues preventing LLRE are a lack of: physics based life prediction, combined loads prediction, understanding of material microphysics, cost effective system level testing. and the inclusion of fabrication process effects into physics based models. With the expected level of funding devoted to LLRE development, the panel recommended that fundamental research efforts focused on these five areas be emphasized.

  19. Rocket University at KSC

    NASA Technical Reports Server (NTRS)

    Sullivan, Steven J.

    2014-01-01

    "Rocket University" is an exciting new initiative at Kennedy Space Center led by NASA's Engineering and Technology Directorate. This hands-on experience has been established to develop, refine & maintain targeted flight engineering skills to enable the Agency and KSC strategic goals. Through "RocketU", KSC is developing a nimble, rapid flight engineering life cycle systems knowledge base. Ongoing activities in RocketU develop and test new technologies and potential customer systems through small scale vehicles, build and maintain flight experience through balloon and small-scale rocket missions, and enable a revolving fresh perspective of engineers with hands on expertise back into the large scale NASA programs, providing a more experienced multi-disciplined set of systems engineers. This overview will define the Program, highlight aspects of the training curriculum, and identify recent accomplishments and activities.

  20. ROCKETMAS: A sounding-rocket-based remote sensing measurement of mesospheric water vapor and ozone

    NASA Technical Reports Server (NTRS)

    Croskey, C. L.; Olivero, J. J.; Puliafito, S. E.; Mitchell, J. D.

    1994-01-01

    The ROCKETMAS rocketborne technique, based on the shuttle-borne millimeter wave atmospheric sounder (MAS), to obtain water vapor and ozone measurements with vertical resolution, is described. The concentrations of mesospheric water vapor and ozone are not well known, yet both contribute significantly to the chemical and radiative structure of that region. In situ measurements of water vapor are difficult to make because water that was absorbed on the instrument surfaces outgasses in space and contaminates the local environment of the payload. However, a remote sensing technique that uses a long pathlength through the atmosphere greatly reduces the effect of such local contamination. The 183.3 GHz line of water vapor and 184.4 GHz line of ozone are good choices for spaceborne radiometer measurements because one front-end mixer assembly can be used to simultaneously observe both gases. The design of a sounding rocket based millimeter wave radiometer for measuring water vapor and ozone with a height resolution not possible by either ground based or limb sounding techniques is described.

  1. Design and Fabrication of a 200N Thrust Rocket Motor Based on NH4ClO4+Al+HTPB as Solid Propellant

    NASA Astrophysics Data System (ADS)

    Wahid, Mastura Ab; Ali, Wan Khairuddin Wan

    2010-06-01

    The development of rocket motor using potassium nitrate, carbon and sulphur mixture has successfully been developed by researchers and students from UTM and recently a new combination for solid propellant is being created. The new solid propellant will combine a composition of Ammonium perchlorate, NH4ClO4 with aluminium, Al and Hydroxyl Terminated Polybutadiene, HTPB as the binder. It is the aim of this research to design and fabricate a new rocket motor that will produce a thrust of 200N by using this new solid propellant. A static test is done to obtain the thrust produced by the rocket motor and analyses by observation and also calculation will be done. The experiment for the rocket motor is successful but the thrust did not achieve its required thrust.

  2. Base Heating Sensitivity Study for a 4-Cluster Rocket Motor Configuration in Supersonic Freestream

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Canabal, Francisco; Tashakkor, Scott B.; Smith, Sheldon D.

    2011-01-01

    In support of launch vehicle base heating and pressure prediction efforts using the Loci-CHEM Navier-Stokes computational fluid dynamics solver, 35 numerical simulations of the NASA TND-1093 wind tunnel test have been modeled and analyzed. This test article is composed of four JP-4/LOX 500 lbf rocket motors exhausting into a Mach 2 - 3.5 wind tunnel at various ambient pressure conditions. These water-cooled motors are attached to a base plate of a standard missile forebody. We explore the base heating profiles for fully coupled finite-rate chemistry simulations, one-way coupled RAMP (Reacting And Multiphase Program using Method of Characteristics)-BLIMPJ (Boundary Layer Integral Matrix Program - Jet Version) derived solutions and variable and constant specific heat ratio frozen flow simulations. Variations in turbulence models, temperature boundary conditions and thermodynamic properties of the plume have been investigated at two ambient pressure conditions: 255 lb/sq ft (simulated low altitude) and 35 lb/sq ft (simulated high altitude). It is observed that the convective base heat flux and base temperature are most sensitive to the nozzle inner wall thermal boundary layer profile which is dependent on the wall temperature, boundary layer s specific energy and chemical reactions. Recovery shock dynamics and afterburning significantly influences convective base heating. Turbulence models and external nozzle wall thermal boundary layer profiles show less sensitivity to base heating characteristics. Base heating rates are validated for the highest fidelity solutions which show an agreement within +/-10% with respect to test data.

  3. Rockets Away!

    ERIC Educational Resources Information Center

    Kaahaaina, Nancy

    1997-01-01

    Describes a project that involved a rocket-design competition where students played the roles of McDonnell Douglas employees competing for NASA contracts. Provides a real world experience involving deadlines, design and performance specifications, and budgets. (JRH)

  4. Project-based introduction to aerospace engineering course: A model rocket

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay; Boyer, Lawrence; George, John; Ravindra, K.; Mitchell, Kyle

    2010-05-01

    In this paper, a model rocket project suitable for sophomore aerospace engineering students is described. This project encompasses elements of drag estimation, thrust determination and analysis using digital data acquisition, statistical analysis of data, computer aided drafting, programming, team work and written communication skills. The student built rockets are launched in the university baseball field with the objective of carrying a specific amount of payload so that the rocket achieves a specific altitude before the parachute is deployed. During the course of the project, the students are introduced to real-world engineering practice through written report submission of their designs. Over the years, the project has proven to enhance the learning objectives, yet cost effective and has provided good outcome measures.

  5. Air-Powered Rockets.

    ERIC Educational Resources Information Center

    Rodriguez, Charley; Raynovic, Jim

    This document describes methods for designing and building two types of rockets--rockets from paper and rockets from bottles. Devices used for measuring the heights that the rockets obtain are also discussed. (KHR)

  6. Rheological, optical, and ballistic investigations of paraffin-based fuels for hybrid rocket propulsion using a two-dimensional slab-burner

    NASA Astrophysics Data System (ADS)

    Kobald, M.; Toson, E.; Ciezki, H.; Schlechtriem, S.; di Betta, S.; Coppola, M.; DeLuca, L.

    2016-07-01

    This paper describes combined rheological, ballistic, and optical analyses performed on paraffin-based mixtures that can be used as high regression rate hybrid rocket fuels. Experimental activities have been done at the DLR Institute of Space Propulsion in Lampoldshausen and at SPLab of Politecnico di Milano [1]. Herein, the experiments that were performed at the DLR are described in detail. Viscosity, surface tension, and regression rate of the fuels have been determined. Furthermore, the combustion was evaluated by optical measurements. Data collected so far indicate an increasing regression rate for decreasing viscosity of the liquid paraffin which is in accordance with the current theories. Droplet entrainment, which is related to high regression rates, is only visible for the low-viscosity paraffin-based fuels.

  7. Study of midlatitude ionospheric irregularities and E- and F-region coupling based on rocket and radar observations from Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2015-12-01

    We have been studying ionspheric irregularities in mid-latitude region by using radars, sounding rockets, etc. The mid-latitude ionosphere was considered much stable than those in the equatorial or polar region in the past, but our studies for years have revealed that there are much active variabilities. We found variety of wave-like structures that are specific in the mid-latitudes. One of the phenomena is quasi-periodic echoes (QP echoes) first observed by the MU radar that reflects horizontal plasma-density structures associated to sporadic-E layers. Another phenomenon is medium-scale traveling ionospheric disturbance (MSTID) in the F-region. In the generation mechanism we think that Ionospheric E- and F-region coupling process is important. In this presentation, we will discuss nature of mid-latitude ionosphere based on our observations; the MU radar, sounding rocket campaigns of SEEK-1/2, and recent MSTID rocket experiment from JAXA Uchinoura Space Center in July 2013.

  8. Predicting performance of axial pump inducer of LOX booster turbo-pump of staged combustion cycle based rocket engine using CFD

    NASA Astrophysics Data System (ADS)

    Mishra, Arpit; Ghosh, Parthasarathi

    2015-12-01

    For low cost, high thrust, space missions with high specific impulse and high reliability, inert weight needs to be minimized and thereby increasing the delivered payload. Turbopump feed system for a liquid propellant rocket engine (LPRE) has the highest power to weight ratio. Turbopumps are primarily equipped with an axial flow inducer to achieve the high angular velocity and low suction pressure in combination with increased system reliability. Performance of the turbopump strongly depends on the performance of the inducer. Thus, for designing a LPRE turbopump, demands optimization of the inducer geometry based on the performance of different off-design operating regimes. In this paper, steady-state CFD analysis of the inducer of a liquid oxygen (LOX) axial pump used as a booster pump for an oxygen rich staged combustion cycle rocket engine has been presented using ANSYS® CFX. Attempts have been made to obtain the performance characteristic curves for the LOX pump inducer. The formalism has been used to predict the performance of the inducer for the throttling range varying from 80% to 113% of nominal thrust and for the different rotational velocities from 4500 to 7500 rpm. The results have been analysed to determine the region of cavitation inception for different inlet pressure.

  9. Imaging System for a Sub-Orbital Sounding Rocket Mission Based Upon Next Generation Detector Technology

    NASA Astrophysics Data System (ADS)

    Veach, Todd; Scowen, P.; Beasley, M.; Nikzad, S.

    2011-05-01

    We present the design and preliminary results from the fabrication of a charge-coupled device (CCD) based imaging system designed using a modified modular imager cell (MIC) for use in a sounding rocket mission. The heart of the imaging system is the modified MIC, which provides the video pre-amplifier circuitry and CCD clock level filtering. The MIC is designed with a four-layer FR4 printed circuit board (PCB) with surface mount and through-hole components for ease of testing and lower fabrication cost. The imager is a delta doped 3.5k by 3.5k LBNL CCD. Delta doping the detector provides for enhanced QE response in the UV. Detector readout is performed by the recently released PCIe/104 Small-Cam imager controller from Astronomical Research Cameras, Inc (ARC). The PCIe/104 Small-Cam system has the same capabilities as its larger PCIe brethren, but in a smaller form factor, which makes it ideally suited for sub-orbital ballistic missions. The overall control is then accomplished using a PCIe/104 computer from RTD Embedded Technologies, Inc. For laboratory testing and calibration, the modified MIC is placed inside an IR Labs ND5 liquid nitrogen cooled dewar. Upon flight, the modified MIC is placed within a 6.75” diameter 10” long ultra-high vacuum (UHV) vessel. The design, fabrication, and testing is being done at the Laboratory for Astronomical and Space Instrumentation (LASI) at Arizona State University. The LASI Lab is a state of the art detector calibration facility providing calibration from the 300 nm to 2.3 microns with further capability for designing hardware for use in suborbital ballistic missions.

  10. Metallized solid rocket propellants based on AN/AP and PSAN/AP for access to space

    NASA Astrophysics Data System (ADS)

    Levi, S.; Signoriello, D.; Gabardi, A.; Molinari, M.; Galfetti, L.; Deluca, L. T.; Cianfanelli, S.; Klyakin, G. F.

    2009-09-01

    Solid rocket propellants based on dual mixes of inorganic crystalline oxidizers (ammonium nitrate (AN) and ammonium perchlorate (AP)) with binder and a mixture of micrometric-nanometric aluminum were investigated. Ammonium nitrate is a low-cost oxidizer, producing environment friendly combustion products but with lower specific impulse compared to AP. The better performance obtained with AP and the low quantity of toxic emissions obtained by using AN have suggested an interesting compromise based on a dual mixture of the two oxidizers. To improve the thermal response of raw AN, different types of phase stabilized AN (PSAN) and AN/AP co-crystals were investigated.

  11. Sounding rocket based investigations of HF waves in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    McAdams, Kristin Lynn

    1999-10-01

    The PHAZE II and Auroral Turbulence II sounding rockets were launched into active, pre-midnight aurora during the February 1997 sounding rocket campaign from Poker Flat, Alaska. Both rockets carried a full complement of plasma intruments including particle detectors and electric field instruments. The high frequency electric field instrument (HFE), flown on both rockets, was designed and built at Dartmouth College. This unusual instrument transmitted the full electric field waveform using a dedicated telemetry link. The unprecedented resolution in both frequency and time yielded the first identifiable observations of several HF wave phenomena. We investigated two of these phenomena, HF chirps in the region when fpe > fce and HF bands at higher altitudes where fpe < fce. HF chirps are extremely narrowband, short-lived emissions which occur when fpe > fce. We propose that these waves are created as Z-modes waves which are quasi- trapped in density cavities. HF bands have long durations and narrowband, constant frequency structure and are observed in regions where the local plasma density is varying. These emissions occur when fpe < fce and the whistler mode connects to the Langmuir mode. They are generated by an electron beam interaction which produces Langmuir waves which then move onto the whistler mode when the local plasma density increases. The HFE also provided a method for determining the local plasma density without relying on Langmuir probes or active plasma experiments. When the frequency cutoff of the background wideband emissions is evident, this cutoff is used as a track of the local plasma frequency, which is dependent on the plasma density. We used this technique to definitively correlate lower hybrid solitary structures with density gradients. The use of the HFE on both flights has allowed us to observe HF wave phenomena which have been inaccessible previously.

  12. A Review of Propulsion Industrial Base Studies and an Introduction to the National Institute of Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Doreswamy, Rajiv; Fry, Emma K.

    2012-01-01

    Over the past decade there have been over 40 studies that have examined the state of the industrial base and infrastructure that supports propulsion systems development in the United States. This paper offers a comprehensive, systematic review of these studies and develops conclusions and recommendations in the areas of budget, policy, sustainment, infrastructure, workforce retention and development and mission/vision and policy. The National Institute for Rocket Propulsion System (NIRPS) is a coordinated, national organization that is responding to the key issues highlighted in these studies. The paper outlines the case for NIRPS and the specific actions that the Institute is taking to address these issues.

  13. Integrated System Test of an Airbreathing Rocket (ISTAR)

    NASA Technical Reports Server (NTRS)

    Faulkner, Robert F.; Lyles, Garry (Technical Monitor)

    2001-01-01

    Rocket Based Combined Cycle (RBCC) propulsion system development and ground test is being conducted as part of the NASA Marshall Space Flight Center Integrated System Test of an Airbreathing Rocket (ISTAR) program. Rocketdyne, Aerojet and Pratt & Whitney have teamed as the Rocket Based Combined Cycle Consortium (RBC3) to work the propulsion system development. Each company offered unique RBCC propulsion concepts as candidates for the ISTAR propulsion system. A team of engine contractor, vehicle contractor and NASA representatives reviewed the concepts proposed by each company, reviewed the available data and selected the Aerojet RBCC propulsion system concept as the team propulsion system baseline for the ISTAR program. The ISTAR program is currently in a "Jumpstart" phase for development of the engine system leading to ground test of a thermally and power balanced RBCC propulsion system at Stennis Space Center in 2005. A parallel flight test demonstration of this propulsion system is anticipated to lead to first flight in the 2007 timeframe.

  14. Supersonic-combustion rocket

    NASA Technical Reports Server (NTRS)

    Weber, R. J.; Franciscus, L. C. (Inventor)

    1973-01-01

    A supersonic combustion rocket is provided in which a small rocket motor is substituted for heavy turbo pumps in a conventional rocket engine. The substitution results in a substantial reduction in rocket engine weight. The flame emanating from the small rocket motor can act to ignite non-hypergolic fuels.

  15. The performance of a piezoelectric-sensor-based SHM system under a combined cryogenic temperature and vibration environment

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Beard, Shawn J.; Kumar, Amrita; Sullivan, Kevin; Aguilar, Robert; Merchant, Munir; Taniguchi, Mike

    2008-10-01

    A series of tests have been conducted to determine the survivability and functionality of a piezoelectric-sensor-based active structural health monitoring (SHM) SMART Tape system under the operating conditions of typical liquid rocket engines such as cryogenic temperature and vibration loads. The performance of different piezoelectric sensors and a low temperature adhesive under cryogenic temperature was first investigated. The active SHM system for liquid rocket engines was exposed to flight vibration and shock environments on a simulated large booster LOX-H2 engine propellant duct conditioned to cryogenic temperatures to evaluate the physical robustness of the built-in sensor network as well as operational survivability and functionality. Test results demonstrated that the developed SMART Tape system can withstand operational levels of vibration and shock energy on a representative rocket engine duct assembly, and is functional under the combined cryogenic temperature and vibration environment.

  16. Investigation of the Rocket Induced Flow Field in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian; Lambert, James; Thames, Mignon; Hawk, Clark

    1999-01-01

    Rocket-Based Combined Cycle (RBCC) concepts attempt to improve the performance of launch vehicles at all points in the launch trajectory and make highly reusable launch vehicles a reality. The Aerojet Strutjet RBCC concept consists of a variable geometry duct with internal, vertical struts that functions in ducted rocket, ramjet, scramjet, and pure rocket modes. These struts have rocket and turbine exhaust nozzles imbedded within them. The rocket flows create an ejector effect with the ingested air at subsonic flight velocities. In ramjet and scramjet modes, the fuel rich nozzle flows react with the ingested air producing an afterburner effect. Under a NASA Marshall Space Flight Center contract, the UAH Propulsion Research Center (PRC) has designed and built a Strutjet simulation facility. A scale model of a single strut has been built and is undergoing cold-flow testing to investigate the mixing of the rocket and turbine exhausts with the ingested air. A complementary experimental program is also underway to examine the induced flow-field generated by rocket nozzles confined in a rectangular duct. Characterizing the induced flow behavior is critical to understanding and optimizing the performance of future Strutjet-based RBCC propulsion systems. The proposed paper will present results from the rocket induced flow investigation.

  17. Base Flow and Heat Transfer Characteristics of a Four-Nozzle Clustered Rocket Engine: Effect of Nozzle Pressure Ratio

    NASA Technical Reports Server (NTRS)

    Nallasamy, R.; Kandula, M.; Duncil, L.; Schallhorn, P.

    2010-01-01

    The base pressure and heating characteristics of a four-nozzle clustered rocket configuration is studied numerically with the aid of OVERFLOW Navier-Stokes code. A pressure ratio (chamber pressure to freestream static pressure) range of 990 to 5,920 and a freestream Mach number range of 2.5 to 3.5 are studied. The qualitative trends of decreasing base pressure with increasing pressure ratio and increasing base heat flux with increasing pressure ratio are correctly predicted. However, the predictions for base pressure and base heat flux show deviations from the wind tunnel data. The differences in absolute values between the computation and the data are attributed to factors such as perfect gas (thermally and calorically perfect) assumption, turbulence model inaccuracies in the simulation, and lack of grid adaptation.

  18. Formulation, Casting, and Evaluation of Paraffin-Based Solid Fuels Containing Energetic and Novel Additives for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Desain, John D.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth K.; Borduin, Russell; Koo, Joseph H.; Brady, Brian B.; Curtiss, Thomas J.; Story, George

    2012-01-01

    This investigation studied the inclusion of various additives to paraffin wax for use in a hybrid rocket motor. Some of the paraffin-based fuels were doped with various percentages of LiAlH4 (up to 10%). Addition of LiAlH4 at 10% was found to increase regression rates between 7 - 10% over baseline paraffin through tests in a gaseous oxygen hybrid rocket motor. Mass burn rates for paraffin grains with 10% LiAlH4 were also higher than those of the baseline paraffin. RDX was also cast into a paraffin sample via a novel casting process which involved dissolving RDX into dimethylformamide (DMF) solvent and then drawing a vacuum on the mixture of paraffin and RDX/DMF in order to evaporate out the DMF. It was found that although all DMF was removed, the process was not conducive to generating small RDX particles. The slow boiling generated an inhomogeneous mixture of paraffin and RDX. It is likely that superheating the DMF to cause rapid boiling would likely reduce RDX particle sizes. In addition to paraffin/LiAlH4 grains, multi-walled carbon nanotubes (MWNT) were cast in paraffin for testing in a hybrid rocket motor, and assorted samples containing a range of MWNT percentages in paraffin were imaged using SEM. The fuel samples showed good distribution of MWNT in the paraffin matrix, but the MWNT were often agglomerated, indicating that a change to the sonication and mixing processes were required to achieve better uniformity and debundled MWNT. Fuel grains with MWNT fuel grains had slightly lower regression rate, likely due to the increased thermal conductivity to the fuel subsurface, reducing the burning surface temperature.

  19. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Ballenthin, J. O.; Baumgardner, J. L.; Bhatt, A.; Boyd, I. D.; Burt, J. M.; Caton, R. G.; Coster, A.; Erickson, P. J.; Huba, J. D.; Earle, G. D.; Kaplan, C. R.; Foster, J. C.; Groves, K. M.; Haaser, R. A.; Heelis, R. A.; Hunton, D. E.; Hysell, D. L.; Klenzing, J. H.; Larsen, M. F.; Lind, F. D.; Pedersen, T. R.; Pfaff, R. F.; Stoneback, R. A.; Roddy, P. A.; Rodriguez, S. P.; San Antonio, G. S.; Schuck, P. W.; Siefring, C. L.; Selcher, C. A.; Smith, S. M.; Talaat, E. R.; Thomason, J. F.; Tsunoda, R. T.; Varney, R. H.

    2013-01-01

    On-orbit firings of both liquid and solid rocket motors provide localized disturbances to the plasma in the upper atmosphere. Large amounts of energy are deposited to ionosphere in the form of expanding exhaust vapors which change the composition and flow velocity. Charge exchange between the neutral exhaust molecules and the background ions (mainly O+) yields energetic ion beams. The rapidly moving pickup ions excite plasma instabilities and yield optical emissions after dissociative recombination with ambient electrons. Line-of-sight techniques for remote measurements rocket burn effects include direct observation of plume optical emissions with ground and satellite cameras, and plume scatter with UHF and higher frequency radars. Long range detection with HF radars is possible if the burns occur in the dense part of the ionosphere. The exhaust vapors initiate plasma turbulence in the ionosphere that can scatter HF radar waves launched from ground transmitters. Solid rocket motors provide particulates that become charged in the ionosphere and may excite dusty plasma instabilities. Hypersonic exhaust flow impacting the ionospheric plasma launches a low-frequency, electromagnetic pulse that is detectable using satellites with electric field booms. If the exhaust cloud itself passes over a satellite, in situ detectors measure increased ion-acoustic wave turbulence, enhanced neutral and plasma densities, elevated ion temperatures, and magnetic field perturbations. All of these techniques can be used for long range observations of plumes in the ionosphere. To demonstrate such long range measurements, several experiments were conducted by the Naval Research Laboratory including the Charged Aerosol Release Experiment, the Shuttle Ionospheric Modification with Pulsed Localized Exhaust experiments, and the Shuttle Exhaust Ionospheric Turbulence Experiments.

  20. Rocket Scientist for a Day: Investigating Alternatives for Chemical Propulsion

    ERIC Educational Resources Information Center

    Angelin, Marcus; Rahm, Martin; Gabrielsson, Erik; Gumaelius, Lena

    2012-01-01

    This laboratory experiment introduces rocket science from a chemistry perspective. The focus is set on chemical propulsion, including its environmental impact and future development. By combining lecture-based teaching with practical, theoretical, and computational exercises, the students get to evaluate different propellant alternatives. To…

  1. A fuzzy case based reasoning tool for model based approach to rocket engine health monitoring

    NASA Technical Reports Server (NTRS)

    Krovvidy, Srinivas; Nolan, Adam; Hu, Yong-Lin; Wee, William G.

    1992-01-01

    In this system we develop a fuzzy case based reasoner that can build a case representation for several past anomalies detected, and we develop case retrieval methods that can be used to index a relevant case when a new problem (case) is presented using fuzzy sets. The choice of fuzzy sets is justified by the uncertain data. The new problem can be solved using knowledge of the model along with the old cases. This system can then be used to generalize the knowledge from previous cases and use this generalization to refine the existing model definition. This in turn can help to detect failures using the model based algorithms.

  2. Exergy Analysis of Rocket Systems

    NASA Technical Reports Server (NTRS)

    Gilbert, Andrew; Mesmer, Bryan; Watson, Michael D.

    2015-01-01

    Exergy is defined as the useful work available from a system in a specified environment. Exergy analysis allows for comparison between different system designs, and allows for comparison of subsystem efficiencies within system designs. The proposed paper explores the relationship between the fundamental rocket equation and an exergy balance equation. A previously derived exergy equation related to rocket systems is investigated, and a higher fidelity analysis will be derived. The exergy assessments will enable informed, value-based decision making when comparing alternative rocket system designs, and will allow the most efficient configuration among candidate configurations to be determined.

  3. The Aries auroral modelling campaign - Characterization and modelling of an evening auroral arc observed from a rocket and a ground-based line of meridian scanners

    NASA Technical Reports Server (NTRS)

    Jones, A. V.; Gattinger, R. L.; Creutzberg, F.; Harris, F. R.; Mcnamara, A. G.; Yau, A. W.; Llewellyn, E. J.; Lummerzheim, D.; Rees, M. H.; Mcdade, I. C.

    1991-01-01

    A summary of the Aries experiments and results is presented with specific attention given to the tomographic analysis developed from ground-based photometric data. The instrumentation includes particle detectors, rocket photometers, plasma probes, and 1-deg meridian scanning photometers, and an all-sky TV system. The geophysical conditions during the observations are described including the auroral features and wavelengths, rocket trajectories, and the effectiveness of particle measurements. The tomographic inversion is explained with examples of rocket-photometer height data and contrasted with ground-based photometric data. The modeling techniques used to derive height profiles are described and indirectly compared to measured auroral intensities and intensity ratios. An enhancement of atomic oxygen is inferred from discrepancies with previous studies which confirm the difference between observed intensity ratios and modeled results.

  4. Laser rocket system analysis

    NASA Technical Reports Server (NTRS)

    Jones, W. S.; Forsyth, J. B.; Skratt, J. P.

    1979-01-01

    The laser rocket systems investigated in this study were for orbital transportation using space-based, ground-based and airborne laser transmitters. The propulsion unit of these systems utilizes a continuous wave (CW) laser beam focused into a thrust chamber which initiates a plasma in the hydrogen propellant, thus heating the propellant and providing thrust through a suitably designed nozzle and expansion skirt. The specific impulse is limited only by the ability to adequately cool the thruster and the amount of laser energy entering the engine. The results of the study showed that, with advanced technology, laser rocket systems with either a space- or ground-based laser transmitter could reduce the national budget allocated to space transportation by 10 to 345 billion dollars over a 10-year life cycle when compared to advanced chemical propulsion systems (LO2-LH2) of equal capability. The variation in savings depends upon the projected mission model.

  5. The rocket-and-wire triggering process: Channel-base currents and ground-level electric fields

    NASA Astrophysics Data System (ADS)

    Ngin, Terry Keo

    Rocket-and-wire triggered lightning flashes were studied from 2011 to 2013 at the International Center for Lightning Research and Testing. Ground-level electric fields and channel-base currents were recorded for 79 rocket launches. An eight-station network of electric field meters along with a milliampere-scale wire-base current measurement and a high-speed video record of the wire ascent allowed the calculation and analysis of the trigger-wire line charge density, generally found to be in the muC m-1 to hundreds of muC m-1 range and to increase quadratically with height. The wire-base currents collected during the wire ascent here are the most comprehensive in the literature to date. The trigger-wire line charge density, electric field at ground level, and characteristics of precursor pulses at the wire tip were examined to determine their usefulness in predicting the success or failure of a triggered-lightning attempt. The usefulness of the PICASSO model of space charge evolution from ground, originally developed by researchers at Paul Sabatier University in the 1980s, as a triggering criterion was also evaluated. An electrostatic model of the corona sheath around the trigger-wire was developed in order to estimate the radial extent of the corona sheath and the charge distribution within the corona sheath as a function of measured electric fields aloft taken from the published literature. The most sensitive measurements to date of channel-base current flowing prior to subsequent return strokes, where the current had generally been considered to be zero, were collected and are analyzed here. The channel-base current before return strokes was found to average 5.3 mA with a 2.8 mA standard deviation prior to 120 measured return strokes.

  6. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  7. Base Flow Characteristics for Several Four-Clustered Rocket Configurations at Mach Numbers from 2.0 to 3.5

    NASA Technical Reports Server (NTRS)

    Musial, Norman T.; Ward, James J.

    1961-01-01

    A generalized study of base flow phenomena has been conducted with four 500-pound-thrust JP-4 fuel-liquid-oxygen rocket motors installed in the base of a 12-inch-diameter cylindrical model. Data were obtained over a Mach number and nozzle pressure ratio range of 2.0 to 3.5 and 340 to 600, respectively. Base heat flux, gas temperature, and pressure were highest in the center of the cluster core and decreased in a radial direction. Although a maximum heat flux of 93 Btu per square foot per second was measured within the cluster core, peripheral heat fluxes were low, averaging about 5 Btu per square foot per second for all configurations. Generally base heat flux was found to be independent of Mach number over the range investigated. Base heat flux within the cluster core was decreased by increasing motor spacing, motor extension, a combination of increasing nozzle area ratio and decreasing exit angle and gimbaling the two side engines. Small amounts of nitrogen injected within the cluster core sharply reduced core heat flux.

  8. Hybrid Rocket Propulsion for Sounding Rocket Applications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A discussion of the H-225K hybrid rocket motor, produced by the American Rocket Company, is given. The H-225K motor is presented in terms of the following topics: (1) hybrid rocket fundamentals; (2) hybrid characteristics; and (3) hybrid advantages.

  9. Rocket-based vector magnetic measurements of Sq ionospheric currents near sporadic E.

    NASA Technical Reports Server (NTRS)

    Cloutier, P. A.; Sandel, B. R.

    1972-01-01

    A rocket-borne vector magnetometer has been used to infer the current magnitude, direction, and distribution of midlatitude ionospheric currents near sporadic E. Complete vector information returned throughout the flight indicates that a southward equivalent surface current (vertically integrated current) of 0.15 amp/m was encountered between the altitudes of 104 and 118 km in both ascending and descending portions of the flight. Vertical distribution of the current within the layer was approximately uniform, and the layer was found to be horizontal within the accuracy of the experiment. The data are consistent with the assumption that a sporadic-E layer observed by Wallops Island ionosondes significantly altered the usual Sq current flow pattern by concentrating the current into a narrow altitude range, and by horizontally focusing the current flow into the sporadic-E region with attendant reduction of current density outside the region.

  10. Colorado Hydrogen Imaging Rocket Payload

    NASA Astrophysics Data System (ADS)

    Burgh, Eric B.; France, K.

    2009-01-01

    We present the design for a rocket-borne narrow-band far-ultraviolet imaging telescope. It will measure the spatial distribution of photo-excited molecular hydrogen emission nearby hot stars by utilizing multi-layer reflection coatings, similar to those used in previous NASA experiments, to obtain two images during a flight: one with a narrow-band filter that captures the 1575/1608A emission features (the "on-band" filter), and a second one that measures the dust-scattered stellar continuum at 1800A (the "off-band" filter). The difference image will then isolate the molecular hydrogen emission by subtracting the underlying scattered-light background. This would be a large improvement over existing studies at ultraviolet wavelengths for which many individual pointings with spectroscopic apertures are required to map the region of interest. These data will complete the picture, combined with far-ultraviolet spectra and near-infrared observations of vibrational emission that we will obtain from ground-based instrumentation, of the physical conditions in sites of recent and on-going star formation. A sounding rocket payload such as this provides the opportunity to perform niche science that other facilities cannot as well as advances the readiness of junior researchers to assume leadership roles on future NASA space flight missions.

  11. CFD-based surrogate modeling of liquid rocket engine components via design space refinement and sensitivity assessment

    NASA Astrophysics Data System (ADS)

    Mack, Yolanda

    Computational fluid dynamics (CFD) can be used to improve the design and optimization of rocket engine components that traditionally rely on empirical calculations and limited experimentation. CFD based-design optimization can be made computationally affordable through the use of surrogate modeling which can then facilitate additional parameter sensitivity assessments. The present study investigates surrogate-based adaptive design space refinement (DSR) using estimates of surrogate uncertainty to probe the CFD analyses and to perform sensitivity assessments for complex fluid physics associated with liquid rocket engine components. Three studies were conducted. First, a surrogate-based preliminary design optimization was conducted to improve the efficiency of a compact radial turbine for an expander cycle rocket engine while maintaining low weight. Design space refinement was used to identify function constraints and to obtain a high accuracy surrogate model in the region of interest. A merit function formulation for multi-objective design point selection reduced the number of design points by an order of magnitude while maintaining good surrogate accuracy among the best trade-off points. Second, bluff body-induced flow was investigated to identify the physics and surrogate modeling issues related to the flow's mixing dynamics. Multiple surrogates and DSR were instrumental in identifying designs for which the CFD model was deficient and to help to pinpoint the nature of the deficiency. Next, a three-dimensional computational model was developed to explore the wall heat transfer of a GO2/GH2 shear coaxial single element injector. The interactions between turbulent recirculating flow structures, chemical kinetics, and heat transfer are highlighted. Finally, a simplified computational model of multi-element injector flows was constructed to explore the sensitivity of wall heating and improve combustion efficiency to injector element spacing. Design space refinement

  12. A Rocket-Base Study of Auroral Electrodynamics Within the Current Closure Ionosphere

    NASA Technical Reports Server (NTRS)

    Kaeppler, Stephen R.; Kletzing, Craig; Bounds, Scott R.; Sigsbee, Kristine M.; Gjerloev, Jesper W.; Anderson, Brian Jay; Korth, Haje; Lessard, Marc; Labelle, James W.; Dombrowski, Micah P.; Pfaff, Robert F.; Rowland, Douglas E.; Jones, Sarah; Heinselman, Craig J.; DudokdeWit, Thierry

    2011-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission, in conjunction with the PFISR Radar, was designed to observe the three-dimensional current system of a stable auroral arc system. ACES utilized two well instrumented payloads flown along very similar magnetic field footprints, at various altitudes with small temporal separation between both payloads. ACES High, the higher altitude payload (apogee 360 km), took in-situ measurements of the plasma parameters above the current closure region to provide the input signature into the lower ionosphere. ACES Low, the low-altitude payload (apogee 130 km), took similar observations within the current closure region, where cross-field currents can flow. We present results comparing observations of the electric fields, magnetic fields, electron flux, and the electron temperature at similar magnetic footpoints between both payloads. We further present data from all-sky imagers and PFISR detailing the evolution of the auroral event as the payloads traversed regions connected by similar magnetic footpoints. Current measurements derived from the magnetometers on both payloads are further compared. We examine data from both PFISR and observations on the high-altitude payload which we interpreted as a signature of electron acceleration by means of Alfv n waves. We further examine all measurements to understand ionospheric conductivity and how energy is being deposited into the ionosphere through Joule heating. Data from ACES is compared against models of Joule heating to make inferences regarding the effect of collisions at various altitudes.

  13. Verification of SOHO/CELIAS/SEM EUV Flux Calibration Based on Seven Sounding Rocket Flights

    NASA Astrophysics Data System (ADS)

    Didkovsky, Leonid V.; Judge, D.; Wieman, S.

    2009-05-01

    A verified and updated version of the calibrated SOHO/CELIAS/SEM (absolute) solar extreme ultraviolet (EUV) measurements from the beginning of the mission in 1996 through the present is available at the University of Southern California Space Sciences Center website (www.usc.edu/dept/space_science). To complete this new version, seven (1996- 2006) sounding rocket under-flights were analyzed using measurements from both a very stable Rare Gas (Ne) Ionization Cell (RGIC) and a clone of the flight SEM instrument. These sounding rocket under-flights have provided a number of reference points that have been compared with the solar flux data published on our web site (last revised in 2000). These reference points are in good agreement with the solar cycle EUV flux for the 30.4 nm first order (26 nm to 34 nm) SEM channels, indicating a very small (less than 1 percent) averaged difference from the best revised published flux for the seven under- flights. After providing thirteen years of accurate and near continuous data (with the exception of the SOHO "vacation"), SEM continues to give important information about short term (solar flares) and long term (solar cycle) changes of EUV solar irradiance. These data are useful for advancing solar models, for more accurate Earth atmosphere drag models, ionization proxies, and atmospheric dynamics generally, and will also provide solar EUV measurement overlap with the new SDO Extreme ultraviolet Variability Experiment (EVE), to be launched in 2009. This work was supported by NASA grants NNG05WC09G and NNX08AM94G.

  14. Impact of plasma sheath on rocket-based E-region ion measurements

    NASA Astrophysics Data System (ADS)

    Imtiaz, Nadia; Burchill, Johnathan; Marchand, Richard

    2015-01-01

    We model the particle velocity distribution functions around the entrance window of the Suprathermal Ion Imager (SII). The SII sensor was mounted on a 1 m boom carried by the scientific payload of NASA rocket 36.234 as part of Joule II mission to investigate Joule heating in the E-region ionosphere. The rocket flew above Northern Alaska on 19 January 2007. The payload was spin-stabilized with a period of 1.6 s, giving an apparent rotation of the ion flow velocity in the frame of reference of the payload. The SII sensor is an electrostatic analyzer that measures two dimensional slices of the distribution of the kinetic energies and arrival-angles of low energy ions. The study is concerned with the interpretation of data obtained from the SII sensor. For this purpose, we numerically investigate ram velocity effects on ions velocity distributions in the vicinity of the SII sensor aperture at an altitudes of approximately 150 km. The electrostatic sheath profiles surrounding the SII sensor, boom and payload are calculated numerically with the PIC code PTetra. It is observed that the direction of the ion flow velocity modifies the plasma sheath potential profile. This in turn impacts the velocity distributions of NO+ and ions at the aperture of the particle sensor. The velocity distribution functions at the sensor aperture are calculated by using test-particle modeling. These particle distribution functions are then used to inject particles in the sensor, and calculate the fluxes on the sensor microchannel plate (MCP), from which comparisons with the measurements can be made.

  15. A rocket-borne microprocessor-based experiment for investigation of energetic particles in the D and E regions

    NASA Technical Reports Server (NTRS)

    Braswell, F. M.

    1981-01-01

    An energetic experiment using the Z80 family of microcomputer components is described. Data collected from the experiment allowed fast and efficient postprocessing, yielding both energy-spectrum and pitch-angle distribution of energetic particles in the D and E regions. Advanced microprocessor system architecture and software concepts were used in the design to cope with the large amount of data being processed. This required the Z80 system to operate at over 80% of its total capacity. The microprocessor system was included in the payloads of three rockets launched during the Energy Budget Campaign at ESRANGE, Kiruna, Sweden in November 1980. Based on preliminary examination of the data, the performance of the experiment was satisfactory and good data were obtained on the energy spectrum and pitch-angle distribution of the particles.

  16. Technical Note: A novel rocket-based in situ collection technique for mesospheric and stratospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Reid, W.; Achtert, P.; Ivchenko, N.; Magnusson, P.; Kuremyr, T.; Shepenkov, V.; Tibert, G.

    2013-03-01

    A technique for collecting aerosol particles between altitudes of 17 and 85 km is described. Spin-stabilized collection probes are ejected from a sounding rocket allowing for multi-point measurements. Each probe is equipped with 110 collection samples that are 3 mm in diameter. The collection samples are one of three types: standard transmission electron microscopy carbon grids, glass fibre filter paper or silicone gel. Collection samples are exposed over a 50 m to 5 km height range with a total of 45 separate ranges. Post-flight electron microscopy will give size-resolved information on particle number, shape and elemental composition. Each collection probe is equipped with a suite of sensors to capture the probe's status during the fall. Parachute recovery systems along with GPS-based localization will ensure that each probe can be located and recovered for post-flight analysis.

  17. Sirius-5 experimental rocket

    NASA Astrophysics Data System (ADS)

    Kerstein, A.; Omersel, P.; Goljuf, L.; Zidaric, M.

    1981-09-01

    After giving a historical account of multistage rocket development in Yugoslavia, a status report is presented for the three-stage Sirius-5 program. The rocket is composed of: (1) a solid-propellant first stage, consisting of a cluster of eight standard motors yielding 220 kN thrust for 1.3 sec; (2) a mixed amines/inhibited red fuming nitric acid, bipropellant second stage generating 50 kN thrust; and (3) a third stage of the same design as the second but with only 62 kg of fuel, by contrast to 168 kg. Among the design principles adhered to are: minimization of the number of components, conservative design margins, and specifications for key subsystems based on demonstration programs. The primary use of this system is in amateur rocketry, being able to carry a 20 kg payload to 150 km.

  18. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    PubMed Central

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes. PMID:24578655

  19. Ignition and flame stabilization of a strut-jet RBCC combustor with small rocket exhaust.

    PubMed

    Hu, Jichao; Chang, Juntao; Bao, Wen

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes. PMID:24578655

  20. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  1. Actin-based endosome and phagosome rocketing in macrophages: activation by the secretagogue antagonists lanthanum and zinc.

    PubMed

    Southwick, Frederick S; Li, Wei; Zhang, Fangliang; Zeile, William L; Purich, Daniel L

    2003-01-01

    Although motile endocytic vesicles form actin-rich rocket tails [Merrifield et al., 1999: Nature Cell Biol 1:72-74], the mechanism of intracellular organelle locomotion remains poorly understood. We now demonstrate that bone marrow macrophages treated with lanthanum and zinc ions, well-known secretagogue antagonists, reliably exhibit vesicle motility. This treatment results in accentuated membrane ruffling and the formation of phagosomes and early endosomes that move rapidly through the cytoplasm by assembling actin filament rocket tails. Protein-specific immunolocalization demonstrated the presence of Arp2/3 complex in the polymerization zone and throughout the actin-rich tail, whereas N-WASP was most abundant in the polymerization zone. Although Arp2/3 and N-WASP play essential roles in nucleating filament assembly, other processes (i.e., elongation and filament cross-linking) are required to produce forces needed for motility. Efficient elongation was found to require zyxin, VASP, and profilin, proteins that interact by means of their ABM-1 and ABM-2 proline-rich motifs. The functional significance of these motifs was demonstrated by inhibition of vesicle motility by the motif-specific ABM-1 and ABM-2 analogues. Furthermore, lanthanum/zinc treatment also facilitated the early onset of actin-based vaccinia motility, a process that also utilizes Arp2/3 and N-WASP for nucleation and the zyxin-VASP-profilin complex for efficient elongation. Although earlier studies using cell extracts clouded the role of oligoproline sequences in activating the polymerization zone, our studies emphasize the importance of evaluating motility in living cells. PMID:12451594

  2. The Solid Rocket Motor Slag Population: Results of a Radar-based Regressive Statistical Evaluation

    NASA Technical Reports Server (NTRS)

    Horstman, Matthew F.; Xu, Yu-Lin

    2008-01-01

    Solid rocket motor (SRM) slag has been identified as a significant source of man-made orbital debris. The propensity of SRMs to generate particles of 100 m and larger has caused concern regarding their contribution to the debris environment. Radar observation, rather than in-situ gathered evidence, is currently the only measurable source for the NASA/ODPO model of the on-orbit slag population. This simulated model includes the time evolution of the resultant orbital populations using a historical database of SRM launches, propellant masses, and estimated locations and times of tail-off. However, due to the small amount of observational evidence, there can be no direct comparison to check the validity of this model. Rather than using the assumed population developed from purely historical and physical assumptions, a regressional approach was used which utilized the populations observed by the Haystack radar from 1996 to present. The estimated trajectories from the historical model of slag sources, and the corresponding plausible detections by the Haystack radar, were identified. Comparisons with observational data from the ensuing years were made, and the SRM model was altered with respect to size and mass production of slag particles to reflect the historical data obtained. The result is a model SRM population that fits within the bounds of the observed environment.

  3. Small rocket flowfield diagnostic chambers

    NASA Technical Reports Server (NTRS)

    Morren, Sybil; Reed, Brian

    1993-01-01

    Instrumented and optically-accessible rocket chambers are being developed to be used for diagnostics of small rocket (less than 440 N thrust level) flowfields. These chambers are being tested to gather local fluid dynamic and thermodynamic flowfield data over a range of test conditions. This flowfield database is being used to better understand mixing and heat transfer phenomena in small rockets, influence the numerical modeling of small rocket flowfields, and characterize small rocket components. The diagnostic chamber designs include: a chamber design for gathering wall temperature profiles to be used as boundary conditions in a finite element heat flux model; a chamber design for gathering inner wall temperature and static pressure profiles; and optically-accessible chamber designs, to be used with a suite of laser-based diagnostics for gathering local species concentration, temperature, density, and velocity profiles. These chambers were run with gaseous hydrogen/gaseous oxygen (GH2/GO2) propellants, while subsequent versions will be run on liquid oxygen/hydrocarbon (LOX/HC) propellants. The purpose, design, and initial test results of these small rocket flowfield diagnostic chambers are summarized.

  4. Computational Fluid Dynamic (CFD) analysis of axisymmetric plume and base flow of film/dump cooled rocket nozzle

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Warsi, S. A.

    1993-01-01

    Film/dump cooling a rocket nozzle with fuel rich gas, as in the National Launch System (NLS) Space Transportation Main Engine (STME), adds potential complexities for integrating the engine with the vehicle. The chief concern is that once the film coolant is exhausted from the nozzle, conditions may exist during flight for the fuel-rich film gases to be recirculated to the vehicle base region. The result could be significantly higher base temperatures than would be expected from a regeneratively cooled nozzle. CFD analyses were conduced to augment classical scaling techniques for vehicle base environments. The FDNS code with finite rate chemistry was used to simulate a single, axisymmetric STME plume and the NLS base area. Parallel calculations were made of the Saturn V S-1 C/F1 plume base area flows. The objective was to characterize the plume/freestream shear layer for both vehicles as inputs for scaling the S-C/F1 flight data to NLS/STME conditions. The code was validated on high speed flows with relevant physics. This paper contains the calculations for the NLS/STME plume for the baseline nozzle and a modified nozzle. The modified nozzle was intended to reduce the fuel available for recirculation to the vehicle base region. Plumes for both nozzles were calculated at 10kFT and 50kFT.

  5. Rocket Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi; Caimi, Raoul

    1999-01-01

    A comprehensive, automated, and user-friendly software program was developed to predict the noise and ignition over-pressure environment generated during the launch of a rocket. The software allows for interactive modification of various parameters affecting the generated noise environment. Predictions can be made for different launch scenarios and a variety of vehicle and launch mount configurations. Moreover, predictions can be made for both near-field and far-field locations on the ground and any position on the vehicle. Multiple engine and fuel combinations can be addressed, and duct geometry can be incorporated efficiently. Applications in structural design are addressed.

  6. Small rocket tornado probe

    SciTech Connect

    Colgate, S.A.

    1982-01-01

    A (less than 1 lb.) paper rock tornado probe was developed and deployed in an attempt to measure the pressure, temperature, ionization, and electric field variations along a trajectory penetrating a tornado funnel. The requirements of weight and materials were set by federal regulations and a one-meter resolution at a penetration velocity of close to Mach 1 was desired. These requirements were achieved by telemetering a strain gage transducer for pressure, micro size thermister and electric field, and ionization sensors via a pulse time telemetry to a receiver on board an aircraft that digitizes a signal and presents it to a Z80 microcomputer for recording on mini-floppy disk. Recording rate was 2 ms for 8 channels of information that also includes telemetry rf field strength, magnetic field for orientation on the rocket, zero reference voltage for the sensor op amps as well as the previously mentioned items also. The absolute pressure was recorded. Tactically, over 120 h were flown in a Cessna 210 in April and May 1981, and one tornado was encountered. Four rockets were fired at this tornado, missed, and there were many equipment problems. The equipment needs to be hardened and engineered to a significant degree, but it is believed that the feasibility of the probe, tactics, and launch platform for future tornado work has been proven. The logistics of thunderstorm chasing from a remote base in New Mexico is a major difficulty and reliability of the equipment another. Over 50 dummy rockets have been fired to prove trajectories, stability, and photographic capability. Over 25 electronically equipped rockets have been fired to prove sensors transmission, breakaway connections, etc. The pressure recovery factor was calibrated in the Air Force Academy blow-down tunnel. There is a need for more refined engineering and more logistic support.

  7. The four INTA-300 rocket prototypes

    NASA Astrophysics Data System (ADS)

    Calero, J. S.

    1985-03-01

    A development history and performance capability assessment is presented for the INTA-300 'Flamenco' sounding rocket prototype specimens. The Flamenco is a two-stage solid fuel rocket, based on British sounding rocket technology, that can lift 50 km payloads to altitudes of about 300 km. The flight of the first two prototypes, in 1974 and 1975, pointed to vibration problems which reduced the achievable apogee, and the third prototype's flight was marred by a premature detonation that destroyed the rocket. The fourth Flamenco flight, however, yielded much reliable data.

  8. Overview of the Turbine Based Combined Cycle Discipline

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Walker, James F.; Pittman, James L.

    2009-01-01

    The NASA Fundamental Aeronautics Hypersonics project is focused on technologies for combined cycle, airbreathing propulsions systems to enable reusable launch systems for access to space. Turbine Based Combined Cycle (TBCC) propulsion systems offer specific impulse (Isp) improvements over rocket-based propulsion systems in the subsonic takeoff and return mission segments and offer improved safety. The potential to realize more aircraft-like operations with expanded launch site capability and reduced system maintenance are additional benefits. The most critical TBCC enabling technologies as identified in the National Aeronautics Institute (NAI) study were: 1) mode transition from the low speed propulsion system to the high speed propulsion system, 2) high Mach turbine engine development, 3) transonic aero-propulsion performance, 4) low-Mach-number dual-mode scramjet operation, 5) innovative 3-D flowpath concepts and 6) innovative turbine based combined cycle integration. To address several of these key TBCC challenges, NASA s Hypersonics project (TBCC Discipline) initiated an experimental mode transition task that includes an analytic research endeavor to assess the state-of-the-art of propulsion system performance and design codes. This initiative includes inlet fluid and turbine performance codes and engineering-level algorithms. This effort has been focused on the Combined Cycle Engine Large-Scale Inlet Mode Transition Experiment (CCE LIMX) which is a fully integrated TBCC propulsion system with flow path sizing consistent with previous NASA and DoD proposed Hypersonic experimental flight test plans. This experiment is being tested in the NASA-GRC 10 x 10 Supersonic Wind Tunnel (SWT) Facility. The goal of this activity is to address key hypersonic combined-cycle-engine issues: (1) dual integrated inlet operability and performance issues unstart constraints, distortion constraints, bleed requirements, controls, and operability margins, (2) mode

  9. High-End Concept Based on Hypersonic Two-Stage Rocket and Electro-Magnetic Railgun to Launch Micro-Satellites Into Low-Earth

    NASA Astrophysics Data System (ADS)

    Bozic, O.; Longo, J. M.; Giese, P.; Behren, J.

    2005-02-01

    The electromagnetic railgun technology appears to be an interesting alternative to launch small payloads into Low Earth Orbit (LEO), as this may introduce lower launch costs. A high-end solution, based upon present state of the art technology, has been investigated to derive the technical boundary conditions for the application of such a new system. This paper presents the main concept and the design aspects of such propelled projectile with special emphasis on flight mechanics, aero-/thermodynamics, materials and propulsion characteristics. Launch angles and trajectory optimisation analyses are carried out by means of 3 degree of freedom simulations (3DOF). The aerodynamic form of the projectile is optimised to provoke minimum drag and low heat loads. The surface temperature distribution for critical zones is calculated with DLR developed Navier-Stokes codes TAU, HOTSOSE, whereas the engineering tool HF3T is used for time dependent calculations of heat loads and temperatures on project surface and inner structures. Furthermore, competing propulsions systems are considered for the rocket engines of both stages. The structural mass is analysed mostly on the basis of carbon fibre reinforced materials as well as classical aerospace metallic materials. Finally, this paper gives a critical overview of the technical feasibility and cost of small rockets for such missions. Key words: micro-satellite, two-stage-rocket, railgun, rocket-engines, aero/thermodynamic, mass optimization

  10. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  11. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  12. American Rocket Society

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In addition to Dr. Robert Goddard's pioneering work, American experimentation in rocketry prior to World War II grew, primarily in technical societies. This is an early rocket motor designed and developed by the American Rocket Society in 1932.

  13. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    A 10,000-pound thrust hybrid rocket motor is tested at Stennis Space Center's E-1 test facility. A hybrid rocket motor is a cross between a solid rocket and a liquid-fueled engine. It uses environmentally safe solid fuel and liquid oxygen.

  14. Sounding rockets in Antarctica

    NASA Technical Reports Server (NTRS)

    Alford, G. C.; Cooper, G. W.; Peterson, N. E.

    1982-01-01

    Sounding rockets are versatile tools for scientists studying the atmospheric region which is located above balloon altitudes but below orbital satellite altitudes. Three NASA Nike-Tomahawk sounding rockets were launched from Siple Station in Antarctica in an upper atmosphere physics experiment in the austral summer of 1980-81. The 110 kg payloads were carried to 200 km apogee altitudes in a coordinated project with Arcas rocket payloads and instrumented balloons. This Siple Station Expedition demonstrated the feasibility of launching large, near 1,000 kg, rocket systems from research stations in Antarctica. The remoteness of research stations in Antarctica and the severe environment are major considerations in planning rocket launching expeditions.

  15. Rockets for spin recovery

    NASA Technical Reports Server (NTRS)

    Whipple, R. D.

    1980-01-01

    The potential effectiveness of rockets as an auxiliary means for an aircraft to effect recovery from spins was investigated. The advances in rocket technology produced by the space effort suggested that currently available systems might obviate many of the problems encountered in earlier rocket systems. A modern fighter configuration known to exhibit a flat spin mode was selected. An analytical study was made of the thrust requirements for a rocket spin recovery system for the subject configuration. These results were then applied to a preliminary systems study of rocket components appropriate to the problem. Subsequent spin tunnel tests were run to evaluate the analytical results.

  16. Automated Rocket Propulsion Test Management

    NASA Technical Reports Server (NTRS)

    Walters, Ian; Nelson, Cheryl; Jones, Helene

    2007-01-01

    The Rocket Propulsion Test-Automated Management System provides a central location for managing activities associated with Rocket Propulsion Test Management Board, National Rocket Propulsion Test Alliance, and the Senior Steering Group business management activities. A set of authorized users, both on-site and off-site with regard to Stennis Space Center (SSC), can access the system through a Web interface. Web-based forms are used for user input with generation and electronic distribution of reports easily accessible. Major functions managed by this software include meeting agenda management, meeting minutes, action requests, action items, directives, and recommendations. Additional functions include electronic review, approval, and signatures. A repository/library of documents is available for users, and all items are tracked in the system by unique identification numbers and status (open, closed, percent complete, etc.). The system also provides queries and version control for input of all items.

  17. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    A technology program aimed at improving the performance of low thrust chemical rockets for spacecraft onboard applications is reviewed. Navier-Stokes analyses of low Reynolds number rocket flows have been compared with local flow property measurements obtained using Rayleigh and Raman diagnostics in a 100 N gaseous hydrogen/gaseous oxygen rocket. It is indicated that computational domain should include the near injector flow and that the shear layer combustion model needs improvement. The system analyses and technical efforts intended to develop a technology base for higher performance propellants are presented. A LOX/hydrazine engine is demonstrated to have a 95 percent theoretical c-star which translates into a projected vacuum specific impulse of 345 seconds at an area ratio of 204:1.

  18. Rocket pollution reduction system

    SciTech Connect

    Geisler, R.L.

    1994-01-04

    A system is provided for reducing the emissions of hydrochloric acid (HCl) from solid fuel rockets, especially during ground disposal. An aqueous solution of an alkali metal hydroxide is injected as a mist into the rocket chamber as the rocket fuel is burned. The reaction of the alkali metal with hydrogen chloride (HCl) produces a salt and thereby minimizes the presence of hydrochloric acid in the rocket exhaust. An injected neutralizing material which reduces hydrochloric acid, but which produces less thrust than an equal weight of rocket fuel, can be injected into an operating rocket which carries a payload high above the earth, with the injected material being injected only while the rocket is at a lower altitude when hydrochloric acid is most undesirable. The injected material can be produced by a small auxiliary rocket device whose exhaust is delivered directly to the main rocket chamber, and with the exhaust of the auxiliary rocket device including a high proportion of magnesium to react with the hydrochloric acid with minimal degradation of rocket performance. 4 figs.

  19. Catalytic Microtube Rocket Igniter

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Deans, Matthew C.

    2011-01-01

    Devices that generate both high energy and high temperature are required to ignite reliably the propellant mixtures in combustion chambers like those present in rockets and other combustion systems. This catalytic microtube rocket igniter generates these conditions with a small, catalysis-based torch. While traditional spark plug systems can require anywhere from 50 W to multiple kW of power in different applications, this system has demonstrated ignition at less than 25 W. Reactants are fed to the igniter from the same tanks that feed the reactants to the rest of the rocket or combustion system. While this specific igniter was originally designed for liquid methane and liquid oxygen rockets, it can be easily operated with gaseous propellants or modified for hydrogen use in commercial combustion devices. For the present cryogenic propellant rocket case, the main propellant tanks liquid oxygen and liquid methane, respectively are regulated and split into different systems for the individual stages of the rocket and igniter. As the catalyst requires a gas phase for reaction, either the stored boil-off of the tanks can be used directly or one stream each of fuel and oxidizer can go through a heat exchanger/vaporizer that turns the liquid propellants into a gaseous form. For commercial applications, where the reactants are stored as gases, the system is simplified. The resulting gas-phase streams of fuel and oxidizer are then further divided for the individual components of the igniter. One stream each of the fuel and oxidizer is introduced to a mixing bottle/apparatus where they are mixed to a fuel-rich composition with an O/F mass-based mixture ratio of under 1.0. This premixed flow then feeds into the catalytic microtube device. The total flow is on the order of 0.01 g/s. The microtube device is composed of a pair of sub-millimeter diameter platinum tubes connected only at the outlet so that the two outlet flows are parallel to each other. The tubes are each

  20. A Low Cost GPS System for Real-Time Tracking of Sounding Rockets

    NASA Technical Reports Server (NTRS)

    Markgraf, M.; Montenbruck, O.; Hassenpflug, F.; Turner, P.; Bull, B.; Bauer, Frank (Technical Monitor)

    2001-01-01

    This paper describes the development as well as the on-ground and the in-flight evaluation of a low cost Global Positioning System (GPS) system for real-time tracking of sounding rockets. The flight unit comprises a modified ORION GPS receiver and a newly designed switchable antenna system composed of a helical antenna in the rocket tip and a dual-blade antenna combination attached to the body of the service module. Aside from the flight hardware a PC based terminal program has been developed to monitor the GPS data and graphically displays the rocket's path during the flight. In addition an Instantaneous Impact Point (IIP) prediction is performed based on the received position and velocity information. In preparation for ESA's Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, Kiruna, on 19 Feb. 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. In addition to the ORION receiver, an Ashtech G12 HDMA receiver and a BAE (Canadian Marconi) Allstar receiver, both connected to a wrap-around antenna, have been flown on the same rocket as part of an independent experiment provided by the Goddard Space Flight Center. This allows an in-depth verification and trade-off of different receiver and antenna concepts.

  1. Acoustic Measurements for Small Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.

  2. Acoustic Measurements of Small Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Vargas, Magda B.; Kenny, R. Jeremy

    2010-01-01

    Rocket acoustic noise can induce loads and vibration on the vehicle as well as the surrounding structures. Models have been developed to predict these acoustic loads based on scaling existing solid rocket motor data. The NASA Marshall Space Flight Center acoustics team has measured several small solid rocket motors (thrust below 150,000 lbf) to anchor prediction models. This data will provide NASA the capability to predict the acoustic environments and consequent vibro-acoustic response of larger rockets (thrust above 1,000,000 lbf) such as those planned for the NASA Constellation program. This paper presents the methods used to measure acoustic data during the static firing of small solid rocket motors and the trends found in the data.

  3. Ionospheric shock waves triggered by rockets

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Lin, J. T.; Chen, C. H.; Liu, J. Y.; Sun, Y. Y.; Kakinami, Y.; Matsumura, M.; Chen, W. H.; Liu, H.; Rau, R. J.

    2014-09-01

    This paper presents a two-dimensional structure of the shock wave signatures in ionospheric electron density resulting from a rocket transit using the rate of change of the total electron content (TEC) derived from ground-based GPS receivers around Japan and Taiwan for the first time. From the TEC maps constructed for the 2009 North Korea (NK) Taepodong-2 and 2013 South Korea (SK) Korea Space Launch Vehicle-II (KSLV-II) rocket launches, features of the V-shaped shock wave fronts in TEC perturbations are prominently seen. These fronts, with periods of 100-600 s, produced by the propulsive blasts of the rockets appear immediately and then propagate perpendicularly outward from the rocket trajectory with supersonic velocities between 800-1200 m s-1 for both events. Additionally, clear rocket exhaust depletions of TECs are seen along the trajectory and are deflected by the background thermospheric neutral wind. Twenty minutes after the rocket transits, delayed electron density perturbation waves propagating along the bow wave direction appear with phase velocities of 800-1200 m s-1. According to their propagation character, these delayed waves may be generated by rocket exhaust plumes at earlier rocket locations at lower altitudes.

  4. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Astrophysics Data System (ADS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-07-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  5. Comparison of liquid rocket engine base region heat flux computations using three turbulence models

    NASA Technical Reports Server (NTRS)

    Kumar, Ganesh N.; Griffith, Dwaine O., II; Prendergast, Maurice J.; Seaford, C. M.

    1993-01-01

    The flow in the base region of launch vehicles is characterized by flow separation, flow reversals, and reattachment. Computation of the convective heat flux in the base region and on the nozzle external surface of Space Shuttle Main Engine and Space Transportation Main Engine (STME) is an important part of defining base region thermal environments. Several turbulence models were incorporated in a CFD code and validated for flow and heat transfer computations in the separated and reattaching regions associated with subsonic and supersonic flows over backward facing steps. Heat flux computations in the base region of a single STME engine and a single S1C engine were performed using three different wall functions as well as a renormalization-group based k-epsilon model. With the very limited data available, the computed values are seen to be of the right order of magnitude. Based on the validation comparisons, it is concluded that all the turbulence models studied have predicted the reattachment location and the velocity profiles at various axial stations downstream of the step very well.

  6. Small rocket research and technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven; Biaglow, James

    1993-01-01

    Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a

  7. Near-Field Acoustical Characterization of Clustered Rocket Engines

    NASA Technical Reports Server (NTRS)

    Kandula, Max; Vu, Bruce T.; Lindsay Halie K.

    2005-01-01

    This paper presents an approach for the prediction and characterization of the near-field acoustic levels from closely-spaced clustered rocket engines. The calculations are based on the method proposed by Eldred, wherein the flowfield from the clustered rockets is divided into two zones. Zone 1 contains the isolated nozzles which produce noise independently, and extends up to a distance where the individual flows completely mix to form an equivalent single nozzle flow. Zone 2 is occupied by the single mixed stream starting from the station where the jets merge. The acoustic fields from the two zones are computed separately on the basis of the NASA-SP method of Eldred developed for a single equivalent nozzle. A summation of the spectra for the two zones yields the total effective sound pressure level for the clustered engines. Under certain conditions of nozzle spacing and flow parameters, the combined sound pressure level spectrum for the clustered nozzles displays a double peak. Test cases are presented here to demonstrate the importance of hydrodynamic interactions responsible for the double peak in the sound spectrum in the case of clustered rocket nozzles, and the role of ground reflections in the case of non-interfering jets. A graphics interface (Rocket Acoustic Prediction Tool) has been developed to take into account the effects of clustered nozzles and ground reflections.

  8. Rhenium Rocket Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center's On-Board Propulsion Branch has a research and technology program to develop high-temperature (2200 C), iridium-coated rhenium rocket chamber materials for radiation-cooled rockets in satellite propulsion systems. Although successful material demonstrations have gained much industry interest, acceptance of the technology has been hindered by a lack of demonstrated joining technologies and a sparse materials property data base. To alleviate these concerns, we fabricated rhenium to C-103 alloy joints by three methods: explosive bonding, diffusion bonding, and brazing. The joints were tested by simulating their incorporation into a structure by welding and by simulating high-temperature operation. Test results show that the shear strength of the joints degrades with welding and elevated temperature operation but that it is adequate for the application. Rhenium is known to form brittle intermetallics with a number of elements, and this phenomena is suspected to cause the strength degradation. Further bonding tests with a tantalum diffusion barrier between the rhenium and C-103 is planned to prevent the formation of brittle intermetallics.

  9. Four-nozzle benchmark wind tunnel model USA code solutions for simulation of multiple rocket base flow recirculation at 145,000 feet altitude

    NASA Astrophysics Data System (ADS)

    Dougherty, N. S.; Johnson, S. L.

    1993-07-01

    Multiple rocket exhaust plume interactions at high altitudes can produce base flow recirculation with attendant alteration of the base pressure coefficient and increased base heating. A search for a good wind tunnel benchmark problem to check grid clustering technique and turbulence modeling turned up the experiment done at AEDC in 1961 by Goethert and Matz on a 4.25-in. diameter domed missile base model with four rocket nozzles. This wind tunnel model with varied external bleed air flow for the base flow wake produced measured p/p(sub ref) at the center of the base as high as 3.3 due to plume flow recirculation back onto the base. At that time in 1961, relatively inexpensive experimentation with air at gamma = 1.4 and nozzle A(sub e)/A of 10.6 and theta(sub n) = 7.55 deg with P(sub c) = 155 psia simulated a LO2/LH2 rocket exhaust plume with gamma = 1.20, A(sub e)/A of 78 and P(sub c) about 1,000 psia. An array of base pressure taps on the aft dome gave a clear measurement of the plume recirculation effects at p(infinity) = 4.76 psfa corresponding to 145,000 ft altitude. Our CFD computations of the flow field with direct comparison of computed-versus-measured base pressure distribution (across the dome) provide detailed information on velocities and particle traces as well eddy viscosity in the base and nozzle region. The solution was obtained using a six-zone mesh with 284,000 grid points for one quadrant taking advantage of symmetry. Results are compared using a zero-equation algebraic and a one-equation pointwise R(sub t) turbulence model (work in progress). Good agreement with the experimental pressure data was obtained with both; and this benchmark showed the importance of: (1) proper grid clustering and (2) proper choice of turbulence modeling for rocket plume problems/recirculation at high altitude.

  10. Identification of a physically idealized human rated rocket based interplanetary transportation system

    NASA Astrophysics Data System (ADS)

    Ewig, Ralph

    Every system engineering trade study has to address the challenge of eliminating unintentional bias towards one of the available system options. This challenge becomes especially difficult when trading conceptual options, where the amount and fidelity of data available to characterize the options is highly variable. This dissertation introduces the methodology of Physical Idealization as a tool to remove unintentional bias from conceptual trade studies. The premise is that (1) given the options available based on our understanding of physics, and (2) within the set of constraints necessary to define the problem, it is possible to identify the optimal physically idealized solution. This solution can then be used as a benchmark for technology development and real world system implementation. The methodology of Physical Idealization is developed to support a study of Interplanetary Transportation Systems (ITS). The ITS is modeled as consisting of payload, power, and propulsion subsystems, and optimized using a simplified two-dimensional equation of motion set. Both a genetic algorithm and gradient based optimization methods are used in a nested loop process. The presented results illustrate both the strengths and weaknesses associated with using physical idealization in a trade study, showing the methodology to be a useful addition to the system engineer's selection of tools.

  11. Preliminary tests of silicon carbide based concretes for hybrid rocket nozzles in a solar furnace

    NASA Astrophysics Data System (ADS)

    D'Elia, Raffaele; Bernhart, Gérard; Cutard, Thierry; Peraudeau, Gilles; Balat-Pichelin, Marianne

    2014-06-01

    This research is part of the PERSEUS project, a space program concerning hybrid propulsion and supported by CNES. The main goal of this study is to characterise silicon carbide based micro-concrete with a maximum aggregates size of 800 μm, in a hybrid propulsion environment. The nozzle throat has to resist to a highly oxidising polyethylene (PE)/N2O hybrid environment, under temperatures ranging up to 2980 K. The study is divided into two main parts: the first one deals with the thermo-mechanical characterisation of the material up to 1500 K and the second one with an investigation on the oxidation behaviour in a standard atmosphere, under a solar flux up to 13.5 MW/m2. Young's modulus was determined by resonant frequency method: results show an increase with the stabilisation temperature. Four point bending tests have shown a rupture tensile strength increasing with stabilisation temperature, up to 1473 K. Sintering and densification processes are primary causes of this phenomenon. Visco-plastic behaviour appears at 1373 K, due to the formation of liquid phases in cement ternary system. High-temperature oxidation in ambient air was carried out at PROMES-CNRS laboratory, on a 2 kW solar furnace, with a concentration factor of 15,000. A maximum 13.5 MW/m2 incident solar flux and a 7-90 s exposure times have been chosen. Optical microscopy, SEM, EDS analyses were used to determine the microstructure evolution and the mass loss kinetics. During these tests, silicon carbide undergoes active oxidation with production of SiO and CO smokes and ablation. A linear relation between mass loss and time is found. Oxidation tests performed at 13.5 MW/m2 solar flux have shown a mass loss of 10 mg/cm2 after 15 s. After 90 s, the mass loss reaches 60 mg/cm2. Surface temperature measurement is a main point in this study, because of necessity of a thermo-mechanical-ablative model for the material. Smokes appear at around 5.9 MW/m2, leading to the impossibility of useful temperature

  12. A combined cycle engine test facility

    NASA Astrophysics Data System (ADS)

    Engers, R.; Cresci, D.; Tsai, C.

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  13. A combined cycle engine test facility

    SciTech Connect

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  14. Regression rate and pyrolysis behavior of HTPB-based solid fuels in a hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Chiaverini, Martin John

    An experimental investigation on the regression rate and pyrolysis behavior of hydroxyl-terminated polybutadiene-based solid fuels has been conducted. The overall objective was to obtain a better understanding of the physical processes governing solid-fuel regression and pyrolysis under different operating regimes. Experiments were conducted using a windowed, slab geometry hybrid motor and a conductive-heating induced thermal pyrolysis test rig. Gaseous oxygen was employed as the oxidizer in the 1-m long, lab-scale hybrid motor, which had realistic operating conditions. A real-time X-ray radiography system and an ultrasonic pulse-echo system were both used to obtain the local, instantaneous solid fuel regression rates. A semi-empirical approach was developed to analyze the experimental results and to correlate the regression rates with physically descriptive, dimensionless parameters. For relatively high surface temperatures above 722 K, the activation energy of pure HTPB was 4.91 kcal/mole, indicating that the pyrolysis process was governed by formation and desorption of high molecular weight fragments from the fuel surface. The conductive-heating induced pyrolysis rates of HTPB, conducted at atmospheric pressure, were very similar to those measured in the hybrid motor tests at much higher pressures. This result implies that the regression rate of HTPB was governed primarily by thermal decomposition processes and not influenced by heterogeneous surface reactions. Radiant heat transfer had a significant effect on the overall regression rate behavior of HTPB. Radiation from soot generally accounted for about 80 to 90% of the total radiant heat flux. Two separate expressions, one for the developing flow regime and one for fully-developed flow, were used to correlate the regression rate data. Both correlations show that standard hybrid boundary layer correlations must be modified to account for the effects of variable fluid properties across the boundary layer and

  15. Commercial Development Suborbital Rocket Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The enclosed report provides information on the sixth flight of the Consort suborbital rocket series. Consort 6 is currently scheduled for launch on February 19, 1993, with lift off at 11:00 a.m., Mountain Time. It will carry seven materials and biotechnology experiments, two accelerometer systems, a controller and battery packs in a module nearly 12 feet tall and weighing approximately 1,004 pounds. Consort 6 will reach an apogee of approximately 200 miles providing about 7 minutes of microgravity time. The entire mission, from launch to touchdown, is expected to last approximately 15 minutes. The Consort series is part of a unique suborbital rocket launch services program conducted by the Office of Advanced Concepts and Technology (OACT) in conjunction with its Centers for the Commercial Development of Space (CCDS). This service is managed through the Consortium for Materials Development in Space (CMDS), a CCDS based University of Alabama in Huntsville (UAH). at the This suborbital rocket program provides CCDS investigators with a microgravity environment to achieve commercial development objectives, or to test developmental hardware or techniques in preparation for orbital flights or additional follow-on work. Rocket and launch services for Consort 6, including use of the Starfire 1 launch vehicle, are provided by EER Systems Corporation. Integration of the payload into Starfire 1 will be handled by McDonnell Douglas Space Systems Company.

  16. Experiment of rocket-ram annular combustor

    NASA Astrophysics Data System (ADS)

    Yatsuyanagi, Nobuyuki; Sakamoto, Hiroshi; Sato, Kazuo; Sasaki, Masaki; Ono, Fumiei

    Superiority in specific impulse of the double-nozzle type of rocket-ram combined engine over the ducted type of combined engine was shown by performance calculations. Then, a double-nozzle type of rocket-ram annular combustor with a total thrust of 5 kN was designed and experimentally tested with varying ratios of thrust produced by rocket and ram. With the combustor having different diverging half-angles, namely 10 deg 18 arcmin, and 6 deg 40 arcmin, thrust and pressure distribution along the common expansion nozzle were measured to investigate the effect of interaction of the two expansion gases on thrust. Enhancement of specific impulse was experimentally verified. That is, the specific impulse gained in rocket-ram parallel operations, the ratio of rocket thrust to ram thrust being 50 to 50, were found to be 190 percent of those in pure rocket operations. However, in the downstream region of the common nozzle, the flow might separate due to the generation of shock waves in either type of nozzle configuration.

  17. Environmentally compatible solid rocket propellants

    NASA Technical Reports Server (NTRS)

    Jacox, James L.; Bradford, Daniel J.

    1995-01-01

    Hercules' clean propellant development research is exploring three major types of clean propellant: (1) chloride-free formulations (no chlorine containing ingredients), being developed on the Clean Propellant Development and Demonstration (CPDD) contract sponsored by Phillips Laboratory, Edwards Air Force Base, CA; (2) low HCl scavenged formulations (HCl-scavenger added to propellant oxidized with ammonium perchlorate (AP)); and (3) low HCl formulations oxidized with a combination of AN and AP (with or without an HCl scavenger) to provide a significant reduction (relative to current solid rocket boosters) in exhaust HCl. These propellants provide performance approaching that of current systems, with less than 2 percent HCl in the exhaust, a significant reduction (greater than or equal to 70 percent) in exhaust HCl levels. Excellent processing, safety, and mechanical properties were achieved using only readily available, low cost ingredients. Two formulations, a sodium nitrate (NaNO3) scavenged HTPB and a chloride-free hydroxy terminated polyether (HTPE) propellant, were characterized for ballistic, mechanical, and rheological properties. In addition, the hazards properties were demonstrated to provide two families of class 1.3, 'zero-card' propellants. Further characterization is planned which includes demonstration of ballistic tailorability in subscale (one to 70 pound) motors over the range of burn rates required for retrofit into current Hercules space booster designs (Titan 4 SRMU and Delta 2 GEM).

  18. Life Saving Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    By 1870, American and British inventors had found other ways to use rockets. For example, the Congreve rocket was capable of carrying a line over 1,000 feet to a stranded ship. In 1914, an estimated 1,000 lives were saved by this technique.

  19. Postal Rocket Stamps

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the 19th Century, experiments in America, Europe, and elsewhere attempted to build postal rockets to deliver mail from one location to another. The idea was more novel than successful. Many stamps used in these early postal rockets have become collector's items.

  20. Model Rockets and Microchips.

    ERIC Educational Resources Information Center

    Fitzsimmons, Charles P.

    1986-01-01

    Points out the instructional applications and program possibilities of a unit on model rocketry. Describes the ways that microcomputers can assist in model rocket design and in problem calculations. Provides a descriptive listing of model rocket software for the Apple II microcomputer. (ML)

  1. Rockets -- Part II.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    If two rockets are identical except that one engine burns in one-tenth the time of the other (total impulse and initial fuel mass of the two engines being the same), which rocket will rise higher? Why? The answer to this question (part 1 response in v20 n6, p410, Sep 1982) is provided. (Author/JN)

  2. Preliminary guided rocket feasibility study

    NASA Technical Reports Server (NTRS)

    Nolan, M. B.; Celmer, J. J.

    1973-01-01

    The feasibility of actively guiding sounding rockets to reduce impact dispersion has been investigated. The theoretical probability of range safety thrust termination for several high performance rockets was combined with the cost of acquiring the extended range at White Sands Missile Range (WSMR) to establish a guidance system price ceiling of $20K per flight. Guiding the Black Brant VC (BBVC) for the first five seconds of flight results in sufficient dispersion reduction to impact within the standard range boundaries at WSMR. The guidance system thrust level required to statically control the vehicle to a nominal-wind weighted trajectory for five seconds is between 150-200 pounds. A six-degree-of-freedom trajectory program with guidance simulation capability has been developed and the equations are presented.

  3. Pattern classification approach to rocket engine diagnostics

    SciTech Connect

    Tulpule, S.

    1989-01-01

    This paper presents a systems level approach to integrate state-of-the-art rocket engine technology with advanced computational techniques to develop an integrated diagnostic system (IDS) for future rocket propulsion systems. The key feature of this IDS is the use of advanced diagnostic algorithms for failure detection as opposed to the current practice of redline-based failure detection methods. The paper presents a top-down analysis of rocket engine diagnostic requirements, rocket engine operation, applicable diagnostic algorithms, and algorithm design techniques, which serve as a basis for the IDS. The concepts of hierarchical, model-based information processing are described, together with the use uf signal processing, pattern recognition, and artificial intelligence techniques which are an integral part of this diagnostic system. 27 refs.

  4. GRCop-84 Developed for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Yun, Hee Man; Lerch, Bradley A.; Keller, Dennis A.; Holmes, Richard

    2001-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was developed at the NASA Glenn Research Center for use in regeneratively cooled rocket engines. This alloy possesses an excellent combination of conductivity, thermal expansion, strength, creep resistance, ductility, and low-cycle fatigue (LCF) life. In comparison to the currently used alloy, NARloy-Z (Cu-3 wt % Ag-0.5 wt % Zr), GRCop-84's significantly better properties give it the potential for significant gains in engine performance and reliability. For GRCop-84 to be safely used in a rocket engine, it is critical to develop a detailed data base of the important thermophysical and mechanical properties. Work has focused on five major properties: thermal conductivity, thermal expansion, tensile strength, creep resistance, and LCF life. The analysis went beyond simply measuring the data and reporting averages. A detailed statistical analysis was conducted that allowed regression of the data over the entire temperature range tested and establishment of design minimums. The design values were expressed as simple mathematical formulas that are highly amenable to use in computer codes such as in finite element analysis and related computer modeling work.

  5. High-pressure burning rate studies of solid rocket propellants

    NASA Astrophysics Data System (ADS)

    Atwood, A. I.; Ford, K. P.; Wheeler, C. J.

    2013-03-01

    Increased rocket motor performance is a major driver in the development of solid rocket propellant formulations for chemical propulsion systems. The use of increased operating pressure is an option to improve performance potentially without the cost of reformulation. A technique has been developed to obtain burning rate data across a range of pressures from ambient to 345 MPa. The technique combines the use of a low loading density combustion bomb with a high loading density closed bomb technique. A series of nine ammonium perchlorate (AP) based propellants were used to demonstrate the use of the technique, and the results were compared to the neat AP burning rate "barrier". The effect of plasticizer, oxidizer particle size, catalyst, and binder type were investigated.

  6. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  7. A3 Subscale Rocket Hot Fire Testing

    NASA Technical Reports Server (NTRS)

    Saunders, G. P.; Yen, J.

    2009-01-01

    This paper gives a description of the methodology and results of J2-X Subscale Simulator (JSS) hot fire testing supporting the A3 Subscale Diffuser Test (SDT) project at the E3 test facility at Stennis Space Center, MS (SSC). The A3 subscale diffuser is a geometrically accurate scale model of the A3 altitude simulating rocket test facility. This paper focuses on the methods used to operate the facility and obtain the data to support the aerodynamic verification of the A3 rocket diffuser design and experimental data quantifying the heat flux throughout the facility. The JSS was operated at both 80% and 100% power levels and at gimbal angle from 0 to 7 degrees to verify the simulated altitude produced by the rocket-rocket diffuser combination. This was done with various secondary GN purge loads to quantify the pumping performance of the rocket diffuser. Also, special tests were conducted to obtain detailed heat flux measurements in the rocket diffuser at various gimbal angles and in the facility elbow where the flow turns from vertical to horizontal upstream of the 2nd stage steam ejector.

  8. Devising rocket power for smaller engines

    SciTech Connect

    Burruss, R.

    1996-04-01

    Compact, high-power engines that burn fuel and oxygen could be made by winding copper tubing in a helix around boiler sections. With more than 1,000 horsepower per pound of engine weight, liquid-fueled rockets have the highest specific power of any engines designed for sustained operation. Yet those engines generally run for about only 1,000 seconds--nowhere near the sustained operation time for lower-power automotive and aircraft engines of more than 1,000 hours. In theory, at least, a fuel/oxygen rocket can be built that combines the best of both classes: high specific power (from perhaps two to 10 times that of a gas turbine) and a 1,000-hour service life. Such an engine would almost certainly be possible if the rocket`s exhaust gases could be simultaneously cooled and expanded by mixing water with the rocket`s exhaust and boiling it before it reaches the turbine. The technology itself is not new. variations of these rocket-turbine-type engines, for example, powered torpedoes during World War I. Some 30 years later, German V-2 rockets used fuel pumps, driven by the reaction of hydrogen peroxide with hydrocarbon fuels, to produce high-pressure steam that was directed against a turbine. Alternatively, fuel/oxygen combustion could produce steam to drive a piston engine. Either way, the challenge remains to construct a compact, long-service-life, high-specific-power boiler that burns fuel and oxygen. The new type of engine could be derived from recent research on electric vehicles (EVs).

  9. Another Look at Rocket Thrust

    ERIC Educational Resources Information Center

    Hester, Brooke; Burris, Jennifer

    2012-01-01

    Rocket propulsion is often introduced as an example of Newton's third law. The rocket exerts a force on the exhaust gas being ejected; the gas exerts an equal and opposite force--the thrust--on the rocket. Equivalently, in the absence of a net external force, the total momentum of the system, rocket plus ejected gas, remains constant. The law of…

  10. Indians Repulse British With Rocket

    NASA Technical Reports Server (NTRS)

    2004-01-01

    During the early introduction of rockets to Europe, they were used only as weapons. Enemy troops in India repulsed the British with rockets. Later, in Britain, Sir William Congreve developed a rocket that could fire to about 9,000 feet. The British fired Congreve rockets against the United States in the War of 1812.

  11. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  12. 1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ROCKET ENGINE TEST STAND, LOCATED IN THE NORTHEAST ¼ OF THE X-15 ENGINE TEST COMPLEX. Looking northeast. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  13. 2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ROCKET ENGINE TEST STAND, SHOWING TANK (BUILDING 1929) AND GARAGE (BUILDING 1930) AT LEFT REAR. Looking to west. - Edwards Air Force Base, X-15 Engine Test Complex, Rocket Engine & Complete X-15 Vehicle Test Stands, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  14. Relativistic rocket: Dream and reality

    NASA Astrophysics Data System (ADS)

    Semyonov, Oleg G.

    2014-06-01

    The dream of interstellar flights persists since the first pioneers in astronautics and has never died. Many concepts of thruster capable to propel a rocket to the stars have been proposed and the most suitable among them are thought to be photon propulsion and propulsion by the products of proton-antiproton annihilation in magnetic nozzle. This article addresses both concepts allowing for cross-section of annihilation among other issues in order to show their vulnerability and to indicate the problems. The concept of relativistic matter propulsion is substantiated and discussed. The latter is argued to be the most straightforward way to build-up a relativistic rocket firstly because it is based on the existing technology of ion generators and accelerators and secondly because it can be stepped up in efflux power starting from interplanetary spacecrafts powered by nuclear reactors to interstellar starships powered by annihilation reactors. The problems imposed by thermodynamics and heat disposal are accentuated.

  15. Rocketing into Adaptive Inquiry.

    ERIC Educational Resources Information Center

    Farenga, Stephen J.; Joyce, Beverly A.; Dowling, Thomas W.

    2002-01-01

    Defines adaptive inquiry and argues for employing this method which allows lessons to be shaped in response to student needs. Illustrates this idea by detailing an activity in which teams of students build rockets. (DDR)

  16. Antares Rocket Lifts Off!

    NASA Video Gallery

    NASA commercial space partner Orbital Sciences Corp. of Dulles, Va., launched its Cygnus cargo spacecraft aboard its Antares rocket at 10:58 a.m. EDT Wednesday from the Mid-Atlantic Regional Spacep...

  17. Russian Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA engineers successfully tested a Russian-built rocket engine on November 4, 1998 at the Marshall Space Flight Center (MSFC) Advanced Engine Test Facility, which had been used for testing the Saturn V F-1 engines and Space Shuttle Main engines. The MSFC was under a Space Act Agreement with Lockheed Martin Astronautics of Denver to provide a series of test firings of the Atlas III propulsion system configured with the Russian-designed RD-180 engine. The tests were designed to measure the performance of the Atlas III propulsion system, which included avionics and propellant tanks and lines, and how these components interacted with the RD-180 engine. The RD-180 is powered by kerosene and liquid oxygen, the same fuel mix used in Saturn rockets. The RD-180, the most powerful rocket engine tested at the MSFC since Saturn rocket tests in the 1960s, generated 860,000 pounds of thrust.

  18. Rocket engine numerical simulation

    NASA Technical Reports Server (NTRS)

    Davidian, Ken

    1993-01-01

    The topics are presented in view graph form and include the following: a definition of the rocket engine numerical simulator (RENS); objectives; justification; approach; potential applications; potential users; RENS work flowchart; RENS prototype; and conclusions.

  19. Hybrid Rocket Motor Test

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Stennis Space Center conducts a test on a hybrid rocket motor fed by a liquid oxygen turbopump. The test occurred at the E-1 test facility. The test was believed to be the first of its kind in the world.

  20. Rocket Motor Microphone Investigation

    NASA Technical Reports Server (NTRS)

    Pilkey, Debbie; Herrera, Eric; Gee, Kent L.; Giraud, Jerom H.; Young, Devin J.

    2010-01-01

    At ATK's facility in Utah, large full-scale solid rocket motors are tested. The largest is a five-segment version of the reusable solid rocket motor, which is for use on the Ares I launch vehicle. As a continuous improvement project, ATK and BYU investigated the use of microphones on these static tests, the vibration and temperature to which the instruments are subjected, and in particular the use of vent tubes and the effects these vents have at low frequencies.

  1. Investigation of the Rocket Induced Flow Field in a Rectangular Duct

    NASA Technical Reports Server (NTRS)

    Landrum, D. Brian; Thames, Mignon; Parkinson, Doug; Gautney, Serena; Hawk, Clark

    1999-01-01

    Several tests were performed on a one-sixth scale Rocket Based Combined Cycle (RBCC) engine model at the University of Alabama in Huntsville. The UAH RBCC facility consists of a rectangular duct with a vertical strut mounted in the center. The scaled strut consists of two supersonic rocket nozzles with an embedded vertical turbine between the rocket nozzles. The tests included mass flow, flow visualization and horizontal pressure traverses. The mass flow test indicated a c:hoked condition when the rocket chamber pressure is between 200 psi and 300 psi. The flow visualization tests narrowed the rocket chamber pressure range from, 250 psi to 300 psi. Also, from this t.est, an assumption of a minimum

  2. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  3. Hybrid rocket engine, theoretical model and experiment

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  4. Infrasound Rocket Signatures

    NASA Astrophysics Data System (ADS)

    Olson, J.

    2012-09-01

    This presentation reviews the work performed by our research group at the Geophysical Institute as we have applied the tools of infrasound research to rocket studies. This report represents one aspect of the effort associated with work done for the National Consortium for MASINT Research (NCMR) program operated by the National MASINT Office (NMO) of the Defense Intelligence Agency (DIA). Infrasound, the study of acoustic signals and their propagation in a frequency band below 15 Hz, enables an investigator to collect and diagnose acoustic signals from distant sources. Absorption of acoustic energy in the atmosphere decreases as the frequency is reduced. In the infrasound band signals can propagate hundreds and thousands of kilometers with little degradation. We will present an overview of signatures from rockets ranging from small sounding rockets such as the Black Brandt and Orion series to larger rockets such as Delta 2,4 and Atlas V. Analysis of the ignition transients provides information that can uniquely identify the motor type. After the rocket ascends infrasound signals can be used to characterize the rocket and identify the various events that take place along a trajectory such as staging and maneuvering. We have also collected information on atmospheric shocks and sonic booms from the passage of supersonic vehicles such as the shuttle. This review is intended to show the richness of the unique signal set that occurs in the low-frequency infrasound band.

  5. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    PubMed

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. PMID:24382172

  6. GREECE Sounding Rocket Mission Overview

    NASA Astrophysics Data System (ADS)

    Samara, M.; Michell, R.; Grubbs, G. A., II; Bonnell, J. W.; Ogasawara, K.; Hampton, D. L.; Jahn, J. M.; Donovan, E.; Gustavsson, B.; Lanchester, B. S.; McHarg, M. G.; Spanswick, E.; Trondsen, T. S.; Valek, P. W.

    2014-12-01

    On 03 March 2014 at 11:09:50 UT the Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) sounding rocket successfully launched from Poker Flat, Alaska . It reached an apogee of approximately 335 km over the native village of Venetie during a dynamic post-midnight auroral event. A wide range of precipitating electrons were measured with the Acute Precipitating Electron Spectrometer (APES) and Medium-energy Electron SPectrometer (MESP), cumulatively covering 300 ev to 200 keV in varying time resolutions. DC to low frequency electric and magnetic fields were measured at the same time and a langmuir probe was also employed. In addition to the on board instrumentation a suite of ground based imagers was deployed under apogee. We used several electron-multiplying charge-coupled devices (EMCCDs) with different filters and field of views imaging along magnetic zenith. This yielded multi-emission line information about the auroral brightness at the magnetic footprint of the rocket critical for our main goal of exploring the correlation of the sheer flows often observed in high resolution imagery during aurora and the in situ signatures of precipitating particles and waves. The instruments used will be discussed in further detail along with preliminary results of an event rich in particle and wave signatures.

  7. Mechanical and Combustion Performance of Multi-Walled Carbon Nanotubes as an Additive to Paraffin-Based Solid Fuels for Hybrid Rockets

    NASA Technical Reports Server (NTRS)

    Larson, Daniel B.; Boyer, Eric; Wachs, Trevor; Kuo, Kenneth, K.; Koo, Joseph H.; Story, George

    2012-01-01

    Paraffin-based solid fuels for hybrid rocket motor applications are recognized as a fastburning alternative to other fuel binders such as HTPB, but efforts to further improve the burning rate and mechanical properties of paraffin are still necessary. One approach that is considered in this study is to use multi-walled carbon nanotubes (MWNT) as an additive to paraffin wax. Carbon nanotubes provide increased electrical and thermal conductivity to the solid-fuel grains to which they are added, which can improve the mass burning rate. Furthermore, the addition of ultra-fine aluminum particles to the paraffin/MWNT fuel grains can enhance regression rate of the solid fuel and the density impulse of the hybrid rocket. The multi-walled carbon nanotubes also present the possibility of greatly improving the mechanical properties (e.g., tensile strength) of the paraffin-based solid-fuel grains. For casting these solid-fuel grains, various percentages of MWNT and aluminum particles will be added to the paraffin wax. Previous work has been published about the dispersion and mixing of carbon nanotubes.1 Another manufacturing method has been used for mixing the MWNT with a phenolic resin for ablative applications, and the manufacturing and mixing processes are well-documented in the literature.2 The cost of MWNT is a small fraction of single-walled nanotubes. This is a scale-up advantage as future applications and projects will require low cost additives to maintain cost effectiveness. Testing of the solid-fuel grains will be conducted in several steps. Dog bone samples will be cast and prepared for tensile testing. The fuel samples will also be analyzed using thermogravimetric analysis and a high-resolution scanning electron microscope (SEM). The SEM will allow for examination of the solid fuel grain for uniformity and consistency. The paraffin-based fuel grains will also be tested using two hybrid rocket test motors located at the Pennsylvania State University s High Pressure

  8. Highly Reusable Space Transportation (HRST) Baseline Concepts and Analysis: Rocket/RBCC Options. Part 2; A Comparative Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    1997-01-01

    This study is an extension of a previous effort by the Principal Investigator to develop baseline data to support comparative analysis of Highly Reusable Space Transportation (HRST) concepts. The analyses presented herin develop baseline data bases for two two-stage-to-orbit (TSTO) concepts: (1) Assisted horizontal take-off all rocket (assisted HTOHL); and (2) Assisted vertical take-off rocket based combined cycle (RBCC). The study objectives were to: (1) Provide configuration definitions and illustrations for assisted HTOHL and assisted RBCC; (2) Develop a rationalization approach and compare these concepts with the HRST reference; and (3) Analyze TSTO configurations which try to maintain SSTO benefits while reducing inert weight sensitivity.

  9. Iridium/Rhenium Parts For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Harding, John T.; Wooten, John R.

    1991-01-01

    Oxidation/corrosion of metals at high temperatures primary life-limiting mechanism of parts in rocket engines. Combination of metals greatly increases operating temperature and longevity of these parts. Consists of two transition-element metals - iridium and rhenium - that melt at extremely high temperatures. Maximum operating temperature increased to 2,200 degrees C from 1,400 degrees C. Increases operating lifetimes of small rocket engines by more than factor of 10. Possible to make hotter-operating, longer-lasting components for turbines and other heat engines.

  10. Fiber-Reinforced Superalloys For Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lewis, Jack R.; Yuen, Jim L.; Petrasek, Donald W.; Stephens, Joseph R.

    1990-01-01

    Report discusses experimental studies of fiber-reinforced superalloy (FRS) composite materials for use in turbine blades in rocket engines. Intended to withstand extreme conditions of high temperature, thermal shock, atmospheres containing hydrogen, high cycle fatigue loading, and thermal fatigue, which tax capabilities of even most-advanced current blade material - directionally-solidified, hafnium-modified MAR M-246 {MAR M-246 (Hf) (DS)}. FRS composites attractive combination of properties for use in turbopump blades of advanced rocket engines at temperatures from 870 to 1,100 degrees C.

  11. Low thrust chemical rocket technology

    NASA Astrophysics Data System (ADS)

    Schneider, Steven J.

    1992-11-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  12. Low thrust chemical rocket technology

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    An on-going technology program to improve the performance of low thrust chemical rockets for spacecraft on-board propulsion applications is reviewed. Improved performance and lifetime is sought by the development of new predictive tools to understand the combustion and flow physics, introduction of high temperature materials and improved component designs to optimize performance, and use of higher performance propellants. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Predictions are based on both the RPLUS Navier-Stokes code with finite rate kinetics and the JANNAF methodology. Data were obtained with laser-based diagnostics along with global performance measurements. Results indicate that the modeling of the injector and the combustion process needs improvement in these codes and flow visualization with a technique such as 2-D laser induced fluorescence (LIF) would aid in resolving issues of flow symmetry and shear layer combustion processes. High temperature material fabrication processes are under development and small rockets are being designed, fabricated, and tested using these new materials. Rhenium coated with iridium for oxidation protection was produced by the Chemical Vapor Deposition (CVD) process and enabled an 800 K increase in rocket operating temperature. Performance gains with this material in rockets using Earth storable propellants (nitrogen tetroxide and monomethylhydrazine or hydrazine) were obtained through component redesign to eliminate fuel film cooling and its associated combustion inefficiency while managing head end thermal soakback. Material interdiffusion and oxidation characteristics indicated that the requisite lifetimes of tens of hours were available for thruster applications. Rockets were designed, fabricated, and tested with thrusts of 22, 62, 440 and 550 N. Performance improvements of 10 to 20 seconds specific impulse were demonstrated. Higher

  13. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  14. Liquid rocket engine nozzles

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The nozzle is a major component of a rocket engine, having a significant influence on the overall engine performance and representing a large fraction of the engine structure. The design of the nozzle consists of solving simultaneously two different problems: the definition of the shape of the wall that forms the expansion surface, and the delineation of the nozzle structure and hydraulic system. This monography addresses both of these problems. The shape of the wall is considered from immediately upstream of the throat to the nozzle exit for both bell and annular (or plug) nozzles. Important aspects of the methods used to generate nozzle wall shapes are covered for maximum-performance shapes and for nozzle contours based on criteria other than performance. The discussion of structure and hydraulics covers problem areas of regeneratively cooled tube-wall nozzles and extensions; it treats also nozzle extensions cooled by turbine exhaust gas, ablation-cooled extensions, and radiation-cooled extensions. The techniques that best enable the designer to develop the nozzle structure with as little difficulty as possible and at the lowest cost consistent with minimum weight and specified performance are described.

  15. Sound from apollo rockets in space.

    PubMed

    Cotten, D; Donn, W L

    1971-02-12

    Low-frequency sound has been recorded on at least two occasions in Bermuda with the passage of Apollo rocket vehicles 188 kilometers aloft. The signals, which are reminiscent of N-waves from sonic booms, are (i) horizontally coherent; (ii) have extremely high (supersonic) trace velocities across the tripartite arrays; (iii) have nearly identical appearance and frequencies; (iv) have essentially identical arrival times after rocket launch; and (v) are the only coherent signals recorded over many hours. These observations seem to establish that the recorded sound comes from the rockets at high elevation. Despite this high elevation, the values of surface pressure appear to be explainable on the basis of a combination of a kinetic theory approach to shock formation in rarefied atmospheres with established gas-dynamics shock theory. PMID:17734781

  16. ROCKET PORT CLOSURE

    DOEpatents

    Mattingly, J.T.

    1963-02-12

    This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)

  17. Experimental research and design planning in the field of liquid-propellant rocket engines conducted between 1934 - 1944 by the followers of F. A. Tsander

    NASA Technical Reports Server (NTRS)

    Dushkin, L. S.

    1977-01-01

    The development of the following Liquid-Propellant Rocket Engines (LPRE) is reviewed: (1) an alcohol-oxygen single-firing LPRE for use in wingless and winged rockets, (2) a similar multifiring LPRE for use in rocket gliders, (3) a combined solid-liquid propellant rocket engine, and (4) an aircraft LPRE operating on nitric acid and kerosene.

  18. Boundary cooled rocket engines for space storable propellants

    NASA Technical Reports Server (NTRS)

    Kesselring, R. C.; Mcfarland, B. L.; Knight, R. M.; Gurnitz, R. N.

    1972-01-01

    An evaluation of an existing analytical heat transfer model was made to develop the technology of boundary film/conduction cooled rocket thrust chambers to the space storable propellant combination oxygen difluoride/diborane. Critical design parameters were identified and their importance determined. Test reduction methods were developed to enable data obtained from short duration hot firings with a thin walled (calorimeter) chamber to be used quantitatively evaluate the heat absorbing capability of the vapor film. The modification of the existing like-doublet injector was based on the results obtained from the calorimeter firings.

  19. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  20. Rockets in World War I

    NASA Technical Reports Server (NTRS)

    2004-01-01

    World War I enlisted rockets once again for military purposes. French pilots rigged rockets to the wing struts of their airplanes and aimed them at enemy observation balloons filled with highly inflammable hydrogen.

  1. Rocket motor aeroacoustics

    NASA Astrophysics Data System (ADS)

    Hegde, U. G.; Strahle, W. C.

    1983-10-01

    Vibration problems in solid propellant rocket motors are investigated. A class of interior flows modelled to simulate flow conditions inside rocket motor cavities is considered. Turbulence generated pressure fluctuations are shown to consist of two components - acoustic and hydrodynamics. The Bernoulli enthalpy theory of aeroacoustics is employed to extract acoustic pressure spectra from experimentally obtained turbulence data and acoustic impedance values at flow boundaries. The effects of turbulence intensities, sidewall acoustic impedance, axial mass blowing distribution, length to diameter ratio of the cavity and different mass flux on the acoustic pressure level are investigated. Typical pressure levels, under rocket motor conditions, are calculated using the A/B model of propellant response. Estimates of the hydrodynamic component of the pressure fluctuation are provided for the case of fully developed turbulent pipe flow terminated by a choked nozzle.

  2. Photometric observations of local rocket-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Greer, R. G. H.; Murtagh, D. P.; Witt, G.; Stegman, J.

    1983-06-01

    Photometric measurements from rocket flights which recorded a strong foreign luminance in the altitude region between 90 and 130 km are reported. From one Nike-Orion rocket the luminance appeared on both up-leg and down-leg; from a series of Petrel rockets the luminance was apparent only on the down-leg. The data suggest that the luminance may be distributed mainly in the wake region along the rocket trajectory. The luminance is believed to be due to a local interaction between the rocket and the atmosphere although the precise nature of the interaction is unknown. It was measured at wavelengths ranging from 275 nm to 1.61 microns and may be caused by a combination of reactions.

  3. 7. ROCKET SLED ON DECK OF TEST STAND 15. Photo ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ROCKET SLED ON DECK OF TEST STAND 1-5. Photo no. "6085, G-EAFB-16 SEP 52." Looking south to machine shop. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  4. Advanced liquid rockets

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    1992-01-01

    A program to substitute iridium coated rhenium for silicide coated niobium in thrust chamber fabrications is reviewed. The life limiting phenomena in each of these material systems is also reviewed. Coating cracking and spalling is not a problem with iridium-coated rhenium as in silicide-coated niobium. Use of the new material system enables an 800 K increase in thruster operating temperature from around 1700 K for niobium to 2500 K for rhenium. Specific impulse iridium-coated rhenium rockets is nominally 20 seconds higher than comparable niobium rockets in the 22 N class and nominally 10 seconds higher in the 440 N class.

  5. Development of a Low-cost, FPGA-based, Delay Line Particle Detector for Satellite and Sounding Rocket Applications

    NASA Astrophysics Data System (ADS)

    Harrington, M.; Kujawski, J. T.; Adrian, M. L.; Weatherwax, A. T.

    2013-12-01

    Electrons are, by definition, a fundamental, chemical and electromagnetic constituent of any plasma. This is especially true within the partially ionized plasmas of Earth's ionosphere where electrons are a critical component of a vast array of plasma processes. Siena College is working on a novel method of processing information from electron spectrometer anodes using delay line techniques and inexpensive COTS electronics to track the movement of high-energy particles. Electron spectrometers use a variety of techniques to determine where an amplified electron cloud falls onto a collecting surface. One traditional method divides the collecting surface into sectors and uses a single detector for each sector. However, as the angular and spatial resolution increases, so does the number of detectors, increasing power consumption, cost, size, and weight of the system. An alternative approach is to connect each sector with a delay line built within the PCB material which is shielded from cross talk by a flooded ground plane. Only one pair of detectors (e.g., one at each end of the chain) are needed with the delay line technique which is different from traditional delay line detectors which use either Application Specific Integrated Circuits (ASICs) or very fast clocks. In this paper, we report on the implementation and testing of a delay line detector using a low-cost Xilinx FPGA and a thirty-two sector delay system. This Delay Line Detector has potential satellite and rocket flight applications due to its low cost, small size and power efficiency

  6. Liquid rocket spray combustion stability analysis

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    A computational approach to the analysis of spray combustion stability in liquid rocket combustors is proposed which is based on the unsteady quasi-two-dimensional Euler equations with interphase source terms derived from a Lagrangian treatment of the combusting spray. Based on a preliminary evaluation, the computational methodology presented here is a promising research tool and a potential design/development aid for investigating the stability characteristics of liquid rocket engines. The method is characterized by low numerical noise; the Lagrangian treatment of the spray offers improved flexibility for the direct modeling of spray combustion.

  7. Finite area combustor theoretical rocket performance

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Mcbride, Bonnie J.

    1988-01-01

    Previous to this report, the computer program of NASA SP-273 and NASA TM-86885 was capable of calculating theoretical rocket performance based only on the assumption of an infinite area combustion chamber (IAC). An option was added to this program which now also permits the calculation of rocket performance based on the assumption of a finite area combustion chamber (FAC). In the FAC model, the combustion process in the cylindrical chamber is assumed to be adiabatic, but nonisentropic. This results in a stagnation pressure drop from the injector face to the end of the chamber and a lower calculated performance for the FAC model than the IAC model.

  8. Empirical Scaling Laws of Rocket Exhaust Cratering

    NASA Technical Reports Server (NTRS)

    Donahue, Carly M.; Metzger, Philip T.; Immer, Christopher D.

    2005-01-01

    When launching or landing a space craft on the regolith of a terrestrial surface, special attention needs to be paid to the rocket exhaust cratering effects. If the effects are not controlled, the rocket cratering could damage the spacecraft or other surrounding hardware. The cratering effects of a rocket landing on a planet's surface are not understood well, especially for the lunar case with the plume expanding in vacuum. As a result, the blast effects cannot be estimated sufficiently using analytical theories. It is necessary to develop physics-based simulation tools in order to calculate mission-essential parameters. In this work we test out the scaling laws of the physics in regard to growth rate of the crater depth. This will provide the physical insight necessary to begin the physics-based modeling.

  9. Rocket center Peenemuende - Personal memories

    NASA Technical Reports Server (NTRS)

    Dannenberg, Konrad; Stuhlinger, Ernst

    1993-01-01

    A brief history of Peenemuende, the rocket center where Von Braun and his team developed the A-4 (V-2) rocket under German Army auspices, and the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes, is presented. Emphasis is placed on the expansion of operations beginning in 1942.

  10. Atom Interferometry on Sounding Rockets

    NASA Astrophysics Data System (ADS)

    Seidel, S. T.; Lachmann, M. D.; Becker, D.; Grosse, J.; Popp, M. A.; Wang, J. B.; Wendrich, T.; Rasel, E. M.; Quantus Collaboration

    2015-09-01

    Atom interferometry in microgravity offers the possibility to perform high precision measurements of inertial forces complementary to experiments based on classical test masses. The ultimate goal is to perform these quantum measurements in space on board dedicated satellite missions. To reach this, a series of pathfinder microgravity experiments with cold atoms were build. The latest installment of these are conducted on sounding rockets. Here we give a short motivation of atom interferometry in space, an overview of the techniques used, and an introduction of the current mission MAIUS- 1.